JP2013175571A - Organic field effect transistor - Google Patents

Organic field effect transistor Download PDF

Info

Publication number
JP2013175571A
JP2013175571A JP2012038732A JP2012038732A JP2013175571A JP 2013175571 A JP2013175571 A JP 2013175571A JP 2012038732 A JP2012038732 A JP 2012038732A JP 2012038732 A JP2012038732 A JP 2012038732A JP 2013175571 A JP2013175571 A JP 2013175571A
Authority
JP
Japan
Prior art keywords
resistance
contact
electrode
organic
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012038732A
Other languages
Japanese (ja)
Inventor
Takeo Mitsunari
剛生 三成
Darmawan Peter
ダマワン ピーター
Kazuhito Tsukagoshi
一仁 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2012038732A priority Critical patent/JP2013175571A/en
Publication of JP2013175571A publication Critical patent/JP2013175571A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce organic contact resistance of a source electrode and a drain electrode of an organic FET.SOLUTION: A contact part of a drain electrode or a source electrode adjoining a channel region is doped with acceptor substance. Thus, a depletion layer of an interface between an electrode and an organic semiconductor becomes thinner to reduce charge injection barrier wall resistance R, and further, an effect of trap on charge transfer near a contact is eliminated, to reduce access resistance R, and as a result of it, a contact resistance which is a total of both resistances significantly decreases.

Description

本発明は有機半導体を使用した電界効果トランジスタ(有機FET)に関し、特に有機FETのコンタクト抵抗を低減する素子構造に関する。   The present invention relates to a field effect transistor (organic FET) using an organic semiconductor, and more particularly to an element structure for reducing contact resistance of an organic FET.

軽量性、柔軟性といった特徴を有する有機電界効果トランジスタ(FET)は、RF−IDタグや電子ペーパーのバックプレーンといった様々なアプリケーションへの応用が期待されている。一方で、有機FETは電極界面にSi−MOSFET等と比較して非常に高いコンタクト抵抗Rを有しており、素子の微細化や高速動作の妨げとなっている。一般的に報告されている有機FETのコンタクト抵抗の値は1〜100kΩcm程度となっており、これはSi−MOSFETの値と比較して4、5桁以上高くなっている。有機FETの実用化には、このコンタクト抵抗を大幅に低減することが不可欠である。バンドギャップが大きな有機半導体を使用した場合の方が、電荷注入障壁が大きくなるためにコンタクト抵抗が高くなるが、バンドギャップが比較的小さな有機半導体を使用した場合でもコンタクト抵抗は依然として大きな問題となる。 An organic field effect transistor (FET) having features such as lightness and flexibility is expected to be applied to various applications such as an RF-ID tag and an electronic paper backplane. On the other hand, the organic FET has an extremely high contact resistance RC as compared with Si-MOSFET or the like at the electrode interface, which hinders element miniaturization and high-speed operation. The generally reported contact resistance value of the organic FET is about 1 to 100 kΩcm, which is 4 or 5 orders of magnitude higher than the value of the Si-MOSFET. For practical use of organic FETs, it is indispensable to greatly reduce the contact resistance. When an organic semiconductor with a large band gap is used, the contact resistance becomes higher due to a larger charge injection barrier. However, even when an organic semiconductor with a relatively small band gap is used, the contact resistance is still a big problem. .

コンタクト構造を低減するための有機FETの構造については従来から幾つかの提案がなされてきた。非特許文献1には、有機トランジスタの電極界面に酸化モリブデン層を挿入することによってコンタクト抵抗の低減と素子特性向上に成功したことが記載されている。非特許文献2では、有機トランジスタの電極界面にアクセプター性分子であるFTCNQを挿入してコンタクト抵抗を低減した(p型半導体の場合)ことが記載されている。また非特許文献2は、コンタクト抵抗が電極/有機半導体界面に生じる電荷注入障壁による抵抗と電極から伝導チャネルまでの間に存在するアクセス抵抗とから成るという概念を提案した。更に、非特許文献3には、ボトムコンタクト(BC)型有機FETの電極表面に自己組織化単分子膜(self-assembled monolayer、SAM)を形成して電気特性を向上させたことが記載されている。これらの改良によってコンタクト抵抗はある程度低減できるが、有機FETの応用を進めるためにはまだ十分なものではなかった。 Several proposals have conventionally been made on the structure of an organic FET for reducing the contact structure. Non-Patent Document 1 describes that the contact resistance was reduced and the device characteristics were successfully improved by inserting a molybdenum oxide layer at the electrode interface of the organic transistor. Non-Patent Document 2 describes that F 4 TCNQ, which is an acceptor molecule, is inserted into the electrode interface of an organic transistor to reduce contact resistance (in the case of a p-type semiconductor). Non-Patent Document 2 proposed the concept that the contact resistance is composed of a resistance due to a charge injection barrier generated at the electrode / organic semiconductor interface and an access resistance existing between the electrode and the conduction channel. Furthermore, Non-Patent Document 3 describes that a self-assembled monolayer (SAM) is formed on the electrode surface of a bottom contact (BC) type organic FET to improve electrical characteristics. Yes. Although these improvements can reduce the contact resistance to some extent, they have not been sufficient for further application of organic FETs.

本発明の課題は、有機FETのコンタクト抵抗を従来技術で達成できていた水準を超えて大幅に低減することである。   An object of the present invention is to significantly reduce the contact resistance of an organic FET beyond the level that can be achieved with the prior art.

本発明の一側面によれば、ソース電極と、ドレイン電極と、ゲート電極と、前記ソース電極および前記ドレイン電極に接するとともに、前記ゲート電極による電界によって制御されるチャネル領域を有する有機半導体とを設け、前記ソース電極及び前記ドレイン電極の少なくとも一方の前記チャネル領域に隣接する部分と前記有機半導体との界面にアクセプター性材料のドーピングを行う有機FETが与えられる。
ここで、前記有機FETはボトムコンタクト/トップゲート構造を有してよく、あるいは、トップコンタクト/トップゲート構造を有してよい。
前記アクセプター性材料は塩化第2鉄、TCNQ、F4TCNQ、フラーレンとその誘導体、ペリレン系のn型有機半導体からなる群から選択されてよい。
According to one aspect of the present invention, a source electrode, a drain electrode, a gate electrode, and an organic semiconductor having a channel region in contact with the source electrode and the drain electrode and controlled by an electric field by the gate electrode are provided. An organic FET is provided that performs doping of an acceptor material on an interface between the organic semiconductor and a portion adjacent to the channel region of at least one of the source electrode and the drain electrode.
Here, the organic FET may have a bottom contact / top gate structure, or may have a top contact / top gate structure.
The acceptor material may be selected from the group consisting of ferric chloride, TCNQ, F4TCNQ, fullerene and derivatives thereof, and a perylene n-type organic semiconductor.

本発明によれば、有機FETのコンタクト抵抗を大幅に低減することにより、素子の移動度や動作安定性の向上、しきい電圧の制御、素子サイズのさらなる縮小、高速動作が可能となる。   According to the present invention, by greatly reducing the contact resistance of the organic FET, the mobility and operational stability of the element can be improved, the threshold voltage can be controlled, the element size can be further reduced, and high-speed operation can be achieved.

本発明の比較例であるトップコンタクト/ボトムゲート(TC/BG)構造の有機FETにおけるコンタクト構造Rの成分を示す概念図。The conceptual diagram which shows the component of contact structure RC in organic FET of the top contact / bottom gate (TC / BG) structure which is a comparative example of this invention. 本発明の原理を説明するコンタクト近傍の概念的断面図。FIG. 3 is a conceptual cross-sectional view in the vicinity of a contact for explaining the principle of the present invention. 本発明の一実施例のボトムコンタクト/トップゲート(BC/TG)構造の有機FETにおけるコンタクト抵抗Rの成分を示す概念的断面図。The conceptual sectional view showing the component of contact resistance RC in the organic FET of the bottom contact / top gate (BC / TG) structure of one example of the present invention. 本発明の一実施例のトップコンタクト/トップゲート(TC/TG)構造の有機FETにおけるコンタクト抵抗Rの成分を示す概念的断面図。1 is a conceptual cross-sectional view showing components of contact resistance RC in an organic FET having a top contact / top gate (TC / TG) structure according to an embodiment of the present invention. ゲート電圧−40Vにおける本発明の実施例及び比較例の有機FETのオン抵抗のチャネル長依存性を示す図。The figure which shows the channel length dependence of the ON resistance of the organic FET of the Example of this invention and comparative example in gate voltage -40V. 本発明の実施例の有機FETの伝達特性を示す図。The figure which shows the transfer characteristic of organic FET of the Example of this invention. 本発明の一実施例のBC/TG構造の有機FETの出力特性を示す図。The figure which shows the output characteristic of organic FET of the BC / TG structure of one Example of this invention. 本発明の一実施例のTC/TG構造の有機FETの出力特性を示す図。The figure which shows the output characteristic of organic FET of TC / TG structure of one Example of this invention.

本発明では、コンタクト抵抗Rは、電極/有機半導体界面に生じる電荷注入障壁による抵抗Rintと、電極から伝導チャネルまでの間に存在するアクセス抵抗Rbulkとから成るという概念に基づいて、各抵抗要因を直接低減できる新しい有機FETの素子構造を与える。具体的には、電荷注入障壁による抵抗Rintは主にコンタクト界面にドーピングを行うことによって低減し、電極から伝導チャネルまでのアクセス抵抗Rbulkの低減は、上記ドーピングを行ったことによってRintが小さくなった界面をFETのチャネル領域に隣接させることにより達成される。 In the present invention, based on the concept that the contact resistance RC is composed of a resistance R int due to a charge injection barrier generated at the electrode / organic semiconductor interface and an access resistance R bulk existing between the electrode and the conduction channel, A new organic FET device structure capable of directly reducing the resistance factor is provided. Specifically, the charge injection barrier due to the resistance R int is mainly reduced by performing the doping in the contact interface, reducing the access resistance R bulk from the electrode to the conduction channel, R int by performing the doping This is accomplished by placing the reduced interface adjacent to the channel region of the FET.

ただし、有機トランジスタのOFF電流を低い値に保つために、上記ドーピングはコンタクト部分だけに行い、チャネル部分には行わない。そのため、従来用いられているトップコンタクト/ボトムゲート(TC/BG)構造においてコンタクト界面にドーピングを行った場合のようなドーピング箇所とチャネル領域が隣接しない素子構造(図1)では、バルク領域中でドーピングによるRbulk低減が起こっていない部分の抵抗成分がRbulkで支配的になる。本発明は、ドーピングされている界面をチャネル領域に隣接させるようにすることで、コンタクトへのドーピングがRintとRbulkの両方を大きく減少させるようにし、結果としてコンタクト抵抗Rを大幅に低減させるものである。 However, in order to keep the OFF current of the organic transistor at a low value, the doping is performed only on the contact portion and not on the channel portion. Therefore, in a conventionally used top contact / bottom gate (TC / BG) structure, an element structure (FIG. 1) in which a doped portion and a channel region are not adjacent to each other as in the case where doping is performed on the contact interface is performed in the bulk region. The resistance component of the portion where R bulk reduction due to doping does not occur becomes dominant with R bulk . The present invention allows the doping to the contact to greatly reduce both R int and R bulk by making the doped interface adjacent to the channel region, resulting in a significant reduction in contact resistance RC. It is something to be made.

コンタクトへのドーピング(以下ではこれに限定する意図はないが、ドーパントとして塩化第二鉄(FeCl)を例として説明する)によってコンタクト抵抗Rが減少することについての要因としては、電極/有機半導体界面の電荷注入障壁が減少しRintが低減されること、および電荷の生成によってデバイスのアクセス領域中の電荷密度が増大してトラップ準位が占拠されRbulkが減少することが挙げられる。従来用いられている構造であるTC/BG構造を例にして説明すれば、コンタクト界面の抵抗Rintとコンタクトからチャネルへのアクセス抵抗Rbulkは、図1に等価回路を示したように直列接続になっている(非特許文献1、2)。このコンタクト界面のエネルギー状態を模式的に表したものを図2に示す。コンタクト界面に存在する電荷注入障壁は、主に電極のフェルミレベルとp型有機半導体のHOMOレベルのエネルギー差によって生じるショットキー障壁として説明される。金属とp型有機半導体が接触した場合に、コンタクト界面の電荷移動によって、有機半導体中の界面近傍には空乏層が形成される(図2(a))。この空乏層が、有機半導体への電荷注入障壁として働く。コンタクト界面にドープを施すことで、生成したキャリアは空乏層の幅を減少させる。結果として、減少した空乏層をキャリアがトンネル注入を行うことによって、電荷注入障壁による抵抗Rintは大幅に低減される(図2(b))。 Factors for reducing contact resistance RC due to contact doping (which is not intended to be limited in the following, but will be described with ferric chloride (FeCl 3 ) as an example) as a dopant include: electrode / organic For example, the charge injection barrier at the semiconductor interface is reduced and R int is reduced, and the charge density in the access region of the device is increased due to the generation of charges, and the trap level is occupied and R bulk is reduced. The TC / BG structure, which is a conventionally used structure, will be described as an example. The contact interface resistance R int and the contact to channel access resistance R bulk are connected in series as shown in an equivalent circuit in FIG. (Non-Patent Documents 1 and 2). FIG. 2 schematically shows the energy state of the contact interface. The charge injection barrier existing at the contact interface is explained as a Schottky barrier mainly caused by the energy difference between the Fermi level of the electrode and the HOMO level of the p-type organic semiconductor. When the metal and the p-type organic semiconductor are in contact with each other, a depletion layer is formed in the vicinity of the interface in the organic semiconductor due to charge transfer at the contact interface (FIG. 2A). This depletion layer serves as a charge injection barrier to the organic semiconductor. By doping the contact interface, the generated carriers reduce the width of the depletion layer. As a result, the carrier performs tunnel injection in the reduced depletion layer, so that the resistance R int due to the charge injection barrier is greatly reduced (FIG. 2B).

また、上記ドーピングによって生成した電荷はアクセス領域にも影響し、この領域に存在するトラップ準位を占有することによって、コンタクト近傍においてはRbulkを減少させる効果もある(図2(b)参照)。コンタクトドーピングのRbulkへの影響は、コンタクト抵抗Rのゲート電圧Vへの依存性に見ることができる。TC/BG有機FETでは、RのVへの依存性は、トラップに富んでいる領域を通した電荷輸送の結果としてしばしば説明される(非特許文献2、4)。本願発明者らの知見によれば、未ドープのデバイスについてのコンタクト抵抗Rはゲート電圧Vへの強い依存性を示すことがわかったが、これは以前に報告された傾向に対応する。一方、FeClドーピング有りのデバイスの場合のコンタクト抵抗Rはゲート電圧Vにほとんど依存しないこともわかった。コンタクト抵抗Rがゲート電圧Vに対して一定であるのは、FeClドーピングによってアクセス領域中で電荷キャリアが発生することによるものである。すなわち、FeClをドープすることで禁制帯中にアクセプターレベルが形成され、HOMOレベル端に正孔が生成される。この誘起された正孔により、アクセス領域中の電荷密度が大きく増大してその活性トラップを占拠し、その結果、この領域を通る電荷輸送は電荷トラップの影響を受けなくなる(図1(b))。従って、アクセス領域中のバルク導電性が大きく改善されて、コンタクト抵抗Rのゲート電圧Vへの依存性が低下する。従って、RbulkもまたFeClドーピングによって大きく低下する。結局、FeClをコンタクトにドープすることによるコンタクト抵抗Rの低下は、コンタクト界面中の薄くなった空乏領域を通過するトンネル注入によるRintの低下と、アクセス領域中の活性トラップの減少によるRbulkの低下とによるものであると結論付けられる。 In addition, the charge generated by the doping also affects the access region. By occupying the trap level existing in this region, there is an effect of reducing R bulk in the vicinity of the contact (see FIG. 2B). . Effect of the R bulk of the contact doping can be seen in dependence on the gate voltage V G of the contact resistance R C. In TC / BG organic FET, dependency on V G of R C is often described as a result of the charge transport through the region rich in traps (non-patent documents 2 and 4). According to the findings of the present inventors, the contact resistance R C of the undoped device has been found to exhibit a strong dependence on the gate voltage V G, which corresponds to the trend that has been previously reported. On the other hand, the contact resistance R C in the case of the device of FeCl 3 doped There was also found that hardly depends on the gate voltage V G. The contact resistance RC is constant with respect to the gate voltage V G because charge carriers are generated in the access region by FeCl 3 doping. That is, by doping FeCl 3 , an acceptor level is formed during the forbidden band, and holes are generated at the HOMO level end. This induced hole greatly increases the charge density in the access region and occupies its active trap, so that charge transport through this region is not affected by the charge trap (FIG. 1 (b)). . Thus, greatly improved bulk conductivity in the access area, dependent on the gate voltage V G of the contact resistance R C is lowered. Therefore, R bulk is also greatly reduced by FeCl 3 doping. Eventually, the contact resistance RC due to doping of the contact with FeCl 3 is reduced by R int due to tunnel injection through the thinned depletion region in the contact interface, and R due to reduction of active traps in the access region. It is concluded that this is due to a decrease in bulk .

従来のTC/BG構造を有する有機FETでは、コンタクト界面へのドーピングによって電極近傍のRbulkは低減できるが、コンタクトから離れた領域では依然として高いバルク抵抗を有していたため、ドーピングによるRの低減効果は限定的であった。本発明では、ドーピングの効果が及ぶ領域をチャネル領域に隣接させることによって、Rbulkを一層低減させることで、極めて低いRを実現することができる。このような有機FETの具体的な断面構造の例を図3−a及び図3−bに示す。 In the organic FET having a conventional TC / BG structure, the R bulk near the electrodes by doping the contact surface can be reduced, because had still higher bulk resistance in the region away from the contact, reduction of R C by doping The effect was limited. In the present invention, an extremely low RC can be realized by further reducing the R bulk by making the region where the effect of doping is adjacent to the channel region. Examples of specific cross-sectional structures of such organic FETs are shown in FIGS.

図3−a及び図3−bは夫々BC/TG構造及びTC/TG構造の有機FETの概念的構造を示す断面図である。これらの断面図には、コンタクト抵抗Rが電極と有機半導体との間の界面に生じる電荷注入障壁による抵抗Rintと、電極から伝導チャネルまでの間に存在するアクセス抵抗Rbulkとから成るという上述のモデルに基いたソース−ドレイン間の抵抗の等価回路も示されている。すなわち、ソース−ドレイン間の抵抗は理想的にはチャネル領域の抵抗Rchであるが、実際にはソース電極と有機半導体との界面、及びドレイン電極と有機半導体の界面に夫々コンタクト抵抗Rが現れる。ここでコンタクト抵抗Rは電荷注入障壁抵抗Rintとアクセス抵抗Rbulkとの直列接続として現れ、それにチャネル領域の抵抗Rchが直列に入るので、結局、ソース−ドレイン間の抵抗全体は以下のように表される。
int+Rbulk+Rch+Rbulk+Rint
FIGS. 3A and 3B are cross-sectional views showing the conceptual structures of organic FETs having a BC / TG structure and a TC / TG structure, respectively. In these cross-sectional views, the contact resistance RC is composed of a resistance R int due to a charge injection barrier generated at the interface between the electrode and the organic semiconductor, and an access resistance R bulk existing between the electrode and the conduction channel. Also shown is an equivalent circuit of source-drain resistance based on the above model. That is, the resistance between the source and the drain is ideally the resistance Rch of the channel region, but actually the contact resistance RC is present at the interface between the source electrode and the organic semiconductor and at the interface between the drain electrode and the organic semiconductor. appear. Here, the contact resistance RC appears as a series connection of the charge injection barrier resistance R int and the access resistance R bulk, and the resistance R ch of the channel region enters in series. It is expressed as follows.
R int + R bulk + R ch + R bulk + R int

ここで、図3-aのBC/TG構造を見るに、電極が設けられた基板上に被せるような形で有機半導体の薄膜が形成されるため、有機半導体薄膜は図に示すような階段状の形状で基板及び電極表面を覆う。電極の高さと半導体層の膜厚はほぼ同程度となっているため、この構造により、ソース電極とドレイン電極との間に存在する有機半導体薄膜のゲート絶縁層側表面に形成されるチャネルはドープ領域に非常に近接することになり、チャネルに隣接していると見ることができる。ここで、電流は抵抗が最小となる経路を流れるため、ここで電流に実質的に寄与するドープ領域は図中のソース電極の右上隅及びドレイン電極の左上隅部分であることに注意されたい。これにより、上式中の電荷注入障壁抵抗Rintとアクセス抵抗Rbulkの両者が極めて小さくなるため、非常に小さなコンタクト抵抗Rが得られる。これに対して図1に示す従来構造では、半導体層の膜厚がそのまま抵抗として作用する。従って、電荷注入障壁抵抗Rintだけではなくアクセス抵抗Rbulkも大きなものとなる。 Here, when the BC / TG structure of FIG. 3A is seen, since the organic semiconductor thin film is formed on the substrate provided with the electrodes, the organic semiconductor thin film has a stepped shape as shown in the figure. The substrate and the electrode surface are covered with the shape. Since the height of the electrode and the film thickness of the semiconductor layer are approximately the same, this structure allows the channel formed on the gate insulating layer side surface of the organic semiconductor thin film existing between the source electrode and the drain electrode to be doped. It will be very close to the area and can be seen as adjacent to the channel. Here, since the current flows through a path where the resistance is minimum, it should be noted that the doped regions that substantially contribute to the current are the upper right corner of the source electrode and the upper left corner of the drain electrode in the drawing. As a result, both the charge injection barrier resistance R int and the access resistance R bulk in the above equation are extremely small, and thus a very small contact resistance RC is obtained. On the other hand, in the conventional structure shown in FIG. 1, the film thickness of the semiconductor layer acts as a resistance as it is. Accordingly, not only the charge injection barrier resistance R int but also the access resistance R bulk is increased.

また、図3-bのTC/TG構造では、ソース、ドレイン電極と有機半導体との界面とチャネル領域とが有機半導体膜の同じ側の面上に存在するため、これらの界面がほぼ直接チャネル領域に接するように構成することができる。従って、有機FETに流れる電流がアクセス抵抗Rbulkに寄与する領域を通過する距離はきわめて短くなり、これによってアクセス抵抗Rbulkが極めて小さくなるか、あるいは実質的にゼロとなる。従って、図3-bではソース−ドレイン間の抵抗全体を以下のように表している。
int+Rch+Rint
In the TC / TG structure of FIG. 3B, the interface between the source and drain electrodes and the organic semiconductor and the channel region exist on the same side surface of the organic semiconductor film, so that these interfaces are almost directly channel regions. It can comprise so that it may touch. Therefore, the distance through which the current flowing through the organic FET passes through the region contributing to the access resistance R bulk is extremely short, which makes the access resistance R bulk very small or substantially zero. Therefore, in FIG. 3B, the entire resistance between the source and the drain is expressed as follows.
R int + R ch + R int

なお、ボトムコンタクト/ボトムゲート(BC/BG)構造とした場合にも電極の下端がチャネルに接していると考えられる。しかし、この構造で問題な点は、電極の下層には一般的に密着性を向上させるための接着層が用いられるため、電極から直接電荷を注入できないことである(非特許文献5)。更には、BC/BG構造では実際には電極下部にドーピングを施すことが難しく、従ってドープ領域とチャネルが接した構造を作成することが困難であることも問題である。   Note that even when the bottom contact / bottom gate (BC / BG) structure is adopted, the lower end of the electrode is considered to be in contact with the channel. However, a problem with this structure is that since an adhesive layer for improving adhesion is generally used in the lower layer of the electrode, it is impossible to inject charges directly from the electrode (Non-patent Document 5). Furthermore, in the BC / BG structure, it is actually difficult to dope the lower part of the electrode, and it is therefore difficult to create a structure in which the doped region and the channel are in contact with each other.

以上説明したように、本発明においては、図3-aの構造でもまた図3-bの構造でも、コンタクト抵抗Rを構成する抵抗成分である電荷注入障壁抵抗Rintとアクセス抵抗Rbulkの両方が上述したように著しく低減され、従ってコンタクト抵抗Rも大きく低下する。なお、アクセス抵抗Rbulkについては、単に界面からチャネル領域の距離を短くしたことがそれに貢献するだけではない。この距離の短縮によりアクセス抵抗に寄与する有機半導体の領域がドーピングした界面のごく近傍に限られるので、単位長当りの抵抗も大きく低下し、両者の乗算によってアクセス抵抗Rbulkの一層の低減が実現される。 As described above, in the present invention, the charge injection barrier resistance R int and the access resistance R bulk , which are the resistance components constituting the contact resistance RC , can be obtained in both the structure of FIG. 3A and the structure of FIG. Both are significantly reduced as described above, and thus the contact resistance RC is greatly reduced. As for the access resistance R bulk , simply reducing the distance from the interface to the channel region does not only contribute to it. Since the organic semiconductor region contributing to the access resistance is limited to the very vicinity of the doped interface due to the shortening of the distance, the resistance per unit length is greatly reduced, and the access resistance R bulk can be further reduced by multiplying the two. Is done.

なお、以下の実施例では有機半導体としてC8−BTBTを用いているが、本発明の効果はすべての有機半導体に対して有効でありC8−BTBTに限定されるものではない。また、ドーピング材料としてFeClを用いたが、有機半導体との電荷移動によってキャリアを発生させる材料であれば、その種類は問わない。ドーピング材料として使用可能な物質の一部を例示すれば、TCNQ、F4TCNQ、フラーレンとその誘導体、ペリレン系のn型有機半導体等が挙げられる。同様に、絶縁層材料の種類も問わない。さらに、実施例では電極、有機半導体層を成膜するために真空蒸着法を用いているが、成膜方法の種類も問わない。真空蒸着法以外の成膜方法として、例えばスクリーン印刷、グラビア印刷、インクジェット印刷等が考えられる。 In the following examples, C8-BTBT is used as the organic semiconductor, but the effect of the present invention is effective for all organic semiconductors and is not limited to C8-BTBT. Further, although FeCl 3 is used as a doping material, any material may be used as long as it is a material that generates carriers by charge transfer with an organic semiconductor. Examples of substances that can be used as the doping material include TCNQ, F4TCNQ, fullerene and derivatives thereof, and perylene-based n-type organic semiconductors. Similarly, the type of insulating layer material does not matter. Furthermore, although the vacuum evaporation method is used for forming the electrode and the organic semiconductor layer in the embodiment, the kind of the film forming method is not limited. As film forming methods other than the vacuum evaporation method, for example, screen printing, gravure printing, ink jet printing, and the like are conceivable.

また、ドーピングは最低限電極と有機半導体の界面のうちのチャネル領域の近傍部分だけに行うことで本発明の作用・効果を達成することが出来るが、もちろんこの界面全体などのもっと広い範囲に対して行っても良い。   In addition, by performing doping at least in the vicinity of the channel region in the interface between the electrode and the organic semiconductor, the effects and effects of the present invention can be achieved. You may go.

1.素子の作製
図3-a及び図3-bに示す構造の素子を以下のようにして作製した。ガラス基板をアセトン、イソプロパノールによって洗浄し、表面を疎水化するためにパリレン薄膜を300nm程度形成したものを基板として用いた。BC/TG構造(図3-a)の場合は、基板上にメタルマスクを通してTi(3nm)/Au(37nm)電極を真空蒸着し、マスクを外すことなく電極表面に塩化第二鉄(FeCl)をドーパントとして0.3nm蒸着した。さらに、有機半導体としてC8−BTBT(日本化薬株式会社)を40nmの膜厚で真空蒸着した。TC/TG(図3-b)構造の場合は、先に有機半導体としてC8−BTBTを40nmの膜厚で真空蒸着し、その後にメタルマスクを通してドーパントであるFeClを0.3nm蒸着し、さらにAuを40nm蒸着して電極とした。両者ともに、ゲート絶縁層としてCytop(旭硝子株式会社)を500nmの膜厚でスピンコートし、大気下で自然乾燥させて用いた。最後に、トップゲート電極としてTi(3nm)/Au(37nm)電極を真空蒸着し、有機FETを形成した。リファレンス素子として、TC/BG構造でコンタクト界面にドーピング層を持つものと持たないもの(図1)を以下の様に作製した。ガラス基板をアセトン、イソプロパノールによって洗浄し、ボトムゲート電極としてTi(3nm)/Au(37nm)を真空蒸着した。ゲート絶縁層としてパリレン薄膜を300nm程度の膜厚で化学的気相蒸着法によって形成した。さらに、有機半導体としてC8−BTBT(日本化薬)を40nmの膜厚で真空蒸着した。ドーパント層を有する素子については、メタルマスクを通してドーパントであるFeClを0.3nm蒸着し、さらにAuを40nm蒸着してソース/ドレイン電極を形成した。ドーパント層を持たない素子については、メタルマスクを通してAuを40nm蒸着して電極とした。
1. Fabrication of device A device having the structure shown in FIGS. 3A and 3B was fabricated as follows. A glass substrate was washed with acetone and isopropanol, and a substrate having a parylene thin film of about 300 nm was used as a substrate in order to make the surface hydrophobic. In the case of the BC / TG structure (FIG. 3A), a Ti (3 nm) / Au (37 nm) electrode is vacuum-deposited on a substrate through a metal mask, and ferric chloride (FeCl 3) is formed on the electrode surface without removing the mask. ) As a dopant. Further, C8-BTBT (Nippon Kayaku Co., Ltd.) was vacuum deposited as an organic semiconductor with a film thickness of 40 nm. In the case of the TC / TG (FIG. 3B) structure, C8-BTBT is first vacuum-deposited with a film thickness of 40 nm as an organic semiconductor, and then FeCl 3 as a dopant is vapor-deposited with a thickness of 0.3 nm through a metal mask. Au was deposited to 40 nm to form an electrode. In both cases, Cytop (Asahi Glass Co., Ltd.) was spin-coated with a film thickness of 500 nm as a gate insulating layer and naturally dried in the atmosphere. Finally, a Ti (3 nm) / Au (37 nm) electrode was vacuum deposited as a top gate electrode to form an organic FET. As a reference element, a TC / BG structure with and without a doping layer at the contact interface (FIG. 1) was prepared as follows. The glass substrate was washed with acetone and isopropanol, and Ti (3 nm) / Au (37 nm) was vacuum deposited as a bottom gate electrode. A parylene thin film having a thickness of about 300 nm was formed as a gate insulating layer by chemical vapor deposition. Further, C8-BTBT (Nippon Kayaku Co., Ltd.) was vacuum deposited as an organic semiconductor with a film thickness of 40 nm. For a device having a dopant layer, a source / drain electrode was formed by depositing FeCl 3 as a dopant by 0.3 nm through a metal mask and further depositing Au by 40 nm. For an element having no dopant layer, Au was evaporated to 40 nm through a metal mask to form an electrode.

2.コンタクト抵抗の評価
コンタクト抵抗Rの評価はTLM法(Transfer Line Method)を用いて行った。図4にゲート電圧-40Vにおける各素子のオン抵抗のチャネル長依存性を示す。このプロットのy切片よりコンタクト抵抗Rを算出することができる。ここでは、リファレンス素子に対してドーピングを行ったTC/BG素子のオン抵抗と、BC/TGおよびTC/TG素子のオン抵抗を示す。リファレンス素子に対して、BC/TGおよびTC/TG素子のコンタクト抵抗Rは大幅に低減していることが分かる。リファレンス素子として作製した未ドープのTC/BG素子と電極界面ドーピングを施したTC/BG素子、電極界面ドーピングを施したBC/TGおよびTC/TG素子のゲート電圧-40Vにおけるコンタクト抵抗は、それぞれ200,000、8,800、220、および100Ωcmであった。これらの結果をまとめたものを表1に示す。
2. Evaluation of contact resistance The contact resistance RC was evaluated using a TLM method (Transfer Line Method). FIG. 4 shows the channel length dependence of the on-resistance of each element at a gate voltage of −40V. The contact resistance RC can be calculated from the y-intercept of this plot. Here, the on resistance of the TC / BG element doped with the reference element and the on resistance of the BC / TG and TC / TG elements are shown. It can be seen that the contact resistance RC of the BC / TG and TC / TG elements is significantly reduced with respect to the reference element. The contact resistance at the gate voltage of −40V of the undoped TC / BG device manufactured as the reference device, the TC / BG device with electrode interface doping, the BC / TG with the electrode interface doping, and the TC / TG device is 200 respectively. , 8,000, 8,800, 220, and 100 Ωcm. A summary of these results is shown in Table 1.

3.電気特性の評価
作製した素子について、遮光・真空下で電気特性の評価を行った。作製した素子の伝達特性を図5に示す。電極界面にドーピングを行ったBC/TGおよびTC/TG素子のドレイン電流値はサブスレッショルド領域で急峻に上昇し、電流のヒステリシスもほぼ解消することができた。この特性より各素子の移動度の平均値を算出すると、電極界面ドーピングを施したBC/TGおよびTC/TG素子で、それぞれ5.5、5.7cm/Vsであった。図6-aおよび図6-bに各素子の出力特性の比較を示す。ここでもドーピングを行ったBC/TGおよびTC/TG素子のドレイン電流値は低ドレイン電圧領域でも完全に線形に上昇し、コンタクト抵抗の影響が見られない理想的な電流電圧特性が得られている。
3. Evaluation of electrical properties The fabricated devices were evaluated for electrical properties under light shielding and vacuum. The transfer characteristics of the manufactured element are shown in FIG. The drain current values of the BC / TG and TC / TG elements doped at the electrode interface increased sharply in the subthreshold region, and the current hysteresis could be almost eliminated. When the average value of the mobility of each element was calculated from this characteristic, it was 5.5 and 5.7 cm 2 / Vs for the BC / TG and TC / TG elements subjected to electrode interface doping, respectively. 6A and 6B show a comparison of the output characteristics of each element. Also here, the drain current value of the doped BC / TG and TC / TG elements increases completely linearly even in the low drain voltage region, and an ideal current-voltage characteristic without the influence of contact resistance is obtained. .

本発明によれば、有機FETにおける電極のコンタクト抵抗の目覚しい低減が達成できるので、本発明はこれまで多くの分野への応用が記載されてきた有機半導体デバイスの実用化に大きく貢献することが期待される。   According to the present invention, a remarkable reduction in the contact resistance of an electrode in an organic FET can be achieved. Therefore, the present invention is expected to greatly contribute to the practical application of organic semiconductor devices that have been described in many fields. Is done.

Improvement of subthreshold current transport by contact interface modification in p-type organic field-effect transistors, M. Kano, T. Minari, and K. Tsukagoshi, Applied Physics Letters, 94 143304 (2009).Improvement of subthreshold current transport by contact interface modification in p-type organic field-effect transistors, M. Kano, T. Minari, and K. Tsukagoshi, Applied Physics Letters, 94 143304 (2009). Charge injection process in organic field-effect transistors, T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, Applied Physics Letters, 91, 053508 (2007).Charge injection process in organic field-effect transistors, T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, Applied Physics Letters, 91, 053508 (2007). Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes, D. J. Gundlach, L. L. Jia, and T. N. Jackson, IEEE Electron Device Lett. 22, 571 (2001).Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes, D. J. Gundlach, L. L. Jia, and T. N. Jackson, IEEE Electron Device Lett. 22, 571 (2001). Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature, P. V. Pesavento, R. J. Chesterfield, C. R. Newman, and C. D. Frisbie, Journal of Applied Physics, 96, 7312 (2004).Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature, P. V. Pesavento, R. J. Chesterfield, C. R. Newman, and C. D. Frisbie, Journal of Applied Physics, 96, 7312 (2004). Reduction of contact resistance in pentacene thin-film transistors by direct carrier injection into a-few-molecular-layer channel, N. Yoneya, M. Noda, N. Hirai, K. Nomoto, M. Wada, and J. Kasahara, Applied Physics Letters, 85, 4663 (2004).Reduction of contact resistance in pentacene thin-film transistors by direct carrier injection into a-few-molecular-layer channel, N. Yoneya, M. Noda, N. Hirai, K. Nomoto, M. Wada, and J. Kasahara, Applied Physics Letters, 85, 4663 (2004).

Claims (4)

ソース電極と、
ドレイン電極と、
ゲート電極と、
前記ソース電極および前記ドレイン電極に接するとともに、前記ゲート電極による電界によって制御されるチャネル領域を有する有機半導体と
を設けた有機電界効果トランジスタにおいて、
前記ソース電極及び前記ドレイン電極の少なくとも一方の前記チャネル領域に隣接する部分と前記有機半導体との界面にアクセプター性材料のドーピングを行う有機電界効果トランジスタ。
A source electrode;
A drain electrode;
A gate electrode;
In an organic field effect transistor provided with an organic semiconductor in contact with the source electrode and the drain electrode and having a channel region controlled by an electric field by the gate electrode,
An organic field effect transistor in which an acceptor material is doped at an interface between the organic semiconductor and a portion of at least one of the source electrode and the drain electrode adjacent to the channel region.
ボトムコンタクト/トップゲート構造を有する、請求項1に記載の有機電界効果トランジスタ。   The organic field effect transistor according to claim 1, having a bottom contact / top gate structure. トップコンタクト/トップゲート構造を有する、請求項1に記載の有機電界効果トランジスタ。   The organic field effect transistor according to claim 1, having a top contact / top gate structure. 前記アクセプター性材料は塩化第2鉄、TCNQ、F4TCNQ、フラーレンとその誘導体、ペリレン系のn型有機半導体からなる群から選択される、請求項1から3の何れかに記載の有機電界効果トランジスタ。   4. The organic field effect transistor according to claim 1, wherein the acceptor material is selected from the group consisting of ferric chloride, TCNQ, F 4 TCNQ, fullerene and derivatives thereof, and a perylene-based n-type organic semiconductor. 5.
JP2012038732A 2012-02-24 2012-02-24 Organic field effect transistor Pending JP2013175571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038732A JP2013175571A (en) 2012-02-24 2012-02-24 Organic field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038732A JP2013175571A (en) 2012-02-24 2012-02-24 Organic field effect transistor

Publications (1)

Publication Number Publication Date
JP2013175571A true JP2013175571A (en) 2013-09-05

Family

ID=49268237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038732A Pending JP2013175571A (en) 2012-02-24 2012-02-24 Organic field effect transistor

Country Status (1)

Country Link
JP (1) JP2013175571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156474A (en) * 2013-12-17 2015-08-27 ダウ グローバル テクノロジーズ エルエルシー Highly crystalline electrically conducting organic material, method of manufacture thereof and article comprising the same
WO2017187885A1 (en) * 2016-04-26 2017-11-02 国立大学法人東北大学 Electrode for organic element, and organic element
CN112864323A (en) * 2021-01-09 2021-05-28 西安交通大学 Method for preparing high-mobility transistor by doping organic semiconductor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294072A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor element
US20050242342A1 (en) * 2004-04-29 2005-11-03 Suh Min-Chul Organic thin film transistor including organic acceptor film
WO2008117647A1 (en) * 2007-03-23 2008-10-02 Sumitomo Chemical Company, Limited Organic field effect transistor
JP2010147344A (en) * 2008-12-19 2010-07-01 Sumitomo Chemical Co Ltd Organic semiconductor device and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294072A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor element
US20050242342A1 (en) * 2004-04-29 2005-11-03 Suh Min-Chul Organic thin film transistor including organic acceptor film
JP2005317923A (en) * 2004-04-29 2005-11-10 Samsung Sdi Co Ltd Organic thin film transistor provided with organic acceptor film
WO2008117647A1 (en) * 2007-03-23 2008-10-02 Sumitomo Chemical Company, Limited Organic field effect transistor
JP2008270734A (en) * 2007-03-23 2008-11-06 Sumitomo Chemical Co Ltd Organic field effect transistor
JP2010147344A (en) * 2008-12-19 2010-07-01 Sumitomo Chemical Co Ltd Organic semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156474A (en) * 2013-12-17 2015-08-27 ダウ グローバル テクノロジーズ エルエルシー Highly crystalline electrically conducting organic material, method of manufacture thereof and article comprising the same
US10600964B2 (en) 2013-12-17 2020-03-24 Rohm And Haas Electronic Materials Llc Highly crystalline electrically conducting organic materials, methods of manufacture thereof and articles comprising the same
WO2017187885A1 (en) * 2016-04-26 2017-11-02 国立大学法人東北大学 Electrode for organic element, and organic element
CN112864323A (en) * 2021-01-09 2021-05-28 西安交通大学 Method for preparing high-mobility transistor by doping organic semiconductor

Similar Documents

Publication Publication Date Title
Minari et al. Highly enhanced charge injection in thienoacene-based organic field-effect transistors with chemically doped contact
JP6061858B2 (en) Field effect transistor and manufacturing method thereof
Schön et al. On the intrinsic limits of pentacene field-effect transistors
Darmawan et al. Optimal Structure for High‐Performance and Low‐Contact‐Resistance Organic Field‐Effect Transistors Using Contact‐Doped Coplanar and Pseudo‐Staggered Device Architectures
Ben-Sasson et al. Solution-processed ambipolar vertical organic field effect transistor
JP6045049B2 (en) Organic field effect transistor and manufacturing method thereof
Pei et al. Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors
Yakuphanoglu et al. Effects of channel widths, thicknesses of active layer on the electrical and photosensing properties of the 6, 13-bis (triisopropylsilylethynyl) pentacene transistors by thermal evaporation method: comparison study
Jeon et al. Functionalized organic material platform for realization of ternary logic circuit
Yi et al. Effects of gate dielectric thickness and semiconductor thickness on device performance of organic field-effect transistors based on pentacene
JP2013175571A (en) Organic field effect transistor
Unni et al. N-channel organic field-effect transistors using N, N′-ditridecylperylene-3, 4, 9, 10-tetracarboxylic diimide and a polymeric dielectric
Kwon et al. Bistaggered contact geometry for symmetric dual-gate organic TFTs
Kim et al. Enhancement of minority carrier injection in ambipolar carbon nanotube transistors using double-gate structures
Agrawal et al. Metal-CH 3 NH 3 PbI 3-Metal Tunnel FET
Obaidulla et al. Low operating voltage and low bias stress in top-contact SnCl 2 Pc/CuPc heterostructure-based bilayer ambipolar organic field-effect transistors
Borthakur et al. Performance enhancement of top contact pentacene-based organic thin-film transistor (OTFT) using perylene interlayer between organic/electrode interface
Wang et al. Fabricating an organic complementary inverter by integrating two transistors on a single substrate
Chou et al. Enhancement of electrical properties in pentacene-based thin-film transistors using a lithium fluoride modification layer
Su et al. Enhancing the performance of organic thin-film transistors using an organic-doped inorganic buffer layer
JP2006049578A (en) Organic semiconductor device
Islam et al. Organic thin film transistors with asymmetrically placed source and drain contact
EP2790238B1 (en) Organic field effect transistor and method for production
Yang et al. Vertical organic light-emitting transistors with an evaporated Al gate inserted between hole-transporting layers
Watanabe et al. Improvement in on/off ratio of pentacene static induction transistors by controlling hole injection barrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160524