WO2017188639A1 - Method and apparatus for processing brittle material by using laser pin beam, and optical system therefor - Google Patents

Method and apparatus for processing brittle material by using laser pin beam, and optical system therefor Download PDF

Info

Publication number
WO2017188639A1
WO2017188639A1 PCT/KR2017/004109 KR2017004109W WO2017188639A1 WO 2017188639 A1 WO2017188639 A1 WO 2017188639A1 KR 2017004109 W KR2017004109 W KR 2017004109W WO 2017188639 A1 WO2017188639 A1 WO 2017188639A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
laser
pin
brittle material
energy
Prior art date
Application number
PCT/KR2017/004109
Other languages
French (fr)
Korean (ko)
Inventor
전상욱
김대호
김준형
전장수
곽지훈
Original Assignee
주식회사 아톤이엔지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아톤이엔지 filed Critical 주식회사 아톤이엔지
Publication of WO2017188639A1 publication Critical patent/WO2017188639A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • C03B33/102Glass-cutting tools, e.g. scoring tools involving a focussed radiation beam, e.g. lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/10Glass-cutting tools, e.g. scoring tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method and apparatus for processing a brittle material using a laser, and specifically, converts a pulse wave laser having a picosecond to femtosecond pulse width into a pin beam focused at a very high density near an optical axis, and It relates to a method and apparatus for processing a brittle material using.
  • the laser processing apparatus is a device for cutting a material or forming a hole by focusing a continuous wave or pulsed wave laser through an optical system. Recently, in the field of processing transparent materials such as glass, pulse wave lasers that can cause a filamentation phenomenon have been frequently used.
  • the filamentation phenomenon means that when a transparent material such as glass is irradiated with an ultra-short pulsed laser beam having a pulse width of picoseconds to femtoseconds, self focusing and defocusing occur continuously due to the Kerr effect. As a result, plasma spots occur continuously in the transparent material over several to several tens of Rayleigh lengths along the beam irradiation direction.
  • the refractive index of the corresponding part is increased, and when the damage threshold is exceeded, the part is permanently modified and cracks and / or cavities are generated.
  • the material may be separated along this part. .
  • Patent Literature 1 and Patent Literature 2 have been proposed to improve the problems when processing a brittle material using a laser beam having a Gaussian energy distribution (hereinafter referred to as a 'Gaussian beam').
  • the Gaussian beam progresses, the beam is diffused and the energy density and peak power are greatly lowered. Therefore, an expensive high-power laser light source must be used for material processing, and the cut surface is known to be very rough because of the uneven energy distribution inside the material.
  • Patent Documents 1 and 2 do not use a Gaussian beam as it is, and convert the Gaussian beam into a Bessel beam having a plurality of ring-shaped energy distributions based on a cross section perpendicular to the traveling direction. It introduces a technology for processing brittle materials using this.
  • Figure 1 (a) shows the optical system configuration
  • Figure 1 (b) and (c) shows the cross-sectional shape and energy density distribution of the laser beam at various positions of the optical system.
  • the microwave Gaussian beam 1 transmitted from a laser light source is converted into a Bessel beam after passing through an axicon lens 10.
  • the Bessel beam has the largest energy density in the optical axis and has a plurality of concentric energy distributions around the optical axis.
  • the Bessel beam is defocused as it passes through the depth of focus of the axicon lens 10, and thus, after a certain distance from the depth of focus, the Bessel beam is converted into a ring beam having no energy distribution near the optical axis and concentrating energy in a ring shape only at the periphery. .
  • the ring beam formed while the Bessel beam is defocused is advanced in a direction substantially parallel to the optical axis by the collimator lens 20 to enter the focusing lens 30, and the focusing lens 30 enters the incident ring beam. Is converted to a Bessel beam.
  • the Bessel beam formed by the focusing lens 30 has a very high energy density because the diameter of the beam is very small compared to the Bessel beam formed by the axicon lens 10.
  • the Bessel beam since the Bessel beam includes a plurality of focal points along the traveling direction within the depth of focus, as shown in FIG. 2, a substantially rhombic energy concentration region appears.
  • the focal depth section and the energy concentration region formed around the focal depth section are referred to as focus beams 1a for convenience.
  • Patent Documents 1 and 2 relate to a technique for processing a material using such a focus beam 1a, and Patent Document 1 forms a focus beam 1a inside a brittle material 50 as shown in FIG.
  • the present invention relates to a technique for processing, and Patent Document 2 relates to a technique for forming a focal beam 1a outside the brittle material 50 and processing as shown in FIG.
  • Patent Document 2 since the focus beam 1a is positioned outside of the material, the influence of residual energy can be reduced. In addition, although the focus beam 1a is incident on the material with a slightly defocused state, the light is incident on the material in a state where energy is concentrated at the end of the focus beam 1a. Energy distribution of diameters can be realized.
  • Patent Documents 1 and 2 commonly process materials using the Bessel beam-shaped focus beam 1a. Since the residual energy is widely present around the focus beam 1a, the thickness direction of the material is changed. Therefore, it is difficult to realize energy distribution of constant diameter. Because of this, there is a certain limit to improve the roughness of the cut surface, there is also a limit to increase the energy efficiency.
  • the focusing lens 30 focuses a ring beam having a relatively large diameter to form a focus beam 1a having a Bessel beam shape, there is a limit to reducing the diameter of the focus beam 1a, thereby limiting the accuracy of processing. There is.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2016-0010397 (2016.01.27)
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2016-0010041 (2016.01.27)
  • the present invention has been made to solve these conventional problems, and has an object to enable mirror surface cutting without any melting, cracking or cracking when the brittle material is processed by laser.
  • the Bessel beam in which the energy is distributed on the optical axis and a plurality of concentric circles around the optical axis based on the cross section orthogonal to the traveling direction of the ultra-short pulsed laser beam transmitted from the laser generation unit First optical system to convert to;
  • a second optical system configured to focus the beam dispersed from the vessel beam or the vessel beam and generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction; It provides an optical system for a laser for processing a brittle material comprising a third optical system for focusing the pin beam or a beam dispersed from the pin beam inside the brittle material.
  • the distance d between the end of the depth of focus of the first optical system and the incident surface of the second optical system may be 0 to 0.1 mm.
  • the first optical system includes an axicon lens
  • the second optical system includes a collimator lens or an aspheric lens. Can be.
  • the incident surface of the second optical system may be located inside the depth of focus of the first optical system.
  • the first optical system may include a vortex lens
  • the second optical system may include a collimator lens or an aspheric lens. have.
  • the third optical system has a depth of focus of 0.1 to 3 ⁇ m, a numerical aperture (NA value) of 0.1 to 1.0, and a transmittance of 50% to 99%.
  • NA value numerical aperture
  • Magnification may be 20 to 100.
  • the force applied away from the cutting surface on both sides away from the cutting surface of the brittle material, or the force pressing the exit surface on both sides away from the cutting surface of the brittle material at the same time the incident surface in the vicinity of the cutting surface It may further comprise the step of separating the cutting surface by applying a pressing force.
  • an ultra-high density pulsed laser beam is focused near the optical axis to form a pin beam with a very small change in beam diameter along the beam traveling direction, and the laser pin beam is incident on a brittle material. It is possible to achieve mirror surface cutting with no melting, cracking or cracking by machining.
  • the cut surface cut by the pin beam is very clean, the cut material can be separated more easily, and damage such as cracks can be prevented in the separating process.
  • the diameter of the pin beam formed inside the brittle material is very small, the processing accuracy can be greatly improved.
  • the laser fin beam according to the present invention has a very high energy density in the optical axis compared to the Bessel beam or the Gaussian beam, a laser light source having a relatively low output power can be used to improve energy efficiency and productivity.
  • FIG. 1 is a block diagram of a conventional laser processing apparatus
  • FIG. 2 is a view showing a state in which a focus beam of a Bessel beam shape is formed inside a transparent material and processed;
  • FIG. 3 is a view illustrating a process of forming and processing a vessel beam-shaped focus beam outside the transparent material
  • FIG. 4 is a block diagram of a laser processing apparatus according to a first embodiment of the present invention
  • FIG. 6 is a view comparing focus beam shapes of a Gaussian beam, a Bessel beam, and a fin beam;
  • FIG. 7 is a view illustrating a state in which the distance between the second optical system and the third optical system is adjusted.
  • FIG 8 is a diagram illustrating a state in which a distance between the first optical system and the second optical system is adjusted.
  • FIG. 9 is a flow chart of a brittle material processing method according to a first embodiment of the present invention
  • 11 is a view showing a separation method after cutting.
  • FIG. 12 is a block diagram of a laser processing apparatus according to a second embodiment of the present invention.
  • any part includes a certain component means that the component may further include other components, without excluding other components, unless specifically stated otherwise.
  • singular forms may include plural meanings unless the context clearly indicates them.
  • drawings attached to the present specification for the convenience of understanding there is a portion shown in the dimensions, proportions or shapes different from the actual because of this, of course, the scope of the present invention is not to be construed as limited.
  • FIGS. 4 (b) and 4 (c) show the cross-sectional shape and energy density distribution of the laser beam at various positions of the optical system, respectively.
  • the laser processing apparatus includes a laser generating unit (not shown), a first optical system 110, a second optical system 120, and a third optical system 130.
  • a transmission optical system including an optional combination of a mirror, an aperture, a splitter, and the like may be located between the laser generator and the first optical system 110.
  • the laser generator generates an ultra-short pulsed laser beam.
  • an ultra-short pulsed laser beam having a pulse width of femtosecond (FS) to picoseconds (PS) may be generated, and the laser wavelength region may be, for example, 515 nm to 1550 nm.
  • FS femtosecond
  • PS picoseconds
  • the pulse width or wavelength band is not necessarily limited thereto.
  • the laser generator outputs a pulsed laser of a single mode rather than a burst mode.
  • Burst mode pulse lasers have a lower peak output than single mode, which limits the energy density of the pin beam.
  • the present invention is not limited thereto, and a burst mode laser may be used depending on the laser output or processing conditions.
  • the first optical system 110 converts the Gaussian beam propagated from the laser generator into a Bessel beam, and may be formed of, for example, an axicon lens or an axicon lens.
  • the Bessel beam generated by the first optical system 110 has the largest energy density in the optical axis and has a plurality of concentric energy distributions around the optical axis.
  • the second optical system 120 focuses the laser beam transmitted from the first optical system 110 to focus and forms a pin beam.
  • a collimator lens or an aspheric lens is formed. It may be made of, or may include a collimator lens or an aspherical lens.
  • the second optical system 120 is preferably installed at a position very close to the focal point of the first optical system 110.
  • the energy concentrated in the Bessel beam generated by the first optical system 110 is concentrated and concentrated near the focal point of the second optical system 120, thereby forming an extremely high-density pin beam.
  • the focus of the second optical system 120 is preferably located between the second optical system 120 and the third optical system 130.
  • the focus of the second optical system 120 is positioned between the second optical system 120 and the third optical system 130, the present invention is not limited thereto.
  • the incident surface of the third optical system 130 may be positioned near the focal point of the second optical system 120.
  • the pin beam formed at the focal point of the second optical system 120 has a spot shape based on a cross section perpendicular to the traveling direction.
  • the pin beam formed by the second optical system 120 may diverge slightly while passing through the focal point of the second optical system 120 to be transformed into a shape similar to the Bessel beam, and may be incident on the third optical system 130.
  • FIG. 5 illustrates the position of the second optical system 120 with respect to the first optical system 110, wherein the incident surface of the second optical system 120 is formed from the end of the focal depth Z of the first optical system 110.
  • the distance d is shown.
  • the distance d may be appropriately selected according to the optical characteristics of the first optical system 110 and the second optical system 120 or the diameter of the laser beam incident on the first optical system 110.
  • the energy density near the optical axis of the pin beam formed at the focal point of the second optical system 120 is the highest.
  • the energy of the Bessel beam tends to be strongly concentrated at the end of the depth of focus (z), so if the second optical system 120 focuses it before the Bessel beam is dispersed and converted into a ring beam, the energy density of the pin beam can be maximized. Because there is.
  • the incident surface of the second optical system 120 may be slightly negative (ie, the distance d) ahead of the end of the focal depth Z of the first optical system 110. It is also possible to place it at a distance of 0.1 mm or more from the end of the depth of focus Z).
  • the third optical system 130 is a kind of focusing lens, and focuses a pin beam formed by the second optical system 120 at a specific position inside the brittle material. That is, the focal point of the third optical system 130 is located inside the transparent brittle material to be processed.
  • the pin beam formed by the second optical system 120 may be transformed into a shape similar to the Bessel beam in the process and may be incident on the third optical system 130.
  • the Bessel beam incident on the third optical system 130 is much smaller in diameter than the Bessel beam formed by the first optical system 110, when the light is focused again through the third optical system 130, the pins of ultra high density are formed inside the brittle material. It can form a beam.
  • the depth of focus of the third optical system 130 is preferably 0.1 to 3 ⁇ m.
  • the numerical aperture NA of the third optical system 130 is between 0.1 and 1.0, preferably between 0.5 and 0.99.
  • the transmittance of the third optical system 130 is preferably in the range of 50% to 99% or less.
  • the magnification of the third optical system 130 is preferably selected from the magnification of 20 to 100.
  • the Gaussian beam concentrates most of its energy in the center of the material (FIG. 6 (a)), and the Bessel beam is roughly diamond-shaped, but similarly to the Gaussian beam. Most of the energy is concentrated (Fig. 6 (b)).
  • the laser fin beam according to the present invention as shown in Figure 6 (c), the energy is distributed in a very constant width along the thickness direction of the material.
  • the diameter of the focus beam is about 20 to 35 ⁇ m
  • the diameter of the focus beam is about 10 to 15 ⁇ m. have.
  • the focal beam of the laser pin beam generated according to the embodiment of the present invention has a diameter of about 0.5 to 1.8 ⁇ m, so that the material can be precisely processed with a much smaller line width than the Gaussian beam or the Bessel beam.
  • it since it has a much more uniform energy distribution in the thickness direction of the material, it is possible to cut uniformly from the entrance surface to the exit surface of the laser beam. It is possible.
  • the picosecond to femtosecond lasers have very short pulse widths and high peak energy, and thus generate high-density energy superposition at the very small sites.
  • the laser pin beam according to the embodiment of the present invention concentrates high density energy in a very narrow area in comparison to the Bessel beam or Gaussian beam, the pulse energy is transmitted to the brittle material while overlapping each other, and the superimposed pulse energy is converted into thermal energy. do.
  • microwave pulses incident into the brittle material generate heat and disappear for a very short time, minimizing refusion of the material and thermal deformation of other parts, resulting in a very smooth cut.
  • the high-density pulse energy of the laser pin beam is very strongly concentrated at a very small portion, and has a strong straightness.
  • a fin-shaped energy concentration region is formed in the brittle material along the traveling direction.
  • the depth of focus of the third optical system 130 is only about 0.1 to 3 ⁇ m, but inside the brittle material, heat accumulation and laser plasma interaction due to the overlapping pulse energy are As a result of this combination, very long and constant diameter focal beams are formed.
  • the focal beam is formed to have a length of about 200 ⁇ m, and thus a very clean cut surface can be obtained by the long and uniformly formed focal beam.
  • the energy superimposed on the focal beam is transmitted to the entrance and exit planes along the path of the laser pin beam, and mirror cutting is also performed in the front and rear areas of the focal beam, thereby allowing perfect mirror cutting over the entire thickness.
  • the laser fin beam according to the embodiment of the present invention has a very uniform energy distribution along the thickness direction of the material, even when cutting the plywood instead of the single plate, it is possible to mirror-cut the plywood simultaneously in one process without flipping.
  • the laser power of about 12 to 20W is required, but according to the present invention, the laser beam of about 1 to 5W can be processed due to the high energy density of the pin beam. Therefore, according to the present invention, the energy efficiency can be greatly improved than before, and there is an advantage of greatly reducing the process cost.
  • the processing quality and productivity of the brittle material can be greatly improved as compared with the laser ablation using the Gaussian beam or the conventional method using the Bessel beam.
  • the laser processing apparatus may adjust the width and length of the pin beam incident on the brittle material. Specifically, the beam width of the Gaussian beam incident on the first optical system 110 is adjusted, or the distance between the first optical system 110 and the second optical system 120 is adjusted, or the second optical system 120 and the third optical system are adjusted. By adjusting the distance of the optical system 130, it is possible to adjust the width and length of the laser pin beam.
  • the second optical system 120 and the third optical system are moved along the optical axis direction while moving the first station 210 supporting the first optical system 110 and the second optical system 120. If the distance of the 130 is changed, the width of the beam incident on the third optical system 130 is changed, thereby adjusting the length or width of the pin beam incident on the material.
  • the first optical system 110 and the second optical system are moved while moving the second station 220 supporting the second optical system 120 and the third optical system 130 along the optical axis direction. If the distance of 120 is changed, the width of the beam incident on the second optical system 120 is changed, thereby adjusting the length or width of the pin beam incident on the material.
  • each lens 110, 120, 130 may be adjusted using the first station 210 and / or the second station 220 while simultaneously adjusting the beam width of the laser beam incident on the first optical system 110. You can also adjust the length or width of the pin beam incident on the material.
  • the first station 210 may include a support structure such as a case or a support rod for fixing the first optical system 110 and the second optical system 120 at a predetermined distance.
  • a driving means such as a transfer rail and a motor for moving the first station (210).
  • the second station 210 may also include a support structure for fixing the second optical system 120 and the third optical system 130 at a predetermined distance, and may include a driving means such as a transfer rail and a motor.
  • the microwave laser beam generated by the laser generator is incident on the first optical system 110 in the form of a Gaussian beam having a Gaussian energy distribution through a transmission optical system. (S10)
  • the first optical system 110 diffracts the incident laser beam and converts the incident laser beam into a Bessel beam having a plurality of concentric energy distributions based on a cross section perpendicular to the traveling direction.
  • the Bessel beam is focused on the focus of the second optical system 120 while passing through the second optical system 120 installed near the end of the depth of focus of the first optical system 110, and is converted into a pin beam in which energy is concentrated at an optical axis with high density.
  • the pin beam generated by the second optical system 120 is focused again by the third optical system 130 into the pin beam, and the brittle material is processed along the direction of incidence of the pin beam. (S40, S50)
  • FIG. 10 is a photograph (a, b) showing a glass processing result according to the prior art and a photo (c, d) showing a glass processing result according to an embodiment of the present invention.
  • FIG. 10 (a) shows a case where the glass is cut by filamentation of a Gaussian beam.
  • the roughness of the cut surface is not smooth as about 0.4 ⁇ m to 0.5 ⁇ m, and there are minute cracks.
  • FIG. 10 (b) shows a case in which the glass is cut using a Bessel beam, but the cut surface is smoother than that of FIG. 10 (a), but the metal scraper is not smooth enough as about 0.2 ⁇ m to 0.3 ⁇ m.
  • the Bessel beam is cut relatively smoothly only in the region where the energy of the Bessel beam is concentrated, it is broken during the separation process because the cutting is not performed properly in the peripheral region.
  • the roughness of the cut surface can be lowered to 0.01 ⁇ m or less, and it is also possible to lower the maximum to 0.001 ⁇ m. Therefore, according to the present invention, as shown in Fig. 10 (c), it is possible to obtain a much smoother cut surface than in the above (a), (b) as well as to perform a mirror cut without any cracks.
  • the cutting method using the laser pin beam is the most efficient method of transferring energy to the brittle material and cutting it, the refraction and diffuse reflection of the beam inside the material and the extra energy at the edge of the pin beam are the top of the incident surface. Since it affects the bottom surface more than the surface, it is impossible to distribute the energy perfectly evenly across the cut surface.
  • the mirror is cut in the shape as shown in FIG. 11 (a) using a laser pin beam, it is easy to apply a force in a direction perpendicular to the cut plane, that is, away from the cut plane, as shown in FIG. 11 (b). It can be separated and the cut surface can be smoothed.
  • the pressing force is applied downward to the upper surface (incidence surface) of the brittle material near the cut surface, and lifts upward with respect to the lower surface (emission surface) of the brittle material from both sides away from the cut surface. Applying the lifting force makes it easy to separate and smooth the cutting surface.
  • FIG. 12 is a view illustrating a laser processing apparatus for processing a brittle material according to a second embodiment of the present invention.
  • FIG. 12A illustrates an optical system configuration
  • FIGS. 12B and 12C respectively illustrate an optical system.
  • the cross-sectional shape and energy density distribution of the laser beam are shown at various positions of.
  • the laser processing apparatus includes a first optical system 110a, a second optical system 120 and a third optical system 130.
  • a transmission optical system including a laser generating unit and a selective combination of a mirror, an aperture, a splitter, and the like may be located between the laser generating unit and the first optical system 110. .
  • the first optical system 110 converts the Gaussian beam transmitted from the laser generator into a Bessel beam.
  • the first optical system 110a converts the Gaussian beam into a ring beam. Is different from that of the first embodiment in that it is incident on the second optical system 120.
  • the first optical system 110a may be, for example, a vortex lens or a vortex lens, and the vortex lens changes the path of the incident Gaussian beam to rotate while rotating helically about an optical axis. Therefore, the laser beam passing through the vortex lens has a spiral energy distribution based on the cross section perpendicular to the traveling direction.
  • the energy density distribution is converted from a spiral to a ring shape, so that there is no energy distribution near the optical axis, and a ring beam in which energy is concentrated in a ring shape is formed only at the periphery.
  • the first embodiment it is preferable to form a fin beam by focusing on the second optical system 120 before the Bessel beam formed by the first optical system 110 is dispersed and converted into a ring beam. Since the ring beam is large in diameter, the energy density can be reduced by converting it into a pin beam.
  • the ring beam formed at the focal point of the vortex lens has a very small diameter and a very high energy density, compared to the ring beam formed by dispersing the Bessel beam in the first embodiment, the ring beam formed by the second optical system 120 is extremely high density. Can be converted to a pin beam.
  • the second optical system 120 focuses the ring beam formed at the focal point of the first optical system 110a to form a pin beam, and is a collimator lens or an aspheric lens, or a collimator lens or aspheric surface. It may include a lens.
  • the incident surface of the second optical system 120 is located within the depth of focus of the first optical system 110a.
  • the second optical system Through 120, it can be focused with a pin beam.
  • the focus of the second optical system 120 is preferably located between the second optical system 120 and the third optical system 130.
  • a high-density spot shape where most energy is concentrated near the optical axis based on a cross section perpendicular to the traveling direction Is converted to a pin beam.
  • the third optical system 130 is a focusing lens, focusing the pin beam formed by the second optical system 120 into the brittle material.
  • the depth of field, numerical aperture, transmittance, etc. of the third optical system 130 are as described in the first embodiment.
  • the present invention is not limited to the above-described embodiments, but may be variously modified or modified in a specific application process, and the modified or modified embodiments are also disclosed in the claims below.
  • the technical scope of the present invention belongs to the scope of the present invention.
  • brittle material 110 first optical system
  • first station 220 second station.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

The present invention provides an apparatus for processing a brittle material by using a laser pin beam. The laser processing apparatus according to the present invention may comprise: a first optical system for converting an ultrashort pulse laser beam delivered from a laser generation unit into a Bessel beam in which, when viewed from a section perpendicular to the travel direction thereof, energy is distributed on the optical axis and a plurality of concentric circles around the optical axis; a second optical system for focusing the Bessel beam or a beam dispersed from the Bessel beam to generate a pin beam in which, when viewed from a section perpendicular to the travel direction thereof, energy is concentrated on the optical axis in the shape of a spot; and a third optical system for focusing the pin beam or a beam dispersed from the pin beam into a brittle material. According to the present invention, a pin beam having a very small change in the beam diameter along the travel direction of the beam is generated by focusing an ultrashort pulse laser beam on the vicinity of the optical axis at ultrahigh density, and such a laser pin beam is incident into a brittle material to process the same. Therefore, it is possible to achieve mirror surface cutting which completely excludes melting, fracture, and cracks.

Description

레이저 핀 빔을 이용한 취성 소재 가공 방법 및 장치와 이를 위한 광학계Method and apparatus for processing brittle material using laser pin beam and optical system for same
본 발명은 레이저를 이용한 취성 소재 가공방법 및 장치에 관한 것으로서, 구체적으로는 피코초 내지 펨토초 펄스폭을 갖는 펄스파 레이저를 광축 부근에 초고밀도로 집속된 핀 빔(pin beam)으로 변환하고, 이를 이용하여 취성 소재를 가공하는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for processing a brittle material using a laser, and specifically, converts a pulse wave laser having a picosecond to femtosecond pulse width into a pin beam focused at a very high density near an optical axis, and It relates to a method and apparatus for processing a brittle material using.
레이저 가공장치는 연속파 또는 펄스파 레이저를 광학계를 통해 집속시켜 재료를 절단하거나 홀을 형성하는 장치이다. 최근에는 유리 등의 투명 소재를 가공하는 분야에서 필라멘테이션(filamentation) 현상을 일으킬 수 있는 펄스파 레이저를 많이 사용하고 있다.The laser processing apparatus is a device for cutting a material or forming a hole by focusing a continuous wave or pulsed wave laser through an optical system. Recently, in the field of processing transparent materials such as glass, pulse wave lasers that can cause a filamentation phenomenon have been frequently used.
필라멘테이션 현상이란 유리 등의 투명 소재에 피코초 내지 펨토초의 펄스폭을 갖는 초단파 펄스 레이저 빔을 조사하면 커효과(Kerr effect)로 인해 자기집속(Self Focusing)과 디포커싱이 연속적으로 발생하고, 이로 인해 투명 소재 내부에서 빔의 조사방향을 따라 플라스마 스팟이 수 내지 수십 레일리거리(Rayleigh length)에 걸쳐 연속적으로 발생하는 현상을 말한다. The filamentation phenomenon means that when a transparent material such as glass is irradiated with an ultra-short pulsed laser beam having a pulse width of picoseconds to femtoseconds, self focusing and defocusing occur continuously due to the Kerr effect. As a result, plasma spots occur continuously in the transparent material over several to several tens of Rayleigh lengths along the beam irradiation direction.
이와 같이 투명 소재 내부에 플라즈마 스팟이 발생하면 해당 부분의 굴절률이 커지게 되고, 손상 임계점을 초과하면 해당 부분이 영구적으로 개질되면서 균열 및/또는 공동이 발생하므로 이 부분을 따라 소재를 분리할 수 있다.As such, when the plasma spot is generated inside the transparent material, the refractive index of the corresponding part is increased, and when the damage threshold is exceeded, the part is permanently modified and cracks and / or cavities are generated. Thus, the material may be separated along this part. .
한편 유리 등의 취성 소재는 절단면에 균열이 있거나 매끄럽지 않으면 약간의 충격에도 절단면에서부터 크랙이 전파되어 제품 불량이 초래되는 경우가 많다. 이 때문에 수 내지 수백 마이크로미터 정도의 얇은 유리기판을 사용하는 디스플레이 분야에서는 절단면의 거칠기(roughness)에 대한 요구가 매우 엄격하다.On the other hand, brittle materials such as glass are often cracked from the cut surface even if there is a crack or not smooth on the cut surface, resulting in product defects. For this reason, the demand for the roughness of the cut surface is very severe in the display field using thin glass substrates of several to several hundred micrometers.
종래에는 이러한 요구를 충족하기 위하여 가공 후에 절단면을 기계적으로 연마하거나 화학적으로 식각하는 후속공정을 진행하기도 하였으나, 최근에는 레이저 빔의 에너지 분포, 빔 형상 등을 조절하여 거칠기를 개선하려는 연구가 활발히 이루어지고 있다.Conventionally, in order to meet these demands, a subsequent process of mechanically polishing or chemically etching the cut surface after processing has been conducted, but recently, researches to improve the roughness by adjusting the energy distribution of the laser beam and the beam shape have been actively conducted. have.
예를 들어 특허문헌 1과 특허문헌 2는 가우시안 에너지 분포를 갖는 레이저 빔(이하 '가우시안 빔'이라 한다)을 이용하여 취성 소재를 가공할 때의 문제점을 개선하기 위하여 제안된 것이다.For example, Patent Literature 1 and Patent Literature 2 have been proposed to improve the problems when processing a brittle material using a laser beam having a Gaussian energy distribution (hereinafter referred to as a 'Gaussian beam').
일반적으로 가우시안 빔은 진행할수록 빔이 확산되면서 에너지 밀도와 첨두출력이 크게 낮아지기 때문에 재료 가공을 위해서는 고가의 고출력 레이저 광원을 사용해야 하고, 소재 내부에서 에너지 분포가 불균일하기 때문에 절단면이 매우 거친 것으로 알려져 있다.In general, as the Gaussian beam progresses, the beam is diffused and the energy density and peak power are greatly lowered. Therefore, an expensive high-power laser light source must be used for material processing, and the cut surface is known to be very rough because of the uneven energy distribution inside the material.
특허문헌 1, 2는 이러한 문제를 해결하기 위하여 가우시안 빔을 그대로 사용하지 않고, 가우시안 빔을 진행방향에 직교하는 단면을 기준으로 다수의 링 형태의 에너지 분포를 갖는 베셀빔(bessel beam)으로 변환하고 이를 이용하여 취성 소재를 가공하는 기술을 소개하고 있다.In order to solve this problem, Patent Documents 1 and 2 do not use a Gaussian beam as it is, and convert the Gaussian beam into a Bessel beam having a plurality of ring-shaped energy distributions based on a cross section perpendicular to the traveling direction. It introduces a technology for processing brittle materials using this.
이하에서는 도 1을 참조하여 베셀빔을 이용하는 레이저 가공기술을 설명한다. 참고로 도 1의 (a)는 광학계 구성을 나타낸 것이고, 도 1의 (b)와 (c)는 광학계의 여러 위치에서 레이저 빔의 단면 형상과 에너지 밀도 분포를 나타낸 것이다.Hereinafter, a laser processing technique using a vessel beam will be described with reference to FIG. 1. For reference, Figure 1 (a) shows the optical system configuration, Figure 1 (b) and (c) shows the cross-sectional shape and energy density distribution of the laser beam at various positions of the optical system.
도 1에 나타낸 바와 같이, 레이저 광원(도면에는 나타내지 않았음)으로부터 전달된 초단파 가우시안 빔(1)은 액시콘 렌즈(axicon lens)(10)를 통과한 후 베셀빔으로 변환된다. 베셀빔은 광축에서 에너지 밀도가 가장 크고 광축 주변에 다수의 동심원 형태의 에너지 밀도 분포를 가진다.As shown in FIG. 1, the microwave Gaussian beam 1 transmitted from a laser light source (not shown) is converted into a Bessel beam after passing through an axicon lens 10. The Bessel beam has the largest energy density in the optical axis and has a plurality of concentric energy distributions around the optical axis.
이러한 베셀빔은 액시콘 렌즈(10)의 초점심도를 지나면서 디포커싱되며, 따라서 초점심도로부터 일정 거리 진행한 이후에는 광축 부근에는 에너지 분포가 없고 주변부에만 링 형태로 에너지가 집중된 링 빔으로 변환된다.The Bessel beam is defocused as it passes through the depth of focus of the axicon lens 10, and thus, after a certain distance from the depth of focus, the Bessel beam is converted into a ring beam having no energy distribution near the optical axis and concentrating energy in a ring shape only at the periphery. .
베셀빔이 디포커싱되면서 형성된 링 빔은 콜리메이터 렌즈(collimator lens)(20)에 의해 광축과 실질적으로 평행한 방향으로 진행하여 포커싱렌즈(30)로 입사하며, 포커싱렌즈(30)는 입사된 링 빔을 집속시켜 다시 베셀빔으로 변환한다. The ring beam formed while the Bessel beam is defocused is advanced in a direction substantially parallel to the optical axis by the collimator lens 20 to enter the focusing lens 30, and the focusing lens 30 enters the incident ring beam. Is converted to a Bessel beam.
포커싱렌즈(30)에 의해 형성된 베셀빔은 액시콘 렌즈(10)에 의해 형성된 베셀빔에 비하여 빔의 직경이 매우 작기 때문에 에너지 밀도가 매우 높다. 또한 베셀빔은 초점심도 내에 진행방향을 따라 다수의 초점을 포함하므로 도 2에 나타낸 바와 같이 대략 마름모 형상의 에너지 집중영역이 나타나게 된다. 이하에서는 초점심도 구간과 그 주변에 형성되는 에너지 집중영역을 편의상 초점빔(1a)이라 한다.The Bessel beam formed by the focusing lens 30 has a very high energy density because the diameter of the beam is very small compared to the Bessel beam formed by the axicon lens 10. In addition, since the Bessel beam includes a plurality of focal points along the traveling direction within the depth of focus, as shown in FIG. 2, a substantially rhombic energy concentration region appears. Hereinafter, the focal depth section and the energy concentration region formed around the focal depth section are referred to as focus beams 1a for convenience.
특허문헌 1, 2는 이러한 초점빔(1a)을 이용하여 재료를 가공하는 기술에 관한 것인데, 특허문헌 1은 도 2에 나타낸 바와 같이 초점빔(1a)을 취성 소재(50)의 내부에 형성하여 가공하는 기술에 관한 것이고, 특허문헌 2는 도 3에 나타낸 바와 같이 초점빔(1a)을 취성 소재(50)의 외부에 형성하여 가공하는 기술에 관한 것이다.Patent Documents 1 and 2 relate to a technique for processing a material using such a focus beam 1a, and Patent Document 1 forms a focus beam 1a inside a brittle material 50 as shown in FIG. The present invention relates to a technique for processing, and Patent Document 2 relates to a technique for forming a focal beam 1a outside the brittle material 50 and processing as shown in FIG.
그런데 이러한 초점빔(1a)은 마름모에 가까운 형상을 가지므로 진행 방향을 따라 폭이 일정하지 않고, 베셀빔이기 때문에 광축 주변에 상당한 잔류 에너지가 존재한다. 따라서 특허문헌 1과 같이 초점빔(1a)을 재료의 내부에 위치시키면 재료의 두께 방향을 따라 일정한 직경의의 에너지 분포를 구현하는데 한계가 있다. However, since the focus beam 1a has a shape close to the rhombus, the width is not constant along the traveling direction, and since the focus beam 1a is a Bessel beam, there is considerable residual energy around the optical axis. Therefore, as shown in Patent Literature 1, when the focus beam 1a is positioned inside the material, there is a limit in implementing an energy distribution having a constant diameter along the thickness direction of the material.
반면에 특허문헌 2에서는 재료의 외부에 초점빔(1a)이 위치하므로 잔류 에너지에 의한 영향을 줄일 수 있다. 또한 초점빔(1a)이 약간 디포커싱된 상태로 재료에 입사하기는 하지만 초점빔(1a)의 종단에 에너지가 집중된 상태에서 재료에 입사하므로 특허문헌 1에 비해서는 소재의 두께 방향을 따라 비교적 일정한 직경의 에너지 분포를 구현할 수 있다.On the other hand, in Patent Document 2, since the focus beam 1a is positioned outside of the material, the influence of residual energy can be reduced. In addition, although the focus beam 1a is incident on the material with a slightly defocused state, the light is incident on the material in a state where energy is concentrated at the end of the focus beam 1a. Energy distribution of diameters can be realized.
이러한 이유로 특허문헌 2에 따른 방법으로 절단하면 특허문헌 1에 비해 훨씬 매끄러운 절단면을 얻을 수 있는 것으로 알려져 있다.For this reason, it is known that when cut | disconnected by the method according to patent document 2, the cut surface which is much smoother than patent document 1 can be obtained.
그런데 특허문헌 1, 2의 가공기술은 공통적으로 베셀빔 형상의 초점빔(1a)을 이용하여 재료를 가공하는 것으로서, 이러한 초점빔(1a)의 주변에는 잔류에너지가 폭넓게 존재하므로 재료의 두께방향을 따라 일정한 직경의 에너지분포를 구현하기가 어렵다. 이로 인해 절단면의 거칠기를 개선하는데 일정한 한계가 있고, 에너지 효율을 높이는데도 한계가 있다. However, the processing techniques of Patent Documents 1 and 2 commonly process materials using the Bessel beam-shaped focus beam 1a. Since the residual energy is widely present around the focus beam 1a, the thickness direction of the material is changed. Therefore, it is difficult to realize energy distribution of constant diameter. Because of this, there is a certain limit to improve the roughness of the cut surface, there is also a limit to increase the energy efficiency.
또한 포커싱렌즈(30)가 상대적으로 큰 직경의 링 빔을 집속하여 베셀빔 형상의 초점빔(1a)을 형성하므로 초점빔(1a)의 직경을 줄이는데 한계가 있고, 이로 인해 가공 정밀도를 높이는데도 한계가 있다.In addition, since the focusing lens 30 focuses a ring beam having a relatively large diameter to form a focus beam 1a having a Bessel beam shape, there is a limit to reducing the diameter of the focus beam 1a, thereby limiting the accuracy of processing. There is.
또한 절단면의 멜팅이나 크랙으로 인해 절단공정 후에 소재를 분리할 때 손상이 발생하거나 쉽게 분리되지 않는 현상이 발생하는 문제가 있다.In addition, due to the melting or cracking of the cutting surface there is a problem that occurs when the material is separated after the cutting process, or damage is not easily separated.
또한 종래의 가공기술은 2개 이상의 기판이 겹쳐진 합판을 절단할 때 1회 공정으로 절단하는데 어려움이 있다. 따라서 일부 절단과 뒤집기 그리고 나머지 절단의 순으로 합판 절단을 진행해야 하므로 가공 생산성을 높이는데 한계가 있다.In addition, the conventional processing technology is difficult to cut in one process when cutting the plywood overlapping two or more substrates. Therefore, plywood cutting must be performed in the order of some cutting, flipping, and the other cutting, which limits the productivity.
한편 최근 들어 기판의 두께가 더욱 얇아질 뿐만 아니라 곡면 디스플레이의 등장으로 인해 절단면의 거칠기에 대한 기술적 요구가 더욱 엄격해지고 있기 때문에 이러한 추세에 대응하여 경면(mirror surface) 절단이 가능한 새로운 가공기술을 개발할 필요성이 커지고 있다.Meanwhile, in recent years, as the thickness of the substrate becomes thinner and the demand for the roughness of the cutting surface becomes more stringent due to the appearance of curved displays, it is necessary to develop a new processing technology capable of mirror surface cutting in response to this trend. Is growing.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 공개특허 제10-2016-0010397호(2016.01.27)(Patent Document 1) Republic of Korea Patent Publication No. 10-2016-0010397 (2016.01.27)
(특허문헌 2) 대한민국 공개특허 제10-2016-0010041호(2016.01.27)(Patent Document 2) Republic of Korea Patent Publication No. 10-2016-0010041 (2016.01.27)
본 발명은 이러한 종래의 문제점들을 해결하기 위한 것으로서, 취성 소재를 레이저로 가공할 때 멜팅, 깨짐, 크랙이 전혀 없이 경면(mirror surface) 절단이 가능하도록 하는데 그 목적이 있다. SUMMARY OF THE INVENTION The present invention has been made to solve these conventional problems, and has an object to enable mirror surface cutting without any melting, cracking or cracking when the brittle material is processed by laser.
또한 종래에 비해 훨씬 미세한 선폭으로 재료를 가공할 수 있고, 에너지 효율을 향상시킬 수 있는 레이저 가공기술을 제공하는데 그 목적이 있다.It is also an object of the present invention to provide a laser processing technology capable of processing a material with a much finer line width and improving energy efficiency.
또한 2개의 이상의 합판을 절단하는 경우에도 각 합판을 동일한 품질로 경면 절단할 수 있는 레이저 가공기술을 제공하는데 그 목적이 있다.It is also an object of the present invention to provide a laser processing technology capable of mirror cutting each plywood with the same quality even when cutting two or more plywood.
또한 절단공정 이후에 소재를 보다 쉽게 분리할 수 있는 레이저 가공기술을 제공하는데 그 목적이 있다.It is also an object of the present invention to provide a laser processing technology that can easily separate the material after the cutting process.
이러한 목적을 달성하기 위하여, 본 발명의 일 양상은, 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축과 광축 주변의 다수의 동심원 상에 에너지가 분포하는 베셀빔으로 변환하는 제1 광학계; 상기 베셀빔 또는 상기 베셀빔으로부터 분산된 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 제2 광학계; 상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 제3 광학계를 포함하는 취성 소재 가공을 위한 레이저용 광학계를 제공한다.In order to achieve this object, an aspect of the present invention, the Bessel beam in which the energy is distributed on the optical axis and a plurality of concentric circles around the optical axis based on the cross section orthogonal to the traveling direction of the ultra-short pulsed laser beam transmitted from the laser generation unit First optical system to convert to; A second optical system configured to focus the beam dispersed from the vessel beam or the vessel beam and generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction; It provides an optical system for a laser for processing a brittle material comprising a third optical system for focusing the pin beam or a beam dispersed from the pin beam inside the brittle material.
본 발명의 일 양상에 따른 레이저용 광학계에서, 상기 제1 광학계의 초점심도의 종단과 상기 제2 광학계의 입사면 사이의 거리(d)는 0 내지 0.1mm일 수 있다.In the laser optical system according to an aspect of the present invention, the distance d between the end of the depth of focus of the first optical system and the incident surface of the second optical system may be 0 to 0.1 mm.
또한 본 발명의 일 양상에 따른 레이저용 광학계에서, 상기 제1 광학계는 액시콘 렌즈(axicon lens)를 포함하고, 상기 제2 광학계는 콜리메이터 렌즈(collimator lens) 또는 비구면 렌즈(aspheric lens)를 포함할 수 있다.In the laser optical system according to an aspect of the present invention, the first optical system includes an axicon lens, and the second optical system includes a collimator lens or an aspheric lens. Can be.
본 발명의 다른 양상은, 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축을 중심으로 링 형상의 에너지 분포를 갖는 링 빔으로 변환하는 제1 광학계; 상기 링 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 제2 광학계; 상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 제3 광학계를 포함하는 취성 소재 가공을 위한 레이저용 광학계를 제공한다.Another aspect of the invention, the first optical system for converting the ultra-short pulsed laser beam transmitted from the laser generating unit to a ring beam having a ring-shaped energy distribution around the optical axis with respect to the cross section orthogonal to the traveling direction; A second optical system focusing the ring beam to generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction; It provides an optical system for a laser for processing a brittle material comprising a third optical system for focusing the pin beam or a beam dispersed from the pin beam inside the brittle material.
본 발명의 다른 양상에 따른 레이저용 광학계에서, 상기 제2 광학계의 입사면은 상기 제1 광학계의 초점심도의 내부에 위치할 수 있다.In the optical system for laser according to another aspect of the present invention, the incident surface of the second optical system may be located inside the depth of focus of the first optical system.
또한 본 발명의 다른 양상에 따른 레이저용 광학계에서, 상기 제1 광학계는 보텍스 렌즈(vortex lens)를 포함하고, 상기 제2 광학계는 콜리메이터 렌즈(collimator lens) 또는 비구면 렌즈(aspheric lens)를 포함할 수 있다.Further, in the laser optical system according to another aspect of the present invention, the first optical system may include a vortex lens, and the second optical system may include a collimator lens or an aspheric lens. have.
본 발명의 일 양상 또는 다른 양상에 따른 레이저용 광학계에서, 상기 제3 광학계는, 초점심도가 0.1 내지 3 ㎛ 이고, 개구수(NA값)가 0.1 내지 1.0 이며, 투과율이 50% 내지 99% 이며, 배율은 20 내지 100 일 수 있다.In the optical system for laser according to one aspect or the other aspect of the present invention, the third optical system has a depth of focus of 0.1 to 3 µm, a numerical aperture (NA value) of 0.1 to 1.0, and a transmittance of 50% to 99%. , Magnification may be 20 to 100.
본 발명의 또 다른 양상은, 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축과 광축 주변의 다수의 동심원 상에 에너지가 분포하는 베셀빔으로 변환하는 단계; 상기 베셀빔 또는 상기 베셀빔으로부터 분산된 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 단계; 상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 단계를 포함하는 레이저를 이용한 취성 소재 가공 방법을 제공한다.Another aspect of the invention, the step of converting the ultra-short pulsed laser beam transmitted from the laser generating unit into a Bessel beam, the energy is distributed on the optical axis and a plurality of concentric circles around the optical axis with respect to the cross section orthogonal to the traveling direction; Focusing beams dispersed from the vessel beam or the vessel beam to generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction; It provides a brittle material processing method using a laser comprising the step of focusing the pin beam or a beam dispersed from the pin beam inside the brittle material.
본 발명의 또 다른 양상은, 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축을 중심으로 링 형상의 에너지 분포를 갖는 링 빔으로 변환하는 단계; 상기 링 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 단계; 상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 단계를 포함하는 레이저를 이용한 취성 소재 가공 방법을 제공한다.Another aspect of the present invention, the step of converting the ultra-short pulsed laser beam transmitted from the laser generator to a ring beam having a ring-shaped energy distribution around the optical axis with respect to the cross section orthogonal to the traveling direction; Focusing the ring beam to generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction; It provides a brittle material processing method using a laser comprising the step of focusing the pin beam or a beam dispersed from the pin beam inside the brittle material.
본 발명에 따른 취성 소재 가공방법은, 상기 취성소재의 절단면으로부터 떨어진 양측에서 절단면으로부터 멀어지는 힘을 가하거나, 상기 취성소재의 절단면으로부터 떨어진 양측에서 출사면을 누르는 힘을 가하는 동시에 절단면의 부근에서 입사면을 누르는 힘을 가하여 절단면을 분리하는 단계를 더 포함할 수 있다.In the brittle material processing method according to the present invention, the force applied away from the cutting surface on both sides away from the cutting surface of the brittle material, or the force pressing the exit surface on both sides away from the cutting surface of the brittle material at the same time the incident surface in the vicinity of the cutting surface It may further comprise the step of separating the cutting surface by applying a pressing force.
본 발명에 따르면, 초단파 펄스 레이저 빔을 광축 부근에 초고밀도로 집속하여 빔의 진행방향을 따라 빔 직경의 변동이 매우 적은 핀 빔(pin beam)을 형성하고, 이러한 레이저 핀 빔을 취성 소재에 입사시켜 가공함으로써 멜팅, 깨짐, 크랙이 전혀 없는 경면(mirror surface) 절단을 구현할 수 있다.According to the present invention, an ultra-high density pulsed laser beam is focused near the optical axis to form a pin beam with a very small change in beam diameter along the beam traveling direction, and the laser pin beam is incident on a brittle material. It is possible to achieve mirror surface cutting with no melting, cracking or cracking by machining.
또한 본 발명에 따르면, 핀 빔으로 절단된 절단면이 매우 깨끗하기 때문에 절단된 재료를 더욱 쉽게 분리할 수 있고, 분리과정에서 크랙 등의 손상을 방지할 수 있다. 또한 취성 소재의 내부에 형성되는 핀 빔의 직경이 매우 작기 때문에 가공정밀도를 크게 향상시킬 수 있다.Further, according to the present invention, since the cut surface cut by the pin beam is very clean, the cut material can be separated more easily, and damage such as cracks can be prevented in the separating process. In addition, since the diameter of the pin beam formed inside the brittle material is very small, the processing accuracy can be greatly improved.
또한 본 발명에 따른 레이저 핀 빔은 베셀빔이나 가우시안 빔에 비하여 광축에서의 에너지 밀도가 매우 높기 때문에 상대적으로 저출력의 레이저 광원을 사용할 수 있어 에너지 효율 및 생산성을 향상시킬 수 있는 이점이 있다.In addition, since the laser fin beam according to the present invention has a very high energy density in the optical axis compared to the Bessel beam or the Gaussian beam, a laser light source having a relatively low output power can be used to improve energy efficiency and productivity.
또한 본 발명에 따르면 취성 소재의 두께와 유사하거나 더 긴 길이를 갖는 핀 빔을 형성할 수 있으며, 따라서 포커싱 렌즈의 초점을 조절하지 않고도 소재 내부 전체를 절단할 수 있을 뿐만 아니라 1회 공정만으로 2장 이상의 합판을 동일한 품질로 한꺼번에 절단할 수 있다.In addition, according to the present invention, it is possible to form a pin beam having a length similar to or longer than the thickness of the brittle material, and thus not only can cut the entire inside of the material without adjusting the focusing lens but also two pieces in one process. The above plywood can be cut at once with the same quality.
도 1은 종래의 레이저 가공장치의 구성도1 is a block diagram of a conventional laser processing apparatus
도 2는 베셀빔 형상의 초점빔을 투명 소재 내부에 형성하여 가공하는 모습을 나타낸 도면2 is a view showing a state in which a focus beam of a Bessel beam shape is formed inside a transparent material and processed;
도 3은 베셀빔 형상의 초점빔을 투명 소재 외부에 형성하여 가공하는 모습을 나타낸 도면3 is a view illustrating a process of forming and processing a vessel beam-shaped focus beam outside the transparent material;
도 4는 본 발명의 제1 실시 예에 따른 레이저 가공장치의 구성도4 is a block diagram of a laser processing apparatus according to a first embodiment of the present invention
도 5는 제2 광학계의 위치를 나타낸 도면5 shows the position of the second optical system;
도 6은 가우시안 빔, 베셀빔 및 핀 빔의 초점빔 형상을 대비한 도면6 is a view comparing focus beam shapes of a Gaussian beam, a Bessel beam, and a fin beam;
도 7은 제2 광학계와 제3 광학계의 간격을 조절하는 모습을 나타낸 도면7 is a view illustrating a state in which the distance between the second optical system and the third optical system is adjusted.
도 8은 제1 광학계와 제2 광학계의 간격을 조절하는 모습을 나타낸 도면8 is a diagram illustrating a state in which a distance between the first optical system and the second optical system is adjusted.
도 9는 본 발명의 제1 실시 예에 따른 취성 소재 가공 방법의 흐름도9 is a flow chart of a brittle material processing method according to a first embodiment of the present invention
도 10은 절단면을 나타낸 사진10 is a photograph showing a cutting plane
도 11은 절단 후 분리 방법을 나타낸 도면11 is a view showing a separation method after cutting.
도 12는 본 발명의 제2 실시 예에 따른 레이저 가공장치의 구성도12 is a block diagram of a laser processing apparatus according to a second embodiment of the present invention
이하에서는 도면을 참조하여 본 발명의 바람직한 실시 예를 설명한다.Hereinafter, with reference to the drawings will be described a preferred embodiment of the present invention.
참고로 본 명세서에서 어떤 부분이 어떤 구성요소를 포함하는 것은 특별히 반대되는 기재가 없다면 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한 단수의 표현은 문맥상 명백하게 구별되는 의미가 아닌 한 복수의 의미를 포함할 수 있다. 또한 본 명세서에 첨부된 도면에는 이해의 편의를 위하여 실제와 다른 치수, 비율 또는 형상으로 나타낸 부분이 있는데 이로 인해 본 발명의 범위가 제한적으로 해석되어서는 아니 됨은 물론이다.For reference, in this specification, any part includes a certain component means that the component may further include other components, without excluding other components, unless specifically stated otherwise. In addition, singular forms may include plural meanings unless the context clearly indicates them. In addition, the drawings attached to the present specification for the convenience of understanding there is a portion shown in the dimensions, proportions or shapes different from the actual because of this, of course, the scope of the present invention is not to be construed as limited.
제1 실시 예First embodiment
도 4는 본 발명의 제1 실시 예에 따른 취성 소재 가공을 위한 레이저 가공장치의 개략적인 구성도이다. 도 4의 (a)는 광학계 구성을 나타낸 것이고, 도 4의 (b)와 (c)는 각각 광학계의 여러 위치에서 레이저 빔의 단면 형상과 에너지 밀도 분포를 나타낸 것이다.4 is a schematic configuration diagram of a laser processing apparatus for processing a brittle material according to a first embodiment of the present invention. 4 (a) shows the optical system configuration, and FIGS. 4 (b) and 4 (c) show the cross-sectional shape and energy density distribution of the laser beam at various positions of the optical system, respectively.
본 발명의 제1 실시 예에 따른 레이저 가공 장치는 레이저 발생부(도면에는 나타내지 않았음), 제1 광학계(110), 제2 광학계(120) 및 제3 광학계(130)를 포함한다. 도면에는 나타내지 않았으나, 레이저 발생부와 제1 광학계(110)의 사이에는 미러, 조리개, 스플리터 등의 선택적 조합으로 이루어진 전달광학계가 위치할 수 있다.The laser processing apparatus according to the first embodiment of the present invention includes a laser generating unit (not shown), a first optical system 110, a second optical system 120, and a third optical system 130. Although not shown in the drawings, a transmission optical system including an optional combination of a mirror, an aperture, a splitter, and the like may be located between the laser generator and the first optical system 110.
레이저 발생부는 초단파 펄스 레이저 빔을 생성한다. 예를 들어 펨토초(FS) 내지 피코초(PS)의 펄스 폭을 갖는 초단파 펄스 레이저 빔을 생성할 수 있으며, 레이저 파장 영역은 예를 들어 515nm ~ 1550nm 일 수 있다. 다만 펄스폭이나 파장대가 반드시 이에 한정되는 것은 아니다. The laser generator generates an ultra-short pulsed laser beam. For example, an ultra-short pulsed laser beam having a pulse width of femtosecond (FS) to picoseconds (PS) may be generated, and the laser wavelength region may be, for example, 515 nm to 1550 nm. However, the pulse width or wavelength band is not necessarily limited thereto.
한편 레이저 발생부는 버스트 모드(burst mode)가 아닌 싱글모드(single mode)의 펄스 레이저를 출력하는 것이 바람직하다. 버스트 모드(burst mode)의 펄스 레이저는 싱글모드에 비해서 첨두 출력이 낮기 때문에 핀 빔의 에너지 밀도를 높이는데 한계가 있기 때문이다. 그러나 반드시 이에 한정되는 것은 아니며, 레이저 출력이나 가공조건에 따라서는 버스트 모드 레이저를 사용할 수도 있다.On the other hand, it is preferable that the laser generator outputs a pulsed laser of a single mode rather than a burst mode. Burst mode pulse lasers have a lower peak output than single mode, which limits the energy density of the pin beam. However, the present invention is not limited thereto, and a burst mode laser may be used depending on the laser output or processing conditions.
제1 광학계(110)는 레이저 발생부로부터 전파되는 가우시안 빔을 베셀빔으로 변환하는 것으로서, 예를 들어 액시콘 렌즈(axicon lens)로 이루어지거나 액시콘 렌즈를 포함할 수 있다. The first optical system 110 converts the Gaussian beam propagated from the laser generator into a Bessel beam, and may be formed of, for example, an axicon lens or an axicon lens.
제1 광학계(110)에 의해 생성된 베셀빔은 도면에 나타낸 바와 같이 광축에서 에너지 밀도가 가장 크고 광축 주변에는 다수의 동심원 형상의 에너지 밀도 분포를 갖는다.As shown in the drawing, the Bessel beam generated by the first optical system 110 has the largest energy density in the optical axis and has a plurality of concentric energy distributions around the optical axis.
제2 광학계(120)는 제1 광학계(110)로부터 전달된 레이저 빔을 초점에 집속하여 핀 빔(pin beam)을 형성하는 것으로서, 예를 들어 콜리메이터 렌즈(collimator lens) 또는 비구면 렌즈(aspheric lens)로 이루어지거나, 콜리메이터 렌즈 또는 비구면 렌즈를 포함할 수 있다.The second optical system 120 focuses the laser beam transmitted from the first optical system 110 to focus and forms a pin beam. For example, a collimator lens or an aspheric lens is formed. It may be made of, or may include a collimator lens or an aspherical lens.
제2 광학계(120)는 제1 광학계(110)의 초점에 매우 근접한 위치에 설치되는 것이 바람직하다. 이렇게 하면 제1 광학계(110)에 의해 생성된 베셀빔에 집중된 에너지가 분산되지 않고 제2 광학계(120)의 초점 부근에 집속됨으로써 초고밀도의 핀 빔이 형성될 수 있다.The second optical system 120 is preferably installed at a position very close to the focal point of the first optical system 110. In this case, the energy concentrated in the Bessel beam generated by the first optical system 110 is concentrated and concentrated near the focal point of the second optical system 120, thereby forming an extremely high-density pin beam.
제2 광학계(120)의 초점은 제2 광학계(120)와 제3 광학계(130)의 사이에 위치하는 것이 바람직하다. 도면에는 제2 광학계(120)의 초점이 제2 광학계(120)와 제3 광학계(130)의 중간에 위치하는 것으로 나타나 있으나 이에 한정되는 것은 아니다. 예를 들어 제2 광학계(120)의 초점 부근에 제3 광학계(130)의 입사면을 위치시킬 수도 있다.The focus of the second optical system 120 is preferably located between the second optical system 120 and the third optical system 130. In the drawing, although the focus of the second optical system 120 is positioned between the second optical system 120 and the third optical system 130, the present invention is not limited thereto. For example, the incident surface of the third optical system 130 may be positioned near the focal point of the second optical system 120.
제2 광학계(120)의 초점에 형성되는 핀 빔의 에너지 밀도 분포는, 도면에 나타낸 바와 같이, 광축에 대부분의 에너지가 집중되고 그 주변에는 무시할 수 있을 정도의 잔에너지(extra energy)가 존재한다. 따라서 전체적으로 중앙에 에너지가 집중되어 핀과 유사한 에너지 밀도 분포를 갖는다.In the energy density distribution of the pin beam formed at the focal point of the second optical system 120, as shown in the drawing, most of the energy is concentrated on the optical axis, and there is negligible extra energy around it. . Therefore, the energy is concentrated in the center as a whole and has an energy density distribution similar to that of a fin.
다른 관점에서 보면, 제2 광학계(120)의 초점에 형성되는 핀 빔은 진행방향에 직교하는 단면을 기준으로 점(spot) 형상으로 이루어진다. In other respects, the pin beam formed at the focal point of the second optical system 120 has a spot shape based on a cross section perpendicular to the traveling direction.
제2 광학계(120)에 의해 형성된 핀 빔은 제2 광학계(120)의 초점을 지나면서 약간 발산되어 베셀빔과 유사한 형태로 변형되어 제3 광학계(130)에 입사될 수 있다.The pin beam formed by the second optical system 120 may diverge slightly while passing through the focal point of the second optical system 120 to be transformed into a shape similar to the Bessel beam, and may be incident on the third optical system 130.
한편 도 5는 제1 광학계(110)에 대한 제2 광학계(120)의 위치를 예시한 것인데, 제2 광학계(120)의 입사면이 제1 광학계(110)의 초점심도(Z)의 종단으로부터 거리(d)만큼 이격된 모습을 나타내고 있다. Meanwhile, FIG. 5 illustrates the position of the second optical system 120 with respect to the first optical system 110, wherein the incident surface of the second optical system 120 is formed from the end of the focal depth Z of the first optical system 110. The distance d is shown.
거리(d)는 제1 광학계(110)와 제2 광학계(120)의 광학 특성이나 제1 광학계(110)에 입사하는 레이저 빔의 직경 등에 따라 적절히 선택될 수 있다.The distance d may be appropriately selected according to the optical characteristics of the first optical system 110 and the second optical system 120 or the diameter of the laser beam incident on the first optical system 110.
실험에 따르면, 거리(d)가 0 내지 0.1mm 인 경우에 제2 광학계(120)의 초점에 형성되는 핀 빔의 광축 부근 에너지 밀도가 가장 높은 것으로 나타났다. According to the experiment, when the distance d is 0 to 0.1 mm, the energy density near the optical axis of the pin beam formed at the focal point of the second optical system 120 is the highest.
이는 베셀빔의 에너지는 초점심도(z)의 종단에 강하게 집중되는 경향이 있으므로 베셀빔이 분산되어 링 빔으로 변환되기 전에 제2 광학계(120)가 이를 집속하면 핀 빔의 에너지 밀도를 극대화시킬 수 있기 때문이다.This is because the energy of the Bessel beam tends to be strongly concentrated at the end of the depth of focus (z), so if the second optical system 120 focuses it before the Bessel beam is dispersed and converted into a ring beam, the energy density of the pin beam can be maximized. Because there is.
다만 레이저 출력특성이나 취성소재의 특정에 따라서는 제2 광학계(120)의 입사면을 제1 광학계(110)의 초점심도(Z)의 종단보다 약간 앞쪽(즉, 거리(d))가 음수가 되는 곳)에 위치시키거나, 초점심도(Z)의 종단으로부터 0.1mm 이상 이격시킬 수도 있다.However, depending on the laser output characteristics or the specification of the brittle material, the incident surface of the second optical system 120 may be slightly negative (ie, the distance d) ahead of the end of the focal depth Z of the first optical system 110. It is also possible to place it at a distance of 0.1 mm or more from the end of the depth of focus Z).
제3 광학계(130)는 일종의 포커싱 렌즈(Focusing lens)로서, 제2 광학계(120)에 의해 형성된 핀 빔을 취성소재 내부의 특정 위치에 집속시키는 역할을 한다. 즉, 제3 광학계(130)의 초점은 가공 대상인 투명 취성 소재의 내부에 위치한다. The third optical system 130 is a kind of focusing lens, and focuses a pin beam formed by the second optical system 120 at a specific position inside the brittle material. That is, the focal point of the third optical system 130 is located inside the transparent brittle material to be processed.
전술한 바와 같이 제2 광학계(120)에 의해 형성된 핀 빔은 진행과정에서 베셀빔과 유사한 형태로 변형되어 제3 광학계(130)에 입사될 수 있다. 그러나 제3 광학계(130)에 입사되는 베셀빔은 제1 광학계(110)에 의해 형성된 베셀빔 보다 직경이 훨씬 작기 때문에 제3 광학계(130)를 통해 다시 집속시키면 취성소재의 내부에 초고밀도의 핀 빔을 형성할 수 있다.As described above, the pin beam formed by the second optical system 120 may be transformed into a shape similar to the Bessel beam in the process and may be incident on the third optical system 130. However, since the Bessel beam incident on the third optical system 130 is much smaller in diameter than the Bessel beam formed by the first optical system 110, when the light is focused again through the third optical system 130, the pins of ultra high density are formed inside the brittle material. It can form a beam.
실험에 의하면, 제3 광학계(130)의 초점심도는 0.1 내지 3 ㎛ 것이 바람직하다. 또한 제3 광학계(130)의 개구수(numerical aperture; NA)는 0.1 내지 1.0 의 사이, 바람직하게는 0.5 내지 0.99 사이다. 또한 제3 광학계(130)의 투과율은 50% 내지 99 %이하의 범위인 것이 바람직하다. 또한 제3 광학계(130)의 배율은 20 에서 100 까지의 배율 중에서 선택되는 것이 바람직하다.According to the experiment, the depth of focus of the third optical system 130 is preferably 0.1 to 3 μm. Also, the numerical aperture NA of the third optical system 130 is between 0.1 and 1.0, preferably between 0.5 and 0.99. In addition, the transmittance of the third optical system 130 is preferably in the range of 50% to 99% or less. In addition, the magnification of the third optical system 130 is preferably selected from the magnification of 20 to 100.
한편 소재 내부의 초점 위치를 나타낸 도 6을 참조하면, 가우시안 빔은 소재의 중앙에 대부분의 에너지가 집중되고(도 6(a)), 베셀빔은 대략 다이아몬드 형태이긴 하지만 가우시안 빔과 마찬가지로 소재의 중앙에 대부분의 에너지가 집중된다(도 6(b)). 반면에 본 발명에 따른 레이저 핀 빔은, 도 6(c)에 나타낸 바와 같이, 소재의 두께 방향을 따라 매우 일정한 폭으로 에너지가 분포된다. Meanwhile, referring to FIG. 6, which shows a focal position inside the material, the Gaussian beam concentrates most of its energy in the center of the material (FIG. 6 (a)), and the Bessel beam is roughly diamond-shaped, but similarly to the Gaussian beam. Most of the energy is concentrated (Fig. 6 (b)). On the other hand, the laser fin beam according to the present invention, as shown in Figure 6 (c), the energy is distributed in a very constant width along the thickness direction of the material.
또한 가우시안 빔으로 소재 내부에 초점을 형성하는 경우에는 초점빔의 직경이 20~35㎛ 정도이고, 베셀빔으로 소재 내부에 초점을 형성하는 경우에는 초점빔의 직경이 10~15㎛ 정도인 것으로 알려져 있다.In addition, when the focus is formed inside the material by the Gaussian beam, the diameter of the focus beam is about 20 to 35 µm, and when the focus is formed by the Bessel beam, the diameter of the focus beam is about 10 to 15 µm. have.
반면에 본 발명의 실시 예에 따라 생성된 레이저 핀 빔의 초점빔은 그 직경이 0.5~1.8㎛ 정도이므로 가우시안 빔이나 베셀빔에 비하여 훨씬 작은 선폭으로 재료를 정밀하게 가공할 수 있다. 또한 소재의 두께 방향으로 훨씬 균일한 에너지 분포를 가지므로 레이저 빔의 입사면에서 출사면에 이르기까지 균일한 절단이 가능하고, 에너지 불균형으로 인한 멜팅, 크랙 등이 최소화되므로 종래 보다 훨씬 매끄러운 경면절단이 가능하다.On the other hand, the focal beam of the laser pin beam generated according to the embodiment of the present invention has a diameter of about 0.5 to 1.8 μm, so that the material can be precisely processed with a much smaller line width than the Gaussian beam or the Bessel beam. In addition, since it has a much more uniform energy distribution in the thickness direction of the material, it is possible to cut uniformly from the entrance surface to the exit surface of the laser beam. It is possible.
보다 구체적으로 설명하면, 피코 초 내지 펨토 초 레이저는 매우 짧은 펄스폭과 높은 피크(peak) 에너지를 가지므로 극소부위에 고밀도 에너지 중첩 현상을 발생시킨다. More specifically, the picosecond to femtosecond lasers have very short pulse widths and high peak energy, and thus generate high-density energy superposition at the very small sites.
특히, 본 발명의 실시 예에 따른 레이저 핀 빔은 베셀빔이나 가우시안 빔에 비하여 매우 좁은 영역에 순간적으로 고밀도 에너지가 집중된 것이므로 펄스에너지가 서로 중첩되면서 취성 소재에 전달되고 중첩된 펄스에너지는 열에너지로 전환된다.In particular, since the laser pin beam according to the embodiment of the present invention concentrates high density energy in a very narrow area in comparison to the Bessel beam or Gaussian beam, the pulse energy is transmitted to the brittle material while overlapping each other, and the superimposed pulse energy is converted into thermal energy. do.
또한 취성 소재의 내부로 입사된 초단파 펄스는 매우 짧은 시간 동안 열을 발생하고 사라지기 때문에 재료의 재융착이나 다른 부분의 열적 변형을 최소화할 수 있고 이를 통해 아주 매끄러운 절단면을 얻을 수 있다.In addition, microwave pulses incident into the brittle material generate heat and disappear for a very short time, minimizing refusion of the material and thermal deformation of other parts, resulting in a very smooth cut.
또한 레이저 핀 빔의 고밀도 펄스 에너지는 극소 부위에 아주 강하게 집중되면서 강한 직진성을 가지게 되고, 이로 인해 취성 소재 내부에는 핀 형상의 에너지 집중영역(초점빔)이 진행방향을 따라 길게 형성된다. In addition, the high-density pulse energy of the laser pin beam is very strongly concentrated at a very small portion, and has a strong straightness. As a result, a fin-shaped energy concentration region (focal beam) is formed in the brittle material along the traveling direction.
즉, 제3 광학계(130)의 초점심도는 0.1 내지 3 ㎛ 정도에 불과하지만, 취성 소재의 내부에서는 전술한 펄스에너지 중첩에 의한 열 흡수(heat accumulation)와 레이저 플라즈마 상호작용(Laser Plasma Interaction)이 복합적으로 발생함에 따라 매우 길고 일정한 직경의 초점빔이 형성된다.In other words, the depth of focus of the third optical system 130 is only about 0.1 to 3 μm, but inside the brittle material, heat accumulation and laser plasma interaction due to the overlapping pulse energy are As a result of this combination, very long and constant diameter focal beams are formed.
예를 들어 500㎛ 두께의 유리 중간에 레이저 핀 빔의 초점을 형성하면 초점빔이 약 200㎛ 정도의 길이로 형성되며, 이와 같이 길고 균일하게 형성된 초점빔에 의해 매우 깨끗한 절단면을 얻을 수 있다.For example, when the focal point of the laser pin beam is formed in the middle of the glass having a thickness of 500 μm, the focal beam is formed to have a length of about 200 μm, and thus a very clean cut surface can be obtained by the long and uniformly formed focal beam.
특히 초점 빔에 강하게 중첩된 에너지가 레이저 핀 빔의 진행경로를 따라 입사면과 출사면으로 전달되면서 초점 빔의 앞쪽과 뒤쪽 영역에서도 경면 절단이 이루어지며, 이를 통해 전체 두께에 걸쳐 완벽한 경면 절단이 가능하다.In particular, the energy superimposed on the focal beam is transmitted to the entrance and exit planes along the path of the laser pin beam, and mirror cutting is also performed in the front and rear areas of the focal beam, thereby allowing perfect mirror cutting over the entire thickness. Do.
한편 실험에 따르면, 본 발명의 실시 예에 따른 레이저 가공장치를 사용하여 300㎛ 유리를 펄스폭 10~15 피코초, 펄스에너지 200μJ의 레이저로 절단하면 경면절단이 가능하고, 1~10 피코초 펄스레이저를 사용하면 300~500㎛ 유리를 경면절단할 수 있는 것으로 나타났다. 따라서 펄스폭이 짧고 펼스에너지가 클수록 보다 두꺼운 유리를 경면절단할 수 있음을 알 수 있다.On the other hand, according to the experiment, using a laser processing apparatus according to an embodiment of the present invention when cutting 300㎛ glass with a pulse width of 10 ~ 15 picoseconds, pulse energy of 200μJ laser, mirror cutting is possible, 1 ~ 10 picosecond pulse It was shown that the laser can mirror cut 300 ~ 500㎛ glass. Therefore, the shorter the pulse width and the larger the pull energy, the thicker the glass can be seen to be cut.
본 발명의 실시 예에 따른 레이저 핀 빔은 소재의 두께 방향을 따른 에너지 분포가 매우 균일하므로 단판이 아닌 합판을 절단할 때도 뒤집기(flip) 없이 1번의 가공으로 합판을 동시에 경면 절단할 수 있다.Since the laser fin beam according to the embodiment of the present invention has a very uniform energy distribution along the thickness direction of the material, even when cutting the plywood instead of the single plate, it is possible to mirror-cut the plywood simultaneously in one process without flipping.
실험에 따르면 각각 0.005mm~1.0mm 정도의 두께를 갖는 2개의 유리기판을 0.005mm~0.1mm의 에어 갭을 사이에 두고 부착한 상태에서 절단공정을 진행한 결과 2개의 유리기판이 거의 동일한 품질로 경면 절단되는 것을 확인할 수 있었다.According to the experiment, two glass substrates each having a thickness of about 0.005 mm to 1.0 mm were attached with an air gap of 0.005 mm to 0.1 mm interposed therebetween. It was confirmed that the mirror was cut.
또한 베셀빔을 이용하여 소재를 가공하는 경우에는 12~20W 정도의 레이저출력이 필요하지만, 본 발명에 따르면 핀 빔의 높은 에너지 밀도로 인해 1~5W 정도의 레이저 출력만으로도 가공이 가능한 것으로 나타났다. 따라서 본 발명에 따르면 에너지 효율을 종래보다 크게 개선할 수 있고 공정비용을 크게 절감할 수 있는 이점이 있다.In addition, when processing the material using the Bessel beam, the laser power of about 12 to 20W is required, but according to the present invention, the laser beam of about 1 to 5W can be processed due to the high energy density of the pin beam. Therefore, according to the present invention, the energy efficiency can be greatly improved than before, and there is an advantage of greatly reducing the process cost.
이와 같이 본 발명의 실시 예에 따르면, 가우시안 빔을 이용하는 레이저 어블레이션(Laser Ablation)이나 베셀빔을 이용하는 종래의 방법에 비하여 취성소재의 가공품질과 생산성을 크게 향상시킬 수 있다.As described above, according to the exemplary embodiment of the present invention, the processing quality and productivity of the brittle material can be greatly improved as compared with the laser ablation using the Gaussian beam or the conventional method using the Bessel beam.
본 발명의 제1 실시 예에 따른 레이저 가공장치는 취성소재에 입사되는 핀 빔의 폭과 길이를 조절할 수도 있다. 구체적으로는, 제1 광학계(110)로 입사되는 가우시안 빔의 빔 폭을 조절하거나, 제1 광학계(110)와 제2 광학계(120)의 간격을 조절하거나, 제2 광학계(120)와 제3 광학계(130)의 간격을 조절함으로써 레이저 핀 빔의 폭과 길이를 조절할 수 있다.The laser processing apparatus according to the first embodiment of the present invention may adjust the width and length of the pin beam incident on the brittle material. Specifically, the beam width of the Gaussian beam incident on the first optical system 110 is adjusted, or the distance between the first optical system 110 and the second optical system 120 is adjusted, or the second optical system 120 and the third optical system are adjusted. By adjusting the distance of the optical system 130, it is possible to adjust the width and length of the laser pin beam.
일 예로서, 도 7에 나타낸 바와 같이, 제1 광학계(110)와 제2 광학계(120)를 지지하는 제1 스테이션(210)을 광축 방향을 따라 이동시키면서 제2 광학계(120)와 제3 광학계(130)의 거리를 변화시키면 제3 광학계(130)에 입사되는 빔의 폭이 달라지므로 이를 통해 재료에 입사되는 핀 빔의 길이나 폭을 조절할 수 있다.For example, as shown in FIG. 7, the second optical system 120 and the third optical system are moved along the optical axis direction while moving the first station 210 supporting the first optical system 110 and the second optical system 120. If the distance of the 130 is changed, the width of the beam incident on the third optical system 130 is changed, thereby adjusting the length or width of the pin beam incident on the material.
다른 예로서, 도 8에 나타낸 바와 같이, 제2 광학계(120)와 제3 광학계(130)를 지지하는 제2 스테이션(220)을 광축 방향을 따라 이동시키면서 제1 광학계(110)와 제2 광학계(120)의 거리를 변화시키면 제2 광학계(120)에 입사되는 빔의 폭이 달라지므로 이를 통해 재료에 입사되는 핀 빔의 길이나 폭을 조절할 수 있다.As another example, as shown in FIG. 8, the first optical system 110 and the second optical system are moved while moving the second station 220 supporting the second optical system 120 and the third optical system 130 along the optical axis direction. If the distance of 120 is changed, the width of the beam incident on the second optical system 120 is changed, thereby adjusting the length or width of the pin beam incident on the material.
또 다른 예로서, 제1 광학계(110)로 입사되는 레이저 빔의 빔 폭을 조절하는 동시에 제1 스테이션(210) 및/또는 제2 스테이션(220)을 이용하여 각 렌즈(110,120,130) 간의 거리를 조절하면서 재료에 입사되는 핀 빔의 길이나 폭을 조절할 수도 있다.As another example, the distance between each lens 110, 120, 130 may be adjusted using the first station 210 and / or the second station 220 while simultaneously adjusting the beam width of the laser beam incident on the first optical system 110. You can also adjust the length or width of the pin beam incident on the material.
도면에는 나타내지 않았으나, 제1 스테이션(210)은 제1 광학계(110)와 제2 광학계(120)를 일정 거리 이격시켜서 고정시키는 케이스나 지지봉 등의 지지구조를 포함할 수 있다. 또한 제1 스테이션(210)을 이동시키는 이송레일과 모터 등의 구동수단을 포함할 수 있다. Although not shown in the drawing, the first station 210 may include a support structure such as a case or a support rod for fixing the first optical system 110 and the second optical system 120 at a predetermined distance. In addition, it may include a driving means such as a transfer rail and a motor for moving the first station (210).
마찬가지로 제2 스테이션(210)도 제2 광학계(120)와 제3 광학계(130)를 일정 거리 이격시켜서 고정시키는 지지구조를 포함할 수 있고, 이송레일, 모터 등의 구동수단을 포함할 수 있다.Similarly, the second station 210 may also include a support structure for fixing the second optical system 120 and the third optical system 130 at a predetermined distance, and may include a driving means such as a transfer rail and a motor.
이하에서는 도 9의 흐름도를 참조하여 본 발명에 따른 취성 소재 가공 방법을 설명한다.Hereinafter, a brittle material processing method according to the present invention will be described with reference to the flowchart of FIG. 9.
먼저 레이저 발생부에서 생성된 초단파 레이저 빔은 전달광학계를 거쳐 가우시안 에너지 분포를 갖는 가우시안 빔 형태로 제1 광학계(110)에 입사한다. (S10)First, the microwave laser beam generated by the laser generator is incident on the first optical system 110 in the form of a Gaussian beam having a Gaussian energy distribution through a transmission optical system. (S10)
제1 광학계(110)는 입사된 레이저 빔을 회절시켜 진행방향에 직교하는 단면을 기준으로 다수의 동심원 형태의 에너지 분포를 갖는 베셀빔으로 변환한다.(S20)The first optical system 110 diffracts the incident laser beam and converts the incident laser beam into a Bessel beam having a plurality of concentric energy distributions based on a cross section perpendicular to the traveling direction.
베셀빔은 제1 광학계(110)의 초점심도 종단에 근접 설치된 제2 광학계(120)를 거치면서 제2 광학계(120)의 초점에 집속되며 광축에 에너지가 고밀도로 집중된 핀 빔으로 변환된다. (S30)The Bessel beam is focused on the focus of the second optical system 120 while passing through the second optical system 120 installed near the end of the depth of focus of the first optical system 110, and is converted into a pin beam in which energy is concentrated at an optical axis with high density. (S30)
제2 광학계(120)에 의해 생성된 핀 빔은 제3 광학계(130)에 의해 취성 소재의 내부에 핀 빔으로 다시 집속되며, 핀 빔의 입사 방향을 따라 취성 소재가 가공된다. (S40,S50) The pin beam generated by the second optical system 120 is focused again by the third optical system 130 into the pin beam, and the brittle material is processed along the direction of incidence of the pin beam. (S40, S50)
도 10은 종래 기술에 의한 유리 가공 결과를 나타낸 사진(a, b)과 본 발명의 실시 예에 따른 유리 가공 결과를 나타낸 사진(c,d)이다.10 is a photograph (a, b) showing a glass processing result according to the prior art and a photo (c, d) showing a glass processing result according to an embodiment of the present invention.
도 10(a)는 가우시안 빔의 필라멘테이션을 이용하여 유리를 절단한 경우를 나타낸 것으로서, 절단면의 거칠기가 0.4㎛~0.5㎛ 정도로 매끄럽지 못하고 미세한 크랙들이 존재한다.FIG. 10 (a) shows a case where the glass is cut by filamentation of a Gaussian beam. The roughness of the cut surface is not smooth as about 0.4 μm to 0.5 μm, and there are minute cracks.
도 10(b)는 베셀빔을 이용하여 유리를 절단한 경우를 나타낸 것으로서, 도 10(a)에 비하여 절단면이 매끄럽기는 하지만 거철기가 0.2㎛~0.3㎛ 정도로 충분히 매끄럽지 못하다. 또한 베셀빔의 에너지가 집중된 영역에서만 비교적 매끄럽게 절단되고 주변영역에서는 제대로 절단이 이루어지지 않기 때문에 분리 공정 중에 깨지는 현상이 나타난다.FIG. 10 (b) shows a case in which the glass is cut using a Bessel beam, but the cut surface is smoother than that of FIG. 10 (a), but the metal scraper is not smooth enough as about 0.2 μm to 0.3 μm. In addition, since the Bessel beam is cut relatively smoothly only in the region where the energy of the Bessel beam is concentrated, it is broken during the separation process because the cutting is not performed properly in the peripheral region.
반면에, 본 발명의 실시 예에 따라 레이저 핀 빔을 이용하여 유리를 절단하면, 절단면의 거칠기를 0.01㎛ 이하로 낮출 수 있고 최대 0.001㎛ 까지 낮추는 것도 가능하다. 따라서 본 발명에 따르면 도 10(c)에 나타낸 바와 같이, 위 (a), (b)에 비해 훨씬 매끄러운 절단면을 얻을 수 있울 뿐만 아니라 크랙이 전혀 존재하지 않는 경면 절단을 할 수 있다.On the other hand, when the glass is cut using a laser pin beam according to an embodiment of the present invention, the roughness of the cut surface can be lowered to 0.01 μm or less, and it is also possible to lower the maximum to 0.001 μm. Therefore, according to the present invention, as shown in Fig. 10 (c), it is possible to obtain a much smoother cut surface than in the above (a), (b) as well as to perform a mirror cut without any cracks.
또한 도 10(d)에 나타낸 바와 같이 중간에 에어갭이 있는 합판을 절단한 경우에도 2개의 합판이 거의 동일한 품질로 매끄럽게 절단되는 것을 알 수 있다.Also, as shown in Fig. 10 (d), even when the plywood having an air gap in the middle is cut, it can be seen that the two plywoods are cut smoothly with almost the same quality.
한편 레이저 핀 빔을 이용하는 절단 방법이 취성소재에 가장 효율적으로 에너지를 전달하여 절단하는 방법이기는 하지만, 소재 내부에서의 빔의 굴절 및 난반사와 핀 빔 가장자리의 잔 에너지(extra energy)가 입사면(top surface)보다 출사면(bottom surface)에 더 많은 영향을 주기 때문에 절단면 전체에 걸쳐 에너지를 완벽하게 균일하게 배분하는 것은 불가능하다. On the other hand, although the cutting method using the laser pin beam is the most efficient method of transferring energy to the brittle material and cutting it, the refraction and diffuse reflection of the beam inside the material and the extra energy at the edge of the pin beam are the top of the incident surface. Since it affects the bottom surface more than the surface, it is impossible to distribute the energy perfectly evenly across the cut surface.
이러한 이유로 레이저 핀 빔을 이용하여 취성 소재를 경면 절단하더라도 이를 분리할 때는 방향성을 고려할 필요가 있다.For this reason, even when the brittle material is mirror-cut by using a laser pin beam, it is necessary to consider the orientation when separating it.
예를 들어 레이저 핀 빔을 이용하여 도 11(a)와 같은 형상으로 경면 절단을 하였다고 가정하면, 도 11의 (b)에서처럼 절단면에 수직한 방향으로, 즉, 절단면으로부터 멀어지는 방향으로 힘을 가하면 쉽게 분리가 되고 절단면이 매끄럽게 될 수 있다.For example, assuming that the mirror is cut in the shape as shown in FIG. 11 (a) using a laser pin beam, it is easy to apply a force in a direction perpendicular to the cut plane, that is, away from the cut plane, as shown in FIG. 11 (b). It can be separated and the cut surface can be smoothed.
또한 도 11의 (c)에 나타낸 바와 같이, 절단면 부근에서 취성소재의 상면(입사면)에 대해 아래쪽으로 누르는 힘을 가하는 동시에 절단면으로부터 떨어진 양측에서 취성소재의 하면(출사면)에 대해 위쪽으로 들어올리는 힘을 가하면 쉽게 분리가 되며 절단면이 매끄럽게 된다. In addition, as shown in Fig. 11 (c), the pressing force is applied downward to the upper surface (incidence surface) of the brittle material near the cut surface, and lifts upward with respect to the lower surface (emission surface) of the brittle material from both sides away from the cut surface. Applying the lifting force makes it easy to separate and smooth the cutting surface.
반면에, 도 11의 (d)에 도시된 바와 같이, 절단면 부근에서 취성소재의 하면(출사면)에 대해 위쪽으로 들어올리는 힘을 가하는 동시에 절단면으로부터 떨어진 취성소재의 양측에서 상면(입사면)에 대해 아래로 누르는 힘을 가하면 쉽게 분리가 되지 않을 뿐만 아니라 분리가 되어도 절단면이 매끄럽지 않게 된다.On the other hand, as shown in (d) of FIG. 11, the upper surface (incident surface) on both sides of the brittle material away from the cutting surface while applying a lifting force upward to the lower surface (emission surface) of the brittle material near the cut surface. Applying a downward force on the side will not only make it difficult to separate, but also make the cutting edge smooth.
다시 말하면, 절단공정을 마친 취성소재를 분리할 때 양측 절단면의 하단(출사면쪽 단부)이 서로 접촉하거나 서로에 대해 간섭을 하지 않는 방향으로 힘을 가하면서 분리하면 원하는 유닛을 스크랩으로부터 훨씬 손쉽게 분리할 수 있다. In other words, when separating the brittle material after the cutting process, it is much easier to separate the desired unit from the scrap by applying the force in the direction that the lower ends of the two cutting surfaces (the end of the exit surface) do not touch or interfere with each other. Can be.
제2 실시 예Second embodiment
도 12는 본 발명의 제2 실시 예에 따른 취성 소재 가공을 위한 레이저 가공장치를 나타낸 것으로서, 도 12의 (a)는 광학계 구성을 나타낸 것이고, 도 12의 (b)와 (c)는 각각 광학계의 여러 위치에서 레이저 빔의 단면 형상과 에너지 밀도 분포를 나타낸 것이다.12 is a view illustrating a laser processing apparatus for processing a brittle material according to a second embodiment of the present invention. FIG. 12A illustrates an optical system configuration, and FIGS. 12B and 12C respectively illustrate an optical system. The cross-sectional shape and energy density distribution of the laser beam are shown at various positions of.
도면에 나타낸 바와 같이, 본 발명의 제2 실시 예에 따른 레이저 가공장치는, 제1 광학계(110a), 제2 광학계(120) 및 제3 광학계(130)를 포함한다. 또한 제1 실시 예와 마찬가지로, 도면에는 나타내지 않았으나, 레이저발생부를 포함하며, 레이저발생부와 제1 광학계(110)의 사이에는 미러, 조리개, 스플리터 등의 선택적 조합으로 이루어진 전달광학계가 위치할 수 있다.As shown in the drawing, the laser processing apparatus according to the second embodiment of the present invention includes a first optical system 110a, a second optical system 120 and a third optical system 130. In addition, like the first exemplary embodiment, although not shown in the drawings, a transmission optical system including a laser generating unit and a selective combination of a mirror, an aperture, a splitter, and the like may be located between the laser generating unit and the first optical system 110. .
본 발명의 제1 실시 예에서는 제1 광학계(110)가 레이저 발생부로부터 전달된 가우시안 빔을 베셀빔으로 변환하였으나, 본 발명의 제2 실시 예는 제1 광학계(110a)가 가우시안 빔을 링 빔으로 변환하여 제2 광학계(120)로 입사시키는 점에서 제1 실시 예와 차이가 있다.In the first embodiment of the present invention, the first optical system 110 converts the Gaussian beam transmitted from the laser generator into a Bessel beam. However, in the second embodiment of the present invention, the first optical system 110a converts the Gaussian beam into a ring beam. Is different from that of the first embodiment in that it is incident on the second optical system 120.
제1 광학계(110a)는 예를 들어 보텍스 렌즈(vortex lens)이거나 보텍스 렌즈를 포함하며, 보텍스 렌즈는 입사된 가우시안 빔의 경로를 광축을 중심으로 나선형으로 회전하면서 진행하도록 변경시킨다. 따라서 진행방향에 직교하는 단면을 기준으로 볼 때 보텍스 렌즈를 통과한 레이저 빔은 나선형의 에너지 분포를 가진다.The first optical system 110a may be, for example, a vortex lens or a vortex lens, and the vortex lens changes the path of the incident Gaussian beam to rotate while rotating helically about an optical axis. Therefore, the laser beam passing through the vortex lens has a spiral energy distribution based on the cross section perpendicular to the traveling direction.
그런데 보텍스 렌즈의 초점에서는 에너지 밀도 분포가 나선형에서 링 형으로 변환되며, 따라서 광축 부근에는 에너지 분포가 없고 주변부에만 링 형상으로 에너지가집중된 링 빔이 형성된다.However, at the focal point of the vortex lens, the energy density distribution is converted from a spiral to a ring shape, so that there is no energy distribution near the optical axis, and a ring beam in which energy is concentrated in a ring shape is formed only at the periphery.
제1 실시 예에서는 제1 광학계(110)에 의해 형성된 베셀빔이 분산되어 링 빔으로 변환되기 전에 제2 광학계(120)로 집속하여 핀 빔을 형성하는 것이 바람직하다고 하였는데, 베셀빔이 분산되면서 형성되는 링 빔은 그 직경이 크기 때문에 핀 빔으로 변환하면 에너지 밀도가 낮아질 수 있기 때문이다.In the first embodiment, it is preferable to form a fin beam by focusing on the second optical system 120 before the Bessel beam formed by the first optical system 110 is dispersed and converted into a ring beam. Since the ring beam is large in diameter, the energy density can be reduced by converting it into a pin beam.
그러나 보텍스 렌즈의 초점에 형성되는 링 빔은 제1 실시 예에서 베셀빔이 분산되면서 형성되는 링 빔에 비하여 직경이 매우 작을 뿐만 아니라 에너지 밀도가 매우 높기 때문에 제2 광학계(120)를 이용하여 초고밀도의 핀 빔으로 변환할 수 있다.However, since the ring beam formed at the focal point of the vortex lens has a very small diameter and a very high energy density, compared to the ring beam formed by dispersing the Bessel beam in the first embodiment, the ring beam formed by the second optical system 120 is extremely high density. Can be converted to a pin beam.
제2 광학계(120)는 제1 광학계(110a)의 초점에 형성된 링 빔을 집속하여 핀 빔으로 형성하는 역할을 하며, 콜리메이터 렌즈(collimator lens) 또는 비구면 렌즈(aspheric lens)이거나, 콜리메이터 렌즈 또는 비구면 렌즈를 포함할 수 있다. The second optical system 120 focuses the ring beam formed at the focal point of the first optical system 110a to form a pin beam, and is a collimator lens or an aspheric lens, or a collimator lens or aspheric surface. It may include a lens.
제2 광학계(120)의 입사면은 제1 광학계(110a)의 초점심도 내에 위치하는 것이 바람직하며, 이렇게 하면 제1 광학계(110a)의 초점에 형성된 링 빔의 에너지가 분산되기 전에 제2 광학계(120)를 통해 핀 빔으로 집속 될 수 있다.Preferably, the incident surface of the second optical system 120 is located within the depth of focus of the first optical system 110a. In this case, before the energy of the ring beam formed at the focus of the first optical system 110a is dispersed, the second optical system ( Through 120, it can be focused with a pin beam.
제1 실시 예와 마찬가지로 제2 광학계(120)의 초점은 제2 광학계(120)와 제3 광학계(130)의 사이에 위치하는 것이 바람직하다. As in the first embodiment, the focus of the second optical system 120 is preferably located between the second optical system 120 and the third optical system 130.
제1 광학계(110)에 의해 생성된 링 빔이 제2 광학계(120)의 초점에 집속 되면 진행방향에 직교하는 단면을 기준으로 볼 때 광축 부근에 대부분의 에너지가 집중된 점(spot) 형상의 고밀도 핀 빔으로 변환된다. When the ring beam generated by the first optical system 110 is focused at the focal point of the second optical system 120, a high-density spot shape where most energy is concentrated near the optical axis based on a cross section perpendicular to the traveling direction Is converted to a pin beam.
제3 광학계(130)는 포커싱 렌즈(Focusing lens)로서, 제2 광학계(120)에 의해 형성된 핀 빔을 취성소재의 내부로 집속시킨다. 제3 광학계(130)의 초심심도, 개구수, 투과율 등은 제1 실시 예에서 설명한 바와 같다.The third optical system 130 is a focusing lens, focusing the pin beam formed by the second optical system 120 into the brittle material. The depth of field, numerical aperture, transmittance, etc. of the third optical system 130 are as described in the first embodiment.
이상에서는 본 발명의 바람직한 실시 예를 설명하였으나 본 발명은 전술한 실시 예에 한정되지 않고 구체적인 적용과정에서 다양하게 변형 또는 수정되어 실시될 수 있으며, 변형 또는 수정된 실시 예도 후술하는 특허청구범위에 개시된 본 발명의 기술적 사상을 포함한다면 본 발명의 권리범위에 속함은 물론이다.In the above description of the preferred embodiment of the present invention, the present invention is not limited to the above-described embodiments, but may be variously modified or modified in a specific application process, and the modified or modified embodiments are also disclosed in the claims below. Of course, if included in the technical scope of the present invention belongs to the scope of the present invention.
[부호의 설명][Description of the code]
50: 취성 소재 110: 제1 광학계,50: brittle material 110: first optical system,
120: 제2 광학계 130: 제3 광학계,120: second optical system 130: third optical system,
210: 제1 스테이션 220: 제2 스테이션.210: first station 220: second station.

Claims (12)

  1. 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축과 광축 주변의 다수의 동심원 상에 에너지가 분포하는 베셀빔으로 변환하는 제1 광학계;A first optical system for converting the ultra-short pulsed laser beam transmitted from the laser generator into a Bessel beam in which energy is distributed on an optical axis and a plurality of concentric circles around the optical axis based on a cross section orthogonal to a traveling direction;
    상기 베셀빔 또는 상기 베셀빔으로부터 분산된 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 제2 광학계;A second optical system configured to focus the beam dispersed from the vessel beam or the vessel beam and generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction;
    상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 제3 광학계A third optical system for focusing the pin beam or the beam dispersed from the pin beam inside the brittle material
    를 포함하는 취성 소재 가공을 위한 레이저용 광학계Laser optical system for processing brittle materials including
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 광학계의 초점심도의 종단과 상기 제2 광학계의 입사면 사이의 거리(d)는 0 내지 0.1mm인 것을 특징으로 하는 취성 소재 가공을 위한 레이저용 광학계.And a distance d between the end of the depth of focus of the first optical system and the incident surface of the second optical system is 0 to 0.1 mm.
  3. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,
    상기 제1 광학계는 액시콘 렌즈(axicon lens)를 포함하고, 상기 제2 광학계는 콜리메이터 렌즈(collimator lens) 또는 비구면 렌즈(aspheric lens)를 포함하는 것을 특징으로 하는 취성 소재 가공을 위한 레이저용 광학계.The first optical system includes an axicon lens, and the second optical system includes a collimator lens (collimator lens) or an aspheric lens (aspheric lens), the optical system for laser for processing a brittle material.
  4. 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축을 중심으로 링 형상의 에너지 분포를 갖는 링 빔으로 변환하는 제1 광학계;A first optical system for converting the ultra-short pulsed laser beam transmitted from the laser generating unit into a ring beam having a ring-shaped energy distribution around an optical axis based on a cross section orthogonal to a traveling direction;
    상기 링 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 제2 광학계;A second optical system focusing the ring beam to generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction;
    상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 제3 광학계A third optical system for focusing the pin beam or the beam dispersed from the pin beam inside the brittle material
    를 포함하는 취성 소재 가공을 위한 레이저용 광학계.Laser optical system for processing a brittle material comprising a.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 제2 광학계의 입사면은 상기 제1 광학계의 초점심도의 내부에 위치하는 것을 특징으로 하는 취성 소재 가공을 위한 레이저용 광학계The incident surface of the second optical system is located within the depth of focus of the first optical system for the laser optical system for processing a brittle material, characterized in that
  6. 제4항 또는 제5항에 있어서, The method according to claim 4 or 5,
    상기 제1 광학계는 보텍스 렌즈(vortex lens)를 포함하고, 상기 제2 광학계는 콜리메이터 렌즈(collimator lens) 또는 비구면 렌즈(aspheric lens)를 포함하는 것을 특징으로 하는 취성 소재 가공을 위한 레이저용 광학계The first optical system includes a vortex lens, and the second optical system includes a collimator lens or an aspheric lens.
  7. 제1항 또는 제4항에 있어서, The method according to claim 1 or 4,
    상기 제3 광학계는, 초점심도가 0.1 내지 3 ㎛ 이고, 개구수(NA값)가 0.1 내지 1.0 이며, 투과율이 50% 내지 99% 이며, 배율은 20 내지 100 인 것을 특징으로 하는 취성 소재 가공을 위한 레이저용 광학계The third optical system has a depth of focus of 0.1 to 3 µm, a numerical aperture (NA value) of 0.1 to 1.0, a transmittance of 50% to 99%, and a magnification of 20 to 100. System for laser
  8. 초단파 펄스 레이저 빔을 생성하는 레이저 발생부;A laser generator for generating an ultra-short pulsed laser beam;
    상기 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축과 광축 주변의 다수의 동심원 상에 에너지가 분포하는 베셀빔으로 변환하는 제1 광학계;A first optical system converting the ultra-short pulsed laser beam transmitted from the laser generator into a Bessel beam in which energy is distributed on an optical axis and a plurality of concentric circles around the optical axis based on a cross section orthogonal to a traveling direction;
    상기 베셀빔 또는 상기 베셀빔으로부터 분산된 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 제2 광학계;A second optical system configured to focus the beam dispersed from the vessel beam or the vessel beam and generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction;
    상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 제3 광학계A third optical system for focusing the pin beam or the beam dispersed from the pin beam inside the brittle material
    를 포함하는 취성 소재 가공을 위한 레이저 가공 장치Laser processing apparatus for brittle material processing
  9. 초단파 펄스 레이저 빔을 생성하는 레이저 발생부;A laser generator for generating an ultra-short pulsed laser beam;
    상기 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축을 중심으로 링 형상의 에너지 분포를 갖는 링 빔으로 변환하는 제1 광학계;A first optical system for converting the ultra-short pulsed laser beam transmitted from the laser generator into a ring beam having a ring-shaped energy distribution around an optical axis based on a cross section perpendicular to a traveling direction;
    상기 링 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 제2 광학계;A second optical system focusing the ring beam to generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction;
    상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 제3 광학계A third optical system for focusing the pin beam or the beam dispersed from the pin beam inside the brittle material
    를 포함하는 취성 소재 가공을 위한 레이저 가공 장치.Laser processing apparatus for processing a brittle material comprising a.
  10. 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축과 광축 주변의 다수의 동심원 상에 에너지가 분포하는 베셀빔으로 변환하는 단계;Converting the ultra-short pulsed laser beam transmitted from the laser generator into a Bessel beam in which energy is distributed on an optical axis and a plurality of concentric circles around the optical axis based on a cross section orthogonal to a traveling direction;
    상기 베셀빔 또는 상기 베셀빔으로부터 분산된 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 단계; Focusing beams dispersed from the vessel beam or the vessel beam to generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction;
    상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 단계Focusing the pin beam or a beam scattered from the pin beam inside the brittle material
    를 포함하는 레이저를 이용한 취성 소재 가공 방법Brittle material processing method using a laser containing
  11. 레이저 발생부로부터 전달된 초단파 펄스 레이저 빔을 진행방향에 직교하는 단면을 기준으로 광축을 중심으로 링 형상의 에너지 분포를 갖는 링 빔으로 변환하는 단계;Converting the ultra-short pulsed laser beam transmitted from the laser generator into a ring beam having a ring-shaped energy distribution around an optical axis based on a cross section orthogonal to a traveling direction;
    상기 링 빔을 집속하여 진행방향에 직교하는 단면을 기준으로 광축에 점(spot) 형상으로 에너지가 집중된 핀 빔(pin beam)을 생성하는 단계;Focusing the ring beam to generate a pin beam in which energy is concentrated in a spot shape on an optical axis based on a cross section orthogonal to a traveling direction;
    상기 핀 빔 또는 상기 핀 빔으로부터 분산된 빔을 취성 소재의 내부에 집속시키는 단계Focusing the pin beam or a beam scattered from the pin beam inside the brittle material
    를 포함하는 레이저를 이용한 취성 소재 가공 방법Brittle material processing method using a laser containing
  12. 제10항 또는 제11항에 있어서,The method according to claim 10 or 11, wherein
    상기 취성소재의 절단면으로부터 떨어진 양측에서 절단면으로부터 멀어지는 힘을 가하거나, 상기 취성소재의 절단면으로부터 떨어진 양측에서 출사면을 누르는 힘을 가하는 동시에 절단면의 부근에서 입사면을 누르는 힘을 가하여 절단면을 분리하는 단계를 더 포함하는 것을 특징으로 하는 레이저를 이용한 취성 소재 가공 방법.Separating the cut surface by applying a force away from the cut surface on both sides away from the cut surface of the brittle material, or applying a force to press the exit surface on both sides away from the cut surface of the brittle material, and at the same time applying a force to press the incident surface in the vicinity of the cut surface; Brittle material processing method using a laser, characterized in that it further comprises.
PCT/KR2017/004109 2016-04-25 2017-04-17 Method and apparatus for processing brittle material by using laser pin beam, and optical system therefor WO2017188639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0050222 2016-04-25
KR20160050222 2016-04-25

Publications (1)

Publication Number Publication Date
WO2017188639A1 true WO2017188639A1 (en) 2017-11-02

Family

ID=59924078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004109 WO2017188639A1 (en) 2016-04-25 2017-04-17 Method and apparatus for processing brittle material by using laser pin beam, and optical system therefor

Country Status (2)

Country Link
KR (1) KR101774290B1 (en)
WO (1) WO2017188639A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108161250A (en) * 2018-01-30 2018-06-15 苏州德龙激光股份有限公司 Multifocal DYNAMIC DISTRIBUTION laser machines the method and device of brittle transparent material
CN109676246A (en) * 2019-01-26 2019-04-26 江苏先河激光研究院有限公司 Split type laser focusing device
US10494290B2 (en) 2016-01-14 2019-12-03 Corning Incorporated Dual-airy-beam systems and methods for processing glass substrates
TWI716216B (en) * 2019-12-06 2021-01-11 財團法人工業技術研究院 Bessel beam homogenization module
CN114043091A (en) * 2021-11-25 2022-02-15 兰州理工大学 Laser additive manufacturing device with coaxially fed silk powder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210064444A (en) 2019-11-25 2021-06-03 삼성전자주식회사 substrate dicing method, manufacturing method of semiconductor device and semiconductor chip manufactured by them
CN111037115A (en) * 2019-12-30 2020-04-21 英诺激光科技股份有限公司 Laser cutting method and device for matte glass
WO2021262537A1 (en) * 2020-06-25 2021-12-30 Corning Incorporated Methods for laser processing transparent workpieces using radially variable laser beam focal columns
CN114083144B (en) * 2020-12-31 2023-01-17 武汉华工激光工程有限责任公司 Method and apparatus for controlling optical cut width of transparent brittle material
CN113333965B (en) * 2021-05-13 2022-10-28 西安交通大学 Quartz glass invisible cutting method based on Bessel light beam
CN113427123B (en) * 2021-07-07 2023-02-24 齐鲁空天信息研究院 High-beam light beam generating device, deep hole laser processing device and method
KR20230029557A (en) * 2021-08-23 2023-03-03 주식회사 대곤코퍼레이션 Laser Beam Processing Apparatus And Object Cutting Method Using Its

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027570A1 (en) * 2004-09-28 2010-02-04 Hitachi Via Mechanics, Ltd. Fiber laser based production of laser drilled microvias for multi-layer drilling, dicing, trimming or milling applications
KR20140072448A (en) * 2012-12-04 2014-06-13 주식회사 나래나노텍 Improved Cutting Device, System, and Method of Glass
US20140199519A1 (en) * 2013-01-15 2014-07-17 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US20150166393A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Laser cutting of ion-exchangeable glass substrates
KR20160010041A (en) * 2014-07-18 2016-01-27 전상욱 Method and apparatus for processing of brittle material with filamentation of laser diffraction beam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100027570A1 (en) * 2004-09-28 2010-02-04 Hitachi Via Mechanics, Ltd. Fiber laser based production of laser drilled microvias for multi-layer drilling, dicing, trimming or milling applications
KR20140072448A (en) * 2012-12-04 2014-06-13 주식회사 나래나노텍 Improved Cutting Device, System, and Method of Glass
US20140199519A1 (en) * 2013-01-15 2014-07-17 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US20150166393A1 (en) * 2013-12-17 2015-06-18 Corning Incorporated Laser cutting of ion-exchangeable glass substrates
KR20160010041A (en) * 2014-07-18 2016-01-27 전상욱 Method and apparatus for processing of brittle material with filamentation of laser diffraction beam

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10494290B2 (en) 2016-01-14 2019-12-03 Corning Incorporated Dual-airy-beam systems and methods for processing glass substrates
CN108161250A (en) * 2018-01-30 2018-06-15 苏州德龙激光股份有限公司 Multifocal DYNAMIC DISTRIBUTION laser machines the method and device of brittle transparent material
CN109676246A (en) * 2019-01-26 2019-04-26 江苏先河激光研究院有限公司 Split type laser focusing device
TWI716216B (en) * 2019-12-06 2021-01-11 財團法人工業技術研究院 Bessel beam homogenization module
CN114043091A (en) * 2021-11-25 2022-02-15 兰州理工大学 Laser additive manufacturing device with coaxially fed silk powder
CN114043091B (en) * 2021-11-25 2024-02-09 兰州理工大学 Laser additive manufacturing device for coaxially feeding silk powder

Also Published As

Publication number Publication date
KR101774290B1 (en) 2017-09-04

Similar Documents

Publication Publication Date Title
WO2017188639A1 (en) Method and apparatus for processing brittle material by using laser pin beam, and optical system therefor
US20210347673A1 (en) Laser cutting and removal of contoured shapes from transparent substrates
KR102423775B1 (en) Laser processing of transparent materials
US6252197B1 (en) Method and apparatus for separating non-metallic substrates utilizing a supplemental mechanical force applicator
US6259058B1 (en) Apparatus for separating non-metallic substrates
KR102230762B1 (en) Method of and device for the laser-based machining of sheet-like substrates using a laser beam focal line
US6420678B1 (en) Method for separating non-metallic substrates
US6211488B1 (en) Method and apparatus for separating non-metallic substrates utilizing a laser initiated scribe
US6355908B1 (en) Method and apparatus for focusing a laser
WO2014027738A1 (en) Transparent specimen cutting method using ultrafast laser and dicing device
WO2017055576A1 (en) Method and device for laser processing of transparent materials
US20060154449A1 (en) Method of laser processing a wafer
KR20210080612A (en) Laser processing of slots and holes
CN207521870U (en) Laser output system based on homogenizer
Li et al. Stealth dicing of sapphire sheets with low surface roughness, zero kerf width, debris/crack-free and zero taper using a femtosecond Bessel beam
KR20160055892A (en) Laser processing method and laser processing apparatus
JP2010099708A (en) Method and apparatus for processing cut surface of cut material
WO2022108234A1 (en) Method and apparatus for cutting ceramic
US11573379B2 (en) Laser welding of optical fibers in perforated elements and associated optical elements
CN107315301A (en) Ultrafast laser frequency tripling devices and methods therefor
CN112996627A (en) Mitigation of low surface quality
JP2007021527A (en) Laser beam machining method
Wang et al. Advanced techniques in quartz wafer precision processing: Stealth dicing based on filament-induced laser machining
WO2012050376A2 (en) Ultrathin wafer micro-machining method and apparatus by laser rail-roading technique
Horn et al. Dynamical detection of optical phase changes during micro-welding of glass with ultra-short laser radiation

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789824

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM XXXX DATED 13.03.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17789824

Country of ref document: EP

Kind code of ref document: A1