WO2017190480A1 - 多电平逆变器的参考电压信号重构的容错控制方法 - Google Patents

多电平逆变器的参考电压信号重构的容错控制方法 Download PDF

Info

Publication number
WO2017190480A1
WO2017190480A1 PCT/CN2016/103751 CN2016103751W WO2017190480A1 WO 2017190480 A1 WO2017190480 A1 WO 2017190480A1 CN 2016103751 W CN2016103751 W CN 2016103751W WO 2017190480 A1 WO2017190480 A1 WO 2017190480A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
bridge
fault
voltage
reference voltage
Prior art date
Application number
PCT/CN2016/103751
Other languages
English (en)
French (fr)
Inventor
耿超
王天真
韩金刚
刘卓
秦海洋
Original Assignee
上海海事大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海事大学 filed Critical 上海海事大学
Priority to US15/741,629 priority Critical patent/US10644611B2/en
Publication of WO2017190480A1 publication Critical patent/WO2017190480A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Definitions

  • the invention relates to fault-tolerant control of multi-level inverters in the field of power electronics, and in particular to an adaptive fault-tolerant PWM modulation algorithm.
  • the multi-level inverter topology mainly includes a diode-clamped inverter, a flying-span capacitive inverter, and a cascaded multi-level inverter.
  • cascaded H-bridge inverters are widely used in the industry because they do not require a large number of clamping diodes or capacitors, do not need to equalize the capacitor voltage, are easy to modularize and expand in structure, and have good power quality. .
  • the cascaded multilevel inverters contain a large number of H bridges in each phase, which greatly increases the probability of failure of open and short circuit of the switching device. And as the voltage increases, the probability of a fault increases.
  • the generation of cascaded H-bridge multi-level inverters provides a lot of convenience for the application of power electronics technology in high-voltage and high-power applications, once a fault occurs, it will cause the enterprise to stop production, and it will cause catastrophic accidents. Bring huge losses to society.
  • Research shows that the failure of the switching device in the inverter-powered variable frequency speed control system accounts for 82.5% of the total drive system failure, which is the most prone to failure in the drive system.
  • the present invention introduces a fault signal into a PWM wave reconstruction algorithm of a cascaded multilevel inverter in a fault condition, and reconstructs the amplitude and phase of the total reference voltage and reconstructs the reference voltage of each H bridge.
  • the method realizes the removal of the faulty bridge and the fault-tolerant control of the normal bridge.
  • the object of the present invention is to provide a fault-tolerant control method for reference voltage signal reconstruction to realize fault-tolerant control of a cascade-type multi-level inverter, and the technical solution thereof is as follows:
  • a reference voltage signal reconstruction fault-tolerant control method for a multi-level inverter wherein the overall fault-tolerant inverter comprises a DC power supply, an H-bridge circuit, a fault diagnosis module, a PWM wave generation module, and a resistive load.
  • the DC power supply is composed of a plurality of DC power sources, and the PWM wave generating module generates a switching signal to drive the H-bridge main circuit to convert the DC power from the DC power source into AC power.
  • the voltage of the alternating current is detected and fault diagnosis, and the PWM wave is reconstructed according to the fault diagnosis result to perform fault-tolerant control of the inverter.
  • the three-phase voltage signal samples under normal and fault conditions are taken according to the fault category, and the weight matrix of the BP neural network is obtained by performing FFT transformation, PCA principal component extraction and BP neural network data pre-processing training. Then, in the real-time system, the acquired three-phase voltage signal is subjected to FFT transformation, PCA principal component extraction, and fault diagnosis using the weight matrix.
  • the main circuit of each phase in the cascaded multilevel inverter is composed of n H bridges.
  • the H-bridges are arranged from bottom to top, the bottom is the first H-bridge, and the top is the n-th H-bridge.
  • Voi is the output voltage of the i-th H-bridge
  • Vo is the total output voltage of the circuit
  • the outputs of the n H-bridges are cascaded, so that Since the DC power supply voltage of each H-bridge is E, the three output states of Voi are 0V or ⁇ E.
  • Vo can be equal to ⁇ nE, ⁇ (n-1)E, ... ⁇ E or 0V, ie each phase can output (2n+1) different levels.
  • the basic PWM wave modulation algorithm is selected as a carrier-stacked SPWM modulation algorithm.
  • the fault isolation switch Si is connected in parallel at both ends of each H-bridge to cut off the faulty bridge when a fault occurs.
  • the IGBT open-circuit fault of an H-bridge is classified into one type of fault, that is, regardless of the open-circuit fault of several IGBTs in the faulty bridge, it is classified as the fault of the H-bridge. Therefore, the present invention performs fault tolerant control for H-bridge failures.
  • the fault diagnosis module performs real-time detection and fault diagnosis on the output voltage of the inverter. According to the diagnosis result, the amplitude and phase of the three-phase total reference voltage are reconstructed, and the fault signal vector is established to reconstruct the reference voltage signal of each H-bridge, thereby utilizing the reconstructed PWM wave pair to cascade multiple power
  • the flat inverter performs fault tolerance control.
  • the overall method of the present invention is divided into offline fault signal pre-setting and offline three-phase phase voltage amplitude coefficient and phase reconstruction pre-setting, as well as online fault bridge resection and normal bridge reference voltage signal re-reconstruction.
  • the offline preset of the present invention is as follows:
  • Step 1 fault signal vector preset:
  • u Arefi+ (t) is the reference voltage of the PWM wave generated by the triangular wave in the left arm of the i-th H-bridge in phase A
  • u Arefi- (t) is the middle-arm and triangular wave of the i-th H-bridge in phase A Compared to the reference voltage that generates the PWM wave.
  • u Brefi+ (t) is the reference voltage of the PWM wave generated in the left arm of the i-th H-bridge in phase B compared with the triangular wave, u Brefi- (t) is the middle-arm and triangular wave of the i-th H-bridge in the B-phase Compared to the reference voltage that generates the PWM wave.
  • u Crefi+ (t) is the reference voltage of the PWM wave generated in the left arm of the i-th H-bridge in phase C compared with the triangular wave
  • u Crefi- (t) is the middle-arm and triangular wave of the i-th H-bridge in the C-phase Compared to the reference voltage that generates the PWM wave.
  • the reference voltage is as follows:
  • Step 2 Three-phase reference phase voltage amplitude coefficient and phase reconstruction preset:
  • ⁇ AB , ⁇ BC , and ⁇ AC are the phase difference between the A and B phases, the phase difference between the B and C phases, and the phase difference between the A and C phases, respectively
  • p*, q*, r* are Reference voltage amplitude coefficients for Phase A, Phase B, and Phase C.
  • the three-phase reference phase voltage amplitude coefficient and phase reconstruction are as follows:
  • Step 3 Three-phase reference phase voltage amplitude coefficient and phase reconstruction selection:
  • the online fault diagnosis of the inverter travels, and the fault signal vectors A, B, and C are updated according to the diagnosis result. And calculate the remaining normal bridge number of each phase according to formula (7).
  • phase reconstruction value reconstructs the three-phase total phase voltage:
  • Step 4 fault bridge resection and residual normal bridge reconfiguration
  • a closing command is sent to the bypass switch at both ends of the fault bridge, and the reference bridge signal is re-reconstructed in combination with the formula (9) to cut off the fault bridge, and the reference voltage signals of the respective normal bridges are also according to the formula (9). ) Perform re-refactoring.
  • the faulty bridge can be realized by the cut-off and down-level voltage-down operation of the cascaded H-bridge multi-level inverter without redundancy algorithm, and the three-phase line can also be ensured. Voltage balance.
  • the invention can reconstruct the amplitude and phase of the three-phase phase voltage according to the fault diagnosis result, thereby realizing the three-phase voltage balance.
  • the invention reconfigures the reference voltage signal of the faulty bridge, so that the voltage across the bypass switch can be zero, and there is no safety hazard.
  • the invention re-reconfigures the reference voltage signal of the normal bridge, so that the voltage output task transmission between the bridge and the bridge can be realized, and the fault tolerance is achieved.
  • the inverter adopts the same PWM wave modulation method under normal conditions and fault conditions, so there is no algorithm redundancy, the complexity of the control program is not increased, and the possibility of controller failure is reduced.
  • FIG. 1 is a diagram of a multilevel inverter device with a reference voltage signal reconstruction fault tolerant control method of the present invention
  • FIG. 2 is a fault-tolerant topology diagram of a single-phase main circuit of a cascaded H-bridge seven-level inverter of the present invention
  • FIG. 3 is a three-phase reference phase voltage amplitude coefficient and phase difference reconstruction vector diagram of the present invention
  • FIG. 4 is an output voltage task transfer diagram between a bridge and a bridge in the case of a single phase A fault in the present invention.
  • FIG. 5 is a fault-tolerant waveform diagram of the phase A voltage of the cascaded H-bridge seven-level inverter of the present invention.
  • Fig. 6 is a waveform diagram of three-phase line voltage before and after fault tolerance in the closed loop case of the cascaded H-type seven-level inverter of the present invention
  • a seven-level inverter based on a reference voltage signal reconstruction fault-tolerant control method includes an inverter main circuit, a fault diagnosis module, a three-phase voltage balance module, and a reference voltage signal of each H-bridge. Re-restructuring the module.
  • the DC power supply voltage of each H-bridge of the inverter is 24V, and the PWM switch drives the power switch to output AC power. When a fault occurs, the PWM wave is reconstructed without redundancy according to the fault signal.
  • the cascaded H-bridge seven-level inverter consists of three single-phase cascaded H-bridge structures as shown in Figure 2. Each phase is made up of three H-bridges cascaded. The bottom-up arrangement is the first H-bridge, the second H-bridge and the third H-bridge.
  • the four switches of the first H-bridge are labeled as H1S1, H1S2, H1S3, and H1S4, respectively, and the four switches of the second H-bridge are labeled H2S1, H2S2, H2S3, and H2S4, respectively, and four of the third H-bridge.
  • the switch tubes are labeled H3S1, H3S2, H3S3, and H3S4, respectively, and the switch is selected as an IGBT.
  • Vo1, Vo2, and Vo3 are the output voltages of the first, second, and third H-bridges respectively.
  • Vo is the total output voltage of the entire inverter circuit.
  • Vo Vo1+Vo2+Vo3. Since the voltages of the three DC power supplies are both 24V, there are three output states of 0V or ⁇ 24V for Vo1, Vo2 and Vo3.
  • Vo can be equal to ⁇ 72V, ⁇ 48V, ⁇ 24V, and 0V, so each phase of the inverter can output seven different levels.
  • the fault isolation switch is connected in parallel at both ends of each H-bridge to realize fault bridge removal under fault conditions.
  • the fault diagnosis module in the inverter device of Fig. 1 adopts a data-driven fault diagnosis method.
  • the three-phase voltage signal samples under normal and fault conditions are taken according to the fault category, and the sample is subjected to FFT transform, PCA principal component extraction, and BP neural network data.
  • the pre-processing training obtains the weight matrix of the BP neural network, and then in the real-time system, the acquired three-phase voltage signal is subjected to FFT transformation, PCA principal component extraction and fault diagnosis using the weight matrix.
  • Step 1 Offline fault signal vector preset
  • the fault signal vectors of phase A, phase B, and phase C are A, B, and C, where ⁇ A1 , ⁇ A2 , and ⁇ A3 are the first bridges in phase A, respectively.
  • the fault signal of the bridge and the third bridge are the fault signals of the first bridge, the second bridge, and the third bridge in the B and C phases, respectively.
  • Step 2 Offline three-phase reference phase voltage amplitude coefficient and phase reconstruction preset
  • ⁇ AB , ⁇ BC , and ⁇ AC are the phase difference between the A and B phases, the phase difference between the B and C phases, and the phase difference between the A and C phases, respectively, p*, q*, r* are Reference voltage amplitude coefficients of phase A, phase B and phase C;
  • the offline three-phase reference phase voltage amplitude coefficient and phase reconstruction are as follows:
  • the offline three-phase reference phase voltage amplitude coefficient and phase reconstruction are as follows:
  • the corresponding three-phase reference phase voltage amplitude coefficient and phase difference reconstruction value are calculated according to the possible fault type of the cascaded H-bridge type seven-level inverter.
  • Figure 3 is a vector diagram of the three-phase reference phase voltage amplitude coefficient and phase difference reconstruction. It can be seen from the figure that the three-phase line voltage amplitude is consistent and the phase difference is 120° after reconstruction under different fault conditions. Taking p ⁇ q ⁇ r as an example, the phase difference coefficient and phase difference reconstruction value of the three-phase reference phase voltage under different fault conditions in Table 1 can be calculated, where v ll is the reconstructed three-phase line voltage. Pu.
  • Table 1 Three-phase reference phase voltage phase difference amplitude coefficient and phase difference reconstruction value under different fault types
  • Step 3 Online three-phase reference phase voltage amplitude coefficient and phase reconstruction selection
  • phase reconstruction value reconstructs the three-phase total phase voltage:
  • Step 4 fault bridge resection and residual normal bridge reconfiguration
  • the re-reconstruction method is mainly based on the task transfer between the bridge and the bridge, and the voltage output responsibility that should be assumed by the fault bridge is transmitted to the normal H-bridge output of the upper layer, and the voltage that should be assumed by the normal H-bridge.
  • the output responsibility is passed to the normal H-bridge output of the next layer, and so on, the full voltage output after the total voltage amplitude reconstruction can be realized, as shown in Figure 4, which is the bridge and bridge in the case of A-phase single fault.
  • Figure 4 is the bridge and bridge in the case of A-phase single fault.
  • the single-fault and multi-fault fault-tolerant control of the seven-level inverter can be realized and the three-phase line voltage balance can be maintained.
  • the fault is removed, simply reset all fault signals to 0 to achieve normal operation of the inverter.
  • Figure 5 shows the total output voltage waveform before and after fault tolerance in the case of faults in different bridges in the seven-level A-phase open loop. It can be seen that the method of the present invention can safely and smoothly realize fault-tolerant control without redundancy and level-down, fault tolerance.
  • the fault diagnosis time of 0.02s was taken into account.
  • Figure 6 shows the waveforms of the three-phase line voltage before and after the fault in the closed-loop case of the cascaded seven-level inverter device (the first and third bridges in phase B and the second bridge in phase C) Fault), when the fault occurs in the figure, the three-phase line voltage is obviously distorted. After using this fault-tolerant method, the three-phase line voltage tends to be stable and balanced. Therefore, the fault-tolerant method can realize fault-tolerant control of the cascaded seven-level inverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Inverter Devices (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种级联型多电平逆变器的参考电压信号重构容错控制方法。该逆变器的容错方法能根据故障诊断结果自动重构三相总电压的相位差和参考电压幅值系数,从而保障三相线电压平衡。在总电压信号的重构基础上,根据故障信号向量对输入各个H桥的参考电压进行再重构,以实现故障桥的切除以及正常桥的容错控制,保证实际参考电压完整的正弦特性。该逆变器可以实现故障情况下最大三相平衡线电压,并具有不添加冗余模块、无冗余调制算法,故障桥切除简便的优点,适用于可降载运行的用电设备。

Description

多电平逆变器的参考电压信号重构的容错控制方法 技术领域:
本发明涉及电力电子领域中的多电平逆变器的容错控制,尤其涉及一种自适应容错PWM调制算法。
背景技术:
近年来,高压大功率变换器以其优越的性能和良好的节能效果,在工业生产、交通运输等领域得到了迅速的推广和应用。但是,开关器件的耐压等级严重制约着高压变频技术的发展。为了在现有开关器件耐压等级基础上得到更高的输出电压,多电平逆变器以其输出电能质量高、功率器件电压应力低、开关损耗小等特点在工业生产、交通运输、航空航天等领域得到广泛的应用。多电平逆变器拓扑主要包含二极管箝位型逆变器,飞跨电容式逆变器以及级联型多电平逆变器。其中级联H桥型逆变器因其不需要大量的箝位二极管或电容,无需均衡电容电压,结构上易于模块化和扩展,并具有良好的电能质量,因此在工业中得到了广泛的应用。
但是在实际工业工程中,级联型多电平逆变器的每相中都含有大量的H桥,因而会大大增加开关器件开路和短路的故障发生概率。而且随着电压的升高,故障出现的概率也变大。级联H桥型多电平逆变器的产生虽然为电力电子技术在高压、大功率场合的应用提供了很多便利,但一旦发生故障,轻则造成企业停产,重则会造成灾难性事故,给社会带来巨大的损失。研究表明,逆变器供电的变频调速系统中开关器件的故障占整个驱动系统故障的82.5%,是驱动系统中最容易发生故障的环节。
目前针对逆变器IGBT开路故障,主要有两种容错控制策略。一种是添加冗余桥臂或者添加冗余模块的硬件冗余方法。这种方法能实现全载运行,但是以成本的提高、逆变器的重量以及复杂度的增加为代价而实现的。在体积以及重量严格限制的使用场合,无法采用这种方法。为了减少生产成本,另一种策略则是利用余下的开关器件降载运行,通过改变控制算法,达到容错目的。但是传统的多电平逆变器PWM波调制算法无法适用故障模块切除后的逆变器控制,需更换调制策略才能进行容错控制,对于电平数越高的逆变器,所需添加的冗余算法就越多。而且切换算法需要进行故障判断和算法选择,在电平数越高的多电平逆变器中,故障种类越多,则整体的算法选择时间会更长,一定程度上延长了系统响应时间。
发明内容:
本发明首次将故障信号引入到故障情况下级联型多电平逆变器的PWM波重构算法中,通过对总参考电压幅值与相位的重构以及各H桥参考电压再重构的方法实现故障桥的切除以及正常桥的容错控制。
本发明的目的是提供一种参考电压信号重构的容错控制方法来实现级联型多电平逆变器的容错控制,其技术方案如下:
一种多电平逆变器的参考电压信号重构容错控制方法,其整体容错逆变器包括直流电源、H桥电路、故障诊断模块、PWM波生成模块、电阻负载。直流电源由多个直流电源组成,PWM波生成模块产生开关信号驱动H桥主电路将来自直流电源的直流电转换成交流电。对该交流电的电压进行检测以及故障诊断,根据故障诊断结果重构PWM波对逆变器进行容错控制。故障诊断方法采用基于数 据驱动的故障诊断方法,先根据故障类别采取正常与故障情况下三相电压信号样本,对样本进行FFT变换、PCA主元提取以及BP神经网络数据预处理训练得到BP神经网络的权值矩阵,然后在实时系统中,对采集到的三相电压信号进行FFT变换、PCA主元提取并利用已设置好权值矩阵的进行故障诊断。
级联型多电平逆变器中每一相主电路均由n个H桥组成。每一相中将H桥自下而上排列,最下面的是第一个H桥,最上面的是第n个H桥。将第i个H桥(i=1,2…n)的四个开关管分别标记为HiS1、HiS2、HiS3和HiS4,开关管选择为IGBT。Voi是第i个H桥的输出电压,Vo是该电路的总输出电压,将n个H桥的输出端级联后,使得
Figure PCTCN2016103751-appb-000001
由于每个H桥的直流电源电压均为E,所以Voi三个输出状态为0V或±E。这样,在任意时刻,Vo可以等于±nE、±(n-1)E、…±E或0V,即每一相可以输出(2n+1)种不同的电平。基本PWM波调制算法选择为载波层叠SPWM调制算法。在每个H桥两端并联故障隔离开关Si,当故障发生时用来切除故障桥。
H桥主电路中,一个H桥的IGBT开路故障分为一类故障,即不管故障桥内有几个IGBT发生开路故障,均将其归为该H桥故障。所以本发明针对H桥故障进行容错控制。
通过故障诊断模块对逆变器的输出电压做到实时的检测和故障诊断。根据诊断结果对三相总参考电压的幅值与相位进行重构,并且建立故障信号向量对各个H桥的参考电压信号进行再重构,从而利用重构后的PWM波对级联型多电平逆变器进行容错控制。
本发明的整体方法分为离线故障信号预设置和离线三相相电压幅值系数与相位重构预设置,以及在线故障桥切除与正常桥参考电压信号再重构。
本发明的离线预设置如下:
步骤1故障信号向量预设置:
设λAi(i=1,2,3….n)为A相中第i个H桥的故障信号,λAi=0时,A相第i个H桥无故障;λi=1时,A相第i个H桥有故障。uArefi+(t)为A相中第i个H桥左桥臂中与三角波相比生成PWM波的参考电压,uArefi-(t)为A相中第i个H桥右桥臂中与三角波相比生成PWM波的参考电压。设λBi(i=1,2,3….n)为B相中第i个H桥的故障信号,λBi=0时,B相第i个H桥无故障;λBi=1时,B相第i个H桥有故障。uBrefi+(t)为B相中第i个H桥左桥臂中与三角波相比生成PWM波的参考电压,uBrefi-(t)为B相中第i个H桥右桥臂中与三角波相比生成PWM波的参考电压。设λCi(i=1,2,3….n)为C相中第i个H桥的故障信号, λCi=0时,C相第i个H桥无故障;λCi=1时,C相第i个H桥有故障。uCrefi+(t)为C相中第i个H桥左桥臂中与三角波相比生成PWM波的参考电压,uCrefi-(t)为C相中第i个H桥右桥臂中与三角波相比生成PWM波的参考电压。
三相电压正常工作时,,三相各桥故障信号均为0,所以参考电压如下:
Figure PCTCN2016103751-appb-000002
设置三相故障信号向量:
Figure PCTCN2016103751-appb-000003
步骤2三相参考相电压幅值系数与相位重构预设置:
设p、q、r分别为A、B、C三相中正常桥的个数,根据可能出现的故障情况对三相参考相电压幅值系数与相位作如下重构:
当p=q=r时,p*=q*=r*=p=q=r,
Figure PCTCN2016103751-appb-000004
其中θAB、θBC、θAC分别是A、B相之间的相位差,B、C相之间的相位差以及A、C相之间的相位差,p*、q*、r*为A相、B相和C相的参考电压幅值系数。
其中当A相中正常桥个数最多时,当p<q+r时,θAB、θBC、θAC以及p*、q*、r*可以由式(1)重构,
Figure PCTCN2016103751-appb-000005
当p≥q+r,θAB、θBC、θAC以及p*、q*、r*可以由式(2)重构,
Figure PCTCN2016103751-appb-000006
当B相中正常桥个数最多时,三相参考相电压幅值系数与相位重构如下:
当q<p+r时,θAB、θBC、θAC以及p*、q*、r*可以由式(3)重构,
Figure PCTCN2016103751-appb-000007
当q≥p+r时,θAB、θBC、θAC以及p*、q*、r*可以由式(4)重构,
Figure PCTCN2016103751-appb-000008
当C相中正常桥个数最多时,三相参考相电压幅值系数与相位重构如下:
当r<p+q时,θAB、θBC、θAC以及p*、q*、r*可以由式(5)重构,
Figure PCTCN2016103751-appb-000009
当r≥p+q时,θAB、θBC、θAC以及p*、q*、r*可以由式(6)重构,
Figure PCTCN2016103751-appb-000010
经过以上计算可得到各种情况下的三相参考相电压的幅值与相位差。
以上为容错的离线设置,在此基础上进行在线故障桥切除与正常桥参考电压信号再重构方法如下:
步骤3三相参考相电压幅值系数与相位重构选择:
对逆变器行进在线故障诊断,根据诊断结果更新故障信号向量A、B和C。并根据式(7)计算各相的剩余正常桥数。
Figure PCTCN2016103751-appb-000011
离线时已针对各种故障计算得到相对应地三相参考相电压幅值系数与相位重构值,所以在线时只需根据计算得到的p、q、r选择对应的参考相电压幅值系数与相位重构值对三相总相电压进行重构:
Figure PCTCN2016103751-appb-000012
步骤4故障桥切除与剩余正常桥再重构
根据故障诊断结果向故障桥两端的旁路开关发送闭合指令,并结合式(9)对故障桥进行参考电压信号再重构从而将故障桥切除,各个正常桥的参考电压信号也按公式(9)进行再重构。
Figure PCTCN2016103751-appb-000013
通过上述在线参考电压信号再重构方法,可以实现级联H桥型多电平逆变器无冗余算法情况下故障桥的切除和降电平降电压运行实现,同时还能保证三相线电压平衡。
本发明有以下效果:
1.本发明能根据故障诊断结果对三相相电压的幅值与相位进行重构,从而实现三相电压平衡。
2.本发明通过对故障桥的参考电压信号进行再重构,能够实现旁路开关两端的电压为0,不存在安全隐患。
3.本发明通过对正常桥的参考电压信号进行再重构,能够实现桥与桥之间电压输出任务传递,达到容错目的。
4.本发明中逆变器正常情况下与故障情况下采用同一种PWM波调制方法,所以不存在算法冗余,不会增加控制程序的复杂度,减小了控制器故障的可能性。下面结合附图和级联型七电平逆变器实施例对本发明进一步说明。
附图说明:
图1本发明带有参考电压信号重构容错控制方法的多电平逆变器装置图;
图2本发明级联H桥型七电平逆变器的单相主电路容错拓扑图
图3本发明三相参考相电压幅值系数与相位差重构矢量图
图4本发明A相单故障情况下的桥与桥之间的输出电压任务传递图
图5本发明级联H桥型七电平逆变器A相电压的容错波形图
图6本发明级联H型七电平逆变器闭环情况下容错前后三相线电压波形图
具体实施方法:
如图1所示,一种基于参考电压信号重构容错控制方法的七电平逆变器,包括逆变器主电路、故障诊断模块、三相电压平衡模块,以及各H桥的参考电压信号再重构模块。逆变器各H桥的直流电源电压为24V,由PWM波驱动功率开关输出交流电。当故障发生时,根据故障信号对PWM波进行无冗余重构。
级联H桥型七电平逆变由三个如图2所示的单相级联H桥结构组成。每一相均由三个H桥级联而成。自下而上排列分别为第一个H桥,第二个H桥和第三个H桥。将第一H桥的四个开关管分别标记为H1S1、H1S2、H1S3和H1S4,第二个H桥的四个开关管分别标记为H2S1、H2S2、H2S3和H2S4,第三个H桥的四个开关管分别标记为H3S1、H3S2、H3S3和H3S4,开关选择为IGBT。Vo1、Vo2和Vo3分别为第一个、第二个和第三个H桥的输出电压,Vo是整个逆变电路的总输出电压,将三个H桥的输出端级联后,使得Vo=Vo1+Vo2+Vo3。由于三个直流电源的电压均为24V,所以Vo1、Vo2和Vo3存在三个输出状态0V或±24V。这样,在任意时刻,Vo可以等于±72V、±48V、±24V以及0V,因而本逆变器每一相均可输出七种不同的电平。在各H桥两端并联故障隔离开关,以实现故障情况下的故障桥切除。
图1逆变器装置中故障诊断模块采用基于数据驱动的故障诊断方法,先根据故障类别采取正常与故障情况下三相电压信号样本,对样本进行FFT变换、PCA主元提取以及BP神经网络数据预处理训练得到BP神经网络的权值矩阵,然后在实时系统中,对采集到的三相电压信号进行FFT变换、PCA主元提取并利用已设置好权值矩阵的进行故障诊断。
具体的故障容错方法如下:
步骤1离线故障信号向量预设置
在七电平逆变器中,设A相、B相、C相的故障信号向量为A、B、C,其中λA1、λA2、λA3分别为A相中第一个桥,第二个桥以及第三个桥的故障信号。同理λB1、λB2、λB3、λC1、λC2以及λC3分别是B,C相中第一个桥,第二个桥以及第三个桥的故障信号。则可建立如下故障信号向量:
Figure PCTCN2016103751-appb-000014
步骤2离线三相参考相电压幅值系数与相位重构预设置
设p、q、r分别为A、B、C三相中正常桥的个数,根据可能出现的故障情况对离线三相参考相电压幅值系数与相位作如下重构:
当p=q=r时,p*=q*=r*=p=q=r,
Figure PCTCN2016103751-appb-000015
其中θAB、θBC、θAC分别是A、B相之间的相位差,B、C相之间的相位差以及A、C相之间的相位差,p*、q*、r*为A相、B相和C相的参考电压幅值系数;
其中当A相中正常桥个数最多时,当p<q+r时,θAB、θBC、θAC以及p*、q*、r*由式(1)重构,
Figure PCTCN2016103751-appb-000016
当p≥q+r,θAB、θBC、θAC以及p*、q*、r*由式(2)重构,
Figure PCTCN2016103751-appb-000017
当B相中正常桥个数最多时,离线三相参考相电压幅值系数与相位重构如下:
当q<p+r时,θAB、θBC、θAC以及p*、q*、r*由式(3)重构,
Figure PCTCN2016103751-appb-000018
当q≥p+r时,θAB、θBC、θAC以及p*、q*、r*由式(4)重构,
Figure PCTCN2016103751-appb-000019
当C相中正常桥个数最多时,离线三相参考相电压幅值系数与相位重构如下:
当r<p+q时,θAB、θBC、θAC以及p*、q*、r*由式(5)重构,
Figure PCTCN2016103751-appb-000020
当r≥p+q时,θAB、θBC、θAC以及p*、q*、r*由式(6)重构,
Figure PCTCN2016103751-appb-000021
按照公式(1)-(6),根据级联H桥型七电平逆变器可能出现故障类型计算相对应的三相参考相电压幅值系数与相位差重构值。图3为三相参考相电压幅值系数与相位差重构矢量图,从图中可以看出在不同故障情况下重构后三相线电压幅值一致且相位差为120°。以p≥q≥r为例,可以计算出表1中不同故障情况下的三相参考相电压相位差值幅值系数和相位差重构值,其中vll为重构后的三相线电压标幺值。
表1不同故障类型下的三相参考相电压相位差值幅值系数和相位差重构值
A B C θAB θAC p* q* r* vll(pu)
3 3 2 99° 130° 3 3 2 4.56
3 3 1 79° 140° 3 3 1 3.82
3 2 2 101° 101° 3 2 2 3.92
3 2 1 79.1° 100.9° 2.65 2 1 3
3 1 1 90° 90° 1.73 1 1 2
2 2 2 120° 120° 2 2 2 3.46
2 2 1 89° 135° 2 2 1 2.8
2 1 1 90° 90° 1.73 1 1 2
1 1 1 120° 120° 1 1 1 1.73
步骤3在线三相参考相电压幅值系数与相位重构选择
对逆变器行进在线故障诊断,根据诊断结果更新故障信号向量A、B和C。并根据式(7)计算各相的剩余正常桥数;
Figure PCTCN2016103751-appb-000022
离线时已针对各种故障计算得到相对应地三相参考相电压幅值系数与相位重构值,所以在线时只需根据计算得到的p、q、r选择对应的参考相电压幅值系数与相位重构值对三相总相电压进行重构:
Figure PCTCN2016103751-appb-000023
步骤4故障桥切除与剩余正常桥再重构
根据故障诊断结果向故障桥两端的旁路开关发送闭合指令,并结合式(9)对故障桥进行参考电压信号再重构从而将故障桥切除,各个正常桥的参考电压信号也按公式(9)进行再重构;
Figure PCTCN2016103751-appb-000024
本再重构方法主要是基于桥与桥之间的任务传递,将本应由故障桥承担的电压输出责任传递给其上一层的正常H桥输出,而本应由正常H桥承担的电压输出责任传递给再上一层的正常H桥输出,以此类推,可以实现总电压幅值重构后的全电压输出,如图4所示,为A相单故障情况下的桥与桥之间的输出电压任务传递图。
通过上述步骤,便可实现七电平逆变器的单故障和多故障的容错控制并能保持三相线电压平衡。当故障排除后,只需重置所有故障信号为0,便可实现逆变器正常运行。
图5所示为七电平A相开环中各不同桥发生故障时的容错前后总输出电压波形图,可以看出,本发明方法能够安全平稳的实现无冗余降电平容错控制,容错中考虑到了0.02s的故障诊断时间。图6所示为级联型七电平逆变器装置闭环情况下故障前与故障后三相线电压波形图(B相中第一个和第三个桥以及C相中第二个桥发生故障),图中故障发生时,三相线电压发生明显畸变,运用本容错方法后,三相线电压趋于稳定与平衡。因此,本容错方法能实现级联型七电平逆变器的容错控制。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (1)

  1. 一种级联型多电平逆变器的参考电压信号重构容错控制方法,所述级联型多电平逆变器包括多个直流电源、H桥电路、故障诊断模块、PWM波生成模块、电阻负载;PWM波生成模块产生开关信号驱动H桥电路将来自多个直流电源的直流电转换成交流电,对所述交流电的电压进行检测以及故障诊断,根据故障诊断结果重构PWM波对逆变器进行容错控制;故障诊断方法采用基于数据驱动的故障诊断方法,先根据故障类别采取正常与故障情况下三相电压信号样本,对样本进行FFT变换、PCA主元提取以及BP神经网络数据预处理训练得到BP神经网络的权值矩阵,然后在实时系统中,对采集到的三相电压信号进行FFT变换、PCA主元提取并利用所述权值矩阵进行故障诊断;级联型多电平逆变器中每一相的H桥主电路由n个H桥组成;将H桥自下而上排列,最下面的是第一个H桥,最上面的是第n个H桥;将第i个H桥的四个开关管分别标记为HiS1、HiS2、HiS3和HiS4,开关管选择为IGBT;Voi是第i个H桥的输出电压,Vo是该电路的总输出电压,将n个H桥的输出端级联后,使得
    Figure PCTCN2016103751-appb-100001
    由于每个H桥的直流电源电压均为E,所以Voi三个输出状态为0V或±E;这样,在任意时刻,Vo可以等于±nE、±(n-1)E、…±E或0V,即每一相可以输出(2n+1)种不同的电平;基本PWM波调制算法选择为载波层叠SPWM调制算法;在每个H桥两端并联故障隔离开关Si,当故障发生时用来切除故障桥;H桥主电路中,一个H桥的IGBT开路故障分为一类故障,及不管故障桥内有几个IGBT发生开路故障,均将其归为该H桥故障;通过故障诊断模块对逆变器的输出电压做到实时的检测和故障诊断;根据诊断结果对三相总参考电压的幅值与相位进行重构,并且建立故障信号向量对各个H桥的参考电压信号进行再重构,从而利用重构后的PWM波对级联型多电平逆变器进行容错控制;
    其特征在于,所述级联型多电平逆变器的参考电压信号重构容错控制方法包括以下步骤:
    步骤1故障信号向量预设置:
    设λAi(i=1,2,3….n)为A相中第i个H桥的故障信号,λAi=0时,A相第i个H桥无故障;λi=1时,A相第i个H桥有故障。uArefi+(t)为A相中第i个H桥左桥臂中与三角波相比生成PWM波的参考电压,uArefi-(t)为A相中第i个H桥右桥臂中与三角波相比生成PWM波的参考电压。设λBi(i=1,2,3….n)为B相中第i个H桥的故障信号,λBi=0时,B相第i个H桥无故障;λBi=1时,B相第i个H桥有故障。uBrefi+(t)为B相中第i个H桥左桥臂中与三角波相比生成PWM波的参考电压,uBrefi-(t)为B相中第i个H桥右桥臂中与三角波相比生成PWM波的参考电压。设λCi(i=1,2,3….n)为C相中第i个H桥的故障信号, λCi=0时,C相第i个H桥无故障;λCi=1时,C相第i个H桥有故障。uCrefi+(t)为C相中第i个H桥左桥臂中与三角波相比生成PWM波的参考电压,uCrefi-(t)为C相中第i个H桥右桥臂中与三角波相比生成PWM波的参考电压;三相电压正常工作时,三相各桥故障信号均为0,所以参考电压如下:
    Figure PCTCN2016103751-appb-100002
    设置三相故障信号向量:
    Figure PCTCN2016103751-appb-100003
    Figure PCTCN2016103751-appb-100004
    Figure PCTCN2016103751-appb-100005
    步骤2离线三相参考相电压幅值系数与相位重构预设置:
    设p、q、r分别为A、B、C三相中正常桥的个数,根据可能出现的故障情况对离线三相参考相电压幅值系数与相位作如下重构:
    当p=q=r时,p*=q*=r*=p=q=r,
    Figure PCTCN2016103751-appb-100006
    其中θAB、θBC、θAC分别是A、B相之间的相位差,B、C相之间的相位差以及A、C相之间的相位差,p*、q*、r*为A相、B相和C相的参考电压幅值系数;
    其中当A相中正常桥个数最多时,当p<q+r时,θAB、θBC、θAC以及p*、q*、r*由式(1)重构,
    Figure PCTCN2016103751-appb-100007
    当p≥q+r,θAB、θBC、θAC以及p*、q*、r*由式(2)重构,
    Figure PCTCN2016103751-appb-100008
    当B相中正常桥个数最多时,离线三相参考相电压幅值系数与相位重构如下:
    当q<p+r时,θAB、θBC、θAC以及p*、q*、r*由式(3)重构,
    Figure PCTCN2016103751-appb-100009
    当q≥p+r时,θAB、θBC、θAC以及p*、q*、r*由式(4)重构,
    Figure PCTCN2016103751-appb-100010
    当C相中正常桥个数最多时,离线三相参考相电压幅值系数与相位重构如下:
    当r<p+q时,θAB、θBC、θAC以及p*、q*、r*由式(5)重构,
    Figure PCTCN2016103751-appb-100011
    当r≥p+q时,θAB、θBC、θAC以及p*、q*、r*由式(6)重构,
    Figure PCTCN2016103751-appb-100012
    经过以上计算可得到各种情况下的离线三相参考相电压的幅值与相位差;
    步骤3在线三相参考相电压幅值系数与相位重构选择:
    对逆变器行进在线故障诊断,根据诊断结果更新故障信号向量A、B和C。并根据式(7)计算各相的剩余正常桥数;
    Figure PCTCN2016103751-appb-100013
    离线时已针对各种故障计算得到相对应地三相参考相电压幅值系数与相位重构值,所以在线时只需根据计算得到的p、q、r选择对应的参考相电压幅值系数与相位重构值对三相总相电压进行重构:
    Figure PCTCN2016103751-appb-100014
    步骤4故障桥切除与剩余正常桥再重构
    根据故障诊断结果向故障桥两端的旁路开关发送闭合指令,并结合式(9)对故障桥进行参考电压信号再重构从而将故障桥切除,各个正常桥的参考电压信号也按公式(9)进行再重构;
    Figure PCTCN2016103751-appb-100015
PCT/CN2016/103751 2016-05-06 2016-10-28 多电平逆变器的参考电压信号重构的容错控制方法 WO2017190480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/741,629 US10644611B2 (en) 2016-05-06 2016-10-28 Voltage reference reconfiguration fault-tolerant control method for multi-level inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610297592.7A CN105811794B (zh) 2016-05-06 2016-05-06 多电平逆变器的参考电压信号重构的容错控制方法
CN201610297592.7 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017190480A1 true WO2017190480A1 (zh) 2017-11-09

Family

ID=56456477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103751 WO2017190480A1 (zh) 2016-05-06 2016-10-28 多电平逆变器的参考电压信号重构的容错控制方法

Country Status (3)

Country Link
US (1) US10644611B2 (zh)
CN (1) CN105811794B (zh)
WO (1) WO2017190480A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320430A (zh) * 2019-07-18 2019-10-11 中国计量科学研究院 一种基于倾斜法的高压电容电压系数测量装置及使用方法
CN111091094A (zh) * 2019-12-18 2020-05-01 上海海事大学 基于pca-svm二次分类的光伏级联型并网逆变器的故障诊断方法
CN114035120A (zh) * 2021-11-04 2022-02-11 合肥工业大学 基于改进cnn的三电平逆变器开路故障诊断方法及系统
CN114759817A (zh) * 2022-04-07 2022-07-15 太原理工大学 适用于级联全桥npc逆变器的无缝开路故障模型预测容错控制方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811794B (zh) * 2016-05-06 2018-03-30 上海海事大学 多电平逆变器的参考电压信号重构的容错控制方法
CN106711999A (zh) * 2016-12-12 2017-05-24 哈尔滨理工大学 基于调制波重构的mmc‑statcom故障处理装置
CN108282102B (zh) * 2017-01-06 2020-02-04 南京航空航天大学 一种适用于混合级联h桥多电平逆变器的三倍频载波移相调制方法
CN108649825B (zh) * 2018-04-25 2020-03-27 上海海事大学 一种级联型多电平逆变器的多故障隔离方法
CN108963980B (zh) * 2018-04-26 2020-03-27 上海海事大学 一种基于故障隔离库的多模态故障隔离方法
TWI689159B (zh) * 2018-07-24 2020-03-21 國立勤益科技大學 三階中性點箝位型變頻器之容錯控制系統及其容錯控制方法
US11020907B2 (en) 2018-12-13 2021-06-01 General Electric Company Method for melt pool monitoring using fractal dimensions
CN111476374B (zh) * 2020-04-14 2022-09-27 重庆工业职业技术学院 基于神经网络的纯电动汽车电器故障诊断训练方法与装置
CN111509960B (zh) * 2020-04-29 2022-08-16 南京理工大学 基于电压空间矢量数学模型的三相变流器容错控制方法
CN111800067B (zh) * 2020-06-29 2022-08-16 南京理工大学 逆变器欠压故障下多电机同步协调容错控制方法及系统
CN111934570B (zh) * 2020-09-29 2021-01-19 国网(天津)综合能源服务有限公司 一种级联h桥型光储混合能量路由器的故障容错控制方法
CN112152497B (zh) * 2020-10-09 2021-07-02 上海海事大学 一种级联型五电平逆变器的容错控制方法
CN112305350B (zh) * 2020-10-20 2022-09-02 云南电网有限责任公司电力科学研究院 一种新能源机组调频测试平台功率模块的故障检测装置
US11990849B2 (en) * 2021-01-29 2024-05-21 Virginia Tech Intellectual Properties, Inc. Hybrid multi-level inverter
CN112821743B (zh) * 2021-02-26 2022-08-02 西安微电子技术研究所 一种基于智能诊断的电源关键硬件重构单元结构
CN114301315A (zh) * 2021-12-29 2022-04-08 阳光电源股份有限公司 一种飞跨电容型多电平电路及故障容错控制方法
CN114977751B (zh) * 2022-06-15 2023-02-03 安徽理工大学 一种并联变流器容错控制方法
CN115166517B (zh) * 2022-09-07 2022-11-25 沈阳科来沃电气技术有限公司 一种针对电机传动系统中逆变器故障诊断方法
CN116610916B (zh) * 2023-05-18 2023-11-21 兰州理工大学 多信号源自适应融合级联h桥逆变器故障诊断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378759A (zh) * 2012-04-19 2013-10-30 马文忠 一种npc三电平逆变器故障冗余控制方法
CN103560689A (zh) * 2013-10-31 2014-02-05 辽宁工程技术大学 一种利用冗余电压矢量实现中压级联statcom容错控制的方法
CN103761372A (zh) * 2014-01-06 2014-04-30 上海海事大学 一种基于主元分析与多分类相关向量机的多电平逆变器故障诊断策略
WO2016050800A2 (en) * 2014-09-29 2016-04-07 Koninklijke Philips N.V. Multi-level inverter and method for providing multi-level output voltage by utilizing the multi-level inverter
CN105811794A (zh) * 2016-05-06 2016-07-27 上海海事大学 多电平逆变器的参考电压信号重构的容错控制方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986909A (en) * 1998-05-21 1999-11-16 Robicon Corporation Multiphase power supply with plural series connected cells and failed cell bypass
DE102005045091B4 (de) * 2005-09-21 2007-08-30 Siemens Ag Steuerverfahren zur Redundanznutzung im Störungsfall eines mehrphasigen Stromrichters mit verteilten Energiespeichern
US7277304B2 (en) * 2005-09-23 2007-10-02 Gm Global Technology Operations, Inc. Multiple inverter system with single controller and related operating method
KR100825323B1 (ko) * 2007-03-05 2008-04-28 엘에스산전 주식회사 단위 셀 역률 동일 제어 장치를 가지는 캐스케이드 방식을이용한 멀티레벨 인버터 및 그 제어방법
DE102008036811B4 (de) * 2008-08-07 2019-10-10 Siemens Aktiengesellschaft Redundanzsteuerverfahren eines mehrphasigen Stromrichters mit verteilten Energiespeichern
KR20130006622A (ko) * 2010-03-18 2013-01-17 에이비비 리써치 리미티드 캐스케이딩된 컨버터들에 대한 컨버터 셀, 결함 컨버터 셀을 바이패싱하기 위한 제어 시스템 및 방법
WO2012033958A1 (en) * 2010-09-09 2012-03-15 Curtiss-Wright Electro-Mechanical Corporation System and method for controlling a m2lc system
RU2545323C1 (ru) * 2011-02-23 2015-03-27 Майкро Моушн, Инк. Вибрационный расходомер и способ измерения температуры
CN102684467B (zh) * 2012-05-17 2016-05-25 华为技术有限公司 一种h桥级联型设备的功率单元旁路处理方法及控制器
US9876347B2 (en) * 2012-08-30 2018-01-23 Siemens Aktiengesellschaft Apparatus and methods for restoring power cell functionality in multi-cell power supplies
US8976554B2 (en) * 2012-09-18 2015-03-10 Siemens Corporation Control for fault-bypass of cascaded multi-level inverter
CN103560698A (zh) * 2013-11-05 2014-02-05 沈晓斌 零点电源电池组作为电动喷雾器电源的应用
CN103837791A (zh) * 2014-03-20 2014-06-04 上海应用技术学院 三电平逆变器多模式故障诊断电路及其诊断方法
EP2978092A1 (en) * 2014-07-24 2016-01-27 Siemens Aktiengesellschaft Fault tolerant control of modular multilevel converters by reference modification
US20170164495A1 (en) * 2014-08-12 2017-06-08 Siemens Aktiengesellschaft Subsea converter module
CN104682351B (zh) * 2015-02-13 2018-07-13 中南大学 基于数学构造调制的矩阵变换器开路故障容错控制方法
US9929642B2 (en) * 2015-03-24 2018-03-27 Commissariat à l'Energie Atomique et aux Energies Alternatives DC/DC converter
CN106329950B (zh) * 2015-07-01 2019-01-08 南京南瑞继保电气有限公司 模块化多电平换流器驱动信号调制方法及故障隔离方法
EP3375084B1 (en) * 2015-11-09 2022-07-20 ABB Schweiz AG Electrical converter and control method
KR102485705B1 (ko) * 2016-02-18 2023-01-05 엘에스일렉트릭(주) 멀티 레벨 인버터의 3상 평형 전압 제어 방법
US20180091058A1 (en) * 2016-09-27 2018-03-29 Rockwell Automation Technologies, Inc. Multiphase multilevel power converter, control apparatus and methods to control harmonics during bypass operation
KR20180064670A (ko) * 2016-12-06 2018-06-15 엘에스산전 주식회사 무효전력보상장치 및 그 제어 방법
EP3544169A1 (en) * 2018-03-19 2019-09-25 Power Electronics España, S.L. Re-balancing phase-to-phase voltages in case of unsymmetric phase-to-neutral voltages in a modular multilevel converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378759A (zh) * 2012-04-19 2013-10-30 马文忠 一种npc三电平逆变器故障冗余控制方法
CN103560689A (zh) * 2013-10-31 2014-02-05 辽宁工程技术大学 一种利用冗余电压矢量实现中压级联statcom容错控制的方法
CN103761372A (zh) * 2014-01-06 2014-04-30 上海海事大学 一种基于主元分析与多分类相关向量机的多电平逆变器故障诊断策略
WO2016050800A2 (en) * 2014-09-29 2016-04-07 Koninklijke Philips N.V. Multi-level inverter and method for providing multi-level output voltage by utilizing the multi-level inverter
CN105811794A (zh) * 2016-05-06 2016-07-27 上海海事大学 多电平逆变器的参考电压信号重构的容错控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320430A (zh) * 2019-07-18 2019-10-11 中国计量科学研究院 一种基于倾斜法的高压电容电压系数测量装置及使用方法
CN111091094A (zh) * 2019-12-18 2020-05-01 上海海事大学 基于pca-svm二次分类的光伏级联型并网逆变器的故障诊断方法
CN111091094B (zh) * 2019-12-18 2023-02-24 上海海事大学 基于pca-svm二次分类的光伏级联型并网逆变器的故障诊断方法
CN114035120A (zh) * 2021-11-04 2022-02-11 合肥工业大学 基于改进cnn的三电平逆变器开路故障诊断方法及系统
CN114759817A (zh) * 2022-04-07 2022-07-15 太原理工大学 适用于级联全桥npc逆变器的无缝开路故障模型预测容错控制方法
CN114759817B (zh) * 2022-04-07 2024-04-12 太原理工大学 适用于级联全桥npc逆变器的无缝开路故障模型预测容错控制方法

Also Published As

Publication number Publication date
CN105811794A (zh) 2016-07-27
US10644611B2 (en) 2020-05-05
US20180217902A1 (en) 2018-08-02
CN105811794B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
WO2017190480A1 (zh) 多电平逆变器的参考电压信号重构的容错控制方法
Priya et al. Modular‐multilevel converter topologies and applications–a review
Teymour et al. A novel modulation technique and a new balancing control strategy for a single-phase five-level ANPC converter
Alharbi et al. Reliability comparison and evaluation of MMC based HVDC systems
JP2017147926A (ja) マルチレベルインバータの三相平衡電圧制御方法
Garapati et al. Minimization of power loss in newfangled cascaded H-bridge multilevel inverter using in-phase disposition PWM and wavelet transform based fault diagnosis
Jacob et al. A review paper on the elimination of harmonics in multilevel inverters using bioinspired algorithms
Gaur et al. Various control strategies for medium voltage high power multilevel converters: A review
CN116436327A (zh) 一种基于神经网络的变流器自适应预测控制方法及系统
Raj et al. Open transistor fault detection in asymmetric multilevel inverter
Vinothkumar et al. Fault diagnosis in diode clamped multilevel inverter drive using wavelet transforms
Dekka et al. Modular multilevel converters
Aravind et al. Harmonic minimization of a solar fed cascaded H Bridge inverter using Artificial Neural Network
Becker et al. Switch Fault detection and localization for T-Type Converter
Xu et al. Model predictive control of a hybrid stacked multicell converter with voltage balancing and fault tolerance capability
Wang et al. Fault diagnosis and system reconfiguration strategy of single-phase cascaded inverter
Soni et al. A Simple Fault Tolerant Multilevel Inverter Topology
Becker et al. Open-switch fault diagnosis for five-level H-bridge neutral point piloted or T-type converters
Song et al. Open-circuit fault diagnosis of Z-source inverter via deep neural network
Khomfoi et al. Cascaded H-bridge multilevel inverter drives operating under faulty condition with AI-based fault diagnosis and reconfiguration
Raj et al. Output voltage modeling of cascaded H-bridge multilevel inverters under open-transistor fault
Khalkho et al. Phase disposition PWM five-level inverter short switch diagnosis using DWT and ANN
Nagarajan et al. Comparison of fault diagnostics on Z-source and trans Z-source inverter fed induction motor drives
Sawle et al. Fault-Tolerant Analysis of 5-level Modified T-type and Packed U Cell MLI
Barzegarkhoo et al. A novel charge balancing control approach for a single phase 9-level inverter based on fundamental modulation strategy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15741629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901002

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901002

Country of ref document: EP

Kind code of ref document: A1