WO2017189916A1 - Devices, systems and methods for treating medical devices having passageways with ozone gas - Google Patents

Devices, systems and methods for treating medical devices having passageways with ozone gas Download PDF

Info

Publication number
WO2017189916A1
WO2017189916A1 PCT/US2017/029950 US2017029950W WO2017189916A1 WO 2017189916 A1 WO2017189916 A1 WO 2017189916A1 US 2017029950 W US2017029950 W US 2017029950W WO 2017189916 A1 WO2017189916 A1 WO 2017189916A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
lid
hose
treatment system
receptacle
Prior art date
Application number
PCT/US2017/029950
Other languages
French (fr)
Inventor
Timothy LEYVA
William E. Olszta
Original Assignee
Soclean, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/141,216 external-priority patent/US9669124B2/en
Application filed by Soclean, Inc. filed Critical Soclean, Inc.
Priority to BR112018071444-5A priority Critical patent/BR112018071444B1/en
Priority to JP2018554099A priority patent/JP6929872B2/en
Priority to CN201780025983.6A priority patent/CN109069675A/en
Priority to EP17790471.1A priority patent/EP3448441A4/en
Priority to CA3005981A priority patent/CA3005981C/en
Priority to RU2018136948A priority patent/RU2018136948A/en
Priority to MX2018013169A priority patent/MX2018013169A/en
Priority to NZ747131A priority patent/NZ747131B2/en
Publication of WO2017189916A1 publication Critical patent/WO2017189916A1/en
Priority to IL262603A priority patent/IL262603B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/202Ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/12Apparatus for isolating biocidal substances from the environment
    • A61L2202/122Chambers for sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/13Biocide decomposition means, e.g. catalysts, sorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps

Definitions

  • the present disclosure generally relates to ozone gas treatment of medical devices and more particularly, is related to devices, systems and methods using agents or gas, such as ozone gas, for cleaning, disinfecting and sterilizing medical devices in a ozone device with multiple cleaning, disinfecting and sterilizing properties, with one or more receptacles, and receiving ports and chambers for ease of cleaning, disinfecting and sterilizing medical devices, medical instruments and medical passageways, such as hoses and/or tubes.
  • agents or gas such as ozone gas
  • Medical devices, medical instruments and medical accessories require varying degrees of cleaning, disinfection and/or sterilization to prevent bacteria and mold build-up and for safe use and reuse of devices on the same patient and between patients.
  • medical devices that have multiple pieces and accessories that require cleaning, disinfection and/or sterilization including, without limitation, hoses, tubes, facemasks, probes, compartments, reservoirs, irrigation systems, pumps and other accessories.
  • Current devices, systems and methods for preparing medical devices for use and/or reuse have proved to be tiring and difficult for users, hospitals and other medical device provider services.
  • Devices often require daily and weekly maintenance steps to prevent bacteria and mold buildup, requiring each part of the device to be cleaned individually, which is difficult and time consuming for users on a daily or weekly basis.
  • Other cleaning methods include soaking the component parts of a medical device in solvents or mixtures for instance of vinegar and water to disinfect the component parts. Because of the inherent nature for many medical devices to collect bacteria and mold, a number of other products are available for consumers to make medical devices safer to use, including but not limited to sprays, UV light devices, cleaning wipes and cleaning brushes.
  • Ozone gas is powerful and effective for removal of odors, impurities and dangerous pathogens, working by exchanging electron charge with particles that ozone comes into contact with to form oxygen, O , from the unstable ozone 03. This process is particularly useful for purifying air and water and for killing bacteria and microorganisms that the ozone comes into contact with.
  • Ozonators can be used to create ozone from oxygen molecules, often by applying ultraviolet light to the oxygen.
  • Ozone gas is made of oxygen molecules that have been ionized by radiation to form groups of three oxygen atoms, O , and may be created, for instance in a device, using an ozonator, air, and the application of ultraviolet light to convert oxygen into ozone gas.
  • ozone gas is a powerful cleaning, disinfecting and sterilizing gas
  • ozone gas must be contained and controlled as it is not safe for users to breath ozone gas until it has safely converted back to oxygen.
  • the amount of time that is needed for ozone to convert safely from ozone to oxygen varies significantly based on the amount of ozone used in a treatment cycle, in some embodiments ranging from 1 minute to 24 hours.
  • FIG. 1 is a perspective view of an ozone treatment device, in accordance with an embodiment of the present disclosure.
  • FIG. 1A is a perspective view of an ozone treatment device with a connector unit, in accordance with an embodiment of the present disclosure.
  • FIG. 2 is a schematic illustration of an ozone process in accordance with an embodiment of the present disclosure.
  • FIG. 2A is a schematic illustration of an ozone process in accordance with an embodiment of the present disclosure.
  • FIG. 3 is a perspective view of an ozone treatment device coupled to a hose and a medical device, in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a perspective view of an ozone treatment device with an ozone distribution line for recirculating the ozone into the device, in accordance with an embodiment of the present disclosure.
  • the present disclosure relates to a device, system and method for cleaning, disinfecting and sterilizing medical devices, the system comprising, a device with an ozone operating system; a distribution line fluidly connected to the ozone operating system for receiving and distributing ozone gas; a first receptacle on the device, wherein the distribution line is fluidly coupled to the first receptacle for releasing ozone gas; a connector unit, wherein the connector unit is configured to be fluidly connected at a proximal end to the first receptacle on the device and fluidly connected at a distal end to a proximal end of a hose in one embodiment, in another embodiment to be fluidly connected to a second receptacle on the device, and in another embodiment to be fluidly connected to the proximal end of a medical device; and an exhaust port configured to be fluidly coupled to the distal end of the hose, such that ozone gas passes through the fluid passageway and is exhausted.
  • FIG. 1 is a perspective view of an ozone treatment device 100 for treating a medical device tube or hose 115, and medical devices and medical device accessories with ozone.
  • the medical devices may include any medical devices with passageways including, without limitation, tubes and hoses.
  • treating with ozone refers to the use of ozone to clean, disinfect and/or sterilize
  • an ozone operating system is embedded at the bottom of the device 100 behind a compartment door for ease of access by a user.
  • the ozone operating system in this embodiment including an air pump, such as an aquarium pump, for pumping air and an ozone generator for receiving the air and creating ozone gas.
  • an ozone distribution line 140 is coupled to the ozone operating system wherein the distribution line 140 releases ozone into a first ozone delivering receptacle 105, as shown in Fig. 1.
  • the first receptacle 105 is configured to fluidly couple to a proximal end of a medical device hose 115, such as a continuous positive airway pressure device hose.
  • a second ozone receiving receptacle 130 on the device 100 is designed to engage the distal end of the medical device hose 115, such that when a top lid 132 is in a closed position, tabs 131 engage the second receptacle and form a secure seal surrounding the hose 115.
  • the second receptacle is fluidly coupled to a gas-tight compartment 135 with an exhaust port 125 embedded therein.
  • the gas-tight compartment 135 can be used to clean, disinfect, and/or sterilize medical devices and accessories made of materials that do not degrade in the presence of ozone, such as CPAP facemasks, as an example, thereby closing a closed loop ozone process.
  • ozone gas traverses from the ozone operating system, to a distribution line, to a first receptacle, through a hose, through a second receptacle, into a gas-tight sanitization chamber, and to an exhaust port.
  • the exhaust port 125 in accordance with this embodiment is coupled to the gas-tight compartment 135 and exhausts ozone from the fluid passageway described in the present embodiment for reuse and/or release.
  • an oxidizing catalyst is coupled to the exhaust port 125 for collecting and breaking down ozone gas into oxygen, for safe release.
  • ozone generated in the device 100 is released from the ozone operating system into the first receptacle 105 and ozone gas traverses from the device 100 into the hose 115 and is released through the exhaust port 125.
  • the device further includes a third receptacle, 130a, wherein both the second receptacle 130 and the third receptacle 130a have a removable seal 107.
  • the removable seal 107 on the second receptacle 130 and third receptacle 130a allows the medical device hose 115 to be fluidly connected into the second receptacle 130 or third receptacle 130a while maintaining a closed- loop system and preventing release of ozone gas from the closed-loop system prior to conversion of the ozone gas back to oxygen.
  • the ozone gas is released into a gas-tight compartment 135 to treat medical devices and accessories placed in the gas-tight compartment 135 in the device 100.
  • medical devices and accessories can be placed in the gas-tight compartment and cleaned, disinfected and/or sterilized, while hoses and tubes are cleaned, disinfected and/or sterilized with the ozone gas from the ozone operating system, through the first receptacle and into the hose and exhaust port, in a closed-loop system as described.
  • the transfer of ozone gas from the ozone operating system to the second and/or third receptacle 130 and 130a can be accomplished with one or more hoses, distribution lines or connectors.
  • the ozone treatment device 100 also includes a user interface coupled to the ozone operating system 160, a timer coupled to the ozone operating system, a sensor 145 for sensing remaining ozone gas in the hose 115, gas-tight compartments 135 and/or anywhere in the closed loop system, and a safety switch to prevent start of an ozone process or use of a medical devices during an ozone process and an oxidizing catalyst coupled to the exhaust port 125 to collect and break down ozone.
  • FIG. 1A is a perspective view of an ozone treatment device 100 for cleaning, disinfecting and sterilizing a medical device tube or hose 115, and medical devices and medical device accessories.
  • an ozone operating system is embedded in the device 100, the ozone operating system in this embodiment including an air pump, such as an aquarium pump, for pumping air and an ozone generator for receiving the air and creating ozone gas.
  • an ozone distribution line 140 is coupled to the ozone operating system wherein the distribution line 140 releases ozone into a first receptacle 105, as shown in Fig. 1A.
  • the first receptacle 105 is configured to be fluidly coupled to a proximal end of a connector unit 110.
  • the connector unit is sized to be fluidly coupled at the distal end of the connector unit to the proximal end to the hose 115.
  • the second receptacle 130 on the device 100 is designed to engage the distal end of the hose 115, such that when a top lid 132 is in a closed position, tabs 131, 131a engage the second receptacle and form a secure seal surrounding the hose 115.
  • the second receptacle 130 is fluidly coupled to an exhaust port 125, in this example, through a gas-tight compartment 135 with the exhaust port 125 embedded in the device 100.
  • the gas-tight compartment 135 can be used to clean, disinfect, and/or sterilize medical devices and accessories made of materials that do not degrade in the presence of ozone, such as CPAP facemasks, as an example, thereby closing a closed loop ozone process.
  • ozone gas traverses from the ozone operating system, to a distribution line 140, to a first receptacle 105, through a hose 115, through a second receptacle in the hose 115 , into a gas-tight compartment 135, and to an exhaust port 125.
  • the exhaust port 125 in accordance with this embodiment is coupled to the to the gas-tight compartment 135 exhausts ozone from the fluid passageway described in the present embodiment for reuse and/or release.
  • an oxidizing catalyst is coupled to the exhaust port 125 for collecting and breaking down ozone gas into oxygen, for safe release.
  • ozone generated in the device 100 is released from the ozone operating system into the first receptacle 105 and ozone gas traverses from the device 100 into the hose 115 and is released through the exhaust port 125.
  • the connector unit 110 allows the device 100 to be coupled to any device hose, by providing a first receptacle 105 on the device that fluidly couples to the connector unit 110.
  • the connector unit 110 may be sized to couple at the proximal end to the first receptacle 105 and on the distal end to a CPAP hose 115.
  • the connector unit 110 may be sized to couple at the proximal end to the hose and at the distal end to an endoscope.
  • adapters and means to change the distal end of the connector unit 110 to fit a variety of sized tubes for any medical device are disclosed herein.
  • FIGS. 2 and 2A are schematic sketches showing closed-loop ozone processes in accordance with an embodiment of the present disclosure.
  • an ozone treatment system 200 with a reverse loop ozone process is described, wherein the device has a first receptacle 205 and a second receptacle 230 that fluidly couple to a medical device hose 215 for providing a closed loop ozone process in accordance with an embodiment of the present disclosure.
  • the ozone treatment system 200 has an ozone operating system 202 including an ozone pump 201 coupled to an ozone generator 203, for producing ozone gas, and a distribution line 240 that carries ozone gas to a first receptacle 205. Ozone gas migrates in this embodiment through the coupled hose 215 and exits the hose into the exhaust port 225, before the ozone gas is release or recycled from the closed-loop system described.
  • FIG 2A shows an ozone operating system 202 fluidly coupled to a first receptacle 205 with a distribution line 240, with ozone gas migrating into the hose 215 and through the second receptacle 230 on the device 100 into a gas-tight chamber for cleaning, disinfecting and/or sterilizing medical instruments and accessories in the gas tight chamber, before the ozone gas is released or recycles from the closed loop system through an exhaust port 225.
  • an oxide filter 270 is further shown for collecting and breaking down ozone gas into oxygen.
  • a method of treating a medical device with ozone gas is disclosed, the method describing an ozone process of producing ozone gas in a device with an ozone operating system, migrating ozone gas through a distribution line through a first receptacle in the device and into a hose of a medical device, and exhausting ozone gas from the hose of the medical device.
  • a second receptacle on the device may be used on the device with an exhaust port and/or a gas- tight compartment coupled to an exhaust port and housed in the device, such that the ozone gas is re-circulated into the device before being removed, released or re-circulated from the system, in a closed-loop ozone process.
  • FIG. 3 shows a perspective view of an ozone device with an ozone operating system, in accordance with an embodiment of the present disclosure.
  • a distribution line 340 traverses a first receptacle 305 and attaches at a distal end to a connector unit 310.
  • the distribution line traverses into the connector unit 310, which is coupled at a proximal end to a medical device 350 and at the distal end to a medical device hose 315, and ozone is released into the hose and/or into a cavity in the medical device 350.
  • a second receptacle 330 and a third receptacle 330a, with a seal 307 are provided such that the hose 315 can be connected as shown through the second receptacle 330 to release ozone gas into a gas-tight compartment 335 and be exhausted through exhaust port 325.
  • a sensor 345 is provided in the gas-tight compartment 335 to sense the amount of ozone gas in the closed loop system described herein.
  • the sensor 345 is coupled to the user interface 360 for providing ozone process information to a user, including but not limited to ozone levels remaining in the gas tight compartment 335, ozone cycle time, and ozone safety signals.
  • the device 300 and the methods and systems described may further have a user interface 360 coupled to the ozone operating system, a timer coupled to the ozone operating system, a safety switch 365 to prevent start of an ozone process or use of a medical device during an ozone process, and an oxidizing catalyst such as an magnesium oxide filter coupled to the exhaust port 325 to collect and break down ozone.
  • a user interface 360 coupled to the ozone operating system
  • a timer coupled to the ozone operating system
  • a safety switch 365 to prevent start of an ozone process or use of a medical device during an ozone process
  • an oxidizing catalyst such as an magnesium oxide filter coupled to the exhaust port 325 to collect and break down ozone.
  • a system comprising, a device 300 with an ozone operating system; a distribution line 340 fluidly connected to the ozone operating system for receiving and distributing ozone gas; a first receptacle 305 on the device, wherein the distribution line 340 traverses the first receptacle and connects to a connector unit 310; the connector unit 310, wherein the connector unit 310 is configured to be fluidly connected to a medical device 350 and to a medical device hose 315; a second receptacle 330 that engages the hose 315 when the lid 332 is in a closed position with a free end immersed in a gas-tight compartment 335 in the device 300, is described.
  • FIG. 4 is a perspective view of a device 400 with an ozone operating system, showing devices, methods and systems for cleaning, disinfecting and sterilizing medical devices and medical device accessories.
  • an ozone operating system is embedded in the device 400, the ozone operating system in this embodiment including an air pump, such as an aquarium pump, for pumping air and an ozone generator for receiving the air and creating ozone gas.
  • an ozone distribution line 440 is coupled to the ozone operating system wherein the distribution line 440 traverses a first receptacle 405, as shown in Fig. 4.
  • the first receptacle 405 is configured to allow the distribution line 440 to traverse through the first receptacle 405 and engage the second receptacle, which is fluidly coupled to a gas-tight compartment 435 with an exhaust port 425 embedded therein.
  • the gas-tight compartment 435 can be used to clean, disinfect, and/or sterilize medical devices and accessories made of materials that do not degrade in the presence of ozone, such as CPAP facemasks, as an example, thereby closing a closed loop ozone process, whereby ozone gas traverses from the ozone operating system, to a distribution line, through a first receptacle and second receptacle, into a gas-tight chamber, and to an exhaust port.
  • the exhaust port 425 in accordance with this embodiment is coupled to the to the gas-tight compartment 435 and exhausts ozone from the fluid passageway described in the present embodiment for reuse and/or release.
  • an oxidizing catalyst is coupled to the exhaust port 425 for collecting and breaking down ozone gas into oxygen, for safe release.
  • a device with an ozone operating system comprising; a first receptacle, wherein the first receptacle is adapted to fluidly transfer ozone gas from the ozone operating system to a hose; and a second receptacle, wherein the second receptacle is adapted to fluidly transfer ozone gas from the hose to an exhaust port, is described.
  • the device further comprises a gas-tight compartment, wherein the exhaust port is coupled to the gas-tight compartment.
  • the device in the present embodiment further comprises a connector unit, wherein the first end of the connector unit is configured to fluidly couple to the first receptacle and a second end is configured to fluidly couple to a first end of the hose.
  • second receptacle on the device is configured to engage with a second end of the hose, allowing ozone gas to be released from the hose, through the second receptacle, into the gas-tight compartment.
  • the device in the present embodiment further comprises a user interface coupled to the ozone operating system, a timer coupled to the ozone operating system, a sensor coupled to the ozone operating system for sensing remaining ozone in the medical device, an air pump coupled to the ozone operating system and an oxidizing catalyst coupled to the exhaust port to collect and break down ozone.
  • the closed-loop systems described include, in some embodiments, steps for delaying the start of an ozone process of a for a fixed period of time from the last ozone process for the safety of the consumers.
  • the step of delaying the start time may range from may range from about 30 seconds to about 24 hours, depending on the device being treated and the level of cleaning, disinfection and/or sterilization required.
  • the step of sensing remaining ozone in a the medical devices being treated further increases the safety of the present treatment systems and methods for users, while also indicating to users that a medical device has been fully treated in accordance with user guidelines and required ozone exposure numbers.
  • the user interface may display a variety of ozone process information to a user, including but not limited to ozone cycle time, device being treated, ozone levels as detected by sensors, level of treatment required based on an assessment of bacterial, mold, dirt or other criteria on a device being treated, light or sound indicators, and consumable product indicators, for the convenience of users.
  • the present disclosure discloses, devices, systems and methods of using ozone gas in closed-loop systems to clean, disinfect and/or sterilize medical devices, medical device hoses and tubes and accessories.
  • medical devices that may be cleaned, disinfected and/or sterilized in accordance with the embodiments described in the present disclosure include but are not limited to: surgical instruments, irrigation systems for sterile instruments in sterile tissues, endoscopes and endoscopic biopsy accessories, duodenoscopes, endotracheal tubes, bronchosopes, laryngosopes blades and other respiratory equipment, esophageal manometry probes, diaphragm fitting rings and gastrointestinal endoscopes, infusion pumps, ventilators, and continuous positive airway pressure devices (CPAP), prone to bacterial build-up because of humidified air and contact with a patients mouth.
  • Many of the devices listed above include passageways that are difficult to clean, disinfect and sterilize, such as any of the endoscopes, probes, ventilators and CPAP
  • the present disclosure thus discloses unique cleaning, disinfecting and sterilizing devices with one or more receptacles and connector units for cleaning, disinfecting and/or sterilizing multiple medical devices, medical tubes and accessories.
  • the devices, systems and methods described may include multiple connector units of different sizes and shapes, multiple ozone distribution lines from a device, wherein the devices may be of any size and shape, a timer, a sensor for sensing ozone in the closed-loop systems, a display for displaying cycle parameters and information, medical device cycle levels, cycle times, a controller for controlling release of ozone into the closed-loop systems, a locking mechanism for locking the device, an exhaust port, and a oxygen catalyst coupled to the exhaust port and uniquely designed connector units that connect to multiple medical devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Treating Waste Gases (AREA)

Abstract

The present disclosure is generally related to devices, methods and systems for cleaning, disinfecting and/or sterilizing a medical device, medical hoses and tubes and accessories thereof with ozone gas, in particular the disclosure relates to devices, methods and systems with multiple receptacles for providing closed-loop fluid pathways to distribute ozone gas to inner passageways and the outer compartments of medical devices. The devices in accordance with an embodiment of the disclosure have two or more receptacles for distributing ozone gas, a gas-tight compartment, an ozone operating system, and one or more connector units configured to fluidly migrate ozone in closed-loop treatment systems.

Description

DEVICES, SYSTEMS AND METHODS FOR TREATING MEDICAL DEVICES
HAVING PASSAGEWAYS WITH OZONE GAS
TECHNICAL FIELD
The present disclosure generally relates to ozone gas treatment of medical devices and more particularly, is related to devices, systems and methods using agents or gas, such as ozone gas, for cleaning, disinfecting and sterilizing medical devices in a ozone device with multiple cleaning, disinfecting and sterilizing properties, with one or more receptacles, and receiving ports and chambers for ease of cleaning, disinfecting and sterilizing medical devices, medical instruments and medical passageways, such as hoses and/or tubes.
BACKGROUND OF THE DISCLOSURE
Medical devices, medical instruments and medical accessories (collectively "medical devices") require varying degrees of cleaning, disinfection and/or sterilization to prevent bacteria and mold build-up and for safe use and reuse of devices on the same patient and between patients. There are many types of medical devices that have multiple pieces and accessories that require cleaning, disinfection and/or sterilization including, without limitation, hoses, tubes, facemasks, probes, compartments, reservoirs, irrigation systems, pumps and other accessories. Current devices, systems and methods for preparing medical devices for use and/or reuse have proved to be tiring and difficult for users, hospitals and other medical device provider services. Devices often require daily and weekly maintenance steps to prevent bacteria and mold buildup, requiring each part of the device to be cleaned individually, which is difficult and time consuming for users on a daily or weekly basis. Other cleaning methods include soaking the component parts of a medical device in solvents or mixtures for instance of vinegar and water to disinfect the component parts. Because of the inherent nature for many medical devices to collect bacteria and mold, a number of other products are available for consumers to make medical devices safer to use, including but not limited to sprays, UV light devices, cleaning wipes and cleaning brushes.
Ozone gas is powerful and effective for removal of odors, impurities and dangerous pathogens, working by exchanging electron charge with particles that ozone comes into contact with to form oxygen, O , from the unstable ozone 03. This process is particularly useful for purifying air and water and for killing bacteria and microorganisms that the ozone comes into contact with. Ozonators can be used to create ozone from oxygen molecules, often by applying ultraviolet light to the oxygen. Ozone gas is made of oxygen molecules that have been ionized by radiation to form groups of three oxygen atoms, O , and may be created, for instance in a device, using an ozonator, air, and the application of ultraviolet light to convert oxygen into ozone gas. However, while ozone gas is a powerful cleaning, disinfecting and sterilizing gas, ozone gas must be contained and controlled as it is not safe for users to breath ozone gas until it has safely converted back to oxygen. The amount of time that is needed for ozone to convert safely from ozone to oxygen varies significantly based on the amount of ozone used in a treatment cycle, in some embodiments ranging from 1 minute to 24 hours.
It is a long felt need in the art to provide a device, systems and methods that can treat medical devices and medical device passageways with one device using ozone gas, requiring minimum disassembly and yet part specific treatment, all in one or more connected and closed- loop systems for safe use treatment with ozone gas and ease of use by a user. It is further a need to provide connector units to connect a variety of medical devices and medical device passageways for treatment with ozone gas. Other systems, methods, apparatus features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, apparatus features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
FIG. 1 is a perspective view of an ozone treatment device, in accordance with an embodiment of the present disclosure.
FIG. 1A is a perspective view of an ozone treatment device with a connector unit, in accordance with an embodiment of the present disclosure.
FIG. 2 is a schematic illustration of an ozone process in accordance with an embodiment of the present disclosure.
FIG. 2A is a schematic illustration of an ozone process in accordance with an embodiment of the present disclosure.
FIG. 3 is a perspective view of an ozone treatment device coupled to a hose and a medical device, in accordance with an embodiment of the present disclosure.
FIG. 4 is a perspective view of an ozone treatment device with an ozone distribution line for recirculating the ozone into the device, in accordance with an embodiment of the present disclosure.
SUMMARY OF THE DISCLOSURE
The present disclosure relates to a device, system and method for cleaning, disinfecting and sterilizing medical devices, the system comprising, a device with an ozone operating system; a distribution line fluidly connected to the ozone operating system for receiving and distributing ozone gas; a first receptacle on the device, wherein the distribution line is fluidly coupled to the first receptacle for releasing ozone gas; a connector unit, wherein the connector unit is configured to be fluidly connected at a proximal end to the first receptacle on the device and fluidly connected at a distal end to a proximal end of a hose in one embodiment, in another embodiment to be fluidly connected to a second receptacle on the device, and in another embodiment to be fluidly connected to the proximal end of a medical device; and an exhaust port configured to be fluidly coupled to the distal end of the hose, such that ozone gas passes through the fluid passageway and is exhausted.
DETAILED DESCRIPTION
FIG. 1 is a perspective view of an ozone treatment device 100 for treating a medical device tube or hose 115, and medical devices and medical device accessories with ozone. The medical devices may include any medical devices with passageways including, without limitation, tubes and hoses. As used herein, treating with ozone refers to the use of ozone to clean, disinfect and/or sterilize In accordance with this embodiment, an ozone operating system is embedded at the bottom of the device 100 behind a compartment door for ease of access by a user. The ozone operating system in this embodiment including an air pump, such as an aquarium pump, for pumping air and an ozone generator for receiving the air and creating ozone gas. In this embodiment an ozone distribution line 140 is coupled to the ozone operating system wherein the distribution line 140 releases ozone into a first ozone delivering receptacle 105, as shown in Fig. 1. In accordance with this embodiment, the first receptacle 105 is configured to fluidly couple to a proximal end of a medical device hose 115, such as a continuous positive airway pressure device hose. A second ozone receiving receptacle 130 on the device 100 is designed to engage the distal end of the medical device hose 115, such that when a top lid 132 is in a closed position, tabs 131 engage the second receptacle and form a secure seal surrounding the hose 115. In accordance with this embodiment, the second receptacle is fluidly coupled to a gas-tight compartment 135 with an exhaust port 125 embedded therein. The gas-tight compartment 135 can be used to clean, disinfect, and/or sterilize medical devices and accessories made of materials that do not degrade in the presence of ozone, such as CPAP facemasks, as an example, thereby closing a closed loop ozone process. As such the ozone gas traverses from the ozone operating system, to a distribution line, to a first receptacle, through a hose, through a second receptacle, into a gas-tight sanitization chamber, and to an exhaust port. The exhaust port 125 in accordance with this embodiment is coupled to the gas-tight compartment 135 and exhausts ozone from the fluid passageway described in the present embodiment for reuse and/or release. In accordance with this embodiment, an oxidizing catalyst is coupled to the exhaust port 125 for collecting and breaking down ozone gas into oxygen, for safe release. In accordance with this embodiment, ozone generated in the device 100 is released from the ozone operating system into the first receptacle 105 and ozone gas traverses from the device 100 into the hose 115 and is released through the exhaust port 125. In accordance with the embodiment shown in FIG 1, the device further includes a third receptacle, 130a, wherein both the second receptacle 130 and the third receptacle 130a have a removable seal 107. In accordance with this embodiment, the removable seal 107 on the second receptacle 130 and third receptacle 130a allows the medical device hose 115 to be fluidly connected into the second receptacle 130 or third receptacle 130a while maintaining a closed- loop system and preventing release of ozone gas from the closed-loop system prior to conversion of the ozone gas back to oxygen. In accordance with this embodiment and the closed-loop system described, the ozone gas is released into a gas-tight compartment 135 to treat medical devices and accessories placed in the gas-tight compartment 135 in the device 100. In accordance with this embodiment, medical devices and accessories can be placed in the gas-tight compartment and cleaned, disinfected and/or sterilized, while hoses and tubes are cleaned, disinfected and/or sterilized with the ozone gas from the ozone operating system, through the first receptacle and into the hose and exhaust port, in a closed-loop system as described. In accordance with this embodiment, the transfer of ozone gas from the ozone operating system to the second and/or third receptacle 130 and 130a, can be accomplished with one or more hoses, distribution lines or connectors.
In accordance with the embodiment shown in FIG. 1, the ozone treatment device 100 also includes a user interface coupled to the ozone operating system 160, a timer coupled to the ozone operating system, a sensor 145 for sensing remaining ozone gas in the hose 115, gas-tight compartments 135 and/or anywhere in the closed loop system, and a safety switch to prevent start of an ozone process or use of a medical devices during an ozone process and an oxidizing catalyst coupled to the exhaust port 125 to collect and break down ozone. FIG. 1A is a perspective view of an ozone treatment device 100 for cleaning, disinfecting and sterilizing a medical device tube or hose 115, and medical devices and medical device accessories. In accordance with this embodiment, an ozone operating system is embedded in the device 100, the ozone operating system in this embodiment including an air pump, such as an aquarium pump, for pumping air and an ozone generator for receiving the air and creating ozone gas. In this embodiment an ozone distribution line 140 is coupled to the ozone operating system wherein the distribution line 140 releases ozone into a first receptacle 105, as shown in Fig. 1A. In accordance with this embodiment, the first receptacle 105 is configured to be fluidly coupled to a proximal end of a connector unit 110. The connector unit is sized to be fluidly coupled at the distal end of the connector unit to the proximal end to the hose 115. In accordance with this embodiment, the second receptacle 130 on the device 100 is designed to engage the distal end of the hose 115, such that when a top lid 132 is in a closed position, tabs 131, 131a engage the second receptacle and form a secure seal surrounding the hose 115. In accordance with this embodiment the second receptacle 130 is fluidly coupled to an exhaust port 125, in this example, through a gas-tight compartment 135 with the exhaust port 125 embedded in the device 100. The gas-tight compartment 135 can be used to clean, disinfect, and/or sterilize medical devices and accessories made of materials that do not degrade in the presence of ozone, such as CPAP facemasks, as an example, thereby closing a closed loop ozone process. As such, the ozone gas traverses from the ozone operating system, to a distribution line 140, to a first receptacle 105, through a hose 115, through a second receptacle in the hose 115 , into a gas-tight compartment 135, and to an exhaust port 125. The exhaust port 125 in accordance with this embodiment is coupled to the to the gas-tight compartment 135 exhausts ozone from the fluid passageway described in the present embodiment for reuse and/or release. In accordance with this embodiment, an oxidizing catalyst is coupled to the exhaust port 125 for collecting and breaking down ozone gas into oxygen, for safe release. In accordance with this embodiment, ozone generated in the device 100 is released from the ozone operating system into the first receptacle 105 and ozone gas traverses from the device 100 into the hose 115 and is released through the exhaust port 125.
In accordance with the embodiment shown in FIG. 1A, the connector unit 110 allows the device 100 to be coupled to any device hose, by providing a first receptacle 105 on the device that fluidly couples to the connector unit 110. For example, in one embodiment the connector unit 110 may be sized to couple at the proximal end to the first receptacle 105 and on the distal end to a CPAP hose 115. In another embodiment, the connector unit 110 may be sized to couple at the proximal end to the hose and at the distal end to an endoscope. Similarly adapters and means to change the distal end of the connector unit 110 to fit a variety of sized tubes for any medical device are disclosed herein.
FIGS. 2 and 2A are schematic sketches showing closed-loop ozone processes in accordance with an embodiment of the present disclosure. In accordance with this embodiment, an ozone treatment system 200 with a reverse loop ozone process is described, wherein the device has a first receptacle 205 and a second receptacle 230 that fluidly couple to a medical device hose 215 for providing a closed loop ozone process in accordance with an embodiment of the present disclosure. In accordance with this embodiment, the ozone treatment system 200 has an ozone operating system 202 including an ozone pump 201 coupled to an ozone generator 203, for producing ozone gas, and a distribution line 240 that carries ozone gas to a first receptacle 205. Ozone gas migrates in this embodiment through the coupled hose 215 and exits the hose into the exhaust port 225, before the ozone gas is release or recycled from the closed-loop system described.
Similar to FIG 2, FIG 2A shows an ozone operating system 202 fluidly coupled to a first receptacle 205 with a distribution line 240, with ozone gas migrating into the hose 215 and through the second receptacle 230 on the device 100 into a gas-tight chamber for cleaning, disinfecting and/or sterilizing medical instruments and accessories in the gas tight chamber, before the ozone gas is released or recycles from the closed loop system through an exhaust port 225. In this embodiment an oxide filter 270 is further shown for collecting and breaking down ozone gas into oxygen.
In accordance with the methods disclosed in FIG. 2 and 2A, a method of treating a medical device with ozone gas is disclosed, the method describing an ozone process of producing ozone gas in a device with an ozone operating system, migrating ozone gas through a distribution line through a first receptacle in the device and into a hose of a medical device, and exhausting ozone gas from the hose of the medical device. In accordance with this method, a second receptacle on the device may be used on the device with an exhaust port and/or a gas- tight compartment coupled to an exhaust port and housed in the device, such that the ozone gas is re-circulated into the device before being removed, released or re-circulated from the system, in a closed-loop ozone process.
FIG. 3 shows a perspective view of an ozone device with an ozone operating system, in accordance with an embodiment of the present disclosure. In this embodiment, a distribution line 340 traverses a first receptacle 305 and attaches at a distal end to a connector unit 310. In this embodiment the distribution line traverses into the connector unit 310, which is coupled at a proximal end to a medical device 350 and at the distal end to a medical device hose 315, and ozone is released into the hose and/or into a cavity in the medical device 350. In this embodiment a second receptacle 330 and a third receptacle 330a, with a seal 307 are provided such that the hose 315 can be connected as shown through the second receptacle 330 to release ozone gas into a gas-tight compartment 335 and be exhausted through exhaust port 325. In accordance with this embodiment, a sensor 345 is provided in the gas-tight compartment 335 to sense the amount of ozone gas in the closed loop system described herein. In this embodiment the sensor 345 is coupled to the user interface 360 for providing ozone process information to a user, including but not limited to ozone levels remaining in the gas tight compartment 335, ozone cycle time, and ozone safety signals. In accordance with this embodiment, the device 300 and the methods and systems described may further have a user interface 360 coupled to the ozone operating system, a timer coupled to the ozone operating system, a safety switch 365 to prevent start of an ozone process or use of a medical device during an ozone process, and an oxidizing catalyst such as an magnesium oxide filter coupled to the exhaust port 325 to collect and break down ozone.
As such, in accordance with one embodiment of the present disclosure, a system comprising, a device 300 with an ozone operating system; a distribution line 340 fluidly connected to the ozone operating system for receiving and distributing ozone gas; a first receptacle 305 on the device, wherein the distribution line 340 traverses the first receptacle and connects to a connector unit 310; the connector unit 310, wherein the connector unit 310 is configured to be fluidly connected to a medical device 350 and to a medical device hose 315; a second receptacle 330 that engages the hose 315 when the lid 332 is in a closed position with a free end immersed in a gas-tight compartment 335 in the device 300, is described.
FIG. 4 is a perspective view of a device 400 with an ozone operating system, showing devices, methods and systems for cleaning, disinfecting and sterilizing medical devices and medical device accessories. In accordance with this embodiment, an ozone operating system is embedded in the device 400, the ozone operating system in this embodiment including an air pump, such as an aquarium pump, for pumping air and an ozone generator for receiving the air and creating ozone gas. In this embodiment an ozone distribution line 440 is coupled to the ozone operating system wherein the distribution line 440 traverses a first receptacle 405, as shown in Fig. 4. In accordance with this embodiment, the first receptacle 405 is configured to allow the distribution line 440 to traverse through the first receptacle 405 and engage the second receptacle, which is fluidly coupled to a gas-tight compartment 435 with an exhaust port 425 embedded therein. The gas-tight compartment 435 can be used to clean, disinfect, and/or sterilize medical devices and accessories made of materials that do not degrade in the presence of ozone, such as CPAP facemasks, as an example, thereby closing a closed loop ozone process, whereby ozone gas traverses from the ozone operating system, to a distribution line, through a first receptacle and second receptacle, into a gas-tight chamber, and to an exhaust port. The exhaust port 425 in accordance with this embodiment is coupled to the to the gas-tight compartment 435 and exhausts ozone from the fluid passageway described in the present embodiment for reuse and/or release. In accordance with this embodiment, an oxidizing catalyst is coupled to the exhaust port 425 for collecting and breaking down ozone gas into oxygen, for safe release.
In accordance with yet another embodiment of the present disclosure, a device with an ozone operating system comprising; a first receptacle, wherein the first receptacle is adapted to fluidly transfer ozone gas from the ozone operating system to a hose; and a second receptacle, wherein the second receptacle is adapted to fluidly transfer ozone gas from the hose to an exhaust port, is described. In accordance with this embodiment the device further comprises a gas-tight compartment, wherein the exhaust port is coupled to the gas-tight compartment. The device in the present embodiment further comprises a connector unit, wherein the first end of the connector unit is configured to fluidly couple to the first receptacle and a second end is configured to fluidly couple to a first end of the hose. In accordance with this embodiment second receptacle on the device is configured to engage with a second end of the hose, allowing ozone gas to be released from the hose, through the second receptacle, into the gas-tight compartment. The device in the present embodiment further comprises a user interface coupled to the ozone operating system, a timer coupled to the ozone operating system, a sensor coupled to the ozone operating system for sensing remaining ozone in the medical device, an air pump coupled to the ozone operating system and an oxidizing catalyst coupled to the exhaust port to collect and break down ozone.
In addition to the devices, systems and methods shown in the proceeding examples, the closed-loop systems described include, in some embodiments, steps for delaying the start of an ozone process of a for a fixed period of time from the last ozone process for the safety of the consumers. The step of delaying the start time may range from may range from about 30 seconds to about 24 hours, depending on the device being treated and the level of cleaning, disinfection and/or sterilization required.. In addition the step of sensing remaining ozone in a the medical devices being treated further increases the safety of the present treatment systems and methods for users, while also indicating to users that a medical device has been fully treated in accordance with user guidelines and required ozone exposure numbers. As such, the user interface may display a variety of ozone process information to a user, including but not limited to ozone cycle time, device being treated, ozone levels as detected by sensors, level of treatment required based on an assessment of bacterial, mold, dirt or other criteria on a device being treated, light or sound indicators, and consumable product indicators, for the convenience of users.
The present disclosure discloses, devices, systems and methods of using ozone gas in closed-loop systems to clean, disinfect and/or sterilize medical devices, medical device hoses and tubes and accessories. Examples of medical devices that may be cleaned, disinfected and/or sterilized in accordance with the embodiments described in the present disclosure include but are not limited to: surgical instruments, irrigation systems for sterile instruments in sterile tissues, endoscopes and endoscopic biopsy accessories, duodenoscopes, endotracheal tubes, bronchosopes, laryngosopes blades and other respiratory equipment, esophageal manometry probes, diaphragm fitting rings and gastrointestinal endoscopes, infusion pumps, ventilators, and continuous positive airway pressure devices (CPAP), prone to bacterial build-up because of humidified air and contact with a patients mouth. Many of the devices listed above include passageways that are difficult to clean, disinfect and sterilize, such as any of the endoscopes, probes, ventilators and CPAP devices and related hoses.
The present disclosure thus discloses unique cleaning, disinfecting and sterilizing devices with one or more receptacles and connector units for cleaning, disinfecting and/or sterilizing multiple medical devices, medical tubes and accessories. The devices, systems and methods described may include multiple connector units of different sizes and shapes, multiple ozone distribution lines from a device, wherein the devices may be of any size and shape, a timer, a sensor for sensing ozone in the closed-loop systems, a display for displaying cycle parameters and information, medical device cycle levels, cycle times, a controller for controlling release of ozone into the closed-loop systems, a locking mechanism for locking the device, an exhaust port, and a oxygen catalyst coupled to the exhaust port and uniquely designed connector units that connect to multiple medical devices.
It should be emphasized that the above-described embodiments of the present disclosure, particularly, any "preferred" embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiments of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claims.

Claims

1. An ozone treatment system comprising:
an ozone operating system;
a first receptacle fluidly coupled to the ozone operating system, the first receptacle configured to receive ozone gas from the ozone operating system and to fluidly couple to a proximal end of an ozone conveyance line, said ozone conveyance line further comprising a distal end; and
a gas tight compartment comprising:
a lid and base comprising at least one wall, said lid and said at least one wall defining a cavity; and
a second receptacle configured to receive and engage with an intermediate portion of said ozone conveyance line so as to form a gas tight seal with the distal end of said ozone conveyance line disposed within said cavity, wherein said intermediate portion is between said proximal end and said distal end of said hose;
wherein said ozone operating system is configured to generate ozone gas for conveyance to said cavity of said gas tight compartment by said ozone conveyance line, such that said ozone gas flows directly from said first receptacle into said ozone conveyance line.
2. The ozone treatment system of claim 1, wherein said second receptacle is at least partially defined by said at least one wall one of said plurality of walls.
3. The ozone treatment system of claim 1, wherein said second receptacle is at least partially defined by said at least one wall and said lid.
4. The ozone treatment system of claim 1, wherein:
said lid is movable between an open and a closed position;
said at least one wall comprises a lid sealing surface and a conveyance line sealing surface; and
said second receptacle is defined at least in part by said conveyance line sealing surface.
5. The ozone treatment system of claim 4, wherein when said lid is in said closed position: a first portion of said lid engages said lid sealing surface; and
a second portion of said lid defines at least a portion of said second receptacle.
6. The ozone treatment system of claim 5, wherein said second portion of said lid and said lid sealing surface form said gas tight seal with said intermediate portion of said ozone conveyance line.
7. The ozone treatment system of claim 4, wherein:
said lid further comprises a sealing element; and
when said lid is in said closed position:
a first portion of said lid engages said lid sealing surface; and said sealing element engages at least a portion of said intermediate portion of said ozone conveyance line, such that said second receptacle is at least partially defined by said conveyance line sealing surface and said sealing element.
8. The ozone treatment system of claim 7, wherein said sealing element extends from a downward facing side of said lid when said lid is in said closed position.
9. The ozone treatment system of claim 1, wherein:
said second receptacle defines a passageway into the cavity of said gas tight compartment;
the distal end of said ozone conveyance line is larger than said passageway.
10. The ozone treatment system of claim 1, wherein said ozone conveyance line is a hose of a medical instrument.
11. The ozone treatment system of claim 10, wherein said hose is a hose of a continuous positive airway pressure device.
12. The ozone treatment system of claim 10, further comprising a mask coupled to the distal end of said hose.
13. The ozone treatment system of claim 1, further comprising an exhaust port fluidly coupled to said gas tight compartment, wherein the exhaust port is to exhaust ozone gas from said cavity.
14. The ozone treatment system of claim 11, further comprising an oxidizing catalyst downstream of said exhaust port, wherein said oxidizing catalyst is configured to break down ozone gas exhausted by said exhaust port.
15. The ozone treatment system of claim 14, wherein said oxidizing catalyst comprises magnesium oxide.
16. The ozone treatment system of claim 1, further comprising an ozone sensor within said cavity.
17. The ozone treatment system of claim 1, wherein gas tight compartment is integral with said ozone operating system.
18. The ozone treatment system of claim 1, further comprising a base, wherein said ozone operating system and said gas tight compartment coupled to the base such that a position of the ozone operating system is fixed relative to a position of the gas tight compartment.
19. The ozone treatment system of claim 1, further comprising an air pump fluidly coupled to the ozone operating system.
20. An ozone treatment system comprising:
an ozone operating system configured to fluidly couple to a proximal end of a hose of a medical device, said hose further comprising a distal end; and
a gas tight compartment defined at least in part by a plurality of walls and a lid, wherein: said lid is movable between an open and a closed position;
said plurality of walls comprises a first wall configured to receive an intermediate portion of said hose to form a gas tight seal, said intermediate portion being between said proximate and distal ends; and
said ozone operating system is configured to generate ozone gas for conveyance to said gas tight compartment by said hose, such that said ozone gas flows directly from said first receptacle into said ozone conveyance line.
21. The ozone treatment system of claim 20, wherein:
said first wall comprises an upward facing surface and a hose sealing portion; and when said lid is in said closed position and said intermediate portion is disposed within said hose sealing portion:
a first portion of said lid engages said upward facing surface;
a second portion of said lid engages at least a part of said intermediate portion of said hose; and
said hose sealing portion engages at least a part of said intermediate portion of said hose so as to form said gas tight seal.
22. The ozone treatment system of claim 21, wherein at least part of said intermediate portion of said hose is below said lid sealing portion when said intermediate portion of said hose is disposed within said hose sealing portion.
PCT/US2017/029950 2016-04-28 2017-04-27 Devices, systems and methods for treating medical devices having passageways with ozone gas WO2017189916A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112018071444-5A BR112018071444B1 (en) 2016-04-28 2017-04-27 OZONE TREATMENT SYSTEM
JP2018554099A JP6929872B2 (en) 2016-04-28 2017-04-27 Devices, systems and methods for treating medical devices with passages with ozone gas
CN201780025983.6A CN109069675A (en) 2016-04-28 2017-04-27 The devices, systems, and methods of the medical device with channel are handled using ozone gas
EP17790471.1A EP3448441A4 (en) 2016-04-28 2017-04-27 Devices, systems and methods for treating medical devices having passageways with ozone gas
CA3005981A CA3005981C (en) 2016-04-28 2017-04-27 Devices, systems and methods for treating medical devices having passageways with ozone gas
RU2018136948A RU2018136948A (en) 2016-04-28 2017-04-27 DEVICES, SYSTEMS AND METHODS OF OZONE TREATMENT OF MEDICAL PRODUCTS EQUIPPED WITH CONNECTING ELEMENTS FOR TRANSFER OF A FLUID MEDIA
MX2018013169A MX2018013169A (en) 2016-04-28 2017-04-27 Devices, systems and methods for treating medical devices having passageways with ozone gas.
NZ747131A NZ747131B2 (en) 2017-04-27 Devices, systems and methods for treating medical devices having passageways with ozone gas
IL262603A IL262603B (en) 2016-04-28 2018-10-25 Devices, systems and methods for treating medical devices having passageways with ozone gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/141,216 US9669124B2 (en) 2011-07-15 2016-04-28 Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
US15/141,216 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017189916A1 true WO2017189916A1 (en) 2017-11-02

Family

ID=60160115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/029950 WO2017189916A1 (en) 2016-04-28 2017-04-27 Devices, systems and methods for treating medical devices having passageways with ozone gas

Country Status (10)

Country Link
EP (1) EP3448441A4 (en)
JP (3) JP6929872B2 (en)
CN (1) CN109069675A (en)
BR (1) BR112018071444B1 (en)
CA (1) CA3005981C (en)
CL (1) CL2018003063A1 (en)
IL (1) IL262603B (en)
MX (1) MX2018013169A (en)
RU (1) RU2018136948A (en)
WO (1) WO2017189916A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD819190S1 (en) 2016-04-28 2018-05-29 Soclean, Inc. Ozone treatment device
US10052397B2 (en) 2011-07-15 2018-08-21 Soclean, Inc. Systems, methods, and devices for ozone sanitization of continuous positive airway pressure devices
US10232072B2 (en) 2011-07-15 2019-03-19 Soclean, Inc. Devices, systems and methods for treating medical devices having passageways with ozone gas
US10427961B2 (en) 2011-07-15 2019-10-01 Soclean, Inc. Technologies for sanitizing reservoirs
US10434204B2 (en) 2011-07-15 2019-10-08 Soclean, Inc. Technologies for sanitizing mist humidifiers
US10485888B2 (en) 2011-07-15 2019-11-26 Soclean, Inc. Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
US10953121B2 (en) 2014-05-06 2021-03-23 Soclean, Inc. Devices, systems and methods for ozone sanitization of continuous positive airway pressure devices
CN114025809A (en) * 2019-03-19 2022-02-08 速克粼股份有限公司 Techniques for sterilizing medical devices
WO2023049729A1 (en) * 2021-09-21 2023-03-30 Kwj Engineering, Inc. Portable sterilizer for personal protective equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020215516A1 (en) * 2019-04-26 2020-10-29 深圳市三一进取技术有限公司 Ozone sterilization device and sterilization system
CN111110891A (en) * 2019-12-31 2020-05-08 湖南明康中锦医疗科技发展有限公司 Respiratory support device disinfection system
CN113750273A (en) * 2020-06-04 2021-12-07 深圳市三一进取技术有限公司 Ozone disinfection equipment and ozone disinfection system
CN112023092B (en) * 2020-06-04 2023-11-07 深圳市三一进取技术有限公司 Ozone sterilization device and sterilization method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207291A (en) * 1978-04-03 1980-06-10 Mcdonnell Douglas Corporation Ozone removal filter having manganese dioxide coated thereon
WO2003068274A2 (en) 2002-02-14 2003-08-21 Bradford Beheer B.V. Sterilizing or disinfecting device
US20050220665A1 (en) * 2004-04-05 2005-10-06 Ding Lambert L Low temperature sterilization and disinfections method and apparatus for medical apparatus and instruments
US20140154134A1 (en) 2011-07-15 2014-06-05 Timothy Leyva Systems, Methods and Devices for Ozone Sanitization of Continuous Positive Airway Pressure Devices
US20150004061A1 (en) * 2013-01-09 2015-01-01 Global Ozone Innovations, Llc Ozone sanitizing system
CN105031693A (en) * 2015-09-15 2015-11-11 石狮市诺朗电子商务有限公司 Speed-adjustable medical ozone disinfection cabinet device stable in operation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019986A (en) * 1973-06-11 1977-04-26 William Alan Burris Portable water purifier
US5029879A (en) * 1988-08-24 1991-07-09 Injection Plastics Manufacturing Company, Inc. Seal for pipe to wall junctions
US5207237A (en) * 1990-07-20 1993-05-04 Kew Import/Export Inc. Ozoneated liquid system
US5344622A (en) * 1993-04-03 1994-09-06 Cyclo3 pss Medical Systems, Inc. Ozone sterilization system vapor humidification component with disposable water source
US5520893A (en) * 1993-09-29 1996-05-28 Oxidyn, Incorporated Apparatus with safety means for sterilizing articles with ozone
DE60020419T2 (en) * 1999-02-05 2006-05-04 Olympus Corporation, Shibuya Device for cleaning and disinfecting endoscopes
US20030063997A1 (en) * 1999-12-21 2003-04-03 Ben Fryer Monitoring sterilant concentration in a sterilization process
KR101174405B1 (en) * 2004-03-31 2012-08-16 아키라 미즈노 Method of sterilization and apparatus therefor
CA2576206C (en) * 2004-08-10 2013-02-26 Electrotemp Technologies Inc. Ozone sterilizing system for water dispensing system
US8992853B2 (en) * 2011-09-22 2015-03-31 Bürkert Contromatic Corp. Devices, systems and methods for localized sterilization
CN102397567A (en) * 2011-11-25 2012-04-04 谭官勤 Medical respiratory tube sterilization machine
US9907872B2 (en) * 2014-05-06 2018-03-06 Soclean, Inc. Devices, systems and methods for ozone sanitization of continuous positive airway pressure devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207291A (en) * 1978-04-03 1980-06-10 Mcdonnell Douglas Corporation Ozone removal filter having manganese dioxide coated thereon
WO2003068274A2 (en) 2002-02-14 2003-08-21 Bradford Beheer B.V. Sterilizing or disinfecting device
US20050220665A1 (en) * 2004-04-05 2005-10-06 Ding Lambert L Low temperature sterilization and disinfections method and apparatus for medical apparatus and instruments
US20140154134A1 (en) 2011-07-15 2014-06-05 Timothy Leyva Systems, Methods and Devices for Ozone Sanitization of Continuous Positive Airway Pressure Devices
US20150004061A1 (en) * 2013-01-09 2015-01-01 Global Ozone Innovations, Llc Ozone sanitizing system
CN105031693A (en) * 2015-09-15 2015-11-11 石狮市诺朗电子商务有限公司 Speed-adjustable medical ozone disinfection cabinet device stable in operation

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10842898B2 (en) 2011-07-15 2020-11-24 Soclean, Inc. Devices, systems and methods for treating medical devices having passageways with ozone gas
US11993522B2 (en) 2011-07-15 2024-05-28 Soclean, Inc. Technologies for sanitizing reservoirs
US10851001B2 (en) 2011-07-15 2020-12-01 SoClean, Inc Technologies for sanitizing reservoirs
US10398797B2 (en) 2011-07-15 2019-09-03 Soclean, Inc. Systems, methods, and devices for ozone sanitization of continuous positive airway pressure devices
US10427961B2 (en) 2011-07-15 2019-10-01 Soclean, Inc. Technologies for sanitizing reservoirs
US10434205B2 (en) 2011-07-15 2019-10-08 Soclean, Inc. Systems, methods, and devices for ozone sanitization of continuous positive airway pressure devices
US10434204B2 (en) 2011-07-15 2019-10-08 Soclean, Inc. Technologies for sanitizing mist humidifiers
US10456492B2 (en) 2011-07-15 2019-10-29 Soclean, Inc. Systems, methods, and devices for ozone sanitization of continuous positive airway pressure devices
US10485888B2 (en) 2011-07-15 2019-11-26 Soclean, Inc. Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
US10940222B2 (en) 2011-07-15 2021-03-09 Soclean, Inc. Devices, systems and methods for treating medical devices having passageways with ozone gas
US10232072B2 (en) 2011-07-15 2019-03-19 Soclean, Inc. Devices, systems and methods for treating medical devices having passageways with ozone gas
US10052397B2 (en) 2011-07-15 2018-08-21 Soclean, Inc. Systems, methods, and devices for ozone sanitization of continuous positive airway pressure devices
US10722603B2 (en) 2011-07-15 2020-07-28 Soclean, Inc. Systems, methods, and devices for ozone sanitization of continuous positive airway pressure devices
US11819585B2 (en) 2011-07-15 2023-11-21 Soclean, Inc. Technologies for sanitizing mist humidifiers
US11738105B2 (en) 2011-07-15 2023-08-29 Soclean, Inc. Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
US11224672B2 (en) 2011-07-15 2022-01-18 Soclean, Inc. Systems, methods, and devices for ozone sanitization of continuous positive airway pressure devices
US11426481B2 (en) 2011-07-15 2022-08-30 Soclean Inc. Systems, methods, and devices for ozone sanitization of continuous positive airway pressure devices
US11135327B2 (en) 2014-05-06 2021-10-05 Soclean, Inc. Devices, systems and methods for ozone sanitization of continuous positive airway pressure devices
US10953121B2 (en) 2014-05-06 2021-03-23 Soclean, Inc. Devices, systems and methods for ozone sanitization of continuous positive airway pressure devices
USD819190S1 (en) 2016-04-28 2018-05-29 Soclean, Inc. Ozone treatment device
CN114025809A (en) * 2019-03-19 2022-02-08 速克粼股份有限公司 Techniques for sterilizing medical devices
US11484613B2 (en) 2019-03-19 2022-11-01 Soclean Inc. Technologies for sanitizing medical devices
WO2023049729A1 (en) * 2021-09-21 2023-03-30 Kwj Engineering, Inc. Portable sterilizer for personal protective equipment

Also Published As

Publication number Publication date
JP6929872B2 (en) 2021-09-01
NZ747131A (en) 2023-10-27
JP2019514822A (en) 2019-06-06
RU2018136948A3 (en) 2020-10-13
BR112018071444B1 (en) 2022-01-04
EP3448441A4 (en) 2020-01-01
CL2018003063A1 (en) 2019-05-17
JP2023138992A (en) 2023-10-03
CA3005981A1 (en) 2017-11-02
CN109069675A (en) 2018-12-21
RU2018136948A (en) 2020-05-28
IL262603A (en) 2018-12-31
BR112018071444A2 (en) 2019-02-05
JP2021191726A (en) 2021-12-16
EP3448441A1 (en) 2019-03-06
MX2018013169A (en) 2019-06-24
IL262603B (en) 2022-05-01
CA3005981C (en) 2022-11-29

Similar Documents

Publication Publication Date Title
US10940222B2 (en) Devices, systems and methods for treating medical devices having passageways with ozone gas
CA3005981C (en) Devices, systems and methods for treating medical devices having passageways with ozone gas
US11738105B2 (en) Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
AU2018200514B2 (en) Systems, methods and devices for ozone sanitization of continuous positive airway pressure devices
WO2017189915A1 (en) Devices, systems and methods for treating multiple medical devices having passageways with ozone gas
KR101177868B1 (en) Sterilizing apparatus for handpieces
KR20100058089A (en) Sterilizing and drying apparatus of medical device
KR101020517B1 (en) Medical apparatus for sterilizing and drying of handpieces
NZ747131B2 (en) Devices, systems and methods for treating medical devices having passageways with ozone gas

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3005981

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018554099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018071444

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17790471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017790471

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017790471

Country of ref document: EP

Effective date: 20181128

ENP Entry into the national phase

Ref document number: 112018071444

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181018