WO2017188297A1 - Resist composition and method for producing device using same - Google Patents

Resist composition and method for producing device using same Download PDF

Info

Publication number
WO2017188297A1
WO2017188297A1 PCT/JP2017/016486 JP2017016486W WO2017188297A1 WO 2017188297 A1 WO2017188297 A1 WO 2017188297A1 JP 2017016486 W JP2017016486 W JP 2017016486W WO 2017188297 A1 WO2017188297 A1 WO 2017188297A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
acid
resist composition
carbon
Prior art date
Application number
PCT/JP2017/016486
Other languages
French (fr)
Japanese (ja)
Inventor
智至 榎本
優介 菅
Original Assignee
東洋合成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋合成工業株式会社 filed Critical 東洋合成工業株式会社
Priority to KR1020187033395A priority Critical patent/KR20190004300A/en
Priority to JP2018514653A priority patent/JP6827037B2/en
Publication of WO2017188297A1 publication Critical patent/WO2017188297A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/06Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing halogen atoms, or nitro or nitroso groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/18Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0048Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • Some embodiments of the present invention relate to a composition that can be used for forming a resist pattern and a method for producing a device using the composition.
  • Chemically-amplified photoresists have been proposed as photoresists suitable for short wavelengths (Patent Documents 1 to 3).
  • a feature of the chemically amplified photoresist is that an acid is generated from a photoacid generator as a component upon exposure to exposure light, and this acid causes an acid-catalyzed reaction with a resist compound or the like by heat treatment after exposure.
  • EUV Extreme Ultra Violet
  • EUV Extra Violet
  • the biggest drawback of EUV lithography is the lack of output of the EUV light source. For this reason, a highly sensitive photoresist is required, but there is a trade-off relationship among sensitivity, resolution, and LWR (Line Width Roughness). Therefore, there is a problem that increasing the sensitivity lowers resolution and increases roughness.
  • One object of some embodiments of the present invention is to provide a resist composition that can improve the efficiency of acid generation.
  • Another object of some aspects of the present invention is to provide a device manufacturing method using the resist composition that is suitably used as a photoresist composition that satisfies high sensitivity, high resolution, and high LWR characteristics. is there.
  • a photosensitizer precursor that can be dissociated by an acid to become a photosensitizer, a photoacid generator, a hydroxy group-containing compound
  • the acid generation efficiency can be improved by using a resist composition containing an acid-reactive compound as a chemically amplified resist composition. More specifically, in pattern formation using a chemically amplified photoresist containing a photoacid generator, a chemical composition comprising a photosensitizer precursor, a photoacid generator, a hydroxy group-containing compound, and an acid-reactive compound is chemically treated.
  • the photosensitizer precursor is acid-dissociated with an acid generated from the photoacid generator by irradiation with a first active energy ray such as EUV light or electron beam (EB), and photosensitized. It was found that, when the photosensitizer is further irradiated with UV light or the like second, electron transfer to the photoacid generator occurs and the acid generation efficiency is improved.
  • a first active energy ray such as EUV light or electron beam (EB)
  • One aspect of the present invention is a resist composition
  • a photosensitizer precursor represented by the following general formula (1) a photoacid generator, a hydroxy group-containing compound, and an acid-reactive compound. is there.
  • Ar 1 and Ar 2 are each independently a phenylene group optionally having a substituent
  • R 1 is any one selected from the group consisting of an optionally substituted thioalkoxy group, arylthio group, and thioalkoxyphenyl group
  • X is any selected from the group consisting of a sulfur atom, an oxygen atom and a direct bond
  • R 2 is either an alkyl group or an aryl group which may have a substituent
  • Y is each independently one of an oxygen atom and a sulfur atom
  • R 3 and R 4 are each independently a linear, branched or cyclic alkyl group which may have a substituent
  • R 3 and R 4 are bonded to each other to form a compound It may form a ring structure with two Y in the inside, At least one of the carbon-carbon single bonds in the alkyl group of R 1 , R 2 , R 3 and R 4 may be replaced with a carbon-carbon double bond or a carbon-carbon triple bond
  • the resist composition according to one embodiment of the present invention improves the acid generation efficiency of the photoacid generator and has high sensitivity, high resolution, and high LWR characteristics.
  • Photosensitizer precursor in one embodiment of the present invention is represented by the following general formula (1).
  • Ar 1 and Ar 2 are each independently a phenylene group optionally having a substituent
  • R 1 is any one selected from the group consisting of an optionally substituted thioalkoxy group, arylthio group, and thioalkoxyphenyl group
  • X is any selected from the group consisting of a sulfur atom, an oxygen atom and a direct bond
  • R 2 is either an alkyl group or an aryl group which may have a substituent
  • Y is each independently one of an oxygen atom and a sulfur atom
  • R 3 and R 4 are each independently a linear, branched or cyclic alkyl group that may have a substituent, R 3 and R 4 may be bonded to each other to form a ring structure with two Ys in the formula, At least one of the carbon-carbon single bonds in the alkyl group of R 1 , R 2 , R 3 and R 4 may be replaced with a carbon-carbon double bond or a carbon-carbon triple bond; At least one of the
  • the sum of Hammett substituent constants ⁇ is preferably 0.2 or less.
  • the sum of Hammett substituent constants ⁇ refers to each Ar 1 , based on a group in which two quaternary carbons bonded to Y, Ar 1 and Ar 2 are bonded in the general formula (1).
  • Hammett substituent constant [sigma] is used in 1935 to discuss the effect of substituents on the reaction or equilibrium of benzene derivatives quantitatively. P.
  • the total sum of Hammett substituent constants ⁇ of the photosensitizer precursor is preferably 0.2 or less, and more preferably ⁇ 0.01 or less. Further, it is preferably ⁇ 3.00 or more.
  • the Hammett substituent constant ⁇ of the substituent of Ar 1 in the general formula (1) is preferably 1 or less.
  • the Hammett substituent constant ⁇ of the substituent of Ar 2 in the general formula (1) is preferably 1 or less.
  • the sum of Hammett substituent constant ⁇ of the substituent of Ar 1 and Hammett substituent constant ⁇ of the substituent of Ar 2 is 0.2 or less, so that the Hammett substituent constant ⁇ of the photosensitizer precursor is reduced. Is less than 0.2.
  • the photoacid becomes when the photosensitizer precursor is acid-dissociated and becomes a photosensitizer.
  • the acid generation efficiency of the generator can be improved.
  • an electron-donating group or an electron-withdrawing substituent is appropriately selected for Ar 1 and Ar 2.
  • the Hammett substituent constant ⁇ may be adjusted by introducing an electron donating group at an appropriate position.
  • Ar 1 and Ar 2 in the above formula (1) are each a phenylene group, and each of them is a substituent other than R 1 or —X—R 2 (hereinafter, the substituents of Ar 1 and Ar 2 are referred to as “first It may be referred to as a “substituent”.
  • Ar 1 and Ar 2 are preferably bonded directly or indirectly to form a ring from the viewpoint of synthesis.
  • the first substituent include an electron donating group.
  • Specific examples of the electron donating group include an alkyl group, an alkoxy group, an alkoxyphenyl group, a thioalkoxy group, an arylthio group, and a thioalkoxyphenyl group. Can be mentioned.
  • Examples of the first substituent include a long-chain alkoxy group having a polyethylene glycol chain (— (CH 2 CH 2 O) n —). Further, when the first substituent is bonded to the para position of Ar 1 or Ar 2 , it may have a hydroxy group as the first substituent.
  • the substitution position such as “para-position” of Ar 1 or Ar 2 is the position relative to the group to which the two quaternary carbons bonded to Ar 1 and Ar 2 in the above formula (1) are bonded.
  • the criterion for the substitution position such as “para-position” is the position with respect to the group bonded to the quaternary carbon.
  • the alkyl group as the first substituent is not particularly limited, but includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, t-butyl group, cyclohexyl group, adamantyl group, etc.
  • Examples thereof include linear, branched and cyclic alkyl groups having 1 to 20 carbon atoms.
  • the alkoxy group as the first substituent is not particularly limited, and examples thereof include an alkoxy group having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • Examples of the thioalkoxy group, arylthio group and thioalkoxyphenyl group as the first substituent include the same thioalkoxy groups, arylthio groups and thioalkoxyphenyl groups of R 1 described later.
  • the first substituent is an alkoxy group, an alkoxyphenyl group, a thioalkoxy group, an arylthio group, or a thioalkoxyphenyl group
  • the first substituent is bonded to the ortho position and / or the para position of the phenylene group that is Ar 1 and Ar 2.
  • the total number of the first substituent group of the Ar 1 and Ar 2 is 3 or less.
  • R 1 in the above formula (1) is any selected from the group consisting of a thioalkoxy group, an arylthio group and a thioalkoxyphenyl group which may have a substituent.
  • the thioalkoxy group for R 1 is preferably a thioalkoxy group having 1 to 20 carbon atoms such as a thiomethoxy group, a thioethoxy group, a thio n-propoxy group, or a thio n-butoxy group, and a thioalkoxy group having 1 to 12 carbon atoms.
  • An alkoxy group is more preferable.
  • Specific examples of the arylthio group for R 1 include a phenylthio group and a naphthylthio group.
  • thioalkoxyphenyl group represented by R 1 include a phenyl group to which a thioalkoxy group having 1 to 20 carbon atoms such as a thiomethoxyphenyl group, a thioethoxyphenyl group, a thiopropoxyphenyl group, or a thiobutoxyphenyl is bonded. More preferred is a phenyl group to which a thioalkoxy group having 1 to 12 carbon atoms is bonded. No particular restriction on the substitution position of thioalkoxy group attached to the phenylene group in R 1, but it is the para position is preferred from the viewpoint of increasing the molar extinction coefficient of the electron-donating and 365 nm. R 1 is preferably bonded to the ortho or para position of the phenylene group that is Ar 1 .
  • R 2 in the above formula (1) is either an alkyl group or an aryl group which may have a substituent.
  • the alkyl group for R 2 include a straight chain or branched chain having 1 to 20 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an isopropyl group, a t-butyl group, and a cyclohexyl group.
  • cyclic alkyl groups examples of the aryl group for R 2 include a phenyl group and a naphthyl group.
  • R 1 and R 2 in the above formula (1) may have a substituent, and as the substituent (hereinafter, the substituents of R 1 and R 2 are referred to as “second substituent”), although it does not restrict
  • a polymerized group introduced into R 1 or R 2 and polymerized therefrom may be used as a polymer imparted with a sensitizing action. That is, a polymer including a unit having a function of a photosensitizer precursor as a unit is also a photosensitizer precursor in one embodiment of the present invention, and the second substituent includes a polymer main chain. Also good.
  • the polymerizable group include a (meth) acryloyloxy group, an epoxy group, and a vinyl group. Note that “(meth) acryloyl” represents acryloyl and methacryloyl.
  • X in the formula (1) is an oxygen atom or a sulfur atom, it is preferable that the X is an ortho position or a para position of Ar 2 .
  • X is a direct bond, it is preferable that X is an ortho or para position of Ar 2 .
  • At least one of the carbon-carbon single bonds in R 1 , R 2 , the alkyl group of the first substituent and the second substituent is replaced with a carbon-carbon double bond or a carbon-carbon triple bond. Also good.
  • at least one of the methylene groups in the alkyl group of R 1 , R 2 , the first substituent and the second substituent may be replaced with a divalent heteroatom-containing group. Examples of the divalent heteroatom-containing group include —O—, —CO—, —COO—, —OCO—, —O—CO—O—, —NHCO—, —CONH—, and —NH—CO—O—.
  • R 1 , R 2 , the first substituent, and the second substituent do not have a continuous connection of heteroatoms such as —O—O— and —SS—.
  • R may be the same as the alkyl group exemplified as the first substituent.
  • Ar is the same as the aryl group for R 2 .
  • the total number of carbon atoms of R 1 in the above formula (1) is not particularly limited, and is preferably 1 to 20 carbon atoms regardless of the presence or absence of the substituent of R 1 .
  • the total carbon number of R 2 in the above formula (1) is not particularly limited, and is preferably 1 to 20 in total, regardless of the presence or absence of the substituent of R 2 .
  • the photosensitizer precursor is a polymer
  • the total carbon number of R 1 and R 2 excluding the portion containing the polymer main chain that becomes the second substituent is preferably 1-20.
  • R 1 , R 2 , the first substituent and the second substituent may have an acid dissociable group.
  • the acid-dissociable group may be any protecting group that is deprotected by the action of an acid, such as t-butoxycarbonyloxy group, methoxymethoxy group, ethoxymethoxy group, trimethylsilyloxy group, tetrahydropyranyloxy group, and 1- An ethoxyethoxy group etc. are mentioned.
  • the photosensitizer precursor has an acid-dissociable group, so that the solubility is changed by the action of an acid, and a solubility contrast is obtained in the exposed and unexposed areas. It is preferable because it is easily formed.
  • Y is each independently either an oxygen atom or a sulfur atom.
  • R 3 and R 4 are each independently a linear, branched or cyclic alkyl group which may have a substituent.
  • the alkyl group of R 3 and R 4 a straight chain having 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, t-butyl group, cyclohexyl group, etc. Examples include branched and cyclic alkyl groups. From the viewpoint of synthesis, R 3 and R 4 are preferably the same. In the present invention, when R 3 and R 4 are the groups shown above, the photosensitizer precursor may be deprotected with an acid to have a carbonyl group.
  • R 3 and R 4 may be bonded to each other to form a ring structure with two Ys in the formula. That is, the photosensitizer precursor in one embodiment of the present invention is preferably a cyclic acetal compound having a cyclic acetal protecting group represented by the following formula (2).
  • —R 5 —R 6 — is preferably — (CH 2 ) n —, and n is an integer of 2 or more.
  • n is not particularly limited as long as it is 2 or more, it is preferably 8 or less for ease of synthesis.
  • R 5 and R 6 correspond to those in which R 3 and R 4 in the above formula (1) are bonded to each other to form a ring.
  • an acyclic acetal has a lower activation energy than a cyclic acetal, and a cyclic acetal compound has a high hydrolysis rate.
  • a 5-membered ring structure such as 1,3-dioxolane has high activation energy and is stable, whereas a 6-membered ring such as 1,3-dioxane structure and 1,3-dioxepane. Those having the above structure have low activation energy.
  • the relative comparison value of the hydrolysis rate due to the difference in the structure of the cyclic acetal compound is described in, for example, Non-patent Document Green's PROTECTIVE GROUPS in ORGANIC SYNTHESIS Fourth Edition, A John Wiley & Sons, Inc. , Publication, p 448-449.
  • the photosensitizer precursor in one embodiment of the present invention preferably has a low activation energy of the acetal protecting group. This is because the photosensitizer precursor is easily converted into a photosensitizer by the deprotection reaction of acetal.
  • R 3 and R 4 are preferably a linear, branched or cyclic alkyl group, and more preferably a linear alkyl group.
  • —R 5 —R 6 — is a group in which n is 3 or more. (CH 2 ) n- is preferred.
  • R 3 and R 4 in the above formula (1) may have a substituent, and as the substituent (hereinafter, the substituents of R 3 and R 4 are referred to as “third substituent”), although it does not restrict
  • aryl groups such as a phenyl group and a naphthyl group, etc. are mentioned.
  • At least one of the carbon-carbon single bonds in the alkyl group of R 3 , R 4 and the third substituent may be replaced with a carbon-carbon double bond or a carbon-carbon triple bond.
  • at least one of methylene groups in the alkyl group of R 3 , R 4 and the third substituent may be replaced with the above divalent hetero atom-containing group.
  • the total carbon number of R 3 and R 4 in the above formula (1) is not particularly limited, and the photosensitizer precursor may be a constituent component of a polymer.
  • R 3 or R 4 preferably has a total carbon number of 1 to 20 regardless of the presence or absence of substituents.
  • R 5 and R 6 may have the same third substituent as R 3 and R 4 .
  • a polymer obtained by introducing a polymerizable group into R 3 or R 4 and polymerizing it may be used as a polymer imparted with a sensitizing action. That is, when the photosensitizer precursor in one embodiment of the present invention is a polymer including a unit having a photosensitizer precursor function as a unit, the third substituent is replaced with the third substituent.
  • the substituent may contain a polymer main chain.
  • the total carbon number of R 3 and R 4 is preferably 1-20.
  • the photosensitizer precursor is a polymer
  • the total number of carbon atoms of R 3 and R 4 excluding the portion containing the polymer main chain serving as the third substituent is preferably 1-20.
  • the photosensitizer after acid treatment of the photosensitizer precursor that is, the photosensitizer having a carbonyl group generated when the photosensitizer precursor is deprotected with an acid has a molar extinction coefficient at 365 nm of 1. It is preferable that it is 0.0 ⁇ 10 5 cm 2 / mol or more. A higher molar extinction coefficient at 365 nm is preferable, but a practical value is 1.0 ⁇ 10 10 cm 2 / mol or less.
  • the photosensitizer precursor has, for example, at least one selected from the group consisting of a thioalkoxy group, an arylthio group, and a thioalkoxyphenyl group, or an alkoxy group and A configuration having two or more aryloxy groups may be mentioned.
  • the molar extinction coefficient is at 365 nm in a chloroform solvent or acetonitrile solvent measured with a UV-VIS spectrophotometer using chloroform or acetonitrile as a solvent.
  • the molar extinction coefficient of the photosensitizer having a carbonyl group in some embodiments of the present invention can be within the above range in either a chloroform solvent or an acetonitrile solvent.
  • the photosensitizer precursor in one embodiment of the present invention is composed of -YR 3 and -YR 4 in the entire photosensitizer precursor from the viewpoint of ease of synthesis and light absorption characteristics.
  • the photosensitizer precursor represented by the above formula (1) for example, the following photosensitizer precursor can be exemplified. In the following examples, those shown in parentheses represent polymer units.
  • the photosensitizer precursor in some embodiments of the present invention is not limited to this.
  • the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (4)
  • the derivative represented by the above formula (3) and 1,3-propanediol obtained above are It can be obtained by reacting at 0 to 100 ° C. for 1 to 120 hours in the presence of an acid such as camphorsulfonic acid.
  • the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (5)
  • the derivative represented by the above formula (3) obtained above and methanethiol are combined with boron trichloride or the like. It can be obtained by reacting at -78 ° C to 0 ° C for 1 to 120 hours in the presence of a Lewis acid.
  • the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (6), the derivative represented by the above formula (3) obtained above and 3-mercapto-1-propanol It can be obtained by reacting at 0 to 100 ° C. for 1 to 120 hours in the presence of a Lewis acid such as zirconium chloride (IV).
  • a Lewis acid such as zirconium chloride (IV).
  • the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (7)
  • the derivative represented by the above formula (3) obtained above and methanethiol are combined with boron trichloride or the like. It can be obtained by reacting at 0 to 100 ° C. for 1 to 120 hours in the presence of a Lewis acid.
  • the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (8)
  • the derivative represented by the above formula (3) obtained above and 1,3-propanedithiol are obtained. It can be obtained by reacting at 0 to 100 ° C. for 1 to 120 hours in the presence of a Lewis acid such as boron trichloride.
  • the photosensitizer precursor in one embodiment of the present invention has a specific structure, the acetalization reaction can be efficiently advanced. It is preferable that Ar 1 and Ar 2 do not have a ring structure through a divalent group and the quaternary carbon. The reason is that when Ar 1 and Ar 2 have a ring structure via a divalent group and the quaternary carbon, for example, when having a skeleton such as thioxanthone, it is difficult to efficiently advance the acetalization reaction. There is a case. Therefore, it is preferable in the synthesis that Ar 1 and Ar 2 do not have a ring structure directly or via a divalent group and the quaternary carbon.
  • Photoacid generator in one embodiment of the present invention is not particularly limited as long as it is usually used in a chemically amplified resist composition, and examples thereof include onium salt compounds, N-sulfonyloxyimides. Examples thereof include compounds, halogen-containing compounds, diazoketone compounds and the like.
  • a photo-acid generator can be used individually by 1 type or in combination of 2 or more types.
  • the electron acceptability is preferably high, and the molar extinction coefficient with respect to 365 nm is preferably 1.0 ⁇ 10 4 cm 2 / mol or less.
  • onium salt compounds examples include sulfonium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • examples of the sulfonium salt and iodonium salt include those described in WO2011 / 093139. Specific examples include photoacid generators represented by the following formula (9) or (10), but are not limited thereto.
  • R a COOR b SO 3 ⁇ M + (9)
  • R a represents a monovalent organic group having 1 to 200 carbon atoms which may have a substituent
  • R b represents that some hydrogen atoms are substituted with fluorine atoms. Or a good hydrocarbon group.
  • M + represents a counter cation.
  • R a COOCH 2 CH 2 CFHCF 2 SO 3 ⁇ M + (10)
  • R a represents a monovalent organic group having 1 to 200 carbon atoms which may have a substituent.
  • M + represents a counter cation.
  • the photo acid generator may be added to the resist composition as a low molecular weight component, or may be contained as a polymer unit. That is, the aspect contained in the polymer as a unit so that it may couple
  • the photoacid generator is a sulfonium salt
  • the hydroxy group-containing compound according to one embodiment of the present invention is not particularly limited as long as hydrogen of a hydroxy group can be a hydrogen supply source when the photoacid generator is decomposed.
  • the acid generation efficiency from the photoacid generator is improved, and further, the ionization potential is increased as compared with the case where the hydroxy group is added to have no hydroxy group. Can be lowered.
  • hydroxy group-containing compounds include units derived from hydroxystyrene, hydroxyvinylnaphthalene, hydroxyphenyl acrylate, hydroxyphenyl methacrylate, hydroxy naphthyl acrylate, hydroxy norbornene acrylate, hydroxy norbornene methacrylate, hydroxy naphthyl methacrylate, hydroxy adamantane acrylate, hydroxy adamantane methacrylate, and the like.
  • Polymers including: polyphenol compounds such as bisphenol and TrisP-PA (manufactured by Honshu Chemical Industry Co., Ltd.) calixarene; and the like.
  • polymers containing units derived from hydroxystyrene, hydroxyvinylnaphthalene, hydroxyphenyl acrylate, hydroxyphenyl methacrylate, hydroxy naphthyl acrylate, hydroxy naphthyl methacrylate and the like are preferable.
  • the hydroxyaryl group-containing compound include a polymer having a unit represented by the following formula (11).
  • Ar 3 represents an arylene group
  • R 7 represents a hydrogen atom or a hydrocarbon group
  • L represents a carbonyloxy group or a direct bond.
  • the Ar 3 arylene group may further have a hydroxy group in addition to the hydroxy group disclosed in formula (11).
  • the Ar 3 arylene group is preferably an arylene group having 6 to 14 carbon atoms which may have a substituent other than a hydroxy group, more preferably a phenylene group or a naphthylene group which may have a substituent.
  • a phenylene group which may have a group is more preferable.
  • the hydrocarbon group for R 7 is preferably an alkyl group having 1 to 12 carbon atoms.
  • R 7 is more preferably a hydrogen atom or a methyl group.
  • hydroxyaryl group-containing compound examples include polymers having units represented by the following formula, but are not limited thereto.
  • Examples of the acid reaction compound include a compound having a protecting group that is deprotected by an acid, a compound having a polymerizable group that is polymerized by an acid, and a crosslinking agent having a crosslinking action by an acid.
  • a compound having a protecting group that is deprotected by an acid is, for example, a compound in which the solubility in a developer is changed when a protective group is deprotected by an acid to form a polar group when the composition is used as a resist composition. It is.
  • aqueous development using an alkaline developer or the like it is insoluble in an alkaline developer, but the protective group is deprotected in the exposed area by an acid generated from the photoacid generator upon exposure, whereby an alkaline developer It is a compound that becomes soluble in.
  • the developer is not limited to an alkali developer, and may be a neutral developer or an organic solvent development. Therefore, when an organic solvent developer is used, the compound having a protecting group that is deprotected by an acid is deprotected in the exposed area by the acid generated from the photoacid generator upon exposure, and the organic solvent developer Is a compound whose solubility is reduced.
  • the polar group examples include a hydroxy group, a carboxy group, an amino group, and a sulfo group.
  • Specific examples of the protecting group to be deprotected with an acid include an ester group, an acetal group, a tetrahydropyranyl group, a siloxy group, and a benzyloxy group.
  • the compound having the protecting group a compound having a styrene skeleton, a methacrylate or an acrylate skeleton pendant with these protecting groups is preferably used.
  • the compound having a protecting group to be deprotected with an acid may be a protecting group-containing low molecular weight compound or a protecting group-containing polymer.
  • the low molecular weight compound has a weight average molecular weight of less than 1000, and the polymer has a weight average molecular weight of 1000 or more.
  • the compound having a polymerizable group that is polymerized with an acid is a compound whose solubility in a developer is changed by polymerization of the polymerizable group with an acid.
  • aqueous development it is soluble in an aqueous developer, but the polymerizable group is polymerized in the exposed area by the acid generated from the photoacid generator upon exposure, and is soluble in the aqueous developer. It is a compound that decreases.
  • an organic solvent developer may be used instead of the aqueous developer.
  • Examples of the polymerizable group that is polymerized with an acid include an epoxy group, a vinyloxy group, and an oxetanyl group.
  • the compound having a polymerizable group a compound having a styrene skeleton, a methacrylate or an acrylate skeleton having these polymerizable groups is preferably used.
  • the compound having a polymerizable group that is polymerized with an acid may be a polymerizable low-molecular compound or a polymer.
  • the crosslinking agent having a crosslinking action with an acid is a compound that changes the solubility in a developer by crosslinking with an acid.
  • aqueous development aqueous development It acts on a compound that is soluble in a liquid and reduces the solubility of the compound in an aqueous developer after crosslinking.
  • methylated melamine such as 2,4,6-tris [bis (methoxymethyl) amino] -1,3,5-triazine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, etc.
  • examples of the cross-linking partner compound include compounds having a phenolic hydroxyl group or a carboxy group.
  • the compound having a crosslinking action with an acid may be a polymerizable low molecular compound or a polymer.
  • composition Containing Photosensitizer Precursor One aspect of the present invention is the photosensitizer precursor, the photoacid generator, the hydroxy group-containing compound, and the acid-reactive compound.
  • the photosensitizer precursor is a photosensitizer in the above composition, wherein the photoacid generator generates an acid upon irradiation with active energy rays or the like, and is deprotected by the acid. obtain.
  • the photoacid generator generates an acid by the first irradiation using the first active energy ray, the photosensitizer precursor is deprotected by the acid to become a photosensitizer, and By performing the second irradiation using the second active energy having a wavelength at which the photosensitizer absorbs light, the photoacid generator is again applied only to the portion subjected to the first irradiation by the action of the photosensitizer. It is preferable that an acid can be generated. Thereby, while the said acid generates a photosensitizer further, the acid reaction compound which reacts with an acid can be made to react.
  • a resist composition comprising the photosensitizer precursor, a compound having a protecting group that is deprotected by the acid, and a photoacid generator; a compound having a polymerizable group that is polymerized by the photosensitizer precursor and the acid.
  • a resist composition comprising: and a photoacid generator; a photosensitizer precursor; a crosslinking agent having a crosslinking action with an acid; a compound that reacts with the crosslinking agent to change solubility in a developer; And a resist composition containing a photoacid generator.
  • the photosensitizer precursor in one embodiment of the present invention can be preferably used as a sensitizer for positive and negative resist compositions.
  • the content of the photosensitizer precursor in the composition of one embodiment of the present invention is preferably 0.1 to 5 molar equivalents, and preferably 0.5 to 2.0 molar equivalents with respect to the photoacid generator. It is more preferable.
  • the mass is based on the polymer main chain.
  • the content of the photoacid generator in the resist composition of one embodiment of the present invention is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resist composition component excluding the photoacid generator. The amount is more preferably 30 parts by mass, and further preferably 1 to 15 parts by mass.
  • the photoacid generator in the composition within the above range, for example, even when the composition is used as a permanent film such as an insulating film such as a display body, the light transmittance can be increased.
  • the solvent is not included in 100 parts by mass of the resist composition component.
  • the photosensitizer precursor is included as a unit of the same polymer together with at least one selected from the group consisting of the photoacid generator, the hydroxy group-containing compound and the acid-reactive compound.
  • the unit acting as an agent precursor is preferably 1 to 40 mol%, more preferably 10 to 35 mol%, and still more preferably 10 to 30 mol% in the total polymer unit.
  • the photoacid generator When the photoacid generator is included as a unit of the same polymer together with at least one selected from the group consisting of the photosensitizer precursor, the hydroxy group-containing compound, and the acid-reactive compound, the photoacid generator
  • the unit acting as an agent is preferably 1 to 40% by mole, more preferably 5 to 35% by mole, and still more preferably 5 to 30% by mole based on all units of the polymer.
  • the hydroxy group-containing compound When the hydroxy group-containing compound is contained as a unit of the same polymer together with at least one selected from the group consisting of the photosensitizer precursor, the photoacid generator and the acid-reactive compound, the hydroxy group-containing compound
  • the unit acting as a compound is preferably from 3 to 90 mol%, more preferably from 5 to 80 mol%, more preferably from 7 to 70 mol% in the whole polymer unit for a positive resist composition for aqueous development. More preferably.
  • a negative resist composition for aqueous development it is preferably 60 to 99 mol%, more preferably 70 to 98 mol%, and still more preferably 75 to 98 mol% in the total unit of the polymer.
  • the acid-reactive compound is included as a unit of the same polymer together with at least one selected from the group consisting of the photosensitizer precursor, the photoacid generator, and the hydroxy group-containing compound, the photosensitization
  • the unit acting as the agent precursor is preferably 3 to 40 mol%, more preferably 5 to 35 mol%, and still more preferably 7 to 30 mol% in the total polymer unit.
  • the polymer in one embodiment of the present invention preferably has a weight average molecular weight of 1,000 to 200,000, more preferably 2,000 to 50,000, and even more preferably 2,000 to 15,000.
  • the polymer preferably has a dispersity (molecular weight distribution) (Mw / Mn) of 1.0 to 1.7, more preferably 1.0 to 1.2 from the viewpoint of sensitivity.
  • the weight average molecular weight and dispersity of the polymer are defined as polystyrene converted values by GPC measurement.
  • an acid diffusion controller in addition to the above components, as an optional component, an acid diffusion controller, a surfactant, an organic carboxylic acid, a solvent, a dissolution inhibitor, which are used in an ordinary resist composition, A stabilizer, a dye, and other sensitizers other than the photosensitizer precursor may be included in combination.
  • the acid diffusion control agent controls the diffusion phenomenon of the acid generated from the photoacid generator in the resist film, and has an effect of controlling an undesirable chemical reaction in the non-exposed region. Therefore, the storage stability of the resulting resist composition is improved, and the resolution as a resist is improved.
  • the acid diffusion controller examples include compounds having one, two, or three nitrogen atoms in the same molecule, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
  • the acid diffusion controlling agent a photodegradable base that is sensitized by exposure to generate a weak acid can also be used.
  • the photodegradable base include onium salt compounds and iodonium salt compounds that lose acid diffusion controllability by being decomposed by exposure. Specifically, Japanese Patent Nos.
  • the content of the acid diffusion controller is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the resist composition component. More preferably, it is 3 parts by mass.
  • the surfactant is preferably used for improving the coating property.
  • surfactants include nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxyethylene polyoxypropylene block copolymers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, etc. Agents, fluorosurfactants, organosiloxane polymers, and the like.
  • the content of the surfactant is preferably 0.0001 to 2 parts by mass, more preferably 0.0005 to 1 part by mass with respect to 100 parts by mass of the resist composition component.
  • organic carboxylic acid examples include aliphatic carboxylic acid, alicyclic carboxylic acid, unsaturated aliphatic carboxylic acid, oxycarboxylic acid, alkoxycarboxylic acid, ketocarboxylic acid, benzoic acid derivative, phthalic acid, terephthalic acid, isophthalic acid, 2 -Naphthoic acid, 1-hydroxy-2-naphthoic acid, 2-hydroxy-3-naphthoic acid and the like.
  • Aromatic organic carboxylic acids, such as benzoic acid and 1-hydroxy-2-naphthoic acid, among them, are less likely to volatilize from the resist film surface and contaminate the drawing chamber when the electron beam exposure is performed in vacuum.
  • 2-hydroxy-3-naphthoic acid is preferred as the organic carboxylic acid.
  • the content of the organic carboxylic acid is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and still more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the resist composition component. It is.
  • solvent examples include ethylene glycol monoethyl ether acetate, cyclohexanone, 2-heptanone, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether acetate.
  • PGME propylene glycol monomethyl ether
  • PGMEA propylene glycol monomethyl ether propionate
  • propylene glycol monoethyl ether acetate examples include ethylene glycol monoethyl ether acetate, cyclohexanone, 2-heptanone, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether acetate.
  • the resist composition component is preferably dissolved in the solvent so that the solid content concentration is 1 to 40% by mass. More preferably, it is 1 to 30% by mass, and further preferably 3 to 20% by mass. By setting the solid content concentration in such a range, the above film thickness can be achieved.
  • the resist composition of one embodiment of the present invention may contain a fluorine-containing water-repellent polymer.
  • a fluorine-containing water-repellent polymer The thing normally used for the immersion exposure process is mentioned, The one where a fluorine atom content rate is larger than the said polymer is preferable. Accordingly, when the resist film is formed using the resist composition, the fluorine-containing water-repellent polymer can be unevenly distributed on the resist film surface due to the water-repellent property of the fluorine-containing water-repellent polymer. .
  • the composition of one aspect of the present invention is obtained by mixing the components of the above composition, and the mixing method is not particularly limited.
  • the resist composition of one embodiment of the present invention may contain a ketone derivative represented by the following general formula (12) instead of the sensitizer precursor.
  • the ketone derivative corresponds to one produced by hydrolysis of the sensitizer precursor by acid treatment.
  • Each substituent in the following general formula (12) is the same as the substituent in the above general formula (1).
  • it can be used as a photosensitizer having a large absorption with a molar extinction coefficient at 365 nm of 1.0 ⁇ 10 5 cm 2 / mol or more without requiring a deprotection reaction with an acid. Therefore, it can be suitably used as a chemically amplified resist composition for UV, and can be suitably used for optical device applications that require particularly high visible light transmittance.
  • the acid generation efficiency can be improved by including the ketone derivative.
  • One embodiment of the present invention includes a step of applying the composition on a substrate to form a resist film (hereinafter also referred to as a “resist film forming step”), and a first step in the resist film.
  • a step of irradiating active energy rays hereinafter also referred to as “first irradiation step” and a step of irradiating the resist film irradiated with the first active energy rays with second active energy rays (hereinafter referred to as “second irradiation”).
  • a step of developing the resist film irradiated with the second active energy ray to obtain a pattern hereinafter also referred to as “pattern formation step”).
  • the photoacid generator by performing the first irradiation with the first active energy ray, the photoacid generator generates an acid, and the photosensitizer precursor is deprotected by the acid to cause photosensitization. Become a sensitizer. Then, by performing the second irradiation with the second active energy ray having a wavelength at which the photosensitizer absorbs light, the photoacid generator is again applied only to the portion subjected to the first irradiation by the action of the photosensitizer. Is preferably capable of generating an acid. Thereby, while the said acid generates a photosensitizer further, the acid reaction compound which reacts with an acid can be made to react.
  • the first active energy ray used in the first irradiation may be a particle beam or an electromagnetic wave that can generate an acid when the photoacid generator contained in the composition is activated, such as a KrF excimer laser beam or an ArF excimer laser.
  • a KrF excimer laser beam or an ArF excimer laser examples thereof include light, F 2 excimer laser light, electron beam, UV, visible light, X-ray, ion beam, g-line, h-line, i-line, and EUV. Of these, electron beam, X-ray, EUV and the like are preferable.
  • the second active energy rays used in the second irradiation photosensitizer that produces by R 3 and R 4 of the photosensitizer precursor represented by the formula (1) is deprotected to absorb Any electromagnetic wave may be used as long as it has a wavelength.
  • the electromagnetic wave include KrF excimer laser light, ArF excimer laser light, F 2 excimer laser light, UV, visible light, g-line, h-line, and i-line. Is mentioned.
  • the electromagnetic wave of the first active energy ray preferably has a shorter wavelength than the electromagnetic wave used as the second active energy ray.
  • One embodiment of the present invention includes a resist film formation step, a first irradiation step, a second irradiation step, and a pattern formation step using the above composition, and a substrate having a pattern before obtaining individualized chips. It may be a manufacturing method.
  • the resist film formed from the resist composition preferably has a thickness of 10 to 200 nm.
  • the resist composition is applied onto the substrate by an appropriate application method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, and the like, and is performed at 60 to 150 ° C. for 1 to 20 minutes, preferably 80 to Pre-bake at 120 ° C. for 1 to 10 minutes to form a thin film.
  • the thickness of this coating film is 10 to 200 nm, preferably 20 to 150 nm.
  • the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
  • the molar extinction coefficient after acid treatment of a compound that is, the molar extinction coefficient at 365 nm of a benzophenone compound derivative obtained by deprotecting the compound was measured with a UV-VIS spectrophotometer (Hitachi Co., Ltd.). (U-3300) manufactured by Seisakusho, using chloroform or acetonitrile as a solvent.
  • Synthesis Example 1 Synthesis of 2,4-methoxy-4′-methylthiobenzophenone (sensitizer compound A1) 8.0 g of 4-bromothioanisole was dissolved in 32 g of tetrahydrofuran, and 1 mol / L methylmagnesium bromide was dissolved therein. 39 ml of THF solution is added dropwise at 5 ° C. or lower. After dropping, the mixture is stirred at 5 ° C. or lower for 30 minutes to obtain a THF solution of 4-methylthiophenylmagnesium bromide.
  • the crude crystals are recrystallized using 120 g of ethanol to obtain 7.6 g of 2,4-dimethoxy-4′-methylthiobenzophenone.
  • the molar extinction coefficient at 365 nm in chloroform solvent is 1.1 ⁇ 10 6 cm 2 / mol.
  • the crude crystals are recrystallized using 40 g of ethanol to obtain 5.6 g of 4-methylthio-4′-phenylthiobenzophenone.
  • the molar extinction coefficient at 365 nm in chloroform solvent is 2.6 ⁇ 10 6 cm 2 / mol.
  • Synthesis Example 6 Synthesis of (4-methylthio) phenyl- (4′-phenylthio) phenyl-diethoxymethane (Precursor Compound B3) (4-Methylthio) phenyl- (4′-phenylthio) obtained in Synthesis Example 5 5.0 g of phenyl-dimethoxymethane, 300 mg of camphorsulfonic acid and 4.3 g of triethyl orthoformate are dissolved in 32.5 g of dehydrated ethanol, and the mixture is stirred at 70 ° C. for 5 hours while distilling off methanol in the solution together with ethanol. .
  • Synthesis Example 8 Synthesis of 2-methoxy-4′-methylthiobenzophenone (sensitizer compound A3) The same procedure as in Synthesis Example 1 except that 2-methoxybenzoyl chloride was used instead of 2,4-dimethoxybenzoyl chloride To give 2-methoxy-4′-methylthiobenzophenone.
  • the molar extinction coefficient at 365 nm in chloroform solvent is 1.0 ⁇ 10 5 cm 2 / mol or more.
  • Synthesis Example 10 Synthesis of 4- (4-methoxyphenyl) -4′-methylthiobenzophenone (sensitizer compound A4) 4- (4-methoxyphenyl) benzoyl chloride is used in place of 2,4-dimethoxybenzoyl chloride Except for the above, the same operation as in Synthesis Example 1 is carried out to obtain 5.2 g of 4- (4-methoxyphenyl) -4′-methylthiobenzophenone.
  • the molar extinction coefficient at 365 nm in chloroform solvent is 1.0 ⁇ 10 5 cm 2 / mol or more.
  • Synthesis Example 12 Synthesis of 2-methylthio-4,4′-dimethoxybenzophenone (sensitizer compound A5) 4.6 g of 3-methylthioanisole and 4.9 g of aluminum chloride are dissolved in 15 g of dichloromethane. 4-methoxybenzoyl chloride 5.0g is dripped at this at 5 degrees C or less over 30 minutes. Then, after stirring at 5 ° C. for 2 hours, 15 g of pure water is added so as to be 25 ° C. or less, and further stirred for 10 minutes.
  • the organic layer is separated and recovered and washed with pure water, dichloromethane is distilled off, and the resulting residue is produced by recrystallization using 70 g of ethanol, whereby 2-methylthio-4,4′-dimethoxybenzophenone. 6.5 g is obtained.
  • the molar extinction coefficient at 365 nm in chloroform solvent is 1.0 ⁇ 10 5 cm 2 / mol or more.
  • Synthesis Example 19 Synthesis of 4- (4-hydroxyphenylthio) -4′-methylthiobenzophenone (sensitizer Compound A7) Same as Synthesis Example 4 except that 4-hydroxybenzenethiol was used instead of thiophenol By performing the operation, 5.8 g of 4- (4-hydroxyphenylthio) -4′-methylthiobenzophenone is obtained.
  • the molar extinction coefficient at 365 nm in chloroform solvent is 3.01 ⁇ 10 6 cm 2 / mol.
  • the molar extinction coefficient of 365 nm with acetonitrile solvent is 1.73 ⁇ 10 6 cm 2 / mol.
  • Synthesis Example 20 Synthesis of 4- (4-hydroxyphenylthio) phenyl-4′-methylthiophenyl-dimethoxymethane (Precursor Compound B9) 4- (4 instead of 2,4-dimethoxy-4′-methylthiobenzophenone Except for using -hydroxyphenylthio) -4'-methylthiobenzophenone, 3.3 g of 4- (4-hydroxyphenylthio) phenyl-4'-methylthiophenyl-dimethoxymethane was obtained by performing the same operation as in Synthesis Example 2 above. obtain. The sum total of Hammett substituent constants ⁇ is 0.2 or less.
  • Synthesis Example 21 Synthesis of 4,4′-di (4-hydroxyphenylthio) benzophenone (sensitizer Compound A8) 6.5 g of 4,4′-difluorobenzophenone was dissolved in 20 g of DMF, and 4-hydroxybenzene was dissolved therein. Add 11.3 g of thiol and 12.4 g of potassium carbonate and stir at 70 ° C. for 2 hours. After stirring, 90 g of pure water is added and the mixture is further stirred for 10 minutes to precipitate a solid. The precipitated solid is collected by filtration and vacuum dried to obtain crude crystals. The crude crystals are dispersed in 120 g of methylene chloride and stirred for 1 hour.
  • Synthesis Example 22 Synthesis of 4- [4- (methoxymethoxy) phenylthio] phenyl-4′-methylthiophenyl-dimethoxymethane (precursor compound B11) 4- (4-hydroxyphenylthio) phenyl obtained in Synthesis Example 20 Dissolve 2.0 g of -4'-methylthiophenyl-dimethoxymethane in 8.0 g of DMF, add 0.61 g of chloromethyl methyl ether and 1.1 g of potassium carbonate, and stir at 70 ° C. for 12 hours. After stirring, 16 g of pure water and 32 g of methylene chloride are added to recover the organic layer, which is further washed twice with pure water.
  • the solid obtained by separating this by filtration under reduced pressure was washed twice with 300 g of pure water and then vacuum-dried to obtain 9.2 g of copolymer A shown below as a white solid.
  • the monomer ratio of the copolymer unit in the present invention is not limited to the following.
  • Synthesis Example 25 Synthesis of Copolymer B 7.0 g acetoxystyrene, 3.4 g 2-methyladamantane-2-methacrylate, 0.022 g butyl mercaptan and 0.40 g dimethyl-2,2′-azobis (2-Methylpropionate) (AIBN) is dissolved in 35 g of tetrahydrofuran (THF) and deoxygenated. This is dripped over 4 hours in 20 g of THF which has been brought to a reflux temperature in advance by flowing nitrogen gas. After dropping, the mixture is stirred for 2 hours and then cooled to room temperature.
  • THF tetrahydrofuran
  • the mixture is stirred for 2 hours and then cooled to 25 ° C. After cooling, it is reprecipitated by dropping it into a mixed solvent consisting of 107 g of hexane and 11 g of tetrahydrofuran. This is filtered, then dispersed and washed twice with 37 g of hexane, filtered and vacuum dried to obtain 6.2 g of the target copolymer E as a white powder.
  • required by polystyrene conversion using the gel permeation chromatography is 8600.
  • Synthesis Example 29 Synthesis of Copolymer F 0.80 g of the above precursor compound B8, 3.9 g of ⁇ -methacryloyloxy- ⁇ -butyrolactone, 2.9 g of 2-methyladamantane-2-methacrylate, (4 -Hydroxy) phenyl methacrylate 2.3 g, 5-phenyldibenzothiophenium 1,1-difluoro-2- (2-methacryloyloxy) -ethanesulfonate 0.49 g, butyl mercaptan 0.13 g and (4-hydroxy) 2.9 g of phenyl methacrylate and 0.56 g of dimethyl-2,2′-azobis (2-methylpropionate) (product name V601, manufactured by Wako Pure Chemical Industries, Ltd.
  • V601 Each is weighed and dissolved in 12.2 g of tetrahydrofuran and degassed under reduced pressure. After deaeration, the solution is added dropwise over 4 hours to a flask in which 4 g of THF is refluxed by turning into a nitrogen stream. After dropping, the mixture is stirred for 2 hours and then cooled to 25 ° C. After cooling, it is reprecipitated by dropping it into a mixed solvent consisting of 107 g of hexane and 11 g of tetrahydrofuran.
  • Synthesis Example 30 Synthesis of Copolymer G ⁇ -Methacryloyloxy- ⁇ -butyrolactone 5.0 g, 2-methyladamantane-2-methacrylate 6.0 g, V601 0.51 g, and tetrahydrofuran 26 g were dissolved. Perform vacuum degassing. This is dripped over 4 hours in the flask which refluxed THF4g. After dropping, the mixture is stirred for 2 hours and then cooled to 25 ° C. This solution is reprecipitated by dropping it into a mixed solvent consisting of 160 g of hexane and 18 g of tetrahydrofuran. This is filtered, dispersed and washed twice with 37 g of hexane, and vacuum dried after filtration to obtain 7.4 g of the desired copolymer G as a white powder.
  • Evaluation samples 1 to 20 are prepared as follows. 7000 mg of cyclohexanone, 500 mg of copolymer A, C and G, 507 mg of copolymer E, 497 mg of copolymer F and 500 mg of copolymer H, and diphenyliodonium-nona as a photoacid generator (PAG) 0.043 mmol of fluorobutanesulfonate (DPI-Nf) or phenyldibenzothionium-nonafluorobutanesulfonate (PBpS-Nf), precursor compounds B1 to 3, B9 and B10 as photosensitizer precursors and 2 as comparative compounds , 2-diphenyl-1,3-dioxolane (compound C1) (the sum of Hammett substituent constants ⁇ is 0, the molar extinction coefficient at 365 nm in chloroform solvent is 6.3 ⁇ 10 4
  • Example evaluation 1 Each of the evaluation samples 1 to 20 is applied onto a Si wafer that has been subjected to hexamethyldisilazane (HMDS) treatment in advance, spin-coated, and heated at 110 ° C. to obtain a resist film having a thickness of 100 nm.
  • the evaluation sample resist film is exposed by changing the exposure amount so that a 1: 1 line and space pattern having a line width half pitch of 100 nm is formed by an EB drawing apparatus of 30 keV. Thereafter, the entire surface of the wafer is irradiated with ultraviolet rays using a UV light having an emission line of 365 nm. Subsequently, it heats at 110 degreeC on a hotplate for 1 minute.
  • HMDS hexamethyldisilazane
  • Examples 1 to 9 and 13 to 16 using the resist composition mixed with the photosensitizer precursor according to one embodiment of the present invention had a minimum EB by UV irradiation after EB irradiation. The exposure amount becomes small.
  • the acid generation is improved by the photosensitization of the photosensitizer generated from the photosensitizer precursor, and the sensitivity is improved. I understand.
  • the acid generation efficiency by EB is improved by including a compound having a hydroxy group in the resist as compared with the resist having no hydroxy group. It can be seen that the sensitivity is increased.
  • the effect of UV irradiation is greater than the comparison between Examples 4 and 5 in that the molar extinction coefficient of the photosensitizer produced from the photosensitizer precursor is large if the sum of the Hammett substituent constants ⁇ is 0.2 or less. There is a tendency toward higher sensitivity.
  • Examples 5, 13 and 14 are compared, when the precursor compound B9 or B10 is mixed in the resist, the sensitivity is higher than when the precursor compound B2 is mixed in the resist. This is because, like sensitizer compounds A7 and A8 produced from precursor compounds B9 and B10, an increase in the molar extinction coefficient of 365 nm by introducing a 4-hydroxyphenylthio group, and an electron donating property due to the phenolic hydroxyl group. This is thought to be due to the improvement. Furthermore, it is considered that the acid generation efficiency of the photosensitization occurring between the photosensitizer and the acid generator is improved by the phenolic hydroxyl group of the photosensitizer becoming a proton source.
  • the compound C1 added in Comparative Examples 3 and 4 has a sum of Hammett substituent constants ⁇ of 0 or more and a molar extinction coefficient at 365 nm of 6.3 ⁇ 10 4 cm 2 / mol, which is very low, so the sensitization efficiency in UV
  • UV irradiation at 200 mJ / cm 2 did not improve the amount of acid generated and did not increase the sensitivity. From the above, it is considered that a highly sensitive photosensitizer precursor can be obtained by adding an electron-donating group to the compound to increase the molar absorption coefficient at 365 nm.
  • Evaluation samples 16 to 25 are prepared as follows. To 7000 mg of cyclohexanone, 500 mg of the copolymer A or H, and diphenyliodonium-nonafluorobutanesulfonate (DPI-Nf), phenyldibenzothionium-nonafluorobutanesulfonate (PBpS-Nf) or (PAG) as a photoacid generator (PAG) 0.043 mmol of 4-phenylthio) phenyldiphenylsulfonium-nonafluorobutanesulfonate (PSDPS-Nf) and 0.043 mmol of any of sensitizer compounds A1, A2, A7 and A8 as photosensitizers, respectively, or A sample is prepared by adding no trioctylamine as a quencher at a ratio of 0.0043 mmol. Details of the prepared samples are shown in
  • the evaluation sample resist film is exposed by changing the exposure amount with a UV exposure apparatus having a bright line of 365 nm through a 1: 1 line having a line width half pitch of 2 ⁇ m and a space pattern mask. Subsequently, it heats at 110 degreeC on a hotplate for 1 minute.
  • PBpS-Nf does not generate acid because there is no UV absorption at 365 nm, but Examples 17, 18, and 21 using resist compositions mixed with photosensitizers in one embodiment of the present invention.
  • 24, and 25 can generate an acid when the added photosensitizer absorbs light during UV irradiation and sensitizes the acid generator.
  • each example has higher sensitivity than Comparative Examples 6 and 7 in which an acid generator having UV absorption at 365 nm is mixed.
  • the acid generation was improved and the sensitivity was improved.
  • the irradiation wavelength was improved. It can be seen that even an acid generator that absorbs UV has higher sensitivity due to the effect of the photosensitizer.
  • Examples 17, 18, 24 and 25 show that the greater the molar extinction coefficient of the added sensitizer compound, the higher the sensitivity.
  • Examples 24 and 25 are considered to be more sensitive because electron donating property is improved by introducing a hydroxy group into the thioaryl structure as in sensitizer compounds A7 and A8.
  • the effect of improving the acid generation efficiency in the sensitization reaction that occurs between the photosensitizer and the acid generator is also observed by using the phenolic hydroxyl group of the sensitizer compound as a proton source.
  • a resist composition including a photosensitizer precursor for improving acid generation efficiency and forming a photoresist having high sensitivity, high resolution, and high LWR characteristics can be provided. .

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a resist composition that improves acid generation efficiency and is used to produce a photoresist having high sensitivity, high resolution, and high LWR properties. The present invention relates to a compound represented by general formula (1). (1) (In formula (1): Ar1 and Ar2 independently represent a phenylene group optionally having a substituent; R1 represents a member selected from the group consisting of a thioalkoxy phenyl group, an arylthio group, and a thioalkoxy group optionally having a substituent; X represents a member selected from the group consisting of a sulfur atom, an oxygen atom, and a direct bond; R2 represents either an aryl group or an alkyl group optionally having a substituent; each Y independently represents either an oxygen atom or a sulfur atom; R3 and R4 independently represent a linear, branched, or cyclic alkyl group optionally having a substituent; R3 and R4 are optionally bound to each other so as to form a ring structure together with two Y's in the formula; at least one of the carbon-carbon single bonds in the alkyl group included in R1, R2, R3, and R4 is optionally substituted with a carbon-carbon double bond or a carbon-carbon triple bond; and at least one of the methylene groups in the alkyl group included in R1, R2, R3, and R4 is optionally substituted with a heteroatom-containing divalent group.)

Description

レジスト組成物及びそれを用いたデバイスの製造方法Resist composition and device manufacturing method using the same
 本発明のいくつかの態様は、レジストパターン形成に用いることのできる組成物及びそれを用いたデバイスの製造方法に関する。 Some embodiments of the present invention relate to a composition that can be used for forming a resist pattern and a method for producing a device using the composition.
 半導体デバイス、例えば、DRAM等に代表される高集積回路素子では、一層の高密度化、高集積化、及び高速化等の要望が高い。それに伴い、各種電子デバイス製造分野では、ハーフミクロンオーダーの微細加工技術の確立、例えば、微細パターン形成のためのフォトリソグラフィ技術開発に対する要求がますます厳しくなっている。フォトリソグラフィ技術において微細パターンを形成するためには、解像度を向上させる必要がある。ここで、縮小投影露光装置の解像度(R)は、レイリーの式R=k・λ/NA(ここでλは露光光の波長、NAはレンズの開口数、kはプロセスファクター)で表されるため、レジストのパターン形成の際に用いる活性エネルギー線(露光光)の波長λを短波長化することにより解像度を向上させることができる。 There is a high demand for higher density, higher integration, and higher speed in highly integrated circuit elements represented by semiconductor devices such as DRAMs. Accordingly, in various electronic device manufacturing fields, there is an increasing demand for the establishment of microfabrication technology on the order of half a micron, for example, the development of photolithography technology for forming fine patterns. In order to form a fine pattern in the photolithography technique, it is necessary to improve the resolution. Here, the resolution (R) of the reduction projection exposure apparatus is expressed by the Rayleigh equation R = k · λ / NA (where λ is the wavelength of exposure light, NA is the numerical aperture of the lens, and k is a process factor). Therefore, the resolution can be improved by shortening the wavelength λ of the active energy ray (exposure light) used in forming the resist pattern.
 短波長に適したフォトレジストとして、化学増幅型のものが提案されている(特許文献1~3)。化学増幅型フォトレジストの特徴は、露光光の照射により含有成分である光酸発生剤から酸が発生し、この酸が露光後の加熱処理によりレジスト化合物等と酸触媒反応を起こすことである。
 半導体デバイスの微細化に伴い、波長が13.5nmのEUV(Extreme Ultra Violet)光を露光光として利用したEUVリソグラフィー技術に対する要求が高まっている。しかしながら、EUVリソグラフィーの最大の欠点は、EUV光源の出力不足である。そのため、高感度なフォトレジストが求められるが、感度、解像度及びLWR(Line Width Roughness)の間にトレードオフの関係があることから、感度を上げると解像度の低下やラフネスが増大する問題がある。
Chemically-amplified photoresists have been proposed as photoresists suitable for short wavelengths (Patent Documents 1 to 3). A feature of the chemically amplified photoresist is that an acid is generated from a photoacid generator as a component upon exposure to exposure light, and this acid causes an acid-catalyzed reaction with a resist compound or the like by heat treatment after exposure.
With the miniaturization of semiconductor devices, there is an increasing demand for EUV lithography technology that uses EUV (Extreme Ultra Violet) light having a wavelength of 13.5 nm as exposure light. However, the biggest drawback of EUV lithography is the lack of output of the EUV light source. For this reason, a highly sensitive photoresist is required, but there is a trade-off relationship among sensitivity, resolution, and LWR (Line Width Roughness). Therefore, there is a problem that increasing the sensitivity lowers resolution and increases roughness.
特開平10-7650号公報Japanese Patent Laid-Open No. 10-7650 特開2003-327572号公報JP 2003-327572 A 特開2008-7410号公報JP 2008-7410 A
 上記問題を解決するために、化学増幅型フォトレジストにおいては、いかに酸の発生効率を向上させるかが実用化に向けた重要な課題の1つとなっている。 In order to solve the above problem, in the chemically amplified photoresist, how to improve the acid generation efficiency is one of the important issues for practical use.
 本発明のいくつかの態様の一つの課題は、酸の発生効率を向上させ得るレジスト組成物を提供することである。また本発明のいくつかの態様の他の課題は、高感度、高解像度及び高いLWR特性を満たすフォトレジスト組成物として好適に用いられる上記レジスト組成物を用いたデバイスの製造方法を提供することである。 One object of some embodiments of the present invention is to provide a resist composition that can improve the efficiency of acid generation. Another object of some aspects of the present invention is to provide a device manufacturing method using the resist composition that is suitably used as a photoresist composition that satisfies high sensitivity, high resolution, and high LWR characteristics. is there.
 本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、酸により解離して光増感剤となり得る光増感剤前駆体と、光酸発生剤と、ヒドロキシ基含有化合物と、酸反応性化合物と、を含むレジスト組成物を化学増幅型レジスト組成物として用いることで、酸の発生効率を向上させることができることを見出した。
 より詳しくは、光酸発生剤を含む化学増幅型フォトレジストを用いたパターン形成において、光増感剤前駆体と光酸発生剤とヒドロキシ基含有化合物と酸反応性化合物とを含む組成物を化学増幅型フォトレジスト組成物として用い、例えばEUV光又は電子線(EB)等の第1活性エネルギー線照射によって光酸発生剤から発生した酸により上記光増感剤前駆体を酸解離させ光増感剤とし、該光増感剤に対しさらにUV光等により第2照射することで、光酸発生剤への電子移動が起き、酸発生効率が向上することを見出した。
As a result of intensive investigations to solve the above problems, the present inventors, as a result, a photosensitizer precursor that can be dissociated by an acid to become a photosensitizer, a photoacid generator, a hydroxy group-containing compound, It has been found that the acid generation efficiency can be improved by using a resist composition containing an acid-reactive compound as a chemically amplified resist composition.
More specifically, in pattern formation using a chemically amplified photoresist containing a photoacid generator, a chemical composition comprising a photosensitizer precursor, a photoacid generator, a hydroxy group-containing compound, and an acid-reactive compound is chemically treated. Used as an amplification type photoresist composition, for example, the photosensitizer precursor is acid-dissociated with an acid generated from the photoacid generator by irradiation with a first active energy ray such as EUV light or electron beam (EB), and photosensitized. It was found that, when the photosensitizer is further irradiated with UV light or the like second, electron transfer to the photoacid generator occurs and the acid generation efficiency is improved.
 本発明の一つの態様は、下記一般式(1)で表される光増感剤前駆体と、光酸発生剤と、ヒドロキシ基含有化合物と、酸反応性化合物と、を含むレジスト組成物である。 One aspect of the present invention is a resist composition comprising a photosensitizer precursor represented by the following general formula (1), a photoacid generator, a hydroxy group-containing compound, and an acid-reactive compound. is there.
Figure JPOXMLDOC01-appb-C000002
(上記式(1)中、Ar及びArは、独立して各々に、置換基を有していてもよいフェニレン基であり、
は、置換基を有していてもよいチオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基からなる群より選択されるいずれかであり、
Xは、硫黄原子、酸素原子及び直接結合からなる群より選択されるいずれかであり、
2は、置換基を有していてもよいアルキル基及びアリール基のいずれかであり、
Yは、独立して各々に、酸素原子及び硫黄原子のいずれかであり、
及びRは、独立して各々に、置換基を有してもよい、直鎖状、分岐鎖状又は環状のアルキル基であり、上記R及びRは、互いに結合して式中の2つのYと環構造を形成していてもよく、
、R2、R及びRが有するアルキル基中の炭素-炭素一重結合の少なくとも一つが、炭素-炭素二重結合又は炭素-炭素三重結合で置き換えられていても良く、
、R2、R及びRが有するアルキル基中のメチレン基の少なくとも一つが、2価のヘテロ原子含有基で置き換えられていてもよい。)
Figure JPOXMLDOC01-appb-C000002
(In the above formula (1), Ar 1 and Ar 2 are each independently a phenylene group optionally having a substituent,
R 1 is any one selected from the group consisting of an optionally substituted thioalkoxy group, arylthio group, and thioalkoxyphenyl group;
X is any selected from the group consisting of a sulfur atom, an oxygen atom and a direct bond;
R 2 is either an alkyl group or an aryl group which may have a substituent,
Y is each independently one of an oxygen atom and a sulfur atom,
R 3 and R 4 are each independently a linear, branched or cyclic alkyl group which may have a substituent, and R 3 and R 4 are bonded to each other to form a compound It may form a ring structure with two Y in the inside,
At least one of the carbon-carbon single bonds in the alkyl group of R 1 , R 2 , R 3 and R 4 may be replaced with a carbon-carbon double bond or a carbon-carbon triple bond;
At least one of the methylene groups in the alkyl group of R 1 , R 2 , R 3 and R 4 may be replaced with a divalent heteroatom-containing group. )
 本発明の一つの態様であるレジスト組成物は、光酸発生剤の酸発生効率を向上させ、高感度、高解像度及び高いLWR特性を有する。 The resist composition according to one embodiment of the present invention improves the acid generation efficiency of the photoacid generator and has high sensitivity, high resolution, and high LWR characteristics.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
<1>光増感剤前駆体
 本発明の一つの態様における光増感剤前駆体は、下記一般式(1)で表されることを特徴とする。
<1> Photosensitizer precursor The photosensitizer precursor in one embodiment of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(1)中、Ar及びArは、独立して各々に、置換基を有していてもよいフェニレン基であり、
は、置換基を有していてもよいチオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基からなる群より選択されるいずれかであり、
Xは、硫黄原子、酸素原子及び直接結合からなる群より選択されるいずれかであり、
2は、置換基を有していてもよいアルキル基及びアリール基のいずれかであり、
Yは、独立して各々に、酸素原子及び硫黄原子のいずれかであり、
及びRは、独立して各々に、置換基を有してもよい直鎖状、分岐鎖状又は環状のアルキル基であり、
上記R及びRは、互いに結合して式中の2つのYと環構造を形成していてもよく、
、R2、R及びRが有するアルキル基中の炭素-炭素一重結合の少なくとも一つが、炭素-炭素二重結合又は炭素-炭素三重結合で置き換えられていても良く、
、R2、R及びRが有するアルキル基中のメチレン基の少なくとも一つが、2価のヘテロ原子含有基で置き換えられていてもよい。
In the above formula (1), Ar 1 and Ar 2 are each independently a phenylene group optionally having a substituent,
R 1 is any one selected from the group consisting of an optionally substituted thioalkoxy group, arylthio group, and thioalkoxyphenyl group;
X is any selected from the group consisting of a sulfur atom, an oxygen atom and a direct bond;
R 2 is either an alkyl group or an aryl group which may have a substituent,
Y is each independently one of an oxygen atom and a sulfur atom,
R 3 and R 4 are each independently a linear, branched or cyclic alkyl group that may have a substituent,
R 3 and R 4 may be bonded to each other to form a ring structure with two Ys in the formula,
At least one of the carbon-carbon single bonds in the alkyl group of R 1 , R 2 , R 3 and R 4 may be replaced with a carbon-carbon double bond or a carbon-carbon triple bond;
At least one of the methylene groups in the alkyl group of R 1 , R 2 , R 3 and R 4 may be replaced with a divalent heteroatom-containing group.
 本発明の一つの態様における光増感剤前駆体は、ハメット置換基定数σの総和が0.2以下であることが好ましい。
 本発明において、ハメット置換基定数σの総和とは、上記一般式(1)において、2つのYとArとArと結合する4級炭素が結合する基を基準にした、各Ar及びAr2に結合する各置換基のハメット置換基定数σの総和をいう。
 ハメット置換基定数σとは、ベンゼン誘導体の反応又は平衡に及ぼす置換基の影響を定量的に論ずるために1935年 L.P.Hammettにより提唱された経験則により求められる値(σp値とσm値とσo値との合計)である。
 ハメット則に求められた置換基定数のうちσp値とσm値の値は、例えば、J.A.Dean編、「Lange'sHandbook of Chemistry」第12版、1979年(McGraw-Hill)や「化学の領域」増刊、122号、96~103頁、1979年(南光堂)に詳しく開示される。
 さらに立体障害の影響に関して考察されたσo値は例えばNuclear magnetic resonance studies of ortho―substituted phenols in dimethyl sulfoxide solutions. Electronic effects of ortho substituents  J. Am. Chem. Soc., 1969, 91 (2), pp 379-388, M.Thomas and James G. Traynham著に詳しく開示される。
In the photosensitizer precursor according to one embodiment of the present invention, the sum of Hammett substituent constants σ is preferably 0.2 or less.
In the present invention, the sum of Hammett substituent constants σ refers to each Ar 1 , based on a group in which two quaternary carbons bonded to Y, Ar 1 and Ar 2 are bonded in the general formula (1). The sum of Hammett substituent constants σ of each substituent bonded to Ar 2 .
Hammett substituent constant [sigma] is used in 1935 to discuss the effect of substituents on the reaction or equilibrium of benzene derivatives quantitatively. P. It is a value (total of σp value, σm value, and σo value) obtained by an empirical rule proposed by Hammett.
Among the substituent constants determined by Hammett's rule, the values of σp value and σm value are, for example, J. A. It is disclosed in detail in the Dean edition, “Lange's Handbook of Chemistry”, 12th edition, 1979 (McGraw-Hill) and “Areas of Chemistry”, 122, 96-103, 1979 (Nankodo).
Further, the σo value discussed regarding the influence of steric hindrance is, for example, Nuclear magnetic resonance studies of ortho-substituted phenols in dimethyl sulfoxide solutions. Electronic effects of orthostitutants J.E. Am. Chem. Soc. , 1969, 91 (2), pp 379-388, M .; Thomas and James G. It is disclosed in detail by Traynham.
 上記光増感剤前駆体のハメット置換基定数σの総和は、0.2以下であることが好ましく、-0.01以下であることがより好ましい。また、-3.00以上であることが好ましい。また、上記一般式(1)中のArが有する置換基のハメット置換基定数σは1以下であることが好ましい。上記一般式(1)中のAr2が有する置換基のハメット置換基定数σは1以下であることが好ましい。Arが有する置換基のハメット置換基定数σ及びAr2が有する置換基のハメット置換基定数σの総和を0.2以下とすることで、上記光増感剤前駆体のハメット置換基定数σの総和が0.2以下となる。
 上記光増感剤前駆体のハメット置換基定数σの総和が上記範囲内であると、電子供与性となり上記光増感剤前駆体が酸解離して光増感剤となったときに光酸発生剤の酸発生効率を向上させることが出来る。ハメット置換基定数σの総和を0.2以下とするには、上記に開示されるハメット置換基定数σに従い、上記Ar及びArに電子供与性基又は電子吸引性置換基を適宜選択して導入し、且つ、適切な位置に電子供与性基を導入することでハメット置換基定数σを調整すれば良い。
The total sum of Hammett substituent constants σ of the photosensitizer precursor is preferably 0.2 or less, and more preferably −0.01 or less. Further, it is preferably −3.00 or more. In addition, the Hammett substituent constant σ of the substituent of Ar 1 in the general formula (1) is preferably 1 or less. The Hammett substituent constant σ of the substituent of Ar 2 in the general formula (1) is preferably 1 or less. The sum of Hammett substituent constant σ of the substituent of Ar 1 and Hammett substituent constant σ of the substituent of Ar 2 is 0.2 or less, so that the Hammett substituent constant σ of the photosensitizer precursor is reduced. Is less than 0.2.
When the sum of the Hammett substituent constants σ of the photosensitizer precursor is within the above range, the photoacid becomes when the photosensitizer precursor is acid-dissociated and becomes a photosensitizer. The acid generation efficiency of the generator can be improved. In order to make the sum of the Hammett substituent constant σ 0.2 or less, according to the Hammett substituent constant σ disclosed above, an electron-donating group or an electron-withdrawing substituent is appropriately selected for Ar 1 and Ar 2. And the Hammett substituent constant σ may be adjusted by introducing an electron donating group at an appropriate position.
 上記式(1)中のAr及びArは、それぞれフェニレン基であり、それぞれR1以外又は-X-R2以外に置換基(以下、Ar及びArの置換基を「第1の置換基」という)を有していてもよい。なお、Ar及びArは、合成の点から直接的にも間接的にも結合して環を形成していないことが好ましい。
 上記第1の置換基としては電子供与性基が挙げられ、該電子供与性基として具体的には、アルキル基、アルコキシ基、アルコキシフェニル基、チオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基等が挙げられる。第1の置換基として、ポリエチレングリコール鎖(-(CHCHO)-)を有する長鎖アルコキシ基も挙げられる。また、第1の置換基がAr又はArのパラ位に結合する場合、ヒドロキシ基を第1の置換基として有していてもよい。
Ar 1 and Ar 2 in the above formula (1) are each a phenylene group, and each of them is a substituent other than R 1 or —X—R 2 (hereinafter, the substituents of Ar 1 and Ar 2 are referred to as “first It may be referred to as a “substituent”. Ar 1 and Ar 2 are preferably bonded directly or indirectly to form a ring from the viewpoint of synthesis.
Examples of the first substituent include an electron donating group. Specific examples of the electron donating group include an alkyl group, an alkoxy group, an alkoxyphenyl group, a thioalkoxy group, an arylthio group, and a thioalkoxyphenyl group. Can be mentioned. Examples of the first substituent include a long-chain alkoxy group having a polyethylene glycol chain (— (CH 2 CH 2 O) n —). Further, when the first substituent is bonded to the para position of Ar 1 or Ar 2 , it may have a hydroxy group as the first substituent.
 なお、本発明において、Ar又はAr2の「パラ位」等の置換位置は、上記式(1)中の2つのYとArとArと結合する4級炭素が結合する基に対する位置をいう。第1の置換基だけでなく、他の基についても、「パラ位」等の置換位置の基準は上記4級炭素と結合する基に対する位置とする。
 第1の置換基としてのアルキル基としては特に制限はないが、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、t-ブチル基、シクロヘキシル基、アダマンチル基等の炭素数1~20の直鎖状、分岐状及び環状アルキル基が挙げられる。第1の置換基としてのアルコキシ基としては特に制限はないが、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基が挙げられる。
 第1の置換基としてのチオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基としては、後述のRのチオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基と同様のものが挙げられる。
In the present invention, the substitution position such as “para-position” of Ar 1 or Ar 2 is the position relative to the group to which the two quaternary carbons bonded to Ar 1 and Ar 2 in the above formula (1) are bonded. Say. For not only the first substituent but also other groups, the criterion for the substitution position such as “para-position” is the position with respect to the group bonded to the quaternary carbon.
The alkyl group as the first substituent is not particularly limited, but includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, t-butyl group, cyclohexyl group, adamantyl group, etc. Examples thereof include linear, branched and cyclic alkyl groups having 1 to 20 carbon atoms. The alkoxy group as the first substituent is not particularly limited, and examples thereof include an alkoxy group having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
Examples of the thioalkoxy group, arylthio group and thioalkoxyphenyl group as the first substituent include the same thioalkoxy groups, arylthio groups and thioalkoxyphenyl groups of R 1 described later.
 第1の置換基が、アルコキシ基、アルコキシフェニル基、チオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基のときは、Ar及びArであるフェニレン基のオルト位及び/又はパラ位に結合していることが好ましい。その際、Ar及びArが有する第1の置換基の総数は3つ以下であることが好ましい。 When the first substituent is an alkoxy group, an alkoxyphenyl group, a thioalkoxy group, an arylthio group, or a thioalkoxyphenyl group, the first substituent is bonded to the ortho position and / or the para position of the phenylene group that is Ar 1 and Ar 2. Preferably it is. At that time, it is preferred that the total number of the first substituent group of the Ar 1 and Ar 2 is 3 or less.
 上記式(1)中のRとしては、置換基を有していてもよいチオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基からなる群より選択されるいずれかである。
 Rのチオアルコキシ基として具体的には、チオメトキシ基、チオエトキシ基、チオn-プロポキシ基、チオn-ブトキシ基等の炭素数1~20のチオアルコキシ基が好ましく、炭素数1~12のチオアルコキシ基がより好ましい。
 Rのアリールチオ基として具体的には、フェニルチオ基、ナフチルチオ基等が挙げられる。
R 1 in the above formula (1) is any selected from the group consisting of a thioalkoxy group, an arylthio group and a thioalkoxyphenyl group which may have a substituent.
Specifically, the thioalkoxy group for R 1 is preferably a thioalkoxy group having 1 to 20 carbon atoms such as a thiomethoxy group, a thioethoxy group, a thio n-propoxy group, or a thio n-butoxy group, and a thioalkoxy group having 1 to 12 carbon atoms. An alkoxy group is more preferable.
Specific examples of the arylthio group for R 1 include a phenylthio group and a naphthylthio group.
 Rのチオアルコキシフェニル基として具体的には、チオメトキシフェニル基、チオエトキシフェニル基、チオプロポキシフェニル基、チオブトキシフェニル等の炭素数1~20のチオアルコキシ基が結合したフェニル基が好ましく挙げられ、炭素数1~12のチオアルコキシ基が結合したフェニル基がさらに好ましい。Rにおいてフェニレン基に結合するチオアルコキシ基の置換位置としては特に制限はないが、パラ位であることが電子供与性と365nmのモル吸光係数を高める点から好ましい。
 上記Rは、Arであるフェニレン基のオルト位又はパラ位に結合していることが好ましい。
Specific examples of the thioalkoxyphenyl group represented by R 1 include a phenyl group to which a thioalkoxy group having 1 to 20 carbon atoms such as a thiomethoxyphenyl group, a thioethoxyphenyl group, a thiopropoxyphenyl group, or a thiobutoxyphenyl is bonded. More preferred is a phenyl group to which a thioalkoxy group having 1 to 12 carbon atoms is bonded. No particular restriction on the substitution position of thioalkoxy group attached to the phenylene group in R 1, but it is the para position is preferred from the viewpoint of increasing the molar extinction coefficient of the electron-donating and 365 nm.
R 1 is preferably bonded to the ortho or para position of the phenylene group that is Ar 1 .
 上記式(1)中のRとしては、置換基を有していてもよいアルキル基及びアリール基のいずれかである。
 Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、t-ブチル基、シクロヘキシル基等の炭素数1~20の直鎖状、分岐状及び環状アルキル基が挙げられる。
 Rのアリール基としては、フェニル基、ナフチル基等が挙げられる。
R 2 in the above formula (1) is either an alkyl group or an aryl group which may have a substituent.
Examples of the alkyl group for R 2 include a straight chain or branched chain having 1 to 20 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an isopropyl group, a t-butyl group, and a cyclohexyl group. And cyclic alkyl groups.
Examples of the aryl group for R 2 include a phenyl group and a naphthyl group.
 上記式(1)中のR及びRは置換基を有していてもよく、該置換基(以下、R及びRの置換基を「第2の置換基」という)としては、特に制限されないが、上記第1の置換基に加え、ニトロ基、スルホニル基、カルボニル基、ヒドロキシ基等が挙げられる。特にRとRの少なくとも一方がアリール基であり、且つ、該アリール基が第2の置換基を有する場合、第2の置換基をニトロ基、スルホニル基、カルボニル基及びヒドロキシ基等とすることで365nmのモル吸光係数が増加することから好ましい。
 後述するが、上記R又はRに重合性基を導入し、これを重合したものを増感作用を付与したポリマーとして用いても良い。つまり、光増感剤前駆体の作用を有する部分をユニットとして含むポリマーも本発明の一つの態様における光増感剤前駆体であり、第2の置換基がポリマー主鎖を含む構成であってもよい。上記重合性基としては、(メタ)アクリロイルオキシ基、エポキシ基、ビニル基等が挙げられる。
 なお、「(メタ)アクリロイル」とはアクリロイル及びメタアクリロイルを表す。
R 1 and R 2 in the above formula (1) may have a substituent, and as the substituent (hereinafter, the substituents of R 1 and R 2 are referred to as “second substituent”), Although it does not restrict | limit in particular, In addition to the said 1st substituent, a nitro group, a sulfonyl group, a carbonyl group, a hydroxy group, etc. are mentioned. In particular, when at least one of R 1 and R 2 is an aryl group and the aryl group has a second substituent, the second substituent is a nitro group, a sulfonyl group, a carbonyl group, a hydroxy group, or the like. This is preferable because the molar extinction coefficient of 365 nm increases.
As will be described later, a polymerized group introduced into R 1 or R 2 and polymerized therefrom may be used as a polymer imparted with a sensitizing action. That is, a polymer including a unit having a function of a photosensitizer precursor as a unit is also a photosensitizer precursor in one embodiment of the present invention, and the second substituent includes a polymer main chain. Also good. Examples of the polymerizable group include a (meth) acryloyloxy group, an epoxy group, and a vinyl group.
Note that “(meth) acryloyl” represents acryloyl and methacryloyl.
 上記式(1)のXが酸素原子又は硫黄原子であるとき、上記XがArのオルト位又はパラ位であることが好ましい。上記Xが直接結合であるときは、上記XがArのオルト位又はパラ位であることが好ましい。 When X in the formula (1) is an oxygen atom or a sulfur atom, it is preferable that the X is an ortho position or a para position of Ar 2 . When X is a direct bond, it is preferable that X is an ortho or para position of Ar 2 .
 R、R2、第1の置換基及び第2の置換基が有するアルキル基中の炭素-炭素一重結合の少なくとも一つが、炭素-炭素二重結合又は炭素-炭素三重結合で置き換えられていても良い。また、R、R2、第1の置換基及び第2の置換基が有するアルキル基中のメチレン基の少なくとも一つが、2価のヘテロ原子含有基で置き換えられていてもよい。
 上記2価のヘテロ原子含有基としては、-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-NHCO-、-CONH-、-NH-CO-O-、-O-CO-NH-、-NH-、-N(R)-、-N(Ar)-、-S-、-SO-及び-SO2-からなる群より選ばれる少なくとも1つを有する2価の有機基である。また、R、R2、上記第1の置換基及び第2の置換基において、-O-O-及び-S-S-等のヘテロ原子の連続した繋がりを有しないことが好ましい。
 Rは、第1の置換基で例示のアルキル基と同様のものが挙げられる。
 Arは、R2のアリール基と同様のものが挙げられる。
 上記式(1)中のR1の総炭素数は特に制限はなく、R1の置換基の有無に関わらず総炭素数1~20であることが好ましい。上記式(1)中のRの総炭素数は特に制限はなく、Rの置換基の有無に関わらず総炭素数1~20であることが好ましい。
 なお、上記光増感剤前駆体がポリマーである場合、第2の置換基となるポリマー主鎖を含む部分を除いたR1及びRの総炭素数が1~20であることが好ましい。
 R、R2、第1の置換基及び第2の置換基が酸解離性基を有していてもよい。酸解離性基としては、酸の作用によって脱保護する保護基であればよく、例えば、t-ブトキシカルボニルオキシ基、メトキシメトキシ基、エトキシメトキシ基、トリメチルシリルオキシ基、テトラヒドロピラニルオキシ基及び1-エトキシエトキシ基等が挙げられる。本発明の一つの態様におけるレジスト組成物は、光増感剤前駆体が酸解離性基を有することで、酸の作用によって溶解性が変化し、露光部と未露光部における溶解性コントラストが得られやすくなることから好ましい。
At least one of the carbon-carbon single bonds in R 1 , R 2 , the alkyl group of the first substituent and the second substituent is replaced with a carbon-carbon double bond or a carbon-carbon triple bond. Also good. In addition, at least one of the methylene groups in the alkyl group of R 1 , R 2 , the first substituent and the second substituent may be replaced with a divalent heteroatom-containing group.
Examples of the divalent heteroatom-containing group include —O—, —CO—, —COO—, —OCO—, —O—CO—O—, —NHCO—, —CONH—, and —NH—CO—O—. , —O—CO—NH—, —NH—, —N (R) —, —N (Ar) —, —S—, —SO—, and —SO 2 —. It is a divalent organic group. Further, it is preferable that R 1 , R 2 , the first substituent, and the second substituent do not have a continuous connection of heteroatoms such as —O—O— and —SS—.
R may be the same as the alkyl group exemplified as the first substituent.
Ar is the same as the aryl group for R 2 .
The total number of carbon atoms of R 1 in the above formula (1) is not particularly limited, and is preferably 1 to 20 carbon atoms regardless of the presence or absence of the substituent of R 1 . The total carbon number of R 2 in the above formula (1) is not particularly limited, and is preferably 1 to 20 in total, regardless of the presence or absence of the substituent of R 2 .
When the photosensitizer precursor is a polymer, the total carbon number of R 1 and R 2 excluding the portion containing the polymer main chain that becomes the second substituent is preferably 1-20.
R 1 , R 2 , the first substituent and the second substituent may have an acid dissociable group. The acid-dissociable group may be any protecting group that is deprotected by the action of an acid, such as t-butoxycarbonyloxy group, methoxymethoxy group, ethoxymethoxy group, trimethylsilyloxy group, tetrahydropyranyloxy group, and 1- An ethoxyethoxy group etc. are mentioned. In the resist composition according to one embodiment of the present invention, the photosensitizer precursor has an acid-dissociable group, so that the solubility is changed by the action of an acid, and a solubility contrast is obtained in the exposed and unexposed areas. It is preferable because it is easily formed.
 Yは、独立して各々に、酸素原子及び硫黄原子のいずれかである。
 R及びRは、独立して各々に、置換基を有してもよい、直鎖、分岐鎖又は環状のアルキル基である。R及びRのアルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基、t-ブチル基、シクロヘキシル基等の炭素数1~20の直鎖状、分岐状及び環状アルキル基が挙げられる。
 合成の点から、上記R及びRは同じであることが好ましい。
 なお、本発明において、R及びRを上記に示す基とすることで、上記光増感剤前駆体は酸により脱保護されてカルボニル基を有し得る。
Y is each independently either an oxygen atom or a sulfur atom.
R 3 and R 4 are each independently a linear, branched or cyclic alkyl group which may have a substituent. As the alkyl group of R 3 and R 4 , a straight chain having 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, isopropyl group, t-butyl group, cyclohexyl group, etc. Examples include branched and cyclic alkyl groups.
From the viewpoint of synthesis, R 3 and R 4 are preferably the same.
In the present invention, when R 3 and R 4 are the groups shown above, the photosensitizer precursor may be deprotected with an acid to have a carbonyl group.
 上記R及びRは、互いに結合して式中の2つのYと環構造を形成していてもよい。
すなわち、本発明の一つの態様における光増感剤前駆体は下記式(2)で示される環状アセタール保護基を有する環状アセタール化合物であることが好ましい。下記式(2)において-R5-R6-は、-(CH-であることが好ましく、nは2以上の整数である。nは2以上であれば特に制限はないが、合成のしやすさから8以下であることが好ましい。また、後述する環状アセタール保護基の活性化エネルギーの観点からnは3以上であることが好ましい。R5及びR6は、上記式(1)におけるR3及びR4が互いに結合して環を形成したものに対応するものとする。
R 3 and R 4 may be bonded to each other to form a ring structure with two Ys in the formula.
That is, the photosensitizer precursor in one embodiment of the present invention is preferably a cyclic acetal compound having a cyclic acetal protecting group represented by the following formula (2). In the following formula (2), —R 5 —R 6 — is preferably — (CH 2 ) n —, and n is an integer of 2 or more. Although n is not particularly limited as long as it is 2 or more, it is preferably 8 or less for ease of synthesis. Moreover, it is preferable that n is 3 or more from a viewpoint of the activation energy of the cyclic acetal protecting group mentioned later. R 5 and R 6 correspond to those in which R 3 and R 4 in the above formula (1) are bonded to each other to form a ring.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般的に非環状アセタールは環状アセタールと比較して活性化エネルギーが低く、環状アセタール化合物は加水分解速度が大きいことが知られている。また環状アセタール化合物の中でも1,3-ジオキソランのような5員環構造では活性化エネルギーが高く安定であるのに対して、1,3-ジオキサン構造や1,3-ジオキセパンのように6員環以上の構造を有するものは活性化エネルギーが低くなる。環状アセタール化合物の構造の違いによる加水分解速度の相対比較値は、例えば非特許文献Green's PROTECTIVE GROUPS in ORGANIC SYNTHESIS Fourth Edition, A John Wiley & Sons,Inc.,Publication,p 448-449に記載されている。
 本発明の一つの態様における光増感剤前駆体は、アセタール保護基の活性化エネルギーが低いことが好ましい。これは、光増感剤前駆体がアセタールの脱保護反応によって光増感剤に変換しやすいためである。アセタール保護基の活性化エネルギーの観点からは、上記R及びRは直鎖、分岐鎖又は環状のアルキル基が好ましく、直鎖のアルキル基がより好ましい。また、R及びRが互いに結合して式中の2つのYと環構造を形成している場合である上記式(2)において-R5-R6-は、nが3以上の-(CH-であることが好ましい。
Generally, it is known that an acyclic acetal has a lower activation energy than a cyclic acetal, and a cyclic acetal compound has a high hydrolysis rate. Among cyclic acetal compounds, a 5-membered ring structure such as 1,3-dioxolane has high activation energy and is stable, whereas a 6-membered ring such as 1,3-dioxane structure and 1,3-dioxepane. Those having the above structure have low activation energy. The relative comparison value of the hydrolysis rate due to the difference in the structure of the cyclic acetal compound is described in, for example, Non-patent Document Green's PROTECTIVE GROUPS in ORGANIC SYNTHESIS Fourth Edition, A John Wiley & Sons, Inc. , Publication, p 448-449.
The photosensitizer precursor in one embodiment of the present invention preferably has a low activation energy of the acetal protecting group. This is because the photosensitizer precursor is easily converted into a photosensitizer by the deprotection reaction of acetal. From the viewpoint of the activation energy of the acetal protecting group, R 3 and R 4 are preferably a linear, branched or cyclic alkyl group, and more preferably a linear alkyl group. In the above formula (2), in which R 3 and R 4 are bonded to each other to form a ring structure with two Y in the formula, —R 5 —R 6 — is a group in which n is 3 or more. (CH 2 ) n- is preferred.
 上記式(1)中のR及びRは置換基を有していてもよく、該置換基(以下、R及びRの置換基を「第3の置換基」という)としては特に制限されないが、上記第2の置換基に加え、フェニル基、ナフチル基等のアリール基等も挙げられる。 R 3 and R 4 in the above formula (1) may have a substituent, and as the substituent (hereinafter, the substituents of R 3 and R 4 are referred to as “third substituent”), Although it does not restrict | limit, In addition to the said 2nd substituent, aryl groups, such as a phenyl group and a naphthyl group, etc. are mentioned.
 R3、R4及び第3の置換基が有するアルキル基中の炭素-炭素一重結合の少なくとも一つが、炭素-炭素二重結合又は炭素-炭素三重結合で置き換えられていても良い。また、R3、R4及び第3の置換基が有するアルキル基中のメチレン基の少なくとも一つが、上記2価のヘテロ原子含有基で置き換えられていてもよい。
 上記式(1)中のR及びRの総炭素数は特に制限はなく、上記光増感剤前駆体がポリマーの構成成分であってもよい。R又はRは置換基の有無に関わらずそれぞれ総炭素数1~20であることが好ましい。上記式(2)において、R5及びR6は、上記R及びRと同様の上記第3の置換基を有していても良い。上記R又はRに重合性基を導入し、これを重合したものを増感作用を付与したポリマーとして用いても良い。つまり、本発明の一つの態様における光増感剤前駆体が光増感剤前駆体の作用を有する部分をユニットとして含むポリマーである場合、上述した第2の置換基に代えて、第3の置換基がポリマー主鎖を含む構成であってもよい。
 なお、R及びRの総炭素数は1~20であることが好ましい。上記光増感剤前駆体がポリマーである場合、第3の置換基となるポリマー主鎖を含む部分を除いたR3及びR4の総炭素数が1~20であることが好ましい。
At least one of the carbon-carbon single bonds in the alkyl group of R 3 , R 4 and the third substituent may be replaced with a carbon-carbon double bond or a carbon-carbon triple bond. In addition, at least one of methylene groups in the alkyl group of R 3 , R 4 and the third substituent may be replaced with the above divalent hetero atom-containing group.
The total carbon number of R 3 and R 4 in the above formula (1) is not particularly limited, and the photosensitizer precursor may be a constituent component of a polymer. R 3 or R 4 preferably has a total carbon number of 1 to 20 regardless of the presence or absence of substituents. In the above formula (2), R 5 and R 6 may have the same third substituent as R 3 and R 4 . A polymer obtained by introducing a polymerizable group into R 3 or R 4 and polymerizing it may be used as a polymer imparted with a sensitizing action. That is, when the photosensitizer precursor in one embodiment of the present invention is a polymer including a unit having a photosensitizer precursor function as a unit, the third substituent is replaced with the third substituent. The substituent may contain a polymer main chain.
The total carbon number of R 3 and R 4 is preferably 1-20. When the photosensitizer precursor is a polymer, the total number of carbon atoms of R 3 and R 4 excluding the portion containing the polymer main chain serving as the third substituent is preferably 1-20.
 上記光増感剤前駆体の酸処理後のもの、すなわち上記光増感剤前駆体が酸により脱保護された際に生成するカルボニル基を有する光増感剤は、365nmにおけるモル吸光係数が1.0×10cm/mol以上であることが好ましい。365nmにおけるモル吸光係数は高い方が好ましいが、1.0×1010cm/mol以下が現実的な値である。モル吸光係数を上記範囲とするには、光増感剤前駆体において、例えば、チオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基からなる群より選択される少なくとも1つを有する、又は、アルコキシ基及びアリールオキシ基のいずれかを2つ以上有する構成とすることが挙げられる。
 本発明においてモル吸光係数は、溶媒としてクロロホルム又はアセトニトリルを用い、UV-VIS吸光光度計により測定されたクロロホルム溶媒又はアセトニトリル溶媒中での365nmにおけるものである。本発明のいくつかの態様におけるカルボニル基を有する光増感剤のモル吸光係数は、クロロホルム溶媒又はアセトニトリル溶媒のいずれにおいても上記範囲内となり得る。
 なお、本発明の一つの態様における光増感剤前駆体は、合成のしやすさ及び吸光特性の点から、光増感剤前駆体全体において、-Y-R及び-Y-R、又は、-Y-R-R-Y-以外のチオアルコキシ基、アリールチオ基、アルコキシフェニル基、チオアルコキシフェニル基、アルコキシ基及びアリールオキシ基からなる群から選ばれる基が4つ以下であることが好ましい。
The photosensitizer after acid treatment of the photosensitizer precursor, that is, the photosensitizer having a carbonyl group generated when the photosensitizer precursor is deprotected with an acid has a molar extinction coefficient at 365 nm of 1. It is preferable that it is 0.0 × 10 5 cm 2 / mol or more. A higher molar extinction coefficient at 365 nm is preferable, but a practical value is 1.0 × 10 10 cm 2 / mol or less. In order to make the molar extinction coefficient within the above range, the photosensitizer precursor has, for example, at least one selected from the group consisting of a thioalkoxy group, an arylthio group, and a thioalkoxyphenyl group, or an alkoxy group and A configuration having two or more aryloxy groups may be mentioned.
In the present invention, the molar extinction coefficient is at 365 nm in a chloroform solvent or acetonitrile solvent measured with a UV-VIS spectrophotometer using chloroform or acetonitrile as a solvent. The molar extinction coefficient of the photosensitizer having a carbonyl group in some embodiments of the present invention can be within the above range in either a chloroform solvent or an acetonitrile solvent.
Note that the photosensitizer precursor in one embodiment of the present invention is composed of -YR 3 and -YR 4 in the entire photosensitizer precursor from the viewpoint of ease of synthesis and light absorption characteristics. Or, there are no more than 4 groups selected from the group consisting of thioalkoxy groups other than —YR 3 —R 4 —Y—, arylthio groups, alkoxyphenyl groups, thioalkoxyphenyl groups, alkoxy groups, and aryloxy groups. It is preferable.
 上記式(1)で表される光増感剤前駆体としての、好ましい例として、例えば下記光増感剤前駆体が例示できる。下記例示中、括弧で示されたものはポリマーのユニットを表している。本発明のいくつかの態様における光増感剤前駆体はこれに限定されない。 As a preferable example of the photosensitizer precursor represented by the above formula (1), for example, the following photosensitizer precursor can be exemplified. In the following examples, those shown in parentheses represent polymer units. The photosensitizer precursor in some embodiments of the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
<2>光増感剤前駆体の合成方法
 本発明の一つの態様における光増感剤前駆体の合成方法について説明する。本発明においてはこれに限定されない。
 本発明の一つの態様における光増感剤前駆体が下記式(3)に示される構造の場合、例えば下記の方法により合成可能である。まず、-X-R基を有するアルコキシベンゾイルクロリド、アルキルベンゾイルクロリド、チオアルコキシベンゾイルクロリド及びチオアルキルベンゾイルクロリド、並びに、これらのアルキル基がアリール基となったものからなる群より選択される1つと、R基を有するハロゲン化ベンゼンとを用いて、グリニャール反応により反応させ、ベンゾフェノン誘導体を得る。次いで、該ベンゾフェノン誘導体と、アルコール及び必要に応じて脱水剤としてオルトギ酸トリアルキル(R、R=アルキル基)等のオルトエステルとを、0℃~還流温度で1~120時間反応させることにより、下記式(3)に示される誘導体を得ることができる。
<2> Method for Synthesizing Photosensitizer Precursor A method for synthesizing a photosensitizer precursor in one embodiment of the present invention will be described. The present invention is not limited to this.
When the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (3), it can be synthesized, for example, by the following method. First, one selected from the group consisting of an alkoxybenzoyl chloride having an —X—R 2 group, an alkylbenzoyl chloride, a thioalkoxybenzoyl chloride and a thioalkylbenzoyl chloride, and an alkyl group in which these alkyl groups are aryl groups, , And a halogenated benzene having an R 1 group to give a benzophenone derivative by a Grignard reaction. Next, the benzophenone derivative is reacted with an alcohol and, if necessary, an ortho ester such as trialkyl orthoformate (R 3 , R 4 = alkyl group) as a dehydrating agent at 0 ° C. to reflux temperature for 1 to 120 hours. Thus, a derivative represented by the following formula (3) can be obtained.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明の一つの態様における光増感剤前駆体が下記式(4)で示される構造の場合、上記で得られた上記式(3)に示される誘導体と1,3-プロパンジオールとを、カンファースルホン酸等の酸存在下、0~100℃で1~120時間反応させることで得ることができる。 When the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (4), the derivative represented by the above formula (3) and 1,3-propanediol obtained above are It can be obtained by reacting at 0 to 100 ° C. for 1 to 120 hours in the presence of an acid such as camphorsulfonic acid.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本発明の一つの態様における光増感剤前駆体が下記式(5)で示される構造の場合、上記で得られた上記式(3)に示される誘導体とメタンチオールとを三塩化ホウ素等のルイス酸存在下、-78℃~0℃で1~120時間反応させることで得ることができる。 In the case where the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (5), the derivative represented by the above formula (3) obtained above and methanethiol are combined with boron trichloride or the like. It can be obtained by reacting at -78 ° C to 0 ° C for 1 to 120 hours in the presence of a Lewis acid.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 本発明の一つの態様における光増感剤前駆体が下記式(6)で示される構造の場合、上記で得られた上記式(3)に示される誘導体と3-メルカプト-1-プロパノールとを、塩化ジルコニウム(IV)等のルイス酸存在下、0~100℃で1~120時間反応させることで得ることができる。 When the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (6), the derivative represented by the above formula (3) obtained above and 3-mercapto-1-propanol It can be obtained by reacting at 0 to 100 ° C. for 1 to 120 hours in the presence of a Lewis acid such as zirconium chloride (IV).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明の一つの態様における光増感剤前駆体が下記式(7)で示される構造の場合、上記で得られた上記式(3)に示される誘導体とメタンチオールとを、三塩化ホウ素等のルイス酸存在下、0~100℃で1~120時間反応させることで得ることができる。 In the case where the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (7), the derivative represented by the above formula (3) obtained above and methanethiol are combined with boron trichloride or the like. It can be obtained by reacting at 0 to 100 ° C. for 1 to 120 hours in the presence of a Lewis acid.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 本発明の一つの態様における光増感剤前駆体が下記式(8)で示される構造の場合、上記で得られた上記式(3)に示される誘導体と1,3-プロパンジチオールとを、三塩化ホウ素等のルイス酸存在下、0~100℃で1~120時間反応させることで得ることができる。 In the case where the photosensitizer precursor in one embodiment of the present invention has a structure represented by the following formula (8), the derivative represented by the above formula (3) obtained above and 1,3-propanedithiol are obtained. It can be obtained by reacting at 0 to 100 ° C. for 1 to 120 hours in the presence of a Lewis acid such as boron trichloride.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 本発明の一つの態様における光増感剤前駆体は、特定の構造を有することにより、アセタール化反応を効率的に進めることができる。Ar1とAr2とが2価の基及び上記4級炭素を介して環構造を有していていないことが好ましい。理由としては、Ar1及びAr2とが2価の基及び上記4級炭素を介して環構造を有する場合、例えば、チオキサントン等の骨格を有する場合、アセタール化反応を効率的に進めることが難しい場合がある。そのため、Ar1とAr2とが直接又は2価の基及び上記4級炭素を介して環構造を有しない方が合成上、好ましい。 Since the photosensitizer precursor in one embodiment of the present invention has a specific structure, the acetalization reaction can be efficiently advanced. It is preferable that Ar 1 and Ar 2 do not have a ring structure through a divalent group and the quaternary carbon. The reason is that when Ar 1 and Ar 2 have a ring structure via a divalent group and the quaternary carbon, for example, when having a skeleton such as thioxanthone, it is difficult to efficiently advance the acetalization reaction. There is a case. Therefore, it is preferable in the synthesis that Ar 1 and Ar 2 do not have a ring structure directly or via a divalent group and the quaternary carbon.
<3>光酸発生剤
 本発明の一つの態様における酸発生剤としては、化学増幅型レジスト組成物に通常用いられるものであれば特に制限はなく、例えば、オニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。光酸発生剤は、1種単独で又は2種以上を組み合わせて使用することができる。EUVやEBの感度を考慮して電子受容性が高いことが好ましく、さらに、365nmにおけるに対するモル吸光係数が1.0×10cm/mol以下であることが好ましい。
 オニウム塩化合物としては、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。スルホニウム塩及びヨードニウム塩としては、WO2011/093139号公報に記載のものが挙げられる。具体的には下記式(9)又は(10)で表される光酸発生剤が挙げられるが、これに限定されない。
<3> Photoacid generator The acid generator in one embodiment of the present invention is not particularly limited as long as it is usually used in a chemically amplified resist composition, and examples thereof include onium salt compounds, N-sulfonyloxyimides. Examples thereof include compounds, halogen-containing compounds, diazoketone compounds and the like. A photo-acid generator can be used individually by 1 type or in combination of 2 or more types. In consideration of the sensitivity of EUV and EB, the electron acceptability is preferably high, and the molar extinction coefficient with respect to 365 nm is preferably 1.0 × 10 4 cm 2 / mol or less.
Examples of the onium salt compounds include sulfonium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like. Examples of the sulfonium salt and iodonium salt include those described in WO2011 / 093139. Specific examples include photoacid generators represented by the following formula (9) or (10), but are not limited thereto.
aCOORSO   (9)
 上記式(9)において、Raは、置換基を有していてもよい炭素数1~200の1価の有機基を示し、Rは一部の水素原子がフッ素原子に置換されていてもよい炭化水素基を示す。Mは対カチオンを示す。
R a COOR b SO 3 M + (9)
In the above formula (9), R a represents a monovalent organic group having 1 to 200 carbon atoms which may have a substituent, and R b represents that some hydrogen atoms are substituted with fluorine atoms. Or a good hydrocarbon group. M + represents a counter cation.
aCOOCHCHCFHCFSO   (10)
 上記式(10)において、Raは、置換基を有していてもよい炭素数1~200の1価の有機基を示す。Mは対カチオンを示す。
R a COOCH 2 CH 2 CFHCF 2 SO 3 M + (10)
In the above formula (10), R a represents a monovalent organic group having 1 to 200 carbon atoms which may have a substituent. M + represents a counter cation.
 上記光酸発生剤は、低分子量成分としてレジスト組成物中に加えた態様でもよいが、ポリマーのユニットとして含有してもよい。すなわち、光酸発生剤のいずれかの位置でポリマー主鎖に結合するようユニットとしてポリマーに含まれた態様であってもよい。例えば、光酸発生剤がスルホニウム塩の場合、スルホニウム塩中の置換基の1つのHに代えて、ポリマー主鎖に直接又は連結基を介して結合する結合手を有することが好ましい。 The photo acid generator may be added to the resist composition as a low molecular weight component, or may be contained as a polymer unit. That is, the aspect contained in the polymer as a unit so that it may couple | bond with a polymer principal chain in any position of a photo-acid generator may be sufficient. For example, when the photoacid generator is a sulfonium salt, it is preferable to have a bond bonded to the polymer main chain directly or via a linking group, instead of one of the substituents in the sulfonium salt.
<4>ヒドロキシ基含有化合物
 本発明の一つの態様におけるヒドロキシ基含有化合物としては、ヒドロキシ基の水素が上記光酸発生剤が分解する際に水素供給源となり得れば、特に制限はない。上記ヒドロキシ基含有化合物をレジスト組成物中に含むことで、上記光酸発生剤からの酸発生効率を向上させ、さらにヒドロキシ基が付加することでヒドロキシ基を持たない場合と比較してイオン化ポテンシャルを下げることができる。
 ヒドロキシ基含有化合物として例えばヒドロキシスチレン、ヒドロキシビニルナフタレン、ヒドロキシフェニルアクリレート、ヒドロキシフェニルメタクリレート、ヒドロキシナフチルアクリレート、ヒドロキシノルボルネンアクリレート、ヒドロキシノルボルネンメタクリレート、ヒドロキシナフチルメタクリレート、ヒドロキシアダマンタンアクリレート、ヒドロキシアダマンタンメタクリレート等に由来するユニットを含むポリマー;ビスフェノール、TrisP-PA(本州化学工業(株)製)カリックスアレーン等のポリフェノール化合物;等が挙げられる。中でも、ヒドロキシスチレン、ヒドロキシビニルナフタレン、ヒドロキシフェニルアクリレート、ヒドロキシフェニルメタクリレート、ヒドロキシナフチルアクリレート、ヒドロキシナフチルメタクリレート等に由来するユニットを含むポリマーが好ましい。ヒドロキシアリール基含有化合物としては、下記式(11)に示されるユニットを有するポリマーが挙げられる。
<4> Hydroxy group-containing compound The hydroxy group-containing compound according to one embodiment of the present invention is not particularly limited as long as hydrogen of a hydroxy group can be a hydrogen supply source when the photoacid generator is decomposed. By including the hydroxy group-containing compound in the resist composition, the acid generation efficiency from the photoacid generator is improved, and further, the ionization potential is increased as compared with the case where the hydroxy group is added to have no hydroxy group. Can be lowered.
Examples of hydroxy group-containing compounds include units derived from hydroxystyrene, hydroxyvinylnaphthalene, hydroxyphenyl acrylate, hydroxyphenyl methacrylate, hydroxy naphthyl acrylate, hydroxy norbornene acrylate, hydroxy norbornene methacrylate, hydroxy naphthyl methacrylate, hydroxy adamantane acrylate, hydroxy adamantane methacrylate, and the like. Polymers including: polyphenol compounds such as bisphenol and TrisP-PA (manufactured by Honshu Chemical Industry Co., Ltd.) calixarene; and the like. Among these, polymers containing units derived from hydroxystyrene, hydroxyvinylnaphthalene, hydroxyphenyl acrylate, hydroxyphenyl methacrylate, hydroxy naphthyl acrylate, hydroxy naphthyl methacrylate and the like are preferable. Examples of the hydroxyaryl group-containing compound include a polymer having a unit represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(11)中、Ar3はアリーレン基であり、R7は水素原子又は炭化水素基でありLはカルボニルオキシ基または直接結合を示す。
 上記Ar3のアリーレン基は、式(11)に開示のヒドロキシ基以外にさらにヒドロキシ基を有していてもよい。上記Ar3のアリーレン基としては、ヒドロキシ基以外の置換基を有しても良い炭素数6~14のアリーレン基が好ましく、置換基を有しても良いフェニレン基又はナフチレン基がより好ましく、置換基を有してもよいフェニレン基がさらに好ましい。
 上記R7の炭化水素基は、炭素数1~12のアルキル基が好ましい。R7としては水素原子又はメチル基がより好ましい。
In the above formula (11), Ar 3 represents an arylene group, R 7 represents a hydrogen atom or a hydrocarbon group, and L represents a carbonyloxy group or a direct bond.
The Ar 3 arylene group may further have a hydroxy group in addition to the hydroxy group disclosed in formula (11). The Ar 3 arylene group is preferably an arylene group having 6 to 14 carbon atoms which may have a substituent other than a hydroxy group, more preferably a phenylene group or a naphthylene group which may have a substituent. A phenylene group which may have a group is more preferable.
The hydrocarbon group for R 7 is preferably an alkyl group having 1 to 12 carbon atoms. R 7 is more preferably a hydrogen atom or a methyl group.
 上記ヒドロキシアリール基含有化合物としては、下記式に示されるユニットを有するポリマーが好ましく挙げられるが、これに限定されない。 Preferred examples of the hydroxyaryl group-containing compound include polymers having units represented by the following formula, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
<5>酸反応性化合物 <5> Acid-reactive compound
 上記酸反応化合物としては、酸により脱保護する保護基を有する化合物、酸により重合する重合性基を有する化合物、及び、酸により架橋作用を有する架橋剤等が挙げられる。 Examples of the acid reaction compound include a compound having a protecting group that is deprotected by an acid, a compound having a polymerizable group that is polymerized by an acid, and a crosslinking agent having a crosslinking action by an acid.
 酸により脱保護する保護基を有する化合物とは、例えば、組成物をレジスト組成物として用いる場合は、酸によって保護基が脱保護して極性基を生じることにより現像液に対する溶解性が変化する化合物である。例えばアルカリ現像液等を用いる水系現像の場合、アルカリ現像液に対して不溶性であるが、露光により上記光酸発生剤から発生する酸によって露光部において保護基が脱保護することにより、アルカリ現像液に対して可溶となる化合物である。 A compound having a protecting group that is deprotected by an acid is, for example, a compound in which the solubility in a developer is changed when a protective group is deprotected by an acid to form a polar group when the composition is used as a resist composition. It is. For example, in the case of aqueous development using an alkaline developer or the like, it is insoluble in an alkaline developer, but the protective group is deprotected in the exposed area by an acid generated from the photoacid generator upon exposure, whereby an alkaline developer It is a compound that becomes soluble in.
 本発明においては、アルカリ現像液に限定されず、中性現像液あるいは有機溶剤現像であってもよい。そのため、有機溶剤現像液を用いる場合は、酸により脱保護する保護基を有する化合物は、露光により上記光酸発生剤から発生する酸によって露光部において脱保護基が脱保護し、有機溶剤現像液に対して溶解性が低下する化合物である。 In the present invention, the developer is not limited to an alkali developer, and may be a neutral developer or an organic solvent development. Therefore, when an organic solvent developer is used, the compound having a protecting group that is deprotected by an acid is deprotected in the exposed area by the acid generated from the photoacid generator upon exposure, and the organic solvent developer Is a compound whose solubility is reduced.
 上記極性基としては、ヒドロキシ基及びカルボキシ基、アミノ基及びスルホ基等が挙げられる。
 酸で脱保護する保護基の具体例としては、エステル基、アセタール基、テトラヒドロピラニル基、シロキシ基及びベンジロキシ基等が挙げられる。該保護基を有する化合物として、これら保護基がペンダントしたスチレン骨格、メタクリレート又はアクリレート骨格を有する化合物等が好適に用いられる。
 酸により脱保護する保護基を有する化合物は、保護基含有低分子化合物であっても、保護基含有ポリマーであってもよい。本発明において、低分子化合物とは重量平均分子量が1000未満のものであり、ポリマーとは重量平均分子量が1000以上のものとする。
Examples of the polar group include a hydroxy group, a carboxy group, an amino group, and a sulfo group.
Specific examples of the protecting group to be deprotected with an acid include an ester group, an acetal group, a tetrahydropyranyl group, a siloxy group, and a benzyloxy group. As the compound having the protecting group, a compound having a styrene skeleton, a methacrylate or an acrylate skeleton pendant with these protecting groups is preferably used.
The compound having a protecting group to be deprotected with an acid may be a protecting group-containing low molecular weight compound or a protecting group-containing polymer. In the present invention, the low molecular weight compound has a weight average molecular weight of less than 1000, and the polymer has a weight average molecular weight of 1000 or more.
 酸により重合する重合性基を有する化合物とは、例えば、組成物をレジスト組成物として用いる場合は、酸によって重合性基が重合することにより現像液に対する溶解性が変化する化合物である。例えば水系現像の場合、水系現像液に対して可溶であるが、露光により上記光酸発生剤から発生する酸によって露光部において該重合性基が重合して、水系現像液に対し溶解性が低下する化合物である。この場合においても、水系現像液に代えて有機溶剤現像液を用いてもよい。 For example, when the composition is used as a resist composition, the compound having a polymerizable group that is polymerized with an acid is a compound whose solubility in a developer is changed by polymerization of the polymerizable group with an acid. For example, in the case of aqueous development, it is soluble in an aqueous developer, but the polymerizable group is polymerized in the exposed area by the acid generated from the photoacid generator upon exposure, and is soluble in the aqueous developer. It is a compound that decreases. Also in this case, an organic solvent developer may be used instead of the aqueous developer.
 酸により重合する重合性基としては、エポキシ基、ビニルオキシ基及びオキセタニル基等が挙げられる。該重合性基を有する化合物として、これらの重合性基を有するスチレン骨格、メタクリレート又はアクリレート骨格を有する化合物等が好適に用いられる。
 酸により重合する重合性基を有する化合物は、重合性低分子化合物であっても、ポリマーであってもよい。
Examples of the polymerizable group that is polymerized with an acid include an epoxy group, a vinyloxy group, and an oxetanyl group. As the compound having a polymerizable group, a compound having a styrene skeleton, a methacrylate or an acrylate skeleton having these polymerizable groups is preferably used.
The compound having a polymerizable group that is polymerized with an acid may be a polymerizable low-molecular compound or a polymer.
 酸により架橋作用を有する架橋剤とは、例えば、組成物をレジスト組成物として用いる場合は、酸によって架橋することにより現像液に対する溶解性を変化させる化合物であり、例えば水系現像の場合、水系現像液に対して可溶である化合物に対して作用し、架橋後に該化合物を水系現像液に対して溶解性を低下させるものである。具体的には、2,4,6-トリス[ビス(メトキシメチル)アミノ]-1,3,5-トリアジン等のメチル化メラミン及び1,3,4,6-テトラキス(メトキシメチル)グリコールウリル等のメチル化尿素等が挙げられる。このとき、架橋する相手の化合物としては、フェノール性水酸基やカルボキシ基を有する化合物等が挙げられる。
 酸により架橋作用を有する化合物は、重合性低分子化合物であっても、ポリマーであってもよい。
For example, when the composition is used as a resist composition, the crosslinking agent having a crosslinking action with an acid is a compound that changes the solubility in a developer by crosslinking with an acid. For example, in the case of aqueous development, aqueous development It acts on a compound that is soluble in a liquid and reduces the solubility of the compound in an aqueous developer after crosslinking. Specifically, methylated melamine such as 2,4,6-tris [bis (methoxymethyl) amino] -1,3,5-triazine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, etc. And methylated urea. At this time, examples of the cross-linking partner compound include compounds having a phenolic hydroxyl group or a carboxy group.
The compound having a crosslinking action with an acid may be a polymerizable low molecular compound or a polymer.
<6>光増感剤前駆体を含む組成物
 本発明の一つの態様は、上記光増感剤前駆体と、上記光酸発生剤と、上記ヒドロキシ基含有化合物と、上記酸反応性化合物と、を含有するレジスト組成物である。
 本発明のいくつかの態様における光増感剤前駆体は、上記組成物において、活性エネルギー線等の照射により光酸発生剤が酸を発生し、該酸により脱保護し、光増感剤となり得る。
 本発明においては、第1活性エネルギー線を用いた第1照射により光酸発生剤が酸を発生し、該酸により上記光増感剤前駆体が脱保護して光増感剤となり、且つ、該光増感剤が光を吸収する波長を有する第2活性エネルギーを用いた第2照射を行うことにより、光増感剤の作用により第1照射を行った部分のみに再び光酸発生剤が酸を発生し得ることが好ましい。それにより、上記酸がさらに光増感剤を発生させると共に、酸により反応する酸反応化合物を反応させ得る。
<6> Composition Containing Photosensitizer Precursor One aspect of the present invention is the photosensitizer precursor, the photoacid generator, the hydroxy group-containing compound, and the acid-reactive compound. , A resist composition containing
In some embodiments of the present invention, the photosensitizer precursor is a photosensitizer in the above composition, wherein the photoacid generator generates an acid upon irradiation with active energy rays or the like, and is deprotected by the acid. obtain.
In the present invention, the photoacid generator generates an acid by the first irradiation using the first active energy ray, the photosensitizer precursor is deprotected by the acid to become a photosensitizer, and By performing the second irradiation using the second active energy having a wavelength at which the photosensitizer absorbs light, the photoacid generator is again applied only to the portion subjected to the first irradiation by the action of the photosensitizer. It is preferable that an acid can be generated. Thereby, while the said acid generates a photosensitizer further, the acid reaction compound which reacts with an acid can be made to react.
 本発明の一つの態様であるレジスト組成物として、より具体的には下記が例示できる。
 上記光増感剤前駆体と上記酸により脱保護する保護基を有する化合物と光酸発生剤とを含むレジスト組成物;上記光増感剤前駆体と上記酸により重合する重合性基を有する化合物と上記光酸発生剤とを含むレジスト組成物;上記光増感剤前駆体と、酸により架橋作用を有する架橋剤と、該架橋剤と反応して現像液に対する溶解性が変化する化合物と、光酸発生剤と、を含むレジスト組成物;等が挙げられる。
 本発明の一つの態様における光増感剤前駆体は、ポジ型及びネガ型のレジスト組成物の増感剤として好ましく用いることができる。
Specific examples of the resist composition according to one embodiment of the present invention include the following.
A resist composition comprising the photosensitizer precursor, a compound having a protecting group that is deprotected by the acid, and a photoacid generator; a compound having a polymerizable group that is polymerized by the photosensitizer precursor and the acid. A resist composition comprising: and a photoacid generator; a photosensitizer precursor; a crosslinking agent having a crosslinking action with an acid; a compound that reacts with the crosslinking agent to change solubility in a developer; And a resist composition containing a photoacid generator.
The photosensitizer precursor in one embodiment of the present invention can be preferably used as a sensitizer for positive and negative resist compositions.
 本発明の一つの態様の組成物における上記光増感剤前駆体の含有量は、光酸発生剤に対し、0.1~5モル当量が好ましく、0.5~2.0モル当量であることがより好ましい。上記光増感剤前駆体及び光酸発生剤の少なくともいずれかがポリマーである場合は、ポリマー主鎖を除いた質量基準とする。
 本発明の一つの態様のレジスト組成物中の光酸発生剤の含有量は、該光酸発生剤を除くレジスト組成物成分100質量部に対し1~50質量部であることが好ましく、1~30質量部であることがより好ましく、1~15質量部であることがさらに好ましい。上記範囲内で光酸発生剤を組成物中に含有させることで、例えば、組成物を表示体等の絶縁膜等の永久膜として使用する場合でも光の透過率を高くすることができる。上記光酸発生剤の含有量の算出において、溶剤はレジスト組成物成分100質量部中に含まないこととする。
The content of the photosensitizer precursor in the composition of one embodiment of the present invention is preferably 0.1 to 5 molar equivalents, and preferably 0.5 to 2.0 molar equivalents with respect to the photoacid generator. It is more preferable. When at least one of the photosensitizer precursor and the photoacid generator is a polymer, the mass is based on the polymer main chain.
The content of the photoacid generator in the resist composition of one embodiment of the present invention is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resist composition component excluding the photoacid generator. The amount is more preferably 30 parts by mass, and further preferably 1 to 15 parts by mass. By containing the photoacid generator in the composition within the above range, for example, even when the composition is used as a permanent film such as an insulating film such as a display body, the light transmittance can be increased. In the calculation of the content of the photoacid generator, the solvent is not included in 100 parts by mass of the resist composition component.
 本発明においては、上記光増感剤前駆体、上記光酸発生剤、上記ヒドロキシ基含有化合物及び上記酸反応性化合物からなる群より選択される少なくとも2つが同一ポリマーに結合した各ユニットとして含まれることも好ましい。それにより、レジスト組成物中での分布を均一にすることが可能となる。
 上記光増感剤前駆体が、上記光酸発生剤、上記ヒドロキシ基含有化合物及び上記酸反応性化合物からなる群より選択される少なくとも1つと共に同一ポリマーのユニットとして含まれる場合、上記光増感剤前駆体として作用するユニットは、ポリマー全ユニット中1~40モル%であることが好ましく、10~35モル%であることがより好ましく、10~30モル%であることがさらに好ましい。
In the present invention, at least two selected from the group consisting of the photosensitizer precursor, the photoacid generator, the hydroxy group-containing compound, and the acid-reactive compound are included as units bonded to the same polymer. It is also preferable. Thereby, the distribution in the resist composition can be made uniform.
When the photosensitizer precursor is included as a unit of the same polymer together with at least one selected from the group consisting of the photoacid generator, the hydroxy group-containing compound and the acid-reactive compound, the photosensitizer The unit acting as an agent precursor is preferably 1 to 40 mol%, more preferably 10 to 35 mol%, and still more preferably 10 to 30 mol% in the total polymer unit.
 上記光酸発生剤が、上記光増感剤前駆体、上記ヒドロキシ基含有化合物及び上記酸反応性化合物からなる群より選択される少なくとも1つと共に同一ポリマーのユニットとして含まれる場合、上記光酸発生剤として作用するユニットは、ポリマー全ユニット中、1~40モル%であることが好ましく、5~35モル%であることがより好ましく、5~30モル%であることがさらに好ましい。
 上記ヒドロキシ基含有化合物が、上記光増感剤前駆体、上記光酸発生剤及び上記酸反応性化合物からなる群より選択される少なくとも1つと共に同一ポリマーのユニットとして含まれる場合、上記ヒドロキシ基含有化合物として作用するユニットは、水系現像のポジ型レジスト組成物用ではポリマー全ユニット中、3~90モル%であることが好ましく、5~80モル%であることがより好ましく、7~70モル%であることがさらに好ましい。水系現像のネガ型レジスト組成物用ではポリマー全ユニット中、60~99モル%であることが好ましく、70~98モル%であることがより好ましく、75~98モル%であることがさらに好ましい。
 上記酸反応性化合物が、上記光増感剤前駆体、上記光酸発生剤及び上記ヒドロキシ基含有化合物からなる群より選択される少なくとも1つと共に同一ポリマーのユニットとして含まれる場合、上記光増感剤前駆体として作用するユニットは、ポリマー全ユニット中、3~40モル%であることが好ましく、5~35モル%であることがより好ましく、7~30モル%であることがさらに好ましい。
When the photoacid generator is included as a unit of the same polymer together with at least one selected from the group consisting of the photosensitizer precursor, the hydroxy group-containing compound, and the acid-reactive compound, the photoacid generator The unit acting as an agent is preferably 1 to 40% by mole, more preferably 5 to 35% by mole, and still more preferably 5 to 30% by mole based on all units of the polymer.
When the hydroxy group-containing compound is contained as a unit of the same polymer together with at least one selected from the group consisting of the photosensitizer precursor, the photoacid generator and the acid-reactive compound, the hydroxy group-containing compound The unit acting as a compound is preferably from 3 to 90 mol%, more preferably from 5 to 80 mol%, more preferably from 7 to 70 mol% in the whole polymer unit for a positive resist composition for aqueous development. More preferably. For a negative resist composition for aqueous development, it is preferably 60 to 99 mol%, more preferably 70 to 98 mol%, and still more preferably 75 to 98 mol% in the total unit of the polymer.
When the acid-reactive compound is included as a unit of the same polymer together with at least one selected from the group consisting of the photosensitizer precursor, the photoacid generator, and the hydroxy group-containing compound, the photosensitization The unit acting as the agent precursor is preferably 3 to 40 mol%, more preferably 5 to 35 mol%, and still more preferably 7 to 30 mol% in the total polymer unit.
 本発明の一つの態様におけるポリマーは、重量平均分子量が1000~200000であることが好ましく、2000~50000であることがより好ましく、2000~15000であることがさらに好ましい。上記ポリマーの好ましい分散度(分子量分布)(Mw/Mn)は、感度の観点から、1.0~1.7であり、より好ましくは1.0~1.2である。上記ポリマーの重量平均分子量及び分散度は、GPC測定によるポリスチレン換算値として定義される。 The polymer in one embodiment of the present invention preferably has a weight average molecular weight of 1,000 to 200,000, more preferably 2,000 to 50,000, and even more preferably 2,000 to 15,000. The polymer preferably has a dispersity (molecular weight distribution) (Mw / Mn) of 1.0 to 1.7, more preferably 1.0 to 1.2 from the viewpoint of sensitivity. The weight average molecular weight and dispersity of the polymer are defined as polystyrene converted values by GPC measurement.
 本発明の一つの態様の組成物には、上記成分以外に必要により任意成分としてさらに、通常のレジスト組成物で用いられる酸拡散制御剤、界面活性剤、有機カルボン酸、溶剤、溶解抑制剤、安定剤及び色素、上記光増感剤前駆体以外の他の増感剤等を組み合わせて含んでいてもよい。
 上記酸拡散制御剤は、光酸発生剤から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を制御する効果を奏する。そのため、得られるレジスト組成物の貯蔵安定性が向上し、またレジストとしての解像度が向上する。それとともに、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れたレジスト組成物が得られる。
 酸拡散制御剤としては、例えば、同一分子内に窒素原子を1個、2個又は3個有する化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。また、酸拡散制御剤として、露光により感光し弱酸を発生する光崩壊性塩基を用いることもできる。光崩壊性塩基としては、例えば、露光により分解して酸拡散制御性を失うオニウム塩化合物、ヨードニウム塩化合物等が挙げられる。
 具体的には、特許3577743号、特開2001-215689号、特開2001-166476号、特開2008-102383号、特開2010-243773号、特開2011-37835号及び特開2012-173505号に記載の化合物が挙げられる。
 酸拡散制御剤の含有量は、レジスト組成物成分100質量部に対して0.01~10質量部であることが好ましく、0.03~5質量部であることがより好ましく、0.05~3質量部であることがさらに好ましい。
In the composition of one embodiment of the present invention, in addition to the above components, as an optional component, an acid diffusion controller, a surfactant, an organic carboxylic acid, a solvent, a dissolution inhibitor, which are used in an ordinary resist composition, A stabilizer, a dye, and other sensitizers other than the photosensitizer precursor may be included in combination.
The acid diffusion control agent controls the diffusion phenomenon of the acid generated from the photoacid generator in the resist film, and has an effect of controlling an undesirable chemical reaction in the non-exposed region. Therefore, the storage stability of the resulting resist composition is improved, and the resolution as a resist is improved. At the same time, it is possible to suppress a change in the line width of the resist pattern due to fluctuations in the holding time from exposure to development, and a resist composition having excellent process stability can be obtained.
Examples of the acid diffusion controller include compounds having one, two, or three nitrogen atoms in the same molecule, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like. Further, as the acid diffusion controlling agent, a photodegradable base that is sensitized by exposure to generate a weak acid can also be used. Examples of the photodegradable base include onium salt compounds and iodonium salt compounds that lose acid diffusion controllability by being decomposed by exposure.
Specifically, Japanese Patent Nos. 3577743, 2001-215589, 2001-166476, 2008-102383, 2010-243773, 2011-37835, and 2012-173505. And the compounds described in the above.
The content of the acid diffusion controller is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the resist composition component. More preferably, it is 3 parts by mass.
 上記界面活性剤は、塗布性を向上させるために用いることが好ましい。界面活性剤の例としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル等のノニオン系界面活性剤、フッ素系界面活性剤、オルガノシロキサンポリマー等が挙げられる。
 界面活性剤の含有量は、レジスト組成物成分100質量部に対して0.0001~2質量部であることが好ましく、0.0005~1質量部であることがより好ましい。
The surfactant is preferably used for improving the coating property. Examples of surfactants include nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxyethylene polyoxypropylene block copolymers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, etc. Agents, fluorosurfactants, organosiloxane polymers, and the like.
The content of the surfactant is preferably 0.0001 to 2 parts by mass, more preferably 0.0005 to 1 part by mass with respect to 100 parts by mass of the resist composition component.
 上記有機カルボン酸としては、脂肪族カルボン酸、脂環式カルボン酸、不飽和脂肪族カルボン酸、オキシカルボン酸、アルコキシカルボン酸、ケトカルボン酸、安息香酸誘導体、フタル酸、テレフタル酸、イソフタル酸、2-ナフトエ酸、1-ヒドロキシ-2-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸等を挙げることができる。電子線露光を真空化で行う際にはレジスト膜表面より揮発して描画チャンバー内を汚染する恐れが低い点から、芳香族有機カルボン酸、その中でも例えば安息香酸、1-ヒドロキシ-2-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸が有機カルボン酸として好適である。
 有機カルボン酸の含有量は、レジスト組成物成分100質量部に対し、0.01~10質量部が好ましく、より好ましくは0.01~5質量部、更により好ましくは0.01~3質量部である。
Examples of the organic carboxylic acid include aliphatic carboxylic acid, alicyclic carboxylic acid, unsaturated aliphatic carboxylic acid, oxycarboxylic acid, alkoxycarboxylic acid, ketocarboxylic acid, benzoic acid derivative, phthalic acid, terephthalic acid, isophthalic acid, 2 -Naphthoic acid, 1-hydroxy-2-naphthoic acid, 2-hydroxy-3-naphthoic acid and the like. Aromatic organic carboxylic acids, such as benzoic acid and 1-hydroxy-2-naphthoic acid, among them, are less likely to volatilize from the resist film surface and contaminate the drawing chamber when the electron beam exposure is performed in vacuum. 2-hydroxy-3-naphthoic acid is preferred as the organic carboxylic acid.
The content of the organic carboxylic acid is preferably 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, and still more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the resist composition component. It is.
 溶剤としては、例えば、エチレングリコールモノエチルエーテルアセテート、シクロヘキサノン、2-ヘプタノン、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルアセテート、3 - メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、β-メトキシイソ酪酸メチル、酪酸エチル、酪酸プロピル、メチルイソブチルケトン、酢酸エチル、酢酸イソアミル、乳酸エチル、トルエン、キシレン、酢酸シクロヘキシル、ジアセトンアルコール、N-メチルピロリドン、N,N-ジメチルホルムアミド、γ-ブチロラクトン、N,N-ジメチルアセトアミド、プロピレンカーボネート、エチレンカーボネート等が好ましい。これらの溶剤は単独又は組み合わせて用いられる。
 レジスト組成物成分は、固形分濃度として1~40質量%となるように上記溶剤に溶解することが好ましい。より好ましくは1~30質量%、更に好ましくは3~20質量%である。このような固形分濃度の範囲とすることで、上記の膜厚を達成できる。
Examples of the solvent include ethylene glycol monoethyl ether acetate, cyclohexanone, 2-heptanone, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether acetate. Methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, methyl β-methoxyisobutyrate, ethyl butyrate, propyl butyrate, methyl isobutyl ketone, ethyl acetate, isoamyl acetate, ethyl lactate, toluene, xylene, cyclohexyl acetate, diacetone alcohol N-methylpyrrolidone, N, N-dimethylformamide, γ-butyrolactone, N, N-dimethylacetami , Propylene carbonate, ethylene carbonate, etc. are preferable. These solvents are used alone or in combination.
The resist composition component is preferably dissolved in the solvent so that the solid content concentration is 1 to 40% by mass. More preferably, it is 1 to 30% by mass, and further preferably 3 to 20% by mass. By setting the solid content concentration in such a range, the above film thickness can be achieved.
 本発明の一つの態様のレジスト組成物は、上記以外に、含フッ素はっ水ポリマーを含んでいても良い。上記含フッ素はっ水ポリマーとしては、特に制限はないが液浸露光プロセスに通常用いられるものが挙げられ、上記ポリマーよりもフッ素原子含有率が大きい方が好ましい。それにより、レジスト組成物を用いてレジスト膜を形成する場合に、含フッ素はっ水ポリマーのはっ水性に起因して、レジスト膜表面に上記含フッ素はっ水ポリマーを偏在化させることができる。
 本発明の一つの態様の組成物は、上記組成物の各成分を混合することにより得られ、混合方法は特に限定されない。
In addition to the above, the resist composition of one embodiment of the present invention may contain a fluorine-containing water-repellent polymer. Although there is no restriction | limiting in particular as said fluorine-containing water-repellent polymer, The thing normally used for the immersion exposure process is mentioned, The one where a fluorine atom content rate is larger than the said polymer is preferable. Accordingly, when the resist film is formed using the resist composition, the fluorine-containing water-repellent polymer can be unevenly distributed on the resist film surface due to the water-repellent property of the fluorine-containing water-repellent polymer. .
The composition of one aspect of the present invention is obtained by mixing the components of the above composition, and the mixing method is not particularly limited.
 本発明の一つの態様のレジスト組成物は、上記増感剤前駆体に代えて、下記一般式(12)に示すケトン誘導体を含むものであってもよい。上記ケトン誘導体は、上記増感剤前駆体を酸処理することで加水分解して生成したものに相当する。下記一般式(12)中の各置換基は、上記一般式(1)中の置換基と同じものとする。これにより、酸による脱保護反応を必要とせずに、365nmにおけるに対するモル吸光係数が1.0×10cm/mol以上と吸収の大きい光増感剤として使用できる。そのため、UV用化学増幅型レジスト組成物として好適に利用でき、特に高い可視光透過率を必要とする光学デバイス用途で好適に利用できる。UV用化学増幅レジストの場合、ヒドロキシ基含有化合物を含まないレジスト組成物であっても上記ケトン誘導体を含むことで酸発生効率を向上できる。 The resist composition of one embodiment of the present invention may contain a ketone derivative represented by the following general formula (12) instead of the sensitizer precursor. The ketone derivative corresponds to one produced by hydrolysis of the sensitizer precursor by acid treatment. Each substituent in the following general formula (12) is the same as the substituent in the above general formula (1). Thereby, it can be used as a photosensitizer having a large absorption with a molar extinction coefficient at 365 nm of 1.0 × 10 5 cm 2 / mol or more without requiring a deprotection reaction with an acid. Therefore, it can be suitably used as a chemically amplified resist composition for UV, and can be suitably used for optical device applications that require particularly high visible light transmittance. In the case of a UV chemically amplified resist, even if the resist composition does not contain a hydroxy group-containing compound, the acid generation efficiency can be improved by including the ketone derivative.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<7>デバイスの製造方法
 本発明の一つの態様は、上記組成物を基板上に塗布しレジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)と、上記レジスト膜に第1活性エネルギー線を照射する工程(以下、「第1照射工程」ともいう)と、上記第1活性エネルギー線で照射されたレジスト膜に第2活性エネルギー線を照射する工程(以下、「第2照射工程」ともいう)と、上記第2活性エネルギー線で照射されたレジスト膜を現像してパターンを得る工程(以下、「パターン形成工程」ともいう)と、を含むデバイスの製造方法である。
<7> Device Manufacturing Method One embodiment of the present invention includes a step of applying the composition on a substrate to form a resist film (hereinafter also referred to as a “resist film forming step”), and a first step in the resist film. A step of irradiating active energy rays (hereinafter also referred to as “first irradiation step”) and a step of irradiating the resist film irradiated with the first active energy rays with second active energy rays (hereinafter referred to as “second irradiation”). And a step of developing the resist film irradiated with the second active energy ray to obtain a pattern (hereinafter also referred to as “pattern formation step”).
 上述したように、本発明においては、第1活性エネルギー線による第1照射を行うことで光酸発生剤が酸を発生し、該酸により上記光増感剤前駆体が脱保護して光増感剤となる。そして該光増感剤が光を吸収する波長を有する第2活性エネルギー線による第2照射を行うことにより、上記光増感剤の作用により第1照射を行った部分のみに再び光酸発生剤が酸を発生し得ることが好ましい。それにより、上記酸がさらに光増感剤を発生させると共に、酸により反応する酸反応化合物を反応させ得る。
 第1照射において用いられる第1活性エネルギー線としては、組成物中に含まれる光酸発生剤が活性化して酸を発生させ得る粒子線又は電磁波であればよく、KrFエキシマレーザ光、ArFエキシマレーザ光、F2エキシマレーザ光、電子線、UV、可視光線、X線、イオン線、g線、h線、i線、EUV等が挙げられる。中でも、電子線、X線、EUV等が好ましい。
 第2照射に用いられる第2活性エネルギー線としては、上記式(1)で表される光増感剤前駆体のR及びRが脱保護することで生成する光増感剤が吸収する波長を有するものであればよく、例えば、電磁波が挙げられ、該電磁波としてはKrFエキシマレーザ光、ArFエキシマレーザ光、F2エキシマレーザ光、UV、可視光線、g線、h線、i線等が挙げられる。
 第1活性エネルギー線が電磁波である場合は、該第1活性エネルギー線の電磁波は、第2活性エネルギー線として用いられる電磁波よりも波長が短いことが好ましい。
As described above, in the present invention, by performing the first irradiation with the first active energy ray, the photoacid generator generates an acid, and the photosensitizer precursor is deprotected by the acid to cause photosensitization. Become a sensitizer. Then, by performing the second irradiation with the second active energy ray having a wavelength at which the photosensitizer absorbs light, the photoacid generator is again applied only to the portion subjected to the first irradiation by the action of the photosensitizer. Is preferably capable of generating an acid. Thereby, while the said acid generates a photosensitizer further, the acid reaction compound which reacts with an acid can be made to react.
The first active energy ray used in the first irradiation may be a particle beam or an electromagnetic wave that can generate an acid when the photoacid generator contained in the composition is activated, such as a KrF excimer laser beam or an ArF excimer laser. Examples thereof include light, F 2 excimer laser light, electron beam, UV, visible light, X-ray, ion beam, g-line, h-line, i-line, and EUV. Of these, electron beam, X-ray, EUV and the like are preferable.
As the second active energy rays used in the second irradiation, photosensitizer that produces by R 3 and R 4 of the photosensitizer precursor represented by the formula (1) is deprotected to absorb Any electromagnetic wave may be used as long as it has a wavelength. Examples of the electromagnetic wave include KrF excimer laser light, ArF excimer laser light, F 2 excimer laser light, UV, visible light, g-line, h-line, and i-line. Is mentioned.
When the first active energy ray is an electromagnetic wave, the electromagnetic wave of the first active energy ray preferably has a shorter wavelength than the electromagnetic wave used as the second active energy ray.
 上記光増感剤前駆体を含む組成物を用いる以外は、通常のデバイスの製造方法に従えばよい。 Except for using the composition containing the photosensitizer precursor, a normal device manufacturing method may be followed.
 本発明の一つの形態は、上記組成物を用いて、レジスト膜形成工程と第1照射工程と第2照射工程とパターン形成工程とを含み、個片化チップを得る前のパターンを有する基板の製造方法であってもよい。 One embodiment of the present invention includes a resist film formation step, a first irradiation step, a second irradiation step, and a pattern formation step using the above composition, and a substrate having a pattern before obtaining individualized chips. It may be a manufacturing method.
 本発明の一つの態様において、上記レジスト組成物により形成されたレジスト膜の膜厚は10~200nmであることが好ましい。上記レジスト組成物は、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により基板上に塗布され、60~150℃で1~20分間、好ましくは80~120℃で1~10分間プリベークして薄膜を形成する。この塗布膜の膜厚は10~200nmであり、20~150nmであることが好ましい。 In one embodiment of the present invention, the resist film formed from the resist composition preferably has a thickness of 10 to 200 nm. The resist composition is applied onto the substrate by an appropriate application method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, and the like, and is performed at 60 to 150 ° C. for 1 to 20 minutes, preferably 80 to Pre-bake at 120 ° C. for 1 to 10 minutes to form a thin film. The thickness of this coating film is 10 to 200 nm, preferably 20 to 150 nm.
 以下、本発明を実施例によって、さらに詳細に説明するが、本発明はこれら実施例によって何ら制限されるものではない。なお、以下の合成例において、化合物の酸処理後のモル吸光係数、すなわち化合物を脱保護して得られたベンゾフェノン化合物誘導体の365nmにおけるモル吸光係数は、UV-VIS吸光光度計((株)日立製作所製 U-3300)により溶媒としてクロロホルム又はアセトニトリルを用いて求めている。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following synthesis examples, the molar extinction coefficient after acid treatment of a compound, that is, the molar extinction coefficient at 365 nm of a benzophenone compound derivative obtained by deprotecting the compound was measured with a UV-VIS spectrophotometer (Hitachi Co., Ltd.). (U-3300) manufactured by Seisakusho, using chloroform or acetonitrile as a solvent.
(合成例1)2,4-メトキシ-4'-メチルチオベンゾフェノン(増感剤化合物A1)の合成
 4-ブロモチオアニソール8.0gをテトラヒドロフランの32gに溶解させ、そこに1mol/LメチルマグネシウムブロミドのTHF溶液39mlを5℃以下で滴下する。滴下後、5℃以下で30分撹拌し、4-メチルチオフェニルマグネシウムブロミドのTHF溶液を得る。2,4-ジメトキシベンゾイルクロリド8.8gをTHF15gに溶解した溶液中に、4-メチルチオフェニルマグネシウムブロミドのTHF溶液を10℃以下で滴下し、その後25℃で1時間撹拌する。撹拌後、10質量%塩化アンモニウム水溶液50gを20℃以下で添加してさらに10分撹拌し、有機層を酢酸エチル80gで抽出する。これを純水で洗浄後に酢酸エチル及びテトラヒドロフランを留去することで粗結晶を得る。粗結晶をエタノール120gを用いて再結晶させ、2,4-ジメトキシ-4'-メチルチオベンゾフェノンを7.6g得る。クロロホルム溶媒中での365nmのモル吸光係数は1.1×10cm/molである。
Synthesis Example 1 Synthesis of 2,4-methoxy-4′-methylthiobenzophenone (sensitizer compound A1) 8.0 g of 4-bromothioanisole was dissolved in 32 g of tetrahydrofuran, and 1 mol / L methylmagnesium bromide was dissolved therein. 39 ml of THF solution is added dropwise at 5 ° C. or lower. After dropping, the mixture is stirred at 5 ° C. or lower for 30 minutes to obtain a THF solution of 4-methylthiophenylmagnesium bromide. To a solution of 8.8 g of 2,4-dimethoxybenzoyl chloride dissolved in 15 g of THF, a THF solution of 4-methylthiophenylmagnesium bromide is dropped at 10 ° C. or lower, and then stirred at 25 ° C. for 1 hour. After stirring, 50 g of a 10% by mass aqueous ammonium chloride solution is added at 20 ° C. or lower and the mixture is further stirred for 10 minutes, and the organic layer is extracted with 80 g of ethyl acetate. After washing with pure water, ethyl acetate and tetrahydrofuran are distilled off to obtain crude crystals. The crude crystals are recrystallized using 120 g of ethanol to obtain 7.6 g of 2,4-dimethoxy-4′-methylthiobenzophenone. The molar extinction coefficient at 365 nm in chloroform solvent is 1.1 × 10 6 cm 2 / mol.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(合成例2)(2,4-ジメトキシ)フェニル-(4'-メチルチオ)フェニル-ジメトキシメタン(前駆体化合物B1)の合成
 2,4-ジメトキシ-4'-メチルチオベンゾフェノン5.0gと硫酸47mgとオルトギ酸トリメチル13.5gとをメタノール12.5gに溶解し、これを還流温度で3時間攪拌する。その後室温まで冷却し、これに5質量%炭酸水素ナトリウム水溶液50gを追加した後、10分間さらに撹拌し、析出した結晶をろ過する。結晶を回収して酢酸エチル50gに再溶解後に純水で洗浄する。その後、酢酸エチルを留去することで(2,4-ジメトキシ)フェニル-(4'-メチルチオ)フェニル-ジメトキシメタン4.0gを得る。ハメット置換基定数σの総和は-0.56である。
Synthesis Example 2 Synthesis of (2,4-dimethoxy) phenyl- (4′-methylthio) phenyl-dimethoxymethane (Precursor Compound B1) 5.0 g of 2,4-dimethoxy-4′-methylthiobenzophenone and 47 mg of sulfuric acid 13.5 g of trimethyl orthoformate is dissolved in 12.5 g of methanol, and this is stirred at reflux temperature for 3 hours. Thereafter, the mixture is cooled to room temperature, and 50 g of a 5% by mass aqueous sodium hydrogen carbonate solution is added thereto, followed by further stirring for 10 minutes, and the precipitated crystals are filtered. The crystals are recovered, redissolved in 50 g of ethyl acetate and then washed with pure water. Thereafter, ethyl acetate is distilled off to obtain 4.0 g of (2,4-dimethoxy) phenyl- (4′-methylthio) phenyl-dimethoxymethane. The sum of Hammett substituent constants σ is −0.56.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(合成例3)4-フルオロ-4'-メチルチオベンゾフェノンの合成
 2,4-ジメトキシベンゾイルクロリドに代えて4-フルオロベンゾイルクロリドを用いる以外は上記合成例1と同様の操作を行うことで4-フルオロ-4'-メチルチオベンゾフェノンを7.4g得る。
(Synthesis Example 3) Synthesis of 4-fluoro-4′-methylthiobenzophenone 4-Fluorobenzoyl chloride was used in the same manner as in Synthesis Example 1 except that 4-fluorobenzoyl chloride was used instead of 2,4-dimethoxybenzoyl chloride. 7.4 g of -4'-methylthiobenzophenone are obtained.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(合成例4)4-メチルチオ-4'-フェニルチオベンゾフェノン(増感剤化合物A2)の合成
 合成例3で得られる4-フルオロ-4'-メチルチオベンゾフェノン6.0gをDMF30gに溶解し、これにチオフェノール3.2gと炭酸カリウム4.0gを添加して70℃で4時間撹拌する。撹拌後、純水90gを加えてさらに10分撹拌し、有機層をトルエン60gで抽出する。これを純水で3回洗浄後にトルエンを留去することで粗結晶を得る。粗結晶をエタノール40gを用いて再結晶させ、4-メチルチオ-4'-フェニルチオベンゾフェノンを5.6g得る。クロロホルム溶媒中での365nmのモル吸光係数は2.6×10cm/molである。
(Synthesis Example 4) Synthesis of 4-methylthio-4′-phenylthiobenzophenone (sensitizer compound A2) 6.0 g of 4-fluoro-4′-methylthiobenzophenone obtained in Synthesis Example 3 was dissolved in 30 g of DMF, Add 3.2 g of thiophenol and 4.0 g of potassium carbonate and stir at 70 ° C. for 4 hours. After stirring, 90 g of pure water is added and the mixture is further stirred for 10 minutes, and the organic layer is extracted with 60 g of toluene. This is washed three times with pure water, and then toluene is distilled off to obtain crude crystals. The crude crystals are recrystallized using 40 g of ethanol to obtain 5.6 g of 4-methylthio-4′-phenylthiobenzophenone. The molar extinction coefficient at 365 nm in chloroform solvent is 2.6 × 10 6 cm 2 / mol.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(合成例5)(4-メチルチオ)フェニル-(4'-フェニルチオ)フェニル-ジメトキシメタン(前駆体化合物B2)の合成
 2,4-ジメトキシ-4'-メチルチオベンゾフェノンに代えて4-メチルチオ-4'-フェニルチオベンゾフェノンを用いる以外は上記合成例2と同様の操作を行うことで(4-メチルチオ)フェニル-(4'-フェニルチオ)フェニル-ジメトキシメタンを3.1g得る。ハメット置換基定数は0.2以下である。
Synthesis Example 5 Synthesis of (4-methylthio) phenyl- (4′-phenylthio) phenyl-dimethoxymethane (precursor compound B2) 4-methylthio-4 ′ instead of 2,4-dimethoxy-4′-methylthiobenzophenone By performing the same operation as in Synthesis Example 2 except that -phenylthiobenzophenone is used, 3.1 g of (4-methylthio) phenyl- (4′-phenylthio) phenyl-dimethoxymethane is obtained. The Hammett substituent constant is 0.2 or less.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(合成例6)(4-メチルチオ)フェニル-(4'-フェニルチオ)フェニル-ジエトキシメタン(前駆体化合物B3)の合成
 合成例5で得られる(4-メチルチオ)フェニル-(4'-フェニルチオ)フェニル-ジメトキシメタン5.0gとカンファースルホン酸300mgとオルトギ酸トリエチル4.3gとを脱水エタノール32.5gに溶解し、これを70℃として溶液中のメタノールをエタノールとともに留去しながら5時間攪拌する。その後室温まで冷却し、これに5質量%炭酸水素ナトリウム水溶液50gを追加した後、酢酸エチル50gで抽出し、純水で3回洗浄する。その後、酢酸エチルを留去し、カラムクロマトグラフィー(酢酸エチル/シクロヘキサン=5/95(体積比))により精製することで(4-メチルチオ)フェニル-(4'-フェニルチオ)フェニル-ジエトキシメタン4.6gを得る。ハメット置換基定数σの総和は0.2以下である。
Synthesis Example 6 Synthesis of (4-methylthio) phenyl- (4′-phenylthio) phenyl-diethoxymethane (Precursor Compound B3) (4-Methylthio) phenyl- (4′-phenylthio) obtained in Synthesis Example 5 5.0 g of phenyl-dimethoxymethane, 300 mg of camphorsulfonic acid and 4.3 g of triethyl orthoformate are dissolved in 32.5 g of dehydrated ethanol, and the mixture is stirred at 70 ° C. for 5 hours while distilling off methanol in the solution together with ethanol. . Thereafter, the mixture is cooled to room temperature, 50 g of a 5% by mass aqueous sodium hydrogen carbonate solution is added thereto, followed by extraction with 50 g of ethyl acetate and washing with pure water three times. Thereafter, ethyl acetate was distilled off, and purification was performed by column chromatography (ethyl acetate / cyclohexane = 5/95 (volume ratio)) to obtain (4-methylthio) phenyl- (4′-phenylthio) phenyl-diethoxymethane 4 .6 g is obtained. The sum total of Hammett substituent constants σ is 0.2 or less.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(合成例7)2-(4-メチルチオ)フェニル-2-(4'-フェニルチオ)フェニル-1,3-ジオキソラン(前駆体化合物B4)の合成
 脱水エタノールに代えて脱水エチレングリコールを用いる以外は上記合成例6と同様の操作を行うことで2-(4-メチルチオ)フェニル-2-(4'-フェニルチオ)フェニル-1,3-ジオキソラン4.6gを得る。ハメット置換基定数σの総和は0.2以下である。
(Synthesis Example 7) Synthesis of 2- (4-methylthio) phenyl-2- (4′-phenylthio) phenyl-1,3-dioxolane (precursor compound B4) The above except that dehydrated ethylene glycol was used instead of dehydrated ethanol By performing the same operation as in Synthesis Example 6, 4.6 g of 2- (4-methylthio) phenyl-2- (4′-phenylthio) phenyl-1,3-dioxolane is obtained. The sum total of Hammett substituent constants σ is 0.2 or less.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(合成例8)2-メトキシ-4'-メチルチオベンゾフェノン(増感剤化合物A3)の合成
 2,4-ジメトキシベンゾイルクロリドの代わりに2-メトキシベンゾイルクロリドを用いる以外は上記合成例1と同様の操作を行うことで2-メトキシ-4'-メチルチオベンゾフェノンを得る。クロロホルム溶媒中での365nmのモル吸光係数は1.0×10cm/mol以上である。
Synthesis Example 8 Synthesis of 2-methoxy-4′-methylthiobenzophenone (sensitizer compound A3) The same procedure as in Synthesis Example 1 except that 2-methoxybenzoyl chloride was used instead of 2,4-dimethoxybenzoyl chloride To give 2-methoxy-4′-methylthiobenzophenone. The molar extinction coefficient at 365 nm in chloroform solvent is 1.0 × 10 5 cm 2 / mol or more.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(合成例9)(2-メトキシ)フェニル-(4'-メチルチオ)フェニル-ジメトキシメタン(前駆体化合物B5)の合成
 2,4-ジメトキシ-4'-メチルチオベンゾフェノンに代えて2-メトキシ-4'-メチルチオベンゾフェノンを用いる以外は上記合成例2と同様の操作を行うことで2-(2-メトキシフェニル)-2-(4'-メチルチオフェニル)-ジメトキシメタンを2.7g得る。ハメット置換基定数σの総和は-0.37である。
Synthesis Example 9 Synthesis of (2-methoxy) phenyl- (4′-methylthio) phenyl-dimethoxymethane (precursor compound B5) 2-methoxy-4 ′ instead of 2,4-dimethoxy-4′-methylthiobenzophenone 2.7 g of 2- (2-methoxyphenyl) -2- (4′-methylthiophenyl) -dimethoxymethane is obtained by performing the same operation as in Synthesis Example 2 except that -methylthiobenzophenone is used. The sum of the Hammett substituent constant σ is −0.37.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(合成例10)4-(4-メトキシフェニル)-4'-メチルチオベンゾフェノン(増感剤化合物A4)の合成
 2,4-ジメトキシベンゾイルクロリドに代えて4-(4-メトキシフェニル)ベンゾイルクロリドを用いる以外は上記合成例1と同様の操作を行うことで4-(4-メトキシフェニル)-4'-メチルチオベンゾフェノン5.2gを得る。クロロホルム溶媒中での365nmのモル吸光係数は1.0×10cm/mol以上である。
Synthesis Example 10 Synthesis of 4- (4-methoxyphenyl) -4′-methylthiobenzophenone (sensitizer compound A4) 4- (4-methoxyphenyl) benzoyl chloride is used in place of 2,4-dimethoxybenzoyl chloride Except for the above, the same operation as in Synthesis Example 1 is carried out to obtain 5.2 g of 4- (4-methoxyphenyl) -4′-methylthiobenzophenone. The molar extinction coefficient at 365 nm in chloroform solvent is 1.0 × 10 5 cm 2 / mol or more.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(合成例11)[4-(4-メトキシ)フェニル]フェニル-(4'-メチルチオ)フェニルジメトキシメタン(前駆体化合物B6)の合成
 2,4-ジメトキシ-4'-メチルチオベンゾフェノンに代えて4-(4-メトキシフェニル)-4'-メチルチオベンゾフェノンを用いる以外は上記合成例2と同様の操作を行うことで(4-メトキシフェニル)-フェニル-(4'-メチルチオフェニル)-ジメトキシメタンを4.1g得る。ハメット置換基定数σの総和は-0.26である。
(Synthesis Example 11) Synthesis of [4- (4-methoxy) phenyl] phenyl- (4′-methylthio) phenyldimethoxymethane (Precursor Compound B6) In place of 2,4-dimethoxy-4′-methylthiobenzophenone, 4- Except for using (4-methoxyphenyl) -4′-methylthiobenzophenone, the same procedure as in Synthesis Example 2 was performed to obtain (4-methoxyphenyl) -phenyl- (4′-methylthiophenyl) -dimethoxymethane as 4. 1 g is obtained. The sum of the Hammett substituent constant σ is −0.26.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(合成例12)2-メチルチオ-4,4'-ジメトキシベンゾフェノン(増感剤化合物A5)の合成
 3-メチルチオアニソール4.6gと塩化アルミニウム4.9gとをジクロロメタン15gに溶解させる。これに4-メトキシベンゾイルクロリド5.0gを5℃以下で30分かけて滴下する。その後5℃で2時間攪拌した後に純水15gを25℃以下となるように添加し、さらに10分間撹拌する。有機層を分液回収後に純水で洗浄し、ジクロロメタンを留去し、得られた残留物をエタノールの70gを用いた再結晶によって生成することで、2-メチルチオ-4,4'-ジメトキシベンゾフェノンを6.5g得る。クロロホルム溶媒中での365nmのモル吸光係数は1.0×10cm/mol以上である。
Synthesis Example 12 Synthesis of 2-methylthio-4,4′-dimethoxybenzophenone (sensitizer compound A5) 4.6 g of 3-methylthioanisole and 4.9 g of aluminum chloride are dissolved in 15 g of dichloromethane. 4-methoxybenzoyl chloride 5.0g is dripped at this at 5 degrees C or less over 30 minutes. Then, after stirring at 5 ° C. for 2 hours, 15 g of pure water is added so as to be 25 ° C. or less, and further stirred for 10 minutes. The organic layer is separated and recovered and washed with pure water, dichloromethane is distilled off, and the resulting residue is produced by recrystallization using 70 g of ethanol, whereby 2-methylthio-4,4′-dimethoxybenzophenone. 6.5 g is obtained. The molar extinction coefficient at 365 nm in chloroform solvent is 1.0 × 10 5 cm 2 / mol or more.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(合成例13)(2-メチルチオ-4-メトキシ)フェニル-(4'-メトキシ)フェニルジメトキシメタン(前駆体化合物B7)の合成
 2,4-ジメトキシ-4'-メチルチオベンゾフェノンに代えて2-メチルチオ-4,4'-ジメトキシベンゾフェノンを用いる以外は上記合成例2と同様の操作を行うことで(2-メチルチオ-4-メトキシ)フェニル-(4'-メトキシ)フェニルジメトキシメタンを3.7g得る。ハメット置換基定数σの総和は-0.33である。
Synthesis Example 13 Synthesis of (2-methylthio-4-methoxy) phenyl- (4′-methoxy) phenyldimethoxymethane (Precursor Compound B7) 2-methylthio instead of 2,4-dimethoxy-4′-methylthiobenzophenone 3.7 g of (2-methylthio-4-methoxy) phenyl- (4′-methoxy) phenyldimethoxymethane is obtained by performing the same operation as in Synthesis Example 2 except that -4,4′-dimethoxybenzophenone is used. The sum of Hammett substituent constants σ is −0.33.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(合成例14)4-(2-ビニルオキシ)エチルチオブロモベンゼンの合成
 4-ブロモチオフェノール5.0gとクロロエチルビニルエーテル5.7gと炭酸カリウム7.3gとをアセトン20gに溶解して還流温度で3時間撹拌する。その後、室温まで冷却し、純水60gを添加して5分間撹拌する。これにトルエン90gを添加して抽出し、純水で分液洗浄する。その後トルエンを留去することで、4-(2-ビニルオキシ)エチルチオブロモベンゼン6.4gを得る。
Synthesis Example 14 Synthesis of 4- (2-vinyloxy) ethylthiobromobenzene 5.0 g of 4-bromothiophenol, 5.7 g of chloroethyl vinyl ether, and 7.3 g of potassium carbonate were dissolved in 20 g of acetone at a reflux temperature. Stir for 3 hours. Then, it cools to room temperature, 60 g of pure waters are added, and it stirs for 5 minutes. To this, 90 g of toluene is added for extraction, followed by separation washing with pure water. Thereafter, toluene is distilled off to obtain 6.4 g of 4- (2-vinyloxy) ethylthiobromobenzene.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(合成例15)4-(2-ビニルオキシ)エチルチオ-2',4'-ジメトキシベンゾフェノン)
 4-ブロモチオアニソールに代えて4-(2-ビニルオキシ)エチルチオブロモベンゼンを用いる以外は上記合成例1と同様の操作を行うことで4-(2-ビニルオキシ)エチルチオ-2',4'-ジメトキシベンゾフェノン)を8.4g得る。クロロホルム溶媒中での365nmのモル吸光係数は1.0×10cm/mol以上である。
(Synthesis Example 15) 4- (2-vinyloxy) ethylthio-2 ′, 4′-dimethoxybenzophenone)
4- (2-Vinyloxy) ethylthio-2 ′, 4′- is performed in the same manner as in Synthesis Example 1 except that 4- (2-vinyloxy) ethylthiobromobenzene is used instead of 4-bromothioanisole. 8.4 g of dimethoxybenzophenone) is obtained. The molar extinction coefficient at 365 nm in chloroform solvent is 1.0 × 10 5 cm 2 / mol or more.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(合成例16)4-(2-ヒドロキシ)エチルチオ-2',4'-ジメトキシベンゾフェノンの合成
 4-(2-ビニルオキシ)エチルチオ-2',4'-ジメトキシベンゾフェノン5.0gと、純水3.3g、ピリジニウム-p-トルエンスルホン酸0.44gとをアセトン30gに添加して還流温度にて3時間撹拌する。その後室温に冷却し、純水85gを添加して5分間撹拌後に酢酸エチルで抽出する。これを純水で分液洗浄後に酢酸エチルを留去することで4-(2-ヒドロキシ)エチルチオ-2',4'-ジメトキシベンゾフェノン4.6gを得る。
Synthesis Example 16 Synthesis of 4- (2-hydroxy) ethylthio-2 ′, 4′-dimethoxybenzophenone 5.0 g of 4- (2-vinyloxy) ethylthio-2 ′, 4′-dimethoxybenzophenone and pure water 3. 3 g and 0.44 g of pyridinium-p-toluenesulfonic acid are added to 30 g of acetone and stirred at reflux temperature for 3 hours. After cooling to room temperature, 85 g of pure water is added and the mixture is stirred for 5 minutes and extracted with ethyl acetate. After separation and washing with pure water, ethyl acetate is distilled off to obtain 4.6 g of 4- (2-hydroxy) ethylthio-2 ′, 4′-dimethoxybenzophenone.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(合成例17)4-(2-メタクリルオキシ)エチルチオ-2',4'-ジメトキシベンゾフェノン(増感剤化合物A6)の合成
 4-(2-ヒドロキシ)エチルチオ-2',4'-ジメトキシベンゾフェノン 5gとメタクリル酸無水物2.9gをTHF15gに溶解し、これに20℃以下になるようにトリエチルアミン1.9gを30分で滴下する。滴下後、25℃で3時間撹拌した後に純水40gを加えてさらに10分撹拌する。これを酢酸エチル50gで抽出し、純水で分液洗浄する。その後酢酸エチルを留去することで目的の4-(2-メタクリルオキシ)エチルチオ-2',4'-ジメトキシベンゾフェノンを5.1g得る。クロロホルム溶媒中での365nmのモル吸光係数は1.1×10cm/molである。
Synthesis Example 17 Synthesis of 4- (2-methacryloxy) ethylthio-2 ′, 4′-dimethoxybenzophenone (sensitizer compound A6) 4- (2-hydroxy) ethylthio-2 ′, 4′-dimethoxybenzophenone 5 g And 2.9 g of methacrylic anhydride are dissolved in 15 g of THF, and 1.9 g of triethylamine is added dropwise thereto in 30 minutes so that the temperature is 20 ° C. or lower. After dripping, after stirring at 25 degreeC for 3 hours, 40 g of pure waters are added, and also it stirs for 10 minutes. This is extracted with 50 g of ethyl acetate and separated and washed with pure water. Thereafter, ethyl acetate is distilled off to obtain 5.1 g of the desired 4- (2-methacryloxy) ethylthio-2 ′, 4′-dimethoxybenzophenone. The molar extinction coefficient at 365 nm in chloroform solvent is 1.1 × 10 6 cm 2 / mol.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(合成例18)4-[(2-メタクリルオキシ)エチルチオ]-フェニル-(2',4'-ジメトキシフェニル)ジメトキシメタン(前駆体化合物B8)の合成
 2,4-ジメトキシ-4'-メチルチオベンゾフェノンに代えて4-(2-メタクリルオキシ) エチルチオ-2',4'-ジメトキシベンゾフェノンを用いる以外は上記合成例2と同様の操作を行うことで4-[(2-メタクリルオキシ)エチルチオ]-フェニル-(2',4'-ジメトキシフェニル)ジメトキシメタンを2.6g得る。ハメット置換基定数σの総和は-0.56である。
Synthesis Example 18 Synthesis of 4-[(2-methacryloxy) ethylthio] -phenyl- (2 ′, 4′-dimethoxyphenyl) dimethoxymethane (precursor compound B8) 2,4-dimethoxy-4′-methylthiobenzophenone Instead of 4- (2-methacryloxy) ethylthio-2 ′, 4′-dimethoxybenzophenone, 4-[(2-methacryloxy) ethylthio] -phenyl was obtained in the same manner as in Synthesis Example 2 above. 2.6 g of-(2 ', 4'-dimethoxyphenyl) dimethoxymethane are obtained. The sum of Hammett substituent constants σ is −0.56.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(合成例19)4-(4-ヒドロキシフェニルチオ)-4'-メチルチオベンゾフェノン(増感剤化合物A7)の合成
 チオフェノールに代えて4-ヒドロキシベンゼンチオールを用いる以外は上記合成例4と同様の操作を行うことで4-(4-ヒドロキシフェニルチオ)-4'-メチルチオベンゾフェノンを5.8g得る。クロロホルム溶媒中での365nmのモル吸光係数は3.01×10cm/molである。また、アセトニトリル溶媒での365nmのモル吸光係数は1.73×10cm/molである。
Synthesis Example 19 Synthesis of 4- (4-hydroxyphenylthio) -4′-methylthiobenzophenone (sensitizer Compound A7) Same as Synthesis Example 4 except that 4-hydroxybenzenethiol was used instead of thiophenol By performing the operation, 5.8 g of 4- (4-hydroxyphenylthio) -4′-methylthiobenzophenone is obtained. The molar extinction coefficient at 365 nm in chloroform solvent is 3.01 × 10 6 cm 2 / mol. Moreover, the molar extinction coefficient of 365 nm with acetonitrile solvent is 1.73 × 10 6 cm 2 / mol.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(合成例20)4-(4-ヒドロキシフェニルチオ)フェニル-4'-メチルチオフェニル-ジメトキシメタン(前駆体化合物B9)の合成
 2,4-ジメトキシ-4'-メチルチオベンゾフェノンに代えて4-(4-ヒドロキシフェニルチオ)-4'-メチルチオベンゾフェノンを用いる以外は上記合成例2と同様の操作を行うことで4-(4-ヒドロキシフェニルチオ)フェニル-4'-メチルチオフェニル-ジメトキシメタンを3.3g得る。ハメット置換基定数σの総和は0.2以下である。
Synthesis Example 20 Synthesis of 4- (4-hydroxyphenylthio) phenyl-4′-methylthiophenyl-dimethoxymethane (Precursor Compound B9) 4- (4 instead of 2,4-dimethoxy-4′-methylthiobenzophenone Except for using -hydroxyphenylthio) -4'-methylthiobenzophenone, 3.3 g of 4- (4-hydroxyphenylthio) phenyl-4'-methylthiophenyl-dimethoxymethane was obtained by performing the same operation as in Synthesis Example 2 above. obtain. The sum total of Hammett substituent constants σ is 0.2 or less.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(合成例21)4,4'-ジ(4-ヒドロキシフェニルチオ)ベンゾフェノン(増感剤化合物A8)の合成
 4,4'-ジフルオロベンゾフェノン6.5gをDMF20gに溶解し、これに4-ヒドロキシベンゼンチオール11.3gと炭酸カリウム12.4gを添加して70℃で2時間撹拌する。撹拌後、純水90gを加えてさらに10分撹拌し固体を析出させる。析出した固体をろ過で回収し、真空乾燥することで粗結晶を得る。粗結晶を塩化メチレン120gに分散させ、1時間撹拌する。撹拌後、固体をろ過で回収し、真空乾燥することで4,4'-ジ(4-ヒドロキシフェニルチオ)ベンゾフェノンを12.0g得る。アセトニトリル溶媒での365nmのモル吸光係数は2.77×10cm/molである。
Synthesis Example 21 Synthesis of 4,4′-di (4-hydroxyphenylthio) benzophenone (sensitizer Compound A8) 6.5 g of 4,4′-difluorobenzophenone was dissolved in 20 g of DMF, and 4-hydroxybenzene was dissolved therein. Add 11.3 g of thiol and 12.4 g of potassium carbonate and stir at 70 ° C. for 2 hours. After stirring, 90 g of pure water is added and the mixture is further stirred for 10 minutes to precipitate a solid. The precipitated solid is collected by filtration and vacuum dried to obtain crude crystals. The crude crystals are dispersed in 120 g of methylene chloride and stirred for 1 hour. After stirring, the solid is collected by filtration and dried in vacuo to obtain 12.0 g of 4,4′-di (4-hydroxyphenylthio) benzophenone. The molar extinction coefficient at 365 nm in acetonitrile solvent is 2.77 × 10 6 cm 2 / mol.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(合成例21)ビス[4-(4-ヒドロキシフェニルチオ)フェニル]-ジメトキシメタン(前駆体化合物B10)の合成
 2,4-ジメトキシ-4'-メチルチオベンゾフェノンに代えて4,4'-ジ(4-ヒドロキシフェニルチオ)ベンゾフェノンを用いる以外は上記合成例2と同様の操作を行うことでビス[4-(4-ヒドロキシフェニルチオ)フェニル]-ジメトキシメタンを3.0g得る。ハメット置換基定数σの総和は0.2以下である。
(Synthesis Example 21) Synthesis of bis [4- (4-hydroxyphenylthio) phenyl] -dimethoxymethane (precursor compound B10) 4,4′-di (instead of 2,4-dimethoxy-4′-methylthiobenzophenone) 3.0 g of bis [4- (4-hydroxyphenylthio) phenyl] -dimethoxymethane is obtained by performing the same operation as in Synthesis Example 2 except that 4-hydroxyphenylthio) benzophenone is used. The sum total of Hammett substituent constants σ is 0.2 or less.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(合成例22)4-[4-(メトキシメトキシ)フェニルチオ]フェニル-4'-メチルチオフェニル-ジメトキシメタン(前駆体化合物B11)の合成
 合成例20で得られる4-(4-ヒドロキシフェニルチオ)フェニル-4'-メチルチオフェニル-ジメトキシメタン2.0gをDMF8.0gに溶解し、これにクロロメチルメチルエーテル0.61gと炭酸カリウム1.1gを添加して70℃で12時間撹拌する。撹拌後、純水16gと塩化メチレン32gを加えて有機層を回収し、さらに純水で2回洗浄する。その後、有機溶媒を留去し、カラムクロマトグラフィー(酢酸エチル/ヘキサン=1/2(体積比))により精製することで4-[4-(メトキシメトキシ)フェニルチオ]フェニル-4'-メチルチオフェニル-ジメトキシメタンを1.2g得る。ハメット置換基定数σの総和は0.2以下である。
Synthesis Example 22 Synthesis of 4- [4- (methoxymethoxy) phenylthio] phenyl-4′-methylthiophenyl-dimethoxymethane (precursor compound B11) 4- (4-hydroxyphenylthio) phenyl obtained in Synthesis Example 20 Dissolve 2.0 g of -4'-methylthiophenyl-dimethoxymethane in 8.0 g of DMF, add 0.61 g of chloromethyl methyl ether and 1.1 g of potassium carbonate, and stir at 70 ° C. for 12 hours. After stirring, 16 g of pure water and 32 g of methylene chloride are added to recover the organic layer, which is further washed twice with pure water. Thereafter, the organic solvent was distilled off and purified by column chromatography (ethyl acetate / hexane = 1/2 (volume ratio)) to give 4- [4- (methoxymethoxy) phenylthio] phenyl-4′-methylthiophenyl- 1.2 g of dimethoxymethane are obtained. The sum total of Hammett substituent constants σ is 0.2 or less.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(合成例23)4-[4-(t-ブトキシカルボニルオキシ)フェニルチオ]フェニル-4'-メチルチオフェニル-ジメトキシメタン(前駆体化合物B12)の合成
 合成例20で得られる4-(4-ヒドロキシフェニルチオ)フェニル-4'-メチルチオフェニル-ジメトキシメタン2.0gを塩化メチレン12.0gに溶解し、これにジ-tert-ブチルジカルボネート1.6g、トリエチルアミン0.76g、N,N-ジメチル-4-アミノピリジン92mgを添加して室温で6時間撹拌する。撹拌後、純水12gを加えて有機層を回収し、さらに純水で2回洗浄する。その後、有機溶媒を留去し、カラムクロマトグラフィー(酢酸エチル/ヘキサン=1/3(体積比))により精製することで4-[4-(t-ブトキシカルボニルオキシ)フェニルチオ]フェニル-4'-メチルチオフェニル-ジメトキシメタンを1.3g得る。ハメット置換基定数σの総和は0.2以下である。
Synthesis Example 23 Synthesis of 4- [4- (t-butoxycarbonyloxy) phenylthio] phenyl-4′-methylthiophenyl-dimethoxymethane (precursor compound B12) 4- (4-hydroxyphenyl) obtained in Synthesis Example 20 Thio) phenyl-4'-methylthiophenyl-dimethoxymethane (2.0 g) is dissolved in 12.0 g of methylene chloride, and 1.6 g of di-tert-butyldicarbonate, 0.76 g of triethylamine, N, N-dimethyl-4 Add 92 mg of aminopyridine and stir at room temperature for 6 hours. After stirring, 12 g of pure water is added to recover the organic layer, which is further washed twice with pure water. Thereafter, the organic solvent was distilled off, and purification was performed by column chromatography (ethyl acetate / hexane = 1/3 (volume ratio)) to give 4- [4- (t-butoxycarbonyloxy) phenylthio] phenyl-4′- 1.3 g of methylthiophenyl-dimethoxymethane are obtained. The sum total of Hammett substituent constants σ is 0.2 or less.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(合成例24)共重合体Aの合成
 ポリヒドロキシスチレン(重量平均分子量8000)8.0gと0.010gの35%塩酸水溶液とを脱水ジオキサン28gに溶解する。そこに2.73gのシクロヘキシルビニルエーテルを2.80gの脱水ジオキサンに溶解して30分かけてポリヒドロキシスチレン溶液に滴下する。滴下後に40℃として2時間撹拌する。撹拌後、冷却した後に0.014gのジメチルアミノピリジンを添加する。その後、溶液を260gの純水中に滴下することで共重合体を沈殿させる。これを減圧ろ過で分離して得られた固体を純水300gで2回洗浄した後、真空乾燥することで白色固体として下記に示す共重合体Aを9.2g得る。なお、本発明における共重合体のユニットのモノマー比は下記に限定されない。
(Synthesis Example 24) Synthesis of Copolymer A 8.0 g of polyhydroxystyrene (weight average molecular weight 8000) and 0.010 g of 35% hydrochloric acid aqueous solution are dissolved in 28 g of dehydrated dioxane. Thereto, 2.73 g of cyclohexyl vinyl ether is dissolved in 2.80 g of dehydrated dioxane and added dropwise to the polyhydroxystyrene solution over 30 minutes. After dropping, the mixture is stirred at 40 ° C. for 2 hours. After stirring and cooling, 0.014 g of dimethylaminopyridine is added. Thereafter, the solution is dropped into 260 g of pure water to precipitate the copolymer. The solid obtained by separating this by filtration under reduced pressure was washed twice with 300 g of pure water and then vacuum-dried to obtain 9.2 g of copolymer A shown below as a white solid. The monomer ratio of the copolymer unit in the present invention is not limited to the following.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(合成例25)共重合体Bの合成
 7.0gのアセトキシスチレン、3.4gの2-メチルアダマンタン-2-メタクリレート、0.022gのブチルメルカプタン及び0.40gのジメチル-2,2'-アゾビス(2-メチルプロピオネート)(AIBN)を35gのテトラヒドロフラン(THF)に溶解して脱酸素する。これをあらかじめ窒素気流化で還流温度とした20gのTHF中に4時間かけて滴下する。滴下後、2時間撹拌してから室温に冷却する。これを149gのヘキサンと12gのTHFの混合溶媒中に滴下することで共重合体を沈殿させる。これを減圧ろ過で分離して得られた固体を52gのヘキサンで洗浄した後、真空乾燥することで白色固体として下記式に示す共重合体Bを10.3g得る。ゲル浸透クロマトグラフィーを用いてポリスチレン換算により求めた重量平均分子量は9200である。なお、本発明における共重合体のユニットのモノマー比は下記に限定されない。
Synthesis Example 25 Synthesis of Copolymer B 7.0 g acetoxystyrene, 3.4 g 2-methyladamantane-2-methacrylate, 0.022 g butyl mercaptan and 0.40 g dimethyl-2,2′-azobis (2-Methylpropionate) (AIBN) is dissolved in 35 g of tetrahydrofuran (THF) and deoxygenated. This is dripped over 4 hours in 20 g of THF which has been brought to a reflux temperature in advance by flowing nitrogen gas. After dropping, the mixture is stirred for 2 hours and then cooled to room temperature. This is dropped into a mixed solvent of 149 g of hexane and 12 g of THF to precipitate the copolymer. The solid obtained by separating this by vacuum filtration was washed with 52 g of hexane, and then vacuum-dried to obtain 10.3 g of a copolymer B represented by the following formula as a white solid. The weight average molecular weight determined by gel permeation chromatography using polystyrene conversion is 9,200. The monomer ratio of the copolymer unit in the present invention is not limited to the following.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(合成例26)共重合体Cの合成
 共重合体Bを6.0g、トリエチルアミン6.0g、メタノール6.0g及び純水1.5gを30gのプロピレングリコールモノメチルエーテルに溶解し還流温度で6時間撹拌する。その後25℃に冷却し、得られた溶液を30gのアセトンと30gの純水の混合液に滴下することで共重合体を沈殿させる。これを減圧ろ過で分離して得られた固体を30gの純水で2回洗浄した後、真空乾燥することで白色固体として下記式に示す共重合体Cを4.3g得る。ゲル浸透クロマトグラフィーを用いてポリスチレン換算により求めた重量平均分子量は9100である。なお、本発明における共重合体のユニットのモノマー比は下記に限定されない。
(Synthesis Example 26) Synthesis of Copolymer C 6.0 g of copolymer B, 6.0 g of triethylamine, 6.0 g of methanol and 1.5 g of pure water were dissolved in 30 g of propylene glycol monomethyl ether and refluxed for 6 hours. Stir. Thereafter, the mixture is cooled to 25 ° C., and the obtained solution is dropped into a mixed solution of 30 g of acetone and 30 g of pure water to precipitate the copolymer. The solid obtained by separating this by vacuum filtration was washed twice with 30 g of pure water, and then vacuum-dried to obtain 4.3 g of copolymer C represented by the following formula as a white solid. The weight average molecular weight determined by polystyrene conversion using gel permeation chromatography is 9100. The monomer ratio of the copolymer unit in the present invention is not limited to the following.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(合成例27)共重合体Dの合成
 α-メタクリロイルオキシ-γ-ブチロラクトン5.0gと、2-メチルアダマンタン-2-メタクリレート6.0gと、2-ヒドロキシノルボルネン-1-メタクリレート3.6gと、V6010.51gと、をテトラヒドロフラン26gに溶解し、減圧脱気を行う。これをTHF4gを還流させたフラスコ中に4時間かけて滴下する。滴下後2時間撹拌した後に25℃まで冷却する。この溶液をヘキサン160gおよびテトラヒドロフラン18gからなる混合溶媒中に滴下することで再沈殿させる。これを濾過してからヘキサン37gで2回分散洗浄し、濾過後に真空乾燥することで目的の共重合体Dを白い粉末として7.7g得る。ゲル浸透クロマトグラフィーを用いてポリスチレン換算により求めた重量平均分子量は9700である。
(Synthesis Example 27) Synthesis of Copolymer D 5.0 g of α-methacryloyloxy-γ-butyrolactone, 6.0 g of 2-methyladamantane-2-methacrylate, 3.6 g of 2-hydroxynorbornene-1-methacrylate, V601.51 g is dissolved in 26 g of tetrahydrofuran and degassed under reduced pressure. This is dripped over 4 hours in the flask which refluxed THF4g. After dropping, the mixture is stirred for 2 hours and then cooled to 25 ° C. This solution is reprecipitated by dropping it into a mixed solvent consisting of 160 g of hexane and 18 g of tetrahydrofuran. This is filtered, dispersed and washed twice with 37 g of hexane, and vacuum dried after filtration to obtain 7.7 g of the desired copolymer D as a white powder. The weight average molecular weight calculated | required by polystyrene conversion using the gel permeation chromatography is 9700.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(合成例28)共重合体Eの合成
 上記前駆体化合物B8を0.80gと、α-メタクリロイルオキシ-γ-ブチロラクトン3.9gと、2-メチルアダマンタン-2-メタクリレート2.9gと、(4-ヒドロキシ)フェニルメタクリレート2.3gと、ブチルメルカプタン0.13gと、V601を0.58gと、をテトラヒドロフラン12.5gに溶解し、減圧脱気を行う。脱気後、窒素気流化でTHF4gを還流させたフラスコ中に4時間かけて滴下する。滴下後2時間撹拌した後に25℃まで冷却する。冷却後、ヘキサン107gおよびテトラヒドロフラン11gからなる混合溶媒中に滴下することで再沈殿させる。
 これを濾過してからヘキサン37gで2回分散洗浄して濾過後に真空乾燥することで目的の共重合体Eを白色粉末として6.2g得る。ゲル浸透クロマトグラフィーを用いてポリスチレン換算により求めた重量平均分子量は8600である。
(Synthesis Example 28) Synthesis of Copolymer E 0.80 g of the precursor compound B8, 3.9 g of α-methacryloyloxy-γ-butyrolactone, 2.9 g of 2-methyladamantane-2-methacrylate, (4 -Hydroxy) phenyl methacrylate 2.3 g, butyl mercaptan 0.13 g, V601 0.58 g are dissolved in tetrahydrofuran 12.5 g and degassed under reduced pressure. After deaeration, the solution is added dropwise over 4 hours to a flask in which 4 g of THF is refluxed by turning into a nitrogen stream. After dropping, the mixture is stirred for 2 hours and then cooled to 25 ° C. After cooling, it is reprecipitated by dropping it into a mixed solvent consisting of 107 g of hexane and 11 g of tetrahydrofuran.
This is filtered, then dispersed and washed twice with 37 g of hexane, filtered and vacuum dried to obtain 6.2 g of the target copolymer E as a white powder. The weight average molecular weight calculated | required by polystyrene conversion using the gel permeation chromatography is 8600.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(合成例29)共重合体Fの合成
 上記前駆体化合物B8を0.80gと、α-メタクリロイルオキシ-γ-ブチロラクトン3.9gと、2-メチルアダマンタン-2-メタクリレート2.9gと、(4-ヒドロキシ)フェニルメタクリレート2.3gと、5-フェニルジベンゾチオフェニウム1,1-ジフルオロ-2-(2-メタクリロイルオキシ)-エタンスルホネート0.49gと、ブチルメルカプタン0.13gと(4-ヒドロキシ)フェニルメタクリレート2.9gと、ジメチル-2,2'-アゾビス(2-メチルプロピオネート)(製品名V601、和光純薬工業(株)製、(以下「V601」という))を0.56gとそれぞれ秤量してテトラヒドロフラン12.2gに溶解し、減圧脱気を行う。脱気後、窒素気流化でTHF4gを還流させたフラスコ中に4時間かけて滴下する。滴下後2時間撹拌した後に25℃まで冷却する。冷却後、ヘキサン107gおよびテトラヒドロフラン11gからなる混合溶媒中に滴下することで再沈殿させる。これを濾過してからヘキサン37gで2回分散洗浄して濾過後に真空乾燥することで目的の共重合体Fを白色粉末として6.6g得る。ゲル浸透クロマトグラフィーを用いてポリスチレン換算により求めた重量平均分子量は9100である。
Synthesis Example 29 Synthesis of Copolymer F 0.80 g of the above precursor compound B8, 3.9 g of α-methacryloyloxy-γ-butyrolactone, 2.9 g of 2-methyladamantane-2-methacrylate, (4 -Hydroxy) phenyl methacrylate 2.3 g, 5-phenyldibenzothiophenium 1,1-difluoro-2- (2-methacryloyloxy) -ethanesulfonate 0.49 g, butyl mercaptan 0.13 g and (4-hydroxy) 2.9 g of phenyl methacrylate and 0.56 g of dimethyl-2,2′-azobis (2-methylpropionate) (product name V601, manufactured by Wako Pure Chemical Industries, Ltd. (hereinafter referred to as “V601”)) Each is weighed and dissolved in 12.2 g of tetrahydrofuran and degassed under reduced pressure. After deaeration, the solution is added dropwise over 4 hours to a flask in which 4 g of THF is refluxed by turning into a nitrogen stream. After dropping, the mixture is stirred for 2 hours and then cooled to 25 ° C. After cooling, it is reprecipitated by dropping it into a mixed solvent consisting of 107 g of hexane and 11 g of tetrahydrofuran. This is filtered, then dispersed and washed twice with 37 g of hexane, filtered and vacuum dried to obtain 6.6 g of the desired copolymer F as a white powder. The weight average molecular weight determined by polystyrene conversion using gel permeation chromatography is 9100.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(合成例30)共重合体Gの合成
 α-メタクリロイルオキシ-γ-ブチロラクトン5.0gと、2-メチルアダマンタン-2-メタクリレート6.0gとV601を0.51gと、をテトラヒドロフラン26gに溶解し、減圧脱気を行う。これをTHF4gを還流させたフラスコ中に4時間かけて滴下する。滴下後2時間撹拌した後に25℃まで冷却する。この溶液をヘキサン160gおよびテトラヒドロフラン18gからなる混合溶媒中に滴下することで再沈殿させる。これを濾過してからヘキサン37gで2回分散洗浄し、濾過後に真空乾燥することで目的の共重合体Gを白い粉末として7.4g得る。
Synthesis Example 30 Synthesis of Copolymer G α-Methacryloyloxy-γ-butyrolactone 5.0 g, 2-methyladamantane-2-methacrylate 6.0 g, V601 0.51 g, and tetrahydrofuran 26 g were dissolved. Perform vacuum degassing. This is dripped over 4 hours in the flask which refluxed THF4g. After dropping, the mixture is stirred for 2 hours and then cooled to 25 ° C. This solution is reprecipitated by dropping it into a mixed solvent consisting of 160 g of hexane and 18 g of tetrahydrofuran. This is filtered, dispersed and washed twice with 37 g of hexane, and vacuum dried after filtration to obtain 7.4 g of the desired copolymer G as a white powder.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
(比較合成例1)共重合体Hの合成
 α-メタクリロイルオキシ-γ-ブチロラクトン5.0gと、2-メチルアダマンタン-2-メタクリレート6.0gと、アダマンタン-1-メタクリレート4.0gと、V601を0.51gと、をテトラヒドロフラン26gに溶解し、減圧脱気を行う。これをTHF4gを還流させたフラスコ中に4時間かけて滴下する。滴下後2時間撹拌した後に25℃まで冷却する。この溶液をヘキサン160gおよびテトラヒドロフラン18gからなる混合溶媒中に滴下することで再沈殿させる。これを濾過してからヘキサン37gで2回分散洗浄し、濾過後に真空乾燥することで目的の共重合体Hを白い粉末として8.0g得る。ゲル浸透クロマトグラフィーを用いてポリスチレン換算により求めた重量平均分子量は8800である。
Comparative Synthesis Example 1 Synthesis of Copolymer H 5.0 g of α-methacryloyloxy-γ-butyrolactone, 6.0 g of 2-methyladamantane-2-methacrylate, 4.0 g of adamantane-1-methacrylate, and V601 0.51 g is dissolved in 26 g of tetrahydrofuran and degassed under reduced pressure. This is dripped over 4 hours in the flask which refluxed THF4g. After dropping, the mixture is stirred for 2 hours and then cooled to 25 ° C. This solution is reprecipitated by dropping it into a mixed solvent consisting of 160 g of hexane and 18 g of tetrahydrofuran. This is filtered, dispersed and washed twice with 37 g of hexane, and vacuum dried after filtration to obtain 8.0 g of the desired copolymer H as a white powder. The weight average molecular weight calculated | required by polystyrene conversion using the gel permeation chromatography is 8800.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
<感度評価(「評価サンプル」)のためのサンプルの調製1>
 下記のようにして評価サンプル1~20を調製する。シクロヘキサノン7000mgに、上記共重合体A、C及びG500mg、共重合体E507mg、共重合体F497mg及び共重合体H500mgから選択されるいずれかの樹脂と、光酸発生剤(PAG)としてジフェニルヨードニウム-ノナフルオロブタンスルホネート(DPI-Nf)又はフェニルジベンゾチオニウム-ノナフルオロブタンスルホネート(PBpS-Nf)0.043mmolと、光増感剤前駆体として前駆体化合物B1~3、B9及びB10と比較化合物として2,2-ジフェニル-1,3-ジオキソラン(化合物C1)(ハメット置換基定数σの総和は0、クロロホルム溶媒中の365nmのモル吸光係数は6.3×10cm/mol)とのいずれかをそれぞれ0.043mmolか添加なしとし、クエンチャーとしてトリオクチルアミンを0.0043mmol、界面活性剤としてNovac FC-4434を0.3mg、カルボン酸化合物として2-ヒドロキシ-3-ナフトエ酸0.0015mmolの割合で添加してサンプルを調製する。調整したサンプルの詳細を表1に示す。
<Sample Preparation 1 for Sensitivity Evaluation ("Evaluation Sample")>
Evaluation samples 1 to 20 are prepared as follows. 7000 mg of cyclohexanone, 500 mg of copolymer A, C and G, 507 mg of copolymer E, 497 mg of copolymer F and 500 mg of copolymer H, and diphenyliodonium-nona as a photoacid generator (PAG) 0.043 mmol of fluorobutanesulfonate (DPI-Nf) or phenyldibenzothionium-nonafluorobutanesulfonate (PBpS-Nf), precursor compounds B1 to 3, B9 and B10 as photosensitizer precursors and 2 as comparative compounds , 2-diphenyl-1,3-dioxolane (compound C1) (the sum of Hammett substituent constants σ is 0, the molar extinction coefficient at 365 nm in chloroform solvent is 6.3 × 10 4 cm 2 / mol) Each with 0.043 mmol or no addition, A sample is prepared by adding 0.0043 mmol of trioctylamine as a carrier, 0.3 mg of Novac FC-4434 as a surfactant, and 0.0015 mmol of 2-hydroxy-3-naphthoic acid as a carboxylic acid compound. Details of the prepared samples are shown in Table 1.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
<サンプル評価1>
 あらかじめヘキサメチルジシラザン(HMDS)処理を行ったSiウェハー上に各評価サンプル1~20を塗布してスピンコートを行い110℃で加熱することで膜厚100nmのレジスト膜を得る。
 次に、評価サンプルレジスト膜を30keVのEB描画装置によって線幅のハーフピッチが100nmの1:1のライン及びスペースパターンが形成されるように、露光量を変えて露光する。その後、365nmの輝線を持つUVライトを用いてウェハー全面に紫外線照射する。次いで、ホットプレート上で110℃で1分間加熱する。加熱後、現像液(製品名:NMD-3、水酸化テトラメチルアンモニウム2.38質量%、 東京応化工業(株)製)を用いて1分間現像して現像を行い、純水でリンスすることでパターンを得る。これを顕微鏡で観察してレジストが完全に剥離されている露光量をEサイズ(最小露光量)とする。最小露光量を感度として評価した結果を表2に示す。
<Sample evaluation 1>
Each of the evaluation samples 1 to 20 is applied onto a Si wafer that has been subjected to hexamethyldisilazane (HMDS) treatment in advance, spin-coated, and heated at 110 ° C. to obtain a resist film having a thickness of 100 nm.
Next, the evaluation sample resist film is exposed by changing the exposure amount so that a 1: 1 line and space pattern having a line width half pitch of 100 nm is formed by an EB drawing apparatus of 30 keV. Thereafter, the entire surface of the wafer is irradiated with ultraviolet rays using a UV light having an emission line of 365 nm. Subsequently, it heats at 110 degreeC on a hotplate for 1 minute. After heating, develop with a developer (product name: NMD-3, 2.38 mass% tetramethylammonium hydroxide, manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 1 minute, and rinse with pure water. Get the pattern with. This is observed with a microscope, and the exposure amount at which the resist is completely peeled is defined as E size (minimum exposure amount). Table 2 shows the results of evaluating the minimum exposure amount as sensitivity.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 表2に示す通り、本発明の一つの態様における光増感剤前駆体を混合したレジスト組成物を用いた実施例1~9及び13~16は、EB照射後にUV照射することでEBの最小露光量が小さくなる。これにより、実施例1~9及び13~16のレジスト組成物においては、光増感剤前駆体から生成する光増感剤の光増感により酸発生が向上し、感度が向上していることがわかる。さらに実施例4と比較例1、及び、実施例7と比較例2の比較より、レジスト中にヒドロキシ基を持つ化合物を含むことで、ヒドロキシ基を持たないレジストよりもEBによる酸発生効率が向上することで高感度化していることがわかる。 As shown in Table 2, Examples 1 to 9 and 13 to 16 using the resist composition mixed with the photosensitizer precursor according to one embodiment of the present invention had a minimum EB by UV irradiation after EB irradiation. The exposure amount becomes small. As a result, in the resist compositions of Examples 1 to 9 and 13 to 16, the acid generation is improved by the photosensitization of the photosensitizer generated from the photosensitizer precursor, and the sensitivity is improved. I understand. Furthermore, from the comparison between Example 4 and Comparative Example 1 and Example 7 and Comparative Example 2, the acid generation efficiency by EB is improved by including a compound having a hydroxy group in the resist as compared with the resist having no hydroxy group. It can be seen that the sensitivity is increased.
 実施例1~4及び比較例1の比較より、同じ前駆体化合物B1を光増感剤前駆体として用いても組成物中のヒドロキシ基、特にヒドロキシアリール基の割合が多い共重合体A及びCは光増感の効率が高い。この理由として、ヒドロキシアリール基がヒドロキシル基の中でも優れたプロトン供与体として働く事に加えて、共重合体が多くヒドロキシ基を有することでレジストの極性が高くなり、光増感剤前駆体から生成した光増感剤が安定化することで、吸収が長波長化して365nmのモル吸光係数が大きくなるためと考えられる。さらに、実施例4と5の比較よりUV照射の効果は、ハメット置換基定数σの総和が0.2以下であれば光増感剤前駆体から生成する光増感剤のモル吸光係数が大きいほど高感度化する傾向が見られる。 From the comparison of Examples 1 to 4 and Comparative Example 1, even when the same precursor compound B1 was used as a photosensitizer precursor, copolymers A and C having a high proportion of hydroxy groups, particularly hydroxyaryl groups, in the composition. Has high photosensitizing efficiency. The reason for this is that, in addition to the fact that the hydroxyaryl group works as an excellent proton donor among the hydroxyl groups, the copolymer has many hydroxy groups, so the polarity of the resist is increased, and it is generated from the photosensitizer precursor. It is considered that the stabilization of the obtained photosensitizer increases the wavelength of absorption and increases the molar absorption coefficient at 365 nm. Furthermore, the effect of UV irradiation is greater than the comparison between Examples 4 and 5 in that the molar extinction coefficient of the photosensitizer produced from the photosensitizer precursor is large if the sum of the Hammett substituent constants σ is 0.2 or less. There is a tendency toward higher sensitivity.
 また実施例10及び11に示すように、前駆体化合物B8をポリマー中に結合した場合は、UV照射による酸発生の効率が実施例1~9より高い。これは生成する光増感剤がレジスト中で均一に分散されるために、光増感剤前駆体をレジスト中に混合した場合よりも光増感剤と光酸発生剤の反応確率が上がったためであると考えられる。実施例12に示すように前駆体化合物B8及びPAGをポリマー中に結合した場合は、UV照射による酸発生の効率が実施例10及び11よりも高くなる。 Also, as shown in Examples 10 and 11, when the precursor compound B8 is bonded in the polymer, the efficiency of acid generation by UV irradiation is higher than in Examples 1-9. This is because the photosensitizer generated is uniformly dispersed in the resist, and therefore the reaction probability between the photosensitizer and the photoacid generator is higher than when the photosensitizer precursor is mixed in the resist. It is thought that. When precursor compound B8 and PAG are combined in the polymer as shown in Example 12, the efficiency of acid generation by UV irradiation is higher than in Examples 10 and 11.
 実施例5、13及び14を比較すると、前駆体化合物B9又はB10をレジスト中に混合した場合、前駆体化合物B2をレジスト中に混合した時よりも高感度化している。これは前駆体化合物B9及びB10から生成する増感剤化合物A7及びA8のように、4-ヒドロキシフェニルチオ基を導入することによる365nmのモル吸光係数の増大と、フェノール性水酸基によって電子供与性が向上したためと考えられる。さらに、光増感剤のフェノール性水酸基がプロトン源となることで、光増感剤と酸発生剤間で起こる光増感の酸発生効率が向上したためと考えられる。 When Examples 5, 13 and 14 are compared, when the precursor compound B9 or B10 is mixed in the resist, the sensitivity is higher than when the precursor compound B2 is mixed in the resist. This is because, like sensitizer compounds A7 and A8 produced from precursor compounds B9 and B10, an increase in the molar extinction coefficient of 365 nm by introducing a 4-hydroxyphenylthio group, and an electron donating property due to the phenolic hydroxyl group. This is thought to be due to the improvement. Furthermore, it is considered that the acid generation efficiency of the photosensitization occurring between the photosensitizer and the acid generator is improved by the phenolic hydroxyl group of the photosensitizer becoming a proton source.
 比較例3及び4で添加した化合物C1は、ハメット置換基定数σの総和が0以上で365nmのモル吸光係数が6.3×10cm/molと非常に低いためUVでの増感効率が悪く200mJ/cmのUV照射では酸の発生量が向上せず高感度化しなかった。
 以上のことから、化合物において、電子供与性基を付加し、365nmのモル吸光係数を増大することで高感度な光増感剤前駆体とすることが出来ると考えられる。
The compound C1 added in Comparative Examples 3 and 4 has a sum of Hammett substituent constants σ of 0 or more and a molar extinction coefficient at 365 nm of 6.3 × 10 4 cm 2 / mol, which is very low, so the sensitization efficiency in UV However, UV irradiation at 200 mJ / cm 2 did not improve the amount of acid generated and did not increase the sensitivity.
From the above, it is considered that a highly sensitive photosensitizer precursor can be obtained by adding an electron-donating group to the compound to increase the molar absorption coefficient at 365 nm.
<感度評価(「評価サンプル」)のためのサンプルの調製2>
 下記のようにして評価サンプル16~25を調製する。シクロヘキサノン7000mgに、上記共重合体A又はH500mgと、光酸発生剤(PAG)としてジフェニルヨードニウム-ノナフルオロブタンスルホネート(DPI-Nf)、フェニルジベンゾチオニウム-ノナフルオロブタンスルホネート(PBpS-Nf)又は(4-フェニルチオ)フェニルジフェニルスルホニウム-ノナフルオロブタンスルホネート(PSDPS-Nf)0.043mmolと、光増感剤として増感剤化合物A1、A2、A7及びA8のいずれかをそれぞれ0.043mmol添加するか又は添加なしとし、クエンチャーとしてトリオクチルアミンを0.0043mmolと、の割合で添加してサンプルを調製する。調整したサンプルの詳細を表3に示す。
<Preparation of sample 2 for sensitivity evaluation ("evaluation sample")>
Evaluation samples 16 to 25 are prepared as follows. To 7000 mg of cyclohexanone, 500 mg of the copolymer A or H, and diphenyliodonium-nonafluorobutanesulfonate (DPI-Nf), phenyldibenzothionium-nonafluorobutanesulfonate (PBpS-Nf) or (PAG) as a photoacid generator (PAG) 0.043 mmol of 4-phenylthio) phenyldiphenylsulfonium-nonafluorobutanesulfonate (PSDPS-Nf) and 0.043 mmol of any of sensitizer compounds A1, A2, A7 and A8 as photosensitizers, respectively, or A sample is prepared by adding no trioctylamine as a quencher at a ratio of 0.0043 mmol. Details of the prepared samples are shown in Table 3.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
<サンプル評価2>
 あらかじめヘキサメチルジシラザン(HMDS処理を行ったSiウェハー上に各評価サンプル21~32を塗布してスピンコートを行い110℃で加熱することで膜厚500nmのレジスト膜を得る。
 次に、評価サンプルレジスト膜を線幅のハーフピッチが2μmの1:1のライン及びスペースパターンマスクを介して365nmの輝線を持つUV露光装置によって露光量を変えて露光する。次いで、ホットプレート上で110℃で1分間加熱する。
 加熱後、現像液(製品名:NMD-3、水酸化テトラメチルアンモニウム2.38質量%、 東京応化工業(株)製)を用いて1分間現像して現像を行い、純水でリンスすることでパターンを得る。これを顕微鏡で観察してレジストが完全に剥離されている露光量をEサイズ(最小露光量)とする。最小露光量を感度として評価した結果を表4に示す。
<Sample evaluation 2>
Hexamethyldisilazane (each evaluation sample 21 to 32 is applied onto a Si wafer that has been subjected to HMDS treatment, spin-coated, and heated at 110 ° C. to obtain a resist film having a thickness of 500 nm.
Next, the evaluation sample resist film is exposed by changing the exposure amount with a UV exposure apparatus having a bright line of 365 nm through a 1: 1 line having a line width half pitch of 2 μm and a space pattern mask. Subsequently, it heats at 110 degreeC on a hotplate for 1 minute.
After heating, develop with a developer (product name: NMD-3, 2.38 mass% tetramethylammonium hydroxide, manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 1 minute, and rinse with pure water. Get the pattern with. This is observed with a microscope, and the exposure amount at which the resist is completely peeled is defined as E size (minimum exposure amount). Table 4 shows the results of evaluating the minimum exposure amount as sensitivity.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 比較例5で示すようにPBpS-Nfは365nmにUV吸収が無いため酸発生しないが、本発明の一つの態様における光増感剤を混合したレジスト組成物を用いた実施例17、18、21、24及び25は、添加した光増感剤がUV照射時に光を吸収して酸発生剤を増感させることで酸発生させることが出来る。さらにいずれの実施例も365nmにUV吸収を持つ酸発生剤を混合した比較例6、7よりも高感度であることが分かる。これにより、実施例17~25のレジスト組成物においては、酸発生が向上し、感度が向上しており、実施例20と比較例6、及び、実施例23と比較例7の結果より照射波長のUVに吸収がある酸発生剤においても光増感剤の効果で高感度化することがわかる。 As shown in Comparative Example 5, PBpS-Nf does not generate acid because there is no UV absorption at 365 nm, but Examples 17, 18, and 21 using resist compositions mixed with photosensitizers in one embodiment of the present invention. , 24, and 25 can generate an acid when the added photosensitizer absorbs light during UV irradiation and sensitizes the acid generator. Further, it can be seen that each example has higher sensitivity than Comparative Examples 6 and 7 in which an acid generator having UV absorption at 365 nm is mixed. Thus, in the resist compositions of Examples 17 to 25, the acid generation was improved and the sensitivity was improved. From the results of Example 20 and Comparative Example 6 and Example 23 and Comparative Example 7, the irradiation wavelength was improved. It can be seen that even an acid generator that absorbs UV has higher sensitivity due to the effect of the photosensitizer.
 実施例17、18、24及び25を比較すると、添加した増感剤化合物のモル吸光係数が大きいほど高感度であることが分かる。また、増感剤化合物A7及びA8のようにチオアリール構造にヒドロキシ基を導入することで電子供与性が向上したために実施例24及び25はより高感度化しているものと考えられる。さらに、増感剤化合物のフェノール性水酸基がプロトン源となることで、光増感剤と酸発生剤間で起こる増感反応での酸発生効率が向上した効果も見られたと考えられる。 Comparison of Examples 17, 18, 24 and 25 shows that the greater the molar extinction coefficient of the added sensitizer compound, the higher the sensitivity. In addition, Examples 24 and 25 are considered to be more sensitive because electron donating property is improved by introducing a hydroxy group into the thioaryl structure as in sensitizer compounds A7 and A8. Furthermore, it is considered that the effect of improving the acid generation efficiency in the sensitization reaction that occurs between the photosensitizer and the acid generator is also observed by using the phenolic hydroxyl group of the sensitizer compound as a proton source.
 本発明のいくつかの態様により、酸発生効率を向上させ、高感度、高解像度及び高いLWR特性であるフォトレジストとするための光増感剤前駆体を含むレジスト組成物を提供することができる。 According to some aspects of the present invention, a resist composition including a photosensitizer precursor for improving acid generation efficiency and forming a photoresist having high sensitivity, high resolution, and high LWR characteristics can be provided. .

Claims (13)

  1.  下記一般式(1)で表される光増感剤前駆体と、
     光酸発生剤と、
     ヒドロキシ基含有化合物と、
     酸反応性化合物と、を含むレジスト組成物。
    Figure JPOXMLDOC01-appb-C000001
    (1)
    (前記式(1)中、Ar及びArは、独立して各々に、置換基を有していてもよいフェニレン基であり、
    は、置換基を有していてもよいチオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基からなる群より選択されるいずれかであり、
    Xは、硫黄原子、酸素原子及び直接結合からなる群より選択されるいずれかであり、
    2は、置換基を有していてもよいアルキル基及びフェニル基のいずれかであり、
    Yは、独立して各々に、酸素原子及び硫黄原子のいずれかであり、
    及びRは、独立して各々に、置換基を有してもよい、直鎖状、分岐鎖状又は環状の
    アルキル基であり、
    前記R及びRは、互いに結合して式中の2つのYと環構造を形成していてもよく、
    、R2、R及びRが有するアルキル基中の炭素-炭素一重結合の少なくとも一つが、炭素-炭素二重結合又は炭素-炭素三重結合で置き換えられていても良く、
    、R2、R及びRが有するアルキル基中のメチレン基の少なくとも一つが、2価のヘテロ原子含有基で置き換えられていてもよい。)
    A photosensitizer precursor represented by the following general formula (1);
    A photoacid generator;
    A hydroxy group-containing compound;
    A resist composition comprising an acid-reactive compound.
    Figure JPOXMLDOC01-appb-C000001
    (1)
    (In the formula (1), Ar 1 and Ar 2 are each independently a phenylene group which may have a substituent,
    R 1 is any one selected from the group consisting of an optionally substituted thioalkoxy group, arylthio group, and thioalkoxyphenyl group;
    X is any selected from the group consisting of a sulfur atom, an oxygen atom and a direct bond;
    R 2 is either an alkyl group which may have a substituent or a phenyl group,
    Y is each independently one of an oxygen atom and a sulfur atom,
    R 3 and R 4 are each independently a linear, branched or cyclic alkyl group that may have a substituent,
    R 3 and R 4 may be bonded to each other to form a ring structure with two Ys in the formula,
    At least one of the carbon-carbon single bonds in the alkyl group of R 1 , R 2 , R 3 and R 4 may be replaced with a carbon-carbon double bond or a carbon-carbon triple bond;
    At least one of the methylene groups in the alkyl group of R 1 , R 2 , R 3 and R 4 may be replaced with a divalent heteroatom-containing group. )
  2.  前記ヒドロキシ基含有化合物が、ヒドロキシアリール基含有化合物である請求項1に記載のレジスト組成物。 The resist composition according to claim 1, wherein the hydroxy group-containing compound is a hydroxyaryl group-containing compound.
  3.  前記光増感剤前駆体を酸で処理した後の365nmにおけるモル吸光係数が1.0×10cm/mol以上である請求項1又は2に記載のレジスト組成物。 3. The resist composition according to claim 1, wherein a molar extinction coefficient at 365 nm after the photosensitizer precursor is treated with an acid is 1.0 × 10 5 cm 2 / mol or more.
  4.  前記Ar及び/又は前記Arは、置換基として電子供与性基を有する請求項1~3のいずれか一項に記載のレジスト組成物。 4. The resist composition according to claim 1, wherein Ar 1 and / or Ar 2 has an electron donating group as a substituent.
  5.  前記電子供与性基は、アルキル基、アルケニル基、アルコキシ基及びチオアルコキシ基からなる群より選択される請求項4に記載のレジスト組成物。 The resist composition according to claim 4, wherein the electron donating group is selected from the group consisting of an alkyl group, an alkenyl group, an alkoxy group, and a thioalkoxy group.
  6.  前記Ar及び/又は前記Arは置換基として、アルコキシ基、チオアルコキシ基、アリールチオ基及びチオアルコキシフェニル基からなる群より選択される少なくとも1つをさらに有し、前記置換基は前記Ar及び/又は前記Arのオルト位及び/又はパラ位に結合している請求項1~5のいずれか一項に記載のレジスト組成物。 The Ar 1 and / or Ar 2 further has at least one selected from the group consisting of an alkoxy group, a thioalkoxy group, an arylthio group, and a thioalkoxyphenyl group as a substituent, and the substituent is the Ar 1 The resist composition according to any one of claims 1 to 5, which is bonded to the ortho position and / or the para position of Ar 2 .
  7.  前記Rが、前記Arのオルト位又はパラ位に結合している請求項1~6のいずれか一項に記載のレジスト組成物。 The resist composition according to any one of claims 1 to 6, wherein R 1 is bonded to the ortho or para position of Ar 1 .
  8.  前記Xが硫黄原子又は酸素原子のとき、前記Xは前記Arのオルト位又はパラ位に結合している請求項1~7のいずれか一項に記載のレジスト組成物。 The resist composition according to any one of claims 1 to 7, wherein when X is a sulfur atom or an oxygen atom, X is bonded to the ortho or para position of Ar 2 .
  9.  前記光増感剤前駆体、前記光酸発生剤、前記ヒドロキシ基含有化合物及び前記酸反応性化合物からなる群より選択される少なくとも2つが同一ポリマーに結合した各ユニットとして含まれる請求項1~8のいずれか一項に記載のレジスト組成物。 The at least two selected from the group consisting of the photosensitizer precursor, the photoacid generator, the hydroxy group-containing compound, and the acid-reactive compound are included as units bonded to the same polymer. The resist composition as described in any one of these.
  10.  酸拡散制御剤、界面活性剤、溶解抑制剤及び溶剤からなる群より選択されるいずれか一つを少なくともさらに含む請求項1~9のいずれか一項に記載のレジスト組成物。 The resist composition according to any one of claims 1 to 9, further comprising at least one selected from the group consisting of an acid diffusion controller, a surfactant, a dissolution inhibitor, and a solvent.
  11.  請求項1~10のいずれか一項に記載のレジスト組成物を基板上に塗布しレジスト膜を形成する工程と、
     前記レジスト膜に第1活性エネルギー線を照射する工程と、
     前記第1活性エネルギー線照射後のレジスト膜に第2活性エネルギー線を照射する工程と、
     前記第2活性エネルギー線照射後のレジスト膜を現像してパターンを得る工程と、を含むデバイスの製造方法。
    Applying the resist composition according to any one of claims 1 to 10 on a substrate to form a resist film;
    Irradiating the resist film with a first active energy ray;
    Irradiating the resist film after the first active energy ray irradiation with a second active energy ray;
    And developing a resist film after the second active energy ray irradiation to obtain a pattern.
  12.  前記第1活性エネルギー線が粒子線又は電磁波であり、
     前記第1活性エネルギー線が粒子線のとき、前記第2活性エネルギー線は電磁波であり、前記第1活性エネルギー線が電磁波のとき、前記第2活性エネルギー線は前記第1活性エネルギー線の前記電磁波の波長よりも長い電磁波である、請求項11に記載のデバイスの製造方法。
    The first active energy ray is a particle beam or an electromagnetic wave;
    When the first active energy ray is a particle beam, the second active energy ray is an electromagnetic wave, and when the first active energy ray is an electromagnetic wave, the second active energy ray is the electromagnetic wave of the first active energy ray. The device manufacturing method according to claim 11, wherein the electromagnetic wave is longer than the wavelength of the device.
  13.  前記第1活性エネルギー線が電子線又は極端紫外線である、請求項11又は12に記載のデバイスの製造方法。 The device manufacturing method according to claim 11 or 12, wherein the first active energy ray is an electron beam or extreme ultraviolet rays.
PCT/JP2017/016486 2016-04-28 2017-04-26 Resist composition and method for producing device using same WO2017188297A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187033395A KR20190004300A (en) 2016-04-28 2017-04-26 Resist composition and method of manufacturing device using the same
JP2018514653A JP6827037B2 (en) 2016-04-28 2017-04-26 A resist composition and a method for manufacturing a device using the resist composition.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016091875 2016-04-28
JP2016-091875 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017188297A1 true WO2017188297A1 (en) 2017-11-02

Family

ID=60159700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016486 WO2017188297A1 (en) 2016-04-28 2017-04-26 Resist composition and method for producing device using same

Country Status (4)

Country Link
JP (1) JP6827037B2 (en)
KR (1) KR20190004300A (en)
TW (1) TW201807491A (en)
WO (1) WO2017188297A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151400A1 (en) * 2018-01-31 2019-08-08 三菱瓦斯化学株式会社 Compound, resin, composition, method for forming resist pattern, method for forming circuit pattern, and method for purifying resin
JP2019182813A (en) * 2018-04-17 2019-10-24 東洋合成工業株式会社 Composition and method for producing device using the same
JP2020176096A (en) * 2019-04-19 2020-10-29 東洋合成工業株式会社 Onium salt, composition, and device manufacturing method using the same
WO2024038802A1 (en) * 2022-08-15 2024-02-22 富士フイルム株式会社 Active light-sensitive or radiation-sensitive resin composition, resist film, method for forming pattern, and method for producing electronic device
JP7478650B2 (en) 2019-12-13 2024-05-07 住友化学株式会社 Resist composition and method for producing resist pattern

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2821499T3 (en) * 2018-05-23 2021-04-26 Evonik Operations Gmbh Preparation method of keto-functionalized aromatic (meth) acrylates
ES2822120T3 (en) 2018-07-17 2021-04-29 Evonik Operations Gmbh Method for preparing acidic (meth) acrylates of C-H
EP3599232A1 (en) 2018-07-26 2020-01-29 Evonik Operations GmbH Method for the preparation of n-methyl(meth)acrylamide
DE102021101893A1 (en) * 2020-06-18 2021-12-23 Taiwan Semiconductor Manufacturing Co., Ltd. PREVENTING OUTGASING OF A PHOTO RESIN LAYER

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019616A1 (en) * 2013-08-07 2015-02-12 Toyo Gosei Co., Ltd. Reagent for enhancing generation of chemical species
JP2015061831A (en) * 2013-09-05 2015-04-02 東洋合成工業株式会社 Chemical species generation improver
JP2015134904A (en) * 2013-11-18 2015-07-27 東洋合成工業株式会社 Compound for enhancing generation of chemical species
WO2015174072A1 (en) * 2014-05-13 2015-11-19 Toyo Gosei Co., Ltd. Compounders for enhancing generation of chemical species
WO2016133073A1 (en) * 2015-02-18 2016-08-25 東洋合成工業株式会社 Compound, composition containing the compound, and method of manufacturing device using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019616A1 (en) * 2013-08-07 2015-02-12 Toyo Gosei Co., Ltd. Reagent for enhancing generation of chemical species
JP2015061831A (en) * 2013-09-05 2015-04-02 東洋合成工業株式会社 Chemical species generation improver
JP2015134904A (en) * 2013-11-18 2015-07-27 東洋合成工業株式会社 Compound for enhancing generation of chemical species
WO2015174072A1 (en) * 2014-05-13 2015-11-19 Toyo Gosei Co., Ltd. Compounders for enhancing generation of chemical species
WO2016133073A1 (en) * 2015-02-18 2016-08-25 東洋合成工業株式会社 Compound, composition containing the compound, and method of manufacturing device using same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151400A1 (en) * 2018-01-31 2019-08-08 三菱瓦斯化学株式会社 Compound, resin, composition, method for forming resist pattern, method for forming circuit pattern, and method for purifying resin
CN111655662A (en) * 2018-01-31 2020-09-11 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern forming method, circuit pattern forming method, and resin purifying method
JPWO2019151400A1 (en) * 2018-01-31 2021-02-25 三菱瓦斯化学株式会社 Compounds, resins, compositions, resist pattern forming methods, circuit pattern forming methods and resin purification methods
CN111655662B (en) * 2018-01-31 2023-09-26 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern forming method, circuit pattern forming method, and resin purifying method
JP7385827B2 (en) 2018-01-31 2023-11-24 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern forming method, circuit pattern forming method, and resin purification method
JP2019182813A (en) * 2018-04-17 2019-10-24 東洋合成工業株式会社 Composition and method for producing device using the same
JP7079647B2 (en) 2018-04-17 2022-06-02 東洋合成工業株式会社 A method for manufacturing a composition and a device using the composition.
JP2020176096A (en) * 2019-04-19 2020-10-29 東洋合成工業株式会社 Onium salt, composition, and device manufacturing method using the same
JP7249198B2 (en) 2019-04-19 2023-03-30 東洋合成工業株式会社 ONIUM SALT, COMPOSITION, AND DEVICE MANUFACTURING METHOD USING THE SAME
JP7478650B2 (en) 2019-12-13 2024-05-07 住友化学株式会社 Resist composition and method for producing resist pattern
WO2024038802A1 (en) * 2022-08-15 2024-02-22 富士フイルム株式会社 Active light-sensitive or radiation-sensitive resin composition, resist film, method for forming pattern, and method for producing electronic device

Also Published As

Publication number Publication date
TW201807491A (en) 2018-03-01
JPWO2017188297A1 (en) 2019-03-28
KR20190004300A (en) 2019-01-11
JP6827037B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP6827037B2 (en) A resist composition and a method for manufacturing a device using the resist composition.
US11142495B2 (en) Composition and method for manufacturing device using same
JP2017008068A (en) Base reactive photoacid generator and photoresist comprising the same
JP2011090284A (en) Photoacid generator and photoresist comprising same
JP5723829B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, mask blanks, and pattern forming method
JP7079647B2 (en) A method for manufacturing a composition and a device using the composition.
JP2009114381A (en) (meth)acrylic ester resin
JP6887394B2 (en) Sulfonium salt, photoacid generator, composition containing it, and method for manufacturing device
JP4347179B2 (en) Novel polymer and chemically amplified resist containing the same
WO2022196258A1 (en) Onium salt, photoacid generator, composition, and method for producing device using same
JP5603039B2 (en) Resist polymer and resist composition produced using the same
JP6948828B2 (en) Iodonium salt compounds, photoacid generators and compositions containing them, and methods for manufacturing devices.
WO2019087626A1 (en) Photo-acid generator, resist composition, and method for producing device using said resist composition
JP7249198B2 (en) ONIUM SALT, COMPOSITION, AND DEVICE MANUFACTURING METHOD USING THE SAME
WO2016133073A1 (en) Compound, composition containing the compound, and method of manufacturing device using same
JP5663526B2 (en) Chemically amplified resist composition, and resist film, mask blank, and resist pattern forming method using the same
JP2018024598A (en) Sulfonium salt, photoacid generator, composition comprising the same, and device manufacturing method
WO2018084050A1 (en) Metal-containing onium salt compound, photodisintegrable base, resist composition, and process for producing device using said resist composition
JPH08137107A (en) Resist composition
KR100230134B1 (en) Polymers for preparing positive photoresist and positive photoresist composition containing the same
JP4645153B2 (en) Radiation sensitive resin composition
JPH08101508A (en) Resist composition
JP4513501B2 (en) Radiation sensitive resin composition
JP2005258362A (en) Copolymer and radiation sensitive resin composition using same
WO2023053877A1 (en) Photoacid generator, resist composition, and method for producing device using said resist composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187033395

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789579

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789579

Country of ref document: EP

Kind code of ref document: A1