WO2017190397A1 - 一种分段式模块化抗大变形和抗冲击组合锚杆及其组装方法 - Google Patents

一种分段式模块化抗大变形和抗冲击组合锚杆及其组装方法 Download PDF

Info

Publication number
WO2017190397A1
WO2017190397A1 PCT/CN2016/084918 CN2016084918W WO2017190397A1 WO 2017190397 A1 WO2017190397 A1 WO 2017190397A1 CN 2016084918 W CN2016084918 W CN 2016084918W WO 2017190397 A1 WO2017190397 A1 WO 2017190397A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
spring
pipe
module
pier
Prior art date
Application number
PCT/CN2016/084918
Other languages
English (en)
French (fr)
Inventor
许国安
Original Assignee
许国安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许国安 filed Critical 许国安
Priority to AU2016365489A priority Critical patent/AU2016365489B2/en
Priority to US15/524,932 priority patent/US10190281B2/en
Publication of WO2017190397A1 publication Critical patent/WO2017190397A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • E02D5/808Ground anchors anchored by using exclusively a bonding material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • E21D21/0033Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts having a jacket or outer tube
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • E21D21/004Bolts held in the borehole by friction all along their length, without additional fixing means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • E21D21/0046Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts formed by a plurality of elements arranged longitudinally
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • E21D21/0053Anchoring-bolts in the form of lost drilling rods
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/008Anchoring or tensioning means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0086Bearing plates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts
    • E21D20/02Setting anchoring-bolts with provisions for grouting
    • E21D20/028Devices or accesories for injecting a grouting liquid in a bore-hole

Definitions

  • the invention relates to the technical field of geotechnical engineering support, in particular to the support technology of rock mass engineering with high stress and large deformation or impact tendency.
  • Bolt support is an important means of stability control of geotechnical engineering such as mines, tunnels and slopes.
  • relevant scientific and technical personnel have developed a large number of various anchors and successfully solved a large number of engineering support problems.
  • most existing anchors are difficult to adapt to rock mass engineering with high stress and large deformation and impact tendency.
  • the more effective bolt form is a high-strength anchor with pressure characteristics.
  • the basic requirement is that it must have sufficient deformation capacity to adapt to the large deformation of the surrounding rock, and to continue to provide a higher anchoring force during the deformation process.
  • such bolts commonly used mainly have a constant resistance large deformation anchor and a pressure tube anchor.
  • the constant resistance large deformation anchor is composed of a constant resistance device, a rod body, a tray and a nut.
  • the constant resistance device comprises a constant resistance sleeve and a constant resistance body, and the inner surface of the constant resistance sleeve and the outer surface of the rod body are both threaded structures.
  • the constant resistance device is placed at the tail of the rod body, and the tray and the nut are sequentially installed at the tail of the constant resistance device.
  • the pressure pipe anchor consist of a high-strength rod, a pressure tube, a tray, and a nut.
  • the pressure anchor has a pressure-increasing pressure pipe at the tail of the anchor.
  • the pressure tube can be designed and manufactured into different specifications.
  • the anchor has a good anti-shock effect, on the one hand, because the pressure tube is located at the outer anchor end, the length of the pressure tube is greatly limited, and on the other hand, in order to exert the pressure effect.
  • the full-length anchoring method cannot be used, and once the bonded anchoring section is broken or loosened, it will cause the failure of the entire anchor. Therefore, the anchor has a problem of limited amount of pressure deformation and low reliability.
  • the object of the present invention is to solve the support problem of high stress and large deformation surrounding rock and impact-prone surrounding rock, and to provide a segmented modular anti-large deformation and impact resistant combination anchor and assembly method thereof.
  • the technical solution adopted by the invention is: a segmented modular anti-large deformation and impact resistant combination anchor, the combined anchor is divided into an outer anchor module and an inner anchor module;
  • the outer anchor module includes a set of anchor pipes, an anchor pier between the anchor pipes, and an outer anchor end;
  • the set of anchor pipes includes a head anchor pipe, a plurality of middle anchor pipes, and a tail anchor pipe;
  • the anchor The two ends of the pier are respectively threadedly connected with the anchor pipe, and the portion between each two adjacent anchor piers is an anchor segment;
  • the outer anchor end includes an anchor plate, a pre-tension spring, an anchor ring and a nut, and the anchor ring and the anchor ring
  • the tail anchor pipe is connected by a thread, and a peripheral part of the anchor ring sleeve is provided with a pre-tightening spring, and the pre-tightening spring is closely attached to the outer end surface of the anchor plate. Under the action of the warning spring, the inner end surface of the anchor plate is pressed against the surrounding rock surface, outside the anchor ring. The end face is close to the nut;
  • the inner anchor module is inside a sealed space formed by an outer anchor module, and the inner anchor module comprises a screw, an anchor pier, an inner anchor spring and a retaining ring; the anchor pier and the inner anchor spring are sleeved on the screw, and one end of the inner anchor spring The other end is located in the spring card slot at the edge of the central hole of the anchor pier, and the other end is defined by the retaining ring on the screw.
  • the retaining ring and the screw are screwed together, and one end of the retaining ring and the nut are arranged to prevent the spring from extending. Long-term moving anti-loose rubber ring;
  • the outer anchor module and the inner anchor module are combined into one unit by an anchor pier and an outer anchor end.
  • the screw may be a whole root according to the length requirement of the anchor rod, or a plurality of connecting joints may be used.
  • all the members of the combined anchor have a right-handed thread except that the external thread of the anchor pier is a left-handed thread.
  • the diameter of the central hole of the anchor pier is the same as the inner diameter of the inner anchor spring, and is slightly larger than the outer diameter of the screw; the inner diameter of the anchor pipe is slightly larger than the outer diameter of the retaining ring; the diameter of the central hole of the anchor disk is slightly larger than that of the anchor pipe Outer diameter; the inner diameter of the pretension spring is slightly larger than the outer diameter of the detail of the anchor ring.
  • the outer anchor module of the invention is formed by a plurality of anchor pipes and a plurality of anchor piers being threadedly connected.
  • the inner anchor module is formed by a plurality of springs and a plurality of retaining rings connected by a screw and is inside a sealed space formed by the outer anchor module.
  • the inner and outer anchoring modules are combined into an organic whole through the anchor pier and the outer anchor end. By selecting different quantities and different sizes (dimensions and mechanical properties), bolts with different lengths and anchoring properties (strength, stiffness and deformability) can be assembled to meet the support requirements of various engineering conditions.
  • Each retaining ring and nut has a lock ring at one end that allows the retaining ring or nut to move in only one direction and not in the opposite direction.
  • the preloading spring presses the anchor disk against the surrounding rock surface under the push of the anchor ring to provide a quantitative bolt preload.
  • the part between each two adjacent anchor piers is an anchoring section, and the breaking of an anchoring section Bad will not cause the failure of the entire anchor.
  • the internal screw immediately assumes the anchoring action.
  • the plurality of internal anchor springs connected to the screw serve as a buffer to prevent the screw from being broken, and on the other hand, the screw is used.
  • a plurality of anchor piers that are more evenly distributed to the ends of the anchorage point of the anchor pipe to avoid damage to the individual anchor piers due to excessive concentrated stress.
  • the above method for assembling a segmented modular anti-large deformation and impact resistant combination anchor includes the following steps:
  • the first step the assembly of the combined anchor rod is carried out from the middle of the screw to the two ends in sequence, firstly assembling the anchor pier, the inner anchor spring, the retaining ring and the anti-loose rubber ring in the middle of the screw;
  • Step 2 Then assemble the middle anchor pipe at both ends of the middle anchor pier, and then assemble the anchor piers, inner anchor springs, retaining rings and anti-loose rubber rings at both ends.
  • Step 3 Then assemble the head anchor pipe and the tail anchor pipe, and finally assemble the anchor plate of the outer anchor end, the pre-tightening spring, the anchor ring, the nut and the anti-loose rubber ring.
  • Each anchor rod is divided into an outer anchor module and an inner anchor module.
  • the outer anchor module is formed by a plurality of anchor tubes and a plurality of anchor piers being screwed together, and the inner anchor module is connected by a plurality of springs and a plurality of retaining rings through the screw.
  • the inner and outer anchoring modules are combined into an organic whole through the anchor pier and the outer anchor end.
  • the connection between the components is simple and easy to assemble; the components of different numbers and different specifications (dimensions and mechanical properties) can be selected to assemble bolts with different lengths and anchoring properties (strength, stiffness and deformability) to meet various Support requirements for engineering conditions.
  • the high-strength anchor pipe, the inner anchor spring and the high-strength screw will take the leading bearing role in order, so that the anchoring section between each two adjacent anchor piers has the first high-strength anchoring, elastic buffering and secondary high-strength.
  • the anchorage has the third-order bearing characteristics of “resistance, let, and resistance”, and all the anchoring sections plus the pre-tensioning spring of the outer anchor end participate in the action during the impact-resisting process, which can well adapt to the high-stress large deformation surrounding rock and Impact-oriented surrounding rock support.
  • the inner anchor module is in the sealed space of the outer anchor module, which has strong anti-corrosion ability and long service life, and is easy for the anchor bar Long-term monitoring of project safety and engineering safety.
  • the outer anchor module of the bolt is easy to seal, and the inner anchor spring and the screw are in the closed space of the outer anchor module before the anchor pipe is broken, which can effectively avoid corrosion damage, and the anti-corrosion treatment of the component itself can greatly extend the anchor.
  • the service life of the pole; in addition, the deployment of sensors in the anchor pipe can avoid external interference and premature failure, and achieve long-term monitoring of bolt working conditions and engineering safety conditions.
  • the installation is simple and quick, and the pre-tightening force is convenient, accurate and reliable.
  • the installation process of the present invention is as simple and quick as the installation of a conventional full-length bonded rebar anchor; the difference is that the pre-tightening force of the present invention is accurately applied by twisting the anchor ring and the nut to cause a certain amount of compression of the pre-tension spring. It can overcome the shortcomings of the pre-tightening force of the ordinary bolt and is easy to attenuate, and has high reliability.
  • Figure 1 is a schematic structural view of a composite anchor of the present invention
  • Figure 2 is an enlarged view of A in Figure 1;
  • Figure 3 is an enlarged view of B in Figure 1;
  • FIG. 4 is a schematic structural view of an anchor pier of a composite anchor of the present invention.
  • Figure 5 is a side view of Figure 4.
  • Figure 6 is a schematic view showing the structure of the retaining ring of the combined anchor of the present invention.
  • Figure 7 is a side view of Figure 6;
  • Figure 8 is a schematic structural view of an anchor ring of a composite anchor of the present invention.
  • Figure 9 is a side view of Figure 8.
  • Figure 10 is a schematic structural view of a nut of a composite anchor of the present invention.
  • Figure 11 is a side view of Figure 10
  • Figure 12 is a schematic view of the assembly step of the present invention.
  • Figure 13 is a schematic view of the second assembly step of the present invention.
  • Figure 14 is a schematic view of the assembly step 3 of the present invention.
  • Figure 15 is a schematic view showing the comparison of the anchor pipe before and after the fracture of the present invention.
  • a segmented modular anti-large deformation and impact resistant combination anchor is divided into an outer anchor module and an inner anchor module;
  • the outer anchor module includes a set of anchor tubes, An anchor pier 3 and an outer anchor end between the anchor pipes;
  • a set of anchor pipes includes a head anchor pipe 21, a plurality of middle anchor pipes 22, and a tail anchor pipe 23;
  • the tube is connected by a screw, and a portion between each two adjacent anchor piers 3 is an anchoring segment;
  • the outer anchor end includes The anchor plate 7, the pre-tensioning spring 8, the anchor ring 9 and the nut 10, the anchor ring 9 and the tail anchor tube 23 are screwed, and the outer periphery of the anchor ring 9 is sleeved with a pre-tensioning spring 8, and the pre-tensioning spring 8 is closely attached to the anchor
  • the outer end surface of the disk 7 is pressed against the surrounding rock surface by the pre-tightening spring 8, and the outer end surface of the anchor ring 9 is closely attached to the nut 10
  • the screw 1 may be a whole root according to the length requirement of the anchor rod, or may be connected by connecting a plurality of connecting sleeves. All of the components of the combination anchor have a right-handed thread except that the external thread of the anchor pier 3 is a left-handed thread.
  • the diameter of the central circular hole of the anchor pier 3 is the same as the inner diameter of the inner anchor spring 4, and is slightly larger than the outer diameter of the screw 1; the inner diameter of the anchor pipe is slightly larger than the outer diameter of the retaining ring 5; the diameter of the central hole of the anchor plate 7 is slightly larger than The outer diameter of the anchor pipe; the inner diameter of the pretension spring 8 is slightly larger than the outer diameter of the detail of the anchor ring 9.
  • the above method for assembling a segmented modular anti-large deformation and impact resistant combination anchor includes the following steps:
  • the first step the assembly of the combined anchor rod is sequentially performed from the middle of the screw to the two ends, and the anchor pier, the inner anchor spring, the retaining ring and the anti-loose rubber ring in the middle of the screw are first assembled in sequence;
  • the second step then assembling the middle anchor pipe at both ends of the middle anchor pier, and then assembling the anchor piers, the inner anchor spring, the retaining ring and the anti-loose rubber ring at both ends in sequence.
  • the third step further assembling the head anchor pipe and the tail anchor pipe, and finally assembling the anchor disk of the outer anchor end, the pretension spring, the anchor ring, the nut and the anti-loose rubber ring.
  • the invention relates to an organic combination of a segmented modular full-length bonded pipe anchor (outer anchor module) and an impact-resistant dispersed anchor (internal anchor module).
  • the basic principle is that the part between each two adjacent anchor piers is an anchoring section; the outer anchor module is composed of the outer anchor end, the anchor pipe and the connecting member anchor pier, and is bonded to the borehole wall by the anchoring agent.
  • the function of the full-length bonded anchor; the inner anchor module is composed of an outer anchor end, an anchor pier, a spring and a screw.
  • the screw compresses the inner anchor spring under the traction of the outer anchor end, and distributes the anchoring force to each anchor pier, and the anchor pier
  • the force is transmitted to the anchoring agent in the form of pressure, thereby functioning as a pressure-dispersed anchor rod; the inner anchor module is in parallel relationship with the outer anchor module before the anchor pipe is broken, and plays an auxiliary anchoring effect on the surrounding rock. After the anchor pipe is broken, the surrounding rock is buffered to make pressure and timely secondary high-strength support.
  • each anchoring section will be dominated by high-strength anchor pipes, internal anchor springs and high-strength screws.
  • each anchoring section has high-strength anchoring, elastic cushioning and secondary high-strength anchoring of the third-order bearing characteristics of "resistance, let, and resistance”, and each anchoring section is relatively independent and closely related, achieving the anchor in ensuring Long-term effective maintenance of surrounding rock under the condition of rod stability.
  • l t1 , l t2 and l t3 respectively represent the effective length of the anchor of the head anchoring section, the middle anchoring section and the tail anchoring section, and l s1 , l s2 and l s3 respectively represent the head anchoring section and the middle anchoring point respectively.
  • the effective length of the spring of the segment and the tail anchorage segment, l r1 , l r2 , l r3 respectively represent the effective length of the rod of the head anchoring section, the middle anchoring section and the tail anchoring section, and ⁇ burst represents the tail anchorage fracture
  • ⁇ burst represents the tail anchorage fracture
  • the elastic coefficients of the inner anchor springs are k 1 , k 2 , and k 3 , respectively, and the compressive deformation amounts are ⁇ l s1 , ⁇ l s2 , and ⁇ l s3 , respectively.
  • the forces acting on the anchor piers are F s1 , F s2 , and F s3 , respectively .
  • the formula for calculating the force of the anchor pier due to the compression deformation of the spring is:
  • k 1 ⁇ ⁇ l s1 E ⁇ S ⁇ l r1 /l r1 can be obtained.
  • the deformation amount ⁇ l r1 of the screw must be much smaller than the spring compression amount ⁇ l s1 , that is, the rigidity of the screw is required E ⁇ S /l r1 is much larger than the stiffness k 1 of the inner anchor spring.
  • the first-stage bearing is the first high-strength anchoring stage.
  • the anchoring characteristics of the whole anchor mainly depend on the bonding support characteristics of the anchor pipe.
  • the surrounding rock is anchored by the high-strength anchor pipe of each anchoring section of the external anchor module in the form of a full-length bonded anchor.
  • the internal anchor module supports the surrounding rock in the form of pressure-dispersed anchor. effect.
  • each section of the anchor pipe under the deformation of surrounding rock is ⁇ l t1 , ⁇ l t2 , ⁇ l t3 , respectively .
  • the anchor pier of the anchor section of the head is used as the fixed reference point , and the other anchor piers are drilled along with the elongation of the anchor pipe .
  • the movement outside the hole according to the deformation coordination relationship between the components, the following relationship exists between the deformation amount of the anchor pipe, the inner anchor spring and the screw:
  • ⁇ l s3 ⁇ l s1 + ⁇ l r1 + ⁇ l r2 - ⁇ l t1 - ⁇ l t2 (12)
  • the anchoring force of the inner anchor module and its distribution can be obtained, and the parameters of the anchor member can be optimized to ensure the bolts in various specific engineering conditions. Both have optimal structural stability and support effectiveness.
  • the second-stage load is the cushioning pressure stage.
  • the anchorage characteristics of the fracture section of the anchor pipe depend on the bearing characteristics of the spring, and the remaining anchorage segments are still dominated by the bonded anchor pipe. effect.
  • the joint will be carried by the outer anchor module and the inner anchor module to be carried only by the inner anchor module, resulting in a sudden drop of the anchoring force, which will inevitably cause a sudden displacement ⁇ burst of the surrounding rock on both sides of the fracture point.
  • the stiffness of the inner anchor spring is much smaller than the stiffness of the screw, the spring will generate a large compression deformation to absorb most of the energy of the surrounding rock, and the anchoring force of the spring acting on the surrounding rock through the anchor pier is rapidly increased, thereby buffering Pressure and timely secondary reinforcement support.
  • the pre-tightening spring of the outer anchor end generates a certain compression deformation under the push of the surrounding rock and the anchor plate, and also absorbs part of the impact deformation energy, and plays a role of auxiliary buffering and pressure.
  • the compression amounts of the internal anchor springs are ⁇ l' s1 , ⁇ l′ s2 , ⁇ l′ s3 , respectively .
  • the deformation amounts of the screws in each segment are ⁇ l′ r1 , ⁇ l′ r2 , ⁇ l′ r3 , respectively .
  • the deformation coordination relationship can be obtained as follows:
  • the magnitude of the newly added spring compression during the buffering is ⁇ l' s1 ⁇ l' s2 ⁇ l' s3 , that is, the closer the internal anchor spring is to the fracture position, the greater the amount of compression.
  • the third-order bearing is a secondary high-strength anchoring phase, which starts after the inner anchor spring reaches the ultimate compressive amount. During this period, the anchoring characteristics of the broken section of the anchor pipe depend on the bearing characteristics of the screw, and the remaining anchoring sections are still from the bonded anchor pipe. Leading role. When the inner anchor spring reaches the ultimate compression, its force on the anchor pier is no longer affected by the mechanical parameters of the spring, but only depends on the stress-strain relationship curve of the screw and the deformation state of each segment of the screw. After the initial high-strength anchoring and buffering to the pressure stage, the screws of each anchoring section have often undergone large deformation and are in a high stress state, so that the surrounding rock can be timely and twice high-strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bridges Or Land Bridges (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

一种分段式模块化抗大变形和抗冲击组合锚杆及其组装方法,该组合锚杆的外锚模块由外锚端、锚管及其连接件锚墩(3)组成,通过锚固剂与钻孔壁粘结起到全长粘结式锚杆的作用;内锚模块包括螺杆(1)、锚墩(3)、内锚弹簧(4)和挡环(5),螺杆(1)在外锚端的牵引下压缩内锚弹簧(4),将锚固力分散作用于各个锚墩(3),锚墩(3)再将该作用力以压力的形式传递给锚固剂,从而起到压力分散型锚杆的作用;内锚模块在锚管断裂前与外锚模块呈并联关系,对围岩起到辅助锚固作用,在锚管断裂后对围岩进行缓冲让压与及时的二次高强支护。

Description

一种分段式模块化抗大变形和抗冲击组合锚杆及其组装方法 技术领域
本发明涉及岩土工程支护技术领域,特别是针对高应力大变形或具有冲击倾向性的岩体工程的支护技术。
背景技术
锚杆支护是矿山、隧洞、边坡等岩土工程稳定性控制的一种重要手段。相关科技人员在锚杆支护的研究与应用过程中,开发了数目众多的各种锚杆并成功地解决了大量的工程支护问题。然而,现有的大多数锚杆都难以适应高应力大变形和具有冲击倾向性的岩体工程。根据这类岩体工程的应力与变形特点,较有效的锚杆形式是具有让压特性的高强锚杆。其基本要求是既要有足够的变形能力以适应围岩大变形,又要在变形过程中持续提供较高的锚固力。目前常用的此类锚杆主要有恒阻大变形锚杆和让压管锚杆。
恒阻大变形锚杆由恒阻装置、杆体、托盘和螺母组成。其中,恒阻装置包括恒阻套管和恒阻体,并且恒阻套管内表面和杆体的外表面均为螺纹结构。恒阻装置套装于杆体的尾部,托盘和螺母依次安装在恒阻装置的尾部。当施加于杆体上的轴力大于或等于恒阻大变形锚杆的设计恒阻力时,恒阻装置内的恒阻体沿着套管内壁发生摩擦滑移,在滑移过程中保持恒阻特性,依靠恒阻装置的结构变形来抵抗岩体的变形破坏。这种锚杆在一定条件下能起到较好的让压和抗冲击作用,然而由于需要在锚杆的杆体头部和恒阻套管处分别进行粘结锚固,给锚杆安装造成了很大的困难,而且一旦粘结锚固段发生破断或松脱将导致整个锚杆的失效。因此,该锚杆存在安装困难和可靠性低的缺陷。
让压管锚杆由高强杆体、让压管、托盘以及螺母等部件组成。与普通的锚杆相比,该让压锚杆在锚杆尾部增加了一个具有让压功能的让压管。根据大变形围岩条件的不同,让压管可以设计制造成不同的规格。这种锚杆虽然具有较好的防冲击效果,但一方面由于让压管位于外锚端,使让压管的长度即让压变形量受到很大限制,另一方面为了发挥让压作用而不能采用全长锚固方式,一旦粘结锚固段发生破断或松脱也将导致整个锚杆的失效。因此,该锚杆存在让压变形量有限和可靠性低的问题。
综上所述,现有的各种锚杆类型应用于高应力大变形和具有冲击倾向性的岩体工程时都存在一些问题,因此有必要研发一种适应性更强和可靠性更高的锚杆。
发明内容
本发明的目的是为了解决高应力大变形围岩和冲击倾向性围岩的支护难题,提供一种分段式模块化抗大变形和抗冲击组合锚杆及其组装方法。
本发明采用的技术方案为:一种分段式模块化抗大变形和抗冲击组合锚杆,该组合锚杆分为外锚模块和内锚模块;
所述外锚模块包括一套锚管、锚管之间的锚墩、外锚端;一套锚管包括一根头部锚管、若干根中部锚管、一根尾部锚管;所述锚墩两端分别与锚管通过螺纹连接,每两个相邻锚墩之间的部分为一个锚固段;所述外锚端包括锚盘、预紧弹簧、锚环和螺母,所述锚环与尾部锚管通过螺纹连接,锚环细部外围套有一个预紧弹簧,预紧弹簧紧贴锚盘的外端面,在预警弹簧的作用下锚盘的内端面压紧于围岩表面,锚环外端面紧贴螺母;
所述内锚模块处于外锚模块形成的密封空间内部,内锚模块包括螺杆、锚墩、内锚弹簧和挡环;所述锚墩和内锚弹簧套设于螺杆上,内锚弹簧的一端位于锚墩中心孔边缘的弹簧卡槽内,另一端被所述挡环限定于螺杆上,挡环与螺杆之间为螺纹连接,所述挡环和螺母的一端均设有阻止其沿弹簧伸长方向移动的防松胶圈;
所述外锚模块和内锚模块之间通过锚墩和外锚端组合成一个整体。
作为优选,根据锚杆的长度需求,所述螺杆可以是一整根,也可以采用连接套管将多根连接而成。
作为优选,所述组合锚杆的所有构件中除了锚墩的外螺纹为左旋螺纹外,其余构件的螺纹均为右旋螺纹。
作为优选,所述锚墩中心圆孔的直径与内锚弹簧的内径相同,都略大于螺杆外径;锚管的内径略大于挡环的外径;锚盘中心孔的直径略大于锚管的外径;预紧弹簧的内径略大于锚环细部的外径。
本发明外锚模块由多根锚管和多个锚墩通过螺纹连接而成,内锚模块由多根弹簧和多个挡环通过螺杆串接而成并处于外锚模块形成的密封空间内部,内外锚固模块之间通过锚墩和外锚端组合成有机的整体。选择不同数量和不同规格(尺寸和力学性能)的构件,可以组装出具有不同长度和锚固性能(强度、刚度和变形能力)的锚杆,以满足各种工程条件的支护需求。每个挡环和螺母的一端都有一个防松胶圈,使挡环或螺母只能沿一个方向移动而不能反向松脱。预紧弹簧在锚环的推动下将锚盘压紧于围岩表面,以此提供定量的锚杆预紧力。每两个相邻锚墩之间的部分为一个锚固段,某个锚固段的破 坏不会造成整根锚杆的失效。当某个锚固段的锚管断裂失效后其内部的螺杆随即承担锚固作用,此时与螺杆相连的多个内锚弹簧一方面起到缓冲作用以避免螺杆被拉断,另一方面将螺杆所受荷载较均匀地分配到锚管断裂点两端的多个锚墩以避免个别锚墩受到过大的集中应力而遭到破坏。
上述一种分段式模块化抗大变形和抗冲击组合锚杆的组装方法,包括以下步骤:
第一步:所述组合锚杆的装配从螺杆中部开始往两端依次进行,首先依次装配螺杆中部的锚墩、内锚弹簧、挡环及防松胶圈;
第二步:接着装配中部锚墩两端的中部锚管,然后依次装配两端的锚墩、内锚弹簧、挡环及防松胶圈。
第三步:再接着装配头部锚管和尾部锚管,最后依次装配外锚端的锚盘、预紧弹簧、锚环、螺母和防松胶圈。
本发明的有益效果在于:
(1)分段锚固,锚固性能可靠。每两个相邻锚墩之间的部分为一个锚固段,某个锚固段的破坏不会造成整根锚杆的失效。当某个锚固段的锚管断裂失效后其内部的螺杆随即承担锚固作用,此时与螺杆相连的多个内锚弹簧一方面起到缓冲作用以避免螺杆被拉断,另一方面将螺杆所受荷载较均匀地分配到锚管断裂点两端的多个锚墩以避免个别锚墩受到过大的集中应力而遭到破坏。
(2)模块化结构,易于组装、适应性强。每根锚杆分为外锚模块和内锚模块,外锚模块由多根锚管和多个锚墩通过螺纹连接而成,内锚模块由多根弹簧和多个挡环通过螺杆串接而成,内外锚固模块之间通过锚墩和外锚端组合成有机的整体。各构件之间连接简单,组装方便;选择不同数量和不同规格(尺寸和力学性能)的构件,可以组装出具有不同长度和锚固性能(强度、刚度和变形能力)的锚杆,以满足各种工程条件的支护需求。
(3)多阶承载,锚固强度高、抗冲击和适应变形能力强。本发明在工作的不同阶段,将由高强锚管、内锚弹簧和高强螺杆依次起主导承载作用,使得每两个相邻锚墩之间的锚固段都具有初次高强锚固、弹性缓冲和二次高强锚固的“抗、让、抗”三阶承载特性,而且在抗冲击的让压过程中所有锚固段加上外锚端的预紧弹簧同时参与作用,能很好地适应高应力大变形围岩和冲击倾向性围岩的支护。
(4)内锚模块处于外锚模块的密封空间,防腐蚀能力强、寿命长,易于对锚杆工 况和工程安全性进行长期监测。锚杆的外锚模块很容易实现密封,内锚弹簧和螺杆等构件在锚管破裂之前处于外锚模块的密闭空间内,能有效避免腐蚀破坏,加上构件本身的防腐蚀处理能大大延长锚杆的服务年限;此外,在锚管内布设传感器能避免外界干扰和过早破坏,实现锚杆工况与工程安全状况的长期监测。
(5)安装简单快捷,预紧力施加方便、准确、可靠。本发明的安装过程与普通全长粘结式螺纹钢锚杆的安装一样简单快捷;区别在于本发明的预紧力通过拧动锚环和螺母使预紧弹簧产生一定的压缩量来准确施加,可以克服普通锚杆的预紧力极易衰减的缺点,具有较高的可靠性。
附图说明
图1为本发明组合锚杆的结构示意图;
图2为图1中A处的放大图;
图3为图1中B处的放大图;
图4为本发明组合锚杆的锚墩结构示意图;
图5为图4的侧视图;
图6为本发明组合锚杆的挡环结构示意图;
图7为图6中侧视图;
图8为本发明组合锚杆的锚环结构示意图;
图9为图8中侧视图;
图10为本发明组合锚杆的螺母结构示意图;
图11为图10中侧视图;
图12为本发明装配步骤一示意图;
图13为本发明装配步骤二示意图;
图14为本发明装配步骤三示意图;
图15为本发明工作时锚管断裂前、后对比示意图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步说明。
如图1-11所示,一种分段式模块化抗大变形和抗冲击组合锚杆,该组合锚杆分为外锚模块和内锚模块;所述外锚模块包括一套锚管、锚管之间的锚墩3、外锚端;一套锚管包括一根头部锚管21、若干根中部锚管22、一根尾部锚管23;所述锚墩3两端分别与锚管通过螺纹连接,每两个相邻锚墩3之间的部分为一个锚固段;所述外锚端包括 锚盘7、预紧弹簧8、锚环9和螺母10,所述锚环9与尾部锚管23通过螺纹连接,锚环9细部外围套有一个预紧弹簧8,预紧弹簧8紧贴锚盘7的外端面,在预紧弹簧8的作用下锚盘7的内端面压紧于围岩表面,锚环9外端面紧贴螺母10;所述内锚模块处于外锚模块形成的密封空间内部,内锚模块包括螺杆1、锚墩3、内锚弹簧4和挡环5;所述锚墩3和内锚弹簧4套设于螺杆1上,内锚弹簧的一端位于锚墩3中心孔边缘的弹簧卡槽内,另一端被所述挡环5限定于螺杆1的一定长度范围内,挡环5与螺杆1之间为螺纹连接,所述挡环5和螺母10的一端均设有阻止其沿弹簧伸长方向移动的防松胶圈6;所述外锚模块和内锚模块之间通过锚墩和外锚端组合成一个整体。
根据锚杆的长度需求,所述螺杆1可以是一整根,也可以采用连接套管将多根连接而成。所述组合锚杆的所有构件中除了锚墩3的外螺纹为左旋螺纹外,其余构件的螺纹均为右旋螺纹。所述锚墩3中心圆孔的直径与内锚弹簧4的内径相同,都略大于螺杆1的外径;锚管的内径略大于挡环5的外径;锚盘7中心孔的直径略大于锚管的外径;预紧弹簧8的内径略大于锚环9细部的外径。
上述一种分段式模块化抗大变形和抗冲击组合锚杆的组装方法,包括以下步骤:
如图12所示,第一步:所述组合锚杆的装配从螺杆中部开始往两端依次进行,首先依次装配螺杆中部的锚墩、内锚弹簧、挡环及防松胶圈;
如图13所示,第二步:接着装配中部锚墩两端的中部锚管,然后依次装配两端的锚墩、内锚弹簧、挡环及防松胶圈。
如图14所示,第三步:再接着装配头部锚管和尾部锚管,最后依次装配外锚端的锚盘、预紧弹簧、锚环、螺母和防松胶圈。
本发明工作原理及过程:
本发明是分段式模块化的全长粘结式管锚杆(外锚模块)与抗冲击压力分散型锚杆(内锚模块)的有机组合体。其基本原理是:每两个相邻锚墩之间的部分为一个锚固段;外锚模块由外锚端、锚管及其连接件锚墩组成,通过锚固剂与钻孔壁粘结起到全长粘结式锚杆的作用;内锚模块由外锚端、锚墩、弹簧和螺杆组成,螺杆在外锚端的牵引下压缩内锚弹簧,将锚固力分散作用于各个锚墩,锚墩再将该作用力以压力的形式传递给锚固剂,从而起到压力分散型锚杆的作用;内锚模块在锚管断裂前与外锚模块呈并联关系,对围岩起到辅助锚固作用,在锚管断裂后对围岩进行缓冲让压与及时的二次高强支护。在工作的不同阶段,各个锚固段将由高强锚管、内锚弹簧和高强螺杆依次起主导承载作 用,使得每个锚固段都具有高强锚固、弹性缓冲和二次高强锚固的“抗、让、抗”三阶承载特性,而且各个锚固段之间既相对独立又紧密联系,实现了在确保锚杆自身稳定性的条件下对围岩进行长期有效的维护。
以三个锚固段的锚杆为例,其工作原理和过程如图15所示。图中lt1、lt2、lt3分别表示头部锚固段、中部锚固段和尾部锚固段的锚管(tube)有效长度,ls1、ls2、ls3分别表示头部锚固段、中部锚固段和尾部锚固段的弹簧(spring)有效长度,lr1、lr2、lr3分别表示头部锚固段、中部锚固段和尾部锚固段的螺杆(rod)有效长度,δburst表示尾部锚管断裂后锚杆突然增加的伸长量。
设内锚弹簧的弹性系数分别为k1、k2、k3,压缩变形量分别为Δls1、Δls2、Δls3,对锚墩的作用力分别为Fs1、Fs2、Fs3,则根据胡克定律可得,由于弹簧压缩变形对锚墩的作用力计算公式为:
Fs1=k1·Δls1         (1)
Fs2=k2·Δls2             (2)
Fs3=k3·Δls3            (3)
设螺杆的变形模量为E,横截面有效面积为S,各段变形量分别为Δlr1、Δlr2、Δlr3,轴力分别为Fr1、Fr2、Fr3,则各段螺杆的轴力计算公式为:
Fr1=E·S·Δlr1/lr1        (4)
Fr2=E·S·Δlr2/lr2        (5)
Fr3=E·S·Δlr3/lr3        (6)
根据受力平衡关系,弹簧对锚墩的作用力与螺杆轴力间存在以下关系:
Fr1=Fs1             (7)
Fr2=Fr1+Fs2       (8)
Fr3=Fr2+Fs3       (9)
根据式(1)、(4)、(7)可得k1·Δls1=E·S·Δlr1/lr1。为了使弹簧在达到其极限压缩量之前起到有效的缓冲让压作用以避免螺杆过早破断,必须让螺杆的变形量Δlr1大大 小于弹簧压缩量Δls1,也就是要求螺杆的刚度E·S/lr1远大于内锚弹簧的刚度k1
第一阶承载为初次高强锚固阶段,从锚杆安装到锚管断裂之前,整根锚杆的锚固特性主要取决于锚管的粘结支护特性。在此期间主要由外锚模块各锚固段的高强锚管以全长粘结式锚杆的形式对围岩进行锚固,同时内锚模块以压力分散型锚杆的形式对围岩起辅助支护作用。
设各段锚管在围岩变形作用下的伸长量分别为Δlt1、Δlt2、Δlt3,以头部锚固段的锚墩为固定参照点,其他锚墩随锚管伸长一起往钻孔外移动,根据各构件之间的变形协调关系可得锚管、内锚弹簧及螺杆的变形量之间存在如下关系式:
Δlt1+Δlt2+Δlt3=Δlr1+Δlr2+Δlr3+Δls1        (10)
Δls2=Δls1+Δlr1-Δlt1        (11)
Δls3=Δls1+Δlr1+Δlr2-Δlt1-Δlt2        (12)
根据以上各式和实际测得的构件变形量,即可获得内锚模块的锚固力大小及其分布情况,据此可对锚杆构件的参数进行优化设计以确保锚杆在各种具体工程条件下都具有最优的结构稳定性和支护有效性。
第二阶承载为缓冲让压阶段,从锚管断裂到内锚弹簧达到极限压缩量期间,锚管断裂段的锚固特性取决于弹簧的承载特性,其余锚固段仍由粘结式锚管起主导作用。当某段锚管断裂时,该处将由外锚模块和内锚模块共同承载转为仅由内锚模块承载,导致锚固力突然下降,必然引起断裂点两侧的围岩发生突变位移δburst。由于内锚弹簧的刚度远小于螺杆的刚度,弹簧将产生较大的压缩变形以吸收围岩的大部分能量,同时弹簧通过锚墩作用于围岩的锚固力迅速增大,从而起到了缓冲让压与及时的二次加强支护的作用。此外,外锚端的预紧弹簧在围岩和锚盘的推动下产生一定的压缩变形也会吸收部分冲击变形能,起到辅助缓冲让压的作用。
设此过程中各内锚弹簧的压缩量分别为Δl′s1、Δl′s2、Δl′s3,各段螺杆的变形量分别为Δl′r1、Δl′r2、Δl′r3,根据各构件之间的变形协调关系可得如下关系式:
Δl′r1+Δl′r2+Δl′r3+Δl′s1=δburst              (13)
Δl′s2=Δl′s1+Δl′r1               (14)
Δl′s3=Δl′s2+Δl′r2                   (15)
由此可知,缓冲期间新增的弹簧压缩量大小关系为Δl′s1<Δl′s2<Δl′s3,也就是说距离 断裂位置越近的内锚弹簧压缩量越大。
第三阶承载为二次高强锚固阶段,始于内锚弹簧达到极限压缩量之后,在此期间锚管断裂段的锚固特性取决于螺杆的承载特性,其余锚固段仍由粘结式锚管起主导作用。当内锚弹簧达到极限压缩量之后,它对锚墩的作用力不再受弹簧的力学参数影响而仅取决于螺杆的应力-应变关系曲线以及各段螺杆所处的变形状态。经过初次高强锚固和缓冲让压阶段后,各锚固段的螺杆往往已经发生了较大的变形而处于较高的应力状态,从而可对围岩进行及时的二次高强支护。
应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (5)

  1. 一种分段式模块化抗大变形和抗冲击组合锚杆,其特征在于:该组合锚杆分为外锚模块和内锚模块;
    所述外锚模块包括一套锚管、锚管之间的锚墩、外锚端;一套锚管包括一根头部锚管、若干根中部锚管、一根尾部锚管;所述锚墩两端分别与锚管通过螺纹连接,每两个相邻锚墩之间的部分为一个锚固段;所述外锚端包括锚盘、预紧弹簧、锚环和螺母,所述锚环与尾部锚管通过螺纹连接,锚环细部外围套有一个预紧弹簧,预紧弹簧紧贴锚盘的外端面,在预警弹簧的作用下锚盘的内端面压紧于围岩表面,锚环外端面紧贴螺母;
    所述内锚模块处于外锚模块形成的密封空间内部,内锚模块包括螺杆、锚墩、内锚弹簧和挡环;所述锚墩和内锚弹簧套设于螺杆上,内锚弹簧的一端位于锚墩中心孔边缘的弹簧卡槽内,另一端被所述挡环限定于螺杆上,挡环与螺杆之间为螺纹连接,所述挡环和螺母的一端均设有阻止其沿弹簧伸长方向移动的防松胶圈;
    所述外锚模块和内锚模块之间通过锚墩和外锚端组合成一个整体。
  2. 根据权利要求1所述的一种分段式模块化抗大变形和抗冲击组合锚杆,其特征在于:所述螺杆是一整根,或采用连接套管将多根连接而成。
  3. 根据权利要求1所述的一种分段式模块化抗大变形和抗冲击组合锚杆,其特征在于:所述组合锚杆的所有构件中除了锚墩的外螺纹为左旋螺纹外,其余构件的螺纹均为右旋螺纹。
  4. 根据权利要求1所述的一种分段式模块化抗大变形和抗冲击组合锚杆,其特征在于:所述锚墩中心圆孔的直径与内锚弹簧的内径相同,都略大于螺杆外径;锚管的内径略大于挡环的外径;锚盘中心孔的直径略大于锚管的外径;预紧弹簧的内径略大于锚环细部的外径。
  5. 根据权利要求1所述的一种分段式模块化抗大变形和抗冲击组合锚杆的组装方法,其特征在于:包括以下步骤:
    第一步:所述组合锚杆的装配从螺杆中部开始往两端依次进行,首先依次装配螺杆中部的锚墩、内锚弹簧、挡环及防松胶圈;
    第二步:接着装配中部锚墩两端的中部锚管,然后依次装配两端的锚墩、内锚弹簧、挡环及防松胶圈;
    第三步:再接着装配头部锚管和尾部锚管,最后依次装配外锚端的锚盘、预紧弹簧、锚环、螺母和防松胶圈。
PCT/CN2016/084918 2016-05-03 2016-06-06 一种分段式模块化抗大变形和抗冲击组合锚杆及其组装方法 WO2017190397A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2016365489A AU2016365489B2 (en) 2016-05-03 2016-06-06 A sectional modular large-deformation-resistant impact-resistant composite rock bolt and its assembling method
US15/524,932 US10190281B2 (en) 2016-05-03 2016-06-06 Sectional modular large-deformation-resistant impact-resistant composite rock bolt and its assembling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610286697.2A CN105863695B (zh) 2016-05-03 2016-05-03 一种分段式模块化抗大变形和抗冲击组合锚杆及其组装方法
CN201610286697.2 2016-05-03

Publications (1)

Publication Number Publication Date
WO2017190397A1 true WO2017190397A1 (zh) 2017-11-09

Family

ID=56629871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084918 WO2017190397A1 (zh) 2016-05-03 2016-06-06 一种分段式模块化抗大变形和抗冲击组合锚杆及其组装方法

Country Status (4)

Country Link
US (1) US10190281B2 (zh)
CN (1) CN105863695B (zh)
AU (1) AU2016365489B2 (zh)
WO (1) WO2017190397A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279107A (zh) * 2018-03-12 2018-07-13 湖南科技大学 动态下锚杆与围岩力学特性研究装置及其使用方法
WO2019213675A1 (en) * 2018-05-03 2019-11-07 Epiroc Holdings South Africa (Pty) Ltd Self-drilling hybrid rock anchor
CN110847930A (zh) * 2019-12-09 2020-02-28 中交第一公路勘察设计研究院有限公司 极高地应力软岩大变形隧道多级让抗支护结构及施工方法
CN111395333A (zh) * 2020-04-21 2020-07-10 中铁西北科学研究院有限公司 一种适用于高烈度地区的组装式弹性阻尼锚具及其施工方法
CN112610259A (zh) * 2020-12-26 2021-04-06 河南理工大学 一种可回收锚索
CN112901232A (zh) * 2021-04-07 2021-06-04 广西大学 一种补偿预应力损失的多级让压锚杆
CN113356889A (zh) * 2021-07-14 2021-09-07 哈尔滨工业大学 一种隧道正上方超前钻管的注浆装置与箱式加固方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109083144B (zh) * 2018-09-29 2023-12-19 石家庄铁道大学 一种耗能抗震预应力锚索
CN109404024B (zh) * 2018-10-12 2020-07-31 河南理工大学 一种多段锚固圈式分段锚固锚杆结构施工方法
CN109113759B (zh) * 2018-10-29 2023-11-03 湖南科技大学 一种可防冲的连动式巷道支护结构
CN109457714A (zh) * 2018-12-24 2019-03-12 中国电建集团华东勘测设计研究院有限公司 能够适应围岩大变形的预应力锚索锚墩结构
CN109723480B (zh) * 2018-12-27 2020-04-24 山东科技大学 用于围岩大变形的拉压耦合让压吸能注浆锚杆及工作方法
CN110273445B (zh) * 2019-02-17 2021-10-08 南平市建阳区汽车锻压件厂 地下横孔施工方法
CN109798142B (zh) * 2019-03-25 2024-02-20 中铁第四勘察设计院集团有限公司 一种具有让压功能的可接式长锚杆
CN110067247B (zh) * 2019-06-03 2024-01-30 河南省交通规划设计研究院股份有限公司 用于欠稳定边坡的大变形锚索及其制作方法
CN110259495A (zh) * 2019-07-03 2019-09-20 中国矿业大学 一种基于防冲减压锚索的复合支护方法
CN110617094B (zh) * 2019-09-27 2024-06-04 中国地质大学(武汉) 能够加强锚固作用的减震定位复合式注浆锚杆
CN110778347B (zh) * 2019-11-07 2024-06-18 长江水利委员会长江科学院 一种让压参数可调节的让压锚杆
CN110924388B (zh) * 2019-12-10 2021-06-29 华北水利水电大学 带有应力位移监测装置的多级应力及位移控制可伸长锚杆
CN110924389B (zh) * 2019-12-10 2021-08-03 华北水利水电大学 一种多级应力及位移控制可伸长且具有声发射监测的锚杆
CN111075487B (zh) * 2019-12-31 2024-05-24 西南石油大学 具有测定围岩应变与温度耦合功能的锚杆
CN111441804B (zh) * 2020-04-07 2021-02-19 中国矿业大学 一种抗倾斜让压大变形锚固装置及使用方法
KR102220735B1 (ko) * 2020-05-07 2021-03-03 주식회사 동아특수건설 하이브리드형 영구 앵커
CN111946372B (zh) * 2020-07-06 2021-06-18 青岛市地铁六号线有限公司 用于高凝结性注浆材料的注浆装置
CN112482427B (zh) * 2020-11-16 2021-11-23 中国空气动力研究与发展中心设备设计及测试技术研究所 用于混凝土基础锚固长度可调的可更换锚栓组合件
CN112482429B (zh) * 2020-11-16 2022-01-28 中国空气动力研究与发展中心设备设计及测试技术研究所 锚固长度可调的可更换二次灌浆锚栓基础及更换安装方法
CN112900442A (zh) * 2021-02-04 2021-06-04 中国葛洲坝集团市政工程有限公司 一种闸墩混凝土高大模板快速施工的方法
CN113669096A (zh) * 2021-09-13 2021-11-19 贵州聚材科技有限公司 一种防螺母松动的纤维复合材料锚杆结构及其制造方法
CN114151117A (zh) * 2021-11-15 2022-03-08 中国建筑股份有限公司 一种锚杆组件
CN116263053B (zh) * 2021-12-14 2024-06-18 中国五冶集团有限公司 一种真空吸力型抗浮锚杆
CN114396045A (zh) * 2022-03-04 2022-04-26 重庆交通大学 一种抗震锚索结构与韧性提升方法
CN114607428B (zh) * 2022-03-08 2024-06-11 长江水利委员会长江科学院 一种用于软岩加固的内锚式可伸缩锚杆及应用方法
CN115182764A (zh) * 2022-05-12 2022-10-14 中国平煤神马能源化工集团有限责任公司 一种具有高强抗冲击地压特性的围岩变形监测锚杆
CN115263393B (zh) * 2022-07-29 2023-04-07 泰安泰烁岩层控制科技有限公司 一种建筑及巷道施工用弹性支护锚固系统
CN115341537B (zh) * 2022-08-31 2023-09-12 华北水利水电大学 一种应用于膨胀土边坡自适应锚杆
CN115369869B (zh) * 2022-08-31 2023-09-12 华北水利水电大学 一种可监测并调节膨胀土边坡环境的自适应锚杆
CN115387336B (zh) * 2022-09-19 2024-03-26 陕西建工基础建设集团有限公司 一种囊式注浆扩体旋喷锚索及其施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007059580A1 (en) * 2005-11-24 2007-05-31 Peter Andrew Gray Self drilling rock bolt
WO2012012401A2 (en) * 2010-07-19 2012-01-26 Illinois Tool Works Inc. Anchoring device
US20120282039A1 (en) * 2011-05-05 2012-11-08 Earth Support Services, Inc. Mine roof support apparatus and system
CN104594928A (zh) * 2014-12-31 2015-05-06 中国矿业大学 一种四维支护大变形锚杆
CN104632263A (zh) * 2015-01-30 2015-05-20 河南科技大学 一种具有双保险的预应力吸能锚杆索
CN205172612U (zh) * 2015-12-07 2016-04-20 山东科技大学 一种增阻让压大变形锚杆

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469407A (en) * 1967-12-22 1969-09-30 Ohio Brass Co Mine roof support
DE3503012A1 (de) * 1985-01-30 1986-07-31 Dyckerhoff & Widmann AG, 8000 München Verspannvorrichtung fuer das zugglied eines ankers, insbesondere eines felsankers
SU1314098A1 (ru) * 1985-08-09 1987-05-30 Уральский научно-исследовательский и проектный институт медной промышленности "УНИПРОМЕДЬ" Съемный анкер
IT1290040B1 (it) * 1997-03-07 1998-10-19 Marcegaglia S P A Metodo per la stabilizzazione di ammassi rocciosi e relativo elemento stabilizzatore
CN1200199C (zh) * 2002-06-24 2005-05-04 吴德兴 一种锚杆支护方法及其分段式中空注浆锚杆
KR101079075B1 (ko) * 2009-06-09 2011-11-02 박재현 그라우팅용 보강유닛 및 이를 이용한 그라우팅 보강방법
CN102691514B (zh) * 2012-06-07 2014-02-05 中铁西南科学研究院有限公司 多级分段免注浆自胀紧式锚固锚杆
CN202596760U (zh) * 2012-06-07 2012-12-12 中铁西南科学研究院有限公司 多级分段免注浆自锚固棘刺式锚杆
CN103061790B (zh) * 2013-01-23 2014-11-19 中国矿业大学 一种预应力全锚挤压式锚固装置及方法
MX350675B (es) * 2013-07-12 2017-09-12 Minova Int Ltd Anclaje de roca deformable.
CN203530975U (zh) * 2013-10-25 2014-04-09 曾庆义 一种锚杆
CN103643977B (zh) * 2013-11-21 2015-08-19 中国矿业大学 一种全锚分区让压注浆锚杆及其使用方法
CN103911993B (zh) * 2014-04-18 2016-05-04 周同和 一种pha锚杆及其施工方法
CN204476442U (zh) * 2015-01-29 2015-07-15 山东科技大学 一种注浆膨胀且部分可回收锚杆
KR101646584B1 (ko) * 2015-12-15 2016-08-08 삼진스틸산업(주) 스프링 이용한 제거식 그라운드 앵커체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007059580A1 (en) * 2005-11-24 2007-05-31 Peter Andrew Gray Self drilling rock bolt
WO2012012401A2 (en) * 2010-07-19 2012-01-26 Illinois Tool Works Inc. Anchoring device
US20120282039A1 (en) * 2011-05-05 2012-11-08 Earth Support Services, Inc. Mine roof support apparatus and system
CN104594928A (zh) * 2014-12-31 2015-05-06 中国矿业大学 一种四维支护大变形锚杆
CN104632263A (zh) * 2015-01-30 2015-05-20 河南科技大学 一种具有双保险的预应力吸能锚杆索
CN205172612U (zh) * 2015-12-07 2016-04-20 山东科技大学 一种增阻让压大变形锚杆

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279107A (zh) * 2018-03-12 2018-07-13 湖南科技大学 动态下锚杆与围岩力学特性研究装置及其使用方法
CN108279107B (zh) * 2018-03-12 2023-04-25 湖南科技大学 动态下锚杆与围岩力学特性研究装置及其使用方法
WO2019213675A1 (en) * 2018-05-03 2019-11-07 Epiroc Holdings South Africa (Pty) Ltd Self-drilling hybrid rock anchor
US11073018B1 (en) 2018-05-03 2021-07-27 Epiroc Drilling Tools Ab Self-drilling hybrid rock anchor
CN110847930A (zh) * 2019-12-09 2020-02-28 中交第一公路勘察设计研究院有限公司 极高地应力软岩大变形隧道多级让抗支护结构及施工方法
CN111395333A (zh) * 2020-04-21 2020-07-10 中铁西北科学研究院有限公司 一种适用于高烈度地区的组装式弹性阻尼锚具及其施工方法
CN111395333B (zh) * 2020-04-21 2024-05-17 中铁西北科学研究院有限公司 一种适用于高烈度地区的组装式弹性阻尼锚具及其施工方法
CN112610259A (zh) * 2020-12-26 2021-04-06 河南理工大学 一种可回收锚索
CN112901232A (zh) * 2021-04-07 2021-06-04 广西大学 一种补偿预应力损失的多级让压锚杆
CN113356889A (zh) * 2021-07-14 2021-09-07 哈尔滨工业大学 一种隧道正上方超前钻管的注浆装置与箱式加固方法
CN113356889B (zh) * 2021-07-14 2022-07-15 哈尔滨工业大学 一种隧道正上方超前钻管的箱式加固方法

Also Published As

Publication number Publication date
AU2016365489A1 (en) 2017-11-23
AU2016365489B2 (en) 2018-05-10
CN105863695A (zh) 2016-08-17
CN105863695B (zh) 2017-11-03
US10190281B2 (en) 2019-01-29
US20180202122A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
WO2017190397A1 (zh) 一种分段式模块化抗大变形和抗冲击组合锚杆及其组装方法
JP5778791B2 (ja) アンカー固定要素
US8899883B2 (en) Anchor tendon with selectively deformable portions
WO2018095014A1 (zh) 一种适合于软弱煤岩的自钻自锚可接长锚杆及其锚固方法
CN110578542B (zh) 一种高应力冲击地压巷道锚杆、设计方法和工作方法
CN110662883B (zh) 摩擦岩石锚杆
BRPI0720592B1 (pt) Rock cabin to be applied by treading on a rubber surface hole
CA2910016C (en) Rock bolt
AU2014361729B2 (en) Ground support apparatus and method
CN105926794A (zh) 采用等应力线优化的装配式软钢阻尼器
CN103899341A (zh) 承压型端锚高预紧力锚杆支护方法
US20120227507A1 (en) Instrumented coupler load cell for rock anchors
CN111853039A (zh) 一种用于盾构隧道减震的自复位耗能装置
CN110925001B (zh) 一种防止锚索失效弹射的缓冲保护装置
CN105155712B (zh) 一种采用形状记忆合金拉杆的自复位钢连梁体系
CA2653307C (en) Improved rock bolt with ploughing anchors
CN106979028B (zh) 一种柔性可卸压锚杆支护装置
CN107386483A (zh) 弯剪分离控制型装配式金属阻尼器
CN107725088B (zh) 一种抗岩爆和大变形翼式劈裂型吸能锚杆及结构
CN112901232B (zh) 一种补偿预应力损失的多级让压锚杆
CN105178466A (zh) 一种采用组合拉杆的自复位钢连梁体系
CN201437689U (zh) 一种垂钻工具锁紧销机构
AU2021107228A4 (en) Improved bolting method for beam retrofitting at soffit
CN216477414U (zh) 一种外卷式恒阻大变形锚杆
CN209429576U (zh) 一种抗剪连接植筋加建钢结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15524932

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016365489

Country of ref document: AU

Date of ref document: 20160606

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900919

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900919

Country of ref document: EP

Kind code of ref document: A1