CN111934570B - 一种级联h桥型光储混合能量路由器的故障容错控制方法 - Google Patents

一种级联h桥型光储混合能量路由器的故障容错控制方法 Download PDF

Info

Publication number
CN111934570B
CN111934570B CN202011044765.7A CN202011044765A CN111934570B CN 111934570 B CN111934570 B CN 111934570B CN 202011044765 A CN202011044765 A CN 202011044765A CN 111934570 B CN111934570 B CN 111934570B
Authority
CN
China
Prior art keywords
fault
photovoltaic
bridge module
tube
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011044765.7A
Other languages
English (en)
Other versions
CN111934570A (zh
Inventor
范须露
何晋伟
赵亮
陈竟成
徐晶
于建成
王成山
杨赫
刘树勇
郭力
吴明雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Tianjin Integration Energy Service Co ltd
Tianjin University
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
State Grid Ningxia Electric Power Co Ltd
Original Assignee
State Grid Tianjin Integration Energy Service Co ltd
Tianjin University
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
State Grid Ningxia Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Tianjin Integration Energy Service Co ltd, Tianjin University, State Grid Corp of China SGCC, State Grid Tianjin Electric Power Co Ltd, State Grid Ningxia Electric Power Co Ltd filed Critical State Grid Tianjin Integration Energy Service Co ltd
Priority to CN202011044765.7A priority Critical patent/CN111934570B/zh
Publication of CN111934570A publication Critical patent/CN111934570A/zh
Application granted granted Critical
Publication of CN111934570B publication Critical patent/CN111934570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种级联H桥型光储混合能量路由器的故障容错控制方法,其技术特点是:级联H桥型光储混合能量路由器采用链式结构,每一相由N‑1个光伏H桥模块和一个储能H桥模块串联组成,每个H桥模块的交流输出端口并联一个旁路开关,个光伏H桥模块发生单管开路故障,采用单管开路故障控制方法;单个光伏H桥模块发生单管短路故障,采用单管短路故障控制方法;单个光伏H桥模块发生多管故障,采用多管故障控制方法。本发明针对光伏H桥模块的单管开路故障、单管短路故障和多管故障三种不同的故障类型,采用不同的故障控制方法,具有单管故障模块不退出运行、多管故障模块硬件冗余的优点,能有效提高级联H桥型光储混合能量路由器的运行可靠性。

Description

一种级联H桥型光储混合能量路由器的故障容错控制方法
技术领域
本发明属于储能技术领域,尤其是一种级联H桥型光储混合能量路由器的故障容错控制方法。
背景技术
级联H桥型拓扑由于具有统一的模块化配置、低谐波失真的电压输出以及较高的变换器效率等特点,因此被广泛应用于中压光伏并网逆变器中,可同时实现多个独立光伏模块的最大功率输出。
由于光伏发电受太阳光照以及气温等自然条件的影响,具有随机性,波动性和间歇性,将其大规模接入电网将引起电压和频率的波动,影响电网的稳定运行并产生电能质量问题。通过将储能系统引入其中,可有效补偿光伏并网逆变器与电网互连引起的功率波动问题,因此由光伏H桥模块与储能H桥模块共同组成的级联H桥型光储混合能量路由器应运而生。
相比于传统两电平变换器,级联H桥型光储混合能量路由器使用了大量的功率开关器件,随着应用场合电压等级的升高,开关器件的数量将进一步提升,而这些开关器件都将成为多个潜在的故障点。而级联H桥型光储混合能量路由器的故障运行轻则造成输出电压电流波形畸变,重则导致电网电压、频率的波动。因此,对于级联H桥型光储混合能量路由器可靠性运行的研究至关重要,即如何在H桥模块的开关管发生故障后,通过容错控制方法保证其继续可靠运行至关重要。
现有级联H桥型光储混合能量路由器的容错控制方法,是在光伏H桥模块发生开关管故障后,采用旁路开关直接将故障光伏H桥模块从电路中切除,并没有针对不同的开关管故障采用不同的容错控制方法,最大限度地利用故障光伏H桥模块的非故障开关管。同时,在切除故障光伏H桥模块后,没有利用储能H桥模块的硬件冗余作用,造成级联H桥型光储混合能量路由器输出功率的下降。
发明内容
本发明的目的在于克服现有技术的不足,提出一种级联H桥型光储混合能量路由器的故障容错控制方法,其针对不同开关管故障提出不同的故障控制方法,最大限度地利用故障光伏H桥模块的非故障开关管,同时有效利用储能H桥模块的硬件冗余作用,使故障前后级联H桥型光储混合能量路由器的功率输出保持一致,适合在实际工程中应用。
本发明解决其技术问题是采取以下技术方案实现的:
一种级联H桥型光储混合能量路由器的故障容错控制方法,所述级联H桥型光储混合能量路由器采用链式结构,每一相由N-1个光伏H桥模块和一个储能H桥模块串联组成,每一相光伏H桥模块和储能H桥模块的数量之和为N,每个H桥模块的交流输出端口并联一个旁路开关,包括以下故障容错控制方法:
⑴单个光伏H桥模块发生单管开路故障,采用单管开路故障控制方法;
⑵单个光伏H桥模块发生单管短路故障,采用单管短路故障控制方法;
⑶单个光伏H桥模块发生多管故障,采用多管故障控制方法。
而且,所述单管开路故障控制方法包括以下步骤:
步骤1、单个光伏H桥模块发生单管开路的开关管关断,同桥臂另一个开关管导通,另一桥臂两个开关管的调制方式与故障前一致,故障光伏H桥模块的调制波参考电压变为故障前的2倍,故障光伏H桥模块的旁路开关与故障前一致;
步骤2、故障相非故障光伏H桥模块的调制方式与故障前一致,故障相非故障光伏H桥模块的调制波参考电压与故障前一致,故障相非故障光伏H桥模块的旁路开关与故障前一致;
步骤3、非故障相光伏H桥模块的调制方式与故障前一致,非故障相光伏H桥模块的调制波参考电压在故障前基础上加上或减去故障光伏H桥模块直流侧电压的2(N-1)分之一,非故障相光伏H桥模块的旁路开关与故障前一致;
步骤4、所有储能H桥模块的调制方式与故障前一致,所有储能H桥模块的旁路开关与故障前一致。
而且,所述单管短路故障控制方法包括以下步骤:
步骤1、单个光伏H桥模块发生单管短路的开关管导通,同桥臂另一个开关管关断,另一桥臂两个开关管的调制方式与故障前一致,故障光伏H桥模块的调制波参考电压变为故障前的2倍,故障光伏H桥模块的旁路开关与故障前一致;
步骤2、故障相非故障光伏H桥模块的调制方式与故障前一致,故障相非故障光伏H桥模块的调制波参考电压与故障前一致,故障相非故障光伏H桥模块的旁路开关与故障前一致;
步骤3、非故障相光伏H桥模块的调制方式与故障前一致,非故障相光伏H桥模块的调制波参考电压在故障前基础上加上或减去故障光伏H桥模块直流侧电压的2(N-1)分之一,非故障相光伏H桥模块的旁路开关与故障前一致;
步骤4、所有储能H桥模块的调制方式与故障前一致,所有储能H桥模块的旁路开关与故障前一致。
而且,所述多管故障控制方法包括以下步骤:
步骤1、发生多管故障的单个光伏H桥模块的开关管全部关断,故障光伏H桥模块的旁路开关导通;
步骤2、故障相非故障光伏H桥模块的调制方式与故障前一致,故障相非故障光伏H桥模块的调制波参考电压与故障前一致,故障相非故障光伏H桥模块的旁路开关与故障前一致;
步骤3、非故障相光伏H桥模块的调制方式与故障前一致,非故障相光伏H桥模块的调制波参考电压与故障前一致,非故障相光伏H桥模块的旁路开关与故障前一致;
步骤4、故障相储能H桥模块的调制方式与故障光伏H桥模块故障前一致,故障相储能H桥模块的调制波参考电压与故障光伏H桥模块故障前一致,故障相储能H桥模块的旁路开关关断,非故障相储能H桥模块的调制方式与故障前一致,非故障相储能H桥模块的旁路开关与故障前一致。
而且,所述非故障相光伏H桥模块的调制波参考电压在故障前基础上加上或减去故障光伏H桥模块直流侧电压的2(N-1)分之一,当故障光伏H桥模块的开关管Ski2发生单管开路故障,或者开关管Ski3发生单管开路故障,或者开关管Ski1发生单管短路故障,或者开关管Ski4发生单管短路故障时,非故障相光伏H桥模块的调制波参考电压在故障前基础上加上故障光伏H桥模块直流侧电压的2(N-1)分之一;当故障光伏H桥模块的开关管Ski1发生单管开路故障,或者开关管Ski4发生单管开路故障,或者开关管Ski2发生单管短路故障,或者开关管Ski3发生单管短路故障时,非故障相光伏H桥模块的调制波参考电压在故障前基础上减去故障光伏H桥模块直流侧电压的2(N-1)分之一;
其中,开关管Ski1为k相中第i个H桥模块左侧桥臂的上方开关管,开关管Ski2为k相中第i个H桥模块左侧桥臂的下方开关管,开关管Ski3为k相中第i个H桥模块右侧桥臂的上方开关管,开关管Ski4为k相中第i个H桥模块右侧桥臂的下方开关管,开关管Tki为k相中第i个H桥模块的旁路开关。
而且,所述级联H桥型光储混合能量路由器中的所有光伏H桥模块在单个光伏H桥模块发生单管开路故障、单管短路故障以及多管故障前的调制方式为单极性倍频调制方式,所有光伏H桥模块的旁路开关在单个光伏H桥模块发生单管开路故障,单管短路故障以及多管故障前为关断。
而且,所述级联H桥型光储混合能量路由器中的所有储能H桥模块在单个光伏H桥模块发生单管开路故障、单管短路故障以及多管故障前的调制方式为所有开关管关断,所有储能H桥模块的旁路开关在单个光伏H桥模块发生单管开路故障,单管短路故障以及多管故障前为导通。
而且,所述级联H桥型光储混合能量路由器在发生单个光伏H桥模块单管开路故障、单管短路故障以及多管故障前,以及发生单个光伏H桥模块单管开路故障、单管短路故障以及多管故障后,同一相中的所有H桥模块模块与模块之间均采用载波移相调制方式。
本发明的优点和积极效果是:
1、本发明针对单个光伏H桥模块的单管开路故障、单管短路故障和多管故障三种不同的故障类型,采用不同的故障控制方法,均能保证故障前后级联H桥型光储混合能量路由器的功率输出一致,同时故障控制方法与发生故障之前的控制方法可以实现无缝衔接,系统恢复正常运行时间快,易于在实际工程应用中推广。
2、本发明针对单个光伏H桥模块的单管故障,包括单管开路故障和单管短路故障,充分利用故障光伏H桥模块的非故障开关管,使故障光伏H桥模块不退出运行并继续输出光伏板的最大功率,可以充分发挥故障光伏H桥模块的功率输出能力;
3、本发明针对单个光伏H桥模块的多管故障,将故障光伏H桥模块切除,以储能H桥模块代替故障光伏H桥模块继续运行,可以充分发挥储能H桥模块的硬件冗余能力。
4、本发明设计合理,在处理单个光伏H桥模块发生单管故障时,故障光伏H桥模块由全桥模式切换至半桥模式继续运行,为保证故障光伏H桥模块继续以最大功率输出,故障光伏H桥模块的调制波参考电压增加为故障前的2倍,由半桥模式引入故障相的直流电压偏置,通过在非故障相光伏H桥模块的调制波参考电压中注入相等的直流分量予以抵消,实现线电压的平衡。当单个光伏H桥模块发生多管故障时,采用旁路开关将故障光伏H桥模块切除,同时通过旁路开关将故障相的储能H桥模块投入,代替故障光伏H桥模块运行,实现线电压平衡以及三相功率平衡。本发明具有单管故障模块不退出运行,多管故障模块硬件冗余设计的优点,能够有效提高级联H桥型光储混合能量路由器的运行可靠性。
附图说明
图1是本发明所述级联H桥型光储混合能量路由器的整体电路原理图;
图2是本发明所述级联H桥型光储混合能量路由器的单个H桥模块的电路原理图;
图3是本发明的单管开路故障控制方法的流程图;
图4是本发明的单管短路故障控制方法的流程图;
图5是本发明的多管故障控制方法的流程图;
图6是本发明单管开路故障控制方法实施例中,各光伏H桥模块和储能H桥模块的调制波参考电压仿真波形图以及电网电压和电网电流的仿真波形图;
图7是本发明单管短路故障控制方法实施例中,各光伏H桥模块和储能H桥模块的调制波参考电压仿真波形图以及电网电压和电网电流的仿真波形图;
图8是本发明多管故障控制方法实施例中,各光伏H桥模块和储能H桥模块的调制波参考电压仿真波形图以及电网电压和电网电流的仿真波形图。
具体实施方式
以下结合附图对本发明做进一步详述。
本发明提供的故障容错控制方法是在图1所示的级联H桥型光储混合能量路由器上实现的,图中,a,b,c三相均由N个H桥模块组成,分别是N-1个光伏H桥模块和1个储能H桥模块串联组成。
如图2所示,级联H桥型光储混合能量路由器的每个H桥模块由四个开关管Ski1、Ski2、Ski3、Ski4,一个电容器Cki,一个直流侧电源Vki(光伏模块或者电池模块),一个旁路开关Tki组成。开关管Ski1为k相中第i个H桥模块左侧桥臂的上方开关管,开关管Ski2为k相中第i个H桥模块左侧桥臂的下方开关管,开关管Ski3为k相中第i个H桥模块右侧桥臂的上方开关管,开关管Ski4为k相中第i个H桥模块右侧桥臂的下方开关管,电容器Cki为k相中第i个H桥模块的电容器,电源Vki为k相中第i个H桥模块的直流侧光伏模块或者电池模块,开关Tki为k相中第i个H桥模块的旁路开关,并联在H桥模块的交流输出端,为一个双向开关。
本发明提供的级联H桥型光储混合能量路由器的容错控制方法包括如下三种故障控制方法:
1、单个光伏H桥模块发生单管开路故障,采用单管开路故障控制方法;
2、单个光伏H桥模块发生单管短路故障,采用单管短路故障控制方法;
3、单个光伏H桥模块发生多管故障,采用多管故障控制方法。
下面分别说明:
如图3所示,本故障容错控制方法的单管开路故障控制方法包括以下四个步骤:
步骤1为单个光伏H桥模块发生单管开路的开关管关断,同桥臂另一个开关管导通,另一桥臂两个开关管的调制方式与故障前一致,为单极性倍频,故障光伏H桥模块的调制波参考电压变为故障前的2倍,故障光伏H桥模块的旁路开关与故障前一致,保持关断。
步骤2为故障相非故障光伏H桥模块的调制方式与故障前一致,为单极性倍频,故障相非故障光伏H桥模块的调制波参考电压与故障前一致,故障相非故障光伏H桥模块的旁路开关与故障前一致,保持关断。
步骤3为非故障相光伏H桥模块的调制方式与故障前一致,为单极性倍频,非故障相光伏H桥模块的调制波参考电压在故障前基础上加上或减去故障光伏H桥模块直流侧电压的2(N-1)分之一,非故障相光伏H桥模块的旁路开关与故障前一致,保持关断。
步骤4为所有储能H桥模块的调制方式与故障前一致,所有开关管关断,所有储能H桥模块的旁路开关与故障前一致,保持导通。此外,同一相中的所有H桥模块模块与模块之间均采用载波移相调制方式。
如图4所示,故障容错控制方法的单管短路故障控制方法包括以下四个步骤:
步骤1为单个光伏H桥模块发生单管短路的开关管导通,同桥臂另一个开关管关断,另一桥臂两个开关管的调制方式与故障前一致,为单极性倍频,故障光伏H桥模块的调制波参考电压变为故障前的2倍,故障光伏H桥模块的旁路开关与故障前一致,保持关断。
步骤2为故障相非故障光伏H桥模块的调制方式与故障前一致,为单极性倍频,故障相非故障光伏H桥模块的调制波参考电压与故障前一致,故障相非故障光伏H桥模块的旁路开关与故障前一致,保持关断。
步骤3为非故障相光伏H桥模块的调制方式与故障前一致,为单极性倍频,非故障相光伏H桥模块的调制波参考电压在故障前基础上加上或减去故障光伏H桥模块直流侧电压的2(N-1)分之一,非故障相光伏H桥模块的旁路开关与故障前一致,保持关断。
步骤4为所有储能H桥模块的调制方式与故障前一致,所有开关管关断,所有储能H桥模块的旁路开关与故障前一致,保持导通。此外,同一相中的所有H桥模块模块与模块之间均采用载波移相调制方式。
如图5所示,故障容错控制方法的多管故障控制方法包括如下四个步骤:
步骤1为发生多管故障的单个光伏H桥模块的开关管全部关断,故障光伏H桥模块的旁路开关导通。
步骤2为故障相非故障光伏H桥模块的调制方式与故障前一致,为单极性倍频,故障相非故障光伏H桥模块的调制波参考电压与故障前一致,故障相非故障光伏H桥模块的旁路开关与故障前一致,保持关断。
步骤3为非故障相光伏H桥模块的调制方式与故障前一致,为单极性倍频,非故障相光伏H桥模块的调制波参考电压与故障前一致,非故障相光伏H桥模块的旁路开关与故障前一致,保持关断。
步骤4为故障相储能H桥模块的调制方式与故障光伏H桥模块故障前一致,为单极性倍频,故障相储能H桥模块的调制波参考电压与故障光伏H桥模块故障前一致,故障相储能H桥模块的旁路开关关断,非故障相储能H桥模块的调制方式与故障前一致,所有开关管关断,非故障相储能H桥模块的旁路开关与故障前一致,保持导通。此外,同一相中的所有H桥模块模块与模块之间均采用载波移相调制方式。
图6给出了本发明单管开路故障控制方法实施例中,各光伏H桥模块和储能H桥模块的调制波参考电压仿真波形图以及电网电压和电网电流的仿真波形图,其中N=4,光伏H桥模块a1的开关管Sa11发生开路故障。其控制过程为:步骤1为光伏H桥模块a1发生单管开路的开关管Sa11关断,同桥臂另一个开关管Sa12导通,另一桥臂两个开关管Sa13和Sa14的调制方式与故障前一致,为单极性倍频,光伏H桥模块a1的调制波参考电压变为故障前的2倍,光伏H桥模块a1的旁路开关Ta1与故障前一致,保持关断;步骤2为光伏H桥模块a2和光伏H桥模块a3的单个模块的调制方式与故障前一致,为单极性倍频,光伏H桥模块a2和光伏H桥模块a3的调制波参考电压与故障前一致,光伏H桥模块a2和光伏H桥模块a3的旁路开关Ta2和Ta3与故障前一致,保持关断;步骤3为光伏H桥模块b1,光伏H桥模块b2,光伏H桥模块b3,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3的单个模块的调制方式与故障前一致,为单极性倍频,光伏H桥模块b1,光伏H桥模块b2,光伏H桥模块b3,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3的调制波参考电压在故障前基础上减去光伏H桥模块a1直流侧电压Vdc,a1的六分之一,光伏H桥模块b1,光伏H桥模块b2,光伏H桥模块b3,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3的旁路开关Tb1,Tb2,Tb3,Tc1,Tc2和Tc3与故障前一致,保持关断;步骤4为储能H桥模块a4,储能H桥模块b4和储能H桥模块c4的调制方式与故障前一致,开关管Sa41,Sa42,Sa43,Sa44,Sb41,Sb42,Sb43,Sb44,Sc41,Sc42,Sc43和Sc44关断,储能H桥模块a4,储能H桥模块b4和储能H桥模块c4的旁路开关Ta4,Tb4和Tc4与故障前一致,保持导通。此外,光伏H桥模块a1,光伏H桥模块a2和光伏H桥模块a3模块与模块之间采用载波移相调制方式,光伏H桥模块b1,光伏H桥模块b2和光伏H桥模块b3模块与模块之间采用载波移相调制方式,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3模块与模块之间采用载波移相调制方式。故障前后,级联H桥型光储混合能量路由器的输出功率保持不变。
图7给出了本发明单管短路故障控制方法实施例中,各光伏H桥模块和储能H桥模块的调制波参考电压仿真波形图以及电网电压和电网电流的仿真波形图,其中N=4,光伏H桥模块a1的开关管Sa11发生短路故障。其控制过程为:步骤1为光伏H桥模块a1发生单管短路的开关管Sa11导通,同桥臂另一个开关管Sa12关断,另一桥臂两个开关管Sa13和Sa14的调制方式与故障前一致,为单极性倍频,光伏H桥模块a1的调制波参考电压变为故障前的2倍,光伏H桥模块a1的旁路开关Ta1与故障前一致,保持关断;步骤2为光伏H桥模块a2和光伏H桥模块a3的单个模块的调制方式与故障前一致,为单极性倍频,光伏H桥模块a2和光伏H桥模块a3的调制波参考电压与故障前一致,光伏H桥模块a2和光伏H桥模块a3的旁路开关Ta2和Ta3与故障前一致,保持关断;步骤3为光伏H桥模块b1,光伏H桥模块b2,光伏H桥模块b3,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3的单个模块的调制方式与故障前一致,为单极性倍频,光伏H桥模块b1,光伏H桥模块b2,光伏H桥模块b3,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3的调制波参考电压在故障前基础上加上光伏H桥模块a1直流侧电压Vdc,a1的六分之一,光伏H桥模块b1,光伏H桥模块b2,光伏H桥模块b3,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3的旁路开关Tb1,Tb2,Tb3,Tc1,Tc2和Tc3与故障前一致,保持关断;步骤4为储能H桥模块a4,储能H桥模块b4和储能H桥模块c4的调制方式与故障前一致,开关管Sa41,Sa42,Sa43,Sa44,Sb41,Sb42,Sb43,Sb44,Sc41,Sc42,Sc43和Sc44关断,储能H桥模块a4,储能H桥模块b4和储能H桥模块c4的旁路开关Ta4,Tb4和Tc4与故障前一致,保持导通。此外,光伏H桥模块a1,光伏H桥模块a2和光伏H桥模块a3模块与模块之间采用载波移相调制方式,光伏H桥模块b1,光伏H桥模块b2和光伏H桥模块b3模块与模块之间采用载波移相调制方式,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3模块与模块之间采用载波移相调制方式。故障前后,级联H桥型光储混合能量路由器的输出功率保持不变。
图8给出了多管故障控制方法的实施例中,各光伏H桥模块和储能H桥模块的调制波参考电压仿真波形图以及电网电压和电网电流的仿真波形图,其中N=4,光伏H桥模块a1的开关管Sa11,Sa12,Sa13和Sa14发生开路故障。其控制过程为:步骤1为光伏H桥模块a1的开关管Sa11,Sa12,Sa13和Sa14全部关断,光伏H桥模块a1的旁路开关Ta1导通;步骤2为光伏H桥模块a2和光伏H桥模块a3的单个模块的调制方式与故障前一致,为单极性倍频,光伏H桥模块a2和光伏H桥模块a3的调制波参考电压与故障前一致,光伏H桥模块a2和光伏H桥模块a3的旁路开关Ta2和Ta3与故障前一致,保持关断;步骤3为光伏H桥模块b1,光伏H桥模块b2,光伏H桥模块b3,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3的单个模块的调制方式与故障前一致,为单极性倍频,光伏H桥模块b1,光伏H桥模块b2,光伏H桥模块b3,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3的调制波参考电压与故障前一致,光伏H桥模块b1,光伏H桥模块b2,光伏H桥模块b3,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3的旁路开关Tb1,Tb2,Tb3,Tc1,Tc2和Tc3与故障前一致,保持关断;步骤4为储能H桥模块a4的单个模块的调制方式与光伏H桥模块a1故障前一致,为单极性倍频,储能H桥模块a4的调制波参考电压与光伏H桥模块a1故障前一致,储能H桥模块a4的旁路开关Ta4关断,储能H桥模块b4和储能H桥模块c4的调制方式与故障前一致,开关管Sb41,Sb42,Sb43,Sb44,Sc41,Sc42,Sc43和Sc44关断,储能H桥模块b4和储能H桥模块c4的旁路开关Tb4和Tc4与故障前一致,保持导通。此外,光伏H桥模块a2,光伏H桥模块a3和储能H桥模块a4模块与模块之间采用载波移相调制方式,光伏H桥模块b1,光伏H桥模块b2和光伏H桥模块b3模块与模块之间采用载波移相调制方式,光伏H桥模块c1,光伏H桥模块c2和光伏H桥模块c3模块与模块之间采用载波移相调制方式。故障前后,级联H桥型光储混合能量路由器的输出功率保持不变。
当单个光伏H桥模块发生单管故障时,由于故障光伏H桥模块的调制方式发生改变,相应地给故障相交流输出电压引入了直流电压偏置,为保证线电压的平衡,因此需要在非故障相光伏H桥模块的调制波参考电压中注入相等的直流分量予以抵消,即非故障相光伏H桥模块的调制波参考电压在故障前基础上加上或减去故障光伏H桥模块直流侧电压的2(N-1)分之一。当故障光伏H桥模块的开关管Ski2发生单管开路故障,或者开关管Ski3发生单管开路故障,或者开关管Ski1发生单管短路故障,或者开关管Ski4发生单管短路故障时,故障相交流输出电压引入的直流电压偏置为正,因此非故障相光伏H桥模块的调制波参考电压在故障前基础上加上故障光伏H桥模块直流侧电压的2(N-1)分之一;当故障光伏H桥模块的开关管Ski1发生单管开路故障,或者开关管Ski4发生单管开路故障,或者开关管Ski2发生单管短路故障,或者开关管Ski3发生单管短路故障时,故障相交流输出电压引入的直流电压偏置为负,因此非故障相光伏H桥模块的调制波参考电压在故障前基础上减去故障光伏H桥模块直流侧电压的2(N-1)分之一。
当单个光伏H桥模块发生多管故障时,采用旁路开关将故障光伏H桥模块切除,同时通过旁路开关将故障相的储能H桥模块投入,代替故障光伏H桥模块运行,故障相交流输出电压保持不变,因此不需要在非故障相注入直流分量,即非故障相光伏H桥模块的调制波参考电压与故障前一致。
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (5)

1. 一种级联H桥型光储混合能量路由器的故障容错控制方法,所述级联H桥型光储混合能量路由器采用链式结构,每一相由N-1个光伏H桥模块和一个储能H桥模块串联组成,每一相光伏H桥模块和储能H桥模块的数量之和为N,每个H桥模块的交流输出端口并联一个旁路开关,其特征在于:包括以下故障容错控制方法:
⑴单个光伏H桥模块发生单管开路故障,采用单管开路故障控制方法
⑵单个光伏H桥模块发生单管短路故障,采用单管短路故障控制方法;
⑶单个光伏H桥模块发生多管故障,采用多管故障控制方法;
所述单管开路故障控制方法包括以下步骤:
步骤1、单个光伏H桥模块发生单管开路的开关管关断,同桥臂另一个开关管导通,另一桥臂两个开关管的调制方式与故障前一致,故障光伏H桥模块的调制波参考电压变为故障前的2倍,故障光伏H桥模块的旁路开关与故障前一致;
步骤2、故障相非故障光伏H桥模块的调制方式与故障前一致,故障相非故障光伏H桥模块的调制波参考电压与故障前一致,故障相非故障光伏H桥模块的旁路开关与故障前一致;
步骤3、非故障相光伏H桥模块的调制方式与故障前一致,非故障相光伏H桥模块的调制波参考电压在故障前基础上加上或减去故障光伏H桥模块直流侧电压的2(N-1)分之一,非故障相光伏H桥模块的旁路开关与故障前一致;
步骤4、所有储能H桥模块的调制方式与故障前一致,所有储能H桥模块的旁路开关与故障前一致;
所述单管短路故障控制方法包括以下步骤:
步骤1、单个光伏H桥模块发生单管短路的开关管导通,同桥臂另一个开关管关断,另一桥臂两个开关管的调制方式与故障前一致,故障光伏H桥模块的调制波参考电压变为故障前的2倍,故障光伏H桥模块的旁路开关与故障前一致;
步骤2、故障相非故障光伏H桥模块的调制方式与故障前一致,故障相非故障光伏H桥模块的调制波参考电压与故障前一致,故障相非故障光伏H桥模块的旁路开关与故障前一致;
步骤3、非故障相光伏H桥模块的调制方式与故障前一致,非故障相光伏H桥模块的调制波参考电压在故障前基础上加上或减去故障光伏H桥模块直流侧电压的2(N-1)分之一,非故障相光伏H桥模块的旁路开关与故障前一致;
步骤4、所有储能H桥模块的调制方式与故障前一致,所有储能H桥模块的旁路开关与故障前一致;
所述多管故障控制方法包括以下步骤:
步骤1、发生多管故障的单个光伏H桥模块的开关管全部关断,故障光伏H桥模块的旁路开关导通;
步骤2、故障相非故障光伏H桥模块的调制方式与故障前一致,故障相非故障光伏H桥模块的调制波参考电压与故障前一致,故障相非故障光伏H桥模块的旁路开关与故障前一致;
步骤3、非故障相光伏H桥模块的调制方式与故障前一致,非故障相光伏H桥模块的调制波参考电压与故障前一致,非故障相光伏H桥模块的旁路开关与故障前一致;
步骤4、故障相储能H桥模块的调制方式与故障光伏H桥模块故障前一致,故障相储能H桥模块的调制波参考电压与故障光伏H桥模块故障前一致,故障相储能H桥模块的旁路开关关断,非故障相储能H桥模块的调制方式与故障前一致,非故障相储能H桥模块的旁路开关与故障前一致。
2.根据根据权利要求1所述的一种级联H桥型光储混合能量路由器的故障容错控制方法,其特征在于:所述非故障相光伏H桥模块的调制波参考电压在故障前基础上加上或减去故障光伏H桥模块直流侧电压的2(N-1)分之一,当故障光伏H桥模块的开关管Ski2发生单管开路故障,或者开关管Ski3发生单管开路故障,或者开关管Ski1发生单管短路故障,或者开关管Ski4发生单管短路故障时,非故障相光伏H桥模块的调制波参考电压在故障前基础上加上故障光伏H桥模块直流侧电压的2(N-1)分之一;当故障光伏H桥模块的开关管Ski1发生单管开路故障,或者开关管Ski4发生单管开路故障,或者开关管Ski2发生单管短路故障,或者开关管Ski3发生单管短路故障时,非故障相光伏H桥模块的调制波参考电压在故障前基础上减去故障光伏H桥模块直流侧电压的2(N-1)分之一;
其中,开关管Ski1为k相中第i个H桥模块左侧桥臂的上方开关管,开关管Ski2为k相中第i个H桥模块左侧桥臂的下方开关管,开关管Ski3为k相中第i个H桥模块右侧桥臂的上方开关管,开关管Ski4为k相中第i个H桥模块右侧桥臂的下方开关管,开关管Tki为k相中第i个H桥模块的旁路开关。
3.根据权利要求1所述的一种级联H桥型光储混合能量路由器的故障容错控制方法,其特征在于:所述级联H桥型光储混合能量路由器中的所有光伏H桥模块在单个光伏H桥模块发生单管开路故障、单管短路故障以及多管故障前的调制方式为单极性倍频调制方式,所有光伏H桥模块的旁路开关在单个光伏H桥模块发生单管开路故障,单管短路故障以及多管故障前为关断。
4.根据权利要求1所述的一种级联H桥型光储混合能量路由器的故障容错控制方法,其特征在于:所述级联H桥型光储混合能量路由器中的所有储能H桥模块在单个光伏H桥模块发生单管开路故障、单管短路故障以及多管故障前的调制方式为所有开关管关断,所有储能H桥模块的旁路开关在单个光伏H桥模块发生单管开路故障,单管短路故障以及多管故障前为导通。
5.根据权利要求1所述的一种级联H桥型光储混合能量路由器的故障容错控制方法,其特征在于:所述级联H桥型光储混合能量路由器在发生单个光伏H桥模块单管开路故障、单管短路故障以及多管故障前,以及发生单个光伏H桥模块单管开路故障、单管短路故障以及多管故障后,同一相中的所有H桥模块模块与模块之间均采用载波移相调制方式。
CN202011044765.7A 2020-09-29 2020-09-29 一种级联h桥型光储混合能量路由器的故障容错控制方法 Active CN111934570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011044765.7A CN111934570B (zh) 2020-09-29 2020-09-29 一种级联h桥型光储混合能量路由器的故障容错控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011044765.7A CN111934570B (zh) 2020-09-29 2020-09-29 一种级联h桥型光储混合能量路由器的故障容错控制方法

Publications (2)

Publication Number Publication Date
CN111934570A CN111934570A (zh) 2020-11-13
CN111934570B true CN111934570B (zh) 2021-01-19

Family

ID=73333687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011044765.7A Active CN111934570B (zh) 2020-09-29 2020-09-29 一种级联h桥型光储混合能量路由器的故障容错控制方法

Country Status (1)

Country Link
CN (1) CN111934570B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600399B (zh) * 2020-12-15 2022-01-04 国网湖北省电力有限公司电力科学研究院 一种级联h桥型中压ups功率单元旁路控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315645A (zh) * 2011-09-09 2012-01-11 中国科学院电工研究所 用于分布式发电的能量路由器
CN105375508A (zh) * 2015-09-16 2016-03-02 南京工程学院 级联型光伏并网逆变器低电压穿越的控制方法
CN105811794A (zh) * 2016-05-06 2016-07-27 上海海事大学 多电平逆变器的参考电压信号重构的容错控制方法
CN107276125A (zh) * 2017-07-06 2017-10-20 南京南瑞继保电气有限公司 一种链式多端口并网接口装置及控制方法
CN107681697A (zh) * 2017-11-01 2018-02-09 国网江苏省电力公司南京供电公司 源储荷优化管理的能源路由器拓扑装置与控制方法
CN110994633A (zh) * 2019-11-19 2020-04-10 广东安朴电力技术有限公司 一种链式svg链节模块旁路控制系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315645A (zh) * 2011-09-09 2012-01-11 中国科学院电工研究所 用于分布式发电的能量路由器
CN105375508A (zh) * 2015-09-16 2016-03-02 南京工程学院 级联型光伏并网逆变器低电压穿越的控制方法
CN105811794A (zh) * 2016-05-06 2016-07-27 上海海事大学 多电平逆变器的参考电压信号重构的容错控制方法
CN107276125A (zh) * 2017-07-06 2017-10-20 南京南瑞继保电气有限公司 一种链式多端口并网接口装置及控制方法
CN107681697A (zh) * 2017-11-01 2018-02-09 国网江苏省电力公司南京供电公司 源储荷优化管理的能源路由器拓扑装置与控制方法
CN110994633A (zh) * 2019-11-19 2020-04-10 广东安朴电力技术有限公司 一种链式svg链节模块旁路控制系统及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
An Improved Fault-Tolerant Control Scheme for Cascaded H-Bridge STATCOM with Higher Attainable Balanced Line-to-Line Voltages;Qian Xiao;《IEEE》;20200311;第1-14页 *

Also Published As

Publication number Publication date
CN111934570A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN107276125B (zh) 一种链式多端口并网接口装置及控制方法
CN104901410A (zh) 一种ups电路
Xu et al. Study on black start strategy of microgrid with PV and multiple energy storage systems
KR101704472B1 (ko) 교류공통모선형 하이브리드 전원 시스템 및 그 제어방법
CN111934570B (zh) 一种级联h桥型光储混合能量路由器的故障容错控制方法
CN110943640B (zh) 一种t型逆变器fc桥臂冗余结构电力转换器拓扑结构
CN114094852B (zh) 一种基于维也纳整流器的级联型多电平变换器故障容错控制方法
Zhao et al. A fault-tolerant reconfiguration system based on pilot switch for grid-connected inverters
Rathode et al. Performance analysis of PV & fuel cell based grid integrated power system
Manas et al. A novel metaheuristic-based robust unified control MPPT algorithm for grid-connected PV system
CN110429643B (zh) 用于集散式光伏直流汇集系统的级间协同启动系统及方法
Jami et al. Grid integration of three phase solar powered fault‐tolerant cascaded H‐bridge inverter
Venkatesan et al. A survey of single phase grid connected photovoltaic system
Rao et al. Seven-level single phase inverter for multistring photovoltaic applications
Zhang et al. A systematic topology generation method for dual-buck inverters
CN112436765A (zh) 基于模块化多电平变换器的双三相开绕组风力发电系统
Liu et al. A compact seven switches topology and reduced DC-link capacitor size for single-phase stand-alone PV system with hybrid energy storages
Mhiesan et al. A fault-tolerant hybrid cascaded H-bridge topology
Tappeh et al. Active and reactive power control strategy of the modular multilevel converter for grid-connected large scale photovoltaic conversion plants
Mhiesan et al. Novel circuit and method for fault reconfiguration in cascaded H-bridge multilevel inverters
Zhang et al. A Novel Isolated Medium Voltage Inverter for Energy Storage Application
Limones-Pozos et al. Comparative Analysis of Multilevel Transformerless Inverters for Renewable Systems
CN113949273B (zh) 一种低纹波深空探测器电源系统
CN113572381B (zh) 一种微电网的能源变换装置
Zhang et al. The study in photovoltaic control system based on FPGA

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant