CN106329950B - 模块化多电平换流器驱动信号调制方法及故障隔离方法 - Google Patents

模块化多电平换流器驱动信号调制方法及故障隔离方法 Download PDF

Info

Publication number
CN106329950B
CN106329950B CN201510379627.7A CN201510379627A CN106329950B CN 106329950 B CN106329950 B CN 106329950B CN 201510379627 A CN201510379627 A CN 201510379627A CN 106329950 B CN106329950 B CN 106329950B
Authority
CN
China
Prior art keywords
power semiconductor
semiconductor switch
switch transistor
mode
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510379627.7A
Other languages
English (en)
Other versions
CN106329950A (zh
Inventor
谢晔源
曹冬明
姜田贵
朱铭炼
殷冠贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NR Electric Co Ltd
NR Engineering Co Ltd
Original Assignee
NR Electric Co Ltd
NR Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NR Electric Co Ltd, NR Engineering Co Ltd filed Critical NR Electric Co Ltd
Priority to CN201510379627.7A priority Critical patent/CN106329950B/zh
Priority to AU2016286709A priority patent/AU2016286709B2/en
Priority to US15/579,935 priority patent/US10224833B2/en
Priority to PCT/CN2016/089945 priority patent/WO2017000924A1/zh
Priority to RU2017143387A priority patent/RU2676226C1/ru
Publication of CN106329950A publication Critical patent/CN106329950A/zh
Application granted granted Critical
Publication of CN106329950B publication Critical patent/CN106329950B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/125Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/135Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M3/137Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/125Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/135Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M3/137Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/139Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开一种模块多电平换流器调制方法,包括第一模式和第二模式;第一模式和第二模式循环进行;第一模式,第一功率半导体开关和第二功率半导体开关交替导通;同时第三功率半导体开关常态截止,第四功率半导体开关常态导通;第二模式,第三功率半导体开关和第四功率半导体开关在交替导通;同时第一功率半导体开关常态导通,第四功率半导体开关常态截止。本发明还公开了一种子模块单元故障隔离方法。本发明的功率半导体开关结温均衡,增加了换流器运行安全裕度,在不增加工程成本的前提下,可有效提升换流器的容量,在经济性和技术性上均有较好表现。

Description

模块化多电平换流器驱动信号调制方法及故障隔离方法
技术领域
本发明属于柔性直流输电领域,特别涉及一种模块化多电平换流器驱动信号调制方法及故障隔离方法。
背景技术
模块化多电平换流器(Modular Multilevel Converter,MMC)的出现使多电平换流器在柔性直流输电领域也得到了成功的应用。模块化多电平换流器的换流器采用模块化设计,由若干个结构完全相同的基本单元模块串联构成,每一个模块称为换流器模块单元,通过增加换流器中的串联模块个数和电流水平,可以应用于不同的电压及功率等级场合。
然而传统的半桥模块单元存在无法有效处理直流故障的固有缺陷,而能抑制直流故障电流的全桥模块也有着损耗大,造价高的问题。因此,如何优化模块化多电平换流器的性能,成为解决直流联网技术的发展的关键技术因素。
鉴于以上分析,本发明人对模块化多电平换流器的驱动信号调制方法进行研究改进,本案由此产生。
发明内容
本发明的目的,在于提供一种模块化多电平换流器驱动信号调制方法及故障隔离方法。模块化多电平换流器驱动信号调制方法可降低换流器中功率半导体开关的热应力,提升换流器的容量,克服全桥子模块的不足,在经济性和技术性上均有较好表现。本子模块单元故障隔离方法可以灵活的选择驱动调制方法,将故障开关管有效隔离,不影响系统的运行,还降低了子模块单元的故障率,整个系统的可用率得到提高。
为了达成上述目的,本发明的解决方案是:模块化多电平换流器驱动信号调制方法,所述模块化多电平换流器包括至少一个桥臂,所述桥臂包括至少一个全桥子模块单元;所述全桥子模块单元包括第一功率半导体开关、第二功率半导体开关、第三功率半导体开关和第四功率半导体开关;其特征在于:
包括第一模式和第二模式;首先进入第一模式,然后进入第二模式,在进入第一模式,依此循环;或者首先进入第二模式,然后进入第一模式,再进入第二模式,依此循环;
在第一模式中,对所述第一功率半导体开关和第二功率半导体开关施加交替驱动信号,使第一功率半导体开关和第二功率半导体开关在同一时序内交替导通;同时对第三功率半导体开关和第四功率半导体开关施加互补驱动信号,使第三功率半导体开关常态截止,第四功率半导体开关常态导通;
在第二模式中,对所述第三功率半导体开关和第四功率半导体开关施加交替驱动信号,使第三功率半导体开关和第四功率半导体开关在同一时序内交替导通;同时对第一功率半导体开关和第二功率半导体开关施加互补驱动信号,使第一功率半导体开关常态导通,第四功率半导体开关常态截止。
进一步的,所述第一功率半导体开关包括开关管T1及与开关管T1反向并联的续流二极管D1;第二功率半导体开关包括开关管T2及与开关管T2反向并联的续流二极管D2;第三功率半导体开关包括开关管T3及与开关管T3反向并联的续流二极管D3;和第四功率半导体开关包括开关管T4及与开关管T4反向并联的续流二极管D4;
进一步的,开关管T1、开关管T2、开关管T3和开关管T4均采用IGBT、IGCT、GTO或MOSFET。
进一步的,包括以下步骤:
1)第一模式的电容放电状态:开关管T1和T4加开通信号,开关管T2和T3加关断信号,在正向电流下,开关管T1、T4导通,储能元件C1放电;
2)第一模式的正向旁路状态:开关管T2和T4加开通信号,开关管T1和T3加关断信号,在正向电流下,续流二极管D2和开关管T4导通,全桥子模块单元旁路;
3)第一模式的电容放电状态:开关管T1和T4加开通信号,开关管T2和T3加关断信号,在负向电流下,续流二极管D1、D4导通,储能元件C1充电;
4)第一模式的负向旁路状态:开关管T2和T4加开通信号,开关管T1和T3加关断信号,在负向电流下,开关管T2和续流二极管D4导通,全桥子模块单元旁路;
5)第二模式的电容放电状态,开关管T1和T4加开通信号,开关管T2和T3加关断信号,在正向电流下,开关管T1、T4导通,储能元件C1放电;
6)第二模式的正向旁路状态,开关管T1和T3加开通信号,开关管T2和T4加关断信号,在正向电流下,开关管T1和续流二极管D3导通,全桥子模块单元旁路;
7)第二模式的电容放电状态,开关管T1和T4加开通信号,开关管T2和T3加关断信号,在负向电流下,续流二极管D1、D4导通,储能元件C1充电;
8)第二模式的负向旁路状态,开关管T1和T3加开通信号,开关管T2和T4加关断信号,在负向电流下,续流二极管D1和开关管T3导通,全桥子模块单元旁路。
为解决上述技术问题,本发明采取的另一技术方案为:子模块单元故障隔离方法,所述子模块单元为全桥子模块单元,其特征在于:当采用上述的模块化多电平换流器驱动信号调制方法进行调制时,如果全桥子模块单元中第二功率半导体开关或第三功率半导体开关发生故障,或者如果第二功率半导体开关或第三功率半导体开关的驱动电路发生故障,通过改变驱动信号调制方式,将故障的功率半导体开关隔离,而全桥子模块单元不退出运行。
本发明通过驱动信号的调制,使子模块中各个功率半导体开关的热应力得到平衡,从而提升换流器容量;通过两个阶段模式的驱动信号轮换,改变了开关管及其反并联二极管的电流应力;开关管及其反并联二极管的损耗更加均匀,功率半导体开关的结温得到降低,运行安全裕度更大;通过降低功率半导体开关的结温,可以使换流器的容量得到提升。
本发明在第一模式或是第二模式中,全桥子模块单元均有一个开关管处于闭锁状态,因此可以在检测到任意一个开关管故障时,可以选择阶段1阶段2中的一种状态进行工作,将故障开关管设置为闭锁状态,其余3个开关管仍然正常工作,全桥子模块单元不被旁路。当任意一只开关管或者其驱动电路发生故障时,可以灵活的选择驱动调制方法,将故障开关管有效隔离,不影响系统的运行;全桥子模块单元可以允许一只开关管或者驱动电路的故障而不至于旁路,降低了子模块单元的故障率;整个系统的可用率得到提高。
总之,与现有技术相比,本发明的有益效果为:使子模块单元中各个功率半导体开关的热应力得到平衡,从而提升换流器容量,降低了换流器的单位容量造价;可以在不增加投资的条件下,提高子模块单元的安全裕度,提高了系统的可靠性;可以容忍全桥子模块单元中任意一只IGBT故障而正常工作,降低了全桥子模块单元旁路的风险,提高了系统的可用率。
附图说明
图1是本发明一种模块化多电平换流器的拓扑结构。
图2是本发明阶段1时全桥子模块单元的各个工况示意图,其中:
(a)正向电流放电回路;
(b)正向电流旁路回路;
(c)负向电流充电回路;
(d)负向电流旁路回路。
图3是本发明阶段2时全桥子模块单元的各个工况示意图,其中:
(a)正向电流放电回路;
(b)正向电流旁路回路;
(c)负向电流充电回路;
(d)负向电流旁路回路。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
实施例1
参见图1、图2和图3,本模块化多电平换流器驱动信号调制方法,所述模块化多电平换流器包括至少一个桥臂,本实施例中包括6个桥臂;所述桥臂包括至少一个全桥子模块单元;所述全桥子模块单元包括第一功率半导体开关、第二功率半导体开关、第三功率半导体开关和第四功率半导体开关;包括第一模式和第二模式;首先进入第一模式,然后进入第二模式,在进入第一模式,依此循环;或者首先进入第二模式,然后进入第一模式,再进入第二模式,依此循环;
在第一模式中,对所述第一功率半导体开关和第二功率半导体开关施加交替驱动信号,使第一功率半导体开关和第二功率半导体开关在同一时序内交替导通;同时对第三功率半导体开关和第四功率半导体开关施加互补驱动信号,使第三功率半导体开关常态截止,第四功率半导体开关常态导通;
在第二模式中,对所述第三功率半导体开关和第四功率半导体开关施加交替驱动信号,使第三功率半导体开关和第四功率半导体开关在同一时序内交替导通;同时对第一功率半导体开关和第二功率半导体开关施加互补驱动信号,使第一功率半导体开关常态导通,第四功率半导体开关常态截止。
作为优选方案,所述第一功率半导体开关包括开关管T1及与开关管T1反向并联的续流二极管D1;第二功率半导体开关包括开关管T2及与开关管T2反向并联的续流二极管D2;第三功率半导体开关包括开关管T3及与开关管T3反向并联的续流二极管D3;和第四功率半导体开关包括开关管T4及与开关管T4反向并联的续流二极管D4;开关管T1、开关管T2、开关管T3和开关管T4均采用IGBT、IGCT、GTO或MOSFET。
更进一步的,本模块化多电平换流器驱动信号调制方法包括以下步骤:
1)第一模式的电容放电状态:开关管T1和T4加开通信号,开关管T2和T3加关断信号,在正向电流下,开关管T1、T4导通,储能元件C1放电;如图2a所示;
2)第一模式的正向旁路状态:开关管T2和T4加开通信号,开关管T1和T3加关断信号,在正向电流下,续流二极管D2和开关管T4导通,全桥子模块单元旁路;如图2b所示;
3)第一模式的电容放电状态:开关管T1和T4加开通信号,开关管T2和T3加关断信号,在负向电流下,续流二极管D1、D4导通,储能元件C1充电;如图2c所示;
4)第一模式的负向旁路状态:开关管T2和T4加开通信号,开关管T1和T3加关断信号,在负向电流下,开关管T2和续流二极管D4导通,全桥子模块单元旁路);如图2d所示;
5)第二模式的电容放电状态,开关管T1和T4加开通信号,开关管T2和T3加关断信号,在正向电流下,开关管T1、T4导通,储能元件C1放电;如图3a所示;
6)第二模式的正向旁路状态,开关管T1和T3加开通信号,开关管T2和T4加关断信号,在正向电流下,开关管T1和续流二极管D3导通,全桥子模块单元旁路;如图3b所示;
7)第二模式的电容放电状态,开关管T1和T4加开通信号,开关管T2和T3加关断信号,在负向电流下,续流二极管D1、D4导通,储能元件C1充电;;如图3c所示;
8)第二模式的负向旁路状态,开关管T1和T3加开通信号,开关管T2和T4加关断信号,在负向电流下,续流二极管D1和开关管T3导通,全桥子模块单元旁路;如图3d所示;。
实施例2:
本子模块单元故障隔离方法,所述子模块单元为全桥子模块单元,当采用实施例1中的模块化多电平换流器驱动信号调制方法进行调制时,如果全桥子模块单元中第二功率半导体开关发生故障,或者如果第二功率半导体开关的驱动电路发生故障,通过改变驱动信号调制方式,将故障的第二功率半导体开关隔离,而全桥子模块单元不退出运行,全桥子模块单元工作在第二模式,如图3所示。
实施例3:
本子模块单元故障隔离方法,所述子模块单元为全桥子模块单元,当采用实施例1所述的模块化多电平换流器驱动信号调制方法进行调制时,如果全桥子模块单元中第三功率半导体开关发生故障,或者如果第三功率半导体开关的驱动电路发生故障,通过改变驱动信号调制方式,将故障的第三功率半导体开关隔离,而全桥子模块单元不退出运行,全桥子模块单元工作在第一模式,如图2所示。

Claims (5)

1.一种模块化多电平换流器驱动信号调制方法,所述模块化多电平换流器包括至少一个桥臂,所述桥臂包括至少一个全桥子模块单元;所述全桥子模块单元包括第一功率半导体开关、第二功率半导体开关、第三功率半导体开关和第四功率半导体开关;其特征在于:
包括第一模式和第二模式;
首先进入第一模式,然后进入第二模式,再进入第一模式,依此循环;
或者首先进入第二模式,然后进入第一模式,再进入第二模式,依此循环;
在第一模式中,对所述第一功率半导体开关和第二功率半导体开关施加交替驱动信号,使第一功率半导体开关和第二功率半导体开关在同一时序内交替导通;同时对第三功率半导体开关和第四功率半导体开关施加互补驱动信号,使第三功率半导体开关常态截止,第四功率半导体开关常态导通;
在第二模式中,对所述第三功率半导体开关和第四功率半导体开关施加交替驱动信号,使第三功率半导体开关和第四功率半导体开关在同一时序内交替导通;同时对第一功率半导体开关和第二功率半导体开关施加互补驱动信号,使第一功率半导体开关常态导通,第二功率半导体开关常态截止。
2.如权利要求1所述的模块化多电平换流器驱动信号调制方法,其特征在于:所述第一功率半导体开关包括开关管T1及与开关管T1反向并联的续流二极管D1;第二功率半导体开关包括开关管T2及与开关管T2反向并联的续流二极管D2;第三功率半导体开关包括开关管T3及与开关管T3反向并联的续流二极管D3;和第四功率半导体开关包括开关管T4及与开关管T4反向并联的续流二极管D4。
3.如权利要求1或2所述的模块化多电平换流器驱动信号调制方法,其特征在于开关管T1、开关管T2、开关管T3和开关管T4均采用IGBT、IGCT、GTO或MOSFET。
4.如权利要求2所述的模块化多电平换流器驱动信号调制方法,其特征在于包括以下步骤:
1)第一模式的电容放电状态:开关管T1和T4加开通信号,开关管T2和T3加关断信号,在正向电流下,开关管T1、T4导通,储能元件C1放电;
2)第一模式的正向旁路状态:开关管T2和T4加开通信号,开关管T1和T3加关断信号,在正向电流下,续流二极管D2和开关管T4导通,全桥子模块单元旁路;
3)第一模式的电容充电状态:开关管T1和T4加开通信号,开关管T2和T3加关断信号,在负向电流下,续流二极管D1、D4导通,储能元件C1充电;
4)第一模式的负向旁路状态:开关管T2和T4加开通信号,开关管T1和T3加关断信号,在负向电流下,开关管T2和续流二极管D4导通,全桥子模块单元旁路;
5)第二模式的电容放电状态,开关管T1和T4加开通信号,开关管T2和T3加关断信号,在正向电流下,开关管T1、T4导通,储能元件C1放电;
6)第二模式的正向旁路状态,开关管T1和T3加开通信号,开关管T2和T4加关断信号,在正向电流下,开关管T1和续流二极管D3导通,全桥子模块单元旁路;
7)第二模式的电容充电状态,开关管T1和T4加开通信号,开关管T2和T3加关断信号,在负向电流下,续流二极管D1、D4导通,储能元件C1充电;
8)第二模式的负向旁路状态,开关管T1和T3加开通信号,开关管T2和T4加关断信号,在负向电流下,续流二极管D1和开关管T3导通,全桥子模块单元旁路。
5.一种子模块单元故障隔离方法,所述子模块单元为全桥子模块单元,其特征在于:当采用权利要求1-4中任一项所述的模块化多电平换流器驱动信号调制方法进行调制时,如果全桥子模块单元中第二功率半导体开关或第三功率半导体开关发生故障,或者如果第二功率半导体开关或第三功率半导体开关的驱动电路发生故障,通过改变驱动信号调制方式,将故障的功率半导体开关隔离,而全桥子模块单元不退出运行。
CN201510379627.7A 2015-07-01 2015-07-01 模块化多电平换流器驱动信号调制方法及故障隔离方法 Active CN106329950B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201510379627.7A CN106329950B (zh) 2015-07-01 2015-07-01 模块化多电平换流器驱动信号调制方法及故障隔离方法
AU2016286709A AU2016286709B2 (en) 2015-07-01 2016-07-13 Modular multilevel converter driving signal modulation method and fault isolation method
US15/579,935 US10224833B2 (en) 2015-07-01 2016-07-13 Drive signal modulation method of modular multilevel converter and fault isolation method
PCT/CN2016/089945 WO2017000924A1 (zh) 2015-07-01 2016-07-13 模块化多电平换流器驱动信号调制方法及故障隔离方法
RU2017143387A RU2676226C1 (ru) 2015-07-01 2016-07-13 Способ модуляции сигнала управления модульного многоуровневого преобразователя и способ изоляции повреждения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510379627.7A CN106329950B (zh) 2015-07-01 2015-07-01 模块化多电平换流器驱动信号调制方法及故障隔离方法

Publications (2)

Publication Number Publication Date
CN106329950A CN106329950A (zh) 2017-01-11
CN106329950B true CN106329950B (zh) 2019-01-08

Family

ID=57607888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510379627.7A Active CN106329950B (zh) 2015-07-01 2015-07-01 模块化多电平换流器驱动信号调制方法及故障隔离方法

Country Status (5)

Country Link
US (1) US10224833B2 (zh)
CN (1) CN106329950B (zh)
AU (1) AU2016286709B2 (zh)
RU (1) RU2676226C1 (zh)
WO (1) WO2017000924A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811794B (zh) * 2016-05-06 2018-03-30 上海海事大学 多电平逆变器的参考电压信号重构的容错控制方法
CN107786110B (zh) * 2016-08-31 2020-08-14 特变电工新疆新能源股份有限公司 一种基于h桥的mmc子模块拓扑结构调制方法
CN106712238B (zh) * 2017-01-16 2019-05-07 南京南瑞继保电气有限公司 一种子模块混合型换流器的充电方法
CN108512402A (zh) * 2017-02-27 2018-09-07 台达电子企业管理(上海)有限公司 H桥电路中功率半导体开关的驱动方法
CN109687687A (zh) * 2017-10-19 2019-04-26 南京南瑞继保电气有限公司 一种全桥子模块的损耗均衡控制方法及装置
CN110011327A (zh) * 2019-03-29 2019-07-12 浙江大学 一种基于有源电力滤波器的模块化多电平电路
CN110277896A (zh) * 2019-08-02 2019-09-24 中国矿业大学(北京) 一种用于全控h桥拓扑结构的新型主动温度控制策略
CN111817581B (zh) * 2020-07-17 2021-09-24 山东大学 一种多电平换流器的运行控制方法及控制系统
CN116404859B (zh) * 2023-04-12 2023-09-19 燕山大学 一种四桥臂矩阵变换器及开关管开路故障下的调制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202616988U (zh) * 2012-05-03 2012-12-19 Abb研究有限公司 具有旁路功能的半桥功率转换器单元
CN204068699U (zh) * 2014-09-11 2014-12-31 华南理工大学 一种具有直流短路故障自清除能力的mmc子模块

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972972B2 (en) * 2002-04-15 2005-12-06 Airak, Inc. Power inverter with optical isolation
JP4969614B2 (ja) * 2009-07-21 2012-07-04 株式会社日立製作所 電力変換装置
EP2348627A1 (de) * 2010-01-25 2011-07-27 ABB Research Ltd. Wandlerschaltung sowie Verfahren zum Betreiben einer mehrstufigen Wandlerschaltung
US9112422B1 (en) * 2010-03-09 2015-08-18 Vlt, Inc. Fault tolerant power converter
DE102011006345A1 (de) * 2011-03-29 2012-10-04 Siemens Aktiengesellschaft Modularer Mehrfachumrichter mit rückwärts leitfähigen Leistungshalbleiterschaltern
EP2568591A1 (en) * 2011-09-12 2013-03-13 Green Power Technologies, S.L. Multilevel-clamped multilevel converters (MLC2)
CN102739030A (zh) 2012-07-04 2012-10-17 浙江省电力试验研究院技术服务中心 一种全桥型mmc-hvdc的启动方法
RU130160U1 (ru) * 2013-02-05 2013-07-10 Общество с ограниченной ответственностью Научно-производственное предприятие "ЭКРА" Устройство преобразования тока или напряжения
CN103248255B (zh) * 2013-05-24 2014-12-31 哈尔滨工业大学 三相模块化多电平换流器及其子模块中igbt开路故障检测容错方法
US20160218637A1 (en) * 2013-09-23 2016-07-28 Siemens Aktiengesellschaft . A new four-level converter cell topology for cascaded modular multilevel converters
CN104410260B (zh) 2014-10-28 2017-05-10 浙江大学 一种具有容错能力可实现直流故障自主防护的mmc子模块结构及其mmc调制方法
CN104393780B (zh) * 2014-11-26 2016-12-07 华北电力大学 全桥模块化多电平变换器子模块电压控制方法
CN104617803B (zh) * 2015-01-13 2018-07-06 嘉兴清源电气科技有限公司 多电平变流器子模块及其制作的逆变电路、mmc拓扑
US9893633B1 (en) * 2016-03-23 2018-02-13 The Florida State University Research Foundation, Inc. Modular multilevel DC-DC converter and associated method of use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202616988U (zh) * 2012-05-03 2012-12-19 Abb研究有限公司 具有旁路功能的半桥功率转换器单元
CN204068699U (zh) * 2014-09-11 2014-12-31 华南理工大学 一种具有直流短路故障自清除能力的mmc子模块

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三相交流变频驱动系统的容错控制研究;唐顺;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20100315;第4章4.3节,图4-1、4-10、表4-3
基于开关管的级联H桥逆变器故障处理方法;王旭等;《中国电机工程学报》;20070331;第27卷(第7期);第77-78页,表2

Also Published As

Publication number Publication date
AU2016286709B2 (en) 2018-07-19
AU2016286709A1 (en) 2017-12-14
RU2676226C1 (ru) 2018-12-26
WO2017000924A1 (zh) 2017-01-05
US20180226900A1 (en) 2018-08-09
US10224833B2 (en) 2019-03-05
CN106329950A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
CN106329950B (zh) 模块化多电平换流器驱动信号调制方法及故障隔离方法
CN106329899B (zh) 故障电流抑制阻尼器拓扑电路及其控制方法及换流器
CN104578865B (zh) 一种三电平四桥臂t型容错变流器及其控制方法
CN102931863B (zh) 一种建立模块化多电平换流器的混合结构模型的方法
CN104518697B (zh) 一种三电平逆变器的限流控制方法和装置
CN108111007A (zh) 一种功率模块冗余取能电路及控制方法
CN103731059B (zh) 一种模块化多电平换流器的双嵌位子模块结构电路
CN103235219A (zh) 一种模块化多电平换流器的子模块故障诊断方法
CN102868290A (zh) 全桥型mmc-hvdc子模块故障就地诊断与保护方法
US20140104906A1 (en) Energy storage device, and system having an energy storage device
KR20140040693A (ko) 제어 가능한 에너지 저장 장치 및 제어 가능한 에너지 저장 장치의 작동 방법
CN102969918B (zh) 三相桥式逆变器系统及紧急下短路保护电路
CN204103794U (zh) 功率子单元、三相mmc拓扑结构及换流器
CN105634026A (zh) 一种基于反并联晶闸管全桥子模块换流器的电网换相换流器结构
CN103414164A (zh) 一种多个igbt并联运行的保护电路
CN107529683A (zh) 一种半桥式mmc子模块及其上开关管短路保护方法
CN107248813A (zh) 一种自适应死区时间调控电路
CN103236710A (zh) 采用模块化结构的统一潮流控制器
CN104393776A (zh) 整流逆变单元、多电平换流器及其控制方法和控制装置
CN108347166B (zh) 电源模块串联系统
CN107472032A (zh) 一种电动汽车电机控制器高压直流电路控制系统
CN108964505A (zh) 一种t型变换电路及相应的三相变换电路和变换装置
CN106786910A (zh) 一种同时适用于mmc换流阀子模块交直流充电的方法
CN105375802A (zh) I型npc igbt三电平电路的驱动控制方法和电路
CN110261709A (zh) 一种用于模块化多电平换流器子模块的检测装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant