WO2017188062A1 - Elastic wave filter apparatus and multiplexer - Google Patents

Elastic wave filter apparatus and multiplexer Download PDF

Info

Publication number
WO2017188062A1
WO2017188062A1 PCT/JP2017/015584 JP2017015584W WO2017188062A1 WO 2017188062 A1 WO2017188062 A1 WO 2017188062A1 JP 2017015584 W JP2017015584 W JP 2017015584W WO 2017188062 A1 WO2017188062 A1 WO 2017188062A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wave filter
dielectric
inductor
filter device
Prior art date
Application number
PCT/JP2017/015584
Other languages
French (fr)
Japanese (ja)
Inventor
琢真 葛下
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017188062A1 publication Critical patent/WO2017188062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an elastic wave filter device and a multiplexer.
  • a ladder-type elastic wave filter that can realize a low loss and a wide band and easily obtain a high attenuation near the pass band is used.
  • Patent Document 1 discloses a configuration of a ladder type acoustic wave filter in which an inductor is connected in series between a parallel arm resonator and a ground. According to this configuration, an attenuation pole can be formed by the arrangement of the inductor, so that the amount of attenuation outside the passband can be increased.
  • an inductor connected between a parallel arm resonator and a ground is formed by winding a conductor wiring in an inner layer of a package.
  • the present invention has been made to solve the above-described problems, and provides a small acoustic wave filter device and a multiplexer that ensure low insertion loss in the passband and high attenuation outside the passband. With the goal.
  • an elastic wave filter device is an elastic wave filter device including an elastic wave filter element and a mounting substrate on which the elastic wave filter element is mounted,
  • the acoustic wave filter element includes a first electrode, a second electrode, a reference electrode, a series resonator connected between the first electrode and the second electrode, and from the first electrode to the second electrode.
  • a parallel resonator connected between the connection path and the reference electrode, wherein the mounting board is disposed on one main surface of the mounting board and connected to the first electrode.
  • the relative dielectric constant between the conductor wirings constituting the inductor for securing the attenuation pole is partially lower than the relative dielectric constant of the mounting board main body that houses the inductor. ing. Therefore, since the parasitic capacitance of the inductor can be reduced, the attenuation amount on the high frequency side outside the passband of the acoustic wave filter can be increased.
  • the substrate body may be formed of a dielectric layer, and the second dielectric portion may be formed on the same dielectric layer as the dielectric layer on which the conductor wiring is formed.
  • the second dielectric portion having a relatively low relative dielectric constant can be disposed only on the specific dielectric layer, the configuration of the mounting substrate can be simplified. Therefore, it is possible to increase the amount of attenuation on the high frequency side outside the passband of the elastic wave filter while simplifying the manufacturing process.
  • the conductor wiring constitutes a planar coil formed by the first wiring and the second wiring arranged on the outer periphery of the first wiring, and the second dielectric portion includes the first wiring and the first wiring. Between the two wirings, the first wiring and the second wiring may be formed in a region where the distance is minimum.
  • the second dielectric portion is arranged in the region that causes the largest parasitic capacitance value of the inductor, the arrangement region of the second dielectric portion can be reduced to the minimum necessary, and the configuration of the mounting substrate is simplified. Can be Therefore, it is possible to effectively increase the attenuation on the high frequency side outside the passband of the elastic wave filter while simplifying the manufacturing process.
  • the substrate body is composed of a plurality of dielectric layers
  • the conductor wiring forming the inductor is formed in at least two layers of the plurality of dielectric layers
  • the second dielectric portion is You may form between the said at least 2 layer in which the said conductor wiring was formed.
  • the inductance When ensuring a large inductance value of the inductor, it is necessary to form the inductance across a plurality of dielectric layers constituting the mounting substrate. In this case, since the second dielectric portion is disposed between two or more dielectric layers where the conductor wiring is formed, the parasitic capacitance between the layers having strong capacitive coupling can be greatly reduced. Therefore, it is possible to greatly ensure the amount of attenuation on the high frequency side outside the pass band of the elastic wave filter.
  • the second dielectric part may be composed of air.
  • first dielectric part may contain alumina as a main component
  • second dielectric part may contain silicon dioxide as a main component
  • Each of the series resonator and the parallel resonator may have a comb-shaped electrode formed on a piezoelectric substrate, and the elastic wave filter element may be a ladder type surface acoustic wave filter element.
  • an inductor with reduced parasitic capacitance is disposed between the one or more parallel resonators and the ground electrode, so that the attenuation in the harmonic band is increased while ensuring the bandwidth in the passband. It becomes possible.
  • a multiplexer includes the acoustic wave filter device described above and a filter element connected to the first electrode or the second electrode.
  • the acoustic wave filter element and the inductor are one of a transmission filter and a reception filter, and the filter element is the other of the transmission filter and the reception filter.
  • the relative dielectric constant between the conductor wirings constituting the inductor for securing the attenuation pole is smaller than the relative dielectric constant of the mounting substrate body in which the inductor is built. Is low. Therefore, since the parasitic capacitance of the inductor can be reduced, for example, it is possible to increase the attenuation amount of the other party's passband.
  • the present invention it is possible to provide a small acoustic wave filter device in which low insertion loss within the pass band and high attenuation outside the pass band are ensured.
  • FIG. 1 is a circuit configuration diagram of the acoustic wave filter device according to the first embodiment.
  • FIG. 2 is a cross-sectional structure diagram of the acoustic wave filter device according to the first embodiment.
  • FIG. 3 is a plan view showing the electrode and wiring layout of each layer constituting the mounting substrate of the acoustic wave filter device according to the first embodiment.
  • 4A is a plan configuration diagram of a dielectric layer constituting the mounting substrate of the acoustic wave filter device according to Embodiment 1.
  • FIG. 4B is a detailed cross-sectional structure diagram of the acoustic wave filter device according to Embodiment 1.
  • FIG. 5A is a plan configuration diagram of a dielectric layer constituting the mounting substrate of the acoustic wave filter device according to the first modification of the first embodiment.
  • 5B is a detailed cross-sectional structure diagram of an acoustic wave filter device according to Modification 1 of Embodiment 1.
  • FIG. FIG. 6 is a circuit configuration diagram of an acoustic wave filter device according to a comparative example.
  • FIG. 7 is a graph comparing the pass characteristics of the acoustic wave filter device when the parasitic capacitance of the inductor connected to the parallel resonator is changed.
  • FIG. 8A is a plan configuration diagram of a dielectric layer constituting the mounting substrate of the acoustic wave filter device according to the second modification of the first embodiment.
  • FIG. 8B is a detailed cross-sectional structure diagram of the acoustic wave filter device according to the second modification of the first embodiment.
  • FIG. 9A is a plan configuration diagram of a dielectric layer constituting the mounting substrate of the acoustic wave filter device according to the second embodiment.
  • FIG. 9B is a detailed cross-sectional structure diagram of the acoustic wave filter device according to the second embodiment.
  • FIG. 1 is a circuit configuration diagram of an acoustic wave filter device 1 according to the first embodiment.
  • the acoustic wave filter device 1 shown in the figure includes a surface acoustic wave (Surface Acoustic Wave) filter 20 for transmission, a SAW filter 30 for reception, a common electrode 141, and a transmission input electrode 142. And a reception output electrode 143.
  • a surface acoustic wave Surface Acoustic Wave
  • the SAW filter 20 forms a ladder-type bandpass filter, and includes series resonators 201, 202, 203, 204, and 205, parallel resonators 251, 252, 253, and 254, and inductors 124 and 125. .
  • the series resonators 201 to 205 have comb-shaped electrodes formed on a piezoelectric substrate, and are connected in series with each other between a first electrode and a second electrode provided on the piezoelectric substrate.
  • the parallel resonators 251 to 254 have comb-shaped electrodes formed on the piezoelectric substrate, and are parallel to each other between the connection points of the series resonators 201 to 205 and the reference electrode provided on the piezoelectric substrate. It is connected to the.
  • the series resonators 201 to 205, the parallel resonators 251 to 254, the first electrode, the second electrode, and the reference electrode constitute an acoustic wave filter element for transmission.
  • the inductor 124 is a so-called ladder L connected in series between the reference electrode to which one of the plurality of parallel resonators 254 is connected and the ground electrode 140. By disposing the inductor 124, it is possible to widen the pass band of the ladder-type SAW filter 20 and to increase the attenuation in a predetermined frequency band.
  • the inductor 125 is a so-called pole L connected in series between a reference electrode to which two or more parallel resonators 251 to 253 among a plurality of parallel resonators are connected and a ground electrode 140.
  • the SAW filter 30 constitutes a ladder type bandpass filter or a longitudinally coupled resonator type bandpass filter.
  • the configuration of the SAW filter 30 is not limited to the ladder type and the vertical coupling type.
  • the acoustic wave filter device 1 filters the high-frequency transmission signal input from the transmission input electrode 142 in a predetermined transmission band and outputs the filtered signal to the antenna element connected to the common electrode 141.
  • the high frequency reception signal input through the common electrode 141 is filtered by a predetermined reception band and output from the reception output electrode 143.
  • FIG. 2 is a cross-sectional structure diagram of the acoustic wave filter device 1 according to the first embodiment.
  • FIG. 3 is a plan view showing the electrode and wiring layout of each layer constituting the mounting substrate 10 of the acoustic wave filter device 1 according to the first embodiment.
  • 2 is a cross-sectional view taken along line II-II shown in FIG.
  • the elastic wave filter device 1 shown in FIG. 2 includes a mounting substrate 10, a SAW filter 20, a SAW filter 30, and a sealing member 40.
  • the mounting substrate 10 is composed of dielectric layers 11, 12 and 13 and various electrodes formed between these dielectric layers.
  • a transmission output electrode 102, a reception input electrode 103, a transmission input electrode 112, a reception output electrode 113, connection electrodes 114 and 115, and reference electrodes 110a and 110b, 110c, 110d, 110e, and 110f are formed.
  • the transmission output electrode 102 is a transmission output terminal of the SAW filter 20 in FIG. 1, and is connected to the second electrode on the piezoelectric substrate.
  • the reception input electrode 103 is a reception input terminal of the SAW filter 30 in FIG.
  • the transmission input electrode 112 is connected to the first electrode on the piezoelectric substrate, and is connected to the transmission input electrode 142 via a via conductor and an internal electrode.
  • the reception output electrode 113 is connected to the reception output electrode 143 through a via conductor and an internal electrode.
  • connection electrode 114 is a connection node between the inductor 124 and the parallel resonator 254 in FIG. 1 and is connected to a reference electrode on the piezoelectric substrate.
  • connection electrode 115 is a connection node between the inductor 125 and the parallel resonators 251 to 253 in FIG. 1, and is connected to a reference electrode on the piezoelectric substrate.
  • the reference electrodes 110a to 110f are connected to the ground electrode 140 through the internal ground electrodes 120 and 130 and via conductors.
  • an internal ground electrode 120, an internal common electrode 121, an internal transmission input electrode 122, an internal reception output electrode 123, and inductors 124A and 125 are formed on the surface of the dielectric layer 12, as shown in FIG. 3, on the surface of the dielectric layer 12, as shown in FIG. 3, an internal ground electrode 120, an internal common electrode 121, an internal transmission input electrode 122, an internal reception output electrode 123, and inductors 124A and 125 are formed.
  • the internal ground electrode 120 is connected to the ground electrode 140 through a via conductor and an internal electrode.
  • the internal common electrode 121 is connected to the common electrode 141 through the internal common electrode 131 and the via conductor.
  • the internal transmission input electrode 122 is connected to the transmission input electrode 142 via the via conductor and the internal electrode, and the internal reception output electrode 123 is connected to the reception output electrode 143 via the via conductor and the internal electrode.
  • the inductor 124A is connected to the connection electrode 114 and the inductor 124B through a via conductor.
  • the inductor 125 is connected to the connection electrode 115 and the ground electrode 140 through a via conductor.
  • an internal ground electrode 130, an internal common electrode 131, an internal transmission input electrode 132, an internal reception output electrode 133, and an inductor 124B are formed on the surface of the dielectric layer 13.
  • the internal ground electrode 130 is connected to the ground electrode 140 through a via conductor.
  • the internal transmission input electrode 132 is connected to the transmission input electrode 142 via the via conductor, the internal reception output electrode 133 is connected to the reception output electrode 143 via the via conductor, and the internal common electrode 131 is connected via the via conductor.
  • Inductor 124B is connected to inductor 124A and ground electrode 140 via a via conductor. The inductor 124A and the inductor 124B constitute an inductor 124.
  • the inductor 124A is a planar coil pattern formed on the dielectric layer 11, and the inductor 124B is a planar coil pattern formed on the dielectric layer 12, and these are connected by a via conductor, whereby the dielectric layer A spiral inductor 124 having the winding direction as the winding axis is formed.
  • a ground electrode 140, a common electrode 141, a transmission input electrode 142, and a reception output electrode 143 are formed on the back surface of the dielectric layer 13.
  • the ground electrode 140 is disposed on one main surface of the mounting substrate 10.
  • the transmission input electrode 142 is a first external connection electrode arranged on one main surface of the mounting substrate 10 and connected to the internal transmission input electrodes 132 and 122, the transmission input electrode 112, and the first electrode on the piezoelectric substrate. .
  • the common electrode 141 is disposed on one main surface of the mounting substrate 10 and is connected to the internal common electrodes 131 and 121, the transmission output electrode 102, the reception input electrode 103, and the second electrode on the piezoelectric substrate. It is.
  • the reception output electrode 143 is disposed on one main surface of the mounting substrate 10 and is connected to the internal reception output electrodes 133 and 123 and the reception output electrode 113.
  • the SAW filters 20 and 30 include a transmission output electrode 102, a reception input electrode 103, a transmission input electrode 112, a reception output electrode 113, connection electrodes 114 and 115, and reference electrodes 110a to 110f formed on the surface of the dielectric layer 11. In addition, it is flip-chip mounted.
  • the sealing member 40 has a function of contacting the surface of the mounting substrate 10 and covering the SAW filters 20 and 30.
  • the sealing member 40 is made of, for example, a resin such as an epoxy resin. Note that the sealing member 40 may not be an essential component.
  • the elastic wave filter device 1 may not include the SAW filter 30.
  • the SAW filter 20 may be a transmission filter or a reception filter.
  • FIG. 4A is a plan configuration diagram of the dielectric layer 12 constituting the mounting substrate 10 of the acoustic wave filter device 1 according to the first embodiment.
  • FIG. 4B is a detailed cross-sectional structure diagram of elastic wave filter device 1 according to Embodiment 1.
  • the dielectric layers 11 to 13 constitute a first dielectric portion 10A that is a substrate body of the mounting substrate 10.
  • the first dielectric portion 10A for example, formed of a dielectric material containing alumina as a main component, in this case, the relative dielectric constant epsilon 10 of the first dielectric portion 10A, which is 8.5.
  • the second dielectric portion 12B is formed in the dielectric layer 12 of the mounting substrate 10 so as to be in contact with the conductor wiring constituting the inductor 124B. In other words, the second dielectric portion 12B is formed between the conductor wires constituting the inductor 124B.
  • the second dielectric portion 12B is made of, for example, a dielectric material mainly composed of silicon dioxide.
  • the relative dielectric constant ⁇ 12B of the second dielectric portion 12B is 3.8. That is, the relative dielectric constant ⁇ 12B of the second dielectric portion 12B is lower than the relative dielectric constant ⁇ 10 of the first dielectric portion 10A.
  • the second dielectric portion 12B is disposed so as to be in contact with the conductor wiring that constitutes the inductor 124B of the inductor 124, but the second dielectric portion is in contact with the conductor wiring that constitutes the inductor 124A. May be arranged.
  • FIG. 5A is a plan configuration diagram of the dielectric layer 11 constituting the mounting substrate 10 of the acoustic wave filter device 1A according to the first modification of the first embodiment.
  • 5B is a detailed cross-sectional structure diagram of an elastic wave filter device 1A according to Modification 1 of Embodiment 1.
  • FIG. 5A is a plan configuration diagram of the dielectric layer 11 constituting the mounting substrate 10 of the acoustic wave filter device 1A according to the first modification of the first embodiment.
  • 5B is a detailed cross-sectional structure diagram of an elastic wave filter device 1A according to Modification 1 of Embodiment 1.
  • FIG. 5A is a plan configuration diagram of the dielectric layer 11 constituting the mounting substrate 10 of the acoustic wave filter device 1A according to the first modification of the first embodiment.
  • 5B is a detailed cross-sectional structure diagram of an elastic wave filter device 1A according to Modification 1 of Embodiment 1.
  • FIG. 5A is a plan configuration diagram of the dielectric layer 11 constitu
  • the dielectric layers 11 to 13 constitute a first dielectric portion 10A that is a substrate body of the mounting substrate 10.
  • the first dielectric portion 10A for example, formed of a dielectric material containing alumina as a main component, in this case, the relative dielectric constant epsilon 10 of the first dielectric portion 10A, which is 8.5.
  • the second dielectric portion 11B is formed in the dielectric layer 11 of the mounting substrate 10 so as to be in contact with the conductor wiring constituting the inductor 124A. In other words, the second dielectric portion 11B is formed between the conductor wires constituting the inductor 124A.
  • the second dielectric part 11B is made of, for example, a dielectric material mainly composed of silicon dioxide.
  • the relative dielectric constant ⁇ 11B of the second dielectric part 11B is 3.8. That is, the relative dielectric constant ⁇ 11B of the second dielectric portion 11B is lower than the relative dielectric constant ⁇ 10 of the first dielectric portion 10A.
  • the relative dielectric constant ⁇ 11B between the conductor wirings constituting the inductor 124 A for securing the attenuation pole is partially lower than the relative dielectric constant ⁇ 10 of the substrate body of the mounting substrate 10. Therefore, since the parasitic capacitance of the inductor 124A can be reduced, the attenuation on the high frequency side outside the pass band is increased while ensuring the low insertion loss in the pass band in the SAW filter 20 for transmission of the acoustic wave filter device 1A. Is possible.
  • a second dielectric portion may be formed on both inductors 124A and 124B.
  • the parasitic capacitance of the inductor 124 can be further reduced, the attenuation amount on the high frequency side outside the pass band in the SAW filter 20 for transmission of the acoustic wave filter device can be further increased.
  • the configuration in which the inductor 124 constituting the so-called ladder L is composed of the two-layer coil pattern of the inductors 124A and 124B is illustrated.
  • the inductor 124 is based on the one-layer coil pattern. The structure which becomes may be sufficient.
  • the configuration in which the second dielectric portion is formed in the inductor 124 that constitutes the so-called ladder L is shown, but the conductor wiring that constitutes the inductor 125 that constitutes the so-called pole L
  • the second dielectric portion may be formed so as to be in contact with.
  • the parasitic capacitance of the inductor 125 can be reduced, the attenuation on the high frequency side outside the pass band is increased while ensuring low insertion loss in the pass band in the SAW filter 20 for transmission of the acoustic wave filter device. It becomes possible to do.
  • FIG. 6 is a circuit configuration diagram of an acoustic wave filter device according to a comparative example. This figure shows the circuit configuration of the SAW filter 520 on the transmission side in the acoustic wave filter device according to the comparative example.
  • the SAW filter 520 shown in the figure is different from the SAW filter 20 according to the first embodiment only in that the capacitor 535 is connected in parallel to the inductor 124 as a circuit configuration. Since the inductor 124 is built in the dielectric layer, parasitic capacitance is generated according to the relative dielectric constant of the dielectric layer. This parasitic capacitance corresponds to the capacitance 535 in FIG.
  • Figure 7 is a graph comparing the pass characteristic of the SAW filter in the case of changing the capacitance value C B of the capacitor 535 of the inductor 124 connected to the parallel resonators 254. As shown in the figure, by changing the capacitance value C B of the capacitor 535, but the insertion loss in the pass band does not substantially change is observed, decreased to 0pF the capacitance value C B from 2.0pF It can be seen that the amount of attenuation increases in the high frequency band (1.8 GHz to 2.4 GHz) in the vicinity of the pass band as it goes on.
  • the second dielectric part having a lower dielectric constant than the substrate body is formed so as to be in contact with the conductor wiring constituting the inductor 124. Accordingly, it is possible close the capacitance C B of the capacitor 535 to zero (the solid line in FIG. 7). As a result, it is possible to increase the attenuation in the high frequency band (1.8 GHz to 2.4 GHz) near the pass band while maintaining a low insertion loss in the pass band.
  • FIG. 8A is a plan configuration diagram of the dielectric layer 12 constituting the mounting substrate 10 of the acoustic wave filter device 1B according to the second modification of the first embodiment.
  • FIG. 8B is a detailed cross-sectional structure diagram of an acoustic wave filter device 1B according to Modification 2 of Embodiment 1.
  • the elastic wave filter device 1B according to this modification is different from the elastic wave filter device 1 according to the first embodiment in the arrangement configuration of the second dielectric portion.
  • the description of the same configuration as that of the elastic wave filter device 1 according to Embodiment 1 will be omitted, and a description will be given focusing on different configurations.
  • the dielectric layers 11 to 13 constitute a first dielectric portion 10A that is a substrate body of the mounting substrate 10.
  • the first dielectric portion 10A for example, formed of a dielectric material containing alumina as a main component, in this case, the relative dielectric constant epsilon 10 of the first dielectric portion 10A, which is 8.5.
  • the second dielectric portion 11C is formed between the conductor wirings constituting the inductor 124B.
  • the conductor wiring constituting the inductor 124B constitutes a spiral planar coil formed by the first wiring 124B1 and the second wiring 124B2 arranged on the outer periphery of the first wiring 124B1.
  • the second dielectric portion 11C is formed in a region between the first wiring 124B1 and the second wiring 124B2 and in which the interval between the first wiring 124B1 and the second wiring 124B2 is minimized.
  • the second dielectric part 11C is made of, for example, a dielectric material mainly composed of silicon dioxide.
  • the relative dielectric constant ⁇ 11C of the second dielectric part 11C is 3.8. That is, the relative dielectric constant ⁇ 11C of the second dielectric portion 11C is lower than the relative dielectric constant ⁇ 10 of the first dielectric portion 10A.
  • the second dielectric portion 11C is disposed in a region that causes the capacitance value of the parasitic capacitance of the inductor 124B to be maximized. Therefore, the region where the second dielectric portion 11C is disposed is reduced to a necessary minimum.
  • the configuration of the mounting substrate 10 can be simplified. Therefore, it is possible to effectively increase the amount of attenuation on the high frequency side outside the pass band of the SAW filter 20 while simplifying the manufacturing process.
  • FIG. 9A is a plan configuration diagram of the dielectric layers 12 and 13 constituting the mounting substrate 10 of the elastic wave filter device 1C according to the second embodiment.
  • FIG. 9B is a detailed cross-sectional structure diagram of an elastic wave filter device 1C according to Embodiment 2.
  • the elastic wave filter device 1C according to the present embodiment is different from the elastic wave filter device 1 according to the first embodiment in the arrangement configuration of the second dielectric portion.
  • the description of the same configuration as that of the elastic wave filter device 1 according to the first embodiment will be omitted, and a description will be given focusing on different configurations.
  • the dielectric layers 11 to 13 constitute a first dielectric portion 10A that is a substrate body of the mounting substrate 10.
  • the first dielectric portion 10A for example, formed of a dielectric material containing alumina as a main component, in this case, the relative dielectric constant epsilon 10 of the first dielectric portion 10A, which is 8.5.
  • the second dielectric portion 12A is formed between the inductors 124A and 124B.
  • each dielectric layer of the mounting substrate 10 it is required to make each dielectric layer of the mounting substrate 10 thin. As each dielectric layer is made thinner, the distance between the inductors 124A and 124B becomes smaller than the distance between the first wiring and the second wiring formed in the same layer of the inductors 124A and 124B, and the coupling between the inductors 124A and 124B is reduced. Capacity increases. From this point of view, the second dielectric portion 12A is formed between the dielectric layers 12 and 13 that form the inductor 124 in order to reduce the coupling capacitance.
  • the second dielectric portion 12A is made of, for example, a dielectric material mainly composed of silicon dioxide.
  • the relative dielectric constant ⁇ 12A of the second dielectric portion 12A is 3.8. That is, the relative dielectric constant ⁇ 12A of the second dielectric portion 12A is lower than the relative dielectric constant ⁇ 10 of the first dielectric portion 10A.
  • the second dielectric portion 12A is disposed in the interlayer region that causes the capacitance value of the parasitic capacitance of the inductor 124 to increase, the parasitic capacitance between layers having strong capacitive coupling can be greatly reduced. Therefore, it is possible to largely secure the attenuation amount on the high frequency side outside the pass band of the SAW filter 20.
  • the elastic wave filter device according to the embodiment of the present invention has been described with reference to the first and second embodiments.
  • the high-frequency module of the present invention is not limited to the above-described embodiment.
  • circuit elements and wirings may be inserted between the circuit elements disclosed in the drawings and the paths connecting the signal paths.
  • the inductors 124 and 125 constituting the so-called ladder L and the pole L are exemplified as spiral coils having a winding axis in the stacking direction of the mounting substrate, but are not limited thereto.
  • the inductor may be formed of a conductor wiring having a meander shape or a straight shape.
  • the mounting substrate 10 is a multilayer substrate composed of a plurality of dielectric layers, the mounting substrate 10 may be a substrate composed of a single layer.
  • the present invention is not limited to the elastic wave filter device disclosed in the above embodiment, but any one of the elastic wave filter devices 1, 1A, 1B and 1C described in the above embodiment, and the first electrode or the second electrode.
  • the multiplexer may include a filter element connected to the electrode.
  • the acoustic wave filter element and the inductor are one of a transmission filter and a reception filter, and the filter element is the other of the transmission filter and the reception filter.
  • the relative dielectric constant around the conductor wiring constituting the inductor for securing the attenuation pole is such that the mounting substrate body that houses the inductor It is partially lower than the relative dielectric constant. Therefore, since the parasitic capacitance of the inductor can be reduced, for example, it is possible to increase the attenuation amount of the other party's passband.
  • the filter included in the elastic wave filter device according to the first and second embodiments may not be a SAW filter, but may be an elastic wave filter using an elastic boundary wave or a BAW (Bulk Acoustic Wave).
  • the inductor which comprises the ladder L or the pole L showed the aspect equipped with the mounting board
  • the said inductor was formed in the piezoelectric substrate. May be.
  • the piezoelectric substrate also serves as a mounting substrate, and the second dielectric part having a relative dielectric constant different from that of the piezoelectric substrate body is disposed in the piezoelectric substrate.
  • WLP Wafer Level Package
  • the present invention can be widely used in communication devices such as mobile phones as a power amplification module disposed in a multiband / multimode-compatible front-end unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

An elastic wave filter apparatus (1) is provided with: an elastic wave filter element; and a mounted substrate (10). The elastic wave filter element is provided with: serial resonators (201-205) connected between a first electrode and a second electrode; and parallel resonators (251-254) connected between a reference electrode and a connection path from the first electrode to the second electrode. The mounted substrate (10) is provided with: a grounding electrode (140); an inductor (124) that is formed by a conductor wiring line installed in the mounted substrate (10) and connected between the reference electrode and the grounding electrode (140); a first dielectric unit (10A) that constitutes the mounted substrate (10); and a second dielectric unit (12B) that is arranged so as to be brought into contact with the conductor wiring line. The relative dielectric constant of the second dielectric unit (12B)is lower than that of the first dielectric unit (10A).

Description

弾性波フィルタ装置およびマルチプレクサElastic wave filter device and multiplexer
 本発明は、弾性波フィルタ装置およびマルチプレクサに関する。 The present invention relates to an elastic wave filter device and a multiplexer.
 通過帯域内の低挿入損失および相手側帯域の高減衰が求められるマルチプレクサには、低損失かつ広帯域を実現でき、通過帯域近傍において高減衰量を得やすいラダー型の弾性波フィルタが用いられる。 For a multiplexer that requires low insertion loss in the pass band and high attenuation in the other band, a ladder-type elastic wave filter that can realize a low loss and a wide band and easily obtain a high attenuation near the pass band is used.
 特許文献1には、並列腕共振子とグランドとの間にインダクタが直列接続されたラダー型弾性波フィルタの構成が開示されている。この構成によれば、上記インダクタの配置により、減衰極を形成できるので通過帯域外の減衰量を大きくすることが可能となる。 Patent Document 1 discloses a configuration of a ladder type acoustic wave filter in which an inductor is connected in series between a parallel arm resonator and a ground. According to this configuration, an attenuation pole can be formed by the arrangement of the inductor, so that the amount of attenuation outside the passband can be increased.
特開2007-74698号公報JP 2007-74698 A
 特許文献1に記載された弾性波フィルタでは、並列腕共振子とグランドとの間に接続されるインダクタを、パッケージの内層で導体配線を巻くことにより形成している。しかしながら、パッケージ基板が比誘電率の高いアルミナ(εr=8.5)などからなる場合、隣り合う導体配線が容量結合して、上記インダクタに寄生容量が形成される。この寄生容量のため、通過帯域外において減衰極が不十分に形成され、通過帯域外の減衰量が悪化するという問題が発生する。 In the elastic wave filter described in Patent Document 1, an inductor connected between a parallel arm resonator and a ground is formed by winding a conductor wiring in an inner layer of a package. However, when the package substrate is made of alumina having a high relative dielectric constant (εr = 8.5) or the like, adjacent conductor wirings are capacitively coupled to form a parasitic capacitance in the inductor. Due to this parasitic capacitance, there is a problem that attenuation poles are insufficiently formed outside the passband, and the attenuation outside the passband is deteriorated.
 そこで、本発明は、上記課題を解決するためになされたものであって、通過帯域内の低挿入損失および通過帯域外の高減衰が確保された小型の弾性波フィルタ装置およびマルチプレクサを提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described problems, and provides a small acoustic wave filter device and a multiplexer that ensure low insertion loss in the passband and high attenuation outside the passband. With the goal.
 上記目的を達成するために、本発明の一態様に係る弾性波フィルタ装置は、弾性波フィルタ素子と、当該弾性波フィルタ素子が実装された実装基板とを備えた弾性波フィルタ装置であって、前記弾性波フィルタ素子は、第1電極、第2電極および基準電極と、前記第1電極と前記第2電極との間に接続された直列共振子と、前記第1電極から前記第2電極までの接続経路と前記基準電極との間に接続された並列共振子と、を備え、前記実装基板は、前記実装基板の一方主面に配置され、前記第1電極に接続された第1外部接続電極と、前記実装基板の一方主面に配置され、前記第2電極に接続された第2外部接続電極と、前記実装基板の一方主面に配置された接地電極と、前記基準電極と前記接地電極との間に接続され、前記実装基板に内装された導体配線で形成されたインダクタと、前記実装基板の基板本体を構成する第1誘電体部と、前記導体配線と接するように配置された第2誘電体部と、を備え、前記第2誘電体部の比誘電率は、前記第1誘電体部の比誘電率よりも低い。 To achieve the above object, an elastic wave filter device according to an aspect of the present invention is an elastic wave filter device including an elastic wave filter element and a mounting substrate on which the elastic wave filter element is mounted, The acoustic wave filter element includes a first electrode, a second electrode, a reference electrode, a series resonator connected between the first electrode and the second electrode, and from the first electrode to the second electrode. A parallel resonator connected between the connection path and the reference electrode, wherein the mounting board is disposed on one main surface of the mounting board and connected to the first electrode. An electrode, a second external connection electrode disposed on one main surface of the mounting substrate and connected to the second electrode, a ground electrode disposed on one main surface of the mounting substrate, the reference electrode, and the ground Connected to the electrode and connected to the mounting substrate. An inductor formed of a conductive wire, a first dielectric portion constituting a substrate body of the mounting substrate, and a second dielectric portion disposed so as to be in contact with the conductive wire, The dielectric constant of the dielectric part is lower than the dielectric constant of the first dielectric part.
 弾性波フィルタの通過帯域外の高周波側に減衰極を確保するために、並列共振子と接地電極との間に、インダクタを配置する手法が用いられる。この場合、実装基板の比誘電率が高いほど小型化に有利である反面、実装基板に内装されたインダクタの寄生容量が大きくなり、上記高周波側における所望の減衰量が得られないことが想定される。 In order to secure an attenuation pole on the high frequency side outside the pass band of the elastic wave filter, a method of placing an inductor between the parallel resonator and the ground electrode is used. In this case, the higher the relative dielectric constant of the mounting substrate is, the more advantageous for miniaturization, but the parasitic capacitance of the inductor built in the mounting substrate increases, and it is assumed that the desired attenuation on the high frequency side cannot be obtained. The
 これに対して、上記構成によれば、減衰極を確保するためのインダクタを構成する導体配線間の比誘電率が、当該インダクタを内装する実装基板本体の比誘電率よりも部分的に低くなっている。よって、インダクタの寄生容量を小さくできるので、弾性波フィルタの通過帯域外の高周波側の減衰量を大きくすることが可能となる。 On the other hand, according to the above configuration, the relative dielectric constant between the conductor wirings constituting the inductor for securing the attenuation pole is partially lower than the relative dielectric constant of the mounting board main body that houses the inductor. ing. Therefore, since the parasitic capacitance of the inductor can be reduced, the attenuation amount on the high frequency side outside the passband of the acoustic wave filter can be increased.
 また、前記基板本体は、誘電体層で構成され、前記第2誘電体部は、前記導体配線が形成された前記誘電体層と同一の誘電体層に形成されていてもよい。 The substrate body may be formed of a dielectric layer, and the second dielectric portion may be formed on the same dielectric layer as the dielectric layer on which the conductor wiring is formed.
 これにより、比誘電率が相対的に低い第2誘電体部を、特定の誘電体層に限定して配置できるので、実装基板の構成を簡素化できる。よって、製造工程を簡素化しつつ弾性波フィルタの通過帯域外の高周波側の減衰量を大きくすることが可能となる。 Thereby, since the second dielectric portion having a relatively low relative dielectric constant can be disposed only on the specific dielectric layer, the configuration of the mounting substrate can be simplified. Therefore, it is possible to increase the amount of attenuation on the high frequency side outside the passband of the elastic wave filter while simplifying the manufacturing process.
 また、前記導体配線は、第1配線と当該第1配線の外周に配置された第2配線とで形成された平面コイルを構成し、前記第2誘電体部は、前記第1配線と前記第2配線との間であって、前記第1配線および前記第2配線の間隔が最小となる領域に形成されていてもよい。 In addition, the conductor wiring constitutes a planar coil formed by the first wiring and the second wiring arranged on the outer periphery of the first wiring, and the second dielectric portion includes the first wiring and the first wiring. Between the two wirings, the first wiring and the second wiring may be formed in a region where the distance is minimum.
 これにより、インダクタの寄生容量値を最も大きくさせる要因となる領域に第2誘電体部が配置されるので、第2誘電体部の配置領域を必要最小限に縮小でき、実装基板の構成を簡素化できる。よって、製造工程を簡素化しつつ弾性波フィルタの通過帯域外の高周波側の減衰量を効果的に大きくすることが可能となる。 As a result, since the second dielectric portion is arranged in the region that causes the largest parasitic capacitance value of the inductor, the arrangement region of the second dielectric portion can be reduced to the minimum necessary, and the configuration of the mounting substrate is simplified. Can be Therefore, it is possible to effectively increase the attenuation on the high frequency side outside the passband of the elastic wave filter while simplifying the manufacturing process.
 また、前記基板本体は、複数の誘電体層で構成され、前記インダクタを形成する前記導体配線は、前記複数の誘電体層の少なくとも2層に形成されており、前記第2誘電体部は、前記導体配線が形成された前記少なくとも2層の間に形成されていてもよい。 Further, the substrate body is composed of a plurality of dielectric layers, the conductor wiring forming the inductor is formed in at least two layers of the plurality of dielectric layers, and the second dielectric portion is You may form between the said at least 2 layer in which the said conductor wiring was formed.
 上記インダクタのインダクタンス値を大きく確保する場合、実装基板を構成する複数の誘電体層に跨って当該インダクタンスを形成する必要がある。この場合、導体配線が形成された2層以上の誘電体層の層間に第2誘電体部が配置されるので、容量結合の強い上記層間における寄生容量を大幅に低減できる。よって、弾性波フィルタの通過帯域外の高周波側の減衰量を大幅に確保することが可能となる。 When ensuring a large inductance value of the inductor, it is necessary to form the inductance across a plurality of dielectric layers constituting the mounting substrate. In this case, since the second dielectric portion is disposed between two or more dielectric layers where the conductor wiring is formed, the parasitic capacitance between the layers having strong capacitive coupling can be greatly reduced. Therefore, it is possible to greatly ensure the amount of attenuation on the high frequency side outside the pass band of the elastic wave filter.
 また、前記第2誘電体部は、空気で構成されていてもよい。 Further, the second dielectric part may be composed of air.
 これにより、容量結合の強い上記層間を空気で構成された中空構造とすることにより、第2誘電体部の比誘電率(εr=1.0)を最低とすることができるので、寄生容量を大幅に低減できる。よって、弾性波フィルタの通過帯域外の高周波側の減衰量を大幅に確保することが可能となる。 As a result, the dielectric layer (εr = 1.0) of the second dielectric portion can be minimized by forming a hollow structure in which the interlayer having strong capacitive coupling is composed of air. It can be greatly reduced. Therefore, it is possible to greatly ensure the amount of attenuation on the high frequency side outside the pass band of the elastic wave filter.
 また、前記第1誘電体部は、アルミナを主成分とし、前記第2誘電体部は、二酸化ケイ素を主成分としてもよい。 Further, the first dielectric part may contain alumina as a main component, and the second dielectric part may contain silicon dioxide as a main component.
 これにより、第2誘電体部の比誘電率(εr=3.8)を、第1誘電体部の比誘電率(εr=8.5)よりも低くすることが可能となる。よって、弾性波フィルタの通過帯域外の高周波側の減衰量を大きくすることが可能となる。 Thereby, it becomes possible to make the relative dielectric constant (εr = 3.8) of the second dielectric portion lower than the relative dielectric constant (εr = 8.5) of the first dielectric portion. Therefore, it is possible to increase the attenuation amount on the high frequency side outside the pass band of the elastic wave filter.
 また、前記直列共振子および前記並列共振子のそれぞれは、圧電基板上に形成された櫛形電極を有し、前記弾性波フィルタ素子は、ラダー型の弾性表面波フィルタ素子であってもよい。 Each of the series resonator and the parallel resonator may have a comb-shaped electrode formed on a piezoelectric substrate, and the elastic wave filter element may be a ladder type surface acoustic wave filter element.
 これにより、1以上の並列共振子と接地電極との間に、寄生容量が低減されたインダクタが配置されるので、通過帯域内の帯域幅を確保しつつ、高調波帯の減衰量を大きくすることが可能となる。 As a result, an inductor with reduced parasitic capacitance is disposed between the one or more parallel resonators and the ground electrode, so that the attenuation in the harmonic band is increased while ensuring the bandwidth in the passband. It becomes possible.
 また、上記目的を達成するために、本発明の一態様に係るマルチプレクサは、上記記載の弾性波フィルタ装置と、前記第1電極または前記第2電極に接続されたフィルタ素子と、を備え、前記弾性波フィルタ素子と前記インダクタとは、送信用フィルタおよび受信用フィルタの一方であり、前記フィルタ素子は、送信用フィルタおよび受信用フィルタの他方である。 In order to achieve the above object, a multiplexer according to one aspect of the present invention includes the acoustic wave filter device described above and a filter element connected to the first electrode or the second electrode. The acoustic wave filter element and the inductor are one of a transmission filter and a reception filter, and the filter element is the other of the transmission filter and the reception filter.
 これにより、送信用フィルタおよび受信用フィルタの少なくとも一方において、減衰極を確保するためのインダクタを構成する導体配線間の比誘電率が、当該インダクタを内装する実装基板本体の比誘電率よりも部分的に低くなっている。よって、インダクタの寄生容量を小さくできるので、例えば、相手方の通過帯域の減衰量を大きくすることが可能となる。 Thereby, in at least one of the transmission filter and the reception filter, the relative dielectric constant between the conductor wirings constituting the inductor for securing the attenuation pole is smaller than the relative dielectric constant of the mounting substrate body in which the inductor is built. Is low. Therefore, since the parasitic capacitance of the inductor can be reduced, for example, it is possible to increase the attenuation amount of the other party's passband.
 本発明によれば、通過帯域内の低挿入損失および通過帯域外の高減衰が確保された小型の弾性波フィルタ装置を提供することが可能となる。 According to the present invention, it is possible to provide a small acoustic wave filter device in which low insertion loss within the pass band and high attenuation outside the pass band are ensured.
図1は、実施の形態1に係る弾性波フィルタ装置の回路構成図である。FIG. 1 is a circuit configuration diagram of the acoustic wave filter device according to the first embodiment. 図2は、実施の形態1に係る弾性波フィルタ装置の断面構造図である。FIG. 2 is a cross-sectional structure diagram of the acoustic wave filter device according to the first embodiment. 図3は、実施の形態1に係る弾性波フィルタ装置の実装基板を構成する各層の電極および配線レイアウトを示す平面図である。FIG. 3 is a plan view showing the electrode and wiring layout of each layer constituting the mounting substrate of the acoustic wave filter device according to the first embodiment. 図4Aは、実施の形態1に係る弾性波フィルタ装置の実装基板を構成する誘電体層の平面構成図である。4A is a plan configuration diagram of a dielectric layer constituting the mounting substrate of the acoustic wave filter device according to Embodiment 1. FIG. 図4Bは、実施の形態1に係る弾性波フィルタ装置の詳細な断面構造図である。4B is a detailed cross-sectional structure diagram of the acoustic wave filter device according to Embodiment 1. FIG. 図5Aは、実施の形態1の変形例1に係る弾性波フィルタ装置の実装基板を構成する誘電体層の平面構成図である。FIG. 5A is a plan configuration diagram of a dielectric layer constituting the mounting substrate of the acoustic wave filter device according to the first modification of the first embodiment. 図5Bは、実施の形態1の変形例1に係る弾性波フィルタ装置の詳細な断面構造図である。5B is a detailed cross-sectional structure diagram of an acoustic wave filter device according to Modification 1 of Embodiment 1. FIG. 図6は、比較例に係る弾性波フィルタ装置の回路構成図である。FIG. 6 is a circuit configuration diagram of an acoustic wave filter device according to a comparative example. 図7は、並列共振子に接続されたインダクタの寄生容量を変化させた場合の弾性波フィルタ装置の通過特性を比較したグラフである。FIG. 7 is a graph comparing the pass characteristics of the acoustic wave filter device when the parasitic capacitance of the inductor connected to the parallel resonator is changed. 図8Aは、実施の形態1の変形例2に係る弾性波フィルタ装置の実装基板を構成する誘電体層の平面構成図である。FIG. 8A is a plan configuration diagram of a dielectric layer constituting the mounting substrate of the acoustic wave filter device according to the second modification of the first embodiment. 図8Bは、実施の形態1の変形例2に係る弾性波フィルタ装置の詳細な断面構造図である。FIG. 8B is a detailed cross-sectional structure diagram of the acoustic wave filter device according to the second modification of the first embodiment. 図9Aは、実施の形態2に係る弾性波フィルタ装置の実装基板を構成する誘電体層の平面構成図である。FIG. 9A is a plan configuration diagram of a dielectric layer constituting the mounting substrate of the acoustic wave filter device according to the second embodiment. 図9Bは、実施の形態2に係る弾性波フィルタ装置の詳細な断面構造図である。FIG. 9B is a detailed cross-sectional structure diagram of the acoustic wave filter device according to the second embodiment.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態およびその変形例は、いずれも包括的または具体的な例を示すものである。以下の実施の形態およびその変形例で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは一例であり、本発明を限定する主旨ではない。以下の実施の形態およびその変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that each of the embodiments and modifications thereof described below is a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments and modifications thereof are merely examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments and modifications thereof, constituent elements not described in the independent claims are described as arbitrary constituent elements. In addition, the size or size ratio of the components shown in the drawings is not necessarily strict.
 (実施の形態1)
 [1.1 弾性波フィルタ装置の回路構成]
 図1は、実施の形態1に係る弾性波フィルタ装置1の回路構成図である。同図に示された弾性波フィルタ装置1は、送信用の弾性表面波(Surface Acoustic Wave、以下SAWと記す)フィルタ20と、受信用のSAWフィルタ30と、共通電極141と、送信入力電極142と、受信出力電極143とを有するデュプレクサである。
(Embodiment 1)
[1.1 Circuit configuration of acoustic wave filter device]
FIG. 1 is a circuit configuration diagram of an acoustic wave filter device 1 according to the first embodiment. The acoustic wave filter device 1 shown in the figure includes a surface acoustic wave (Surface Acoustic Wave) filter 20 for transmission, a SAW filter 30 for reception, a common electrode 141, and a transmission input electrode 142. And a reception output electrode 143.
 SAWフィルタ20は、ラダー型のバンドパスフィルタを構成しており、直列共振子201、202、203、204および205と、並列共振子251、252、253および254と、インダクタ124および125とを備える。直列共振子201~205は、圧電基板上に形成された櫛形電極を有し、当該圧電基板上に設けられた第1電極と第2電極との間に互いに直列に接続されている。また、並列共振子251~254は、圧電基板上に形成された櫛形電極を有し、直列共振子201~205の各接続点と上記圧電基板上に設けられた基準電極との間に互いに並列に接続されている。直列共振子201~205、並列共振子251~254、第1電極、第2電極、および基準電極は、送信用の弾性波フィルタ素子を構成する。 The SAW filter 20 forms a ladder-type bandpass filter, and includes series resonators 201, 202, 203, 204, and 205, parallel resonators 251, 252, 253, and 254, and inductors 124 and 125. . The series resonators 201 to 205 have comb-shaped electrodes formed on a piezoelectric substrate, and are connected in series with each other between a first electrode and a second electrode provided on the piezoelectric substrate. The parallel resonators 251 to 254 have comb-shaped electrodes formed on the piezoelectric substrate, and are parallel to each other between the connection points of the series resonators 201 to 205 and the reference electrode provided on the piezoelectric substrate. It is connected to the. The series resonators 201 to 205, the parallel resonators 251 to 254, the first electrode, the second electrode, and the reference electrode constitute an acoustic wave filter element for transmission.
 インダクタ124は、複数の並列共振子のうち1つの並列共振子254が接続された基準電極と接地電極140との間に直列に接続された、いわゆるラダーLである。インダクタ124が配置されることにより、ラダー型のSAWフィルタ20の通過帯域を広帯域化するとともに、所定の周波数帯域での減衰量を大きくすることが可能となる。 The inductor 124 is a so-called ladder L connected in series between the reference electrode to which one of the plurality of parallel resonators 254 is connected and the ground electrode 140. By disposing the inductor 124, it is possible to widen the pass band of the ladder-type SAW filter 20 and to increase the attenuation in a predetermined frequency band.
 インダクタ125は、複数の並列共振子のうち2つ以上の並列共振子251~253が接続された基準電極と接地電極140との間に直列に接続された、いわゆる有極Lである。インダクタ125が配置されることにより、ラダー型のSAWフィルタ20の通過帯域を広帯域化するとともに、所定の周波数帯域での減衰量を大きくすることが可能となる。 The inductor 125 is a so-called pole L connected in series between a reference electrode to which two or more parallel resonators 251 to 253 among a plurality of parallel resonators are connected and a ground electrode 140. By disposing the inductor 125, it is possible to widen the pass band of the ladder-type SAW filter 20 and to increase the attenuation in a predetermined frequency band.
 SAWフィルタ30は、ラダー型のバンドパスフィルタ、または、縦結合共振子型のバンドパスフィルタを構成している。なお、SAWフィルタ30の構成は、ラダー型および縦結合型には限定されない。 The SAW filter 30 constitutes a ladder type bandpass filter or a longitudinally coupled resonator type bandpass filter. The configuration of the SAW filter 30 is not limited to the ladder type and the vertical coupling type.
 上記回路構成により、弾性波フィルタ装置1は、送信入力電極142から入力された高周波送信信号を、所定の送信帯域でフィルタリングして共通電極141に接続されるアンテナ素子へ出力し、当該アンテナ素子から共通電極141を介して入力された高周波受信信号を、所定の受信帯域でフィルタリングして受信出力電極143から出力する。 With the above circuit configuration, the acoustic wave filter device 1 filters the high-frequency transmission signal input from the transmission input electrode 142 in a predetermined transmission band and outputs the filtered signal to the antenna element connected to the common electrode 141. The high frequency reception signal input through the common electrode 141 is filtered by a predetermined reception band and output from the reception output electrode 143.
 [1.2 弾性波フィルタ装置の全体構造]
 弾性波フィルタ装置1の構造について、図2および図3を用いて説明する。
[1.2 Overall structure of elastic wave filter device]
The structure of the acoustic wave filter device 1 will be described with reference to FIGS. 2 and 3.
 図2は、実施の形態1に係る弾性波フィルタ装置1の断面構造図である。図3は、実施の形態1に係る弾性波フィルタ装置1の実装基板10を構成する各層の電極および配線レイアウトを示す平面図である。なお、図2は、図3に記載されたII-II線で切断した断面図である。 FIG. 2 is a cross-sectional structure diagram of the acoustic wave filter device 1 according to the first embodiment. FIG. 3 is a plan view showing the electrode and wiring layout of each layer constituting the mounting substrate 10 of the acoustic wave filter device 1 according to the first embodiment. 2 is a cross-sectional view taken along line II-II shown in FIG.
 図2に示された弾性波フィルタ装置1は、実装基板10と、SAWフィルタ20と、SAWフィルタ30と、封止部材40とで構成されている。 The elastic wave filter device 1 shown in FIG. 2 includes a mounting substrate 10, a SAW filter 20, a SAW filter 30, and a sealing member 40.
 実装基板10は、誘電体層11、12および13と、これらの誘電体層の間に形成された各種電極とで構成されている。 The mounting substrate 10 is composed of dielectric layers 11, 12 and 13 and various electrodes formed between these dielectric layers.
 誘電体層11の表面には、図3に示すように、送信出力電極102、受信入力電極103、送信入力電極112、受信出力電極113、接続電極114および115、ならびに、基準電極110a、110b、110c、110d、110eおよび110fが形成されている。 On the surface of the dielectric layer 11, as shown in FIG. 3, a transmission output electrode 102, a reception input electrode 103, a transmission input electrode 112, a reception output electrode 113, connection electrodes 114 and 115, and reference electrodes 110a and 110b, 110c, 110d, 110e, and 110f are formed.
 送信出力電極102は、図1におけるSAWフィルタ20の送信出力端子であり、圧電基板上の第2電極と接続されている。受信入力電極103は、図1におけるSAWフィルタ30の受信入力端子である。 The transmission output electrode 102 is a transmission output terminal of the SAW filter 20 in FIG. 1, and is connected to the second electrode on the piezoelectric substrate. The reception input electrode 103 is a reception input terminal of the SAW filter 30 in FIG.
 送信入力電極112は、圧電基板上の第1電極に接続され、また、ビア導体および内部電極を介して送信入力電極142に接続されている。受信出力電極113は、ビア導体および内部電極を介して受信出力電極143に接続されている。 The transmission input electrode 112 is connected to the first electrode on the piezoelectric substrate, and is connected to the transmission input electrode 142 via a via conductor and an internal electrode. The reception output electrode 113 is connected to the reception output electrode 143 through a via conductor and an internal electrode.
 接続電極114は、図1におけるインダクタ124と並列共振子254との接続ノードであり、圧電基板上の基準電極に接続されている。また、接続電極115は、図1におけるインダクタ125と並列共振子251~253との接続ノードであり、圧電基板上の基準電極に接続されている。 The connection electrode 114 is a connection node between the inductor 124 and the parallel resonator 254 in FIG. 1 and is connected to a reference electrode on the piezoelectric substrate. The connection electrode 115 is a connection node between the inductor 125 and the parallel resonators 251 to 253 in FIG. 1, and is connected to a reference electrode on the piezoelectric substrate.
 基準電極110a~110fは、内部接地電極120、130およびビア導体を介して接地電極140に接続されている。 The reference electrodes 110a to 110f are connected to the ground electrode 140 through the internal ground electrodes 120 and 130 and via conductors.
 誘電体層12の表面には、図3に示すように、内部接地電極120、内部共通電極121、内部送信入力電極122、内部受信出力電極123、ならびにインダクタ124Aおよび125が形成されている。 On the surface of the dielectric layer 12, as shown in FIG. 3, an internal ground electrode 120, an internal common electrode 121, an internal transmission input electrode 122, an internal reception output electrode 123, and inductors 124A and 125 are formed.
 内部接地電極120は、ビア導体および内部電極を介して接地電極140に接続されている。内部共通電極121は、内部共通電極131およびビア導体を介して共通電極141に接続されている。内部送信入力電極122は、ビア導体および内部電極を介して送信入力電極142に接続され、内部受信出力電極123は、ビア導体および内部電極を介して受信出力電極143に接続されている。インダクタ124Aは、ビア導体を介して接続電極114およびインダクタ124Bに接続されている。インダクタ125は、ビア導体を介して接続電極115および接地電極140に接続されている。 The internal ground electrode 120 is connected to the ground electrode 140 through a via conductor and an internal electrode. The internal common electrode 121 is connected to the common electrode 141 through the internal common electrode 131 and the via conductor. The internal transmission input electrode 122 is connected to the transmission input electrode 142 via the via conductor and the internal electrode, and the internal reception output electrode 123 is connected to the reception output electrode 143 via the via conductor and the internal electrode. The inductor 124A is connected to the connection electrode 114 and the inductor 124B through a via conductor. The inductor 125 is connected to the connection electrode 115 and the ground electrode 140 through a via conductor.
 誘電体層13の表面には、図3に示すように、内部接地電極130、内部共通電極131、内部送信入力電極132、内部受信出力電極133、ならびにインダクタ124Bが形成されている。 As shown in FIG. 3, an internal ground electrode 130, an internal common electrode 131, an internal transmission input electrode 132, an internal reception output electrode 133, and an inductor 124B are formed on the surface of the dielectric layer 13.
 内部接地電極130は、ビア導体を介して接地電極140に接続されている。内部送信入力電極132は、ビア導体を介して送信入力電極142に接続され、内部受信出力電極133は、ビア導体を介して受信出力電極143に接続され、内部共通電極131は、ビア導体を介して共通電極141に接続されている。インダクタ124Bは、ビア導体を介してインダクタ124Aおよび接地電極140に接続されている。インダクタ124Aとインダクタ124Bとは、インダクタ124を構成している。インダクタ124Aは、誘電体層11に形成された平面コイルパターンであり、インダクタ124Bは、誘電体層12に形成された平面コイルパターンであり、これらがビア導体により接続されることにより、誘電体層の積層方向を巻回軸としたスパイラル状のインダクタ124が形成されている。 The internal ground electrode 130 is connected to the ground electrode 140 through a via conductor. The internal transmission input electrode 132 is connected to the transmission input electrode 142 via the via conductor, the internal reception output electrode 133 is connected to the reception output electrode 143 via the via conductor, and the internal common electrode 131 is connected via the via conductor. Are connected to the common electrode 141. Inductor 124B is connected to inductor 124A and ground electrode 140 via a via conductor. The inductor 124A and the inductor 124B constitute an inductor 124. The inductor 124A is a planar coil pattern formed on the dielectric layer 11, and the inductor 124B is a planar coil pattern formed on the dielectric layer 12, and these are connected by a via conductor, whereby the dielectric layer A spiral inductor 124 having the winding direction as the winding axis is formed.
 誘電体層13の裏面には、図3に示すように、接地電極140、共通電極141、送信入力電極142、および受信出力電極143が形成されている。 As shown in FIG. 3, a ground electrode 140, a common electrode 141, a transmission input electrode 142, and a reception output electrode 143 are formed on the back surface of the dielectric layer 13.
 接地電極140は、実装基板10の一方主面に配置されている。 The ground electrode 140 is disposed on one main surface of the mounting substrate 10.
 送信入力電極142は、実装基板10の一方主面に配置され、内部送信入力電極132および122、送信入力電極112、ならびに、圧電基板上の第1電極に接続された第1外部接続電極である。 The transmission input electrode 142 is a first external connection electrode arranged on one main surface of the mounting substrate 10 and connected to the internal transmission input electrodes 132 and 122, the transmission input electrode 112, and the first electrode on the piezoelectric substrate. .
 共通電極141は、実装基板10の一方主面に配置され、内部共通電極131および121、送信出力電極102、受信入力電極103、ならびに圧電基板上の第2電極に接続された第2外部接続電極である。 The common electrode 141 is disposed on one main surface of the mounting substrate 10 and is connected to the internal common electrodes 131 and 121, the transmission output electrode 102, the reception input electrode 103, and the second electrode on the piezoelectric substrate. It is.
 受信出力電極143は、実装基板10の一方主面に配置され、内部受信出力電極133および123、受信出力電極113に接続されている。 The reception output electrode 143 is disposed on one main surface of the mounting substrate 10 and is connected to the internal reception output electrodes 133 and 123 and the reception output electrode 113.
 SAWフィルタ20および30は、誘電体層11の表面に形成された送信出力電極102、受信入力電極103、送信入力電極112、受信出力電極113、接続電極114および115、ならびに、基準電極110a~110fに、フリップチップ実装されている。 The SAW filters 20 and 30 include a transmission output electrode 102, a reception input electrode 103, a transmission input electrode 112, a reception output electrode 113, connection electrodes 114 and 115, and reference electrodes 110a to 110f formed on the surface of the dielectric layer 11. In addition, it is flip-chip mounted.
 封止部材40は、実装基板10の表面に接し、SAWフィルタ20および30を覆う機能を有している。封止部材40は、例えば、例えば、エポキシ樹脂などの樹脂からなる。なお、封止部材40は、必須の構成要素ではなくなくてもよい。 The sealing member 40 has a function of contacting the surface of the mounting substrate 10 and covering the SAW filters 20 and 30. The sealing member 40 is made of, for example, a resin such as an epoxy resin. Note that the sealing member 40 may not be an essential component.
 また、弾性波フィルタ装置1は、SAWフィルタ30を備えていなくてもよく、この場合には、SAWフィルタ20は、送信用フィルタであっても受信用フィルタであってもよい。 Further, the elastic wave filter device 1 may not include the SAW filter 30. In this case, the SAW filter 20 may be a transmission filter or a reception filter.
 [1.3 実装基板の構造]
 次に、本実施の形態に係る弾性波フィルタ装置の特徴的な構成要素である実装基板10の構造について説明する。
[1.3 Mounting board structure]
Next, the structure of the mounting substrate 10 that is a characteristic component of the acoustic wave filter device according to the present embodiment will be described.
 図4Aは、実施の形態1に係る弾性波フィルタ装置1の実装基板10を構成する誘電体層12の平面構成図である。また、図4Bは、実施の形態1に係る弾性波フィルタ装置1の詳細な断面構造図である。 FIG. 4A is a plan configuration diagram of the dielectric layer 12 constituting the mounting substrate 10 of the acoustic wave filter device 1 according to the first embodiment. FIG. 4B is a detailed cross-sectional structure diagram of elastic wave filter device 1 according to Embodiment 1.
 図4Aおよび図4Bに示すように、誘電体層11~13は、実装基板10の基板本体である第1誘電体部10Aを構成している。第1誘電体部10Aは、例えば、アルミナを主成分とする誘電体材料で構成され、この場合、第1誘電体部10Aの比誘電率ε10は、8.5である。これに対して、実装基板10の誘電体層12において、インダクタ124Bを構成する導体配線と接するように、第2誘電体部12Bが形成されている。言い換えると、インダクタ124Bを構成する導体配線の間には、第2誘電体部12Bが形成されている。第2誘電体部12Bは、例えば、二酸化ケイ素を主成分とする誘電体材料で構成され、この場合、第2誘電体部12Bの比誘電率ε12Bは、3.8である。つまり、第2誘電体部12Bの比誘電率ε12Bは、第1誘電体部10Aの比誘電率ε10よりも低い。 As shown in FIGS. 4A and 4B, the dielectric layers 11 to 13 constitute a first dielectric portion 10A that is a substrate body of the mounting substrate 10. The first dielectric portion 10A, for example, formed of a dielectric material containing alumina as a main component, in this case, the relative dielectric constant epsilon 10 of the first dielectric portion 10A, which is 8.5. On the other hand, the second dielectric portion 12B is formed in the dielectric layer 12 of the mounting substrate 10 so as to be in contact with the conductor wiring constituting the inductor 124B. In other words, the second dielectric portion 12B is formed between the conductor wires constituting the inductor 124B. The second dielectric portion 12B is made of, for example, a dielectric material mainly composed of silicon dioxide. In this case, the relative dielectric constant ε 12B of the second dielectric portion 12B is 3.8. That is, the relative dielectric constant ε 12B of the second dielectric portion 12B is lower than the relative dielectric constant ε 10 of the first dielectric portion 10A.
 弾性波フィルタの通過帯域外の高周波側(例えば、高調波帯)に減衰極を確保するためには、図1に示すように、並列共振子と接地電極との間に、インダクタを配置する手法が用いられる。この場合、実装基板10の比誘電率が高いほど小型化に有利である反面、実装基板10に内装されたインダクタの寄生容量が大きくなり、上記高周波側における所望の減衰量が得られないことが想定される。 In order to secure an attenuation pole on the high frequency side (for example, harmonic band) outside the pass band of the acoustic wave filter, as shown in FIG. 1, a method of arranging an inductor between the parallel resonator and the ground electrode Is used. In this case, the higher the relative dielectric constant of the mounting substrate 10 is, the more advantageous it is for downsizing, but the parasitic capacitance of the inductor built in the mounting substrate 10 increases, and the desired attenuation on the high frequency side cannot be obtained. is assumed.
 これに対して、図4Aおよび図4Bに示された本実施の形態に係る実装基板10の構成によれば、減衰極を確保するためのインダクタ124Bを構成する導体配線間の比誘電率ε12Bが、実装基板10の基板本体の比誘電率ε10よりも部分的に低くなっている。よって、インダクタ124Bの寄生容量を小さくできるので、弾性波フィルタ装置1の送信用のSAWフィルタ20における通過帯域内の低挿入損失を確保しつつ、通過帯域外の高周波側(例えば、高調波帯)の減衰量を大きくすることが可能となる。 On the other hand, according to the configuration of the mounting substrate 10 according to the present embodiment shown in FIGS. 4A and 4B, the relative dielectric constant ε 12B between the conductor wirings constituting the inductor 124B for securing the attenuation pole. but which is partially lower than the substrate relative permittivity epsilon 10 of the main body of the mounting substrate 10. Therefore, since the parasitic capacitance of the inductor 124B can be reduced, a low insertion loss in the pass band in the transmission SAW filter 20 of the acoustic wave filter device 1 is ensured, and a high frequency side (for example, a harmonic band) outside the pass band is ensured. It is possible to increase the amount of attenuation.
 なお、上記実施の形態では、インダクタ124のうちインダクタ124Bを構成する導体配線と接するように第2誘電体部12Bを配置したが、インダクタ124Aを構成する導体配線と接するように第2誘電体部を配置してもよい。 In the above embodiment, the second dielectric portion 12B is disposed so as to be in contact with the conductor wiring that constitutes the inductor 124B of the inductor 124, but the second dielectric portion is in contact with the conductor wiring that constitutes the inductor 124A. May be arranged.
 図5Aは、実施の形態1の変形例1に係る弾性波フィルタ装置1Aの実装基板10を構成する誘電体層11の平面構成図である。また、図5Bは、実施の形態1の変形例1に係る弾性波フィルタ装置1Aの詳細な断面構造図である。 FIG. 5A is a plan configuration diagram of the dielectric layer 11 constituting the mounting substrate 10 of the acoustic wave filter device 1A according to the first modification of the first embodiment. 5B is a detailed cross-sectional structure diagram of an elastic wave filter device 1A according to Modification 1 of Embodiment 1. FIG.
 図5Aおよび図5Bに示すように、誘電体層11~13は、実装基板10の基板本体である第1誘電体部10Aを構成している。第1誘電体部10Aは、例えば、アルミナを主成分とする誘電体材料で構成され、この場合、第1誘電体部10Aの比誘電率ε10は、8.5である。これに対して、実装基板10の誘電体層11において、インダクタ124Aを構成する導体配線と接するように、第2誘電体部11Bが形成されている。言い換えると、インダクタ124Aを構成する導体配線の間には、第2誘電体部11Bが形成されている。第2誘電体部11Bは、例えば、二酸化ケイ素を主成分とする誘電体材料で構成され、この場合、第2誘電体部11Bの比誘電率ε11Bは、3.8である。つまり、第2誘電体部11Bの比誘電率ε11Bは、第1誘電体部10Aの比誘電率ε10よりも低い。 As shown in FIGS. 5A and 5B, the dielectric layers 11 to 13 constitute a first dielectric portion 10A that is a substrate body of the mounting substrate 10. The first dielectric portion 10A, for example, formed of a dielectric material containing alumina as a main component, in this case, the relative dielectric constant epsilon 10 of the first dielectric portion 10A, which is 8.5. On the other hand, the second dielectric portion 11B is formed in the dielectric layer 11 of the mounting substrate 10 so as to be in contact with the conductor wiring constituting the inductor 124A. In other words, the second dielectric portion 11B is formed between the conductor wires constituting the inductor 124A. The second dielectric part 11B is made of, for example, a dielectric material mainly composed of silicon dioxide. In this case, the relative dielectric constant ε 11B of the second dielectric part 11B is 3.8. That is, the relative dielectric constant ε 11B of the second dielectric portion 11B is lower than the relative dielectric constant ε 10 of the first dielectric portion 10A.
 これにより、減衰極を確保するためのインダクタ124Aを構成する導体配線間の比誘電率ε11Bが、実装基板10の基板本体の比誘電率ε10よりも部分的に低くなっている。よって、インダクタ124Aの寄生容量を小さくできるので、弾性波フィルタ装置1Aの送信用のSAWフィルタ20における通過帯域内の低挿入損失を確保しつつ、通過帯域外の高周波側の減衰量を大きくすることが可能となる。 As a result, the relative dielectric constant ε 11B between the conductor wirings constituting the inductor 124 A for securing the attenuation pole is partially lower than the relative dielectric constant ε 10 of the substrate body of the mounting substrate 10. Therefore, since the parasitic capacitance of the inductor 124A can be reduced, the attenuation on the high frequency side outside the pass band is increased while ensuring the low insertion loss in the pass band in the SAW filter 20 for transmission of the acoustic wave filter device 1A. Is possible.
 なお、インダクタ124Aおよび124Bの双方に、第2誘電体部が形成されていてもよい。この場合には、インダクタ124の寄生容量をより小さくできるので、弾性波フィルタ装置の送信用のSAWフィルタ20における通過帯域外の高周波側の減衰量をより大きくすることが可能となる。 Note that a second dielectric portion may be formed on both inductors 124A and 124B. In this case, since the parasitic capacitance of the inductor 124 can be further reduced, the attenuation amount on the high frequency side outside the pass band in the SAW filter 20 for transmission of the acoustic wave filter device can be further increased.
 また、本実施の形態に係る実装基板10では、いわゆるラダーLを構成するインダクタ124が、インダクタ124Aおよび124Bの2層のコイルパターンからなる構成を例示したが、インダクタ124は1層のコイルパターンからなる構成であってもよい。 Further, in the mounting substrate 10 according to the present embodiment, the configuration in which the inductor 124 constituting the so-called ladder L is composed of the two-layer coil pattern of the inductors 124A and 124B is illustrated. However, the inductor 124 is based on the one-layer coil pattern. The structure which becomes may be sufficient.
 また、本実施の形態に係る実装基板10では、いわゆるラダーLを構成するインダクタ124に第2誘電体部を形成した構成を示したが、いわゆる有極Lを構成するインダクタ125を構成する導体配線と接するように、第2誘電体部を形成してもよい。この場合には、インダクタ125の寄生容量を小さくできるので、弾性波フィルタ装置の送信用のSAWフィルタ20における通過帯域内の低挿入損失を確保しつつ、通過帯域外の高周波側の減衰量を大きくすることが可能となる。 Further, in the mounting substrate 10 according to the present embodiment, the configuration in which the second dielectric portion is formed in the inductor 124 that constitutes the so-called ladder L is shown, but the conductor wiring that constitutes the inductor 125 that constitutes the so-called pole L The second dielectric portion may be formed so as to be in contact with. In this case, since the parasitic capacitance of the inductor 125 can be reduced, the attenuation on the high frequency side outside the pass band is increased while ensuring low insertion loss in the pass band in the SAW filter 20 for transmission of the acoustic wave filter device. It becomes possible to do.
 [1.4 作用効果]
 図6は、比較例に係る弾性波フィルタ装置の回路構成図である。同図には、比較例に係る弾性波フィルタ装置のうち、送信側のSAWフィルタ520の回路構成が示されている。
[1.4 Effects]
FIG. 6 is a circuit configuration diagram of an acoustic wave filter device according to a comparative example. This figure shows the circuit configuration of the SAW filter 520 on the transmission side in the acoustic wave filter device according to the comparative example.
 同図に示されたSAWフィルタ520は、実施の形態1に係るSAWフィルタ20と比較して、インダクタ124に、容量535が並列接続されている点のみが回路構成として異なる。インダクタ124は、誘電体層に内装されているので、当該誘電体層の比誘電率に応じて寄生容量が発生する。この寄生容量が、図6における容量535に相当する。 The SAW filter 520 shown in the figure is different from the SAW filter 20 according to the first embodiment only in that the capacitor 535 is connected in parallel to the inductor 124 as a circuit configuration. Since the inductor 124 is built in the dielectric layer, parasitic capacitance is generated according to the relative dielectric constant of the dielectric layer. This parasitic capacitance corresponds to the capacitance 535 in FIG.
 図7は、並列共振子254に接続されたインダクタ124の容量535の容量値Cを変化させた場合のSAWフィルタの通過特性を比較したグラフである。同図に示すように、容量535の容量値Cを変化させても、通過帯域内の挿入損失にはほぼ変化が見られないが、容量値Cを2.0pFから0pFへと減少させていくにつれ、通過帯域近傍の高周波側の帯域(1.8GHz~2.4GHz)において減衰量が大きくなっていくことが解る。 Figure 7 is a graph comparing the pass characteristic of the SAW filter in the case of changing the capacitance value C B of the capacitor 535 of the inductor 124 connected to the parallel resonators 254. As shown in the figure, by changing the capacitance value C B of the capacitor 535, but the insertion loss in the pass band does not substantially change is observed, decreased to 0pF the capacitance value C B from 2.0pF It can be seen that the amount of attenuation increases in the high frequency band (1.8 GHz to 2.4 GHz) in the vicinity of the pass band as it goes on.
 本実施の形態に係る実装基板10に内装されたインダクタ124のように、インダクタ124を構成する導体配線と接するように、基板本体よりも低誘電率を有する第2誘電体部が形成されることにより、容量535の容量値Cをゼロに近づける(図7の実線)ことが可能となる。この結果、通過帯域内の低挿入損失を維持しつつ、通過帯域近傍の高周波側の帯域(1.8GHz~2.4GHz)における減衰量を大きくすることが可能となる。 Like the inductor 124 embedded in the mounting substrate 10 according to the present embodiment, the second dielectric part having a lower dielectric constant than the substrate body is formed so as to be in contact with the conductor wiring constituting the inductor 124. Accordingly, it is possible close the capacitance C B of the capacitor 535 to zero (the solid line in FIG. 7). As a result, it is possible to increase the attenuation in the high frequency band (1.8 GHz to 2.4 GHz) near the pass band while maintaining a low insertion loss in the pass band.
 [1.5 変形例2に係る実装基板の構造]
 なお、上述した寄生容量の容量値Cと通過帯域外の減衰量との関係によれば、より簡素化された構造でインダクタ124の寄生容量の容量値Cを効果的に低減することが望まれる。
[1.5 Structure of Mounting Board According to Modification 2]
Incidentally, according to the relationship between the capacitance value C B and outside the pass band attenuation of the parasitic capacitance described above, it is possible to effectively reduce the capacitance value C B of the parasitic capacitance of the inductor 124 in a more simplified structure desired.
 図8Aは、実施の形態1の変形例2に係る弾性波フィルタ装置1Bの実装基板10を構成する誘電体層12の平面構成図である。また、図8Bは、実施の形態1の変形例2に係る弾性波フィルタ装置1Bの詳細な断面構造図である。本変形例に係る弾性波フィルタ装置1Bは、実施の形態1に係る弾性波フィルタ装置1と比較して、第2誘電体部の配置構成が異なる。以下、本変形例に係る弾性波フィルタ装置1Bについて、実施の形態1に係る弾性波フィルタ装置1と同じ構成については説明を省略し、異なる構成を中心に説明する。 FIG. 8A is a plan configuration diagram of the dielectric layer 12 constituting the mounting substrate 10 of the acoustic wave filter device 1B according to the second modification of the first embodiment. FIG. 8B is a detailed cross-sectional structure diagram of an acoustic wave filter device 1B according to Modification 2 of Embodiment 1. The elastic wave filter device 1B according to this modification is different from the elastic wave filter device 1 according to the first embodiment in the arrangement configuration of the second dielectric portion. Hereinafter, regarding the elastic wave filter device 1B according to the present modification, the description of the same configuration as that of the elastic wave filter device 1 according to Embodiment 1 will be omitted, and a description will be given focusing on different configurations.
 図8Aおよび図8Bに示すように、誘電体層11~13は、実装基板10の基板本体である第1誘電体部10Aを構成している。第1誘電体部10Aは、例えば、アルミナを主成分とする誘電体材料で構成され、この場合、第1誘電体部10Aの比誘電率ε10は、8.5である。これに対して、実装基板10の誘電体層12において、インダクタ124Bを構成する導体配線の間には、第2誘電体部11Cが形成されている。 As shown in FIGS. 8A and 8B, the dielectric layers 11 to 13 constitute a first dielectric portion 10A that is a substrate body of the mounting substrate 10. The first dielectric portion 10A, for example, formed of a dielectric material containing alumina as a main component, in this case, the relative dielectric constant epsilon 10 of the first dielectric portion 10A, which is 8.5. On the other hand, in the dielectric layer 12 of the mounting substrate 10, the second dielectric portion 11C is formed between the conductor wirings constituting the inductor 124B.
 図8Aに示すように、インダクタ124Bを構成する導体配線は、第1配線124B1と、第1配線124B1の外周に配置された第2配線124B2とで形成された渦巻き状の平面コイルを構成している。ここで、第2誘電体部11Cは、第1配線124B1と第2配線124B2との間であって第1配線124B1および第2配線124B2の間隔が最小となる領域に形成されている。第2誘電体部11Cは、例えば、二酸化ケイ素を主成分とする誘電体材料で構成され、この場合、第2誘電体部11Cの比誘電率ε11Cは、3.8である。つまり、第2誘電体部11Cの比誘電率ε11Cは、第1誘電体部10Aの比誘電率ε10よりも低い。 As shown in FIG. 8A, the conductor wiring constituting the inductor 124B constitutes a spiral planar coil formed by the first wiring 124B1 and the second wiring 124B2 arranged on the outer periphery of the first wiring 124B1. Yes. Here, the second dielectric portion 11C is formed in a region between the first wiring 124B1 and the second wiring 124B2 and in which the interval between the first wiring 124B1 and the second wiring 124B2 is minimized. The second dielectric part 11C is made of, for example, a dielectric material mainly composed of silicon dioxide. In this case, the relative dielectric constant ε 11C of the second dielectric part 11C is 3.8. That is, the relative dielectric constant ε 11C of the second dielectric portion 11C is lower than the relative dielectric constant ε 10 of the first dielectric portion 10A.
 上記構成によれば、インダクタ124Bの寄生容量の容量値を最も大きくさせる要因となる領域に第2誘電体部11Cが配置されるので、第2誘電体部11Cの配置領域を必要最小限に縮小でき、実装基板10の構成を簡素化できる。よって、製造工程を簡素化しつつSAWフィルタ20の通過帯域外の高周波側の減衰量を効果的に大きくすることが可能となる。 According to the above configuration, the second dielectric portion 11C is disposed in a region that causes the capacitance value of the parasitic capacitance of the inductor 124B to be maximized. Therefore, the region where the second dielectric portion 11C is disposed is reduced to a necessary minimum. In addition, the configuration of the mounting substrate 10 can be simplified. Therefore, it is possible to effectively increase the amount of attenuation on the high frequency side outside the pass band of the SAW filter 20 while simplifying the manufacturing process.
 (実施の形態2)
 実施の形態1では、インダクタを構成する導体配線の間であって誘電体層と平面な方向に高誘電率の第2誘電体部を形成する構成について示したが、本実施の形態では、インダクタを構成する導体配線の間であって積層方向に対向する導体配線の間に高誘電率の第2誘電体部を形成する構成について説明する。
(Embodiment 2)
In the first embodiment, the configuration in which the second dielectric portion having a high dielectric constant is formed between the conductor wirings constituting the inductor and in a direction parallel to the dielectric layer is described. A configuration in which the second dielectric portion having a high dielectric constant is formed between the conductor wirings constituting the conductors and between the conductor wirings opposed in the stacking direction will be described.
 図9Aは、実施の形態2に係る弾性波フィルタ装置1Cの実装基板10を構成する誘電体層12および13の平面構成図である。また、図9Bは、実施の形態2に係る弾性波フィルタ装置1Cの詳細な断面構造図である。本実施の形態に係る弾性波フィルタ装置1Cは、実施の形態1に係る弾性波フィルタ装置1と比較して、第2誘電体部の配置構成が異なる。以下、本実施の形態に係る弾性波フィルタ装置1Cについて、実施の形態1に係る弾性波フィルタ装置1と同じ構成については説明を省略し、異なる構成を中心に説明する。 FIG. 9A is a plan configuration diagram of the dielectric layers 12 and 13 constituting the mounting substrate 10 of the elastic wave filter device 1C according to the second embodiment. FIG. 9B is a detailed cross-sectional structure diagram of an elastic wave filter device 1C according to Embodiment 2. The elastic wave filter device 1C according to the present embodiment is different from the elastic wave filter device 1 according to the first embodiment in the arrangement configuration of the second dielectric portion. Hereinafter, for the elastic wave filter device 1C according to the present embodiment, the description of the same configuration as that of the elastic wave filter device 1 according to the first embodiment will be omitted, and a description will be given focusing on different configurations.
 図9Aおよび図9Bに示すように、誘電体層11~13は、実装基板10の基板本体である第1誘電体部10Aを構成している。第1誘電体部10Aは、例えば、アルミナを主成分とする誘電体材料で構成され、この場合、第1誘電体部10Aの比誘電率ε10は、8.5である。これに対して、実装基板10の誘電体層12において、インダクタ124Aおよび124Bの間には、第2誘電体部12Aが形成されている。 As shown in FIGS. 9A and 9B, the dielectric layers 11 to 13 constitute a first dielectric portion 10A that is a substrate body of the mounting substrate 10. The first dielectric portion 10A, for example, formed of a dielectric material containing alumina as a main component, in this case, the relative dielectric constant epsilon 10 of the first dielectric portion 10A, which is 8.5. On the other hand, in the dielectric layer 12 of the mounting substrate 10, the second dielectric portion 12A is formed between the inductors 124A and 124B.
 弾性波フィルタ装置1Cの低背化を促進させるには、実装基板10の各誘電体層を薄くすることが要求される。各誘電体層を薄くするほど、インダクタ124Aおよび124Bの間隔は、インダクタ124Aおよび124Bの同一層内に形成された第1配線および第2配線の間隔よりも小さくなり、インダクタ124Aと124Bとの結合容量は大きくなる。この観点から、第2誘電体部12Aは、上記結合容量を低減すべくインダクタ124を形成する誘電体層12および13の間に形成されている。 In order to promote the reduction of the height of the elastic wave filter device 1C, it is required to make each dielectric layer of the mounting substrate 10 thin. As each dielectric layer is made thinner, the distance between the inductors 124A and 124B becomes smaller than the distance between the first wiring and the second wiring formed in the same layer of the inductors 124A and 124B, and the coupling between the inductors 124A and 124B is reduced. Capacity increases. From this point of view, the second dielectric portion 12A is formed between the dielectric layers 12 and 13 that form the inductor 124 in order to reduce the coupling capacitance.
 第2誘電体部12Aは、例えば、二酸化ケイ素を主成分とする誘電体材料で構成され、この場合、第2誘電体部12Aの比誘電率ε12Aは、3.8である。つまり、第2誘電体部12Aの比誘電率ε12Aは、第1誘電体部10Aの比誘電率ε10よりも低い。 The second dielectric portion 12A is made of, for example, a dielectric material mainly composed of silicon dioxide. In this case, the relative dielectric constant ε 12A of the second dielectric portion 12A is 3.8. That is, the relative dielectric constant ε 12A of the second dielectric portion 12A is lower than the relative dielectric constant ε 10 of the first dielectric portion 10A.
 上記構成によれば、インダクタ124の寄生容量の容量値を大きくさせる要因となる層間領域に第2誘電体部12Aが配置されるので、容量結合の強い層間における寄生容量を大幅に低減できる。よって、SAWフィルタ20の通過帯域外の高周波側の減衰量を大幅に確保することが可能となる。 According to the above configuration, since the second dielectric portion 12A is disposed in the interlayer region that causes the capacitance value of the parasitic capacitance of the inductor 124 to increase, the parasitic capacitance between layers having strong capacitive coupling can be greatly reduced. Therefore, it is possible to largely secure the attenuation amount on the high frequency side outside the pass band of the SAW filter 20.
 なお、第2誘電体部12Aは、空気で構成されていてもよい。容量結合の強い誘電体層を空気で構成された中空構造とすることにより、第2誘電体部12Aの比誘電率(εr=1.0)を最低とすることができるので、寄生容量を大幅に低減できる。よって、弾性波フィルタの通過帯域外の高周波側の減衰量を大幅に確保することが可能となる。 The second dielectric part 12A may be composed of air. Since the dielectric layer having strong capacitive coupling has a hollow structure made of air, the relative dielectric constant (εr = 1.0) of the second dielectric portion 12A can be minimized, greatly increasing the parasitic capacitance. Can be reduced. Therefore, it is possible to greatly ensure the amount of attenuation on the high frequency side outside the pass band of the elastic wave filter.
 (その他の実施の形態など)
 以上、本発明の実施の形態に係る弾性波フィルタ装置について、実施の形態1~2を挙げて説明したが、本発明の高周波モジュールは、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示の弾性波フィルタ装置を内蔵した各種機器も本発明に含まれる。
(Other embodiments, etc.)
As described above, the elastic wave filter device according to the embodiment of the present invention has been described with reference to the first and second embodiments. However, the high-frequency module of the present invention is not limited to the above-described embodiment. Another embodiment realized by combining arbitrary constituent elements in the above-described embodiment, and modifications obtained by applying various modifications conceivable by those skilled in the art to the above-described embodiment without departing from the gist of the present invention. Examples and various devices incorporating the elastic wave filter device of the present disclosure are also included in the present invention.
 また、上記実施の形態に係る弾性波フィルタ装置において、図面に開示された各回路素子および信号経路を接続する経路の間に別の回路素子および配線などが挿入されていてもよい。 Further, in the acoustic wave filter device according to the above embodiment, other circuit elements and wirings may be inserted between the circuit elements disclosed in the drawings and the paths connecting the signal paths.
 また、上記実施の形態では、いわゆるラダーLおよび有極Lを構成するインダクタ124および125として、実装基板の積層方向に巻回軸を有するスパイラル状のコイルを例示したが、これに限定されない。上記インダクタは、ミアンダ形状または直線形状などの導体配線で形成されていてもよい。 In the above embodiment, the inductors 124 and 125 constituting the so-called ladder L and the pole L are exemplified as spiral coils having a winding axis in the stacking direction of the mounting substrate, but are not limited thereto. The inductor may be formed of a conductor wiring having a meander shape or a straight shape.
 また、実装基板10は、複数の誘電体層からなる多層基板としたが、実装基板10は単一層からなる基板であってもよい。 Further, although the mounting substrate 10 is a multilayer substrate composed of a plurality of dielectric layers, the mounting substrate 10 may be a substrate composed of a single layer.
 また、本発明は、上記実施の形態に開示された弾性波フィルタ装置だけでなく、上記実施の形態に記載の弾性波フィルタ装置1、1A、1Bおよび1Cのいずれかと、第1電極または第2電極に接続されたフィルタ素子とを備えたマルチプレクサであってもよい。ここで、上記弾性波フィルタ素子と上記インダクタとは、送信用フィルタおよび受信用フィルタの一方であり、上記フィルタ素子は、送信用フィルタおよび受信用フィルタの他方である。 Further, the present invention is not limited to the elastic wave filter device disclosed in the above embodiment, but any one of the elastic wave filter devices 1, 1A, 1B and 1C described in the above embodiment, and the first electrode or the second electrode. The multiplexer may include a filter element connected to the electrode. Here, the acoustic wave filter element and the inductor are one of a transmission filter and a reception filter, and the filter element is the other of the transmission filter and the reception filter.
 これにより、送信用フィルタおよび受信用フィルタの少なくとも一方において、減衰極を確保するためのインダクタを構成する導体配線の周囲(に接する部分)の比誘電率が、当該インダクタを内装する実装基板本体の比誘電率よりも部分的に低くなっている。よって、インダクタの寄生容量を小さくできるので、例えば、相手方の通過帯域の減衰量を大きくすることが可能となる。 As a result, in at least one of the transmission filter and the reception filter, the relative dielectric constant around the conductor wiring constituting the inductor for securing the attenuation pole is such that the mounting substrate body that houses the inductor It is partially lower than the relative dielectric constant. Therefore, since the parasitic capacitance of the inductor can be reduced, for example, it is possible to increase the attenuation amount of the other party's passband.
 また、実施の形態1および2に係る弾性波フィルタ装置が有するフィルタは、SAWフィルタでなくてもよく、弾性境界波やBAW(Bulk Acoustic Wave)を用いた弾性波フィルタであってもよい。 The filter included in the elastic wave filter device according to the first and second embodiments may not be a SAW filter, but may be an elastic wave filter using an elastic boundary wave or a BAW (Bulk Acoustic Wave).
 また、上記実施の形態では、ラダーLまたは有極Lを構成するインダクタは、圧電基板とは別体である実装基板10に内装される態様を示したが、当該インダクタは圧電基板に形成されていてもよい。この場合には、圧電基板が実装基板を兼用する構成となり、圧電基板本体と比誘電率が異なる第2誘電体部が圧電基板内に配置される。このような構成は、例えば、WLP(Wafer Level Package)構造などにおいて適用されることが可能である。 Moreover, in the said embodiment, although the inductor which comprises the ladder L or the pole L showed the aspect equipped with the mounting board | substrate 10 different from a piezoelectric substrate, the said inductor was formed in the piezoelectric substrate. May be. In this case, the piezoelectric substrate also serves as a mounting substrate, and the second dielectric part having a relative dielectric constant different from that of the piezoelectric substrate body is disposed in the piezoelectric substrate. Such a configuration can be applied to, for example, a WLP (Wafer Level Package) structure.
 本発明は、マルチバンド/マルチモード対応のフロントエンド部に配置される電力増幅モジュールとして、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication devices such as mobile phones as a power amplification module disposed in a multiband / multimode-compatible front-end unit.
 1、1A、1B、1C  弾性波フィルタ装置
 10  実装基板
 10A  第1誘電体部
 11、12、13  誘電体層
 11B、11C、12A、12B  第2誘電体部
 20、30  SAWフィルタ
 40  封止部材
 102  送信出力電極
 103  受信入力電極
 110a、110b、110c、110d、110e、110f  基準電極
 112、142  送信入力電極
 113、143  受信出力電極
 114、115  接続電極
 120、130  内部接地電極
 121、131  内部共通電極
 122、132  内部送信入力電極
 123、133  内部受信出力電極
 124、124A、124B、125  インダクタ
 124B1  第1配線
 124B2  第2配線
 140  接地電極
 141  共通電極
 201、202、203、204、205  直列共振子
 251、252、253、254  並列共振子
 535  容量
DESCRIPTION OF SYMBOLS 1, 1A, 1B, 1C Elastic wave filter apparatus 10 Mounting board 10A 1st dielectric part 11, 12, 13 Dielectric layer 11B, 11C, 12A, 12B 2nd dielectric part 20, 30 SAW filter 40 Sealing member 102 Transmission output electrode 103 Reception input electrode 110a, 110b, 110c, 110d, 110e, 110f Reference electrode 112, 142 Transmission input electrode 113, 143 Reception output electrode 114, 115 Connection electrode 120, 130 Internal ground electrode 121, 131 Internal common electrode 122 132 Internal transmission input electrode 123, 133 Internal reception output electrode 124, 124A, 124B, 125 Inductor 124B1 First wiring 124B2 Second wiring 140 Ground electrode 141 Common electrode 201, 202, 203, 204, 205 Series resonator 251 252,253,254 parallel resonators 535 capacity

Claims (8)

  1.  弾性波フィルタ素子と、当該弾性波フィルタ素子が実装された実装基板とを備えた弾性波フィルタ装置であって、
     前記弾性波フィルタ素子は、
     第1電極、第2電極および基準電極と、
     前記第1電極と前記第2電極との間に接続された直列共振子と、
     前記第1電極から前記第2電極までの接続経路と前記基準電極との間に接続された並列共振子と、を備え、
     前記実装基板は、
     前記実装基板の一方主面に配置され、前記第1電極に接続された第1外部接続電極と、
     前記実装基板の一方主面に配置され、前記第2電極に接続された第2外部接続電極と、
     前記実装基板の一方主面に配置された接地電極と、
     前記基準電極と前記接地電極との間に接続され、前記実装基板に内装された導体配線で形成されたインダクタと、
     前記実装基板の基板本体を構成する第1誘電体部と、
     前記導体配線と接するように配置された第2誘電体部と、を備え、
     前記第2誘電体部の比誘電率は、前記第1誘電体部の比誘電率よりも低い、
     弾性波フィルタ装置。
    An acoustic wave filter device comprising an acoustic wave filter element and a mounting substrate on which the acoustic wave filter element is mounted,
    The acoustic wave filter element is
    A first electrode, a second electrode and a reference electrode;
    A series resonator connected between the first electrode and the second electrode;
    A parallel resonator connected between a connection path from the first electrode to the second electrode and the reference electrode;
    The mounting substrate is
    A first external connection electrode disposed on one main surface of the mounting substrate and connected to the first electrode;
    A second external connection electrode disposed on one main surface of the mounting substrate and connected to the second electrode;
    A ground electrode disposed on one main surface of the mounting substrate;
    An inductor connected between the reference electrode and the ground electrode and formed of a conductor wiring embedded in the mounting substrate;
    A first dielectric portion constituting a substrate body of the mounting substrate;
    A second dielectric portion disposed so as to be in contact with the conductor wiring,
    The relative dielectric constant of the second dielectric part is lower than the relative dielectric constant of the first dielectric part,
    Elastic wave filter device.
  2.  前記基板本体は、誘電体層で構成され、
     前記第2誘電体部は、前記導体配線が形成された前記誘電体層と同一の誘電体層に形成されている、
     請求項1に記載の弾性波フィルタ装置。
    The substrate body is composed of a dielectric layer,
    The second dielectric part is formed on the same dielectric layer as the dielectric layer on which the conductor wiring is formed.
    The elastic wave filter device according to claim 1.
  3.  前記導体配線は、第1配線と当該第1配線の外周に配置された第2配線とで形成された平面コイルを構成し、
     前記第2誘電体部は、前記第1配線と前記第2配線との間であって、前記第1配線および前記第2配線の間隔が最小となる領域に形成されている、
     請求項2に記載の弾性波フィルタ装置。
    The conductor wiring constitutes a planar coil formed by the first wiring and the second wiring arranged on the outer periphery of the first wiring;
    The second dielectric portion is formed between the first wiring and the second wiring and in a region where the distance between the first wiring and the second wiring is minimized.
    The elastic wave filter device according to claim 2.
  4.  前記基板本体は、複数の誘電体層で構成され、
     前記インダクタを形成する前記導体配線は、前記複数の誘電体層の少なくとも2層に形成されており、
     前記第2誘電体部は、前記導体配線が形成された前記少なくとも2層の間に形成されている、
     請求項1~3のいずれか1項に記載の弾性波フィルタ装置。
    The substrate body is composed of a plurality of dielectric layers,
    The conductor wiring forming the inductor is formed in at least two layers of the plurality of dielectric layers;
    The second dielectric portion is formed between the at least two layers where the conductor wiring is formed.
    The elastic wave filter device according to any one of claims 1 to 3.
  5.  前記第2誘電体部は、空気で構成されている、
     請求項1~4のいずれか1項に記載の弾性波フィルタ装置。
    The second dielectric part is composed of air,
    The elastic wave filter device according to any one of claims 1 to 4.
  6.  前記第1誘電体部は、アルミナを主成分とし、
     前記第2誘電体部は、二酸化ケイ素を主成分とする、
     請求項1~4のいずれか1項に記載の弾性波フィルタ装置。
    The first dielectric part is mainly composed of alumina,
    The second dielectric part is mainly composed of silicon dioxide,
    The elastic wave filter device according to any one of claims 1 to 4.
  7.  前記直列共振子および前記並列共振子のそれぞれは、圧電基板上に形成された櫛形電極を有し、
     前記弾性波フィルタ素子は、ラダー型の弾性表面波フィルタ素子である、
     請求項1~6のいずれか1項に記載の弾性波フィルタ装置。
    Each of the series resonator and the parallel resonator has a comb-shaped electrode formed on a piezoelectric substrate,
    The acoustic wave filter element is a ladder-type surface acoustic wave filter element.
    The elastic wave filter device according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか1項に記載の弾性波フィルタ装置と、
     前記第1電極または前記第2電極に接続されたフィルタ素子と、を備え、
     前記弾性波フィルタ素子と前記インダクタとは、送信用フィルタおよび受信用フィルタの一方であり、
     前記フィルタ素子は、送信用フィルタおよび受信用フィルタの他方である、
     マルチプレクサ。
    The elastic wave filter device according to any one of claims 1 to 7,
    A filter element connected to the first electrode or the second electrode,
    The acoustic wave filter element and the inductor are one of a transmission filter and a reception filter,
    The filter element is the other of the transmission filter and the reception filter.
    Multiplexer.
PCT/JP2017/015584 2016-04-25 2017-04-18 Elastic wave filter apparatus and multiplexer WO2017188062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-087546 2016-04-25
JP2016087546 2016-04-25

Publications (1)

Publication Number Publication Date
WO2017188062A1 true WO2017188062A1 (en) 2017-11-02

Family

ID=60161586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015584 WO2017188062A1 (en) 2016-04-25 2017-04-18 Elastic wave filter apparatus and multiplexer

Country Status (1)

Country Link
WO (1) WO2017188062A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080017A1 (en) * 2018-10-16 2020-04-23 株式会社村田製作所 High-frequency module
CN113497636A (en) * 2020-04-03 2021-10-12 株式会社村田制作所 High-frequency module and communication device
JP2022002260A (en) * 2020-06-22 2022-01-06 株式会社村田製作所 Surface-mounted passive component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190333A (en) * 1992-01-13 1993-07-30 Sharp Corp Multilayered type spiral inductor
JP2007067236A (en) * 2005-08-31 2007-03-15 Fujitsu Ltd Integrated-type electronic part and manufacturing method for integrated- type electronic part
WO2015016203A1 (en) * 2013-08-02 2015-02-05 株式会社村田製作所 Duplexer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190333A (en) * 1992-01-13 1993-07-30 Sharp Corp Multilayered type spiral inductor
JP2007067236A (en) * 2005-08-31 2007-03-15 Fujitsu Ltd Integrated-type electronic part and manufacturing method for integrated- type electronic part
WO2015016203A1 (en) * 2013-08-02 2015-02-05 株式会社村田製作所 Duplexer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080017A1 (en) * 2018-10-16 2020-04-23 株式会社村田製作所 High-frequency module
US11362688B2 (en) 2018-10-16 2022-06-14 Murata Manufacturing Co., Ltd. Radio frequency module
CN113497636A (en) * 2020-04-03 2021-10-12 株式会社村田制作所 High-frequency module and communication device
JP2022002260A (en) * 2020-06-22 2022-01-06 株式会社村田製作所 Surface-mounted passive component
CN114093592A (en) * 2020-06-22 2022-02-25 株式会社村田制作所 Surface mounting type passive component

Similar Documents

Publication Publication Date Title
US10128816B2 (en) High-frequency module
US9413335B2 (en) High-frequency module
JP6249020B2 (en) High frequency module
JP5943158B1 (en) High frequency module
WO2014168162A1 (en) High frequency module
JP6183461B2 (en) High frequency module
US8405472B2 (en) Elastic wave filter device
JP6183462B2 (en) High frequency module
US10340883B2 (en) High-frequency module
US7876178B2 (en) Composite filter comprising a surface acoustic wave filter and an LC filter
WO2017188062A1 (en) Elastic wave filter apparatus and multiplexer
US10848129B2 (en) High-frequency module
US20200295737A1 (en) Multiplexer
JPWO2006137248A1 (en) SAW duplexer
US9692388B2 (en) High frequency module comprising a band-pass LC filter and a piezoelectric resonator
US8400236B2 (en) Electronic component
US20050046512A1 (en) Demultiplexer
US11368135B2 (en) High-frequency module
WO2018003378A1 (en) Filter device and multiplexer
JP5016871B2 (en) Passive components
US20210203303A1 (en) Baw resonator with coil integrated in high impedance layer of bragg mirror or in additional high impedance metal layer below resonator
JP5480037B2 (en) BANDPASS FILTER, RADIO COMMUNICATION MODULE HAVING THE SAME, AND RADIO COMMUNICATION DEVICE
JPH1041701A (en) Chip type laminated filter

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789347

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP