WO2017187885A1 - Electrode for organic element, and organic element - Google Patents

Electrode for organic element, and organic element Download PDF

Info

Publication number
WO2017187885A1
WO2017187885A1 PCT/JP2017/013513 JP2017013513W WO2017187885A1 WO 2017187885 A1 WO2017187885 A1 WO 2017187885A1 JP 2017013513 W JP2017013513 W JP 2017013513W WO 2017187885 A1 WO2017187885 A1 WO 2017187885A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
organic
electrode
polycrystalline film
electrode body
Prior art date
Application number
PCT/JP2017/013513
Other languages
French (fr)
Japanese (ja)
Inventor
タンガベル カナガセカラン
秀和 下谷
勝己 谷垣
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2017187885A1 publication Critical patent/WO2017187885A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to an organic element electrode and an organic element. This application claims priority based on Japanese Patent Application No. 2016-088459 filed in Japan on April 26, 2016, the contents of which are incorporated herein by reference.
  • Organic elements such as organic transistors and organic electroluminescence (EL) elements are highly flexible and excellent in processability. For this reason, attention has recently been focused on organic elements.
  • the organic element has an organic semiconductor and an electrode for energizing the organic semiconductor.
  • the organic element has a higher contact resistance at the interface between the organic semiconductor and the electrode than the inorganic semiconductor element using the inorganic semiconductor.
  • the contact resistance at the interface between the semiconductor and the electrode hinders the injection of electrons and holes into the semiconductor and the extraction of electrons and holes from the semiconductor. For this reason, the contact resistance at the interface between the semiconductor and the electrode is one of the causes of an increase in driving voltage and power consumption of the semiconductor element.
  • a highly doped region is formed in a portion in contact with an electrode of a semiconductor substrate in order to reduce contact resistance.
  • an attempt is made to provide a layer corresponding to a highly doped region in an inorganic semiconductor between the organic semiconductor and the electrode from the same idea.
  • Non-Patent Document 1 describes that cesium fluoride is inserted into the interface between the organic semiconductor and the electrode. By inserting cesium fluoride having high electron conductivity at the interface between the organic semiconductor and the electrode, the efficiency of injecting electrons into the organic semiconductor is increased.
  • Non-Patent Document 2 describes that an oxide such as molybdenum oxide is inserted at the interface between the organic semiconductor and the electrode. Through the valence band of the oxide, the hole injection efficiency at the interface between the organic semiconductor and the electrode is increased.
  • Non-Patent Document 3 describes that a self-assembled monolayer (SAM) is inserted at the interface between an organic semiconductor and an electrode.
  • SAM self-assembled monolayer
  • Self-assembled monomolecules have a non-uniform charge distribution within the molecule and form electric dipoles.
  • the electric dipole shifts the vacuum level at the contact interface between the organic semiconductor and the electrode.
  • the Fermi level of the electrode changes relative to the energy level of electrons and holes in the organic semiconductor, and the efficiency of injecting electrons or holes into the organic semiconductor increases according to the direction of the electric dipole.
  • Non-Patent Documents 1 to 3 when any one of the layers described in Non-Patent Documents 1 to 3 is inserted between the organic semiconductor and the metal, the contact resistance at the interface between the organic semiconductor and the electrode is smaller than when no layer is inserted. To reduce. However, the insertion of these layers can only improve the conduction characteristics when either electron or hole carriers pass through the interface between the organic semiconductor and the electrode. That is, it is difficult to improve the contact resistance to both electrons and holes.
  • organic elements For the practical application of organic elements, organic elements with low contact resistance are required regardless of the carrier. However, such an organic element has not been realized.
  • the present invention has been made in view of the above problems, and by inserting an organic semiconductor polycrystalline film between an organic semiconductor and an electrode, contact at the contact interface between the organic semiconductor and the electrode body is possible regardless of the conductive carriers.
  • An electrode for an organic element capable of reducing resistance is provided.
  • 1st aspect of this invention is an electrode for organic elements connected to an organic semiconductor, Comprising: It is provided in the 1st surface of an electrode body and the said electrode body, and reduces the contact resistance in the contact interface with the said organic semiconductor An organic semiconductor polycrystalline film.
  • the organic element electrode according to the first aspect wherein the organic semiconductor polycrystal film is provided on the third surface opposite to the second surface on which the electrode body is provided.
  • a molecular film may be further provided.
  • the organic semiconductor polycrystalline film may have a thickness of 1 nm to 50 nm.
  • the thickness of the organic molecular film may be 1 nm or more and 10 nm or less.
  • the organic semiconductor polycrystalline film has an energy level of a lowest unoccupied molecular orbital (LUMO).
  • LUMO lowest unoccupied molecular orbital
  • it may be equal to or higher than the Fermi level of the electrode body and not more than a value obtained by adding 2.0 eV to the energy level of the lowest unoccupied molecular orbital (LUMO) of the organic semiconductor to be connected.
  • the organic semiconductor polycrystalline film has an energy level of a highest occupied molecular orbital (HOMO). Further, it may be equal to or lower than the Fermi level of the electrode body and a value obtained by subtracting 2.0 eV from the energy level of the highest occupied molecular orbital (HOMO) of the organic semiconductor to be connected.
  • HOMO highest occupied molecular orbital
  • the organic molecular film is a saturated hydrocarbon or a saturated hydrocarbon that is solid at room temperature. Derivatives may also be included.
  • An eighth aspect of the present invention is the electrode for an organic element according to any one of the first to seventh aspects, wherein the Fermi level of the electrode body is the lowest unoccupied molecular orbital of the organic semiconductor to be connected.
  • (LUMO) energy level is not less than 3.0 eV or a value obtained by adding 4.0 eV to the highest occupied molecular orbital (HOMO) energy level of the organic semiconductor to be connected. .
  • an organic element comprising the organic element electrode according to any one of the first to eighth aspects, and the organic semiconductor polycrystalline film of the organic element electrode.
  • An organic semiconductor connected to the formed fourth surface.
  • HOMO highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • AFM atomic force microscope
  • FIG. 1 It is a cross-sectional schematic diagram of the organic element concerning 3rd Embodiment. It is the figure which compared the contact resistance at the time of performing electron injection with respect to the field effect transistor of Example 1, Example 2, the comparative example 1, and the comparative example 2.
  • FIG. It is the figure which compared the contact resistance at the time of hole-injecting with respect to the field effect transistor of Example 1, Example 2, the comparative example 1, and the comparative example 2.
  • FIG. It It is the graph which compared the contact resistance at the time of performing electron injection. It is the graph which compared the contact resistance at the time of performing hole injection. It is the result of having measured the electron mobility and the hole mobility of the field effect transistor of the Example which used the organic semiconductor as rubrene, and a comparative example.
  • the present invention has been made by finding that by inserting an organic semiconductor polycrystalline film between an organic semiconductor and an electrode, it is possible to reduce the contact resistance at the contact interface between the organic semiconductor and the electrode body regardless of conducting carriers. It is a thing.
  • FIG. 1 is a schematic cross-sectional view of an organic element 20 according to a first embodiment.
  • the organic element 20 includes a substrate 5 having a gate substrate 5A and an insulating layer 5B, a protective layer 4, an organic semiconductor 3, and an organic element electrode 10.
  • a voltage is applied to the gate substrate 5A, a channel is formed in the organic semiconductor 3, and a current flows between the two organic element electrodes 10. That is, the organic element 20 shown in FIG. 1 is a field effect transistor (FET).
  • FET field effect transistor
  • the organic element electrode 10 is a set of two.
  • the first organic element electrode 10 is referred to as an electron injection electrode 10A
  • the second organic element electrode 10 is referred to as a hole injection electrode 10B.
  • the organic element electrode 10 includes an electrode body 1 and an organic semiconductor polycrystalline film 2.
  • the electrode body 1 in the electron injection electrode 10A is referred to as an electron injection electrode body 1A
  • the electrode body 1 in the hole injection electrode 10B is referred to as a hole injection electrode body 1B
  • the organic semiconductor polycrystalline film 2 in the electron injection electrode 10A is referred to as an electron injection polycrystalline film 2A
  • the organic semiconductor polycrystalline film 2 in the hole injection electrode 10B is referred to as a hole injection polycrystalline film 2B.
  • the electrode body 1 has conductivity.
  • a single metal, an alloy of a plurality of metals, a metal compound of a plurality of metals, or the like can be used.
  • the electrode body 1 may be a transparent conductor such as indium tin oxide (ITO).
  • Electron injection electrode body 1 A injects electrons into organic semiconductor 3. Therefore, it is preferable that the Fermi level of the electrode body for electron injection 1A is not less than a value obtained by subtracting 3.0 eV from the energy level of the lowest unoccupied molecular orbital (LUMO) of the organic semiconductor 3 to be connected.
  • the energy level of the lowest unoccupied molecular orbital is referred to as the LUMO level.
  • the energy level difference between the Fermi level of the electrode body 1A for electron injection and the LUMO level of the organic semiconductor 3 becomes an electron injection barrier when electrons are injected into the organic semiconductor 3.
  • the electron injection efficiency is increased.
  • an electrode body 1 A for electron injection Alkali metal, alkaline earth metal, aluminum, and the like can be used for.
  • the Fermi level of calcium approximates the LUMO level of rubrene and BP2T, and can be suitably used for the electrode body 1A for electron injection.
  • the electrode body for electron injection 1A with emphasis on stability.
  • a material having excellent conductivity and stability such as gold, silver, copper, platinum, and ITO, is selected as the electron injection electrode body 1A.
  • magnesium, aluminum, magnesium silver alloy or the like for the electron injection electrode body 1A.
  • the Fermi level of the hole injection electrode body 1B is preferably not more than a value obtained by adding 4.0 eV to the energy level of the highest occupied molecular orbital (HOMO) of the organic semiconductor 3 to be connected.
  • the energy level of the highest occupied molecular orbital is referred to as the HOMO level.
  • the energy level difference between the Fermi level of the hole injection electrode body 1 ⁇ / b> B and the HOMO level of the organic semiconductor 3 becomes a hole injection barrier when holes are injected into the organic semiconductor 3. Therefore, by reducing the energy level difference between the Fermi level of the hole injection electrode body 1B and the HOMO level of the organic semiconductor 3, the hole injection efficiency is increased.
  • the hole injection electrode body 1B when rubrene or BP2T is used for the organic semiconductor 3, it is preferable to use gold, platinum, silver, or copper as the hole injection electrode body 1B.
  • the Fermi level of gold is particularly preferable because it approximates the HOMO level of rubrene and BP2T.
  • the electron injection electrode body 1A and the hole injection electrode body 1B are made of the same material, the organic element 20 can be easily manufactured. In order to maintain high electron and hole injection efficiency and high environmental stability, it is preferable to use gold for the electron injection electrode body 1A and the hole injection electrode body 1B.
  • the organic semiconductor polycrystalline film 2 is formed on one surface of the electrode body 1.
  • the “organic semiconductor polycrystalline film” includes everything except a single crystal of an organic semiconductor.
  • the “organic semiconductor polycrystalline film” includes a film in which a plurality of crystal structures are mixed, a film having an amorphous structure in which no crystal structure is formed, and the like.
  • a diffraction pattern obtained by XRD measurement of the organic semiconductor polycrystalline film 2 is one of the following two diffraction patterns.
  • the first diffraction pattern is a diffraction pattern in which a peak other than a peak corresponding to a predetermined crystal orientation is detected. This diffraction pattern corresponds to the case where a plurality of crystal structures are mixed in the organic semiconductor polycrystalline film 2.
  • the second diffraction pattern is a diffraction pattern in which a prominent peak is not detected and a broad peak is detected. This diffraction pattern corresponds to the case where the organic semiconductor polycrystalline film 2 is amorphous.
  • the organic semiconductor polycrystalline film 2 can also be judged from the manufacturing process.
  • In order to produce a single crystal it is necessary to perform crystal growth in any of a gas phase method, a liquid phase method, and a solid phase method. Therefore, it is difficult to obtain a single crystal by a method in which molecules collide with a deposition surface such as vacuum deposition. That is, it can be said that the organic film produced by a method such as vacuum deposition is not a single crystal but an organic semiconductor polycrystalline film 2.
  • crystallinity of the organic semiconductor polycrystalline film 2 is worse than that of the organic semiconductor 3.
  • crystallinity is an index measured by XRD.
  • the difference in crystallinity can also be confirmed from the surface shape. If the crystallinity is poor, the grain size of the surface shape becomes small.
  • the grain means a region having the same crystal structure.
  • the grain size of the organic semiconductor polycrystalline film 2 is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.5 ⁇ m or less.
  • the lower limit value is preferably as small as possible, but about 450 nm is the grain size that is practically formed.
  • the grain size is obtained as follows. First, an area of 5 ⁇ m ⁇ 5 ⁇ m is measured by AFM. Arbitrary 15 grains in the region are selected, and the diameter of a circle inscribed in each grain is obtained. And let the average value of those diameters be a grain size.
  • the organic semiconductor polycrystalline film 2 can use any organic material according to the organic semiconductor 3 to be connected.
  • any organic material according to the organic semiconductor 3 to be connected for example, rubrene, BP2T, anthracene, tetracene, pentacene, tetracyanoquinodimethane, ⁇ , ⁇ -bis (biphenyl) terthiophene, difnat [2,3-b: 2 ′, 3′-f] thiopheno [3,2 -B] Thiophene, 1,4-bis (5-phenylthiophen-2-yl) benzene and the like can be used.
  • Rubrene and BP2T are particularly preferable because of high carrier mobility.
  • the organic semiconductor polycrystalline film 2 reduces the contact resistance at the contact interface between the electrode body 1 and the organic semiconductor 3.
  • the reason why the contact resistance is lowered will be described by taking the case where electrons are injected into the organic semiconductor 3 as an example.
  • FIG. 2A and 2B are diagrams showing the energy state of the contact interface between the electrode body 1 and the organic semiconductor 3.
  • FIG. 2A is an energy state diagram when the organic semiconductor polycrystalline film 2 is not inserted
  • FIG. 2B is an energy state diagram when the organic semiconductor polycrystalline film 2 is inserted.
  • the organic semiconductor polycrystalline film 2 when the organic semiconductor polycrystalline film 2 is inserted, a band gap level is formed in the organic semiconductor polycrystalline film 2. This is because the organic semiconductor polycrystalline film 2 has poor crystallinity compared to a single crystal and has a disordered crystal structure. Electrons present in the Fermi surface E F of the electrode body 1, leading to the LUMO level of the organic semiconductor 3 via the bandgap level. Therefore, when electrons are injected from the electrode body 1 into the organic semiconductor 3, the effective barrier height that the electrons need to exceed is lowered. For example, this can be expected to lower the injection barrier of 1.97 eV for hole injection and 2.60 eV for electron injection. That is, the electron injection efficiency at the interface between the electrode body 1 and the organic semiconductor 3 is improved.
  • the electron conduction efficiency in the stacking direction of the organic element 20 is increased. That is, the contact resistance between the electrode body 1 and the organic semiconductor 3 is reduced by providing the organic semiconductor polycrystalline film 2. Even when holes are injected, the contact resistance is reduced by the same principle.
  • the thickness of the organic semiconductor polycrystalline film 2 is preferably 1 nm or more and 50 nm or less. Moreover, the result of having measured the electron mobility at the time of changing the thickness of the organic-semiconductor polycrystalline film (BP2T) 2 is shown in FIG. Thereby, the thickness of the organic semiconductor polycrystalline film 2 is more preferably 4 nm or more and 30 nm or less, and further preferably 8 nm or more and 20 nm or less.
  • the organic semiconductor polycrystalline film 2 By making the thickness of the organic semiconductor polycrystalline film 2 equal to or less than a predetermined thickness, the organic semiconductor polycrystalline film 2 becomes a resistor, and it is possible to avoid inhibiting the conduction between the electrode body 1 and the organic semiconductor 3. Further, by setting the thickness of the organic semiconductor polycrystalline film 2 to a predetermined thickness or more, a band gap level can be sufficiently formed at the interface between the electrode body 1 and the organic semiconductor 3.
  • the organic semiconductor polycrystalline film 2 may be made of different materials or the same material for the electron-injecting polycrystalline film 2A and the hole-injecting polycrystalline film 2B. From the viewpoint of ease of manufacture, it is preferable to use the same material for the electron injection polycrystalline film 2A and the hole injection polycrystalline film 2B.
  • each of the electron injection polycrystalline film 2A and the hole injection polycrystalline film 2B preferably satisfies the following conditions.
  • the LUMO level of the electron injection polycrystalline film 2A is equal to or higher than the Fermi level of the electrode body 1 and is preferably equal to or less than the value obtained by adding 2.0 eV to the LUMO level of the organic semiconductor 3, and 0.2 eV is added. It is more preferable that the value is not more than the value. Further, it is more preferable to be between the Fermi level of the electrode body 1 and the LUMO level of the organic semiconductor 3.
  • the LUMO level of the electron injection polycrystalline film 2A means the LUMO level of the main organic molecule constituting the electron injection polycrystalline film 2A.
  • the level in the band gap is generated due to disorder of the crystal structure of the polycrystalline film 2A for electron injection. Therefore, many band gap levels occur in the vicinity of the LUMO level of the electron injection polycrystalline film 2A. If the LUMO level of the electron injection polycrystalline film 2A is between the Fermi level of the electrode body 1 and the LUMO level of the organic semiconductor 3, the in-band gap level is also the same as the Fermi level of the electrode body 1 and the organic semiconductor. It is appropriately formed between the three LUMO levels. That is, in the injection of electrons from the electrode body 1 into the organic semiconductor 3, electrons can be injected through the band gap level, and the effective barrier height that the electrons need to exceed can be further reduced.
  • the level in the band gap has a certain energy distribution. Therefore, if the difference between the two LUMO levels is about 2.0 eV, there is an in-band gap level with sufficient density for energy lower than the LUMO level of the organic semiconductor 3. If the difference between the two LUMO levels is about 0.2 eV, the probability that a band gap level with sufficient density exists at an energy lower than the LUMO level of the organic semiconductor 3 is further increased. That is, it becomes easier to inject electrons from the electron injection polycrystalline film 2A into the organic semiconductor 3, and the electron injection efficiency at the interface between the electron injection polycrystalline film 2A and the organic semiconductor 3 is increased.
  • the electron states of the electron injection polycrystalline film 2A and the organic semiconductor 3 are approximated.
  • the electronic state of a substance is greatly affected by the crystal structure or molecular structure of the substance. That is, if the LUMO level of the electron injection polycrystalline film 2A is close to the LUMO level of the organic semiconductor 3, the crystal structure or molecular structure of the electron injection polycrystalline film 2A and the organic semiconductor 3 is similar. Yes. If the crystal structure or the molecular structure is similar, the structural change at the interface between the electron injection polycrystalline film 2A and the organic semiconductor 3 becomes gentle. That is, it is possible to avoid formation of an undesired energy barrier or the like at the interface between the electron injection polycrystalline film 2A and the organic semiconductor 3.
  • the HOMO level of the hole-injecting polycrystalline film 2B is less than or equal to the Fermi level of the electrode body 1, and is preferably equal to or more than a value obtained by subtracting 2.0 eV from the HOMO level of the organic semiconductor 3. It is more preferable that it is equal to or more than a value obtained by subtracting 0.2 eV from the HOMO level of 3. Further, it is more preferable to be between the Fermi level of the electrode body 1 and the HOMO level of the organic semiconductor 3.
  • the HOMO level of the hole-injecting polycrystalline film 2B means the HOMO level of main organic molecules constituting the hole-injecting polycrystalline film 2B.
  • the transition of holes from the electrode body 1 to the organic semiconductor 3 is performed through the band gap level. If the in-band gap level is between the Fermi level of the electrode body 1 and the LUMO level of the organic semiconductor 3, the effective barrier height that must be exceeded by holes at the time of transition can be reduced. If the HOMO level of the hole-injecting polycrystalline film 2B is between the Fermi level of the electrode body 1 and the HOMO level of the organic semiconductor 3, the in-band gap level is also equal to the Fermi level of the electrode body 1 and the organic semiconductor. It is formed appropriately between the three HOMO levels.
  • the HOMO level of the hole injection polycrystalline film 2B is lower than or equal to the HOMO level of the organic semiconductor 3 if the difference between the two HOMO levels is about 2.0 eV, the HOMO level of the organic semiconductor 3 There are in-bandgap levels of sufficient density for high energy. If the difference between the two HOMO levels is about 0.2 eV, the probability that a band gap level with sufficient density exists at an energy lower than the HOMO level of the organic semiconductor 3 is further increased. That is, holes are more easily injected from the hole-injecting polycrystalline film 2B into the organic semiconductor 3, and the hole-injecting efficiency at the interface between the hole-injecting polycrystalline film 2B and the organic semiconductor 3 is increased.
  • the organic semiconductor polycrystalline film 2 is the same as the organic semiconductor 3 It preferably contains organic molecules, and more preferably consists of the same organic molecules.
  • Organic semiconductor 3 functions as the organic element 20 to which the organic element electrode 10 is connected.
  • the organic semiconductor 3 is connected to the surface of the organic element electrode 10 on the organic semiconductor polycrystalline film 2 side.
  • Any organic material can be used for the organic semiconductor 3.
  • Rubrene and BP2T are particularly preferable because of high carrier mobility.
  • the organic semiconductor 3 is preferably a single crystal.
  • the single crystal organic semiconductor 3 has high carrier mobility.
  • a single crystal of rubrene exhibits very high mobility among organic semiconductors.
  • the contact resistance between the electrode body 1 and the organic semiconductor 3 is particularly high. That is, by using the organic element electrode 10 according to the present embodiment, the effect of reducing the contact resistance becomes remarkable.
  • a substrate 5 shown in FIG. 1 includes a gate substrate 5A and an insulating layer 5B. On the substrate 5, the organic semiconductor 3 is crystal-grown.
  • the gate substrate 5A applies a voltage to the organic semiconductor 3 through the insulating layer 5B.
  • a voltage is applied from the gate substrate 5A, a channel is formed in the organic semiconductor 3 and connects the electron injection electrode 10A and the hole injection electrode 10B.
  • the gate substrate 5A As the gate substrate 5A, a known one can be used.
  • the organic element 20 is often integrated on a semiconductor substrate. Therefore, it is preferable to use a semiconductor for the gate substrate 5A, and it is particularly preferable to use P-type rich silicon (p ++- Si) or the like.
  • the insulating layer 5B a known layer can be used as long as it is not broken down by the gate voltage.
  • the gate substrate 5A is silicon, silicon oxide or the like is often used for the insulating layer 5B.
  • the protective layer 4 is a layer required when a semiconductor crystal such as silicon is used for the substrate 5.
  • a semiconductor crystal such as silicon
  • atoms near the surface of the crystal lose their covalent bond partners. Therefore, a dangling bond in which unpaired electrons are exposed is formed. Since dangling bonds are unstable, they supplement electrons. When some of the electrons flowing in the organic semiconductor 3 are captured by dangling bonds, the carrier mobility of the organic semiconductor 3 is lowered. Therefore, when silicon or the like is used for the substrate, it is preferable to have the protective layer 4 between the substrate 5 and the organic semiconductor 3.
  • an insulating organic material for the protective layer 4.
  • parylene, polystyrene, polymethyl methacrylate (PMMA), or the like can be used.
  • the organic element 20 can be obtained by laminating each layer. First, a substrate 5 having an insulating layer 5B formed on a gate substrate 5A is prepared. The substrate 5 can be produced by a known method. Moreover, you may purchase a commercial item.
  • the protective layer 4 is formed on the substrate 5.
  • the protective layer 4 can be produced by a known lamination method. For example, means such as spin coating and chemical vapor deposition (CVD) can be used.
  • the organic semiconductor 3 is laminated on the protective layer 4.
  • the organic semiconductor 3 is preferably a single crystal.
  • a single crystal organic semiconductor can be obtained by crystal growth of an organic film on a substrate. For example, it can be performed using a physical vapor transport method or the like.
  • the organic semiconductor polycrystalline film 2 and the electrode body 1 are stacked on the organic semiconductor 3. These layers are produced by a photolithography method, a vacuum deposition method using a mask, or the like.
  • the organic semiconductor polycrystalline film 2 is formed by vacuum deposition or the like to become a polycrystalline film.
  • the effective barrier height at the time of carrier injection is obtained by inserting the organic semiconductor polycrystalline film 2 into the interface between the electrode body 1 and the organic semiconductor 3. Becomes lower. As a result, the injection of carriers from the electrode body 1 to the organic semiconductor 3 is facilitated, and the contact resistance at the interface between the electrode body 1 and the organic semiconductor 3 is reduced.
  • FIG. 4 is a schematic cross-sectional view of an organic element 21 according to a second embodiment of the present invention.
  • the organic element 21 according to the second embodiment is different from the organic element 20 according to the first embodiment in that the organic element electrode 11 includes the organic molecular film 6.
  • description of common parts is omitted.
  • the same reference numerals are assigned to the same components as those in FIG.
  • the organic molecular film 6 is provided between the organic semiconductor 3 and the organic semiconductor polycrystalline film 2.
  • the organic molecular film 6 is provided on the organic element electrode 11 and is formed on the surface of the organic semiconductor polycrystalline film 2 opposite to the electrode body 1.
  • one of the organic element electrodes 11 is an electron injection electrode 11A, and the other is a hole injection electrode 11B.
  • FIG. 5 is a diagram showing the results of measuring the surface state of each layer of the organic element 21 with an atomic force microscope (AFM).
  • FIG. 5A is an AFM image of the surface of the organic semiconductor 3.
  • FIG. 5B is an AFM image of the surface of the organic molecular film 6.
  • FIG. 5C is an AFM image of the surface of the organic semiconductor polycrystalline film 2 when the organic semiconductor polycrystalline film 2 is stacked on the organic semiconductor 3.
  • FIG. 5D is an AFM image of the surface of the organic semiconductor polycrystalline film 2 when the organic semiconductor polycrystalline film 2 is laminated on the organic semiconductor 3 via the organic molecular film 6.
  • the surface of the organic semiconductor 3 is flat with almost no unevenness.
  • the organic molecular film 6 is laminated on the organic semiconductor 3, the surface shape becomes uneven as shown in FIG. Therefore, the organic molecular film 6 is not a film having a uniform thickness in the plane, but has irregularities having different thicknesses for each place.
  • the organic molecular film 6 includes organic molecules scattered in an island shape on the organic semiconductor 3. Therefore, strictly speaking, the organic molecular film 6 is not a “film” continuous in the plane, but is a “film” because it is manufactured by a method such as vacuum deposition.
  • the crystallinity of the organic semiconductor polycrystalline film 2 is deteriorated. That is, many band gap levels are formed in the organic semiconductor polycrystalline film 2. As the number of band gap levels formed in the organic semiconductor polycrystalline film 2 increases, the number of routes by which carriers transition from the Fermi level of the electrode body 1 to the LUMO level or HOMO level of the organic semiconductor 3 increases. . As a result, a route with a lower effective barrier can be selected, and the carrier injection efficiency is further increased. That is, by providing the organic molecular film 6, the contact resistance at the interface between the electrode body 1 and the organic semiconductor 3 can be further reduced.
  • the thickness of the organic molecular film 6 is preferably 1 nm or more and 10 nm or less. Further, FIG. 6 shows the result of measuring the electron mobility when the thickness of the organic semiconductor polycrystalline film 2 is 20 nm, which has the highest electron mobility in FIG. 3, and the thickness of the organic molecular film 6 is changed. Thereby, the thickness of the organic molecular film 6 is more preferably 3 nm or more and 7 nm or less, and further preferably 4 nm or more and 6 nm or less. Here, the organic molecular film 6 has irregularities. Therefore, the thickness of the organic molecular film 6 is defined as follows. First, an area of 5 ⁇ m ⁇ 5 ⁇ m is measured by AFM. And let the average value of the thickness of all the measurement areas be the thickness of the organic molecular film 6.
  • the organic molecular film 6 By making the thickness of the organic molecular film 6 equal to or less than a predetermined thickness, the organic molecular film 6 becomes a resistor, and it is possible to avoid inhibiting the conduction between the electrode body 1 and the organic semiconductor 3. Further, by setting the thickness of the organic molecular film 6 to a predetermined thickness or more, irregularities for sufficiently reducing the grains of the organic semiconductor polycrystalline film 2 can be formed on the surface of the organic semiconductor 3.
  • the height of the unevenness of the organic molecular film 6 is preferably 1 nm or more and 10 nm or less, more preferably 3 nm or more and 7 nm or less, and further preferably 4 nm or more and 6 nm or less.
  • the unevenness of the organic molecular film 6 is high, many disturbances are introduced into the organic semiconductor polycrystalline film 2. Therefore, the polycrystallinity of the organic semiconductor polycrystalline film 2 can be improved.
  • the size of the organic molecular region constituting the organic molecular film 6 is preferably 5 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the organic molecule region means a region formed by organic molecules scattered in an island shape.
  • the organic molecule region is indefinite as shown in FIG. Therefore, the size of the organic molecule region is obtained as follows. First, an area of 5 ⁇ m ⁇ 5 ⁇ m is measured by AFM. And the average value of the length of the organic molecule area
  • the organic molecular film 6 preferably contains saturated hydrocarbons or derivatives thereof that are solid at room temperature.
  • the saturated hydrocarbon is more preferably linear.
  • a linear hydrocarbon or a derivative thereof has a long molecular structure in one direction. As one end portion of the molecular structure is bonded to the organic semiconductor 3 and the other end portion stands with respect to the laminated surface of the organic semiconductor 3, irregularities are formed in the organic molecular film 6.
  • the organic molecular film 6 is preferably made of a material having a LUMO level higher than the Fermi level of the electrode body 1 and a HOMO level lower than the Fermi level of the electrode body 1. If the energy level of the material used for the organic molecular film 6 is within this range, it is possible to avoid the carrier injection at the interface between the electrode body 1 and the organic semiconductor 3 from being inhibited by the organic molecular film 6. Examples of such a material include perfluoroeicosane and tricosanoic acid methyl ester in addition to the above-described materials.
  • the organic element electrode according to the present embodiment can introduce more crystal disorder into the organic semiconductor polycrystalline film 2 by the organic molecular film 6. As a result, the injection of carriers from the electrode body 1 to the organic semiconductor 3 becomes easier, and the contact resistance at the interface between the electrode body 1 and the organic semiconductor 3 can be further reduced.
  • FIG. 7 is a schematic cross-sectional view of an organic element 22 according to a third embodiment of the present invention.
  • the organic element 22 according to the third embodiment is different from the organic element 20 according to the first embodiment in that it is not a field effect transistor (FET) but a light emitting element.
  • FET field effect transistor
  • the configuration of the organic element electrode 10 is the same as that of the organic element electrode 10 according to the first embodiment. In the following description, description of common parts is omitted. In the drawings used for the description, the same reference numerals are assigned to the same components as those in FIG.
  • the organic element 22 includes two organic element electrodes 10 with the organic semiconductor 3 interposed therebetween.
  • a current is passed from the two organic element electrodes 10 to the organic semiconductor 3
  • electrons and holes are injected into the organic semiconductor 3.
  • the injected electrons and holes are combined in the organic semiconductor 3.
  • the light emitting material in the organic semiconductor 3 is excited by the energy due to the coupling, and emits light when returning from the excited state to the ground state again.
  • the organic element electrode 10 includes the organic semiconductor polycrystalline film 2
  • the efficiency of injecting electrons and holes into the organic semiconductor 3 is increased. That is, the contact resistance at the interface between the electrode body 1 and the organic semiconductor 3 can be reduced not only in the field effect transistor but also in the light emitting element.
  • the organic molecular film 6 may be inserted between the organic semiconductor 3 and the organic semiconductor polycrystalline film 2 in the same manner as the organic element 21 according to the second embodiment.
  • the organic element is not limited to the above-described field effect transistor and light emitting element.
  • the present invention can be applied to elements such as diodes, organic solar cells, thermoelectric conversion elements, and sensors.
  • Example 1 As Example 1, a field effect transistor having the same structure as that of FIG. Each layer was as follows. Gate substrate 5A: P-type rich silicon (p ++- Si) Insulating layer 5B: SiO 2 Protective layer 4: Polystyrene Organic semiconductor 3: Rubrene single crystal Organic molecular film 6: Tetratetracontane (TTC, thickness 5 nm) Organic semiconductor polycrystalline film 2: rubrene (thickness 20 nm) Electrode injection electrode body 1A: Calcium Hole injection electrode body 1B: Gold Then, the contact resistance between the organic semiconductor 3, the electron injection electrode body 1A, and the hole injection electrode body 1B was determined by a four-terminal method. The contact resistance was normalized by the channel width formed in the organic semiconductor 3.
  • Example 2 As Example 2, a field effect transistor having a structure similar to that shown in FIG. That is, the field effect transistor of Example 1 is different in that the organic molecular film 6 is excluded.
  • Example 2 as in Example 1, the contact resistance between the organic semiconductor 3 and the electrode body 1A for electron injection and the electrode body 1B for hole injection was determined by a four-terminal method.
  • Comparative Example 1 As Comparative Example 1, the organic semiconductor polycrystalline film 2 was removed from the field effect transistor of Example 2. That is, the organic semiconductor 3 was directly brought into contact with the electrode body 1A for electron injection and the electrode body 1B for hole injection. Similarly to Example 1, in Comparative Example 1, the contact resistance between the organic semiconductor 3 and the electrode body 1A for electron injection and the electrode body 1B for hole injection was determined by the four-terminal method.
  • Comparative Example 2 As Comparative Example 2, a cesium fluoride thin film was provided in place of the organic semiconductor polycrystalline film 2 from the field effect transistor of Example 1.
  • the contact resistance between the organic semiconductor 3 and the electron injection electrode body 1A and hole injection electrode body 1B was determined by the four-terminal method.
  • FIG. 8 is a diagram comparing the contact resistance when electron injection is performed on the field effect transistors of Example 1, Example 2, Comparative Example 1 and Comparative Example 2.
  • the contact resistance with the organic semiconductor 3 is reduced compared to Comparative Example 1 in both the gold electrode and the calcium electrode.
  • the contact resistance of the gold electrode in Example 1 is as small as that of the calcium electrode of Comparative Example 1.
  • contact resistance is reduced in both the gold electrode and the calcium electrode.
  • FIG. 9 is a diagram comparing the contact resistance when hole injection is performed on the field effect transistors of Example 1, Example 2, Comparative Example 1 and Comparative Example 2.
  • the calcium electrode shows a larger contact resistance than the gold electrode.
  • the contact resistance with the organic semiconductor 3 in both the gold electrode and the calcium electrode is reduced as compared with Comparative Example 1.
  • Comparative Example 2 unlike the case of electron injection, the contact resistance increased compared to Comparative Example 1 in both the gold electrode and the calcium electrode.
  • Example 1 and Example 2 had reduced contact resistance in both cases of injecting electrons and holes.
  • the contact resistance of the electrode shown in Comparative Example 1 was reduced when electrons were injected, but the contact resistance was increased when holes were injected.
  • FIG. 10 shows a graph comparing the contact resistance when electron injection is performed
  • FIG. 11 shows a graph comparing the contact resistance when hole injection is performed.
  • Contact resistance is measured by a four-terminal method using an organic single crystal field effect transistor having a source electrode and a drain electrode of the organic element 21 of the second embodiment and two electrodes for voltage measurement between the electrodes. I was able to do it.
  • the temperature of this transistor was controlled by a Peltier device, and contact resistance was measured at a plurality of temperatures in an argon atmosphere. The logarithm of the obtained contact resistance was plotted against the reciprocal of temperature (Arrhenius plot), and the activation energy required for carrier injection was determined from the slope.
  • This experiment was conducted for electrons and holes using calcium and gold as electrode materials and BP2T and rubrene as organic semiconductors, respectively.
  • Example 1 and Example 2 the contact resistance with the organic semiconductor 3 is reduced in both the gold electrode and the calcium electrode as compared with Comparative Example 1. Also in Comparative Example 2, the contact resistance is reduced in the calcium electrode. Therefore, when an organic semiconductor polycrystalline film of BP2T is used, it is effective to provide a cesium fluoride thin film in place of the organic semiconductor polycrystalline film 2 in the electron injection.
  • the calcium electrode shows a larger contact resistance than the gold electrode.
  • the contact resistance with the organic semiconductor 3 in both the gold electrode and the calcium electrode is reduced as compared with Comparative Example 1.
  • Comparative Example 2 unlike the case of electron injection, the contact resistance of the gold electrode was increased as compared with Comparative Example 1.
  • the electrodes shown in Example 1 and Example 2 had reduced contact resistance in both cases of injecting electrons and holes.
  • the electrode shown in Comparative Example 2 decreased in contact resistance when electrons were injected, but increased in contact resistance when holes were injected.
  • the contact resistance is reduced for both electron injection and hole injection, and the contact resistance can be further reduced by combining the organic molecular film.
  • Examples 1 to 6 and Comparative Examples 1 to 6 differ in that the organic semiconductor 3 is rubrene, whereas Examples 7 to 11 differ in that the organic semiconductor 3 is BP2T.
  • cesium fluoride is not an organic semiconductor polycrystalline film, but is inserted as a film corresponding to it, so it is listed in the column of the organic semiconductor polycrystalline film.
  • FIG. 12 shows the results of measuring the electron mobility and the hole mobility of the field effect transistors of Examples and Comparative Examples (Table 1) in which the organic semiconductor 3 is rubrene.
  • FIG. 13 shows the results of measurement of electron mobility and hole mobility of field effect transistors of Examples and Comparative Examples (Table 2) in which the organic semiconductor 3 is BP2T.
  • the horizontal axis is electron mobility
  • the vertical axis is hole mobility. Therefore, the carrier mobility becomes higher toward the upper right in FIGS. 12 and 13.
  • the field effect transistor shown in Example 1 using rubrene as the organic semiconductor 3 has a hole mobility of 22.0 cm 2 V ⁇ 1 s ⁇ 1 and an electron mobility of 5.0 cm 2 V ⁇ 1 s ⁇ 1. It is.
  • the field effect transistor shown in Example 7 using BP2T as the organic semiconductor 3 has a hole mobility of 0.5 cm 2 V ⁇ 1 s ⁇ 1 and an electron mobility of 1.1 cm 2 V ⁇ 1 s ⁇ 1. It is.
  • FIG. 14 shows the transistor characteristics.
  • the solid line including the black square shows the result of measuring the drain current at the time of electron injection and hole injection by applying a voltage to the field effect transistor (Example 1) having the same structure as FIG. It is.
  • a solid line including a white square applies a voltage to a field effect transistor having a configuration excluding the organic semiconductor polycrystalline film 2 and the organic molecular film 6 from the configuration of Example 1, and measures the drain current during electron injection and hole injection. It is the result.
  • the horizontal axis is the applied voltage
  • the vertical axis is the drain current. From the result of FIG.
  • FIG. 15 shows the transistor characteristics.
  • the solid line including the black squares has the same configuration except that the electron injection electrode body 1A is gold and the hole injection electrode body 1B is calcium in the field effect transistor of the first embodiment. It is the result of having measured the drain current at the time of applying a voltage in the field effect transistor which has, and injecting an electron and a hole.
  • a solid line including a white square represents a drain current in the field effect transistor having the configuration in which the organic semiconductor polycrystalline film 2 and the organic molecular film 6 are removed from the field effect transistor, and in the same manner, electron injection and hole injection. It is the result of having measured.
  • the horizontal axis is the applied voltage, and the vertical axis is the drain current. From the results of FIG. 15, if the electron injection electrode body 1A is gold and the hole injection electrode body 1B is calcium, electron injection and hole injection are difficult without the organic semiconductor polycrystalline film 2 and the organic molecular film 6. is there. However, by inserting the organic semiconductor polycrystalline film 2 and the organic molecular film 6, electron injection and hole injection are possible, the drain current is increased, and the transistor characteristics are improved.
  • Electrode body 1A ... Electron injection electrode body, 1B ... Electrode body for hole injection, 2 ... Organic semiconductor polycrystalline film, 2A ... Polycrystalline film for electron injection, 2B ... Polycrystalline film for hole injection, 3 ... Organic Semiconductor, 4 ... Protective layer, 5 ... Substrate, 5A ... Gate substrate, 5B ... Insulating layer, 6 ... Organic molecular film, 10, 11 ... Organic element electrode, 10A, 11A ... Electron injection electrode, 10B, 11B ... Hole Electrode for injection, 20, 21, 22, ... organic element

Abstract

Disclosed is an electrode for an organic element, said electrode being to be connected to an organic semiconductor. The electrode is provided with an electrode body, and an organic semiconductor polycrystalline film, which is provided on a first surface of the electrode body, and which reduces contact resistance at a contact interface to the organic semiconductor.

Description

有機素子用電極及び有機素子Electrode for organic element and organic element
 本発明は、有機素子用電極及び有機素子に関する。
  本願は、2016年4月26日に、日本に出願された特願2016-088459号に基づき優先権を主張し、これらの内容をここに援用する。
The present invention relates to an organic element electrode and an organic element.
This application claims priority based on Japanese Patent Application No. 2016-088459 filed in Japan on April 26, 2016, the contents of which are incorporated herein by reference.
 有機トランジスタや有機エレクトロルミネッセンス(EL)素子等に代表される有機素子は、柔軟性が高く、加工容易性に優れる。そのため、近年、有機素子への注目が集まっている。 Organic elements such as organic transistors and organic electroluminescence (EL) elements are highly flexible and excellent in processability. For this reason, attention has recently been focused on organic elements.
 有機素子は、有機半導体と有機半導体に通電するための電極とを有する。有機素子は、無機半導体を用いた無機半導体素子より、有機半導体と電極との界面における接触抵抗が大きい。半導体と電極との界面における接触抵抗は、半導体への電子及びホールの注入、及び、半導体からの電子及びホールの取り出しを阻害する。そのため、半導体と電極との界面における接触抵抗は、半導体素子の駆動電圧の上昇や消費電力の増加の原因の一つとなる。 The organic element has an organic semiconductor and an electrode for energizing the organic semiconductor. The organic element has a higher contact resistance at the interface between the organic semiconductor and the electrode than the inorganic semiconductor element using the inorganic semiconductor. The contact resistance at the interface between the semiconductor and the electrode hinders the injection of electrons and holes into the semiconductor and the extraction of electrons and holes from the semiconductor. For this reason, the contact resistance at the interface between the semiconductor and the electrode is one of the causes of an increase in driving voltage and power consumption of the semiconductor element.
 無機半導体素子では接触抵抗を低減するために、半導体基板の電極と接触する部分に、高ドープ領域を形成している。有機素子においても同様の発想から、有機半導体と電極との間に、無機半導体における高ドープ領域に対応する層を設ける試みが進められている。 In an inorganic semiconductor element, a highly doped region is formed in a portion in contact with an electrode of a semiconductor substrate in order to reduce contact resistance. In the organic element, an attempt is made to provide a layer corresponding to a highly doped region in an inorganic semiconductor between the organic semiconductor and the electrode from the same idea.
 例えば非特許文献1には、有機半導体と電極との界面にフッ化セシウムを挿入することが記載されている。有機半導体と電極との界面に電子伝導性の高いフッ化セシウムを挿入することで、有機半導体への電子の注入効率が高まる。 For example, Non-Patent Document 1 describes that cesium fluoride is inserted into the interface between the organic semiconductor and the electrode. By inserting cesium fluoride having high electron conductivity at the interface between the organic semiconductor and the electrode, the efficiency of injecting electrons into the organic semiconductor is increased.
 例えば非特許文献2には、有機半導体と電極との界面に酸化モリブデン等の酸化物を挿入することが記載されている。酸化物の価電子帯を介することで、有機半導体と電極との界面におけるホールの注入効率が高まる。 For example, Non-Patent Document 2 describes that an oxide such as molybdenum oxide is inserted at the interface between the organic semiconductor and the electrode. Through the valence band of the oxide, the hole injection efficiency at the interface between the organic semiconductor and the electrode is increased.
 例えば非特許文献3には、有機半導体と電極との界面に自己組織化単分子膜(SAM)を挿入することが記載されている。自己組織化単分子は、分子内の電荷分布が不均一であり、電気双極子を形成する。電気双極子は、有機半導体と電極との接触界面における真空準位をシフトする。その結果、有機半導体中の電子・ホールのエネルギー準位に対して電極のフェルミ準位が相対的に変化し、電気双極子の向きに応じて有機半導体への電子又はホールの注入効率が高まる。 For example, Non-Patent Document 3 describes that a self-assembled monolayer (SAM) is inserted at the interface between an organic semiconductor and an electrode. Self-assembled monomolecules have a non-uniform charge distribution within the molecule and form electric dipoles. The electric dipole shifts the vacuum level at the contact interface between the organic semiconductor and the electrode. As a result, the Fermi level of the electrode changes relative to the energy level of electrons and holes in the organic semiconductor, and the efficiency of injecting electrons or holes into the organic semiconductor increases according to the direction of the electric dipole.
 上述のように非特許文献1~3に記載のいずれかの層を有機半導体と金属との間に挿入すると、層を挿入しない場合と比較して、有機半導体と電極との界面における接触抵抗が低減する。しかしながら、これらの層を挿入しても、電子又はホールのいずれか一方のキャリアが、有機半導体と電極との界面を通過する際の伝導特性を改善できるに過ぎない。すなわち、電子及びホールの両方のキャリアに対する接触抵抗を改善することは難しい。 As described above, when any one of the layers described in Non-Patent Documents 1 to 3 is inserted between the organic semiconductor and the metal, the contact resistance at the interface between the organic semiconductor and the electrode is smaller than when no layer is inserted. To reduce. However, the insertion of these layers can only improve the conduction characteristics when either electron or hole carriers pass through the interface between the organic semiconductor and the electrode. That is, it is difficult to improve the contact resistance to both electrons and holes.
 有機素子の実用化のためには、キャリアによらず接触抵抗の小さい有機素子が求められている。しかしながら、このような有機素子は実現できていない。 For the practical application of organic elements, organic elements with low contact resistance are required regardless of the carrier. However, such an organic element has not been realized.
 本発明は上記問題に鑑みてなされたものであり、有機半導体と電極との間に有機半導体多結晶膜を挿入することで、伝導するキャリアによらず有機半導体と電極体との接触界面における接触抵抗を低減できる有機素子用電極を提供する。 The present invention has been made in view of the above problems, and by inserting an organic semiconductor polycrystalline film between an organic semiconductor and an electrode, contact at the contact interface between the organic semiconductor and the electrode body is possible regardless of the conductive carriers. An electrode for an organic element capable of reducing resistance is provided.
 本発明の第1の態様は、有機半導体に接続される有機素子用電極であって、電極体と、前記電極体の第1面に設けられ、前記有機半導体との接触界面における接触抵抗を低減する有機半導体多結晶膜と、を備える。 1st aspect of this invention is an electrode for organic elements connected to an organic semiconductor, Comprising: It is provided in the 1st surface of an electrode body and the said electrode body, and reduces the contact resistance in the contact interface with the said organic semiconductor An organic semiconductor polycrystalline film.
 本発明の第2の態様は、上記第1の態様にかかる有機素子用電極において、前記有機半導体多結晶膜の前記電極体が設けられる第2面とは反対の第3面に設けられた有機分子膜をさらに備えてもよい。 According to a second aspect of the present invention, there is provided the organic element electrode according to the first aspect, wherein the organic semiconductor polycrystal film is provided on the third surface opposite to the second surface on which the electrode body is provided. A molecular film may be further provided.
 本発明の第3の態様は、上記第1又は第2の態様に係る有機素子用電極において、前記有機半導体多結晶膜の厚みが、1nm以上50nm以下であってもよい。 In a third aspect of the present invention, in the organic element electrode according to the first or second aspect, the organic semiconductor polycrystalline film may have a thickness of 1 nm to 50 nm.
 本発明の第4の態様は、上記第2又は第3の態様に係る有機素子用電極において、前記有機分子膜の厚みが、1nm以上10nm以下であってもよい。 According to a fourth aspect of the present invention, in the electrode for an organic element according to the second or third aspect, the thickness of the organic molecular film may be 1 nm or more and 10 nm or less.
 本発明の第5の態様は、上記第1~第4の態様のいずれか一態様に係る有機素子用電極において、前記有機半導体多結晶膜は、最低非占有分子軌道(LUMO)のエネルギー準位が、前記電極体のフェルミ準位以上であり、接続する前記有機半導体の最低非占有分子軌道(LUMO)のエネルギー準位に2.0eV加えた値以下であってもよい。 According to a fifth aspect of the present invention, in the electrode for an organic element according to any one of the first to fourth aspects, the organic semiconductor polycrystalline film has an energy level of a lowest unoccupied molecular orbital (LUMO). However, it may be equal to or higher than the Fermi level of the electrode body and not more than a value obtained by adding 2.0 eV to the energy level of the lowest unoccupied molecular orbital (LUMO) of the organic semiconductor to be connected.
 本発明の第6の態様は、上記第1~第5の態様のいずれか一態様に係る有機素子用電極において、前記有機半導体多結晶膜は、最高占有分子軌道(HOMO)のエネルギー準位が、前記電極体のフェルミ準位以下であり、接続する前記有機半導体の最高占有分子軌道(HOMO)のエネルギー準位から2.0eV減じた値以上であってもよい。 According to a sixth aspect of the present invention, in the organic element electrode according to any one of the first to fifth aspects, the organic semiconductor polycrystalline film has an energy level of a highest occupied molecular orbital (HOMO). Further, it may be equal to or lower than the Fermi level of the electrode body and a value obtained by subtracting 2.0 eV from the energy level of the highest occupied molecular orbital (HOMO) of the organic semiconductor to be connected.
 本発明の第7の態様は、上記第1~第6の態様のいずれか一態様に係る有機素子用電極において、前記有機分子膜が、室温で固体となる飽和炭化水素又は前記飽和炭化水素の誘導体を含んでもよい。 According to a seventh aspect of the present invention, in the electrode for an organic element according to any one of the first to sixth aspects, the organic molecular film is a saturated hydrocarbon or a saturated hydrocarbon that is solid at room temperature. Derivatives may also be included.
 本発明の第8の態様は、上記第1~第7の態様のいずれか一態様に係る有機素子用電極において、前記電極体のフェルミ準位は、接続する前記有機半導体の最低非占有分子軌道(LUMO)のエネルギー準位から3.0eV減じた値以上である、又は、接続する前記有機半導体の最高占有分子軌道(HOMO)のエネルギー準位に4.0eV加えた値以下である構成でもよい。 An eighth aspect of the present invention is the electrode for an organic element according to any one of the first to seventh aspects, wherein the Fermi level of the electrode body is the lowest unoccupied molecular orbital of the organic semiconductor to be connected. (LUMO) energy level is not less than 3.0 eV or a value obtained by adding 4.0 eV to the highest occupied molecular orbital (HOMO) energy level of the organic semiconductor to be connected. .
 本発明の第9の態様は、有機素子であって、上記第1~第8の態様のいずれか一態様に係る有機素子用電極と、前記有機素子用電極の前記有機半導体多結晶膜が設けられた第4面に接続された有機半導体と、を備える。 According to a ninth aspect of the present invention, there is provided an organic element comprising the organic element electrode according to any one of the first to eighth aspects, and the organic semiconductor polycrystalline film of the organic element electrode. An organic semiconductor connected to the formed fourth surface.
 上記本発明に係る態様によれば、有機半導体の最高占有分子軌道(HOMO)のエネルギー準位又は最低非占有分子軌道(LUMO)のエネルギー準位と、電極体のフェルミ準位との間に中間準位を有する。そのため、上記態様にかかる有機素子用電極は、伝導するキャリアによらず、有機半導体と電極体との接触界面における接触抵抗を低減できる。 According to the aspect of the present invention, an intermediate level between the energy level of the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of the organic semiconductor and the Fermi level of the electrode body. Has a level. Therefore, the electrode for organic elements according to the above aspect can reduce the contact resistance at the contact interface between the organic semiconductor and the electrode body regardless of the carriers to be conducted.
第1実施形態にかかる有機素子の断面模式図である。It is a cross-sectional schematic diagram of the organic element concerning 1st Embodiment. 電極体と有機半導体との接触界面のエネルギー状態を示した図である。It is the figure which showed the energy state of the contact interface of an electrode body and an organic semiconductor. 電極体と有機半導体との接触界面のエネルギー状態を示した図である。It is the figure which showed the energy state of the contact interface of an electrode body and an organic semiconductor. 有機半導体多結晶膜と電子移動度の関係を示すグラフである。It is a graph which shows the relationship between an organic-semiconductor polycrystalline film and electron mobility. 第2実施形態にかかる有機素子の断面模式図である。It is a cross-sectional schematic diagram of the organic element concerning 2nd Embodiment. 第2実施形態にかかる有機素子の各層の表面状態を原子間力顕微鏡(AFM)で測定した結果を示す図である。It is a figure which shows the result of having measured the surface state of each layer of the organic element concerning 2nd Embodiment with the atomic force microscope (AFM). 有機分子膜と電子移動度の関係を示すグラフである。It is a graph which shows the relationship between an organic molecular film and electron mobility. 第3実施形態にかかる有機素子の断面模式図である。It is a cross-sectional schematic diagram of the organic element concerning 3rd Embodiment. 実施例1、実施例2、比較例1及び比較例2の電界効果トランジスタに対して電子注入を行った際の接触抵抗を比較した図である。It is the figure which compared the contact resistance at the time of performing electron injection with respect to the field effect transistor of Example 1, Example 2, the comparative example 1, and the comparative example 2. FIG. 実施例1、実施例2、比較例1及び比較例2の電界効果トランジスタに対してホール注入を行った際の接触抵抗を比較した図である。It is the figure which compared the contact resistance at the time of hole-injecting with respect to the field effect transistor of Example 1, Example 2, the comparative example 1, and the comparative example 2. FIG. 電子注入を行った際の接触抵抗を比較したグラフである。It is the graph which compared the contact resistance at the time of performing electron injection. ホール注入を行った際の接触抵抗を比較したグラフである。It is the graph which compared the contact resistance at the time of performing hole injection. 有機半導体をルブレンとした実施例及び比較例の電界効果トランジスタの電子移動度及びホール移動度を測定した結果である。It is the result of having measured the electron mobility and the hole mobility of the field effect transistor of the Example which used the organic semiconductor as rubrene, and a comparative example. 有機半導体をBP2Tとした実施例及び比較例の電界効果トランジスタの電子移動度及びホール移動度を測定した結果である。It is the result of having measured the electron mobility and the hole mobility of the field effect transistor of the Example which used organic semiconductor as BP2T, and a comparative example. 本願の構造の電界効果トランジスタのトランジスタ特性を示すグラフである。It is a graph which shows the transistor characteristic of the field effect transistor of the structure of this application. 図14の変形例の電界効果トランジスタのトランジスタ特性を示すグラフである。It is a graph which shows the transistor characteristic of the field effect transistor of the modification of FIG.
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本実施形態の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本実施形態はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the drawings as appropriate. In the drawings used in the following description, in order to make the features of the present embodiment easier to understand, the features may be enlarged for the sake of convenience, and the dimensional ratios of the components are different from actual ones. There is. The materials, dimensions, and the like exemplified in the following description are merely examples, and the present embodiment is not limited to these, and can be appropriately modified and implemented without changing the gist thereof.
 本発明は、有機半導体と電極との間に有機半導体多結晶膜を挿入することで、伝導するキャリアによらず有機半導体と電極体との接触界面における接触抵抗を低減できることを見出したことによってなされたものである。 The present invention has been made by finding that by inserting an organic semiconductor polycrystalline film between an organic semiconductor and an electrode, it is possible to reduce the contact resistance at the contact interface between the organic semiconductor and the electrode body regardless of conducting carriers. It is a thing.
第1実施形態
 図1は、第1実施形態にかかる有機素子20の断面模式図である。有機素子20は、ゲート基板5Aと絶縁層5Bとを有する基板5と、保護層4と、有機半導体3と、有機素子用電極10と、を備える。ゲート基板5Aに電圧を印加すると、有機半導体3にチャネルが形成され、2つの有機素子用電極10間に電流が流れる。すなわち、図1に示す有機素子20は、電界効果トランジスタ(FET)である。
First Embodiment FIG. 1 is a schematic cross-sectional view of an organic element 20 according to a first embodiment. The organic element 20 includes a substrate 5 having a gate substrate 5A and an insulating layer 5B, a protective layer 4, an organic semiconductor 3, and an organic element electrode 10. When a voltage is applied to the gate substrate 5A, a channel is formed in the organic semiconductor 3, and a current flows between the two organic element electrodes 10. That is, the organic element 20 shown in FIG. 1 is a field effect transistor (FET).
(有機素子用電極)
 有機素子用電極10は二つで一組である。以下、第1の有機素子用電極10を電子注入用電極10Aといい、第2の有機素子用電極10をホール注入用電極10Bという。
 ゲート基板5Aの電位を基準として電子注入用電極10Aとホール注入用電極10Bにそれぞれ負と正の電圧を印加すると、電子注入用電極10Aから有機半導体3へ電子が注入され、ホール注入用電極10Bから有機半導体3へホールが注入される。
(Electrode for organic elements)
The organic element electrode 10 is a set of two. Hereinafter, the first organic element electrode 10 is referred to as an electron injection electrode 10A, and the second organic element electrode 10 is referred to as a hole injection electrode 10B.
When negative and positive voltages are applied to the electron injection electrode 10A and the hole injection electrode 10B, respectively, with reference to the potential of the gate substrate 5A, electrons are injected from the electron injection electrode 10A to the organic semiconductor 3, and the hole injection electrode 10B. Holes are injected into the organic semiconductor 3.
 有機素子用電極10は、電極体1と有機半導体多結晶膜2とを備える。以下、電子注入用電極10Aにおける電極体1を電子注入用電極体1Aといい、ホール注入用電極10Bにおける電極体1をホール注入用電極体1Bという。また電子注入用電極10Aにおける有機半導体多結晶膜2を電子注入用多結晶膜2Aといい、ホール注入用電極10Bにおける有機半導体多結晶膜2をホール注入用多結晶膜2Bという。 The organic element electrode 10 includes an electrode body 1 and an organic semiconductor polycrystalline film 2. Hereinafter, the electrode body 1 in the electron injection electrode 10A is referred to as an electron injection electrode body 1A, and the electrode body 1 in the hole injection electrode 10B is referred to as a hole injection electrode body 1B. The organic semiconductor polycrystalline film 2 in the electron injection electrode 10A is referred to as an electron injection polycrystalline film 2A, and the organic semiconductor polycrystalline film 2 in the hole injection electrode 10B is referred to as a hole injection polycrystalline film 2B.
 電極体1は、導電性を有する。電極体1には、単体の金属、複数の金属の合金、複数の金属の金属化合物等を用いることができる。また電極体1には、酸化インジウム錫(ITO)等の透明導電体を用いてもよい。 The electrode body 1 has conductivity. For the electrode body 1, a single metal, an alloy of a plurality of metals, a metal compound of a plurality of metals, or the like can be used. The electrode body 1 may be a transparent conductor such as indium tin oxide (ITO).
 電子注入用電極体1Aは、有機半導体3に電子を注入する。そのため、電子注入用電極体1Aのフェルミ準位は、接続する有機半導体3の最低非占有分子軌道(LUMO)のエネルギー準位から3.0eV減じた値以上であることが好ましい。以下、最低非占有分子軌道のエネルギー準位をLUMO準位という。 Electron injection electrode body 1 A injects electrons into organic semiconductor 3. Therefore, it is preferable that the Fermi level of the electrode body for electron injection 1A is not less than a value obtained by subtracting 3.0 eV from the energy level of the lowest unoccupied molecular orbital (LUMO) of the organic semiconductor 3 to be connected. Hereinafter, the energy level of the lowest unoccupied molecular orbital is referred to as the LUMO level.
 電子注入用電極体1Aのフェルミ準位と有機半導体3のLUMO準位とのエネルギー準位差は、有機半導体3へ電子を注入する際における電子の注入障壁となる。電子注入用電極体1Aのフェルミ準位と有機半導体3のLUMO準位とのエネルギー準位差を小さくすることで、電子の注入効率が高まる。 The energy level difference between the Fermi level of the electrode body 1A for electron injection and the LUMO level of the organic semiconductor 3 becomes an electron injection barrier when electrons are injected into the organic semiconductor 3. By reducing the energy level difference between the Fermi level of the electron injection electrode body 1A and the LUMO level of the organic semiconductor 3, the electron injection efficiency is increased.
 例えば、有機半導体3に5,6,11,12-テトラフェニルナフタセン(以下、「ルブレン」という)又はビフェニルビチオフェン(以下、「BP2T」という)を用いた場合は、電子注入用電極体1Aには、アルカリ金属、アルカリ土類金属、アルミニウム等を用いることができる。カルシウムのフェルミ準位は、ルブレン及びBP2TのLUMO準位と近似しており、電子注入用電極体1Aに好適に用いることができる。 For example, when 5,6,11,12-tetraphenylnaphthacene (hereinafter referred to as “rubrene”) or biphenylbithiophene (hereinafter referred to as “BP2T”) is used for the organic semiconductor 3, an electrode body 1 A for electron injection Alkali metal, alkaline earth metal, aluminum, and the like can be used for. The Fermi level of calcium approximates the LUMO level of rubrene and BP2T, and can be suitably used for the electrode body 1A for electron injection.
 一方で、アルカリ金属及びアルカリ土類金属の多くは、空気中で不安定であり、劣化しやすい。有機素子20に長期信頼性が求められる場合は、安定性を重視して電子注入用電極体1Aを選択することが好ましい。例えば、金、銀、銅、白金、ITO等の導電性と安定性に優れる材料を、電子注入用電極体1Aとして選択する。 On the other hand, many of alkali metals and alkaline earth metals are unstable in the air and easily deteriorate. When long-term reliability is required for the organic element 20, it is preferable to select the electrode body for electron injection 1A with emphasis on stability. For example, a material having excellent conductivity and stability, such as gold, silver, copper, platinum, and ITO, is selected as the electron injection electrode body 1A.
 電子の注入障壁を小さくしつつ、安定性を高めるという観点からは、電子注入用電極体1Aには、マグネシウム、アルミニウム、マグネシウム銀合金等を用いることが好ましい。 From the viewpoint of improving the stability while reducing the electron injection barrier, it is preferable to use magnesium, aluminum, magnesium silver alloy or the like for the electron injection electrode body 1A.
 ホール注入用電極体1Bは、有機半導体3にホールを注入する。そのため、ホール注入用電極体1Bのフェルミ準位は、接続する有機半導体3の最高占有分子軌道(HOMO)のエネルギー準位に4.0eV加えた値以下であることが好ましい。以下、最高占有分子軌道のエネルギー準位をHOMO準位という。 The hole injection electrode body 1 </ b> B injects holes into the organic semiconductor 3. Therefore, the Fermi level of the hole injection electrode body 1B is preferably not more than a value obtained by adding 4.0 eV to the energy level of the highest occupied molecular orbital (HOMO) of the organic semiconductor 3 to be connected. Hereinafter, the energy level of the highest occupied molecular orbital is referred to as the HOMO level.
 ホール注入用電極体1Bのフェルミ準位と有機半導体3のHOMO準位とのエネルギー準位差は、有機半導体3へホールを注入する際におけるホールの注入障壁となる。そのため、ホール注入用電極体1Bのフェルミ準位と有機半導体3のHOMO準位とのエネルギー準位差を小さくすることで、ホールの注入効率が高まる。 The energy level difference between the Fermi level of the hole injection electrode body 1 </ b> B and the HOMO level of the organic semiconductor 3 becomes a hole injection barrier when holes are injected into the organic semiconductor 3. Therefore, by reducing the energy level difference between the Fermi level of the hole injection electrode body 1B and the HOMO level of the organic semiconductor 3, the hole injection efficiency is increased.
 例えば、有機半導体3にルブレン又はBP2Tを用いた場合は、ホール注入用電極体1Bとしては、金、白金、銀、銅を用いることが好ましい。特に金のフェルミ準位は、ルブレン及びBP2TのHOMO準位と近似しており、特に好ましい。 For example, when rubrene or BP2T is used for the organic semiconductor 3, it is preferable to use gold, platinum, silver, or copper as the hole injection electrode body 1B. In particular, the Fermi level of gold is particularly preferable because it approximates the HOMO level of rubrene and BP2T.
 また電子注入用電極体1Aとホール注入用電極体1Bが同一の材料からなると、有機素子20の製造が容易となる。電子とホールの高い注入効率及び高い環境安定性を維持するためには、電子注入用電極体1A及びホール注入用電極体1Bに金を用いることが好ましい。 If the electron injection electrode body 1A and the hole injection electrode body 1B are made of the same material, the organic element 20 can be easily manufactured. In order to maintain high electron and hole injection efficiency and high environmental stability, it is preferable to use gold for the electron injection electrode body 1A and the hole injection electrode body 1B.
 有機半導体多結晶膜2は、電極体1の一面に形成される。
 「有機半導体多結晶膜」は、有機半導体の単結晶以外の全てを含む。例えば、「有機半導体多結晶膜」には、複数の結晶構造が混晶した膜、結晶構造を形成していない非晶質構造を含む膜、等が含まれる。
The organic semiconductor polycrystalline film 2 is formed on one surface of the electrode body 1.
The “organic semiconductor polycrystalline film” includes everything except a single crystal of an organic semiconductor. For example, the “organic semiconductor polycrystalline film” includes a film in which a plurality of crystal structures are mixed, a film having an amorphous structure in which no crystal structure is formed, and the like.
 有機半導体多結晶膜2であるか否かは、X線回折(XRD)から判断できる。有機半導体多結晶膜2をXRD測定した回折パターンは、以下の2つのいずれかの回折パターンとなる。1つ目の回折パターンは、所定の結晶方位に応じたピーク以外のピークが検出される回折パターンである。この回折パターンは、有機半導体多結晶膜2に複数の結晶構造が混晶している場合に対応する。2つ目の回折パターンは、顕著なピークが検出されず、ブロードなピークが検出される回折パターンである。この回折パターンは、有機半導体多結晶膜2が非晶質の場合に対応する。 Whether or not it is the organic semiconductor polycrystalline film 2 can be determined from X-ray diffraction (XRD). A diffraction pattern obtained by XRD measurement of the organic semiconductor polycrystalline film 2 is one of the following two diffraction patterns. The first diffraction pattern is a diffraction pattern in which a peak other than a peak corresponding to a predetermined crystal orientation is detected. This diffraction pattern corresponds to the case where a plurality of crystal structures are mixed in the organic semiconductor polycrystalline film 2. The second diffraction pattern is a diffraction pattern in which a prominent peak is not detected and a broad peak is detected. This diffraction pattern corresponds to the case where the organic semiconductor polycrystalline film 2 is amorphous.
 また有機半導体多結晶膜2であるか否かは、製造過程からも判断できる。単結晶を作製するためには、気相法、液相法、固相法のいずれの方法においても、結晶成長を行う必要がある。そのため、真空蒸着等の被成膜面に分子を衝突される方法では、単結晶を得ることが難しい。すなわち、真空蒸着等の方法で作製された有機膜は、単結晶ではなく、有機半導体多結晶膜2であると言える。 Whether or not it is the organic semiconductor polycrystalline film 2 can also be judged from the manufacturing process. In order to produce a single crystal, it is necessary to perform crystal growth in any of a gas phase method, a liquid phase method, and a solid phase method. Therefore, it is difficult to obtain a single crystal by a method in which molecules collide with a deposition surface such as vacuum deposition. That is, it can be said that the organic film produced by a method such as vacuum deposition is not a single crystal but an organic semiconductor polycrystalline film 2.
 有機半導体多結晶膜2の結晶性は、有機半導体3より悪い。ここで「結晶性」とは、XRDにより測定される指標である。結晶性が良いと、結晶面に依存した回折パターンのピークのみが確認され、結晶性が悪いと結晶面に依存した回折パターンの各ピークがブロードになると共に、結晶面に依存した回折パターンのピークと異なるピークが確認される。 The crystallinity of the organic semiconductor polycrystalline film 2 is worse than that of the organic semiconductor 3. Here, “crystallinity” is an index measured by XRD. When the crystallinity is good, only the peak of the diffraction pattern depending on the crystal plane is confirmed, and when the crystallinity is poor, each peak of the diffraction pattern depending on the crystal plane becomes broad and the peak of the diffraction pattern dependent on the crystal plane And a different peak is confirmed.
 結晶性の違いは、表面形状からも確認できる。結晶性が悪いと、表面形状のグレインサイズが小さくなる。ここで、グレインとは、同一の結晶構造を有している領域を意味する。有機半導体多結晶膜2のグレインサイズは、5μm以下であることが好ましく、1μm以下であることがより好ましく、0.5μm以下であることがさらに好ましい。下限値は、小さければ小さい程良いが、450nm程度が現実的に形成されるグレインサイズである。 The difference in crystallinity can also be confirmed from the surface shape. If the crystallinity is poor, the grain size of the surface shape becomes small. Here, the grain means a region having the same crystal structure. The grain size of the organic semiconductor polycrystalline film 2 is preferably 5 μm or less, more preferably 1 μm or less, and even more preferably 0.5 μm or less. The lower limit value is preferably as small as possible, but about 450 nm is the grain size that is practically formed.
 グレインサイズは、以下のようにして求める。まずAFMにより5μm×5μmの領域を測定する。領域内の任意の15個のグレインを選択し、各グレインに内接する円の直径を求める。そして、それらの直径の平均値をグレインサイズとする。 The grain size is obtained as follows. First, an area of 5 μm × 5 μm is measured by AFM. Arbitrary 15 grains in the region are selected, and the diameter of a circle inscribed in each grain is obtained. And let the average value of those diameters be a grain size.
 有機半導体多結晶膜2は、接続する有機半導体3に応じて、任意の有機材料を用いることができる。例えば、ルブレン、BP2T、アントラセン、テトラセン、ペンタセン、テトラシアノキノジメタン、α,ω-ビス(ビフェニル)ターチオフェン、ジフナト[2,3-b:2’,3’-f]チオフェノ[3,2-b]チオフェン、1,4-ビス(5-フェニルチオフェン-2-イル)ベンゼン等を用いることができる。ルブレン及びBP2Tは、キャリアの移動度が高く、特に好ましい。 The organic semiconductor polycrystalline film 2 can use any organic material according to the organic semiconductor 3 to be connected. For example, rubrene, BP2T, anthracene, tetracene, pentacene, tetracyanoquinodimethane, α, ω-bis (biphenyl) terthiophene, difnat [2,3-b: 2 ′, 3′-f] thiopheno [3,2 -B] Thiophene, 1,4-bis (5-phenylthiophen-2-yl) benzene and the like can be used. Rubrene and BP2T are particularly preferable because of high carrier mobility.
 有機半導体多結晶膜2は、電極体1と有機半導体3との接触界面における接触抵抗を低減する。以下、電子を有機半導体3に注入する場合を例に、接触抵抗が低くなる理由を説明する。 The organic semiconductor polycrystalline film 2 reduces the contact resistance at the contact interface between the electrode body 1 and the organic semiconductor 3. Hereinafter, the reason why the contact resistance is lowered will be described by taking the case where electrons are injected into the organic semiconductor 3 as an example.
 図2A及び図2Bは、電極体1と有機半導体3との接触界面のエネルギー状態を示した図である。図2Aは、有機半導体多結晶膜2を挿入しない場合のエネルギー状態図であり、図2Bは、有機半導体多結晶膜2を挿入した場合のエネルギー状態図である。 2A and 2B are diagrams showing the energy state of the contact interface between the electrode body 1 and the organic semiconductor 3. FIG. 2A is an energy state diagram when the organic semiconductor polycrystalline film 2 is not inserted, and FIG. 2B is an energy state diagram when the organic semiconductor polycrystalline film 2 is inserted.
 図2Aに示すように、有機半導体多結晶膜2が挿入されていない場合、電極体1から有機半導体3に電子を注入するためには、ショットキーバリアを超える必要がある。電極体1のフェルミ面Eに存在する電子の多くは、大きな外力が加えられないと、ショットキーバリアを超えることができない。したがって、電極体1と有機半導体3との界面における電子の注入効率は悪い。 As shown in FIG. 2A, when the organic semiconductor polycrystalline film 2 is not inserted, in order to inject electrons from the electrode body 1 into the organic semiconductor 3, it is necessary to exceed the Schottky barrier. Many of electrons present in the Fermi surface E F of the electrode body 1, when the large external force is not applied, can not exceed the Schottky barrier. Therefore, the electron injection efficiency at the interface between the electrode body 1 and the organic semiconductor 3 is poor.
 これに対し、図2Bに示すように、有機半導体多結晶膜2が挿入されている場合、有機半導体多結晶膜2内にバンドギャップ内準位が形成される。有機半導体多結晶膜2は、単結晶と比較して結晶性が悪く、結晶構造の乱れを有するためである。電極体1のフェルミ面Eに存在する電子は、バンドギャップ内準位を介して有機半導体3のLUMO準位に至る。そのため、電極体1から有機半導体3で電子が注入する際に、電子が超える必要のある有効障壁高さが低くなる。例えば、これにより、ホール注入に対して1.97eV、電子注入に対して2.60eVの注入障壁低下を見込むことができる。すなわち、電極体1と有機半導体3との界面における電子の注入効率が向上する。 On the other hand, as shown in FIG. 2B, when the organic semiconductor polycrystalline film 2 is inserted, a band gap level is formed in the organic semiconductor polycrystalline film 2. This is because the organic semiconductor polycrystalline film 2 has poor crystallinity compared to a single crystal and has a disordered crystal structure. Electrons present in the Fermi surface E F of the electrode body 1, leading to the LUMO level of the organic semiconductor 3 via the bandgap level. Therefore, when electrons are injected from the electrode body 1 into the organic semiconductor 3, the effective barrier height that the electrons need to exceed is lowered. For example, this can be expected to lower the injection barrier of 1.97 eV for hole injection and 2.60 eV for electron injection. That is, the electron injection efficiency at the interface between the electrode body 1 and the organic semiconductor 3 is improved.
 電子の注入効率が向上すると、有機素子20の積層方向への電子の伝導効率が高まる。すなわち、有機半導体多結晶膜2を設けることで、電極体1と有機半導体3との間の接触抵抗が低減する。ホールを注入する場合においても、同様の原理で接触抵抗が低減する。 When the electron injection efficiency is improved, the electron conduction efficiency in the stacking direction of the organic element 20 is increased. That is, the contact resistance between the electrode body 1 and the organic semiconductor 3 is reduced by providing the organic semiconductor polycrystalline film 2. Even when holes are injected, the contact resistance is reduced by the same principle.
 有機半導体多結晶膜2の厚みは、1nm以上50nm以下であることが好ましい。また、有機半導体多結晶膜(BP2T)2の厚みを変化させた場合の電子移動度を測定した結果を図3に示す。これにより、有機半導体多結晶膜2の厚みは、4nm以上30nm以下であることがより好ましく、8nm以上20nm以下であることがさらに好ましい。 The thickness of the organic semiconductor polycrystalline film 2 is preferably 1 nm or more and 50 nm or less. Moreover, the result of having measured the electron mobility at the time of changing the thickness of the organic-semiconductor polycrystalline film (BP2T) 2 is shown in FIG. Thereby, the thickness of the organic semiconductor polycrystalline film 2 is more preferably 4 nm or more and 30 nm or less, and further preferably 8 nm or more and 20 nm or less.
 有機半導体多結晶膜2の厚みを所定の厚み以下にすることで、有機半導体多結晶膜2が抵抗体となり、電極体1と有機半導体3の伝導を阻害することが避けられる。また有機半導体多結晶膜2の厚みを所定の厚み以上とすることで、電極体1と有機半導体3との界面に、バンドギャップ内準位を充分形成することができる。 By making the thickness of the organic semiconductor polycrystalline film 2 equal to or less than a predetermined thickness, the organic semiconductor polycrystalline film 2 becomes a resistor, and it is possible to avoid inhibiting the conduction between the electrode body 1 and the organic semiconductor 3. Further, by setting the thickness of the organic semiconductor polycrystalline film 2 to a predetermined thickness or more, a band gap level can be sufficiently formed at the interface between the electrode body 1 and the organic semiconductor 3.
 有機半導体多結晶膜2は、電子注入用多結晶膜2Aとホール注入用多結晶膜2Bとで異なる材料からなっても、同一の材料からなってもよい。製造の容易さの観点からは、電子注入用多結晶膜2Aとホール注入用多結晶膜2Bとは、同一の材料を用いることが好ましい。 The organic semiconductor polycrystalline film 2 may be made of different materials or the same material for the electron-injecting polycrystalline film 2A and the hole-injecting polycrystalline film 2B. From the viewpoint of ease of manufacture, it is preferable to use the same material for the electron injection polycrystalline film 2A and the hole injection polycrystalline film 2B.
 エネルギー的な観点からは、電子注入用多結晶膜2Aとホール注入用多結晶膜2Bのそれぞれは以下のような条件を満たすことが好ましい。 From the viewpoint of energy, each of the electron injection polycrystalline film 2A and the hole injection polycrystalline film 2B preferably satisfies the following conditions.
 電子注入用多結晶膜2AのLUMO準位は、電極体1のフェルミ準位以上であり、有機半導体3のLUMO準位に2.0eV加えた値以下であることが好ましく、0.2eV加えた値以下であることがより好ましい。また、電極体1のフェルミ準位と有機半導体3のLUMO準位との間にあることがさらに好ましい。
 ここで、電子注入用多結晶膜2AのLUMO準位とは、電子注入用多結晶膜2Aを構成する主要な有機分子のLUMO準位を意味する。
The LUMO level of the electron injection polycrystalline film 2A is equal to or higher than the Fermi level of the electrode body 1 and is preferably equal to or less than the value obtained by adding 2.0 eV to the LUMO level of the organic semiconductor 3, and 0.2 eV is added. It is more preferable that the value is not more than the value. Further, it is more preferable to be between the Fermi level of the electrode body 1 and the LUMO level of the organic semiconductor 3.
Here, the LUMO level of the electron injection polycrystalline film 2A means the LUMO level of the main organic molecule constituting the electron injection polycrystalline film 2A.
 バンドギャップ内準位は、電子注入用多結晶膜2Aの結晶構造の乱れ等によって生じる。そのため、バンドギャップ内準位は、電子注入用多結晶膜2AのLUMO準位近傍に多く生じる。電子注入用多結晶膜2AのLUMO準位が電極体1のフェルミ準位と有機半導体3のLUMO準位との間にあれば、バンドギャップ内準位も電極体1のフェルミ準位と有機半導体3のLUMO準位との間に適切に形成される。すなわち、電極体1から有機半導体3への電子の注入において、バンドギャップ内準位を介した電子の注入が可能となり、電子が超える必要のある有効障壁高さをより低くできる。 The level in the band gap is generated due to disorder of the crystal structure of the polycrystalline film 2A for electron injection. Therefore, many band gap levels occur in the vicinity of the LUMO level of the electron injection polycrystalline film 2A. If the LUMO level of the electron injection polycrystalline film 2A is between the Fermi level of the electrode body 1 and the LUMO level of the organic semiconductor 3, the in-band gap level is also the same as the Fermi level of the electrode body 1 and the organic semiconductor. It is appropriately formed between the three LUMO levels. That is, in the injection of electrons from the electrode body 1 into the organic semiconductor 3, electrons can be injected through the band gap level, and the effective barrier height that the electrons need to exceed can be further reduced.
 また電子注入用多結晶膜2AのLUMO準位が有機半導体3のLUMO準位以上の場合でも、バンドギャップ内準位はある程度のエネルギー分布を持っている。そのため、二つのLUMO準位間の差が2.0eV程度であれば、有機半導体3のLUMO準位より低いエネルギーに十分な密度のバンドギャップ内準位が存在する。また二つのLUMO準位間の差が0.2eV程度であれば、有機半導体3のLUMO準位より低いエネルギーに、十分な密度のバンドギャップ内準位が存在する確率がより高まる。すなわち、電子注入用多結晶膜2Aから有機半導体3へ電子の注入がより容易になり、電子注入用多結晶膜2Aと有機半導体3との界面における電子の注入効率が高まる。 Even when the LUMO level of the polycrystalline film 2A for electron injection is equal to or higher than the LUMO level of the organic semiconductor 3, the level in the band gap has a certain energy distribution. Therefore, if the difference between the two LUMO levels is about 2.0 eV, there is an in-band gap level with sufficient density for energy lower than the LUMO level of the organic semiconductor 3. If the difference between the two LUMO levels is about 0.2 eV, the probability that a band gap level with sufficient density exists at an energy lower than the LUMO level of the organic semiconductor 3 is further increased. That is, it becomes easier to inject electrons from the electron injection polycrystalline film 2A into the organic semiconductor 3, and the electron injection efficiency at the interface between the electron injection polycrystalline film 2A and the organic semiconductor 3 is increased.
 ところで、電子注入用多結晶膜2AのLUMO準位と有機半導体3のLUMO準位とが近似していると、電子注入用多結晶膜2Aと有機半導体3の電子状態は近似する。物質の電子状態は、物質の結晶構造又は分子構造に大きく影響を受ける。すなわち、電子注入用多結晶膜2AのLUMO準位と有機半導体3のLUMO準位とが近似していると、電子注入用多結晶膜2Aと有機半導体3の結晶構造又は分子構造が類似している。結晶構造又は分子構造が類似すると、電子注入用多結晶膜2Aと有機半導体3との界面の構造変化がなだらかになる。すなわち、電子注入用多結晶膜2Aと有機半導体3との界面に望まないエネルギー障壁等が形成されることを避けることができる。 By the way, when the LUMO level of the electron injection polycrystalline film 2A and the LUMO level of the organic semiconductor 3 are approximated, the electron states of the electron injection polycrystalline film 2A and the organic semiconductor 3 are approximated. The electronic state of a substance is greatly affected by the crystal structure or molecular structure of the substance. That is, if the LUMO level of the electron injection polycrystalline film 2A is close to the LUMO level of the organic semiconductor 3, the crystal structure or molecular structure of the electron injection polycrystalline film 2A and the organic semiconductor 3 is similar. Yes. If the crystal structure or the molecular structure is similar, the structural change at the interface between the electron injection polycrystalline film 2A and the organic semiconductor 3 becomes gentle. That is, it is possible to avoid formation of an undesired energy barrier or the like at the interface between the electron injection polycrystalline film 2A and the organic semiconductor 3.
 一方で、ホール注入用多結晶膜2BのHOMO準位は、電極体1のフェルミ準位以下であり、有機半導体3のHOMO準位から2.0eV減じた値以上であることが好ましく、有機半導体3のHOMO準位から0.2eV減じた値以上であることがより好ましい。また、電極体1のフェルミ準位と有機半導体3のHOMO準位との間にあることがさらに好ましい。
 ここで、ホール注入用多結晶膜2BのHOMO準位とは、ホール注入用多結晶膜2Bを構成する主要な有機分子のHOMO準位を意味する。
On the other hand, the HOMO level of the hole-injecting polycrystalline film 2B is less than or equal to the Fermi level of the electrode body 1, and is preferably equal to or more than a value obtained by subtracting 2.0 eV from the HOMO level of the organic semiconductor 3. It is more preferable that it is equal to or more than a value obtained by subtracting 0.2 eV from the HOMO level of 3. Further, it is more preferable to be between the Fermi level of the electrode body 1 and the HOMO level of the organic semiconductor 3.
Here, the HOMO level of the hole-injecting polycrystalline film 2B means the HOMO level of main organic molecules constituting the hole-injecting polycrystalline film 2B.
 ホールの注入においても、電極体1から有機半導体3へのホールの遷移は、バンドギャップ内準位を介して行われる。バンドギャップ内準位が、電極体1のフェルミ準位と有機半導体3のLUMO準位との間にあれば、遷移時にホールが超える必要のある有効障壁高さを低くできる。ホール注入用多結晶膜2BのHOMO準位が電極体1のフェルミ準位と有機半導体3のHOMO準位との間にあれば、バンドギャップ内準位も電極体1のフェルミ準位と有機半導体3のHOMO準位との間に適切に形成される。 Also in the injection of holes, the transition of holes from the electrode body 1 to the organic semiconductor 3 is performed through the band gap level. If the in-band gap level is between the Fermi level of the electrode body 1 and the LUMO level of the organic semiconductor 3, the effective barrier height that must be exceeded by holes at the time of transition can be reduced. If the HOMO level of the hole-injecting polycrystalline film 2B is between the Fermi level of the electrode body 1 and the HOMO level of the organic semiconductor 3, the in-band gap level is also equal to the Fermi level of the electrode body 1 and the organic semiconductor. It is formed appropriately between the three HOMO levels.
 またホール注入用多結晶膜2BのHOMO準位が有機半導体3のHOMO準位以下の場合でも、二つのHOMO準位間の差が2.0eV程度であれば、有機半導体3のHOMO準位より高いエネルギーに十分な密度のバンドギャップ内準位が存在する。また二つのHOMO準位間の差が0.2eV程度であれば、有機半導体3のHOMO準位より低いエネルギーに、十分な密度のバンドギャップ内準位が存在する確率がより高まる。すなわち、ホール注入用多結晶膜2Bから有機半導体3へホールの注入がより容易になり、ホール注入用多結晶膜2Bと有機半導体3との界面におけるホールの注入効率が高まる。 Further, even when the HOMO level of the hole injection polycrystalline film 2B is lower than or equal to the HOMO level of the organic semiconductor 3, if the difference between the two HOMO levels is about 2.0 eV, the HOMO level of the organic semiconductor 3 There are in-bandgap levels of sufficient density for high energy. If the difference between the two HOMO levels is about 0.2 eV, the probability that a band gap level with sufficient density exists at an energy lower than the HOMO level of the organic semiconductor 3 is further increased. That is, holes are more easily injected from the hole-injecting polycrystalline film 2B into the organic semiconductor 3, and the hole-injecting efficiency at the interface between the hole-injecting polycrystalline film 2B and the organic semiconductor 3 is increased.
 またホール注入用多結晶膜2BのHOMO準位と有機半導体3のHOMO準位とが近似していれば、ホール注入用多結晶膜2Bと有機半導体3との界面に望まないエネルギー障壁等が形成されることを避けることができる。 If the HOMO level of the hole-injecting polycrystalline film 2B and the HOMO level of the organic semiconductor 3 are close to each other, an unwanted energy barrier or the like is formed at the interface between the hole-injecting polycrystalline film 2B and the organic semiconductor 3. Can be avoided.
 電子注入用多結晶膜2Aとホール注入用多結晶膜2Bに用いる材料を同一とし、電子及びホールの注入障壁の両方を小さくするためには、有機半導体多結晶膜2は有機半導体3と同一の有機分子を含むことが好ましく、同一の有機分子からなることがより好ましい。 In order to make the material used for the electron injection polycrystalline film 2A and the hole injection polycrystalline film 2B the same and to reduce both the electron and hole injection barriers, the organic semiconductor polycrystalline film 2 is the same as the organic semiconductor 3 It preferably contains organic molecules, and more preferably consists of the same organic molecules.
(有機半導体)
 有機半導体3は、有機素子用電極10が接続されて有機素子20として機能する。有機半導体3は、有機素子用電極10の有機半導体多結晶膜2側の面に接続される。
(Organic semiconductor)
The organic semiconductor 3 functions as the organic element 20 to which the organic element electrode 10 is connected. The organic semiconductor 3 is connected to the surface of the organic element electrode 10 on the organic semiconductor polycrystalline film 2 side.
 有機半導体3には、任意の有機材料を用いることができる。例えば、ルブレン、BP2T、アントラセン、テトラセン、ペンタセン、テトラシアノキノジメタン、α,ω-ビス(ビフェニル)ターチオフェン、ジフナト[2,3-b:2’,3’-f]チオフェノ[3,2-b]チオフェン、1,4-ビス(5-フェニルチオフェン-2-イル)ベンゼン等を用いることができる。ルブレン及びBP2Tは、キャリアの移動度が高く、特に好ましい。 Any organic material can be used for the organic semiconductor 3. For example, rubrene, BP2T, anthracene, tetracene, pentacene, tetracyanoquinodimethane, α, ω-bis (biphenyl) terthiophene, difnat [2,3-b: 2 ′, 3′-f] thiopheno [3,2 -B] Thiophene, 1,4-bis (5-phenylthiophen-2-yl) benzene and the like can be used. Rubrene and BP2T are particularly preferable because of high carrier mobility.
 有機半導体3は、単結晶であることが好ましい。単結晶の有機半導体3は、キャリアの移動度が高い。例えば、ルブレンの単結晶は、有機半導体の中でも非常に高い移動度を示す。また有機半導体3が単結晶の場合に、電極体1と有機半導体3の接触抵抗が特に高くなる。すなわち、本実施形態にかかる有機素子用電極10を用いることで、接触抵抗を低減するという効果が顕著になる。 The organic semiconductor 3 is preferably a single crystal. The single crystal organic semiconductor 3 has high carrier mobility. For example, a single crystal of rubrene exhibits very high mobility among organic semiconductors. When the organic semiconductor 3 is a single crystal, the contact resistance between the electrode body 1 and the organic semiconductor 3 is particularly high. That is, by using the organic element electrode 10 according to the present embodiment, the effect of reducing the contact resistance becomes remarkable.
(保護層、基板)
 図1に示す基板5は、ゲート基板5Aと絶縁層5Bとを有する。基板5上には、有機半導体3が結晶成長されている。
(Protective layer, substrate)
A substrate 5 shown in FIG. 1 includes a gate substrate 5A and an insulating layer 5B. On the substrate 5, the organic semiconductor 3 is crystal-grown.
 ゲート基板5Aは、絶縁層5Bを介して有機半導体3に電圧を印加する。ゲート基板5Aから電圧が印加されると、有機半導体3中にチャネルが形成されて、電子注入用電極10Aとホール注入用電極10Bを繋ぐ。 The gate substrate 5A applies a voltage to the organic semiconductor 3 through the insulating layer 5B. When a voltage is applied from the gate substrate 5A, a channel is formed in the organic semiconductor 3 and connects the electron injection electrode 10A and the hole injection electrode 10B.
 ゲート基板5Aは、公知のものを用いることができる。有機素子20は、半導体基板上に集積されることが多い。そのため、ゲート基板5Aには、半導体を用いることが好ましく、P型リッチなシリコン(p++-Si)等を用いることが特に好ましい。 As the gate substrate 5A, a known one can be used. The organic element 20 is often integrated on a semiconductor substrate. Therefore, it is preferable to use a semiconductor for the gate substrate 5A, and it is particularly preferable to use P-type rich silicon (p ++- Si) or the like.
 絶縁層5Bは、ゲート電圧により絶縁破壊されないものであれば、公知のものを用いることができる。ゲート基板5Aがシリコンの場合、絶縁層5Bには酸化シリコン等を用いることが多い。 As the insulating layer 5B, a known layer can be used as long as it is not broken down by the gate voltage. When the gate substrate 5A is silicon, silicon oxide or the like is often used for the insulating layer 5B.
 保護層4は、基板5にシリコン等の半導体結晶を用いた場合に必要となる層である。半導体結晶において、結晶の表面近傍の原子は、共有結合の相手を失う。そのため、不対電子が露出したダングリングボンドが形成される。ダングリングボンドは、不安定なため、電子を補足する。有機半導体3内を流れる電子の一部がダングリングボンドにより捕捉されると、有機半導体3のキャリア移動度が低下する。そのため、基板にシリコン等を用いた場合は、基板5と有機半導体3の間に保護層4を有することが好ましい。 The protective layer 4 is a layer required when a semiconductor crystal such as silicon is used for the substrate 5. In semiconductor crystals, atoms near the surface of the crystal lose their covalent bond partners. Therefore, a dangling bond in which unpaired electrons are exposed is formed. Since dangling bonds are unstable, they supplement electrons. When some of the electrons flowing in the organic semiconductor 3 are captured by dangling bonds, the carrier mobility of the organic semiconductor 3 is lowered. Therefore, when silicon or the like is used for the substrate, it is preferable to have the protective layer 4 between the substrate 5 and the organic semiconductor 3.
 保護層4には、絶縁性を有する有機材料を用いることが好ましい。例えば、パリレン、ポリスチレン、ポリメチルメタクリレート(PMMA)等を用いることができる。 It is preferable to use an insulating organic material for the protective layer 4. For example, parylene, polystyrene, polymethyl methacrylate (PMMA), or the like can be used.
 (有機素子の製造方法)
 有機素子20は、各層を積層することで得ることができる。
 まず、ゲート基板5A上に絶縁層5Bが形成された基板5を準備する。基板5は、公知の方法で作製することができる。また市販品を購入してもよい。
(Method for manufacturing organic element)
The organic element 20 can be obtained by laminating each layer.
First, a substrate 5 having an insulating layer 5B formed on a gate substrate 5A is prepared. The substrate 5 can be produced by a known method. Moreover, you may purchase a commercial item.
 基板5がシリコン等の半導体の場合、保護層4を基板5上に形成する。保護層4は、公知の積層方法で作製することができる。例えば、スピンコート法、化学気相成長法(CVD)等の手段を用いることができる。 When the substrate 5 is a semiconductor such as silicon, the protective layer 4 is formed on the substrate 5. The protective layer 4 can be produced by a known lamination method. For example, means such as spin coating and chemical vapor deposition (CVD) can be used.
 保護層4上に有機半導体3を積層する。有機半導体3は、単結晶であることが好ましい。単結晶の有機半導体は、基板上に有機膜を結晶成長させることで得ることができる。例えば、物理気相輸送法等を用いて行うことができる。 The organic semiconductor 3 is laminated on the protective layer 4. The organic semiconductor 3 is preferably a single crystal. A single crystal organic semiconductor can be obtained by crystal growth of an organic film on a substrate. For example, it can be performed using a physical vapor transport method or the like.
 有機半導体3上に、有機半導体多結晶膜2及び電極体1を積層する。これらの層は、フォトリソグラフィー法、マスクを介した真空蒸着等の方法で作製される。有機半導体多結晶膜2は、真空蒸着等により成膜されることで、多結晶膜になる。 The organic semiconductor polycrystalline film 2 and the electrode body 1 are stacked on the organic semiconductor 3. These layers are produced by a photolithography method, a vacuum deposition method using a mask, or the like. The organic semiconductor polycrystalline film 2 is formed by vacuum deposition or the like to become a polycrystalline film.
 上述のように、本実施形態にかかる有機素子用電極によれば、電極体1と有機半導体3との界面に、有機半導体多結晶膜2を挿入することで、キャリア注入時の有効障壁高さが低くなる。その結果、電極体1から有機半導体3へのキャリアの注入が容易になり、電極体1と有機半導体3との界面の接触抵抗が低減する。 As described above, according to the electrode for an organic element according to the present embodiment, the effective barrier height at the time of carrier injection is obtained by inserting the organic semiconductor polycrystalline film 2 into the interface between the electrode body 1 and the organic semiconductor 3. Becomes lower. As a result, the injection of carriers from the electrode body 1 to the organic semiconductor 3 is facilitated, and the contact resistance at the interface between the electrode body 1 and the organic semiconductor 3 is reduced.
第2実施形態
 図4は、本発明の第2実施形態にかかる有機素子21の断面模式図である。第2実施形態にかかる有機素子21は、有機素子用電極11が有機分子膜6を有する点が、第1実施形態にかかる有機素子20と異なる。以下の説明では、共通な箇所の説明は省略する。また、説明に用いる各図面において、図1と共通の構成要素には同一の符号を付すものとする。
Second Embodiment FIG. 4 is a schematic cross-sectional view of an organic element 21 according to a second embodiment of the present invention. The organic element 21 according to the second embodiment is different from the organic element 20 according to the first embodiment in that the organic element electrode 11 includes the organic molecular film 6. In the following description, description of common parts is omitted. In the drawings used for the description, the same reference numerals are assigned to the same components as those in FIG.
 有機分子膜6は、有機半導体3と有機半導体多結晶膜2との間に設けられている。
 有機分子膜6は、有機素子用電極11に設けられ、有機半導体多結晶膜2の電極体1と反対側の面に形成されている。有機素子用電極11は、第1実施形態と同様に一方が電子注入用電極11Aであり、他方がホール注入用電極11Bである。
The organic molecular film 6 is provided between the organic semiconductor 3 and the organic semiconductor polycrystalline film 2.
The organic molecular film 6 is provided on the organic element electrode 11 and is formed on the surface of the organic semiconductor polycrystalline film 2 opposite to the electrode body 1. As in the first embodiment, one of the organic element electrodes 11 is an electron injection electrode 11A, and the other is a hole injection electrode 11B.
 図5は、有機素子21の各層の表面状態を原子間力顕微鏡(AFM)で測定した結果を示す図である。図5(a)は有機半導体3の表面のAFM像である。図5(b)は有機分子膜6の表面のAFM像である。図5(c)は有機半導体3上に有機半導体多結晶膜2を積層した場合の有機半導体多結晶膜2の表面のAFM像である。図5(d)は有機半導体3上に有機分子膜6を介して有機半導体多結晶膜2を積層した場合の有機半導体多結晶膜2の表面のAFM像である。 FIG. 5 is a diagram showing the results of measuring the surface state of each layer of the organic element 21 with an atomic force microscope (AFM). FIG. 5A is an AFM image of the surface of the organic semiconductor 3. FIG. 5B is an AFM image of the surface of the organic molecular film 6. FIG. 5C is an AFM image of the surface of the organic semiconductor polycrystalline film 2 when the organic semiconductor polycrystalline film 2 is stacked on the organic semiconductor 3. FIG. 5D is an AFM image of the surface of the organic semiconductor polycrystalline film 2 when the organic semiconductor polycrystalline film 2 is laminated on the organic semiconductor 3 via the organic molecular film 6.
 図5(a)に示すように、有機半導体3の表面は、ほとんど凹凸が無く平坦である。有機半導体3上に有機分子膜6を積層すると、図5(b)に示すように、表面形状が凹凸になる。そのため、有機分子膜6は、面内に一様な厚みを有する膜ではなく、場所毎に厚みの異なる凹凸を有する。有機分子膜6は、有機分子が有機半導体3上に島状に点在してなる。そのため、有機分子膜6は、厳密には面内に連続した「膜」ではないが、真空蒸着等の方法で製造されるため「膜」とする。 As shown in FIG. 5A, the surface of the organic semiconductor 3 is flat with almost no unevenness. When the organic molecular film 6 is laminated on the organic semiconductor 3, the surface shape becomes uneven as shown in FIG. Therefore, the organic molecular film 6 is not a film having a uniform thickness in the plane, but has irregularities having different thicknesses for each place. The organic molecular film 6 includes organic molecules scattered in an island shape on the organic semiconductor 3. Therefore, strictly speaking, the organic molecular film 6 is not a “film” continuous in the plane, but is a “film” because it is manufactured by a method such as vacuum deposition.
 図5(c)及び図5(d)に示すように、有機分子膜6上に有機半導体多結晶膜2を積層すると、有機半導体多結晶膜2のグレインが小さくなる。凹凸を有する有機分子膜6上に有機半導体多結晶膜2を積層しているためと考えられる。 As shown in FIGS. 5C and 5D, when the organic semiconductor polycrystalline film 2 is laminated on the organic molecular film 6, the grains of the organic semiconductor polycrystalline film 2 are reduced. This is presumably because the organic semiconductor polycrystalline film 2 is laminated on the organic molecular film 6 having irregularities.
 有機半導体多結晶膜2のグレインが小さくなると、有機半導体多結晶膜2の結晶性が悪くなる。すなわち、有機半導体多結晶膜2の内に、多くのバンドギャップ内準位が形成される。有機半導体多結晶膜2に形成されるバンドギャップ内準位の数が多くなると、電極体1のフェルミ準位から有機半導体3のLUMO準位又はHOMO準位へ、キャリアが遷移するルートが増加する。その結果、より有効障壁の低いルートを選択することができ、キャリアの注入効率がより高まる。つまり、有機分子膜6を設けることで、電極体1と有機半導体3との界面における接触抵抗をより低減することができる。 When the grain of the organic semiconductor polycrystalline film 2 is reduced, the crystallinity of the organic semiconductor polycrystalline film 2 is deteriorated. That is, many band gap levels are formed in the organic semiconductor polycrystalline film 2. As the number of band gap levels formed in the organic semiconductor polycrystalline film 2 increases, the number of routes by which carriers transition from the Fermi level of the electrode body 1 to the LUMO level or HOMO level of the organic semiconductor 3 increases. . As a result, a route with a lower effective barrier can be selected, and the carrier injection efficiency is further increased. That is, by providing the organic molecular film 6, the contact resistance at the interface between the electrode body 1 and the organic semiconductor 3 can be further reduced.
 有機分子膜6の厚みは、1nm以上10nm以下であることが好ましい。また、有機半導体多結晶膜2の厚みを図3において最も電子移動度が高い20nmとして、有機分子膜6の厚みを変化させた場合の電子移動度を測定した結果を図6に示す。これにより、有機分子膜6の厚みは、3nm以上7nm以下であることがより好ましく、4nm以上6nm以下であることがさらに好ましい。ここで有機分子膜6は凹凸を有する。そのため、有機分子膜6の厚みは、以下のようにして定義される。まずAFMにより5μm×5μmの領域を測定する。そして、全測定領域の厚みの平均値を有機分子膜6の厚みとする。 The thickness of the organic molecular film 6 is preferably 1 nm or more and 10 nm or less. Further, FIG. 6 shows the result of measuring the electron mobility when the thickness of the organic semiconductor polycrystalline film 2 is 20 nm, which has the highest electron mobility in FIG. 3, and the thickness of the organic molecular film 6 is changed. Thereby, the thickness of the organic molecular film 6 is more preferably 3 nm or more and 7 nm or less, and further preferably 4 nm or more and 6 nm or less. Here, the organic molecular film 6 has irregularities. Therefore, the thickness of the organic molecular film 6 is defined as follows. First, an area of 5 μm × 5 μm is measured by AFM. And let the average value of the thickness of all the measurement areas be the thickness of the organic molecular film 6.
 有機分子膜6の厚みを所定の厚み以下にすることで、有機分子膜6が抵抗体となり、電極体1と有機半導体3の伝導を阻害することが避けられる。また有機分子膜6の厚みを所定の厚み以上とすることで、有機半導体3の表面に、有機半導体多結晶膜2のグレインを充分小さくするための凹凸を形成することができる。 By making the thickness of the organic molecular film 6 equal to or less than a predetermined thickness, the organic molecular film 6 becomes a resistor, and it is possible to avoid inhibiting the conduction between the electrode body 1 and the organic semiconductor 3. Further, by setting the thickness of the organic molecular film 6 to a predetermined thickness or more, irregularities for sufficiently reducing the grains of the organic semiconductor polycrystalline film 2 can be formed on the surface of the organic semiconductor 3.
 有機分子膜6の凹凸の高さは、1nm以上10nm以下であることが好ましく、3nm以上7nm以下であることがより好ましく、4nm以上6nm以下であることがさらに好ましい。有機分子膜6の凹凸の高さが高いと、有機半導体多結晶膜2に多くの乱れが導入される。そのため、有機半導体多結晶膜2の多結晶性を高めることができる。 The height of the unevenness of the organic molecular film 6 is preferably 1 nm or more and 10 nm or less, more preferably 3 nm or more and 7 nm or less, and further preferably 4 nm or more and 6 nm or less. When the unevenness of the organic molecular film 6 is high, many disturbances are introduced into the organic semiconductor polycrystalline film 2. Therefore, the polycrystallinity of the organic semiconductor polycrystalline film 2 can be improved.
 有機分子膜6を構成する有機分子領域のサイズは、5μm以下であることが好ましく、1μm以下であることがより好ましい。ここで、有機分子領域とは、島状に点在する有機分子が形成する領域を意味する。 The size of the organic molecular region constituting the organic molecular film 6 is preferably 5 μm or less, and more preferably 1 μm or less. Here, the organic molecule region means a region formed by organic molecules scattered in an island shape.
 有機分子領域は、図5(b)に示すように不定形である。そのため、有機分子領域のサイズは、以下のようにして求める。まずAFMにより5μm×5μmの領域を測定する。そして、測定面に対して垂直な任意の面で切断した断面における有機分子領域の長さの平均値を求める。次いで、測定面に対して垂直な異なる9つの任意の面で切断した断面において、それぞれ同様の測定を行う。そして、全部で10カ所の断面で測定した長さの平均値を有機分子領域のサイズとする。 The organic molecule region is indefinite as shown in FIG. Therefore, the size of the organic molecule region is obtained as follows. First, an area of 5 μm × 5 μm is measured by AFM. And the average value of the length of the organic molecule area | region in the cross section cut | disconnected by the arbitrary surface perpendicular | vertical with respect to the measurement surface is calculated | required. Next, the same measurement is performed on each of the cross sections cut along nine different planes perpendicular to the measurement plane. And let the average value of the length measured in the cross section of a total of 10 places be the size of an organic molecule area | region.
 有機分子膜6は、室温で固体となる飽和炭化水素又はその誘導体を含むことが好ましい。飽和炭化水素は、直鎖状であることがより好ましい。例えば、ヘプタコサン、オクタコサン、ノナコサン、トリアコンタン、ヘントリアコンタン、ドトリアコンタン、トリトリアコンタン、テトラトリアコンタン、ペンタトリアコンタン、ヘキサトリアコンタン、ヘプタトリアコンタン、オクタトリアコンタン、ノナトリアコンタン、テトラコンタン、ヘンテトラコンタン、ドテトラコンタン、トリテトラコンタン、テトラテトラコンタン等を用いることができる。 The organic molecular film 6 preferably contains saturated hydrocarbons or derivatives thereof that are solid at room temperature. The saturated hydrocarbon is more preferably linear. For example, heptacosan, octacosan, nonacosan, triacontane, hentria contane, dotria contane, tritria contane, tetratria contane, pentatria contane, hexatria contane, heptatria contane, octatria contane, nonatria contane, tetra contane, Hentetracontane, detetracontane, tritetracontane, tetratetracontane and the like can be used.
 直鎖状の炭化水素又はその誘導体は、一方向に長い分子構造を有する。分子構造の一方の端部が有機半導体3と結合し、他方の端部が有機半導体3の積層面に対して起立することで、有機分子膜6に凹凸が形成される。 A linear hydrocarbon or a derivative thereof has a long molecular structure in one direction. As one end portion of the molecular structure is bonded to the organic semiconductor 3 and the other end portion stands with respect to the laminated surface of the organic semiconductor 3, irregularities are formed in the organic molecular film 6.
 またエネルギー的な観点からは有機分子膜6は、LUMO準位が電極体1のフェルミ準位より高く、HOMO準位が電極体1のフェルミ準位より低い材料を用いることが好ましい。有機分子膜6に用いる材料のエネルギー準位がこの範囲であれば、電極体1と有機半導体3との界面におけるキャリアの注入を、有機分子膜6により阻害することが避けられる。このような材料としては、上述の材料の他に、例えば、パーフルオロエイコサン、トリコサン酸メチルエステル等が挙げられる。 In terms of energy, the organic molecular film 6 is preferably made of a material having a LUMO level higher than the Fermi level of the electrode body 1 and a HOMO level lower than the Fermi level of the electrode body 1. If the energy level of the material used for the organic molecular film 6 is within this range, it is possible to avoid the carrier injection at the interface between the electrode body 1 and the organic semiconductor 3 from being inhibited by the organic molecular film 6. Examples of such a material include perfluoroeicosane and tricosanoic acid methyl ester in addition to the above-described materials.
 上述のように、本実施形態にかかる有機素子用電極は、有機分子膜6により有機半導体多結晶膜2内に結晶の乱れをより多く導入することができる。その結果、電極体1から有機半導体3へのキャリアの注入がより容易になり、電極体1と有機半導体3との界面の接触抵抗をより低減することができる。 As described above, the organic element electrode according to the present embodiment can introduce more crystal disorder into the organic semiconductor polycrystalline film 2 by the organic molecular film 6. As a result, the injection of carriers from the electrode body 1 to the organic semiconductor 3 becomes easier, and the contact resistance at the interface between the electrode body 1 and the organic semiconductor 3 can be further reduced.
第3実施形態
 図7は、本発明の第3実施形態にかかる有機素子22の断面模式図である。第3実施形態にかかる有機素子22は、電界効果トランジスタ(FET)ではなく、発光素子である点が、第1実施形態にかかる有機素子20と異なる。有機素子用電極10の構成は、第1実施形態にかかる有機素子用電極10と同一である。以下の説明では、共通な箇所の説明は省略する。また、説明に用いる各図面において、図1と共通の構成要素には同一の符号を付すものとする。
Third Embodiment FIG. 7 is a schematic cross-sectional view of an organic element 22 according to a third embodiment of the present invention. The organic element 22 according to the third embodiment is different from the organic element 20 according to the first embodiment in that it is not a field effect transistor (FET) but a light emitting element. The configuration of the organic element electrode 10 is the same as that of the organic element electrode 10 according to the first embodiment. In the following description, description of common parts is omitted. In the drawings used for the description, the same reference numerals are assigned to the same components as those in FIG.
 有機素子22は、有機半導体3を挟んで二つの有機素子用電極10を備える。二つの有機素子用電極10から有機半導体3に電流を流すと、有機半導体3内で電子とホールが注入される。注入された電子とホールは、有機半導体3内で結合する。結合によるエネルギーにより有機半導体3内の発光材料が励起され、励起状態から再び基底状態に戻る際に発光する。 The organic element 22 includes two organic element electrodes 10 with the organic semiconductor 3 interposed therebetween. When a current is passed from the two organic element electrodes 10 to the organic semiconductor 3, electrons and holes are injected into the organic semiconductor 3. The injected electrons and holes are combined in the organic semiconductor 3. The light emitting material in the organic semiconductor 3 is excited by the energy due to the coupling, and emits light when returning from the excited state to the ground state again.
 有機素子用電極10は、有機半導体多結晶膜2を有するため、有機半導体3への電子及びホールの注入効率が高まる。すなわち、電界効果トランジスタに限られず、発光素子においても、電極体1と有機半導体3との界面における接触抵抗を低減することができる。 Since the organic element electrode 10 includes the organic semiconductor polycrystalline film 2, the efficiency of injecting electrons and holes into the organic semiconductor 3 is increased. That is, the contact resistance at the interface between the electrode body 1 and the organic semiconductor 3 can be reduced not only in the field effect transistor but also in the light emitting element.
 また有機半導体3と有機半導体多結晶膜2の間には、第2実施形態にかかる有機素子21と同様に有機分子膜6を挿入してもよい。 Also, the organic molecular film 6 may be inserted between the organic semiconductor 3 and the organic semiconductor polycrystalline film 2 in the same manner as the organic element 21 according to the second embodiment.
 以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims. Can be modified or changed.
 例えば、有機素子は、上述の電界効果トランジスタ及び発光素子に限定されない。例えば、ダイオード、有機太陽電池、熱電変換素子、センサ等の素子にも適用できる。 For example, the organic element is not limited to the above-described field effect transistor and light emitting element. For example, the present invention can be applied to elements such as diodes, organic solar cells, thermoelectric conversion elements, and sensors.
(実施例1)
 実施例1として、図4と同様の構造の電界効果トランジスタを作製した。各層は、以下のようにした。
 ゲート基板5A:P型リッチなシリコン(p++-Si)
 絶縁層5B:SiO
 保護層4:ポリスチレン
 有機半導体3:ルブレン単結晶
 有機分子膜6:テトラテトラコンタン(TTC、厚み5nm)
 有機半導体多結晶膜2:ルブレン(厚み20nm)
 電子注入用電極体1A:カルシウム
 ホール注入用電極体1B:金
 そして、有機半導体3と電子注入用電極体1A及びホール注入用電極体1Bとの接触抵抗を四端子法で求めた。接触抵抗は、有機半導体3に形成されるチャネル幅で規格化した。
Example 1
As Example 1, a field effect transistor having the same structure as that of FIG. Each layer was as follows.
Gate substrate 5A: P-type rich silicon (p ++- Si)
Insulating layer 5B: SiO 2
Protective layer 4: Polystyrene Organic semiconductor 3: Rubrene single crystal Organic molecular film 6: Tetratetracontane (TTC, thickness 5 nm)
Organic semiconductor polycrystalline film 2: rubrene (thickness 20 nm)
Electrode injection electrode body 1A: Calcium Hole injection electrode body 1B: Gold Then, the contact resistance between the organic semiconductor 3, the electron injection electrode body 1A, and the hole injection electrode body 1B was determined by a four-terminal method. The contact resistance was normalized by the channel width formed in the organic semiconductor 3.
(実施例2)
 実施例2として、図1と同様の構造の電界効果トランジスタを作製した。すなわち、有機分子膜6を除いた点が、実施例1の電界効果トランジスタと異なる。実施例2も実施例1と同様に、有機半導体3と電子注入用電極体1A及びホール注入用電極体1Bとの接触抵抗を四端子法で求めた。
(Example 2)
As Example 2, a field effect transistor having a structure similar to that shown in FIG. That is, the field effect transistor of Example 1 is different in that the organic molecular film 6 is excluded. In Example 2, as in Example 1, the contact resistance between the organic semiconductor 3 and the electrode body 1A for electron injection and the electrode body 1B for hole injection was determined by a four-terminal method.
(比較例1)
 比較例1として、実施例2の電界効果トランジスタから有機半導体多結晶膜2を除いた。すなわち、有機半導体3と電子注入用電極体1A及びホール注入用電極体1Bを直接接触させた。比較例1も実施例1と同様に、有機半導体3と電子注入用電極体1A及びホール注入用電極体1Bとの接触抵抗を四端子法で求めた。
(Comparative Example 1)
As Comparative Example 1, the organic semiconductor polycrystalline film 2 was removed from the field effect transistor of Example 2. That is, the organic semiconductor 3 was directly brought into contact with the electrode body 1A for electron injection and the electrode body 1B for hole injection. Similarly to Example 1, in Comparative Example 1, the contact resistance between the organic semiconductor 3 and the electrode body 1A for electron injection and the electrode body 1B for hole injection was determined by the four-terminal method.
(比較例2)
 比較例2として、実施例1の電界効果トランジスタから有機半導体多結晶膜2に代えてフッ化セシウム薄膜を設けた。比較例2も実施例1と同様に、有機半導体3と電子注入用電極体1A及びホール注入用電極体1Bとの接触抵抗を四端子法で求めた。
(Comparative Example 2)
As Comparative Example 2, a cesium fluoride thin film was provided in place of the organic semiconductor polycrystalline film 2 from the field effect transistor of Example 1. In Comparative Example 2, as in Example 1, the contact resistance between the organic semiconductor 3 and the electron injection electrode body 1A and hole injection electrode body 1B was determined by the four-terminal method.
 図8は、実施例1、実施例2、比較例1及び比較例2の電界効果トランジスタに対して電子注入を行った際の接触抵抗を比較した図である。 FIG. 8 is a diagram comparing the contact resistance when electron injection is performed on the field effect transistors of Example 1, Example 2, Comparative Example 1 and Comparative Example 2.
 図8に示すように実施例1及び実施例2では、金電極及びカルシウム電極のいずれにおいても有機半導体3との接触抵抗が、比較例1と比較して低減されている。特に実施例1における金電極の接触抵抗は、比較例1のカルシウム電極に匹敵するほど小さい。なお、比較例2は、実施例1及び実施例2ほどではないが、金電極及びカルシウム電極のいずれにおいても接触抵抗の低減が図られている。 As shown in FIG. 8, in Examples 1 and 2, the contact resistance with the organic semiconductor 3 is reduced compared to Comparative Example 1 in both the gold electrode and the calcium electrode. In particular, the contact resistance of the gold electrode in Example 1 is as small as that of the calcium electrode of Comparative Example 1. In Comparative Example 2, although not as much as Example 1 and Example 2, contact resistance is reduced in both the gold electrode and the calcium electrode.
 また図9は、実施例1、実施例2、比較例1及び比較例2の電界効果トランジスタに対してホール注入を行った際の接触抵抗を比較した図である。 FIG. 9 is a diagram comparing the contact resistance when hole injection is performed on the field effect transistors of Example 1, Example 2, Comparative Example 1 and Comparative Example 2.
 図9に示すように、電子注入の場合と逆にカルシウム電極が金電極より大きな接触抵抗を示している。実施例1及び実施例2では、金電極及びカルシウム電極のいずれにおいても有機半導体3との接触抵抗が、比較例1と比較して低減されている。また比較例2は、電子注入の場合と異なり、金電極及びカルシウム電極のいずれにおいても、比較例1より接触抵抗が上昇した。 As shown in FIG. 9, contrary to the case of electron injection, the calcium electrode shows a larger contact resistance than the gold electrode. In Example 1 and Example 2, the contact resistance with the organic semiconductor 3 in both the gold electrode and the calcium electrode is reduced as compared with Comparative Example 1. Further, in Comparative Example 2, unlike the case of electron injection, the contact resistance increased compared to Comparative Example 1 in both the gold electrode and the calcium electrode.
 図8及び図9に示すように、実施例1及び実施例2に示す電極は、電子を注入する場合及びホールを注入する場合のいずれにおいても接触抵抗が低減した。これに対し、比較例1に示す電極は、電子を注入する場合には接触抵抗が低減したが、ホールを注入する際には接触抵抗が増加した。 As shown in FIGS. 8 and 9, the electrodes shown in Example 1 and Example 2 had reduced contact resistance in both cases of injecting electrons and holes. On the other hand, the contact resistance of the electrode shown in Comparative Example 1 was reduced when electrons were injected, but the contact resistance was increased when holes were injected.
 また、図8及び図9のルブレンの有機半導体多結晶膜の替わりにBP2Tの有機半導体多結晶膜を用いた場合の、実施例1、実施例2、比較例1及び比較例2の電界効果トランジスタに対して電子注入を行った際の接触抵抗を比較したグラフを図10に、ホール注入を行った際の接触抵抗を比較したグラフを図11に示す。 Further, the field effect transistors of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 in the case of using a BP2T organic semiconductor polycrystalline film instead of the rubrene organic semiconductor polycrystalline film of FIGS. FIG. 10 shows a graph comparing the contact resistance when electron injection is performed, and FIG. 11 shows a graph comparing the contact resistance when hole injection is performed.
 第2実施形態の有機素子21のソース電極及びドレイン電極、及び、それらの電極の間に電圧測定用の二つの電極を備えた有機単結晶電界効果トランジスタを用い、四端子法により接触抵抗を測定できるようにした。このトランジスタをペルチェ素子により温度を制御できるようにし、アルゴン雰囲気中で接触抵抗を複数の温度で測定した。得られた接触抵抗の対数を温度の逆数に対してプロット(アレニウスプロット)し、その傾きからキャリア注入に必要な活性化エネルギーを求めた。この実験を、電極材料としてカルシウム及び金、有機半導体としてBP2T及びルブレンを用いて電子及びホールについてそれぞれ行った。 Contact resistance is measured by a four-terminal method using an organic single crystal field effect transistor having a source electrode and a drain electrode of the organic element 21 of the second embodiment and two electrodes for voltage measurement between the electrodes. I was able to do it. The temperature of this transistor was controlled by a Peltier device, and contact resistance was measured at a plurality of temperatures in an argon atmosphere. The logarithm of the obtained contact resistance was plotted against the reciprocal of temperature (Arrhenius plot), and the activation energy required for carrier injection was determined from the slope. This experiment was conducted for electrons and holes using calcium and gold as electrode materials and BP2T and rubrene as organic semiconductors, respectively.
 図10に示すように実施例1及び実施例2では、金電極及びカルシウム電極のいずれにおいても有機半導体3との接触抵抗が、比較例1と比較して低減されている。比較例2においても、カルシウム電極においては接触抵抗の低減が図られている。従って、BP2Tの有機半導体多結晶膜を用いた場合、電子注入においては、有機半導体多結晶膜2に代えてフッ化セシウム薄膜を設けることも有効である。 As shown in FIG. 10, in Example 1 and Example 2, the contact resistance with the organic semiconductor 3 is reduced in both the gold electrode and the calcium electrode as compared with Comparative Example 1. Also in Comparative Example 2, the contact resistance is reduced in the calcium electrode. Therefore, when an organic semiconductor polycrystalline film of BP2T is used, it is effective to provide a cesium fluoride thin film in place of the organic semiconductor polycrystalline film 2 in the electron injection.
 図11に示すように、電子注入の場合と逆にカルシウム電極が金電極より大きな接触抵抗を示している。実施例1及び実施例2では、金電極及びカルシウム電極のいずれにおいても有機半導体3との接触抵抗が、比較例1と比較して低減されている。また比較例2では、電子注入の場合と異なり、金電極の接触抵抗が比較例1より増加した。 As shown in FIG. 11, contrary to the case of electron injection, the calcium electrode shows a larger contact resistance than the gold electrode. In Example 1 and Example 2, the contact resistance with the organic semiconductor 3 in both the gold electrode and the calcium electrode is reduced as compared with Comparative Example 1. Further, in Comparative Example 2, unlike the case of electron injection, the contact resistance of the gold electrode was increased as compared with Comparative Example 1.
 図10及び図11に示すように、実施例1及び実施例2に示す電極は、電子を注入する場合及びホールを注入する場合のいずれにおいても接触抵抗が低減した。これに対し、比較例2に示す電極は比較例1に比べて、電子を注入する場合には接触抵抗が低減したが、ホールを注入する際には接触抵抗が増加した。 As shown in FIGS. 10 and 11, the electrodes shown in Example 1 and Example 2 had reduced contact resistance in both cases of injecting electrons and holes. On the other hand, the electrode shown in Comparative Example 2 decreased in contact resistance when electrons were injected, but increased in contact resistance when holes were injected.
 上記結果より、有機半導体多結晶膜を形成することにより、電子注入及びホール注入共に接触抵抗が減少し、さらに、有機分子膜を組み合わせることでさらに接触抵抗を減少させることができることがわかる。 From the above results, it can be seen that by forming the organic semiconductor polycrystalline film, the contact resistance is reduced for both electron injection and hole injection, and the contact resistance can be further reduced by combining the organic molecular film.
 また以下の実施例及び比較例の電界効果トランジスタにおける電子の移動度とホールの移動度も測定した。実施例及び比較例の層構成を以下の表1及び表2に示す。 In addition, the mobility of electrons and the mobility of holes in the field effect transistors of the following examples and comparative examples were also measured. The layer configurations of Examples and Comparative Examples are shown in Table 1 and Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~6及び比較例1~6は有機半導体3がルブレンであるのに対し、実施例7~11は有機半導体3がBP2Tである点が異なる。また表1及び表2において、フッ化セシウムは有機半導体多結晶膜ではないが、それに相当する膜として挿入しているため、有機半導体多結晶膜の列に記載する。 Examples 1 to 6 and Comparative Examples 1 to 6 differ in that the organic semiconductor 3 is rubrene, whereas Examples 7 to 11 differ in that the organic semiconductor 3 is BP2T. In Tables 1 and 2, cesium fluoride is not an organic semiconductor polycrystalline film, but is inserted as a film corresponding to it, so it is listed in the column of the organic semiconductor polycrystalline film.
 図12は、有機半導体3をルブレンとした実施例及び比較例(表1)の電界効果トランジスタの電子移動度及びホール移動度を測定した結果である。図13は、有機半導体3をBP2Tとした実施例及び比較例(表2)の電界効果トランジスタの電子移動度及びホール移動度を測定した結果である。横軸は電子移動度であり、縦軸はホール移動度である。そのため、図12及び図13の右上に向かうほど、キャリア移動度が高くなる。 FIG. 12 shows the results of measuring the electron mobility and the hole mobility of the field effect transistors of Examples and Comparative Examples (Table 1) in which the organic semiconductor 3 is rubrene. FIG. 13 shows the results of measurement of electron mobility and hole mobility of field effect transistors of Examples and Comparative Examples (Table 2) in which the organic semiconductor 3 is BP2T. The horizontal axis is electron mobility, and the vertical axis is hole mobility. Therefore, the carrier mobility becomes higher toward the upper right in FIGS. 12 and 13.
 図12及び図13に示すように、電極体1と有機半導体3の間に有機半導体多結晶膜2を挿入すると、電子及びホールの移動度が高まる。また電極体1と有機半導体多結晶膜2の間に有機分子膜6をさらに挿入すると、電子及びホールの移動度がさらに高まる。 As shown in FIGS. 12 and 13, when the organic semiconductor polycrystalline film 2 is inserted between the electrode body 1 and the organic semiconductor 3, the mobility of electrons and holes increases. If the organic molecular film 6 is further inserted between the electrode body 1 and the organic semiconductor polycrystalline film 2, the mobility of electrons and holes is further increased.
 また、電子注入用電極体1A及びホール注入用電極体1Bを変更しても同様の傾向が確認される。すなわち、電極体1のフェルミ準位によらず、有機半導体多結晶膜2及び有機分子膜6を挿入することで、電子及びホール移動度が向上することが確認された。 The same tendency is confirmed even when the electron injection electrode body 1A and the hole injection electrode body 1B are changed. That is, it was confirmed that the electron and hole mobility were improved by inserting the organic semiconductor polycrystalline film 2 and the organic molecular film 6 regardless of the Fermi level of the electrode body 1.
 また有機半導体3にルブレンを用いた実施例1に示す電界効果トランジスタは、ホール移動度が22.0cm-1-1であり、電子移動度が5.0cm-1-1である。また有機半導体3にBP2Tを用いた実施例7に示す電界効果トランジスタは、ホール移動度が0.5cm-1-1であり、電子移動度が1.1cm-1-1である。 The field effect transistor shown in Example 1 using rubrene as the organic semiconductor 3 has a hole mobility of 22.0 cm 2 V −1 s −1 and an electron mobility of 5.0 cm 2 V −1 s −1. It is. The field effect transistor shown in Example 7 using BP2T as the organic semiconductor 3 has a hole mobility of 0.5 cm 2 V −1 s −1 and an electron mobility of 1.1 cm 2 V −1 s −1. It is.
 これらの電子移動度及びホール移動度は、有機半導体3にルブレン又はBP2Tを用いた例の中でも非常に高い値である。 These electron mobility and hole mobility are very high values among the examples in which rubrene or BP2T is used for the organic semiconductor 3.
 図14は、トランジスタ特性に関し、黒四角を含む実線は、図4と同様の構造の電界効果トランジスタ(実施例1)において電圧を印加し、電子注入とホール注入の際のドレイン電流を測定した結果である。白四角を含む実線は、実施例1の構成から有機半導体多結晶膜2及び有機分子膜6を除いた構成の電界効果トランジスタにおいて電圧を印加し、電子注入とホール注入の際のドレイン電流を測定した結果である。横軸は印加電圧であり、縦軸はドレイン電流である。
 図14の結果から、電極体1と有機半導体3との間に有機半導体多結晶膜2及び有機分子膜6を挿入すると、電子注入、ホール注入の場合ともにドレイン電流が増大し、トランジスタ特性が向上する。
 また、図15は、トランジスタ特性に関し、黒四角を含む実線は、実施例1の電界効果トランジスタにおいて電子注入用電極体1Aを金、ホール注入用電極体1Bをカルシウムとした以外は同様の構成を有する電界効果トランジスタにおいて電圧を印加し、電子注入とホール注入の際のドレイン電流を測定した結果である。白四角を含む実線は、上記電界効果トランジスタから有機半導体多結晶膜2及び有機分子膜6を除いた構成の電界効果トランジスタにおいて、電圧を印加し、同様に電子注入とホール注入の際のドレイン電流を測定した結果である。横軸は印加電圧であり、縦軸はドレイン電流である。
 図15の結果から、電子注入用電極体1Aを金、ホール注入用電極体1Bをカルシウムとすると、有機半導体多結晶膜2及び有機分子膜6がない場合には電子注入及びホール注入が困難である。しかし、有機半導体多結晶膜2及び有機分子膜6を挿入することによって電子注入及びホール注入が可能となり、ドレイン電流が増大し、トランジスタ特性が向上する。
FIG. 14 shows the transistor characteristics. The solid line including the black square shows the result of measuring the drain current at the time of electron injection and hole injection by applying a voltage to the field effect transistor (Example 1) having the same structure as FIG. It is. A solid line including a white square applies a voltage to a field effect transistor having a configuration excluding the organic semiconductor polycrystalline film 2 and the organic molecular film 6 from the configuration of Example 1, and measures the drain current during electron injection and hole injection. It is the result. The horizontal axis is the applied voltage, and the vertical axis is the drain current.
From the result of FIG. 14, when the organic semiconductor polycrystalline film 2 and the organic molecular film 6 are inserted between the electrode body 1 and the organic semiconductor 3, the drain current increases in the case of electron injection and hole injection, and the transistor characteristics are improved. To do.
FIG. 15 shows the transistor characteristics. The solid line including the black squares has the same configuration except that the electron injection electrode body 1A is gold and the hole injection electrode body 1B is calcium in the field effect transistor of the first embodiment. It is the result of having measured the drain current at the time of applying a voltage in the field effect transistor which has, and injecting an electron and a hole. A solid line including a white square represents a drain current in the field effect transistor having the configuration in which the organic semiconductor polycrystalline film 2 and the organic molecular film 6 are removed from the field effect transistor, and in the same manner, electron injection and hole injection. It is the result of having measured. The horizontal axis is the applied voltage, and the vertical axis is the drain current.
From the results of FIG. 15, if the electron injection electrode body 1A is gold and the hole injection electrode body 1B is calcium, electron injection and hole injection are difficult without the organic semiconductor polycrystalline film 2 and the organic molecular film 6. is there. However, by inserting the organic semiconductor polycrystalline film 2 and the organic molecular film 6, electron injection and hole injection are possible, the drain current is increased, and the transistor characteristics are improved.
1…電極体、1A…電子注入用電極体、1B…ホール注入用電極体、2…有機半導体多結晶膜、2A…電子注入用多結晶膜、2B…ホール注入用多結晶膜、3…有機半導体、4…保護層、5…基板、5A…ゲート基板、5B…絶縁層、6…有機分子膜、10,11…有機素子用電極、10A,11A…電子注入用電極、10B,11B…ホール注入用電極、20,21,22…有機素子 DESCRIPTION OF SYMBOLS 1 ... Electrode body, 1A ... Electron injection electrode body, 1B ... Electrode body for hole injection, 2 ... Organic semiconductor polycrystalline film, 2A ... Polycrystalline film for electron injection, 2B ... Polycrystalline film for hole injection, 3 ... Organic Semiconductor, 4 ... Protective layer, 5 ... Substrate, 5A ... Gate substrate, 5B ... Insulating layer, 6 ... Organic molecular film, 10, 11 ... Organic element electrode, 10A, 11A ... Electron injection electrode, 10B, 11B ... Hole Electrode for injection, 20, 21, 22, ... organic element

Claims (9)

  1.  有機半導体に接続される有機素子用電極であって、
     電極体と、
     前記電極体の第1面に設けられ、前記有機半導体との接触界面における接触抵抗を低減する有機半導体多結晶膜と、を備える有機素子用電極。
    An electrode for an organic element connected to an organic semiconductor,
    An electrode body;
    An organic element electrode comprising: an organic semiconductor polycrystalline film that is provided on a first surface of the electrode body and reduces contact resistance at a contact interface with the organic semiconductor.
  2.  前記有機半導体多結晶膜の前記電極体が設けられる第2面とは反対の第3面に設けられた有機分子膜をさらに備える請求項1に記載の有機素子用電極。 The organic element electrode according to claim 1, further comprising an organic molecular film provided on a third surface opposite to a second surface on which the electrode body of the organic semiconductor polycrystalline film is provided.
  3.  前記有機半導体多結晶膜の厚みが、1nm以上50nm以下である請求項1又は2のいずれかに記載の有機素子用電極。 The organic element electrode according to claim 1, wherein the organic semiconductor polycrystalline film has a thickness of 1 nm to 50 nm.
  4.  前記有機分子膜の厚みが、1nm以上10nm以下である請求項2又は3のいずれかに記載の有機素子用電極。 4. The organic element electrode according to claim 2, wherein the thickness of the organic molecular film is 1 nm or more and 10 nm or less.
  5.  前記有機半導体多結晶膜は、最低非占有分子軌道(LUMO)のエネルギー準位が、前記電極体のフェルミ準位以上であり、接続する前記有機半導体の最低非占有分子軌道(LUMO)のエネルギー準位に2.0eV加えた値以下である請求項1~4のいずれか一項に記載の有機素子用電極。 The organic semiconductor polycrystalline film has an energy level of the lowest unoccupied molecular orbital (LUMO) equal to or higher than the Fermi level of the electrode body, and the energy level of the lowest unoccupied molecular orbital (LUMO) of the organic semiconductor to be connected. The electrode for an organic element according to any one of claims 1 to 4, which is not more than a value obtained by adding 2.0 eV to the position.
  6.  前記有機半導体多結晶膜は、最高占有分子軌道(HOMO)のエネルギー準位が、前記電極体のフェルミ準位以下であり、接続する前記有機半導体の最高占有分子軌道(HOMO)のエネルギー準位から2.0eV減じた値以上である請求項1~5のいずれか一項に記載の有機素子用電極。 In the organic semiconductor polycrystalline film, the energy level of the highest occupied molecular orbital (HOMO) is equal to or lower than the Fermi level of the electrode body, and the energy level of the highest occupied molecular orbital (HOMO) of the connected organic semiconductor is The organic element electrode according to any one of claims 1 to 5, which is at least a value reduced by 2.0 eV.
  7.  前記有機分子膜は、室温で固体となる飽和炭化水素又は前記飽和炭化水素の誘導体を含む請求項2~6のいずれか一項に記載の有機素子用電極。 The organic element electrode according to any one of claims 2 to 6, wherein the organic molecular film contains a saturated hydrocarbon that is solid at room temperature or a derivative of the saturated hydrocarbon.
  8.  前記電極体のフェルミ準位は、接続する前記有機半導体の最低非占有分子軌道(LUMO)のエネルギー準位から3.0eV減じた値以上、又は、接続する前記有機半導体の最高占有分子軌道(HOMO)のエネルギー準位に4.0eV加えた値以下である請求項1~7のいずれか一項に記載の有機素子用電極。 The Fermi level of the electrode body is not less than a value obtained by subtracting 3.0 eV from the energy level of the lowest unoccupied molecular orbital (LUMO) of the organic semiconductor to be connected, or the highest occupied molecular orbital (HOMO of the organic semiconductor to be connected). The electrode for an organic element according to any one of claims 1 to 7, which is not more than a value obtained by adding 4.0 eV to the energy level of.
  9.  請求項1~8のいずれか一項に記載の有機素子用電極と、
     前記有機素子用電極の前記有機半導体多結晶膜が設けられた第4面に接続された有機半導体と、を備える有機素子。
    An electrode for an organic element according to any one of claims 1 to 8,
    An organic semiconductor connected to a fourth surface of the electrode for organic element provided with the organic semiconductor polycrystalline film.
PCT/JP2017/013513 2016-04-26 2017-03-31 Electrode for organic element, and organic element WO2017187885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-088459 2016-04-26
JP2016088459A JP2019110146A (en) 2016-04-26 2016-04-26 Electrode for organic element and organic element

Publications (1)

Publication Number Publication Date
WO2017187885A1 true WO2017187885A1 (en) 2017-11-02

Family

ID=60161512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013513 WO2017187885A1 (en) 2016-04-26 2017-03-31 Electrode for organic element, and organic element

Country Status (3)

Country Link
JP (1) JP2019110146A (en)
TW (1) TW201803173A (en)
WO (1) WO2017187885A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305839A (en) * 2006-05-12 2007-11-22 Hitachi Ltd Wiring, organic transistor and its manufacturing method
JP2009218244A (en) * 2008-03-07 2009-09-24 Hitachi Ltd Organic thin film transistor, and method of manufacturing the same
WO2011148707A1 (en) * 2010-05-27 2011-12-01 シャープ株式会社 Process for production of organic semiconductor device
JP2013175571A (en) * 2012-02-24 2013-09-05 National Institute For Materials Science Organic field effect transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305839A (en) * 2006-05-12 2007-11-22 Hitachi Ltd Wiring, organic transistor and its manufacturing method
JP2009218244A (en) * 2008-03-07 2009-09-24 Hitachi Ltd Organic thin film transistor, and method of manufacturing the same
WO2011148707A1 (en) * 2010-05-27 2011-12-01 シャープ株式会社 Process for production of organic semiconductor device
JP2013175571A (en) * 2012-02-24 2013-09-05 National Institute For Materials Science Organic field effect transistor

Also Published As

Publication number Publication date
TW201803173A (en) 2018-01-16
JP2019110146A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
Liu et al. Carbon‐nanotube‐enabled vertical field effect and light‐emitting transistors
Burroughes et al. Light-emitting diodes based on conjugated polymers
KR101497744B1 (en) Nanotube enabled, gate-voltage controlled light emitting diodes
JP5465825B2 (en) Semiconductor device, semiconductor device manufacturing method, and display device
KR101943595B1 (en) Active matrix dilute source enabled vertical organic light emitting transistor
US20060228543A1 (en) Metal/fullerene anode structure and application of same
Chaudhry et al. Nano-alignment in semiconducting polymer films: A path to achieve high current density and brightness in organic light emitting transistors
US8492747B2 (en) Transistor and flat panel display including thin film transistor
JP2005520356A (en) Manufacturing method of high-performance organic semiconductor device
Yao et al. Fully transparent quantum dot light-emitting diode with a laminated top graphene anode
US20060290270A1 (en) Organic light emitting device and manufacturing method thereof
TW200810111A (en) Transistor element and its fabrication process, light emitting element, and display
Nakanotani et al. Organic light-emitting diodes containing multilayers of organic single crystals
Meng et al. Top‐emission organic light‐emitting diode with a novel copper/graphene composite anode
JP2009302328A (en) Organic transistor and organic semiconductor element using the same
Chong et al. Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes
KR101732943B1 (en) A light-emitting diode having transition metal dichalcogen compound of two-dimensional(2D) structure as light-emitting layer and its preparing process
Park et al. Organic electroluminescent devices using quantum-size silver nanoparticles
Park et al. Resonant tunneling diode made of organic semiconductor superlattice
WO2017187885A1 (en) Electrode for organic element, and organic element
Xu et al. Enhanced electrical performance of van der Waals heterostructure
US8384067B2 (en) Hybrid organic/nanoparticle devices
KR101056606B1 (en) Organic light emitting memory device
WO2012077573A1 (en) Electrode structure, organic thin-film transistor provided with said electrode structure, method for manufacturing same, organic electroluminescent picture element provided with said organic thin-film transistor, organic electroluminescent element, device provided with said organic electroluminescent element, and organic solar cell
Park et al. Full-surface emission of graphene-based vertical-type organic light-emitting transistors with high on/off contrast ratios and enhanced efficiencies

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789173

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP