WO2011148707A1 - Process for production of organic semiconductor device - Google Patents

Process for production of organic semiconductor device Download PDF

Info

Publication number
WO2011148707A1
WO2011148707A1 PCT/JP2011/057465 JP2011057465W WO2011148707A1 WO 2011148707 A1 WO2011148707 A1 WO 2011148707A1 JP 2011057465 W JP2011057465 W JP 2011057465W WO 2011148707 A1 WO2011148707 A1 WO 2011148707A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
drain electrode
electrode
source electrode
material layer
Prior art date
Application number
PCT/JP2011/057465
Other languages
French (fr)
Japanese (ja)
Inventor
勝一 香村
恭崇 葛本
繁 青森
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011148707A1 publication Critical patent/WO2011148707A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes

Definitions

  • the present invention relates to a method for manufacturing an organic semiconductor device using an organic semiconductor material for an organic semiconductor layer of a field effect transistor.
  • a so-called organic transistor using an organic semiconductor material as a semiconductor layer of a field effect transistor is easier to manufacture on a large-area substrate or a plastic substrate than a semiconductor transistor using an inorganic semiconductor such as silicon.
  • an element can be manufactured without using a vacuum process or a high-temperature process of 200 ° C. or higher, and printing techniques such as an ink jet method and a screen printing method, a spin coating method, a casting method, etc. The reason is that the device can be manufactured using a solution process. Therefore, organic transistors are expected to be applied to flexible displays and electronic tags.
  • carrier properties of organic semiconductor materials and electrical properties such as contact resistance between organic semiconductor layers (organic semiconductor materials) and source / drain electrodes are still inferior to those of inorganic semiconductor devices. Improvement is an issue.
  • reducing the contact resistance at the interface between the organic semiconductor layer and the source and drain electrodes results in improved transistor characteristics such as improved mobility as a device, increased ON current, and lowered threshold voltage.
  • the organic semiconductor layer does not have carriers in its material, and unlike inorganic semiconductor layers, it is difficult to inject and control carriers by doping, and carriers are supplied by injection from the source electrode to the organic semiconductor layer. Therefore, the contact resistance at the interface between the source electrode and the organic semiconductor layer has a significant effect on the transistor characteristics.
  • injected carriers need to be efficiently extracted from the drain electrode side through the organic semiconductor layer. For this reason, reducing the contact resistance at the interface between the drain electrode and the organic semiconductor layer is also an important issue.
  • the injection barrier is caused by the existence of an energy gap between the work function of the metal used for the source and drain electrodes and the HOMO or LUMO level of the organic semiconductor material.
  • the other is considered to be caused by low physical adhesion due to low affinity between different materials of the metal and the organic semiconductor material.
  • an organic semiconductor device 110 further includes a source electrode 115, a drain electrode 116, and an organic semiconductor layer 114.
  • an organic semiconductor device 110 having charge injection promoting layers 117 and 118 at least one of the interfaces between the organic semiconductor layer 114 and the source electrode 115 or the drain electrode 116.
  • the direction of this dipole moment is specific to the direction in which the carriers flow.
  • the direction of the electrons is preferably the same as the direction of the electrons. It is desirable that the direction is opposite to the direction. That is, in a general coplanar transistor such as a thin film transistor, it can be said that the preferred dipole moment directions on the source and drain electrodes are different directions regardless of the type of carrier.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2005-294785 (Publication Date: October 20, 2005)”
  • Monolayer formation is caused by a chemical reaction between atoms on the electrode surface and terminal functional groups of organic molecules. That is, the monomolecular film is formed only on the surface where the organic molecules can react and is selective. On the other hand, if the surface can react with the organic molecules, the monomolecular film is formed.
  • a gate electrode, an insulating layer, a source / drain electrode, a modification of the source / drain electrode, and an organic semiconductor layer are formed in this order from the substrate. It is desirable that the layers located in the same plane are formed in the same process from the viewpoint of reducing the number of processes and from the viewpoint of easy alignment. However, when the same source / drain electrode material was used, the same monomolecular film was formed on both the source / drain electrodes when different monomolecular film formation processes were performed. It is impossible to make a monomolecular film.
  • Patent Document 1 Although there is no description of a specific manufacturing method in Patent Document 1, when the above structure is manufactured by a general method, a monomolecular film is formed after forming one of the source / drain electrodes. Further, it is expected that a method of sequentially forming the other electrode and the other monomolecular film in this order will be taken. When the source electrode and the drain electrode are manufactured in two steps, it is expected that the alignment of the electrodes is difficult and the number of processes is increased. Further, when forming the other electrode, since a monomolecular film is formed on one electrode, photolithography which is expected to be chemically damaged cannot be used. That is, it is difficult to form the source / drain electrodes with fineness and high accuracy.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an organic semiconductor device manufacturing method capable of selectively making different monomolecular films by a simple method.
  • the purpose is to provide.
  • the manufacturing method of the organic semiconductor device is to solve the above problems, A first step of forming a gate electrode and a gate insulating layer on the substrate; A second step in which the source electrode and the drain electrode are separated from each other and formed on the gate insulating layer formed by the first step; A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode; Reversing the direction of the electric dipole moment from the negative electrode to the positive electrode of the material layer or material of the material layer formed on the source electrode or the material layer formed on the drain electrode, the source electrode over, provided with an injection-improvement layer facilitates migration of charge on the drain electrode, and the injection improving layer is a direction reverse of the electric dipole moment, extraction improving layer to facilitate the transfer of charges A fourth step of providing And a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer.
  • the material layer having the same electric dipole moment direction is formed on both the source electrode and the drain electrode.
  • reverse the direction of the electric dipole moment to improve the injection of charge from the organic semiconductor layer to the electrode, and the extraction to improve the extraction of charge from the electrode to the organic semiconductor layer
  • a fine electrode pattern can be formed by performing the process of separately forming the improvement layer. Specifically, before forming the injection improvement layer and the extraction improvement layer, a process (for example, photolithography) in which damage to the injection improvement layer and the extraction improvement layer is expected by forming the source electrode and the drain electrode is performed. It can be used. Therefore, it is possible to employ the above process that facilitates miniaturization of the electrode.
  • the manufacturing method of the other organic-semiconductor device based on this invention, A method of manufacturing an organic semiconductor device having a p-type organic transistor and an n-type organic transistor, A first step of forming a gate insulating layer on the gate electrode; a second step of forming a source electrode and a drain electrode constituting the p-type organic transistor and a source electrode and a drain electrode constituting the n-type organic transistor on the gate insulating layer; A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode; The material layer above the source electrode of the p-type organic transistor and the material layer above the drain electrode of the n-type organic transistor, or the material layer above the drain electrode of the p-type organic transistor and the source of the n-type organic transistor The material of the material layer on the electrode or the direction of the electric dipole moment from the negative electrode to the positive electrode of the molecule is reversed, and the
  • An n-type extraction improving layer is provided on the drain electrode, and the extraction improves the extraction of charge from each electrode to the organic semiconductor layer on the drain electrode of the p-type organic transistor and on the source electrode of the n-type organic transistor.
  • the material layer having the same electric dipole moment direction is formed on both the source electrode and the drain electrode.
  • a fine electrode pattern can be formed.
  • a process for example, photolithography
  • damage to the injection improvement layer and the extraction improvement layer is expected by forming the source electrode and the drain electrode is performed. It can be used. Therefore, it is possible to employ the above process that facilitates miniaturization of the electrode.
  • the manufacturing method of the organic semiconductor device is as follows.
  • An extraction improvement layer for promoting charge transfer is provided on the drain electrode, and an extraction improvement layer for promoting charge transfer, wherein the direction of the electric dipole moment is opposite to that of the injection improvement layer on the drain electrode.
  • the manufacturing method of the other organic-semiconductor device based on this invention, A method of manufacturing an organic semiconductor device having a p-type organic transistor and an n-type organic transistor, A first step of forming a gate insulating layer on the gate electrode; a second step of forming a source electrode and a drain electrode constituting the p-type organic transistor and a source electrode and a drain electrode constituting the n-type organic transistor on the gate insulating layer; A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode; The material layer above the source electrode of the p-type organic transistor and the material layer above the drain electrode of the n-type organic transistor, or the material layer above the drain electrode of the p-type organic transistor and the source of the n-type organic transistor The material of the material layer on the electrode or the direction of the electric dipole moment from the negative electrode to the positive electrode of the molecule is reversed, and the
  • a fourth type in which an n-type extraction improving layer is provided on the drain electrode, and a p-type extraction improving layer is provided on the drain electrode of the p-type organic transistor and an n-type injection improving layer is provided on the source electrode of the n-type organic transistor.
  • FIG. 1 It is sectional drawing which showed the structure of the organic transistor manufactured by the manufacturing method which concerns on one Embodiment of this invention.
  • 2 illustrates a partial configuration of materials of an injection improvement layer and an extraction improvement layer of an organic transistor according to an embodiment of the present invention. It is sectional drawing which showed the manufacturing process of the organic transistor based on one Embodiment of this invention. It is sectional drawing which showed the manufacturing process of the organic transistor based on other embodiment of this invention. It is sectional drawing which showed the manufacturing process of the organic transistor based on other embodiment of this invention. It is sectional drawing which showed the manufacturing process of the organic transistor based on other embodiment of this invention. It is sectional drawing which showed the structure of the semiconductor device manufactured by the manufacturing method which concerns on one Embodiment of this invention.
  • FIG. 8 is a circuit diagram showing an element circuit configuration of the semiconductor device shown in FIG. 7. It is a figure which shows the electrode pattern of the semiconductor device shown in FIG. It is sectional drawing which showed the manufacturing process of the semiconductor device based on one Embodiment of this invention. It is the figure which showed the structure of the TFT element manufactured by the manufacturing method which concerns on one Embodiment of this invention. It is sectional drawing which showed the structure of the TFT element manufactured by the manufacturing method which concerns on one Embodiment of this invention. It is sectional drawing which showed the structure of the TFT element manufactured by the manufacturing method which concerns on one Embodiment of this invention. It is sectional drawing which showed the structure of the organic transistor based on other embodiment of this invention. It is sectional drawing which showed the structure of the organic transistor of a comparative example. It is sectional drawing shown about the conventional structure.
  • the organic transistor in the present embodiment can be used as a field effect transistor mounted on various semiconductor devices, and an injection improvement layer is inserted between the source electrode and the organic semiconductor layer. In addition, an extraction improving layer is inserted between the drain electrode and the organic semiconductor layer.
  • FIG. 1 is a cross-sectional view showing the configuration of the organic transistor of the present embodiment.
  • the organic transistor 1 includes a substrate 11, a gate electrode 12, a gate insulating layer 13, a source electrode 14, a drain electrode 15, an organic semiconductor layer 16, an injection improving layer 40, and an extraction. And an improvement layer 50.
  • substrate As the substrate 11, a silicon substrate, a quartz substrate, a glass substrate, or a resin substrate made of a material such as polycarbonate, polyetheretherketone, polyimide, polyester, or polyethersulfone can be used. In particular, considering the development of flexible devices, it is preferable to use a resin substrate.
  • the thickness of the substrate 11 applied in the present invention can be, for example, in the range of 10 ⁇ m to 1 mm, but the present invention is not limited to this.
  • the gate electrode 12 is formed on the substrate 11 using a photolithographic method or the like.
  • the gate electrode 12 gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), iron (Fe), aluminum (Al), tantalum (Ta), chromium ( Cr) and other metal materials, oxide conductors such as indium tin oxide (ITO), zinc oxide (ZnO) and tin oxide (SnO 2 ), and a transparent material composed of indium oxide and zinc oxide which are a kind of oxide conductors.
  • ITO indium tin oxide
  • ZnO zinc oxide
  • SnO 2 tin oxide
  • a conductive material can be mentioned. Two or more of these materials may be used in combination.
  • the gate electrode 12 may be an electrode made of an organic material such as polyaniline or polythiophene, or an electrode formed by applying conductive ink. Since these electrodes can be formed by applying an organic material or conductive ink, there is an advantage that the electrode forming process becomes extremely simple.
  • Specific examples of the coating method include a spin coating method, a casting method, a pulling method, and other printing methods such as an inkjet printing method, a screen printing method, and a gravure printing method, and pattern printing is performed by these printing methods. You can also.
  • the film thickness of the gate electrode 12 depends on the conductivity of the material, but can be in the range of 50 to 1000 nm.
  • the lower limit of the thickness of the gate electrode 12 varies depending on the conductivity of the electrode material and the adhesion strength with the substrate 11.
  • the upper limit of the thickness of the gate electrode 12 is that when a gate insulating layer 13 and a source electrode 14-drain electrode 15 pair, which will be described later, are provided, the insulating coating by the gate insulating layer 13 at the step portion between the substrate 11 and the gate electrode 12 Is sufficient, and it is necessary not to cause disconnection in the electrode patterns of the source electrode 14 and the drain electrode 15 formed thereon.
  • the gate insulating layer 13 is formed on the surface of the substrate 11 where the gate electrode 12 is formed so as to cover the gate electrode 12 and the step portion of the gate electrode 12.
  • the gate insulating layer 13 is made of polychloropyrene, polyethylene terephthalate, polyoxymethylene, polyvinyl chloride, polyvinylidene fluoride, cyanoethyl pullulan, polymethyl methacrylate, polysulfone, polycarbonate, polyvinyl phenol, polystyrene, polyimide, etc. It can be formed by applying a polymer material. Examples of coating methods include spin coating, casting, pulling, etc., as well as printing methods such as inkjet printing, screen printing, gravure printing, flexographic printing, and pattern printing using these printing methods. You can also.
  • the substrate may be used conventional pattern process such as CVD, in which case the, SiO 2, SiNx, inorganic material, such as Al 2 O 3 are preferably used. Two or more of these materials may be used in combination.
  • the gate insulating layer 13 preferably has sufficient insulation to suppress leakage current and has a large capacitance per unit volume.
  • the film thickness of the gate insulating layer 13 is set from both viewpoints. Is done.
  • the specific film thickness is preferably in the range of 20 to 1000 nm when the gate insulating layer 13 is formed of a polymer material, and is preferably 10 to 500 nm when the gate insulating layer is formed of an inorganic material. It is preferable to be in the range.
  • Insulating layers made of self-assembled monolayers with long-chain alkyls such as octadecylsilane monolayers (ODS-SAMs) can reduce the film thickness to the molecular length level. This is preferable because the capacity is increased.
  • the withstand voltage of the gate insulating layer 13 is 2 MV / cm or more, regardless of which material is used.
  • Source electrode 14 and the drain electrode 15 are formed on the gate insulating layer 13 as shown in FIG.
  • the material of the source electrode 14 and the drain electrode 15 is gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), iron (Fe), aluminum (Al), tantalum (Ta). , Metal materials such as chromium (Cr) and alloy materials containing these metals, and oxidation of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), tin oxide (SnO 2 ), etc.
  • the source electrode 14 and the drain electrode 15 are made of Au, Ag, ITO, ZnO, SnO 2 , indium oxide and zinc oxide, which are easily chemically bonded to an injection improving layer 40 and an extraction improving layer 50 described later. It is preferable to use a transparent conductive material.
  • the source electrode 14 and the drain electrode 15 may be made of the same material or different materials. In the case of the same material, the material cost can be suppressed. On the other hand, in the case of another material, there is an advantage that the number of steps can be reduced. Specifically, when forming a self-assembled monolayer as an injection improvement layer and an extraction improvement layer, the surface of the electrode (bonding hand) will be different if different materials are used. By selecting the material of the layer and the extraction improving layer, the improving layer can be formed at a time. On the other hand, in the case of the same material, it is necessary to take four steps of forming the injection improving layer after forming the source electrode and forming the extraction improving layer after forming the drain electrode. In the case of another material, a combination of gold and ITO or a combination of silver and ITO is preferable.
  • Organic semiconductor layer 16 is formed in a channel region (charge transport path region) between the source electrode 14 and the drain electrode 15.
  • the organic transistor 1 of the present embodiment can be used as a field effect transistor as described above, and can be applied to the case where the carrier is an electron (n-type channel), and the carrier is a hole (also referred to as a hole) (p It is also applicable to the case of a type channel). Therefore, the organic semiconductor layer 16 can be either a p-type channel material or an n-type channel material.
  • pentacene, rubrene, oligothiophene, polythiophene, and their alkyl substituents can be used as the organic semiconductor layer 16 material for the p-type channel.
  • C 60 fullerene, fluorinated pentacene, and a perylene imide compound are preferable.
  • pentacene and C 60 fullerene are preferable because they have high carrier mobility and can realize high-speed operation.
  • the injection improving layer 40 is a layer made of a material or molecule having an electric dipole moment, which is disposed between the source electrode 14 and the organic semiconductor layer 16.
  • the carrier is a hole
  • the direction of the vector electric dipole moment from the negative electrode to the positive electrode of the material or molecule (hereinafter sometimes simply referred to as the electric dipole moment direction) is directed to the source electrode 14.
  • the carrier is an electron
  • the vector is directed to the organic semiconductor layer 16.
  • the extraction improving layer 50 is a layer made of a material or molecule having an electric dipole moment, which is disposed between the drain electrode 15 and the organic semiconductor layer 16.
  • the carrier is a hole
  • the vector is directed to the organic semiconductor layer 16, and when the carrier is an electron, the vector is directed to the drain electrode 15.
  • the injection improving layer 40 and the extraction improving layer 50 may be any material or molecule that can be applied with the manufacturing method of the injection improving layer and the extraction improving layer described later.
  • At least one of the injection improving layer 40 and the extraction improving layer 50 is represented by the following general formula (1);
  • XAY (1) Is an organic thin film having an electric dipole moment formed by aggregation of organic compounds represented by
  • the organic thin film having an electric dipole moment means a thin film having a thickness corresponding to the size of one molecule.
  • the structure represented by the general formula (1) may be partially covalently bonded to form a dimer, trimer or oligomer structure, but the layer thickness is one molecule. It is.
  • the substituent X in the general formula (1) is bonded to the molecule represented by the general formula (1) by chemically bonding to the atoms constituting the source electrode 14 and the drain electrode 15 to thereby combine the general formula (1).
  • SAMs Self-Assembled Monolayers
  • substituent X include X: -SH, -SiR 1 3, -CN, -COR 2, or -SO 2 R 2,, -POR 2 2 Is mentioned.
  • R 1 is a methoxy group (—OMe), an ethoxy group (—OEt), or a chloro group (—Cl)
  • R 2 is a hydroxy group ( -OH) and a chloro group (-Cl).
  • R 2 is a hydroxy group (—OH) or a chloro group (—Cl).
  • At the phosphonic acid moiety at least one of the two R 2 groups is a hydroxy group (—OH) or a chloro group (—Cl), but the other R 2 groups are not involved in binding.
  • the substituent X is preferably a thiol group (—SH).
  • a thiol group By using the substituent X as a thiol group, a covalent bond can be formed between the atoms constituting the source electrode 14 and the drain electrode 15 and the thiol group, and the distance between the bonding sites can be made relatively short. It is possible to further reduce the contact resistance.
  • the electrode An improvement layer is fixed on the organic transistor 1, and deterioration of the improvement layer due to an electric field or the like when driving the organic transistor 1 can be suppressed, so that the life of the organic transistor 1 can be extended.
  • the HOMO orbit of the aromatic thiol formed by combining the main chain skeleton A and the thiol group of the substituent X described later also exists in the vicinity of the sulfur atom, and the orbit responsible for electrical conduction extends to the vicinity of the electrode material. For the above reason, since the resistance of the connection portion between the improvement layer and the electrode is lowered, the contact resistance as a transistor can be further reduced.
  • the substituent Y in the general formula (1) is in contact with the organic semiconductor layer 16 on the surface of the layer.
  • the substituent Y is a substituent that can be converted by a photochemical reaction, an oxidation reaction, or a reduction reaction, and consists of an electron withdrawing group or an electron withdrawing group.
  • the electron donating group and the electron withdrawing group refer to those in which Hammett's substituent constants are negative and positive, respectively.
  • Specific electron-withdrawing groups Y 1 that can be used as the substituent Y include a nitro group (—NO 2 ), a chloromethyl group (—CH 2 Cl), an aldehyde group (—CHO), and an azide group (—N 3 ).
  • a cyano group (—CN), a carboxyl group (—COOH), a carbonyl group (—COR 3 ), an alkoxycarbonyl group (—COOR 3 ), a halogen group (—F, —Cl, —Br, and ⁇ —I), Examples thereof include an alkoxysilane group (—Si (OR 3 ) 3 ) and a trifluoromethyl group (—CF 3 ) (wherein R 1 is a linear alkyl group having 1 to 3 carbon atoms).
  • R 4 to R 5 all represent a linear alkyl group having 1 to 3 carbon atoms.
  • the substituent Y is an electron withdrawing group
  • the vicinity of Y 1 is negatively charged, so that an electric dipole moment in the direction from the organic semiconductor layer to the electrode can be formed in the injection improving layer and the extraction improving layer.
  • the substituent Y is an electron donating group
  • the vicinity of Y 2 is positively charged. Therefore, an electric dipole moment in the direction from the electrode to the organic semiconductor layer is formed in the injection improving layer and the extraction improving layer. Can do.
  • Aromatic main chain skeletons include monocyclic structures such as benzene, pyridine, thiophene, pyrrole, condensed ring structures such as naphthalene, anthracene, tetracene, pentacene, biphenyl, bipyridyl, terphenyl, terthiophene, etc. Those having the following polycyclic structure are preferred.
  • an aliphatic main chain skeleton may be used.
  • main chain skeleton A is an aromatic main chain skeleton has ⁇ electrons in the main chain skeleton, the electric resistance of the injection improving layer and the extraction improving layer itself is further reduced. A reduction in contact resistance is realized.
  • the molecule represented by the general formula (1) has a functional group chemically bonded to the electrode material at one end in the long axis direction of the molecule, and an electron withdrawing group or electron donating group at the opposite end. ing. Therefore, self-assembled monolayers (SAMs) can be formed on each electrode, and an electron withdrawing group or electron donating group can be arranged on the opposite side of the electrode. In self-assembled monolayers, the orientation of the molecules is controlled, so the electric dipole moment can be aligned. Therefore, the charge injection effect or the charge extraction effect due to the electric dipole moment can be further enhanced.
  • SAMs self-assembled monolayers
  • the film thickness of the self-assembled monolayer is substantially the same as the molecular length of the molecules forming the self-assembled monolayer. Therefore, the injection improving layer 40 and the extraction improving layer 50 can be thinned to the molecular length of the molecules forming the self-assembled monolayer. Thereby, it is possible to reduce the resistance of the injection improving layer 40 and the extraction improving layer 50 itself.
  • a material made of a composition constituting the injection improving layer is laminated on both the source electrode and the drain electrode, and then a part of the material layer is modified.
  • a characteristic method of forming an extraction improvement layer is adopted to realize an injection improvement layer and an extraction improvement layer.
  • FIG. 3 is a diagram showing a method for manufacturing the organic transistor of the present embodiment.
  • the gate electrode 12 is coated by sputtering using a gate insulating layer material.
  • the gate insulating layer 13 is formed as shown in FIG.
  • silicon nitride having a thickness of 200 nm is used as the gate insulating layer 13.
  • the above-described source electrode material is formed on the gate insulating layer 13 by performing patterning by existing photolithography.
  • the source electrode and the drain electrode can be formed in the same process.
  • the source electrode 14 and the drain electrode 15 are formed as shown in FIG. In Example 1 to be described later, the source electrode 14 and the drain electrode 15 are formed by depositing 60 nm of ITO by patterning by photolithography.
  • the source electrode material and the drain electrode material may be made of different materials.
  • one electrode may be formed by sequentially vacuum-depositing 5 nm of chromium and 60 nm of gold thereon through a metal mask. Chromium at this time plays a role of bringing gold and the substrate 11 into close contact.
  • the distance (channel length) between adjacent sides of the source electrode 14 and the drain electrode 15 can be 5 to 200 ⁇ m. Further, the length (channel width) of adjacent sides of the source electrode 14 and the drain electrode 15 can be set to 100 to 10,000 ⁇ m.
  • the method for forming the source electrode and the drain electrode is not limited to the patterning by the existing photolithography, and vapor deposition through a metal mask, which is a general electrode forming method, sputtering, ink jet, etc. It is also possible to use it.
  • the source electrode and the drain electrode can be formed in the same process, the source electrode and the drain electrode can be formed using precise photolithography capable of further miniaturization. Is significant in that it can be formed.
  • the improvement layer 17 after the improvement layer 17 is formed, only the improvement layer 17 formed on the drain electrode 15 is subjected to a modification (conversion) process, and the portion subjected to the process is improved.
  • a technique of modifying the layer 17 to the extraction improving layer 50 is employed, and a photochemical reaction is used as the modification (conversion) process.
  • the improvement layer 17 material used in this step a material that can convert the configuration of the injection improvement layer into the configuration of the extraction improvement layer by photochemical reaction may be selected and adopted. Specifically, when the improvement layer 17 formed on the drain electrode 15 is modified to the extraction improvement layer 50 using a photochemical reaction, the functional group at the end that contacts the organic semiconductor layer is used as the material. Molecules having a chloromethyl group or a nitro group can be used.
  • the formation method of the improvement layer 17 (self-assembled monolayer SAMs) there are the following three formation methods.
  • Formation method 1 A solution of a material for forming SAMs is prepared, and the substrate is immersed therein. By standing or stirring the solution at a temperature of about 0 to 100 ° C., a monomolecular film is formed. Thereafter, the substrate is washed with a solvent in order to remove the physically attached material.
  • the forming method 1 there is an advantage that it is simple because no special apparatus is required. In addition, it is easy to enhance the interaction between molecules, and a monomolecular film with high orientation can be obtained. It is suitable for a molecule that does not self-polymerize (for example, a molecule having a thiol group or a phosphonic acid group).
  • Formation method 2 A small bottle containing a substrate and a material for forming SAMs is sealed in a sealed container and heated to about 50 to 150 ° C. Thereafter, the substrate is washed with a solvent in order to remove the physically attached material.
  • the forming method 2 since heating is performed, there is an advantage that the reaction is fast and the time for the forming process can be shortened. Even if a self-polymerizing material is used, a uniform monomolecular film can be obtained.
  • the self-polymerizing material generates a self-polymer in the reaction system simultaneously with the formation of the monomolecular film. When the polymer is attached to the substrate, it is not a uniform monomolecular film. However, in this method, the polymer has a high molecular weight and a high boiling point, so it does not evaporate and does not reach the substrate. As a result, a uniform monomolecular film is obtained.
  • Formation method 3 A solution of a material for forming SAMs is spin-coated or dip-coated and applied onto a substrate. Thereafter, the substrate is chemically bonded to the substrate by heating the substrate to about 50 to 150 ° C. or exposing the substrate to vapor that promotes a dehydration condensation reaction such as hydrochloric acid or ammonia. Further, in order to remove the excessively attached material, the substrate is washed with a solvent.
  • Employing the forming method 3 has an advantage that it is economical because the amount of the material for forming the SAMs is small. In addition, since the heating is performed, the reaction is fast and the time for the forming process can be shortened.
  • the improvement layer 17 can be formed on the source electrode 14 and the drain electrode 15 by the above forming method.
  • Examples of materials that can be modified by photochemical reaction include aromatic or aliphatic compounds having a methylchloro group or an azide group.
  • the above functional group can be modified to an aldehyde group and an azide group to an amino group by photochemical reaction.
  • the chloromethyl group of the improvement layer 17 on the drain electrode 15 is converted into an aldehyde group by a photochemical reaction ((e in FIG. 3) )).
  • the photochemical reaction refers to a chemical reaction in which a functional group exposed on the surface is converted into another functional group by irradiating the surface of the improvement layer 17 to be irradiated with light.
  • the functional group exposed on the surface of the improvement layer 17 is irradiated with light, it is excited by light energy and is in a state where it is easy to emit or give electrons.
  • another chemical species for example, oxygen or water
  • electrons are transferred between molecules, and a chemical reaction that is difficult to proceed under a normal atmosphere proceeds.
  • the photoirradiation may be performed using a photomask in which only the improvement layer 17 on the drain electrode 15 is optically empty. Or the method of irradiating locally using a condensing lens or a laser is mentioned.
  • the light to be irradiated is preferably irradiated with a wavelength that can excite the site to be reacted in the molecule to be irradiated. Specifically, it may be light in the wavelength range of 180 to 600 nm. If oxygen is required, such as when converting a group to an aldehyde group, the irradiation is preferably performed in an air atmosphere. In Example 1 described later, light of 196 nm is irradiated for 1 minute in an air atmosphere.
  • Irradiation is preferably performed using a deuterium lamp, a xenon lamp or a halogen lamp as a light source.
  • a deuterium lamp When irradiating vacuum ultraviolet light with a deuterium lamp, it is performed in a reduced-pressure atmosphere in consideration of atmospheric absorption. It is preferable.
  • a laser When a laser is used, a helium-neon laser, an argon ion laser, a YAG laser, or the like can be used.
  • the converted functional group exposed on the surface of the improvement layer 17 on the drain electrode 15 is further converted into another functional group.
  • the extraction improving layer 50 having the amino group exposed on the surface can be formed on the drain electrode 15 by chemically reacting the aldehyde group with one amino group of 1,4-phenylenediamine (FIG. 3). (F)).
  • the functional group exposed on the surface is converted (for example, converted from a chloromethyl group to an amino group), so that the electric dipole moment vector on the drain electrode 15 is inverted.
  • Improved layers can be formed.
  • the functional group of the material (improving layer 17) composed of the composition constituting the injection improving layer is not limited to the above-described steps and materials, and the functional group of the extraction improving layer 50 can be finally replaced. If it is a material applicable to this, it can employ
  • the organic semiconductor layer 16 is formed by vacuum deposition using the organic semiconductor layer material described above so as to be in contact with the injection improving layer 40 and the extraction improving layer 50.
  • the film thickness of the organic semiconductor layer 16 can be 10 to 1000 nm.
  • the organic semiconductor layer 16 having a film thickness of 60 nm, for example, is formed through a metal mask using pentacene as the organic semiconductor layer material.
  • TLM Transmission Line Model
  • a process in which the source electrode 14 and the drain electrode 15 are formed before the injection improvement layer 40 and the extraction improvement layer 50 are formed, and damage to the injection improvement layer 40 and the extraction improvement layer 50 is expected can be used, and the use of the above process facilitates miniaturization of the electrode.
  • a self-assembled monolayer is formed as the material layer 17 formed on the source electrode 14 and the drain electrode 15, but a self-assembled molecular layer laminate film in which self-assembled molecular layers are laminated. It may be.
  • FIG. 4 is a diagram showing a method for manufacturing the organic transistor of this embodiment.
  • the substrate 11 is made of glass
  • the gate electrode 12 is made of aluminum
  • the gate insulating layer 13 is made of silicon dioxide
  • the source electrode 14 and the gate electrode 15 are made of chromium, for example, as in Example 2 described later.
  • the organic semiconductor layer 16 is C 60 fullerene
  • the injection improving layer 40 and the extraction improving layer 50 are each a monomolecular film made of p-aminobenzenethiol and p-
  • the structure which is a monomolecular film which consists of nitrobenzene thiol can be mentioned.
  • a photochemical reaction is used as a modification process applied to a part of the improvement layer 17, whereas in this embodiment, an oxidation reaction is used.
  • first step gate electrode / gate insulating layer forming step
  • second step source electrode / drain electrode forming step
  • (fifth step) described in the first embodiment are described.
  • the material of the improvement layer 17 used in this step may be selected and adopted by a material that can convert the configuration of the injection improvement layer into the configuration of the extraction improvement layer by an oxidation reaction.
  • a molecule having a terminal functional group that contacts the organic semiconductor layer 16 having an amino group or an ethylene group can be used.
  • the formation method of the improvement layer 17 includes the three formation methods (formation method 1) to (formation method 3) described above.
  • the monolayer improvement layer 17 made of p-aminobenzenethiol can be formed.
  • the substrate before the improvement layer 17 is formed is immersed in a solution of 1 mM p-aminobenzenethiol for 3 hours, and after the immersion, the material physically attached is removed by washing with ethanol. Then, the improvement layer 17 can be formed.
  • Examples of materials that can be modified by an oxidation reaction include aromatic or aliphatic compounds having an amino group, an alcohol group, an aldehyde group, or an ethylene group.
  • the functional group can be modified by an oxidation reaction, the amino group can be modified to a nitro group, the alcohol group can be modified to an aldehyde group, the aldehyde group can be modified to a carboxyl group, and the ethylene group can be modified to a carboxyl group.
  • an atomic force microscope which is one of scanning probe microscopes is used to oxidize amino groups exposed on the surface of the improvement layer 17 and convert them into nitro groups. Yes. Specifically, by using an AFM probe coated with gold, a voltage of +3 V is applied to the drain electrode, and the oxidation reaction is performed by scanning the improvement layer 17 in the atmosphere. It is carried out.
  • the organic transistor shown in FIG. 4D can be finally manufactured by performing the oxidation reaction.
  • both the source and drain electrodes 14 and 15 improving layer orientation of the electric dipole moment is the same 17
  • the direction of the electric dipole moment is reversed by an oxidation reaction of one of the improvement layers 17, and the injection improvement layer 40 and the extraction improvement layer 50 are separately formed.
  • a fine electrode pattern can be formed. More specifically, a process in which damage to the injection improvement layer 40 and the extraction improvement layer 50 is expected by forming the source electrode 14 and the drain electrode 15 before forming the injection improvement layer 40 and the extraction improvement layer 50 ( For example, photolithography) can be used, and the use of the above process facilitates miniaturization of the electrode.
  • the partial modification step shown in the present embodiment can reverse the dipole moment in one process by converting an amino group into a nitro group by an oxidation reaction, which reduces the number of steps. There is an effect that it is possible.
  • material layers 17 which are monomolecular films made of a material having a composition constituting an injection improving layer, are formed on the source electrode 14 and the drain electrode 15. .
  • the material layer 17 composed of amino groups was oxidized and converted into nitro groups.
  • the substrate is immersed in the electrolyte solution 60, and a voltage of +3 V is applied between the drain electrode and the counter electrode 61 in the electrolyte solution.
  • the organic transistor shown in FIG. 5D can be finally manufactured.
  • a voltage is applied electrochemically between the electrode whose direction of dipole moment is to be reversed and the counter electrode through the medium that conducts electrical conduction, such as an electrolyte solution. Oxidation makes it possible to convert molecules formed on the electrode at a time. Also, even if there are multiple elements on one substrate, it is possible to oxidize all the molecules at once by electrically connecting the electrodes to be oxidized, thus shortening the processing time. Is possible.
  • FIG. 6 is a diagram showing a method for manufacturing the organic transistor of this embodiment.
  • the substrate 11 is made of glass
  • the gate electrode 12 is made of aluminum
  • the gate insulating layer 13 is made of silicon dioxide
  • the source electrode 14 and the gate electrode 15 are made of chromium, for example, as in Example 3 described later.
  • the organic semiconductor layer 16 is pentacene
  • the injection improvement layer 40 and the extraction improvement layer 50 are each a monomolecular film made of p-nitrobenzenethiol and p-aminobenzenethiol
  • the structure which is the monomolecular film which consists of can be mentioned.
  • a photochemical reaction is used to form the injection improvement layer and the extraction improvement layer, whereas in this embodiment, a reduction reaction is used.
  • first step gate electrode formation step
  • second step source electrode formation step
  • second step drain electrode formation step
  • 5th process organic-semiconductor-layer formation process
  • the improvement layer 17 formed on the drain electrode 15 after the formation of the improvement layer 17 is subjected to the modification (conversion) process, and the process is performed.
  • a technique of modifying the partial improvement layer 17 to the extraction improvement layer 50 is employed, and a reduction reaction is employed as the modification (conversion) process.
  • the material for the improvement layer 17 used in this step may be selected from materials that can convert the configuration of the injection improvement layer into the configuration of the extraction improvement layer by a reduction reaction. Specifically, a molecule in which the terminal functional group in contact with the organic semiconductor layer 16 has a nitro group or a carbonyl group can be used.
  • the formation method of the improvement layer 17 includes the three formation methods (formation method 1) to (formation method 3) described above.
  • the improvement layer 17 can be formed by immersing the substrate in a solution of 1 mM p-nitrobenzenethiol for 3 hours, and then immersing and washing with ethanol.
  • Examples of materials that can be modified by a reduction reaction include aromatic or aliphatic compounds having a nitro group, a carbonyl group, an aldehyde group, or an imino group.
  • the functional group can be modified by a reduction reaction, the nitro group can be modified to an amino group, the carbonyl group can be modified to an alcohol group, and the imino group can be modified to an amino group or an aldehyde group.
  • the monomolecular film (material layer) 17 made of a nitro group can be reduced and converted to an amino group by AFM or electrochemically.
  • AFM scanning is performed by applying a voltage of ⁇ 3 V in the atmosphere between the probe needle and the drain electrode.
  • an electrochemical method is used, the substrate is immersed in an electrolyte solution, and ⁇ 3 V is applied between the counter electrode and the drain electrode. The confirmation that the nitro group has been converted to the amino group can be confirmed by the same technique as that described in the second embodiment.
  • both the source and drain electrodes 14 and 15 improving layer orientation of the electric dipole moment is the same 17
  • the direction of the electric dipole moment of one of the improvement layers 17 is reversed by a reduction reaction to separate the injection improvement layer 40 and the extraction improvement layer 50 from each other.
  • a fine electrode pattern can be formed. More specifically, a process in which damage to the injection improvement layer 40 and the extraction improvement layer 50 is expected by forming the source electrode 14 and the drain electrode 15 before forming the injection improvement layer 40 and the extraction improvement layer 50 ( For example, photolithography) can be used, and the use of the above process facilitates miniaturization of the electrode.
  • the partial modification step shown in this embodiment can reverse the dipole moment in one process by converting the nitro group to an amino group by a reduction reaction, and the number of steps can be reduced. There is an effect that it is possible.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of an organic semiconductor device manufactured by the manufacturing method of the present embodiment.
  • the manufacturing method according to the present invention can also be applied to the semiconductor device shown in FIG.
  • the same members as those used in Embodiment 1 can be used with the same member numbers and the description thereof is omitted.
  • a semiconductor device (organic semiconductor device) 10 includes a p-type organic transistor (hereinafter simply referred to as a p-type transistor) P1 formed on the same substrate 11. In addition, it is formed of an n-type organic transistor (hereinafter simply referred to as an n-type transistor) N1.
  • the p-type transistor P1 and the n-type transistor N1 are field effect transistors using an organic material for the semiconductor layer.
  • the p-type transistor P 1 includes a substrate 11, a gate electrode 12 (first gate electrode) for the p-type transistor formed on the substrate 11, and a gate insulation formed on the substrate 11 so as to cover the gate electrode 12.
  • the p-type transistor P ⁇ b> 1 is further provided with a p-type implantation improvement layer 40 ⁇ / b> P between the source electrode 14 and the p-type semiconductor layer 16, and p-type extraction is performed between the drain electrode 15 and the p-type semiconductor layer 16.
  • the improvement layer 50P is provided.
  • the n-type transistor N1 is formed on the substrate 11 so as to cover the substrate 11, the gate electrode 22 (second gate electrode) for the n-type transistor formed on the substrate 11, and the gate electrode 22.
  • An n-type organic semiconductor layer (hereinafter also simply referred to as an n-type semiconductor layer) 26 formed on the gate insulating layer 13, the source electrode 24, and the drain electrode 25 is provided so as to overlap with the electrode 22.
  • a bottom-gate transistor is provided.
  • the n-type transistor N1 is further provided with an n-type extraction improving layer 50N between the drain electrode 25 and the n-type semiconductor layer 26, and an n-type implantation between the source electrode 24 and the n-type semiconductor layer 26.
  • the improvement layer 40N is provided.
  • the substrate 11 not only the substrate 11 but also the gate insulating layer 13 is commonly used in the p-type transistor P1 and the n-type transistor N1.
  • the drain electrode 15 of the p-type transistor P1 and the drain electrode 25 of the n-type transistor N1 are electrically connected.
  • the drain electrode 15 and the drain electrode 25 are physically connected by being in physical contact, but the drain electrode 15 and the drain electrode 25 are physically separated from each other.
  • the drain electrode 15 and the drain electrode 25 may be electrically connected through the metal wiring.
  • FIG. 8 is a circuit diagram showing an element circuit of the semiconductor device 10.
  • the semiconductor device 10 has a gate structure in which a p-type transistor P1 and an n-type transistor N1 are complementarily connected, and forms an inverter circuit such as a CMOS circuit as shown in FIG.
  • the semiconductor device 10 from Vdd to Vss, the source electrode 14 of the p-type transistor P1, the drain electrode 15 of the p-type transistor P1, the drain electrode 25 of the n-type transistor N1, and the n-type transistor N1.
  • the p-type transistor P1 and the n-type transistor N1 are formed so that the source electrodes 24 are arranged in this order. That is, the semiconductor device 10 forms an inverter circuit that applies a positive voltage to Vdd.
  • Each of the p-type injection improvement layer 40P and the p-type extraction improvement layer 50P provided in the p-type transistor P1 is a layer for promoting charge movement.
  • the p-type injection improving layer 40P provided between the source electrode 14 and the p-type semiconductor layer 16 changes from the work function level of the source electrode 14 to the HOMO level of the p-type semiconductor layer 16. This is a layer that promotes injection of electric charges (in this case, holes h + ).
  • the p-type extraction improving layer 50P provided between the drain electrode 15 and the p-type semiconductor layer 16 has a charge (hole) from the HOMO level of the p-type semiconductor layer 16 to the level of the work function of the drain electrode 15.
  • h + is a layer that promotes extraction.
  • Each of the n-type extraction improving layer 50N and the n-type injection improving layer 40N provided in the n-type transistor N1 is also a layer for promoting charge movement.
  • the n-type extraction improving layer 50N provided between the drain electrode 25 and the n-type semiconductor layer 26 has a charge (in this case, an electron) from the LUMO level of the n-type semiconductor layer 26 to the drain electrode 25.
  • e ⁇ is a layer that promotes extraction.
  • the n-type injection improving layer 40N provided between the source electrode 24 and the n-type semiconductor layer 26 has a charge (electron) from the work function level of the source electrode 24 to the LUMO level of the n-type semiconductor layer 26.
  • e ⁇ is a layer that promotes injection.
  • Each improvement layer having such a function is formed using molecules having an electric dipole moment.
  • the p-type injection improving layer 40P that promotes the injection of holes h + into the p-type semiconductor layer 16 and the n-type extraction improving layer 50N that promotes the extraction of electrons e ⁇ from the n-type semiconductor layer 26.
  • numerator shown by following General formula (2) can be mentioned.
  • XAY 1 (2) Incidentally, the X, A, and, Y 1 is omitted both, X in the general formula (1) shown in Embodiment 1, A, and is the same as Y 1, the description here.
  • the p-type extraction improving layer 50P for promoting the extraction of holes h + from the p-type semiconductor layer 16 and the n-type injection improving layer 40N for promoting the injection of e ⁇ into the n-type semiconductor layer 26 can be used.
  • numerator which has a dipole moment the molecule
  • XAY 2 (3) Incidentally, X, A, and, for Y 2 is omitted, X in the general formula (1) shown in Embodiment 1, A, and is the same as Y 2, the description here.
  • the organic semiconductor layer can be formed of a conventionally known organic semiconductor material having p-type characteristics or n-type characteristics.
  • Examples of the p-type organic semiconductor material that forms the p-type semiconductor layer 16 include pentacene, rubrene, oligothiophene, polythiophene, and alkyl substitution products thereof. Among these, pentacene is preferable because of high carrier mobility.
  • examples of the n-type organic semiconductor material forming the n-type semiconductor layer 26 include C 60 fullerene, fluorinated pentacene, and a perylene imide compound. Among these, C 60 fullerene is preferable because of high carrier mobility.
  • Electrode material Since the electrode materials for forming the gate electrodes 12 and 22, the source electrodes 14 and 24, and the drain electrodes 15 and 25 are the same as those in the first embodiment, the description thereof is omitted here.
  • the constituent material of one source electrode and drain electrode is changed to the configuration of the other source electrode and drain electrode. It is necessary to use a material having a work function larger than that of the material.
  • an injection improvement layer or an extraction improvement layer suitable for the traveling direction of carriers is provided between each source electrode and each drain electrode and the organic semiconductor layer, thereby promoting carrier injection and carrier extraction. I am letting. Therefore, the source electrode 14 and the drain electrode 15, and the source electrode 24 and the drain electrode 25 can be formed using the same electrode material. Even if they are all formed of the same electrode material, the characteristics of the semiconductor device 10 and each of the organic transistors P1 and N1 are not deteriorated as will be described later.
  • FIG. 9 is a diagram showing a film formation pattern of each source electrode and each drain electrode.
  • the semiconductor device 10 since the same electrode material can be used for each electrode, as shown in FIG. 9, one source electrode 14 and drain electrode 15, and the other source electrode 24 and drain electrode 25 can be formed by using existing photolithography in the same process.
  • a material composed of a composition that constitutes the injection improving layer is laminated on both the source electrode and the drain electrode,
  • the injection improving layer and the extraction improving layer are realized by adopting a characteristic method of forming the extraction improving layer by modifying a part of the material layer.
  • FIG. 10 is a diagram showing a method for manufacturing the organic transistor of the present embodiment.
  • the above-described source / drain electrode material is formed on the gate insulating layer 13 by patterning using existing photolithography.
  • the source electrode 14 of the p-type transistor P1, the drain electrode 15 of the p-type transistor P1, the drain electrode 25 of the n-type transistor N1, and the source electrode 24 of the n-type transistor N1 are all 5 nm chromium.
  • a structure made of 60 nm of gold is formed in the same process by photolithography.
  • drain electrode 15 of the p-type transistor P1 and the drain electrode 25 of the n-type transistor N1 are electrically connected.
  • a monomolecular film made of p-nitrobenzenethiol is formed as the improvement layer 17, and the improvement layer on the drain electrode 15 of the p-type transistor P1 and the source electrode 24 of the n-type transistor N1. 17 is irradiated with light of 514.5 nm in an air atmosphere, the nitro group on the surface of the improvement layer 17 can be converted into an amino group. The conversion of the nitro group to the amino group can be confirmed by atmospheric photoelectron spectroscopy and XPS.
  • the photoreduction reaction is an electrode on which an improvement layer 17 is formed, and electrons generated by light irradiation on the electrode material reduce functional groups exposed on the surface of the improvement layer 17. It is a chemical reaction that converts to another functional group.
  • the photoirradiation may be performed using a photomask in which only the improvement layer 17 on the drain electrode 15 is optically empty.
  • the light irradiation method described in Embodiment 1 can be used.
  • the light to be irradiated may be light having a wavelength in the range of 180 to 600 nm, and the irradiation can be performed in an air atmosphere.
  • an argon ion laser of 514.5 nm is irradiated for 5 minutes in an air atmosphere.
  • the irradiation conditions can be performed in the same manner as in the first embodiment.
  • a p-type semiconductor layer 16 is formed to form a p-type organic transistor P1, and an n-type semiconductor layer 26 is formed to form an n-type organic transistor N1.
  • a method for forming the p-type semiconductor layer 16 and the n-type semiconductor layer 26 the method described in Embodiment 1 can be used, and thus the description thereof is omitted here.
  • CMOS structure a semiconductor device having a CMOS structure can be manufactured.
  • the characteristics of the semiconductor device obtained by the above method are that both the p-type transistor P1 and the n-type transistor N1 have good mobility and ON / OFF ratio, the source electrode / organic semiconductor layer interface, and the organic semiconductor layer / drain electrode interface.
  • the contact resistance can be suppressed to be lower than that of an element having no injection improvement layer and no extraction improvement layer. Details are described in Example 4 to be described later.
  • the improvement layer 17 in which the direction of the electric dipole moment is the same on all the source electrodes and the drain electrodes is subjected to a photoreduction reaction.
  • the injection improving layer and extracts improving layer before forming the injection improving layer and extracts improving layer, by forming the source electrode and the drain electrode, using process (e.g., photolithography) of damage to the injection improving layer and extracts improving layer is expected It is possible to make the electrodes finer by using the above process.
  • process e.g., photolithography
  • patterning by light irradiation with high directivity and high resolution is possible by performing the partial modification process using a chemical reaction by light irradiation. Furthermore, since the direction of the electric dipole moment can be reversed in a single step of light irradiation, the number of steps is reduced.
  • the reduction reaction using light irradiation has been described as the partial modification step.
  • the present invention is not limited to this, and the step may be performed by an oxidation reaction by light irradiation.
  • the material for the material layer may be selected from materials that can cause an oxidation reaction (photo-oxidation reaction) by light irradiation and reverse the direction of the electric dipole moment.
  • the manufacturing method according to the present invention can also be adopted in a so-called TFT array manufacturing method in which a plurality of TFT elements are connected by wiring as shown in FIG.
  • the source electrode of each TFT element is connected to a so-called source bus line and is electrically disconnected from the drain electrode.
  • an improvement layer that is a monomolecular film is formed on the source electrode and the drain electrode, and the improvement layer formed on one of the source electrode and the drain electrode is modified to convert the functional group, Reverse the direction of the electric dipole moment.
  • a monomolecular film (improvement layer 17 in FIG. 11B) made of p-aminobenzenethiol is formed on the source / drain electrode, and the amino layer of the improvement layer 17 on the source electrode is formed.
  • the group is oxidized and converted into the injection improving layer 40 in which the nitro group is exposed on the surface (FIG. 11C).
  • FIG. 12 is a cross-sectional view showing the configuration of the organic transistor of this embodiment.
  • the organic transistor 2 includes a substrate 11, a source electrode 14 and a drain electrode 15 formed on the substrate 11, and an injection improvement layer disposed between the source electrode 14 and the organic semiconductor layer 16.
  • 40 an extraction improvement layer 50 disposed between the drain electrode 15 and the organic semiconductor layer 16, a gate insulating layer 13 in contact with the organic semiconductor layer 16, and a gate electrode 12 in contact with the gate insulating layer 13.
  • the configuration of organic transistor shown in this invention the source-drain electrode is in contact with the underlying organic semiconductor layer, it is a so-called bottom contact type, source and drain electrodes of the organic semiconductor layer It may be a top contact type in contact with the upper part.
  • the organic transistor of this embodiment can be manufactured as follows.
  • an oxidation reaction or a reduction reaction is performed on the material layer formed on the source electrode or the material layer formed on the drain electrode.
  • a reaction of any one of photochemical reaction, photooxidation reaction, and photoreduction reaction, or a combination of a plurality of these reactions, and the electric dipole moment of the material layer is increased. Invert the direction.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an organic semiconductor device manufacturing method capable of selectively making different monomolecular films by a simple method. The purpose is to provide.
  • the manufacturing method of the organic semiconductor device is to solve the above problems, A first step of forming a gate electrode and a gate insulating layer on the substrate; A second step in which the source electrode and the drain electrode are separated from each other and formed on the gate insulating layer formed by the first step; A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode; Reversing the direction of the electric dipole moment from the negative electrode to the positive electrode of the material layer or material of the material layer formed on the source electrode or the material layer formed on the drain electrode, the source electrode An extraction improvement layer for promoting charge transfer is provided on the drain electrode, and an extraction improvement layer for promoting charge transfer, wherein the direction of the electric dipole moment is opposite to that of the injection improvement layer on the drain electrode. A fourth step of providing And a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer.
  • the material layer having the same electric dipole moment direction is formed on both the source electrode and the drain electrode.
  • reverse the direction of the electric dipole moment to improve the injection of charge from the organic semiconductor layer to the electrode, and the extraction to improve the extraction of charge from the electrode to the organic semiconductor layer
  • a fine electrode pattern can be formed by performing the process of separately forming the improvement layer. Specifically, before forming the injection improvement layer and the extraction improvement layer, a process (for example, photolithography) in which damage to the injection improvement layer and the extraction improvement layer is expected by forming the source electrode and the drain electrode is performed. It can be used. Therefore, it is possible to employ the above process that facilitates miniaturization of the electrode.
  • the material layer formed on the source electrode or the material layer formed on the drain electrode is oxidized, reduced, photochemically reacted, A reaction of any one of a photooxidation reaction and a photoreduction reaction, or a combination of a plurality of these reactions is caused to reverse the direction of the electric dipole moment of the material layer. .
  • the manufacturing method of the organic-semiconductor device based on this invention the material layer is formed on the source electrode, or, with respect to the material layer formed on the drain electrode, and photochemical reactions, followed by condensation reaction, addition reaction, or , Causing any one of the substitution reactions to reverse the direction of the electric dipole moment of the material layer.
  • the manufacturing method of the organic-semiconductor device based on this invention In the third step, it is preferable to form a self-assembled monolayer or a self-assembled molecular layer laminated film in which self-assembled molecular layers are laminated as the material layer.
  • the electric dipole moment is reduced at a low temperature of 150 ° C. or lower and atmospheric pressure. Since it is possible to form a layer with a holding property, it is possible to reduce deterioration and damage to the thermoplastic plastic substrate.
  • the manufacturing method of the organic-semiconductor device based on this invention the material layer is formed on the source electrode, or, with respect to the material layer formed on the drain electrode, thereby causing a photochemical reaction, the electric dipole of the material layer It is a process to reverse the direction of the child moment,
  • a molecule having a benzene ring and a chloromethyl group is self-assembled monolayer or self-assembled molecular layer so that the chloromethyl group is exposed on the side opposite to the source electrode and the drain electrode.
  • Forming the material layer by forming a self-assembled molecular layer laminated film laminated with
  • a step of converting to an aldehyde group by the photochemical reaction of the chloromethyl group By condensation reaction of the converted aldehyde group and one of aromatic or aliphatic diamine, the amino group is exposed on the opposite side of the source electrode or the drain electrode, and the electric dipole moment of the material layer And a step of reversing the direction of the.
  • the manufacturing method of the organic semiconductor device according to the present invention is replaced with the above configuration
  • the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo an oxidation reaction, so that the electric bipolar electrode of the material layer is formed. It is a process to reverse the direction of the child moment
  • a molecule having an benzene ring and an amino group, or an ethylene group in the benzene ring or an alkyl main chain skeleton, the amino group or the ethylene group is exposed on the side opposite to the source electrode and the drain electrode.
  • Forming the material layer by forming a self-assembled monolayer film or a self-assembled molecular layer laminated film in which self-assembled molecular layers are laminated,
  • the nitro group generated by the oxidation reaction of the amino group or the carboxyl group generated by the oxidation reaction of the ethylene group is exposed on the opposite side of the source electrode or the drain electrode, and the material layer It is preferable to reverse the direction of the electric dipole moment.
  • the dipole moment can be reversed in one process, and the number of steps can be reduced.
  • the manufacturing method of the organic semiconductor device according to the present invention is replaced with the above configuration
  • the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo a reduction reaction, so that the electric bipolar electrode of the material layer is formed. It is a process to reverse the direction of the child moment
  • a benzene ring and a nitro group, or a molecule having a carbonyl group in the benzene ring or alkyl main chain skeleton, the nitro group or the carbonyl group is exposed on the side opposite to the source electrode and the drain electrode.
  • Forming the material layer by forming a self-assembled monolayer film or a self-assembled molecular layer laminated film in which self-assembled molecular layers are laminated,
  • an amino group generated by the reduction reaction of the nitro group or a hydroxyl group generated by the reduction reaction of the carbonyl group is exposed on the opposite side of the source electrode or the drain electrode, and the material layer It is preferable to reverse the direction of the electric dipole moment.
  • the dipole moment can be reversed in one process, and the number of steps can be reduced.
  • the manufacturing method of the organic semiconductor device according to the present invention is replaced with the above configuration,
  • the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo a photoreduction reaction, so that the electrical property of the material layer is increased.
  • a process of reversing the direction of the dipole moment In the third step, a molecule having a benzene ring and a nitro group is laminated with a self-assembled monolayer or a self-assembled molecular layer so that the nitro group is exposed on the opposite side of the source and drain electrodes.
  • the material layer by forming a self-assembled molecular layer laminate film
  • the photoreduction reaction an electron is induced in the electrode material of the source electrode or the drain electrode by light irradiation, the nitro group is reduced by the reduction reaction, and the amino group is converted into a source electrode or It is preferable to reverse the direction of the electric dipole moment of the material layer exposed on the opposite side of the drain electrode.
  • the fourth step is a step of causing the oxidation reaction.
  • the oxidation reaction is preferably caused by a voltage applied between the source electrode or the drain electrode and a probe of a scanning probe microscope.
  • the fourth step is a step of causing the reduction reaction,
  • the reduction reaction is preferably caused by a voltage applied between the source electrode or the drain electrode and a probe of a scanning probe microscope.
  • the fourth step is a step of causing the oxidation reaction.
  • the oxidation reaction is preferably caused by a voltage applied between the source electrode or the drain electrode and a counter electrode in contact with the source electrode or the drain electrode through the electrolyte solution.
  • the process time is shortened.
  • the fourth step is a step of causing the reduction reaction
  • the reduction reaction is preferably caused by a voltage applied between the source electrode or the drain electrode and a counter electrode in contact with the source electrode or the drain electrode via an electrolyte solution.
  • the process time is shortened.
  • the manufacturing method of the other organic-semiconductor device based on this invention, A method of manufacturing an organic semiconductor device having a p-type organic transistor and an n-type organic transistor, A first step of forming a gate insulating layer on the gate electrode; a second step of forming a source electrode and a drain electrode constituting the p-type organic transistor and a source electrode and a drain electrode constituting the n-type organic transistor on the gate insulating layer; A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode; The material layer above the source electrode of the p-type organic transistor and the material layer above the drain electrode of the n-type organic transistor, or the material layer above the drain electrode of the p-type organic transistor and the source of the n-type organic transistor The material of the material layer on the electrode or the direction of the electric dipole moment from the negative electrode to the positive electrode of the molecule is reversed, and the
  • the material layer having the same electric dipole moment direction is formed on both the source electrode and the drain electrode.
  • a fine electrode pattern can be formed.
  • a process for example, photolithography
  • damage to the injection improvement layer and the extraction improvement layer is expected by forming the source electrode and the drain electrode is performed. It can be used. Therefore, it is possible to employ the above process that facilitates miniaturization of the electrode.
  • the material layer on the source electrode of the p-type organic transistor and the material layer on the drain electrode of the n-type organic transistor, or the material layer and n on the drain electrode of the p-type organic transistor Any of the oxidation reaction, reduction reaction, photochemical reaction, photooxidation reaction, and photoreduction reaction, or a plurality of these reactions on the material layer on the source electrode of the organic transistor It is preferable to cause a reaction combining these reactions to reverse the direction of the electric dipole moment of the material layer.
  • the source electrode and the drain electrode are preferably formed using the same material.
  • the source electrode and the drain electrode can be formed in the same process.
  • Example 1 Example of configuration described in Embodiment 1
  • an organic transistor was produced and evaluated based on the production method shown in FIG.
  • a gate electrode 12 is formed as a gate electrode 12 on a glass substrate 11 (substrate size 25 mm ⁇ 25 mm) by sputtering through a metal mask.
  • silicon nitride was formed as the gate insulating layer 13 with a thickness of 200 nm through a metal mask.
  • ITO 60 nm was formed by patterning by existing photolithography, and the source electrode 14 and the drain electrode 15 were formed.
  • the channel length at this time was 2, 4, 6, 10, 20 ⁇ m, and the channel width was 1000 ⁇ m.
  • a negative photoresist is applied on the gate insulating layer, and the portions other than the electrode forming portion are exposed.
  • the substrate was heated and developed to prepare a substrate on which the resist was formed in addition to the electrode forming portion.
  • ITO was deposited to 60 nm by sputtering, and the resist other than the electrode forming portion was peeled off by lift-off to obtain a source / drain electrode.
  • SAMs of p-chloromethylphenyltrimethoxysilane as the improved layer 17 were formed on the source electrode and the drain electrode.
  • p-chloromethylphenyltrimethoxysilane and a substrate formed with a source electrode and a drain electrode were sealed in a heat-resistant container and heated in an oven at 150 ° C. for 3 hours.
  • the improvement layer 17 was formed on the source electrode and the drain electrode by removing the excessively adsorbed p-chloromethylphenyltrimethoxysilane by immersing the substrate in acetone, stirring and washing.
  • the drain electrode was photochemically reacted to convert the chloromethyl group into an aldehyde group.
  • the p-chloromethylphenyl skeleton on the drain electrode is irradiated with light at 193 nm in an air atmosphere for 1 minute through a photomask in which only the drain electrode formation region is opened. Converted. In this way, the surface of the improvement layer 17 on the drain electrode 15 was converted into an aldehyde group using light irradiation.
  • the amino group is exposed on the surface of the drain electrode by chemically reacting with the aldehyde group exposed on the surface of the drain electrode and one amino group of 1,4-phenylenediamine.
  • a substrate with an aldehyde group exposed on the surface of the drain electrode is immersed in a 1 mM absolute ethanol solution of 1,4 phenylenediamine for 12 hours to form an imine bond, and the improvement layer 17 on the drain electrode is subjected to 1,4 phenylene.
  • Diamine was laminated to expose the amino group on the drain electrode.
  • the functional group exposed on the surface was converted from a chloromethyl group to an amino group, thereby forming an improved layer in which the electric dipole moment vector was inverted on the drain electrode.
  • the injection improving layer 40 having a dipole moment from the organic semiconductor layer toward the source electrode is formed on the source electrode 14, and on the drain electrode 15, from the drain electrode to the organic semiconductor layer.
  • An extraction improvement layer 50 having a directed dipole moment was formed.
  • the pentacene as the organic semiconductor layer 16 is 60 nm so as to come into contact with the implantation improvement layer and the extraction improvement layer through the metal mask. Formed by vacuum evaporation.
  • the mobility was 0.3 cm 2 / V ⁇ s, and the ON / OFF ratio was 10 6, which was a favorable value.
  • the contact resistance of the source electrode / organic semiconductor interface and the organic semiconductor layer / drain electrode interface was evaluated, it was compared with the organic transistor of Comparative Example 1 which was prepared as a comparative example and did not have an injection improvement layer and an extraction improvement layer. The contact resistance decreased to 1/3.
  • Example 2 Example of configuration described in Embodiment 2 Since the major difference between the present embodiment and the first embodiment is only the modification process, other portions will be briefly described.
  • the substrate 11 is glass
  • the gate insulating layer 13 is silicon dioxide
  • the organic semiconductor layer 16 is a C 60 fullerene
  • the injection improving layer 40 and the extraction improving layer 50 are a monomolecular film made of p-aminobenzenethiol and a monomolecular film made of p-nitrobenzenethiol, respectively.
  • the improvement layer 17 formed on the drain electrode 15 of the improvement layer 17 formed on the source electrode 14 and the drain electrode 15 oxidizes the amino group exposed on the surface thereof, Converted to the base.
  • an amino group exposed on the surface of the improvement layer 17 is oxidized using an atomic force microscope (AFM) and converted to a nitro group.
  • AFM atomic force microscope
  • a voltage of +3 V is applied to the drain electrode, and the oxidation reaction is performed by scanning the improvement layer 17 in the atmosphere. Was performed ((c) of FIG. 4). Thereby, the extraction improving layer 50 was formed on the drain electrode 15.
  • the mobility was about 0.7 cm 2 / V ⁇ s, and the ON / OFF ratio was about 10 6 , showing relatively good values.
  • the contact resistance at the interface between the source electrode / organic semiconductor layer and the interface between the organic semiconductor layer / drain electrode is about 1 / that of the element having no injection improvement layer and no extraction improvement layer prepared in Comparative Example 1 below. became. That is, a contact resistance can be lowered by forming an injection improvement layer and an extraction improvement layer on the source electrode and the drain electrode, respectively.
  • Example 3 Example of configuration described in Embodiment 3 Since the major difference between the present embodiment and the first embodiment is only the modification process, other portions will be briefly described.
  • the substrate 11 is made of glass
  • the gate electrode 12 is made of aluminum
  • the gate insulating layer 13 is made of silicon dioxide
  • the source electrode 14 and the gate electrode 15 are made of chromium on a chromium in order through a metal mask.
  • the organic semiconductor layer 16 is pentacene
  • the injection improving layer 40 and the extraction improving layer 50 are each a monomolecular film made of p-nitrobenzenethiol and a monomolecular film made of p-aminobenzenethiol.
  • the improvement layer 17 formed on the drain electrode 15 of the improvement layer 17 formed on the source electrode 14 and the drain electrode 15 oxidizes the nitro group exposed on the surface thereof, Converted to the base. Specifically, using an atomic force microscope (AFM), a voltage of ⁇ 3 V is applied in the atmosphere between the probe needle and the drain electrode, and scanning is performed, so that the nitro exposed on the surface of the improvement layer 17 is exposed. The group is reduced and converted to an amino group ((c) in FIG. 6). Thereby, the extraction improving layer 50 was formed on the drain electrode 15.
  • AFM atomic force microscope
  • the mobility was about 0.5 cm 2 / V ⁇ s, and the ON / OFF ratio was about 10 6 , showing relatively good values.
  • the contact resistance at the interface between the source electrode / organic semiconductor layer and the interface between the organic semiconductor layer / drain electrode is about 1 / that of the device having no injection improvement layer and no extraction improvement layer prepared in Comparative Example 1 below. became. That is, a contact resistance can be lowered by forming an injection improvement layer and an extraction improvement layer on the source electrode and the drain electrode, respectively.
  • Example 4 Example of configuration described in Embodiment 4
  • the semiconductor device shown in FIG. 7 is manufactured.
  • p-type source electrode 14 p-type drain electrode 15, n-type drain electrode 25, n-type source electrode, chromium 5 nm, silver 60 nm, it was formed in the same step by photolithography (in Figure 10 (b)). Note that the p-type drain electrode and the n-type drain electrode are electrically connected.
  • a monomolecular film made of p-nitrobenzenethiol is formed as an improvement layer 17 on all the source / drain electrodes (FIG. 10 (c)), on the drain electrode 15 of the p-type transistor P1, and n
  • the improvement layer 17 on the source electrode 24 of the n-type transistor N1 is irradiated with light of 514.5 nm with an argon ion laser in an air atmosphere, thereby converting the nitro group on the surface of the improvement layer 17 into an amino group ( (D) of FIG.
  • CMOS of Example 4 was fabricated through the above steps ((e) in FIG. 10).
  • the p-type transistor P1 has a mobility of about 0.8 cm 2 / V ⁇ s, an ON / OFF ratio of about 10 6 , and an n-type.
  • the transistor N1 had a mobility: about 0.7 cm 2 / V ⁇ s, an ON / OFF ratio of about 10 6 , and showed a relatively good value.
  • the p-type transistor P1 of this embodiment has a contact resistance that is the same as that of the fourth embodiment except that it does not have an implantation improvement layer and an extraction improvement layer. Compared to the p-type transistor of the comparative configuration, it was 1/10 times, and the n-type transistor N1 of this example was 1/5 times that of the n-type transistor of the comparative configuration.
  • FIG. 13 shows the structure of an organic transistor manufactured in a comparative example.
  • the gate electrode 212 and the gate insulating layer 213 were formed on the glass substrate 211 by the same material and manufacturing method as in the example.
  • gold was formed to a thickness of 60 nm as a source electrode 214 and a drain electrode 215 through a metal mask.
  • pentacene was formed as the organic semiconductor layer 216 with a film thickness of 60 nm using vacuum vapor deposition to manufacture an organic transistor. That is, the organic transistor of this comparative example does not include any improvement layer.
  • the present invention can be optimally used as a field effect transistor mounted on various semiconductor devices and has high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

An organic transistor (1) comprises a source electrode (14),an organic semiconductor layer (16), and an injection-improving layer (40) arranged between the source electrode (14) and the organic semiconductor layer (16), and additionally comprises an extraction-improving layer (50) arranged between an drain electrode (15) and the organic semiconductor layer (16), wherein the injection-improving layer (40) and the extraction-improving layer (50) are formed by forming an improving layer comprising the same material as that constitutes the source electrode (14) and the drain electrode (15) on the source electrode (14) and the drain electrode (15) and subsequently modifying the improving layer on the source electrode (14) or the improving layer on the drain electrode (15).

Description

有機半導体装置の製造方法Method for manufacturing organic semiconductor device
 本発明は、有機半導体材料を電界効果型トランジスタの有機半導体層に用いた有機半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing an organic semiconductor device using an organic semiconductor material for an organic semiconductor layer of a field effect transistor.
 有機半導体材料を電界効果トランジスタの半導体層として用いた、いわゆる有機トランジスタは、シリコン等の無機半導体を用いたものと比較して、大面積基板や、プラスチック基板上での素子作製が容易である。これは、有機トランジスタの場合、真空プロセスや、200℃以上の高温プロセスを用いることなく素子作製が可能であり、また、インクジェット法、スクリーン印刷法などの印刷技術やスピンコート法、キャスト法などの溶液プロセスを用いた素子作製が可能であることがその理由として挙げられる。そのため、有機トランジスタは、フレキシブルなデイスプレイや、電子タグへの応用が期待されている。その一方で、有機半導体材料のキャリア移動度や、有機半導体層(有機半導体材料)とソース・ドレイン電極との間の接触抵抗などの電気特性は、未だ無機半導体デバイスに比べて劣っており、それらの改善が課題とされている。 A so-called organic transistor using an organic semiconductor material as a semiconductor layer of a field effect transistor is easier to manufacture on a large-area substrate or a plastic substrate than a semiconductor transistor using an inorganic semiconductor such as silicon. In the case of an organic transistor, an element can be manufactured without using a vacuum process or a high-temperature process of 200 ° C. or higher, and printing techniques such as an ink jet method and a screen printing method, a spin coating method, a casting method, etc. The reason is that the device can be manufactured using a solution process. Therefore, organic transistors are expected to be applied to flexible displays and electronic tags. On the other hand, carrier properties of organic semiconductor materials and electrical properties such as contact resistance between organic semiconductor layers (organic semiconductor materials) and source / drain electrodes are still inferior to those of inorganic semiconductor devices. Improvement is an issue.
 特に、有機半導体層とソース電極およびドレイン電極との界面での接触抵抗を低下させることは、デバイスとしての移動度の向上や、ON電流の向上、閾値電圧の低下といったトランジスタ特性の改善をもたらす。なぜならば、有機半導体層は、その材料中にキャリアを持たず、無機半導体層とは異なりドーピングによるキャリアの注入・制御は困難であり、キャリアの供給はソース電極から有機半導体層への注入によっておこなわれるため、ソース電極と有機半導体層との界面の接触抵抗は、トランジスタ特性に重大な影響を与えることになるからである。同様に、注入されたキャリアは有機半導体層を通じてドレイン電極側から効率的に抽出される必要がある。このため、ドレイン電極と有機半導体層との界面の接触抵抗を低下させることも重要な課題となっている。 In particular, reducing the contact resistance at the interface between the organic semiconductor layer and the source and drain electrodes results in improved transistor characteristics such as improved mobility as a device, increased ON current, and lowered threshold voltage. This is because the organic semiconductor layer does not have carriers in its material, and unlike inorganic semiconductor layers, it is difficult to inject and control carriers by doping, and carriers are supplied by injection from the source electrode to the organic semiconductor layer. Therefore, the contact resistance at the interface between the source electrode and the organic semiconductor layer has a significant effect on the transistor characteristics. Similarly, injected carriers need to be efficiently extracted from the drain electrode side through the organic semiconductor layer. For this reason, reducing the contact resistance at the interface between the drain electrode and the organic semiconductor layer is also an important issue.
 この接触抵抗が起こる原因としては、一つは、ソース電極およびドレイン電極に用いられる金属の仕事関数と有機半導体材料のHOMOまたはLUMOの準位との間にエネルギーギャップが存在することによる注入障壁のためであり、もう一つは、当該金属と有機半導体材料との異種材料間の親和性の低さにより、物理的な密着性の低さから生じるものと考えられる。 One of the causes of this contact resistance is that the injection barrier is caused by the existence of an energy gap between the work function of the metal used for the source and drain electrodes and the HOMO or LUMO level of the organic semiconductor material. The other is considered to be caused by low physical adhesion due to low affinity between different materials of the metal and the organic semiconductor material.
 このような課題を解決するためには、ソース電極およびドレイン電極の表面上に、双極子モーメントを持った単分子膜を形成することが有用である。特許文献1では、図14に示すように、基板111の上にゲート電極とゲート絶縁層13とが形成され、更に、ソース電極115、ドレイン電極116、有機半導体層114を備えた有機半導体装置110において、有機半導体層114と、ソース電極115またはドレイン電極116との間の界面のうち、少なくとも一方に、電荷注入促進層117,118を備えた有機半導体装置110について開示している。この双極子モーメントの向きは、キャリアが流れる方向に対して特異的であり、キャリアが電子の場合には、電子の進行方向と同じ向きであることが望ましく、ホールの場合には、ホールの進行方向と反対向きであることが望ましい。すなわち、薄膜トランジスタの様な一般的なコプレナー型トランジスタにおいて、ソース・ドレイン電極上での好ましい双極子モーメントの向きは、キャリアの種類によらず、それぞれ異なる向きであると言える。 In order to solve such a problem, it is useful to form a monomolecular film having a dipole moment on the surfaces of the source electrode and the drain electrode. In Patent Document 1, as shown in FIG. 14, a gate electrode and a gate insulating layer 13 are formed on a substrate 111, and an organic semiconductor device 110 further includes a source electrode 115, a drain electrode 116, and an organic semiconductor layer 114. Discloses an organic semiconductor device 110 having charge injection promoting layers 117 and 118 at least one of the interfaces between the organic semiconductor layer 114 and the source electrode 115 or the drain electrode 116. The direction of this dipole moment is specific to the direction in which the carriers flow. When the carriers are electrons, the direction of the electrons is preferably the same as the direction of the electrons. It is desirable that the direction is opposite to the direction. That is, in a general coplanar transistor such as a thin film transistor, it can be said that the preferred dipole moment directions on the source and drain electrodes are different directions regardless of the type of carrier.
日本国公開特許公報「特開2005-294785号公報(公開日:2005年10月20日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-294785 (Publication Date: October 20, 2005)”
 しかしながら、異なる双極子モーメントを持った単分子膜をそれぞれソース・ドレイン電極上に形成することは、煩雑であり、工程数が増加するという課題がある。 However, it is complicated to form monomolecular films having different dipole moments on the source / drain electrodes, and there is a problem that the number of processes increases.
 単分子膜形成は、電極表面の原子と有機分子の末端官能基との化学反応により生じる。つまり、有機分子が反応し得る表面にのみ単分子膜形成され、選択的であるが、その一方で、有機分子が反応し得る表面であれば、単分子膜は形成される。一般的なボトムコンタクト型有機トランジスタの形成手法は、基板から順に、ゲート電極、絶縁層、ソース・ドレイン電極、ソース・ドレイン電極の修飾、有機半導体層の順に形成される。同一面内に位置する層は、同一工程にて、形成されることが工程数を減少させる観点や、位置合わせが容易である観点からも望ましい。しかしながら、同一のソース・ドレイン電極材料を用いた場合には、それぞれ、異なる単分子膜形成処理を行った場合、ソース・ドレイン電極の両方に同一の単分子膜が形成され、選択的に異なった単分子膜の作り分けをすることが出来ない。 Monolayer formation is caused by a chemical reaction between atoms on the electrode surface and terminal functional groups of organic molecules. That is, the monomolecular film is formed only on the surface where the organic molecules can react and is selective. On the other hand, if the surface can react with the organic molecules, the monomolecular film is formed. In a general bottom contact type organic transistor formation method, a gate electrode, an insulating layer, a source / drain electrode, a modification of the source / drain electrode, and an organic semiconductor layer are formed in this order from the substrate. It is desirable that the layers located in the same plane are formed in the same process from the viewpoint of reducing the number of processes and from the viewpoint of easy alignment. However, when the same source / drain electrode material was used, the same monomolecular film was formed on both the source / drain electrodes when different monomolecular film formation processes were performed. It is impossible to make a monomolecular film.
 特許文献1には、具体的な作製方法の記載は無いが、上記構造を一般的な手法にて作製した場合には、ソース・ドレイン電極のうち、一方を形成した後に単分子膜を形成し、さらにその後に、他方の電極、他方の単分子膜を順に形成する手法が取られることが予想される。ソース電極とドレイン電極を2回に分けて作製する場合、電極の位置合わせが困難なことや、工程数が増えることが予想される。また、他方の電極を形成する際は、一方の電極上に単分子膜が形成されているため、化学的にダメージを与えることが予想されるフォトリソグラフィーは使用することが出来ない。つまり、微細かつ精度高く、ソース・ドレイン電極を形成することが困難である。 Although there is no description of a specific manufacturing method in Patent Document 1, when the above structure is manufactured by a general method, a monomolecular film is formed after forming one of the source / drain electrodes. Further, it is expected that a method of sequentially forming the other electrode and the other monomolecular film in this order will be taken. When the source electrode and the drain electrode are manufactured in two steps, it is expected that the alignment of the electrodes is difficult and the number of processes is increased. Further, when forming the other electrode, since a monomolecular film is formed on one electrode, photolithography which is expected to be chemically damaged cannot be used. That is, it is difficult to form the source / drain electrodes with fineness and high accuracy.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、簡易な手法によって、選択的に異なった単分子膜の作り分けをすることが可能な、有機半導体装置の製造方法を提供することを目的としている。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an organic semiconductor device manufacturing method capable of selectively making different monomolecular films by a simple method. The purpose is to provide.
 すなわち、本発明に係る、有機半導体装置の製造方法は、上記の課題を解決するために、
 基板上にゲート電極とゲート絶縁層とを形成する第一の工程と、
 ソース電極とドレイン電極とを互いに離間させて、上記第一の工程によって形成されたゲート絶縁層の上に形成する第二の工程と、
 ソース電極およびドレイン電極の上に、電気双極子モーメントを有する材料または分子からなる材料層を形成する第三の工程と、
 ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層の材料または分子が有する負極から正極へ向いた電気双極子モーメントの向きを反転させて、ソース電極の上に、電荷の移動を促進する注入改善層を設けるとともに、ドレイン電極の上に、当該注入改善層とは上記電気双極子モーメントの向きが逆である、電荷の移動を促進する抽出改善層を設ける第四の工程と、
 上記注入改善層および上記抽出改善層に接触する有機半導体層を形成する第五の工程とを含むことを特徴としている。
That is, the manufacturing method of the organic semiconductor device according to the present invention is to solve the above problems,
A first step of forming a gate electrode and a gate insulating layer on the substrate;
A second step in which the source electrode and the drain electrode are separated from each other and formed on the gate insulating layer formed by the first step;
A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode;
Reversing the direction of the electric dipole moment from the negative electrode to the positive electrode of the material layer or material of the material layer formed on the source electrode or the material layer formed on the drain electrode, the source electrode over, provided with an injection-improvement layer facilitates migration of charge on the drain electrode, and the injection improving layer is a direction reverse of the electric dipole moment, extraction improving layer to facilitate the transfer of charges A fourth step of providing
And a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer.
 上記の構成によれば、ソース電極およびドレイン電極を形成した後に、ソース電極およびドレイン電極の両方に、電気双極子モーメントの向きが同じである材料層を形成する工程を行い、さらに、この材料層のうちの一方について、その電気双極子モーメントの向きを反転させて、有機半導体層から電極への電荷の注入を改善する注入改善層と、電極から有機半導体層への電荷の抽出を改善する抽出改善層とを作り分ける工程を行なうことで、微細な電極パターン形成が可能になる。具体的には、注入改善層および抽出改善層を形成させる前に、ソース電極およびドレイン電極を形成することで、注入改善層および抽出改善層へのダメージが予想されるプロセス(例えばフォトリソグラフィー)を用いることが可能となる。そのため、電極の微細化が容易な上記プロセスを採用することができる。 According to the above configuration, after the source electrode and the drain electrode are formed, the material layer having the same electric dipole moment direction is formed on both the source electrode and the drain electrode. For one of these, reverse the direction of the electric dipole moment to improve the injection of charge from the organic semiconductor layer to the electrode, and the extraction to improve the extraction of charge from the electrode to the organic semiconductor layer A fine electrode pattern can be formed by performing the process of separately forming the improvement layer. Specifically, before forming the injection improvement layer and the extraction improvement layer, a process (for example, photolithography) in which damage to the injection improvement layer and the extraction improvement layer is expected by forming the source electrode and the drain electrode is performed. It can be used. Therefore, it is possible to employ the above process that facilitates miniaturization of the electrode.
 また、本発明に係る、他の有機半導体装置の製造方法は、上記の課題を解決するために、
 p型有機トランジスタとn型有機トランジスタとを有する有機半導体装置の製造方法であって、
 ゲート電極の上にゲート絶縁層を形成する第一の工程と、
 p型有機トランジスタを構成するソース電極およびドレイン電極と、n型有機トランジスタを構成するソース電極およびドレイン電極とを、ゲート絶縁層の上に形成する第二の工程と、
 ソース電極およびドレイン電極の上に、電気双極子モーメントを有する材料または分子からなる材料層を形成する第三の工程と、
 p型有機トランジスタのソース電極の上の上記材料層およびn型有機トランジスタのドレイン電極の上の上記材料層、もしくは、p型有機トランジスタのドレイン電極の上の上記材料層およびn型有機トランジスタのソース電極の上の上記材料層の材料または分子の負極から正極へ向いた電気双極子モーメントの向きを反転させて、p型有機トランジスタのソース電極の上にp型注入改善層、n型有機トランジスタのドレイン電極の上にn型抽出改善層を設けるとともに、p型有機トランジスタのドレイン電極の上とn型有機トランジスタのソース電極の上とに各電極から有機半導体層への電荷の抽出を改善する抽出改善層を設ける第四の工程と、
 p型有機トランジスタの注入改善層および抽出改善層に接触する有機半導体層と、n型有機トランジスタの注入改善層および抽出改善層に接触する有機半導体層とを形成する第五の工程とを含むことを特徴としている。
Moreover, in order to solve said subject, the manufacturing method of the other organic-semiconductor device based on this invention,
A method of manufacturing an organic semiconductor device having a p-type organic transistor and an n-type organic transistor,
A first step of forming a gate insulating layer on the gate electrode;
a second step of forming a source electrode and a drain electrode constituting the p-type organic transistor and a source electrode and a drain electrode constituting the n-type organic transistor on the gate insulating layer;
A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode;
The material layer above the source electrode of the p-type organic transistor and the material layer above the drain electrode of the n-type organic transistor, or the material layer above the drain electrode of the p-type organic transistor and the source of the n-type organic transistor The material of the material layer on the electrode or the direction of the electric dipole moment from the negative electrode to the positive electrode of the molecule is reversed, and the p-type injection improving layer and the n-type organic transistor are formed on the source electrode of the p-type organic transistor. An n-type extraction improving layer is provided on the drain electrode, and the extraction improves the extraction of charge from each electrode to the organic semiconductor layer on the drain electrode of the p-type organic transistor and on the source electrode of the n-type organic transistor. A fourth step of providing an improvement layer;
and a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer of the p-type organic transistor and an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer of the n-type organic transistor. It is characterized by.
 上記の構成によれば、ソース電極およびドレイン電極を同時に形成した後に、ソース電極およびドレイン電極の両方に、電気双極子モーメントの向きが同じである材料層を形成する工程を行い、さらに、この材料層のうちの一方の電気双極子モーメントの向きを反転させ、注入改善層と抽出改善層を作り分ける工程を行なうことで、微細な電極パターン形成が可能になる。具体的には、注入改善層および抽出改善層を形成させる前に、ソース電極およびドレイン電極を形成することで、注入改善層および抽出改善層へのダメージが予想されるプロセス(例えばフォトリソグラフィー)を用いることが可能となる。そのため、電極の微細化が容易な上記プロセスを採用することができる。 According to the above configuration, after forming the source electrode and the drain electrode at the same time, the material layer having the same electric dipole moment direction is formed on both the source electrode and the drain electrode. By reversing the direction of the electric dipole moment of one of the layers and separately forming the injection improving layer and the extraction improving layer, a fine electrode pattern can be formed. Specifically, before forming the injection improvement layer and the extraction improvement layer, a process (for example, photolithography) in which damage to the injection improvement layer and the extraction improvement layer is expected by forming the source electrode and the drain electrode is performed. It can be used. Therefore, it is possible to employ the above process that facilitates miniaturization of the electrode.
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。 Other objects, features, and superior points of the present invention will be fully understood from the following description. The advantages of the present invention will become apparent from the following description with reference to the accompanying drawings.
 以上のように、本発明に係る有機半導体装置の製造方法は、
 基板上にゲート電極とゲート絶縁層とを形成する第一の工程と、
 ソース電極とドレイン電極とを互いに離間させて、上記第一の工程によって形成されたゲート絶縁層の上に形成する第二の工程と、
 ソース電極およびドレイン電極の上に、電気双極子モーメントを有する材料または分子からなる材料層を形成する第三の工程と、
 ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層の材料または分子が有する負極から正極へ向いた電気双極子モーメントの向きを反転させて、ソース電極の上に、電荷の移動を促進する注入改善層を設けるとともに、ドレイン電極の上に、当該注入改善層とは上記電気双極子モーメントの向きが逆である、電荷の移動を促進する抽出改善層を設ける第四の工程と、
 上記注入改善層および上記抽出改善層に接触する有機半導体層を形成する第五の工程とを含むことを特徴としている。
As described above, the manufacturing method of the organic semiconductor device according to the present invention is as follows.
A first step of forming a gate electrode and a gate insulating layer on the substrate;
A second step in which the source electrode and the drain electrode are separated from each other and formed on the gate insulating layer formed by the first step;
A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode;
Reversing the direction of the electric dipole moment from the negative electrode to the positive electrode of the material layer or material of the material layer formed on the source electrode or the material layer formed on the drain electrode, the source electrode An extraction improvement layer for promoting charge transfer is provided on the drain electrode, and an extraction improvement layer for promoting charge transfer, wherein the direction of the electric dipole moment is opposite to that of the injection improvement layer on the drain electrode. A fourth step of providing
And a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer.
 また、本発明に係る、他の有機半導体装置の製造方法は、上記の課題を解決するために、
 p型有機トランジスタとn型有機トランジスタとを有する有機半導体装置の製造方法であって、
 ゲート電極の上にゲート絶縁層を形成する第一の工程と、
 p型有機トランジスタを構成するソース電極およびドレイン電極と、n型有機トランジスタを構成するソース電極およびドレイン電極とを、ゲート絶縁層の上に形成する第二の工程と、
 ソース電極およびドレイン電極の上に、電気双極子モーメントを有する材料または分子からなる材料層を形成する第三の工程と、
 p型有機トランジスタのソース電極の上の上記材料層およびn型有機トランジスタのドレイン電極の上の上記材料層、もしくは、p型有機トランジスタのドレイン電極の上の上記材料層およびn型有機トランジスタのソース電極の上の上記材料層の材料または分子の負極から正極へ向いた電気双極子モーメントの向きを反転させて、p型有機トランジスタのソース電極の上にp型注入改善層、n型有機トランジスタのドレイン電極の上にn型抽出改善層を設けるとともに、p型有機トランジスタのドレイン電極の上にp型抽出改善層とn型有機トランジスタのソース電極の上にn型注入改善層を設ける第四の工程と、
 p型有機トランジスタの注入改善層および抽出改善層に接触する有機半導体層と、n型有機トランジスタの注入改善層および抽出改善層に接触する有機半導体層とを形成する第五の工程とを含むことを特徴としている。
Moreover, in order to solve said subject, the manufacturing method of the other organic-semiconductor device based on this invention,
A method of manufacturing an organic semiconductor device having a p-type organic transistor and an n-type organic transistor,
A first step of forming a gate insulating layer on the gate electrode;
a second step of forming a source electrode and a drain electrode constituting the p-type organic transistor and a source electrode and a drain electrode constituting the n-type organic transistor on the gate insulating layer;
A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode;
The material layer above the source electrode of the p-type organic transistor and the material layer above the drain electrode of the n-type organic transistor, or the material layer above the drain electrode of the p-type organic transistor and the source of the n-type organic transistor The material of the material layer on the electrode or the direction of the electric dipole moment from the negative electrode to the positive electrode of the molecule is reversed, and the p-type injection improving layer and the n-type organic transistor are formed on the source electrode of the p-type organic transistor. A fourth type in which an n-type extraction improving layer is provided on the drain electrode, and a p-type extraction improving layer is provided on the drain electrode of the p-type organic transistor and an n-type injection improving layer is provided on the source electrode of the n-type organic transistor. Process,
and a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer of the p-type organic transistor and an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer of the n-type organic transistor. It is characterized by.
 上述した構成によれば、簡易な手法によって、選択的に異なった単分子膜の作り分けをすることが可能な、有機半導体装置の製造方法を提供することができる。 According to the above-described configuration, it is possible to provide a method for manufacturing an organic semiconductor device capable of selectively producing different monomolecular films by a simple method.
本発明の一実施形態に係る製造方法によって製造される有機トランジスタの構成を示した断面図である。It is sectional drawing which showed the structure of the organic transistor manufactured by the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る有機トランジスタの注入改善層および抽出改善層の材料の一部の構成を例示したものである。2 illustrates a partial configuration of materials of an injection improvement layer and an extraction improvement layer of an organic transistor according to an embodiment of the present invention. 本発明の一実施形態に係る、有機トランジスタの製造過程を示した断面図である。It is sectional drawing which showed the manufacturing process of the organic transistor based on one Embodiment of this invention. 本発明の他の実施形態に係る、有機トランジスタの製造過程を示した断面図である。It is sectional drawing which showed the manufacturing process of the organic transistor based on other embodiment of this invention. 本発明の他の実施形態に係る、有機トランジスタの製造過程を示した断面図である。It is sectional drawing which showed the manufacturing process of the organic transistor based on other embodiment of this invention. 本発明の他の実施形態に係る、有機トランジスタの製造過程を示した断面図である。It is sectional drawing which showed the manufacturing process of the organic transistor based on other embodiment of this invention. 本発明の一実施形態に係る製造方法によって製造される半導体装置の構成を示した断面図である。It is sectional drawing which showed the structure of the semiconductor device manufactured by the manufacturing method which concerns on one Embodiment of this invention. 図7に示す半導体装置の素子回路構成を示す回路図である。FIG. 8 is a circuit diagram showing an element circuit configuration of the semiconductor device shown in FIG. 7. 図7に示す半導体装置の電極パターンを示す図である。It is a figure which shows the electrode pattern of the semiconductor device shown in FIG. 本発明の一実施形態に係る、半導体装置の製造過程を示した断面図である。It is sectional drawing which showed the manufacturing process of the semiconductor device based on one Embodiment of this invention. 本発明の一実施形態に係る製造方法によって製造されるTFT素子の構成を示した図である。It is the figure which showed the structure of the TFT element manufactured by the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法によって製造されるTFT素子の構成を示した断面図である。It is sectional drawing which showed the structure of the TFT element manufactured by the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造方法によって製造されるTFT素子の構成を示した断面図である。It is sectional drawing which showed the structure of the TFT element manufactured by the manufacturing method which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る、有機トランジスタの構成を示した断面図である。It is sectional drawing which showed the structure of the organic transistor based on other embodiment of this invention. 比較例の有機トランジスタの構成を示した断面図である。It is sectional drawing which showed the structure of the organic transistor of a comparative example. 従来構成について示した断面図である。It is sectional drawing shown about the conventional structure.
 〔実施の形態1〕
 本発明に係る一実施形態について、図1から図3を参照して以下に説明する。
[Embodiment 1]
An embodiment according to the present invention will be described below with reference to FIGS.
 以下では、まず有機トランジスタ(有機半導体装置)の構成について説明し、続いて、本発明の特徴である、有機トランジスタの製造方法について説明する。 Hereinafter, the configuration of the organic transistor (organic semiconductor device) will be described first, and then the method for manufacturing the organic transistor, which is a feature of the present invention, will be described.
 (1)有機トランジスタの構成
 本実施形態における有機トランジスタは、各種半導体装置に搭載される電界効果型トランジスタとして使用することができ、ソース電極と有機半導体層との間に注入改善層が挿入されており、且つ、ドレイン電極と有機半導体層との間に抽出改善層が挿入されている。
(1) Configuration of Organic Transistor The organic transistor in the present embodiment can be used as a field effect transistor mounted on various semiconductor devices, and an injection improvement layer is inserted between the source electrode and the organic semiconductor layer. In addition, an extraction improving layer is inserted between the drain electrode and the organic semiconductor layer.
 図1は、本実施形態の有機トランジスタの構成を示した断面図である。有機トランジスタ1は、図1に示すように、基板11と、ゲート電極12と、ゲート絶縁層13と、ソース電極14と、ドレイン電極15と、有機半導体層16と、注入改善層40と、抽出改善層50とを備えている。 FIG. 1 is a cross-sectional view showing the configuration of the organic transistor of the present embodiment. As shown in FIG. 1, the organic transistor 1 includes a substrate 11, a gate electrode 12, a gate insulating layer 13, a source electrode 14, a drain electrode 15, an organic semiconductor layer 16, an injection improving layer 40, and an extraction. And an improvement layer 50.
 (基板)
 基板11は、シリコン基板、石英基板、ガラス基板や、ポリカーボネート、ポリエーテルエーテルケトン、ポリイミド、ポリエステル、ポリエーテルスルホン等の材料からなる樹脂基板を用いることができる。特にフレキシブルデバイスへの展開を考慮すると、樹脂基板を用いることが好ましい。
(substrate)
As the substrate 11, a silicon substrate, a quartz substrate, a glass substrate, or a resin substrate made of a material such as polycarbonate, polyetheretherketone, polyimide, polyester, or polyethersulfone can be used. In particular, considering the development of flexible devices, it is preferable to use a resin substrate.
 本発明で適用される基板11の厚さは、例えば10μm~1mmの範囲とすることができるが、本発明はこれに限定されるものではない。 The thickness of the substrate 11 applied in the present invention can be, for example, in the range of 10 μm to 1 mm, but the present invention is not limited to this.
 (ゲート電極)
 ゲート電極12は、基板11の上に、フォトリソグラフ法等を用いて形成されている。
(Gate electrode)
The gate electrode 12 is formed on the substrate 11 using a photolithographic method or the like.
 ゲート電極12の材料としては、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、鉄(Fe)、アルミニウム(Al)、タンタル(Ta)、クロム(Cr)等の金属材料、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化スズ(SnO)等の酸化物導電体、酸化物導電体の一種である酸化インジウムと酸化亜鉛とからなる透明導電材料を挙げることができる。また、これらの材料を2種以上併用してもよい。 As a material of the gate electrode 12, gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), iron (Fe), aluminum (Al), tantalum (Ta), chromium ( Cr) and other metal materials, oxide conductors such as indium tin oxide (ITO), zinc oxide (ZnO) and tin oxide (SnO 2 ), and a transparent material composed of indium oxide and zinc oxide which are a kind of oxide conductors. A conductive material can be mentioned. Two or more of these materials may be used in combination.
 また、ゲート電極12は、ポリアニリン、ポリチオフェン等の有機材料からなる電極、または、導電性インキを塗布して形成した電極であってもよい。これらの電極は、有機材料や導電性インキを塗布して形成できるので、電極形成プロセスが極めて簡便となるという利点がある。塗布法の具体的な手法としては、スピンコート法、キャスト法、引き上げ法等のほか、インクジェット印刷法、スクリーン印刷法、グラビア印刷法等の印刷法が挙げられ、これらの印刷法によりパターン印刷することもできる。 The gate electrode 12 may be an electrode made of an organic material such as polyaniline or polythiophene, or an electrode formed by applying conductive ink. Since these electrodes can be formed by applying an organic material or conductive ink, there is an advantage that the electrode forming process becomes extremely simple. Specific examples of the coating method include a spin coating method, a casting method, a pulling method, and other printing methods such as an inkjet printing method, a screen printing method, and a gravure printing method, and pattern printing is performed by these printing methods. You can also.
 ゲート電極12の膜厚は、その材料の導電率によるが、50~1000nmの範囲とすることができる。ゲート電極12の厚さの下限は、電極材料の導電率、および基板11との密着強度によって異なる。一方、ゲート電極12の厚さの上限は、後述のゲート絶縁層13およびソース電極14-ドレイン電極15対を設けた際に、基板11とゲート電極12の段差部分におけるゲート絶縁層13による絶縁被覆が十分で、且つ、その上に形成するソース電極14およびドレイン電極15の電極パターンに断線を生ぜしめないことが必要である。 The film thickness of the gate electrode 12 depends on the conductivity of the material, but can be in the range of 50 to 1000 nm. The lower limit of the thickness of the gate electrode 12 varies depending on the conductivity of the electrode material and the adhesion strength with the substrate 11. On the other hand, the upper limit of the thickness of the gate electrode 12 is that when a gate insulating layer 13 and a source electrode 14-drain electrode 15 pair, which will be described later, are provided, the insulating coating by the gate insulating layer 13 at the step portion between the substrate 11 and the gate electrode 12 Is sufficient, and it is necessary not to cause disconnection in the electrode patterns of the source electrode 14 and the drain electrode 15 formed thereon.
 (ゲート絶縁層)
 ゲート絶縁層13は、図1に示すように、基板11のゲート電極12形成面に、ゲート電極12上およびゲート電極12の段差部分を被覆するように形成されている。
(Gate insulation layer)
As shown in FIG. 1, the gate insulating layer 13 is formed on the surface of the substrate 11 where the gate electrode 12 is formed so as to cover the gate electrode 12 and the step portion of the gate electrode 12.
 ゲート絶縁層13は、ゲート電極12と同じように、ポリクロロピレン、ポリエチレンテレフタレート、ポリオキシメチレン、ポリビニルクロライド、ポリフッ化ビニリデン、シアノエチルプルラン、ポリメチルメタクリレート、ポリサルフォン、ポリカーボネート、ポリビニルフェノール、ポリスチレン、ポリイミド等のポリマー材料を塗布して形成することができる。塗布方法としては、スピンコート法、キャスト法、引き上げ法等のほか、インクジェット印刷法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等の印刷法が挙げられ、これらの印刷法によりパターン印刷することもできる。 As with the gate electrode 12, the gate insulating layer 13 is made of polychloropyrene, polyethylene terephthalate, polyoxymethylene, polyvinyl chloride, polyvinylidene fluoride, cyanoethyl pullulan, polymethyl methacrylate, polysulfone, polycarbonate, polyvinyl phenol, polystyrene, polyimide, etc. It can be formed by applying a polymer material. Examples of coating methods include spin coating, casting, pulling, etc., as well as printing methods such as inkjet printing, screen printing, gravure printing, flexographic printing, and pattern printing using these printing methods. You can also.
 なお、CVD法等の既存パターンプロセスを用いてもよく、その場合には、SiO、SiNx、Al等の無機材料が好ましく使用される。また、これらの材料を2種以上併用してもよい。 Incidentally, it may be used conventional pattern process such as CVD, in which case the, SiO 2, SiNx, inorganic material, such as Al 2 O 3 are preferably used. Two or more of these materials may be used in combination.
 ゲート絶縁層13は、リーク電流を抑制するために十分な絶縁性を有し、且つ、単位体積当たりの静電容量が大きいことが好ましく、ゲート絶縁層13の膜厚は、両者の観点から設定される。具体的な膜厚としては、ゲート絶縁層13がポリマー材料で形成されている場合は20~1000nmの範囲とすることが好ましく、ゲート絶縁層が無機材料で形成されている場合は10~500nmの範囲とすることが好ましい。また、オクタデシルシラン単分子膜(ODS-SAMs)のような長鎖アルキルを持つ自己組織化単分子膜からなる絶縁層は、膜厚を分子長レベルにまで小さくできるため、単位体積当たりの静電容量を大きくなるため好ましい。また、いずれの材料で形成されている場合も、ゲート絶縁層13の絶縁耐圧は、2MV/cm以上であることが望ましい。 The gate insulating layer 13 preferably has sufficient insulation to suppress leakage current and has a large capacitance per unit volume. The film thickness of the gate insulating layer 13 is set from both viewpoints. Is done. The specific film thickness is preferably in the range of 20 to 1000 nm when the gate insulating layer 13 is formed of a polymer material, and is preferably 10 to 500 nm when the gate insulating layer is formed of an inorganic material. It is preferable to be in the range. Insulating layers made of self-assembled monolayers with long-chain alkyls such as octadecylsilane monolayers (ODS-SAMs) can reduce the film thickness to the molecular length level. This is preferable because the capacity is increased. Moreover, it is desirable that the withstand voltage of the gate insulating layer 13 is 2 MV / cm or more, regardless of which material is used.
 (ソース電極およびドレイン電極)
 ソース電極14およびドレイン電極15は、図1に示すように、ゲート絶縁層13の上に形成される。
(Source electrode and drain electrode)
The source electrode 14 and the drain electrode 15 are formed on the gate insulating layer 13 as shown in FIG.
 ソース電極14およびドレイン電極15の材料は、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、鉄(Fe)、アルミニウム(Al)、タンタル(Ta)、クロム(Cr)等の金属材料およびこれらの金属を含む合金材料、並びに、酸化インジウムスズ(ITO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)、酸化スズ(SnO)等の酸化物導電体、酸化物導電体の一種である酸化インジウムと酸化亜鉛とからなる透明導電材料を用いることができる。中でも、ソース電極14およびドレイン電極15としては、後述する注入改善層40および抽出改善層50と化学的に接着がし易い、Au、Ag、ITO、ZnO、SnO、酸化インジウムと酸化亜鉛とからなる透明導電材料を用いることが好ましい。 The material of the source electrode 14 and the drain electrode 15 is gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), iron (Fe), aluminum (Al), tantalum (Ta). , Metal materials such as chromium (Cr) and alloy materials containing these metals, and oxidation of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), tin oxide (SnO 2 ), etc. A transparent conductive material made of indium oxide and zinc oxide, which is a kind of physical conductor and oxide conductor, can be used. Among them, the source electrode 14 and the drain electrode 15 are made of Au, Ag, ITO, ZnO, SnO 2 , indium oxide and zinc oxide, which are easily chemically bonded to an injection improving layer 40 and an extraction improving layer 50 described later. It is preferable to use a transparent conductive material.
 ソース電極14およびドレイン電極15は互いに同一材料から構成されてもよく、別材料から構成されてもよい。同一材料の場合であれば、材料コストを抑えることができる。一方、別材料の場合は、工程数を減らすことができるというメリットがある。具体的には、注入改善層と抽出改善層として自己組織化単分子膜を形成する際に、別材料であれば、電極の表面(結合の手)が異なるので、それぞれに結合可能な注入改善層と抽出改善層の材料を選択することで、一度に改善層を形成することができる。これに対して、同一材料の場合は、ソース電極形成後に注入改善層を形成し、ドレイン電極形成後に抽出改善層を形成する4工程を取る必要がある。別材料の場合は、金とITOの組み合わせ、または、銀とITOの組み合わせが好ましい。 The source electrode 14 and the drain electrode 15 may be made of the same material or different materials. In the case of the same material, the material cost can be suppressed. On the other hand, in the case of another material, there is an advantage that the number of steps can be reduced. Specifically, when forming a self-assembled monolayer as an injection improvement layer and an extraction improvement layer, the surface of the electrode (bonding hand) will be different if different materials are used. By selecting the material of the layer and the extraction improving layer, the improving layer can be formed at a time. On the other hand, in the case of the same material, it is necessary to take four steps of forming the injection improving layer after forming the source electrode and forming the extraction improving layer after forming the drain electrode. In the case of another material, a combination of gold and ITO or a combination of silver and ITO is preferable.
 (有機半導体層)
 有機半導体層16は、ソース電極14とドレイン電極15との間のチャネル領域(電荷輸送経路領域)に形成されている。
(Organic semiconductor layer)
The organic semiconductor layer 16 is formed in a channel region (charge transport path region) between the source electrode 14 and the drain electrode 15.
 本実施形態の有機トランジスタ1は、上述したように電界効果トランジスタとして用いることができ、キャリアが電子(n型チャネル)である場合にも適用できるほか、キャリアが正孔(ホールとも称する)(p型チャネル)である場合にも適用できる。そのため、有機半導体層16としては、p型チャネル用の材料であっても、n型チャネル用の材料であっても用いることができる。 The organic transistor 1 of the present embodiment can be used as a field effect transistor as described above, and can be applied to the case where the carrier is an electron (n-type channel), and the carrier is a hole (also referred to as a hole) (p It is also applicable to the case of a type channel). Therefore, the organic semiconductor layer 16 can be either a p-type channel material or an n-type channel material.
 具体的には、p型チャネル用の有機半導体層16材料としては、ペンタセン、ルブレン、オリゴチオフェン、ポリチオフェンおよびそれらのアルキル置換体を用いることができる。また、n型チャネル用の有機半導体層16材料としては、C60フラーレン、フッ化ペンタセン、ペリレンイミド化合物が好ましい。中でも、ペンタセン、C60フラーレンはキャリアの移動度が高いことから、高速動作を実現できるため好ましい。 Specifically, pentacene, rubrene, oligothiophene, polythiophene, and their alkyl substituents can be used as the organic semiconductor layer 16 material for the p-type channel. Further, as the material of the organic semiconductor layer 16 for the n-type channel, C 60 fullerene, fluorinated pentacene, and a perylene imide compound are preferable. Among these, pentacene and C 60 fullerene are preferable because they have high carrier mobility and can realize high-speed operation.
 (注入改善層および抽出改善層)
 注入改善層40は、ソース電極14と有機半導体層16との間に配された、電気双極子モーメントを有する材料または分子からなる層である。キャリアがホールの場合には、材料または分子の負極から正極へ向いたベクトル電気双極子モーメントの向き(以後、単に電気双極子モーメントの向きと称する場合がある)がソース電極14に向いている。一方、キャリアが電子の場合には、上記ベクトルが有機半導体層16に向いている。
(Injection improvement layer and extraction improvement layer)
The injection improving layer 40 is a layer made of a material or molecule having an electric dipole moment, which is disposed between the source electrode 14 and the organic semiconductor layer 16. When the carrier is a hole, the direction of the vector electric dipole moment from the negative electrode to the positive electrode of the material or molecule (hereinafter sometimes simply referred to as the electric dipole moment direction) is directed to the source electrode 14. On the other hand, when the carrier is an electron, the vector is directed to the organic semiconductor layer 16.
 また、抽出改善層50は、ドレイン電極15と有機半導体層16との間に配された、電気双極子モーメントを有する材料または分子からなる層である。キャリアがホールの場合には、上記ベクトルが有機半導体層16に向いており、キャリアが電子の場合には、上記ベクトルがドレイン電極15に向いている。 The extraction improving layer 50 is a layer made of a material or molecule having an electric dipole moment, which is disposed between the drain electrode 15 and the organic semiconductor layer 16. When the carrier is a hole, the vector is directed to the organic semiconductor layer 16, and when the carrier is an electron, the vector is directed to the drain electrode 15.
 注入改善層40と抽出改善層50としては、後述する注入改善層および抽出改善層の製造方法を適用することができる材料または分子であればよい。 The injection improving layer 40 and the extraction improving layer 50 may be any material or molecule that can be applied with the manufacturing method of the injection improving layer and the extraction improving layer described later.
 具体的な材料または分子としては、注入改善層40および抽出改善層50の少なくとも一方は、下記一般式(1);
  X-A-Y ・・・(1)
によって表される有機化合物が集合してなる電気双極子モーメントを有する有機薄膜である。
As a specific material or molecule, at least one of the injection improving layer 40 and the extraction improving layer 50 is represented by the following general formula (1);
XAY (1)
Is an organic thin film having an electric dipole moment formed by aggregation of organic compounds represented by
 なお、電気双極子モーメントを有する有機薄膜とは、厚さが分子1個の大きさに相当する薄膜を意味する。なお、一般式(1)で表される構造が一部共有結合して2量体、3量体又はオリゴマー状の構造を形成していてもよいが、その層の厚さは分子1個分である。 Note that the organic thin film having an electric dipole moment means a thin film having a thickness corresponding to the size of one molecule. Note that the structure represented by the general formula (1) may be partially covalently bonded to form a dimer, trimer or oligomer structure, but the layer thickness is one molecule. It is.
 上記一般式(1)中の置換基Xは、ソース電極14およびドレイン電極15を構成する原子と化学結合することによって当該電極と、一般式(1)で示される分子とが結びつけられて一般式(1)で示される分子が集合することにより、自己組織化単分子膜(SAMs:Self-Assembled Monolayers)を形成する機能を有する。 The substituent X in the general formula (1) is bonded to the molecule represented by the general formula (1) by chemically bonding to the atoms constituting the source electrode 14 and the drain electrode 15 to thereby combine the general formula (1). When the molecules represented by (1) are assembled, they have a function of forming self-assembled monolayers (SAMs: Self-Assembled Monolayers).
 具体的な置換基Xとしては、
X: -SH、-SiR 、-CN、-COR、-SO、もしくは、-POR
が挙げられる。なお、上記Rのうちの何れか1つはメトキシ基(-OMe)、エトキシ基(-OEt)、クロロ基(-Cl)であり、上記Rのうちの何れか1つはヒドロキシ基(-OH)、クロロ基(-Cl)である。また、カルボン酸部位(-COR)、スルホン酸部位(-SO)において、Rは、ヒドロキシ基(-OH)またはクロロ基(-Cl)である。同様に、ホスホン酸部位においても、二つあるRのうち少なくとも何れか一つは、ヒドロキシ基(-OH)またはクロロ基(-Cl)であるが、その他のRは、結合に関与しないメチル基またはメトキシ基である。
Specific examples of the substituent X include
X: -SH, -SiR 1 3, -CN, - COR 2, or -SO 2 R 2,, -POR 2 2
Is mentioned. Any one of R 1 is a methoxy group (—OMe), an ethoxy group (—OEt), or a chloro group (—Cl), and any one of the R 2 is a hydroxy group ( -OH) and a chloro group (-Cl). In the carboxylic acid moiety (—COR 2 ) and sulfonic acid moiety (—SO 2 R 2 ), R 2 is a hydroxy group (—OH) or a chloro group (—Cl). Similarly, at the phosphonic acid moiety, at least one of the two R 2 groups is a hydroxy group (—OH) or a chloro group (—Cl), but the other R 2 groups are not involved in binding. A methyl group or a methoxy group.
 中でも、置換基Xがチオール基(-SH)であることが好ましい。置換基Xをチオール基とすることにより、ソース電極14およびドレイン電極15を構成する原子と、チオール基との間で共有結合を形成し、結合部位の距離を比較的短くすることができ、上述した接触抵抗をより一層低減させることができる。特に、ソース電極14およびドレイン電極15の少なくとも一方を、金(Au)原子を含む材料から選択し、金(Au)原子とチオール基(-SH)との間で化学結合を形成すれば、電極上に改善層が固定化され、有機トランジスタ1駆動時の電界などによる改善層の劣化を抑制することができ、有機トランジスタ1の長寿命化を実現することができる。 Of these, the substituent X is preferably a thiol group (—SH). By using the substituent X as a thiol group, a covalent bond can be formed between the atoms constituting the source electrode 14 and the drain electrode 15 and the thiol group, and the distance between the bonding sites can be made relatively short. It is possible to further reduce the contact resistance. In particular, if at least one of the source electrode 14 and the drain electrode 15 is selected from a material containing gold (Au) atoms and a chemical bond is formed between the gold (Au) atoms and the thiol group (—SH), the electrode An improvement layer is fixed on the organic transistor 1, and deterioration of the improvement layer due to an electric field or the like when driving the organic transistor 1 can be suppressed, so that the life of the organic transistor 1 can be extended.
 また、後述する主鎖骨格Aと置換基Xのチオール基とを組み合わせてなる芳香族チオールのHOMO軌道は硫黄原子付近にも存在し、電気伝導を担う軌道が電極材料の近傍まで広がっている。上記の理由により、改善層と電極の接続部分の抵抗が下がるため、トランジスタとしての接触抵抗を更に低減させることができる。 In addition, the HOMO orbit of the aromatic thiol formed by combining the main chain skeleton A and the thiol group of the substituent X described later also exists in the vicinity of the sulfur atom, and the orbit responsible for electrical conduction extends to the vicinity of the electrode material. For the above reason, since the resistance of the connection portion between the improvement layer and the electrode is lowered, the contact resistance as a transistor can be further reduced.
 上記一般式(1)中の置換基Yは、層の表面において有機半導体層16と接触する。置換基Yは、光化学反応、酸化反応または還元反応により変換可能な置換基であり、電子吸引基もしくは電子吸引基からなる。ここでの電子供与基、電子吸引基とは、ハメットの置換基定数がそれぞれ負、正を示すものを指す。 The substituent Y in the general formula (1) is in contact with the organic semiconductor layer 16 on the surface of the layer. The substituent Y is a substituent that can be converted by a photochemical reaction, an oxidation reaction, or a reduction reaction, and consists of an electron withdrawing group or an electron withdrawing group. Here, the electron donating group and the electron withdrawing group refer to those in which Hammett's substituent constants are negative and positive, respectively.
 置換基Yとして用いることができる具体的な電子吸引基Yは、ニトロ基(-NO)、クロロメチル基(-CHCl)、アルデヒド基(-CHO)、アジド基(-N)、シアノ基(-CN)、カルボキシル基(-COOH)、カルボニル基(-COR)、アルコキシカルボニル基(-COOR)、ハロゲン基(-F、-Cl、-Br、および^-I)、アルコキシシラン基(-Si(OR)、トリフルオロメチル基(-CF)が挙げられる(但し、Rは炭素数1~3個の直鎖アルキル基である)。 Specific electron-withdrawing groups Y 1 that can be used as the substituent Y include a nitro group (—NO 2 ), a chloromethyl group (—CH 2 Cl), an aldehyde group (—CHO), and an azide group (—N 3 ). , A cyano group (—CN), a carboxyl group (—COOH), a carbonyl group (—COR 3 ), an alkoxycarbonyl group (—COOR 3 ), a halogen group (—F, —Cl, —Br, and ^ —I), Examples thereof include an alkoxysilane group (—Si (OR 3 ) 3 ) and a trifluoromethyl group (—CF 3 ) (wherein R 1 is a linear alkyl group having 1 to 3 carbon atoms).
 置換基Yとして用いることができる具体的な電子供与基Yは、アミノ基(-NH、-NHR、-NR)、エチレン基(-C=C-R)、イミノ基(-C=N-R)およびメチレンヒドロキシル基(-CH(OH))が挙げられる。なお、R~Rはいずれも、炭素数1~3の直鎖状アルキル基を指す。 Specific electron donor groups Y 2 which can be used as the substituent Y is an amino group (-NH 2, -NHR 4, -NR 4 R 5), ethylene group (-C = C-R 4) , an imino group (—C═N—R 4 ) and a methylene hydroxyl group (—CH 2 (OH)). R 4 to R 5 all represent a linear alkyl group having 1 to 3 carbon atoms.
 置換基Yが電子吸引基の場合には、Y近傍が負に帯電するため、注入改善層および抽出改善層において、有機半導体層から電極に向かう向きの電気双極子モーメントを形成させることができる。また、置換基Yが電子供与基の場合には、Y近傍が正に帯電するため、注入改善層および抽出改善層において、電極から有機半導体層に向かう向きの電気双極子モーメントを形成させることができる。 When the substituent Y is an electron withdrawing group, the vicinity of Y 1 is negatively charged, so that an electric dipole moment in the direction from the organic semiconductor layer to the electrode can be formed in the injection improving layer and the extraction improving layer. . In addition, when the substituent Y is an electron donating group, the vicinity of Y 2 is positively charged. Therefore, an electric dipole moment in the direction from the electrode to the organic semiconductor layer is formed in the injection improving layer and the extraction improving layer. Can do.
 上記一般式(1)中の主鎖骨格Aは、図2に示す芳香族主鎖骨格を用いることができる。芳香族主鎖骨格としては、ベンゼン、ピリジン、チオフェン、ピロールなどの単環構造のものや、ナフタレン、アントラセン、テトラセン、ペンタセンなどの縮環構造のものや、ビフェニル、ビピリジル、ターフェニル、ターチオフェンなどの多環式構造を有するものが好ましい。また、芳香族主鎖骨格の以外に、脂肪族主鎖骨格を用いても構わない。脂肪族主鎖骨格としては、炭素数1~20の直鎖アルカン(-(CH)n- n=1~20)が挙げられる。なかでも、注入改善層および抽出改善層自身の電気抵抗を低下させる観点から、炭素数1~6のものが好ましい。 As the main chain skeleton A in the general formula (1), the aromatic main chain skeleton shown in FIG. 2 can be used. Aromatic main chain skeletons include monocyclic structures such as benzene, pyridine, thiophene, pyrrole, condensed ring structures such as naphthalene, anthracene, tetracene, pentacene, biphenyl, bipyridyl, terphenyl, terthiophene, etc. Those having the following polycyclic structure are preferred. In addition to the aromatic main chain skeleton, an aliphatic main chain skeleton may be used. Examples of the aliphatic main chain skeleton include linear alkanes having 1 to 20 carbon atoms (— (CH 2 ) n—n = 1 to 20). Of these, those having 1 to 6 carbon atoms are preferred from the viewpoint of reducing the electrical resistance of the injection improving layer and the extraction improving layer itself.
 また、主鎖骨格Aが芳香族主鎖骨格である方が、主鎖骨格内にπ電子を有しているため、注入改善層および抽出改善層自身の電気抵抗を低下させる観点から、更なる接触抵抗の低下が実現する。 In addition, since the main chain skeleton A is an aromatic main chain skeleton has π electrons in the main chain skeleton, the electric resistance of the injection improving layer and the extraction improving layer itself is further reduced. A reduction in contact resistance is realized.
 上記一般式(1)で表される分子は、分子の長軸方向の片末端に電極材料と化学結合する官能基を有し、その反対の末端に、電子吸引基または電子供与基を有している。そのため、各電極上において自己組織化単分子膜(SAMs)を形成し、電極とは反対側に電子吸引基または電子供与基を配置することができる。自己組織化単分子膜では、分子の配向性が制御されているため、電気双極子モーメントの向きを揃えることができる。したがって、電気双極子モーメントによる電荷注入効果または電荷抽出効果をより高めることができる。 The molecule represented by the general formula (1) has a functional group chemically bonded to the electrode material at one end in the long axis direction of the molecule, and an electron withdrawing group or electron donating group at the opposite end. ing. Therefore, self-assembled monolayers (SAMs) can be formed on each electrode, and an electron withdrawing group or electron donating group can be arranged on the opposite side of the electrode. In self-assembled monolayers, the orientation of the molecules is controlled, so the electric dipole moment can be aligned. Therefore, the charge injection effect or the charge extraction effect due to the electric dipole moment can be further enhanced.
 さらに、自己組織化単分子膜の膜厚は、自己組織化単分子膜を形成する分子の分子長と略同じである。そのため、注入改善層40および抽出改善層50は、自己組織化単分子膜を形成する分子の分子長まで薄膜化できる。これにより、注入改善層40および抽出改善層50自身の抵抗を低下させることが可能である。 Furthermore, the film thickness of the self-assembled monolayer is substantially the same as the molecular length of the molecules forming the self-assembled monolayer. Therefore, the injection improving layer 40 and the extraction improving layer 50 can be thinned to the molecular length of the molecules forming the self-assembled monolayer. Thereby, it is possible to reduce the resistance of the injection improving layer 40 and the extraction improving layer 50 itself.
 (2)有機トランジスタの製造
 次に、以上のような各構成を具備する本実施形態の有機トランジスタの製造方法を説明する。
(2) Manufacture of Organic Transistor Next, a method for manufacturing the organic transistor of the present embodiment having the above-described configurations will be described.
 本実施形態では、ソース電極およびドレイン電極を形成した後に、ソース電極およびドレイン電極の双方の上に注入改善層を構成する組成からなる材料を積層し、続いて、その材料層の一部分を改変させることによって抽出改善層を形成するという特徴的な方法を採用して、注入改善層と抽出改善層とを実現する。 In this embodiment, after forming the source electrode and the drain electrode, a material made of a composition constituting the injection improving layer is laminated on both the source electrode and the drain electrode, and then a part of the material layer is modified. Thus, a characteristic method of forming an extraction improvement layer is adopted to realize an injection improvement layer and an extraction improvement layer.
 図3は、本実施形態の有機トランジスタの製造方法を示した図である。 FIG. 3 is a diagram showing a method for manufacturing the organic transistor of the present embodiment.
 (第一の工程:ゲート電極・ゲート絶縁層形成工程)
 まず、基板11の上に、ゲート電極材料を例えばスパッタリングにより全面に形成した後に、既存のフォトリソグラフィーを用いてパターン形成をおこなう。これにより、図3の(a)に示すように、ゲート電極12を形成する。後述する実施例1では、膜厚60nmのアルミニウム膜をゲート電極12としている。
(First step: Gate electrode / gate insulating layer forming step)
First, after forming a gate electrode material on the entire surface of the substrate 11 by, for example, sputtering, pattern formation is performed using existing photolithography. Thereby, the gate electrode 12 is formed as shown in FIG. In Example 1 described later, an aluminum film having a thickness of 60 nm is used as the gate electrode 12.
 次に、ゲート絶縁層材料を用いてスパッタリングしてゲート電極12を被覆する。これにより、図3の(a)に示すように、ゲート絶縁層13を形成する。後述する実施例1では、膜厚200nmの窒化シリコンをゲート絶縁層13としている。 Next, the gate electrode 12 is coated by sputtering using a gate insulating layer material. Thereby, the gate insulating layer 13 is formed as shown in FIG. In Example 1 described later, silicon nitride having a thickness of 200 nm is used as the gate insulating layer 13.
 (第二の工程:ソース電極・ドレイン電極形成工程)
 次に、ゲート絶縁層13上に、上述したソース電極材料を、既存のフォトリソグラフィーによるパターニングを行って形成する。この場合、ソース電極材料とドレイン電極材料とが同一材料から構成される場合には、ソース電極とドレイン電極とを同一工程で形成することができる。これにより、図3の(b)に示すように、ソース電極14およびドレイン電極15を形成する。後述する実施例1では、フォトリソグラフィーによるパターニングによってITOを60nm堆積させてソース電極14およびドレイン電極15を形成している。
(Second step: source / drain electrode forming step)
Next, the above-described source electrode material is formed on the gate insulating layer 13 by performing patterning by existing photolithography. In this case, when the source electrode material and the drain electrode material are made of the same material, the source electrode and the drain electrode can be formed in the same process. Thereby, the source electrode 14 and the drain electrode 15 are formed as shown in FIG. In Example 1 to be described later, the source electrode 14 and the drain electrode 15 are formed by depositing 60 nm of ITO by patterning by photolithography.
 一方、ソース電極材料とドレイン電極材料とが互いに異なる材料から構成されてもよい。例えば、一方の電極が、クロム5nm、さらにその上に金60nmを、メタルマスクを介して順に真空蒸着することにより形成されてもよい。このときのクロムは、金と基板11を密着させる役割を担う。 On the other hand, the source electrode material and the drain electrode material may be made of different materials. For example, one electrode may be formed by sequentially vacuum-depositing 5 nm of chromium and 60 nm of gold thereon through a metal mask. Chromium at this time plays a role of bringing gold and the substrate 11 into close contact.
 ソース電極14とドレイン電極15の隣り合う辺同士の間の距離(チャネル長)は、5~200μmとすることができる。また、ソース電極14とドレイン電極15の隣り合う辺の長さ(チャネル幅)は、100~10000μmとすることができる。 The distance (channel length) between adjacent sides of the source electrode 14 and the drain electrode 15 can be 5 to 200 μm. Further, the length (channel width) of adjacent sides of the source electrode 14 and the drain electrode 15 can be set to 100 to 10,000 μm.
 なお、ソース電極およびドレイン電極の形成方法は、既存のフォトリソグラフィーによるパターニングに限定されるものではなく、一般的な電極形成方法であるメタルマスクを介した蒸着や、スパッタリング、その他にもインクジェットなどを用いることも可能である。しかしながら、本発明に係る製造方法によれば、同一工程でソース電極とドレイン電極とを形成することが可能であるため、より微細化が可能な精密なフォトリソグラフィーなどを用いてソース電極およびドレイン電極を形成することができる点で有意である。 Note that the method for forming the source electrode and the drain electrode is not limited to the patterning by the existing photolithography, and vapor deposition through a metal mask, which is a general electrode forming method, sputtering, ink jet, etc. It is also possible to use it. However, according to the manufacturing method according to the present invention, since the source electrode and the drain electrode can be formed in the same process, the source electrode and the drain electrode can be formed using precise photolithography capable of further miniaturization. Is significant in that it can be formed.
 (第三の工程:改善層形成工程)
 次に、図3の(c)に示すように、ソース電極14およびドレイン電極15上に、改善層17(材料層)として、注入改善層を構成する組成からなる材料の層(SAMs)を形成する。
(Third step: Improvement layer forming step)
Next, as shown in FIG. 3C, on the source electrode 14 and the drain electrode 15, layers (SAMs) made of a material having a composition constituting the implantation improving layer are formed as the improving layer 17 (material layer). To do.
 ここで、後述するように、本実施形態では、改善層17の形成後にドレイン電極15の上に形成された改善層17のみに改変(変換)処理を施して、当該処理を施した部分の改善層17を抽出改善層50に改変させるという手法を採用しており、改変(変換)処理として光化学反応を用いる。 Here, as will be described later, in the present embodiment, after the improvement layer 17 is formed, only the improvement layer 17 formed on the drain electrode 15 is subjected to a modification (conversion) process, and the portion subjected to the process is improved. A technique of modifying the layer 17 to the extraction improving layer 50 is employed, and a photochemical reaction is used as the modification (conversion) process.
 すなわち、本工程において用いる改善層17材料としては、光化学反応によって、注入改善層の構成を抽出改善層の構成に変換することができる材料を選択して採用すればよい。具体的には、光化学反応を用いて、ドレイン電極15の上に形成された改善層17を抽出改善層50に改変させる場合には、上記材料として、有機半導体層に接触する末端の官能基がクロロメチル基またはニトロ基を有する分子を用いることができる。 That is, as the improvement layer 17 material used in this step, a material that can convert the configuration of the injection improvement layer into the configuration of the extraction improvement layer by photochemical reaction may be selected and adopted. Specifically, when the improvement layer 17 formed on the drain electrode 15 is modified to the extraction improvement layer 50 using a photochemical reaction, the functional group at the end that contacts the organic semiconductor layer is used as the material. Molecules having a chloromethyl group or a nitro group can be used.
 改善層17(自己組織化単分子膜 SAMs)の形成方法としては、次の3つの形成方法が挙げられる。 As the formation method of the improvement layer 17 (self-assembled monolayer SAMs), there are the following three formation methods.
  (形成方法1)
 SAMsを形成させる材料の溶液を準備し、そこに基板を浸漬する。その溶液を0~100℃程度の温度で静置もしくは撹拌することで、単分子膜を形成する。その後に、物理的に付着した材料を除去するために、溶媒にて洗浄する。形成方法1を採用することにより、特別な装置を必要としないため、簡便であるという利点がある。また、分子間同士の相互作用を高め易く、配向性の高い単分子膜が得られる。自己重合をしない分子(例えばチオール基またはホスホン酸基等を持った分子)に好適である。
(Formation method 1)
A solution of a material for forming SAMs is prepared, and the substrate is immersed therein. By standing or stirring the solution at a temperature of about 0 to 100 ° C., a monomolecular film is formed. Thereafter, the substrate is washed with a solvent in order to remove the physically attached material. By adopting the forming method 1, there is an advantage that it is simple because no special apparatus is required. In addition, it is easy to enhance the interaction between molecules, and a monomolecular film with high orientation can be obtained. It is suitable for a molecule that does not self-polymerize (for example, a molecule having a thiol group or a phosphonic acid group).
  (形成方法2)
 基板とSAMsを形成させる材料が入った小瓶を密閉容器に封入し、50~150℃程度に加熱する。その後に、物理的に付着した材料を除去するために、溶媒にて洗浄する。形成方法2を採用することにより、加熱を行なうため、反応が速く、形成処理の時間短縮が可能であるという利点がある。また、自己重合をする材料を用いても、均一な単分子膜を得ることができる。自己重合する材料は、単分子膜形成と同時に反応系中で自己重合体を生じる。その重合体が、基板に付着されると、均一な単分子膜ではなくなってしまう。しかし、該手法では、重合体は分子量が高く、沸点が高まるため、蒸発せず、基板まで到達しない。その結果、均一な単分子膜が得られる。
(Formation method 2)
A small bottle containing a substrate and a material for forming SAMs is sealed in a sealed container and heated to about 50 to 150 ° C. Thereafter, the substrate is washed with a solvent in order to remove the physically attached material. By adopting the forming method 2, since heating is performed, there is an advantage that the reaction is fast and the time for the forming process can be shortened. Even if a self-polymerizing material is used, a uniform monomolecular film can be obtained. The self-polymerizing material generates a self-polymer in the reaction system simultaneously with the formation of the monomolecular film. When the polymer is attached to the substrate, it is not a uniform monomolecular film. However, in this method, the polymer has a high molecular weight and a high boiling point, so it does not evaporate and does not reach the substrate. As a result, a uniform monomolecular film is obtained.
  (形成方法3)
 SAMsを形成させる材料の溶液をスピンコートまたはディップコートし、基板上に塗布する。その後に、基板を50~150℃程度に加熱、もしくは、塩酸やアンモニアなどの脱水縮合反応を促進させる蒸気を曝すことにより、基板と化学的に結合させる。さらに、過剰に付着した材料を除去するために、溶媒にて洗浄する。形成方法3を採用することにより、SAMsを形成させる材料の使用量が少ないため経済的であるという利点がある。また、加熱を行なうため、反応が速く、形成処理の時間短縮が可能である。
(Formation method 3)
A solution of a material for forming SAMs is spin-coated or dip-coated and applied onto a substrate. Thereafter, the substrate is chemically bonded to the substrate by heating the substrate to about 50 to 150 ° C. or exposing the substrate to vapor that promotes a dehydration condensation reaction such as hydrochloric acid or ammonia. Further, in order to remove the excessively attached material, the substrate is washed with a solvent. Employing the forming method 3 has an advantage that it is economical because the amount of the material for forming the SAMs is small. In addition, since the heating is performed, the reaction is fast and the time for the forming process can be shortened.
 以上の形成方法により、ソース電極14およびドレイン電極15上に改善層17を形成することができる。 The improvement layer 17 can be formed on the source electrode 14 and the drain electrode 15 by the above forming method.
 (第四の工程:光化学反応による部分改変工程)
 次に、図3の(d)に示すように、ドレイン電極15の上に形成された改善層17のみに改変(変換)処理として光化学反応を生じさせて改善層17の官能基を置換することにより、ドレイン電極15の上に形成された改善層17を抽出改善層50に改変(変換)する。
(Fourth step: partial modification step by photochemical reaction)
Next, as shown in FIG. 3D, only the improvement layer 17 formed on the drain electrode 15 is caused to undergo a photochemical reaction as a modification (conversion) treatment to replace the functional group of the improvement layer 17. Thus, the improvement layer 17 formed on the drain electrode 15 is modified (converted) into the extraction improvement layer 50.
 光化学反応により改質可能な材料としては、メチルクロロ基、またはアジド基を持った芳香族または脂肪族化合物が挙げられる。上記の官能基は、光化学反応により、メチルクロロ基はアルデヒド基に、アジド基はアミノ基に改質することができる。 Examples of materials that can be modified by photochemical reaction include aromatic or aliphatic compounds having a methylchloro group or an azide group. The above functional group can be modified to an aldehyde group and an azide group to an amino group by photochemical reaction.
 例えば、改善層17としてp-クロロメチルフェニルトリメトキシシランを用いた場合は、まず、ドレイン電極15上の改善層17のクロロメチル基を、光化学反応によってアルデヒド基に変換させる(図3の(e))。 For example, when p-chloromethylphenyltrimethoxysilane is used as the improvement layer 17, first, the chloromethyl group of the improvement layer 17 on the drain electrode 15 is converted into an aldehyde group by a photochemical reaction ((e in FIG. 3) )).
 ここで、光化学反応とは、被照射対象である改善層17の表面に光を照射することによって、当該表面に露出した官能基を別の官能基に変換する化学反応をいう。改善層17の表面に露出した官能基は、光照射を受けると、光エネルギーにより励起され、電子放出もしくは授与し易い状態になる。そこに、他の化学種(例えば酸素もしくは水)が接近すると、分子間での電子の受け渡しが行われ、通常の雰囲気下では進行し難い化学反応が進行する。 Here, the photochemical reaction refers to a chemical reaction in which a functional group exposed on the surface is converted into another functional group by irradiating the surface of the improvement layer 17 to be irradiated with light. When the functional group exposed on the surface of the improvement layer 17 is irradiated with light, it is excited by light energy and is in a state where it is easy to emit or give electrons. When another chemical species (for example, oxygen or water) approaches, electrons are transferred between molecules, and a chemical reaction that is difficult to proceed under a normal atmosphere proceeds.
 光照射は、ドレイン電極15上の改善層17のみ光学的に空いているフォトマスクを用いればよい。もしくは、集光レンズやレーザーを用いて局所的に照射する手法が挙げられる。 The photoirradiation may be performed using a photomask in which only the improvement layer 17 on the drain electrode 15 is optically empty. Or the method of irradiating locally using a condensing lens or a laser is mentioned.
 照射する光は、被照射対象の分子内の反応させたい箇所を励起させることの出来る波長を照射することが好ましく、具体的には、波長180~600nmの範囲の光であればよく、クロロメチル基をアルデヒド基に変換するときのように酸素が必要な場合には、照射は大気雰囲気下で行なうことが好ましい。後述する実施例1では、196nmの光を、大気雰囲気下で1分間照射している。 The light to be irradiated is preferably irradiated with a wavelength that can excite the site to be reacted in the molecule to be irradiated. Specifically, it may be light in the wavelength range of 180 to 600 nm. If oxygen is required, such as when converting a group to an aldehyde group, the irradiation is preferably performed in an air atmosphere. In Example 1 described later, light of 196 nm is irradiated for 1 minute in an air atmosphere.
 照射は、光源として重水素ランプ、キセノンランプまたはハロゲンランプを用いて行われることが好ましく、重水素ランプで真空紫外光を照射する場合には、大気の吸収を考慮して、減圧雰囲気下で行うことが好ましい。また、レーザーを使用する場合には、ヘリウム-ネオンレーザー、アルゴンイオンレーザー、YAGレーザーなどを使用することができる。 Irradiation is preferably performed using a deuterium lamp, a xenon lamp or a halogen lamp as a light source. When irradiating vacuum ultraviolet light with a deuterium lamp, it is performed in a reduced-pressure atmosphere in consideration of atmospheric absorption. It is preferable. When a laser is used, a helium-neon laser, an argon ion laser, a YAG laser, or the like can be used.
 次に、ドレイン電極15上の改善層17表面に露出された変換後の官能基を、さらに別の官能基に変換する。例えば、先のアルデヒド基を1,4フェニレンジアミンの片方のアミノ基と化学反応させることにより、ドレイン電極15上に、表面にアミノ基が露出した抽出改善層50を形成することができる(図3の(f))。 Next, the converted functional group exposed on the surface of the improvement layer 17 on the drain electrode 15 is further converted into another functional group. For example, the extraction improving layer 50 having the amino group exposed on the surface can be formed on the drain electrode 15 by chemically reacting the aldehyde group with one amino group of 1,4-phenylenediamine (FIG. 3). (F)).
 本工程によれば、表面に露出される官能基が変換される(例えば、クロロメチル基から、アミノ基に変換される)ことで、ドレイン電極15上の、電気双極子モーメントのベクトルが反転させた改善層を形成することできる。 According to this step, the functional group exposed on the surface is converted (for example, converted from a chloromethyl group to an amino group), so that the electric dipole moment vector on the drain electrode 15 is inverted. Improved layers can be formed.
 なお、上述した工程および材料に限らず、注入改善層を構成する組成からなる材料(改善層17)の官能基を、最終的に抽出改善層50の官能基に置換することができる方法であれば採用することができ、また、これに該当する材料であれば採用することができる。 It should be noted that the functional group of the material (improving layer 17) composed of the composition constituting the injection improving layer is not limited to the above-described steps and materials, and the functional group of the extraction improving layer 50 can be finally replaced. If it is a material applicable to this, it can employ | adopt.
 (第五の工程:有機半導体層形成工程)
 次に、図3の(g)に示すように、上述した有機半導体層材料を用いて、注入改善層40および抽出改善層50に接触するように真空蒸着により、有機半導体層16を形成する。有機半導体層16の膜厚は10~1000nmとすることができる。実施例1では、有機半導体層材料としてペンタセンを用いて、メタルマスクを介して、例えば膜厚60nmの有機半導体層16を形成している。
(Fifth step: Organic semiconductor layer formation step)
Next, as shown in FIG. 3G, the organic semiconductor layer 16 is formed by vacuum deposition using the organic semiconductor layer material described above so as to be in contact with the injection improving layer 40 and the extraction improving layer 50. The film thickness of the organic semiconductor layer 16 can be 10 to 1000 nm. In Example 1, the organic semiconductor layer 16 having a film thickness of 60 nm, for example, is formed through a metal mask using pentacene as the organic semiconductor layer material.
 (有機トランジスタの特性)
 上記方法により得られる有機トランジスタの特性は、詳細は後述する実施例1に記載するが、移動度、ON/OFF比ともに良好で、ソース電極/有機半導体層界面、および有機半導体層/ドレイン電極界面の接触抵抗についても、注入改善層および抽出改善層を持たない素子に比べて低く抑えることができる。
(Characteristics of organic transistors)
The characteristics of the organic transistor obtained by the above method will be described in detail in Example 1 described later, but both the mobility and the ON / OFF ratio are good, and the interface between the source electrode / organic semiconductor layer and the interface between the organic semiconductor layer / drain electrode The contact resistance can be suppressed to be lower than that of an element having no injection improvement layer and no extraction improvement layer.
 なお、接触抵抗の評価は、Solid-State Electronics47(2003)259等の公知の手法であるTransmission Line Model(TLM)法を用いて評価することができる。具体的には、ソース電極-ドレイン電極間の電圧Vdが-30Vの時の、ON状態(Vg=-30V)でのドレイン電流値Idを評価し、ソース電極からドレイン電極までの全体の抵抗Rt;
Rt=2Rc+Rch
(ここで、Rcはソース電極/有機半導体層およびドレイン電極/有機半導体層の接触抵抗、Rchはチャネル部の抵抗を示す)
をRt=Vd/Idから算出する。さらに、チャネル長に対して、Rtをプロットし、チャネル長が0の時(y切片)の値を接触抵抗とする。
In addition, evaluation of contact resistance can be evaluated using Transmission Line Model (TLM) method which is well-known methods, such as Solid-State Electronics 47 (2003) 259. More specifically, the source electrode - voltage Vd between the drain electrode when the -30 V, to evaluate the drain current Id in the ON state (Vg = -30 V), the overall resistance Rt from the source electrode to the drain electrode ;
Rt = 2Rc + Rch
(Where Rc is the contact resistance of the source electrode / organic semiconductor layer and drain electrode / organic semiconductor layer, and Rch is the resistance of the channel portion)
Is calculated from Rt = Vd / Id. Further, Rt is plotted against the channel length, and the value when the channel length is 0 (y intercept) is defined as the contact resistance.
 (本実施形態1の作用効果)
 以上のように、本実施形態の製造方法によれば、ソース電極およびドレイン電極を同時に形成した後に、ソース電極14およびドレイン電極15の両方に、電気双極子モーメントの向きが同じである改善層17を形成する工程を行い、この改善層17のうちの一方を光化学反応によって電気双極子モーメントの向きを反転させ、注入改善層40と抽出改善層50を作り分ける工程をおこなうことで、微細な電極パターン形成が可能になる。詳しく説明すると、注入改善層40および抽出改善層50を形成する前に、ソース電極14およびドレイン電極15を形成することで、注入改善層40および抽出改善層50へのダメージが予想されるプロセス(例えばフォトリソグラフィー)を用いることが可能であり、上記プロセスを用いることで、電極の微細化が容易になる。
(Operational effect of the first embodiment)
As described above, according to the manufacturing method of this embodiment, after the source electrode and the drain electrode are simultaneously formed, the improvement layer 17 in which the direction of the electric dipole moment is the same for both the source electrode 14 and the drain electrode 15. And by reversing the direction of the electric dipole moment of one of the improvement layers 17 by a photochemical reaction, and separately forming the injection improvement layer 40 and the extraction improvement layer 50, a fine electrode is formed. Pattern formation is possible. More specifically, a process in which the source electrode 14 and the drain electrode 15 are formed before the injection improvement layer 40 and the extraction improvement layer 50 are formed, and damage to the injection improvement layer 40 and the extraction improvement layer 50 is expected ( For example, photolithography) can be used, and the use of the above process facilitates miniaturization of the electrode.
 また、図3に基づいて説明したように、部分改変工程を光照射による化学反応を用いて行なうことにより、指向性が高く且つ解像度が高い光照射によるパターニングが可能である。 Further, as described with reference to FIG. 3, by performing the partial modification process using a chemical reaction by light irradiation, patterning by light irradiation with high directivity and high resolution is possible.
 なお、本実施形態では、ソース電極14およびドレイン電極15の上に形成する材料層17として、自己組織化単分子膜を形成したが、自己組織化分子層を積層した自己組織化分子層積層膜であってもよい。 In the present embodiment, a self-assembled monolayer is formed as the material layer 17 formed on the source electrode 14 and the drain electrode 15, but a self-assembled molecular layer laminate film in which self-assembled molecular layers are laminated. It may be.
 〔実施の形態2〕
 図4は、本実施形態の有機トランジスタの製造方法を示した図である。本実施形態の有機トランジスタは、例えば、後述する実施例2のように、基板11がガラス、ゲート電極12がアルミニウム、ゲート絶縁層13が二酸化シリコン、ソース電極14およびゲート電極15がクロムの上に金をメタルマスクを介して順に真空蒸着することにより形成したもの、有機半導体層16がC60フラーレン、注入改善層40および抽出改善層50がそれぞれp-アミノベンゼンチオールからなる単分子膜およびp-ニトロベンゼンチオールからなる単分子膜である構成を挙げることができる。
[Embodiment 2]
FIG. 4 is a diagram showing a method for manufacturing the organic transistor of this embodiment. In the organic transistor of this embodiment, the substrate 11 is made of glass, the gate electrode 12 is made of aluminum, the gate insulating layer 13 is made of silicon dioxide, the source electrode 14 and the gate electrode 15 are made of chromium, for example, as in Example 2 described later. Formed by sequentially vacuum-depositing gold through a metal mask, the organic semiconductor layer 16 is C 60 fullerene, the injection improving layer 40 and the extraction improving layer 50 are each a monomolecular film made of p-aminobenzenethiol and p- The structure which is a monomolecular film which consists of nitrobenzene thiol can be mentioned.
 上記実施形態1では改善層17の一部に対して施す改変処理として光化学反応を用いているのに対して、本実施形態では、酸化反応を用いる点が異なる。 In the first embodiment, a photochemical reaction is used as a modification process applied to a part of the improvement layer 17, whereas in this embodiment, an oxidation reaction is used.
 なお、本実施形態では、上記実施形態1において説明した(第一の工程:ゲート電極・ゲート絶縁層形成工程)、(第二の工程:ソース電極・ドレイン電極形成工程)、および、(第五の工程:有機半導体層形成工程)については、工程自体は同じである。そのため、これらの工程については、本実施形態では説明を省略する。よって、以下では、改善層形成工程と、これに続く部分改変工程について説明する。 In the present embodiment, (first step: gate electrode / gate insulating layer forming step), (second step: source electrode / drain electrode forming step), and (fifth step) described in the first embodiment are described. Step: The organic semiconductor layer forming step) is the same as the step itself. Therefore, description of these steps is omitted in this embodiment. Therefore, below, an improvement layer formation process and the partial modification process following this are demonstrated.
 (第三の工程:改善層形成工程)
 図4の(a)に示したように、ゲート絶縁層13上にソース電極14およびドレイン電極15が形成された状態で、図4の(b)に示すように、改善層17(材料層)として、注入改善層を構成する組成からなる材料の層(SAMs)を形成する。
(Third step: Improvement layer forming step)
As shown in FIG. 4A, with the source electrode 14 and the drain electrode 15 formed on the gate insulating layer 13, as shown in FIG. 4B, the improvement layer 17 (material layer) As described above, layers (SAMs) made of a material having a composition constituting the injection improving layer are formed.
 本実施形態では、後述する部分改変工程において説明するように、改善層17の形成後にドレイン電極15の上に形成された改善層17のみに改変(変換)処理を施して、当該処理を施した部分の改善層17を抽出改善層50に改変させるという手法を採用しており、改変(変換)処理として酸化反応を採用する。そのため、本工程において用いる改善層17材料は、酸化反応によって、注入改善層の構成を抽出改善層の構成に変換することができる材料を選択して採用すればよい。具体的には、有機半導体層16に接触する末端の官能基がアミノ基またはエチレン基を有する分子を用いることができる。 In the present embodiment, as described in the partial modification step described later, only the improvement layer 17 formed on the drain electrode 15 after the formation of the improvement layer 17 is subjected to the modification (conversion) process, and the process is performed. A technique of modifying the partial improvement layer 17 to the extraction improvement layer 50 is employed, and an oxidation reaction is employed as the modification (conversion) treatment. Therefore, the material of the improvement layer 17 used in this step may be selected and adopted by a material that can convert the configuration of the injection improvement layer into the configuration of the extraction improvement layer by an oxidation reaction. Specifically, a molecule having a terminal functional group that contacts the organic semiconductor layer 16 having an amino group or an ethylene group can be used.
 改善層17(自己組織化単分子膜 SAMs)の形成方法は、上記した(形成方法1)~(形成方法3)の3つの形成方法がある。例えば、本実施形態では、p-アミノベンゼンチオールからなる単分子膜の改善層17を形成することができる。この場合の形成方法の一例としては、1mMのp-アミノベンゼンチオールの溶液に、改善層17形成前の基板を3時間浸漬し、浸漬後、エタノールで洗浄して物理的に付着した材料を除去すれば、改善層17を形成することができる。 The formation method of the improvement layer 17 (self-assembled monolayer SAMs) includes the three formation methods (formation method 1) to (formation method 3) described above. For example, in the present embodiment, the monolayer improvement layer 17 made of p-aminobenzenethiol can be formed. As an example of the formation method in this case, the substrate before the improvement layer 17 is formed is immersed in a solution of 1 mM p-aminobenzenethiol for 3 hours, and after the immersion, the material physically attached is removed by washing with ethanol. Then, the improvement layer 17 can be formed.
 (第四の工程:酸化反応による部分改変工程)
 次に、図4の(c)に示すように、ドレイン電極15の上に形成された改善層17のみに改変処理を施し、酸化反応を生じさせることによってドレイン電極15の上に抽出改善層50を形成する。
(Fourth step: partial modification step by oxidation reaction)
Next, as shown in FIG. 4C, only the improvement layer 17 formed on the drain electrode 15 is subjected to a modification process to cause an oxidation reaction, thereby causing an extraction improvement layer 50 on the drain electrode 15. Form.
 酸化反応により改質可能な材料としては、アミノ基、アルコール基、アルデヒド基、エチレン基を持った芳香族または脂肪族化合物が挙げられる。上記の官能基は酸化反応により、アミノ基はニトロ基に、アルコール基はアルデヒド基に、アルデヒド基はカルボキシル基に、エチレン基はカルボキシル基に改質することができる。 Examples of materials that can be modified by an oxidation reaction include aromatic or aliphatic compounds having an amino group, an alcohol group, an aldehyde group, or an ethylene group. The functional group can be modified by an oxidation reaction, the amino group can be modified to a nitro group, the alcohol group can be modified to an aldehyde group, the aldehyde group can be modified to a carboxyl group, and the ethylene group can be modified to a carboxyl group.
 図4の(c)では、走査型プローブ顕微鏡の一つである原子間力顕微鏡(AFM)を用いて、改善層17の表面に露出したアミノ基を酸化し、これをニトロ基に変換している。具体的には、金でコーティングされたAFMの探針を用いて、ドレイン電極に対し、その探針に、+3Vの電圧を印加し、大気中で、改善層17上を走査することにより酸化反応を行っている。 In FIG. 4C, an atomic force microscope (AFM) which is one of scanning probe microscopes is used to oxidize amino groups exposed on the surface of the improvement layer 17 and convert them into nitro groups. Yes. Specifically, by using an AFM probe coated with gold, a voltage of +3 V is applied to the drain electrode, and the oxidation reaction is performed by scanning the improvement layer 17 in the atmosphere. It is carried out.
 このように、酸化反応を行なって、最終的に図4の(d)に示す有機トランジスタを製造することができる。 Thus, the organic transistor shown in FIG. 4D can be finally manufactured by performing the oxidation reaction.
 なお、アミノ基がニトロ基に変換されたことを確認する手法としては、大気雰囲気下光電子分光法による金の仕事関数変化、および、X線光電子分光法による窒素の1s軌道のピークのシフトから確認する手法がある。例えば、改善層未修飾の時点で金の仕事関数が4.8eVであったとすると、p-アミノベンゼンチオール処理を行なうと、仕事関数は未修飾の値よりも小さな値を示し、さらに、酸化処理を行なうと、未修飾の値よりも大きくなり、双極子モーメントの反転を裏付けている結果を得ることができる。 In addition, as a method for confirming that the amino group was converted to the nitro group, confirmation was made from the change in the work function of gold by atmospheric photoelectron spectroscopy and the shift of the peak of the 1s orbital of nitrogen by X-ray photoelectron spectroscopy. There is a technique to do. For example, if the work function of gold is 4.8 eV when the improvement layer is not modified, the p-aminobenzenethiol treatment shows a work function smaller than the unmodified value, and the oxidation treatment The result is larger than the unmodified value, and a result supporting the inversion of the dipole moment can be obtained.
 (有機トランジスタの特性)
 上記方法により得られる有機トランジスタの特性は、詳細は後述する実施例2に記載するが、移動度、ON/OFF比ともに良好で、ソース電極/有機半導体層界面、および有機半導体層/ドレイン電極界面の接触抵抗についても、注入改善層および抽出改善層を持たない素子に比べて低く抑えることができる。
(Characteristics of organic transistors)
The characteristics of the organic transistor obtained by the above method will be described in detail in Example 2 to be described later, but both the mobility and the ON / OFF ratio are good, and the interface between the source electrode / organic semiconductor layer and the interface between the organic semiconductor layer / drain electrode The contact resistance can be suppressed to be lower than that of an element having no injection improvement layer and no extraction improvement layer.
 (本実施形態2の作用効果)
 以上のように、本実施形態の製造方法によれば、ソース電極およびドレイン電極を同時に形成した後に、ソース電極14およびドレイン電極15の両方に、電気双極子モーメントの向きが同じである改善層17を形成する工程を行い、さらに、この改善層17のうちの一方を、酸化反応によって電気双極子モーメントの向きを反転させ、注入改善層40と抽出改善層50を作り分ける工程をおこなうことで、微細な電極パターン形成が可能になる。詳しく説明すると、注入改善層40および抽出改善層50を形成させる前に、ソース電極14およびドレイン電極15を形成することで、注入改善層40および抽出改善層50へのダメージが予想されるプロセス(例えばフォトリソグラフィー)を用いることが可能であり、上記プロセスを用いることで、電極の微細化が容易になる。
(Operational effect of the second embodiment)
As described above, according to the manufacturing method of this embodiment, after forming the source electrode and the drain electrode at the same time, both the source and drain electrodes 14 and 15, improving layer orientation of the electric dipole moment is the same 17 In addition, the direction of the electric dipole moment is reversed by an oxidation reaction of one of the improvement layers 17, and the injection improvement layer 40 and the extraction improvement layer 50 are separately formed. A fine electrode pattern can be formed. More specifically, a process in which damage to the injection improvement layer 40 and the extraction improvement layer 50 is expected by forming the source electrode 14 and the drain electrode 15 before forming the injection improvement layer 40 and the extraction improvement layer 50 ( For example, photolithography) can be used, and the use of the above process facilitates miniaturization of the electrode.
 特に、本実施形態に示した部分改変工程は、アミノ基をニトロ基へ酸化反応により変換することで、1回のプロセスで、双極子モーメントを反転することが可能であり、工程数の短縮が可能であるという効果がある。 In particular, the partial modification step shown in the present embodiment can reverse the dipole moment in one process by converting an amino group into a nitro group by an oxidation reaction, which reduces the number of steps. There is an effect that it is possible.
 また、本実施形態に示した部分改変工程に示したようにAFMにて酸化させることにより、酸化させるエリアのパターニングが可能となるという効果がある。 Also, as shown in the partial modification step shown in the present embodiment, by oxidizing with AFM, there is an effect that the area to be oxidized can be patterned.
 (本実施形態2の変形例)
 本変形例の製造方法について、図5に基づいて説明する。上記実施形態2と本変形例とは、部分改変工程において用いる酸化反応が異なる。
(Modification of Embodiment 2)
The manufacturing method of this modification is demonstrated based on FIG. The oxidation reaction used in the partial modification step is different between the second embodiment and this modification.
 まず、図5の(a)および(b)を経て、ソース電極14およびドレイン電極15の上に注入改善層を構成する組成からなる材料の単分子膜である材料層17(SAMs)を形成する。 First, through FIGS. 5A and 5B, material layers 17 (SAMs), which are monomolecular films made of a material having a composition constituting an injection improving layer, are formed on the source electrode 14 and the drain electrode 15. .
 続いて、本変形例では、図5の(c)に示すように、電気化学的にアミノ基からなる材料層17を酸化し、ニトロ基に変換した。具体的には、電解質溶液60中に基板を浸漬し、ドレイン電極と電解質溶液中の対極61との間に+3Vの電圧をする。これにより、最終的に図5の(d)に示す有機トランジスタを製造することができる。 Subsequently, in this modified example, as shown in FIG. 5C, the material layer 17 composed of amino groups was oxidized and converted into nitro groups. Specifically, the substrate is immersed in the electrolyte solution 60, and a voltage of +3 V is applied between the drain electrode and the counter electrode 61 in the electrolyte solution. As a result, the organic transistor shown in FIG. 5D can be finally manufactured.
 本変形例のように、双極子モーメントの向きを反転させたい電極と、その電極と電解質溶液など、電気伝導を行なう媒体を介した対向電極との間に、電圧を印加し、電気化学的に酸化させることで、電極上に形成している分子を一度に変換することが可能である。また、一つの基板に複数個素子があった場合でも、酸化させたい電極を電気的に接続しておくことで、一度に、すべての分子を酸化させることが可能なため、処理時間の短縮が可能である。 As in this modification, a voltage is applied electrochemically between the electrode whose direction of dipole moment is to be reversed and the counter electrode through the medium that conducts electrical conduction, such as an electrolyte solution. Oxidation makes it possible to convert molecules formed on the electrode at a time. Also, even if there are multiple elements on one substrate, it is possible to oxidize all the molecules at once by electrically connecting the electrodes to be oxidized, thus shortening the processing time. Is possible.
 〔実施の形態3〕
 図6は、本実施形態の有機トランジスタの製造方法を示した図である。本実施形態の有機トランジスタは、例えば、後述する実施例3のように、基板11がガラス、ゲート電極12がアルミニウム、ゲート絶縁層13が二酸化シリコン、ソース電極14およびゲート電極15がクロムの上に金をメタルマスクを介して順に真空蒸着することにより形成したもの、有機半導体層16がペンタセン、注入改善層40および抽出改善層50がそれぞれp-ニトロベンゼンチオールからなる単分子膜およびp-アミノベンゼンチオールからなる単分子膜である構成を挙げることができる。
[Embodiment 3]
FIG. 6 is a diagram showing a method for manufacturing the organic transistor of this embodiment. In the organic transistor of this embodiment, the substrate 11 is made of glass, the gate electrode 12 is made of aluminum, the gate insulating layer 13 is made of silicon dioxide, the source electrode 14 and the gate electrode 15 are made of chromium, for example, as in Example 3 described later. Formed by sequentially vapor-depositing gold through a metal mask, the organic semiconductor layer 16 is pentacene, the injection improvement layer 40 and the extraction improvement layer 50 are each a monomolecular film made of p-nitrobenzenethiol and p-aminobenzenethiol The structure which is the monomolecular film which consists of can be mentioned.
 上記実施形態1では、注入改善層および抽出改善層の形成にあたって光化学反応を用いているのに対して、本実施形態では、還元反応を用いる点が異なる。 In the first embodiment, a photochemical reaction is used to form the injection improvement layer and the extraction improvement layer, whereas in this embodiment, a reduction reaction is used.
 なお、本実施形態では、上記実施形態1において説明した(第一の工程:ゲート電極形成工程)、(第二の工程:ソース電極形成工程)、(第二の工程:ドレイン電極形成工程)、および、(第五の工程:有機半導体層形成工程)については、工程自体は同じである。そのため、これらの工程については、本実施形態では説明を省略する。よって、以下では、改善層形成工程と、これに続く部分改変工程について説明する。 In the present embodiment, (first step: gate electrode formation step), (second step: source electrode formation step), (second step: drain electrode formation step) described in the first embodiment, And about the (5th process: organic-semiconductor-layer formation process), the process itself is the same. Therefore, description of these steps is omitted in this embodiment. Therefore, below, an improvement layer formation process and the partial modification process following this are demonstrated.
 (第三の工程:改善層形成工程)
 図6の(a)に示したように、ゲート絶縁層13上にソース電極14およびドレイン電極15が形成された状態で、図6の(b)に示すように、改善層17(材料層)として、注入改善層を構成する組成からなる材料の層(SAMs)を形成する。
(Third step: Improvement layer forming step)
As shown in FIG. 6A, with the source electrode 14 and the drain electrode 15 formed on the gate insulating layer 13, as shown in FIG. 6B, the improvement layer 17 (material layer) As described above, layers (SAMs) made of a material having a composition constituting the injection improving layer are formed.
 本実施形態では、後述する部分改変工程において説明するように、改善層17の形成後にドレイン電極15の上に形成された改善層17のみに改変(変換)処理を施して、当該処理を施した部分の改善層17を抽出改善層50に改変させるという手法を採用しており、改変(変換)処理として還元反応を採用する。 In the present embodiment, as described in the partial modification step described later, only the improvement layer 17 formed on the drain electrode 15 after the formation of the improvement layer 17 is subjected to the modification (conversion) process, and the process is performed. A technique of modifying the partial improvement layer 17 to the extraction improvement layer 50 is employed, and a reduction reaction is employed as the modification (conversion) process.
 そのため、本工程において用いる改善層17材料は、還元反応によって、注入改善層の構成を抽出改善層の構成に変換することができる材料を選択して採用すればよい。具体的には、有機半導体層16に接触する末端の官能基がニトロ基またはカルボニル基を有する分子を用いることができる。 Therefore, the material for the improvement layer 17 used in this step may be selected from materials that can convert the configuration of the injection improvement layer into the configuration of the extraction improvement layer by a reduction reaction. Specifically, a molecule in which the terminal functional group in contact with the organic semiconductor layer 16 has a nitro group or a carbonyl group can be used.
 改善層17(自己組織化単分子膜 SAMs)の形成方法は、上記した(形成方法1)~(形成方法3)の3つの形成方法がある。例えば、本実施形態では、1mMのp-ニトロベンゼンチオールの溶液に、基板を3時間浸漬し、浸漬後、エタノールで洗浄することによって、改善層17を形成することができる。 The formation method of the improvement layer 17 (self-assembled monolayer SAMs) includes the three formation methods (formation method 1) to (formation method 3) described above. For example, in this embodiment, the improvement layer 17 can be formed by immersing the substrate in a solution of 1 mM p-nitrobenzenethiol for 3 hours, and then immersing and washing with ethanol.
 (第四の工程:還元反応による部分改変工程)
 次に、図6の(c)に示すように、ドレイン電極15の上に形成された改善層17のみを、還元反応によって改変(変換)して、ドレイン電極15の上に抽出改善層50を形成する。
(Fourth step: partial modification step by reduction reaction)
Next, as shown in FIG. 6C, only the improvement layer 17 formed on the drain electrode 15 is modified (converted) by a reduction reaction, and the extraction improvement layer 50 is formed on the drain electrode 15. Form.
 還元反応により改質可能な材料としては、ニトロ基、カルボニル基、アルデヒド基、イミノ基を持った芳香族または脂肪族化合物が挙げられる。上記の官能基は還元反応により、ニトロ基はアミノ基に、カルボニル基はアルコール基に、イミノ基はアミノ基もしくはアルデヒド基に改質することができる。 Examples of materials that can be modified by a reduction reaction include aromatic or aliphatic compounds having a nitro group, a carbonyl group, an aldehyde group, or an imino group. The functional group can be modified by a reduction reaction, the nitro group can be modified to an amino group, the carbonyl group can be modified to an alcohol group, and the imino group can be modified to an amino group or an aldehyde group.
 上記実施形態2と同様に、図6の(c)においても、AFM、もしくは、電気化学的に、ニトロ基からなる単分子膜(材料層)17を還元し、アミノ基に変換することができる。AFMを用いた場合には、プローブの針とドレイン電極との間に-3Vの電圧を大気中で印加し、走査する。一方、電気化学的な手法を用いた場合には、電解質溶液に基板を浸漬し、対極とドレイン電極間に-3Vを印加する。なお、ニトロ基がアミノ基に変換されたことの確認は、実施形態2で説明した手法と同じ手法で確認することができる。 Similarly to the second embodiment, also in FIG. 6C, the monomolecular film (material layer) 17 made of a nitro group can be reduced and converted to an amino group by AFM or electrochemically. . When the AFM is used, scanning is performed by applying a voltage of −3 V in the atmosphere between the probe needle and the drain electrode. On the other hand, when an electrochemical method is used, the substrate is immersed in an electrolyte solution, and −3 V is applied between the counter electrode and the drain electrode. The confirmation that the nitro group has been converted to the amino group can be confirmed by the same technique as that described in the second embodiment.
 このように、還元反応を行なって、最終的に図6の(d)に示す有機トランジスタを製造することができる。 Thus, the reduction reaction is carried out to finally produce the organic transistor shown in FIG. 6 (d).
 (有機トランジスタの特性)
 上記方法により得られる有機トランジスタの特性は、詳細は後述する実施例3に記載するが、移動度、ON/OFF比ともに良好で、ソース電極/有機半導体層界面、および有機半導体層/ドレイン電極界面の接触抵抗についても、注入改善層および抽出改善層を持たない素子に比べて低く抑えることができる。
(Characteristics of organic transistors)
The characteristics of the organic transistor obtained by the above method will be described in detail in Example 3 to be described later, but both the mobility and the ON / OFF ratio are good, and the source electrode / organic semiconductor layer interface and the organic semiconductor layer / drain electrode interface The contact resistance can be suppressed to be lower than that of an element having no injection improvement layer and no extraction improvement layer.
 (本実施形態3の作用効果)
 以上のように、本実施形態の製造方法によれば、ソース電極およびドレイン電極を同時に形成した後に、ソース電極14およびドレイン電極15の両方に、電気双極子モーメントの向きが同じである改善層17を形成する工程を行い、さらに、この改善層17のうちの一方を、還元反応によって電気双極子モーメントの向きを反転させ、注入改善層40と抽出改善層50を作り分ける工程をおこなうことで、微細な電極パターン形成が可能になる。詳しく説明すると、注入改善層40および抽出改善層50を形成させる前に、ソース電極14およびドレイン電極15を形成することで、注入改善層40および抽出改善層50へのダメージが予想されるプロセス(例えばフォトリソグラフィー)を用いることが可能であり、上記プロセスを用いることで、電極の微細化が容易になる。
(Operational effect of the third embodiment)
As described above, according to the manufacturing method of this embodiment, after forming the source electrode and the drain electrode at the same time, both the source and drain electrodes 14 and 15, improving layer orientation of the electric dipole moment is the same 17 In addition, the direction of the electric dipole moment of one of the improvement layers 17 is reversed by a reduction reaction to separate the injection improvement layer 40 and the extraction improvement layer 50 from each other. A fine electrode pattern can be formed. More specifically, a process in which damage to the injection improvement layer 40 and the extraction improvement layer 50 is expected by forming the source electrode 14 and the drain electrode 15 before forming the injection improvement layer 40 and the extraction improvement layer 50 ( For example, photolithography) can be used, and the use of the above process facilitates miniaturization of the electrode.
 特に、本実施形態に示した部分改変工程は、ニトロ基をアミノ基へ還元反応により変換することで、1回のプロセスで、双極子モーメントを反転することが可能であり、工程数の短縮が可能であるという効果がある。 In particular, the partial modification step shown in this embodiment can reverse the dipole moment in one process by converting the nitro group to an amino group by a reduction reaction, and the number of steps can be reduced. There is an effect that it is possible.
 また、本実施形態に示した部分改変工程に示したようにAFMにて還元させることにより、還元させるエリアのパターニングが可能となるという効果がある。 Also, as shown in the partial modification step shown in the present embodiment, there is an effect that the area to be reduced can be patterned by reducing with AFM.
 〔実施の形態4〕
 図7は、本実施形態の製造方法によって製造される有機半導体装置の概略構成を示す断面図である。本発明に係る製造方法は、図7に示す半導体装置においても、その製造方法として適用することができる。なお、以下の説明では、特に言及しない限り、実施形態1において用いた部材と同じ部材を採用できるものについては、同一の部材番号を付し、説明を省略する。
[Embodiment 4]
FIG. 7 is a cross-sectional view showing a schematic configuration of an organic semiconductor device manufactured by the manufacturing method of the present embodiment. The manufacturing method according to the present invention can also be applied to the semiconductor device shown in FIG. In the following description, unless otherwise specified, the same members as those used in Embodiment 1 can be used with the same member numbers and the description thereof is omitted.
 (1)半導体装置の構成
 図7に示すように、半導体装置(有機半導体装置)10は、同一の基板11上に形成されているp型の有機トランジスタ(以下、単にp型トランジスタという)P1、および、n型の有機トランジスタ(以下、単にn型トランジスタという)N1によって形成されている。p型トランジスタP1およびn型トランジスタN1は、半導体層に有機材料を用いてなる電界効果型トランジスタである。
(1) Configuration of Semiconductor Device As shown in FIG. 7, a semiconductor device (organic semiconductor device) 10 includes a p-type organic transistor (hereinafter simply referred to as a p-type transistor) P1 formed on the same substrate 11. In addition, it is formed of an n-type organic transistor (hereinafter simply referred to as an n-type transistor) N1. The p-type transistor P1 and the n-type transistor N1 are field effect transistors using an organic material for the semiconductor layer.
 p型トランジスタP1は、基板11、基板11上に形成されているp型トランジスタ用のゲート電極12(第1のゲート電極)、ゲート電極12を覆うように基板11上に形成されているゲート絶縁層13、ゲート絶縁層13上に形成されているp型トランジスタ用のソース電極14(第1のソース電極)およびp型トランジスタ用のドレイン電極15(第1のドレイン電極)、ならびに、ゲート電極12と重なるように、ゲート絶縁層13上、ソース電極14上およびドレイン電極15上に形成されているp型の有機半導体層(以下、単にp型半導体層ともいう)16を備えている、ボトムゲート型のトランジスタである。 The p-type transistor P 1 includes a substrate 11, a gate electrode 12 (first gate electrode) for the p-type transistor formed on the substrate 11, and a gate insulation formed on the substrate 11 so as to cover the gate electrode 12. The source electrode 14 (first source electrode) for the p-type transistor and the drain electrode 15 (first drain electrode) for the p-type transistor formed on the layer 13, the gate insulating layer 13, and the gate electrode 12. A bottom gate having a p-type organic semiconductor layer (hereinafter also simply referred to as a p-type semiconductor layer) 16 formed on the gate insulating layer 13, the source electrode 14, and the drain electrode 15 so as to overlap Type transistor.
 p型トランジスタP1には、さらに、ソース電極14とp型半導体層16との間にp型注入改善層40Pが設けられており、ドレイン電極15とp型半導体層16との間にp型抽出改善層50Pが設けられた構造となっている。 The p-type transistor P <b> 1 is further provided with a p-type implantation improvement layer 40 </ b> P between the source electrode 14 and the p-type semiconductor layer 16, and p-type extraction is performed between the drain electrode 15 and the p-type semiconductor layer 16. The improvement layer 50P is provided.
 一方、n型トランジスタN1は、基板11、基板11上に形成されているn型トランジスタ用のゲート電極22(第2のゲート電極)、ゲート電極22を覆うように基板11上に形成されているゲート絶縁層13、ゲート絶縁層13上に形成されているn型トランジスタ用のソース電極24(第2のソース電極)およびn型トランジスタ用のドレイン電極25(第2のドレイン電極)、ならびに、ゲート電極22と重なるように、ゲート絶縁層13上、ソース電極24上およびドレイン電極25上に形成されているn型の有機半導体層(以下、単にn型半導体層ともいう)26を備えている、ボトムゲート型のトランジスタである。 On the other hand, the n-type transistor N1 is formed on the substrate 11 so as to cover the substrate 11, the gate electrode 22 (second gate electrode) for the n-type transistor formed on the substrate 11, and the gate electrode 22. Gate insulating layer 13, source electrode 24 (second source electrode) for n-type transistor and drain electrode 25 (second drain electrode) for n-type transistor formed on gate insulating layer 13, and gate An n-type organic semiconductor layer (hereinafter also simply referred to as an n-type semiconductor layer) 26 formed on the gate insulating layer 13, the source electrode 24, and the drain electrode 25 is provided so as to overlap with the electrode 22. A bottom-gate transistor.
 n型トランジスタN1には、さらに、ドレイン電極25とn型半導体層26との間にn型抽出改善層50Nが設けられており、ソース電極24とn型半導体層26との間にn型注入改善層40Nが設けられた構造となっている。 The n-type transistor N1 is further provided with an n-type extraction improving layer 50N between the drain electrode 25 and the n-type semiconductor layer 26, and an n-type implantation between the source electrode 24 and the n-type semiconductor layer 26. The improvement layer 40N is provided.
 半導体装置10では、基板11のみならず、ゲート絶縁層13も、p型トランジスタP1およびn型トランジスタN1において共通に使用している。 In the semiconductor device 10, not only the substrate 11 but also the gate insulating layer 13 is commonly used in the p-type transistor P1 and the n-type transistor N1.
 また、半導体装置10では、p型トランジスタP1のドレイン電極15と、n型トランジスタN1のドレイン電極25とが電気的に接続された構成となっている。なお、本構成ではドレイン電極15とドレイン電極25とが物理的に接触することにより、電気的にも接続されているが、ドレイン電極15とドレイン電極25とが物理的には離れており、別の金属配線を介してドレイン電極15とドレイン電極25とを電気的に接続させるものであってもよい。 In the semiconductor device 10, the drain electrode 15 of the p-type transistor P1 and the drain electrode 25 of the n-type transistor N1 are electrically connected. In this configuration, the drain electrode 15 and the drain electrode 25 are physically connected by being in physical contact, but the drain electrode 15 and the drain electrode 25 are physically separated from each other. The drain electrode 15 and the drain electrode 25 may be electrically connected through the metal wiring.
 図8は、半導体装置10の素子回路を示す回路図である。半導体装置10は、p型トランジスタP1とn型トランジスタN1とを相補的に接続したゲート構造となっており、図2に示すように、CMOS回路のようなインバータ回路を構成している。 FIG. 8 is a circuit diagram showing an element circuit of the semiconductor device 10. The semiconductor device 10 has a gate structure in which a p-type transistor P1 and an n-type transistor N1 are complementarily connected, and forms an inverter circuit such as a CMOS circuit as shown in FIG.
 図8に示すように、半導体装置10では、VddからVssに向かって、p型トランジスタP1のソース電極14、p型トランジスタP1のドレイン電極15、n型トランジスタN1のドレイン電極25およびn型トランジスタN1のソース電極24がこの順に配置するように、p型トランジスタP1とn型トランジスタN1とが形成されている。すなわち、半導体装置10は、Vddに正の電圧を印加するインバータ回路を形成している。 As shown in FIG. 8, in the semiconductor device 10, from Vdd to Vss, the source electrode 14 of the p-type transistor P1, the drain electrode 15 of the p-type transistor P1, the drain electrode 25 of the n-type transistor N1, and the n-type transistor N1. The p-type transistor P1 and the n-type transistor N1 are formed so that the source electrodes 24 are arranged in this order. That is, the semiconductor device 10 forms an inverter circuit that applies a positive voltage to Vdd.
 p型トランジスタP1に設けられているp型注入改善層40Pおよびp型抽出改善層50Pはそれぞれ、電荷の移動を促進させるための層である。具体的には、ソース電極14とp型半導体層16との間に設けられているp型注入改善層40Pは、ソース電極14の仕事関数の準位からp型半導体層16のHOMO準位へ電荷(この場合はホールh)の注入を促進する層である。一方、ドレイン電極15とp型半導体層16との間に設けられているp型抽出改善層50Pは、p型半導体層16のHOMO準位からドレイン電極15の仕事関数の準位へ電荷(ホールh)の抽出を促進する層である。 Each of the p-type injection improvement layer 40P and the p-type extraction improvement layer 50P provided in the p-type transistor P1 is a layer for promoting charge movement. Specifically, the p-type injection improving layer 40P provided between the source electrode 14 and the p-type semiconductor layer 16 changes from the work function level of the source electrode 14 to the HOMO level of the p-type semiconductor layer 16. This is a layer that promotes injection of electric charges (in this case, holes h + ). On the other hand, the p-type extraction improving layer 50P provided between the drain electrode 15 and the p-type semiconductor layer 16 has a charge (hole) from the HOMO level of the p-type semiconductor layer 16 to the level of the work function of the drain electrode 15. h + ) is a layer that promotes extraction.
 n型トランジスタN1に設けられているn型抽出改善層50Nおよびn型注入改善層40Nもそれぞれ、電荷の移動を促進させるための層である。具体的には、ドレイン電極25とn型半導体層26との間に設けられているn型抽出改善層50Nは、n型半導体層26のLUMO準位からドレイン電極25へ電荷(この場合は電子e)の抽出を促進する層である。一方、ソース電極24とn型半導体層26との間に設けられているn型注入改善層40Nは、ソース電極24の仕事関数の準位からn型半導体層26のLUMO準位へ電荷(電子e)の注入を促進する層である。 Each of the n-type extraction improving layer 50N and the n-type injection improving layer 40N provided in the n-type transistor N1 is also a layer for promoting charge movement. Specifically, the n-type extraction improving layer 50N provided between the drain electrode 25 and the n-type semiconductor layer 26 has a charge (in this case, an electron) from the LUMO level of the n-type semiconductor layer 26 to the drain electrode 25. e is a layer that promotes extraction. On the other hand, the n-type injection improving layer 40N provided between the source electrode 24 and the n-type semiconductor layer 26 has a charge (electron) from the work function level of the source electrode 24 to the LUMO level of the n-type semiconductor layer 26. e ) is a layer that promotes injection.
 このような機能を有する各改善層を、電気双極子モーメントを有する分子を用いて形成する。 Each improvement layer having such a function is formed using molecules having an electric dipole moment.
 例えば、p型半導体層16へのホールhの注入を促進するp型注入改善層40Pおよびn型半導体層26からの電子eの抽出を促進するn型抽出改善層50Nに使用し得る、電気双極子モーメントを有する分子としては、下記一般式(2)に示される分子を挙げることができる。 For example, it can be used for the p-type injection improving layer 40P that promotes the injection of holes h + into the p-type semiconductor layer 16 and the n-type extraction improving layer 50N that promotes the extraction of electrons e from the n-type semiconductor layer 26. As a molecule | numerator which has an electric dipole moment, the molecule | numerator shown by following General formula (2) can be mentioned.
 X-A-Y  ・・・(2)
 なお、上記X、A、および、Yは、いずれも、実施形態1で示した一般式(1)のX、A、および、Yと同じであるため、ここでは説明を省略する。
XAY 1 (2)
Incidentally, the X, A, and, Y 1 is omitted both, X in the general formula (1) shown in Embodiment 1, A, and is the same as Y 1, the description here.
 一方、p型半導体層16からのホールhの抽出を促進するp型抽出改善層50Pおよびn型半導体層26へのeの注入を促進するn型注入改善層40Nに使用し得る、電気双極子モーメントを有する分子としては、例えば、下記一般式(3)に示される分子を挙げることができる。 On the other hand, the p-type extraction improving layer 50P for promoting the extraction of holes h + from the p-type semiconductor layer 16 and the n-type injection improving layer 40N for promoting the injection of e into the n-type semiconductor layer 26 can be used. As a molecule | numerator which has a dipole moment, the molecule | numerator shown by following General formula (3) can be mentioned, for example.
 X-A-Y  ・・・(3)
 なお、X、A、および、Yについては、実施形態1で示した一般式(1)のX、A、および、Yと同じであるため、ここでは説明を省略する。
XAY 2 (3)
Incidentally, X, A, and, for Y 2 is omitted, X in the general formula (1) shown in Embodiment 1, A, and is the same as Y 2, the description here.
 (有機半導体層)
 有機半導体層は、p型の特性またはn型の特性を有する従来公知の有機半導体材料によって形成することができる。p型半導体層16を形成するp型の有機半導体材料としては、例えば、ペンタセン、ルブレン、オリゴチオフェンおよびポリチオフェンならびにこれらのアルキル置換体を挙げることができる。中でも、キャリアの移動度が高いことから、ペンタセンが好ましい。
(Organic semiconductor layer)
The organic semiconductor layer can be formed of a conventionally known organic semiconductor material having p-type characteristics or n-type characteristics. Examples of the p-type organic semiconductor material that forms the p-type semiconductor layer 16 include pentacene, rubrene, oligothiophene, polythiophene, and alkyl substitution products thereof. Among these, pentacene is preferable because of high carrier mobility.
 一方、n型半導体層26を形成するn型の有機半導体材料としては、例えば、C60フラーレン、フッ化ペンタセンおよびペリレンイミド化合物を挙げることができる。中でも、キャリアの移動度が高いことから、C60フラーレンが好ましい。 On the other hand, examples of the n-type organic semiconductor material forming the n-type semiconductor layer 26 include C 60 fullerene, fluorinated pentacene, and a perylene imide compound. Among these, C 60 fullerene is preferable because of high carrier mobility.
 (電極材料)
 各ゲート電極12および22、各ソース電極14および24、ならびに各ドレイン電極15および25を形成する電極材料としては、いずれも、上述した実施形態1と同じであるため、ここでは説明を省略する。
(Electrode material)
Since the electrode materials for forming the gate electrodes 12 and 22, the source electrodes 14 and 24, and the drain electrodes 15 and 25 are the same as those in the first embodiment, the description thereof is omitted here.
 なお、複数個の有機トランジスタを組み合わせて構成されている従来の相補型論理回路では、スイッチング特性を高めるために、一方のソース電極およびドレイン電極の構成材料を、他方のソース電極およびドレイン電極の構成材料より仕事関数の大きいものを用いる必要がある。 Note that in the conventional complementary logic circuit configured by combining a plurality of organic transistors, in order to improve switching characteristics, the constituent material of one source electrode and drain electrode is changed to the configuration of the other source electrode and drain electrode. It is necessary to use a material having a work function larger than that of the material.
 これに対し、半導体装置10では、各ソース電極および各ドレイン電極と有機半導体層との間にキャリアの進行方向に適した注入改善層または抽出改善層を設け、これによりキャリア注入およびキャリア抽出を促進させている。そのため、ソース電極14およびドレイン電極15と、ソース電極24およびドレイン電極25とを同一の電極材料を用いて形成することができる。全て同一の電極材料で形成していても、後述するように、半導体装置10および各有機トランジスタP1およびN1においてその特性が低下することはない。 On the other hand, in the semiconductor device 10, an injection improvement layer or an extraction improvement layer suitable for the traveling direction of carriers is provided between each source electrode and each drain electrode and the organic semiconductor layer, thereby promoting carrier injection and carrier extraction. I am letting. Therefore, the source electrode 14 and the drain electrode 15, and the source electrode 24 and the drain electrode 25 can be formed using the same electrode material. Even if they are all formed of the same electrode material, the characteristics of the semiconductor device 10 and each of the organic transistors P1 and N1 are not deteriorated as will be described later.
 図9は、各ソース電極および各ドレイン電極の成膜パターンを示す図である。半導体装置10を製造する場合、それぞれの電極について、同一の電極材料を用いることができるため、図9に示すように、一方のソース電極14およびドレイン電極15と、他方のソース電極24およびドレイン電極25とを同一工程にて、既存のフォトリソグラフィーを用いて成膜することが可能である。 FIG. 9 is a diagram showing a film formation pattern of each source electrode and each drain electrode. When the semiconductor device 10 is manufactured, since the same electrode material can be used for each electrode, as shown in FIG. 9, one source electrode 14 and drain electrode 15, and the other source electrode 24 and drain electrode 25 can be formed by using existing photolithography in the same process.
 (2)半導体装置の製造方法
 次に、以上のような各構成を具備する本実施形態の有機トランジスタの製造方法を説明する。
(2) Manufacturing Method of Semiconductor Device Next, a manufacturing method of the organic transistor according to this embodiment having the above-described configurations will be described.
 本実施形態においても実施形態1と同様に、ソース電極およびドレイン電極を形成した後、ソース電極およびドレイン電極の双方の上に注入改善層を構成する組成からなる材料を積層し、続いて、その材料層の一部分を改変させることによって抽出改善層を形成するという特徴的な方法を採用して、注入改善層と抽出改善層とを実現する。 Also in the present embodiment, as in the first embodiment, after forming the source electrode and the drain electrode, a material composed of a composition that constitutes the injection improving layer is laminated on both the source electrode and the drain electrode, The injection improving layer and the extraction improving layer are realized by adopting a characteristic method of forming the extraction improving layer by modifying a part of the material layer.
 図10は、本実施形態の有機トランジスタの製造方法を示した図である。 FIG. 10 is a diagram showing a method for manufacturing the organic transistor of the present embodiment.
 (第一の工程:ゲート電極・ゲート絶縁層形成工程)
 なお、図10の(a)に示すゲート電極・ゲート絶縁層形成工程は、実施形態1とほぼ同じであるため説明を省略する。
(First step: Gate electrode / gate insulating layer forming step)
Note that the gate electrode / gate insulating layer forming step shown in FIG. 10A is substantially the same as that of the first embodiment, and thus the description thereof is omitted.
 (第二の工程:ソース電極・ドレイン電極形成工程)
 図10の(b)に示すソース電極・ドレイン電極形成工程では、ゲート絶縁層13上に、上述したソース電極・ドレイン電極材料を、既存のフォトリソグラフィーによるパターニングを行って形成する。後述する実施例4では、p型トランジスタP1のソース電極14、p型トランジスタP1のドレイン電極15、n型トランジスタN1のドレイン電極25およびn型トランジスタN1のソース電極24として、いずれも、クロム5nm、さらにその上に金60nmからなる構成として、フォトリソグラフィーによって同一工程で形成している。
(Second step: source / drain electrode forming step)
In the source / drain electrode formation step shown in FIG. 10B, the above-described source / drain electrode material is formed on the gate insulating layer 13 by patterning using existing photolithography. In Example 4 to be described later, the source electrode 14 of the p-type transistor P1, the drain electrode 15 of the p-type transistor P1, the drain electrode 25 of the n-type transistor N1, and the source electrode 24 of the n-type transistor N1 are all 5 nm chromium. In addition, a structure made of 60 nm of gold is formed in the same process by photolithography.
 なお、p型トランジスタP1のドレイン電極15と、n型トランジスタN1のドレイン電極25は電気的に接続している。 Note that the drain electrode 15 of the p-type transistor P1 and the drain electrode 25 of the n-type transistor N1 are electrically connected.
 (第三の工程:改善層形成工程)
 次に、図10の(c)に示すように、形成したソース電極・ドレイン電極の上に、改善層17(材料層)として、注入改善層を構成する組成からなる材料の層(SAMs)を形成する。改善層17の形成方法は、実施形態1と同様であるため、ここでの説明は省略する。
(Third step: Improvement layer forming step)
Next, as shown in FIG. 10C, on the formed source electrode / drain electrode, as an improvement layer 17 (material layer), layers (SAMs) made of a material having a composition constituting the injection improvement layer are formed. Form. Since the formation method of the improvement layer 17 is the same as that of Embodiment 1, description here is abbreviate | omitted.
 (第四の工程:光還元反応による部分改変工程)
 次に、図10の(d)に示すように、p型トランジスタP1のドレイン電極15上、および、n型トランジスタN1のソース電極24上に形成された改善層17のみに改変(変換)処理を施して、それぞれp型トランジスタP1の注入改善層40P、および、n型トランジスタN1の抽出改善層50Nを形成する。
(Fourth step: partial modification step by photoreduction reaction)
Next, as shown in FIG. 10D, the modification (conversion) process is performed only on the improvement layer 17 formed on the drain electrode 15 of the p-type transistor P1 and the source electrode 24 of the n-type transistor N1. Then, an implantation improvement layer 40P of the p-type transistor P1 and an extraction improvement layer 50N of the n-type transistor N1 are formed.
 例えば、後述する実施例4では、p-ニトロベンゼンチオールからなる単分子膜を改善層17として形成し、p型トランジスタP1のドレイン電極15上、および、n型トランジスタN1のソース電極24上の改善層17に対して、514.5nmの光を、大気雰囲気下で照射することにより、改善層17表面のニトロ基をアミノ基に変換することができる。ニトロ基がアミノ基に変換したことは、大気中光電子分光法とXPSより確認することができる。 For example, in Example 4 to be described later, a monomolecular film made of p-nitrobenzenethiol is formed as the improvement layer 17, and the improvement layer on the drain electrode 15 of the p-type transistor P1 and the source electrode 24 of the n-type transistor N1. 17 is irradiated with light of 514.5 nm in an air atmosphere, the nitro group on the surface of the improvement layer 17 can be converted into an amino group. The conversion of the nitro group to the amino group can be confirmed by atmospheric photoelectron spectroscopy and XPS.
 ここで、光還元反応とは、被照射対象は改善層17が形成されている電極であり、その電極材料への光照射により生じた電子が、改善層17の表面に露出した官能基を還元して別の官能基に変換する化学反応をいう。 Here, the photoreduction reaction is an electrode on which an improvement layer 17 is formed, and electrons generated by light irradiation on the electrode material reduce functional groups exposed on the surface of the improvement layer 17. It is a chemical reaction that converts to another functional group.
 このとき、光照射は、ドレイン電極15上の改善層17のみ光学的に空いているフォトマスクを用いればよい。その他にも実施形態1で記述した光照射の手法を利用することができる。 At this time, the photoirradiation may be performed using a photomask in which only the improvement layer 17 on the drain electrode 15 is optically empty. In addition, the light irradiation method described in Embodiment 1 can be used.
 照射する光は、波長180~600nmの範囲の光であればよく、照射は大気雰囲気下で行なうことができる。後述する実施例4では、514.5nmのアルゴンイオンレーザーを、大気雰囲気下で5分間照射している。 The light to be irradiated may be light having a wavelength in the range of 180 to 600 nm, and the irradiation can be performed in an air atmosphere. In Example 4 to be described later, an argon ion laser of 514.5 nm is irradiated for 5 minutes in an air atmosphere.
 照射の条件は、実施形態1と同様の手法で行うことができる。 The irradiation conditions can be performed in the same manner as in the first embodiment.
 (第五の工程:有機半導体層形成工程)
 次に、図10の(g)に示すように、p型半導体層16を形成してp型の有機トランジスタP1を形成し、n型半導体層26を形成してn型の有機トランジスタN1を形成する。p型半導体層16およびn型半導体層26の形成方法は、実施形態1において説明した方法を用いることができるため、ここでは説明を省略する。
(Fifth step: Organic semiconductor layer formation step)
Next, as shown in FIG. 10G, a p-type semiconductor layer 16 is formed to form a p-type organic transistor P1, and an n-type semiconductor layer 26 is formed to form an n-type organic transistor N1. To do. As the method for forming the p-type semiconductor layer 16 and the n-type semiconductor layer 26, the method described in Embodiment 1 can be used, and thus the description thereof is omitted here.
 上記の工程により、CMOS構造の半導体装置を作製することができる。 Through the above steps, a semiconductor device having a CMOS structure can be manufactured.
 (半導体装置の特性)
 上記方法により得られた半導体装置の特性は、p型トランジスタP1およびn型トランジスタN1ともに、移動度、ON/OFF比ともに良好で、ソース電極/有機半導体層界面、および有機半導体層/ドレイン電極界面の接触抵抗についても、注入改善層および抽出改善層を持たない素子に比べて低く抑えることができる。詳細は後述する実施例4に記載する。
(Characteristics of semiconductor devices)
The characteristics of the semiconductor device obtained by the above method are that both the p-type transistor P1 and the n-type transistor N1 have good mobility and ON / OFF ratio, the source electrode / organic semiconductor layer interface, and the organic semiconductor layer / drain electrode interface. The contact resistance can be suppressed to be lower than that of an element having no injection improvement layer and no extraction improvement layer. Details are described in Example 4 to be described later.
 (本実施形態4の作用効果)
 以上のように、本実施形態の製造方法によれば、ソース電極およびドレイン電極を同時に形成した後に、すべてのソース電極およびドレイン電極の上に、電気双極子モーメントの向きが同じである改善層17を形成する工程を行い、さらに、この改善層17のうちのp型トランジスタP1のドレイン電極15上、および、n型トランジスタN1のソース電極24上に形成された改善層17を、光還元反応により、電気双極子モーメントの向きを反転させ、注入改善層と抽出改善層を作り分ける工程をおこなうことで、微細な電極パターン形成が可能になる。詳しく説明すると、注入改善層および抽出改善層を形成する前に、ソース電極およびドレイン電極を形成することで、注入改善層および抽出改善層へのダメージが予想されるプロセス(例えばフォトリソグラフィー)を用いることが可能であり、上記プロセスを用いることで、電極の微細化が容易になる。
(Operational effect of the fourth embodiment)
As described above, according to the manufacturing method of the present embodiment, after the source electrode and the drain electrode are simultaneously formed, the improvement layer 17 in which the direction of the electric dipole moment is the same on all the source electrodes and the drain electrodes. Further, the improvement layer 17 formed on the drain electrode 15 of the p-type transistor P1 and the source electrode 24 of the n-type transistor N1 in the improvement layer 17 is subjected to a photoreduction reaction. By reversing the direction of the electric dipole moment and separately forming the injection improvement layer and the extraction improvement layer, a fine electrode pattern can be formed. In detail, before forming the injection improving layer and extracts improving layer, by forming the source electrode and the drain electrode, using process (e.g., photolithography) of damage to the injection improving layer and extracts improving layer is expected It is possible to make the electrodes finer by using the above process.
 また、図10に基づいて説明したように、部分改変工程を光照射による化学反応を用いて行なうことにより、指向性が高く且つ解像度が高い光照射によるパターニングが可能である。さらに、光照射の単一工程で、電気双極子モーメントの向きを反転させることができるため、工程数が短縮される。 Further, as described with reference to FIG. 10, patterning by light irradiation with high directivity and high resolution is possible by performing the partial modification process using a chemical reaction by light irradiation. Furthermore, since the direction of the electric dipole moment can be reversed in a single step of light irradiation, the number of steps is reduced.
 なお、本実施の形態では、部分改変工程として、光照射を用いた還元反応について説明したが、本発明はこれに限定されるものではなく、当該工程を光照射による酸化反応によって行なっても良い。この場合、材料層の材料は、光照射による酸化反応(光酸化反応)を起こして、電気双極子モーメントの向きを反転させることができるものを選択すればよい。 In this embodiment, the reduction reaction using light irradiation has been described as the partial modification step. However, the present invention is not limited to this, and the step may be performed by an oxidation reaction by light irradiation. . In this case, the material for the material layer may be selected from materials that can cause an oxidation reaction (photo-oxidation reaction) by light irradiation and reverse the direction of the electric dipole moment.
 〔実施の形態5〕
 本発明に係る製造方法は、図11(a)のように、複数のTFT素子が配線によって接続された、いわゆるTFTアレイの製造方法にも採用することができる。
[Embodiment 5]
The manufacturing method according to the present invention can also be adopted in a so-called TFT array manufacturing method in which a plurality of TFT elements are connected by wiring as shown in FIG.
 例えば、まず、図11(a)のように、各TFT素子のソース電極は、いわゆるソースバスラインに接続され、ドレイン電極とは電気的に切断した構成とする。次に、ソース電極およびドレイン電極の上に単分子膜である改善層を形成し、ソース電極およびドレイン電極のうちの一方の上に形成された改善層を改変して官能基を変換して、電気双極子モーメントの向きを反転させる。一例としては、図5と同様に、ソース・ドレイン電極上にp-アミノベンゼンチオールからなる単分子膜(図11(b)の改善層17)を形成し、ソース電極上の改善層17のアミノ基を酸化してニトロ基が表面に露出した注入改善層40に変換している(図11(c))。 For example, first, as shown in FIG. 11A, the source electrode of each TFT element is connected to a so-called source bus line and is electrically disconnected from the drain electrode. Next, an improvement layer that is a monomolecular film is formed on the source electrode and the drain electrode, and the improvement layer formed on one of the source electrode and the drain electrode is modified to convert the functional group, Reverse the direction of the electric dipole moment. As an example, as in FIG. 5, a monomolecular film (improvement layer 17 in FIG. 11B) made of p-aminobenzenethiol is formed on the source / drain electrode, and the amino layer of the improvement layer 17 on the source electrode is formed. The group is oxidized and converted into the injection improving layer 40 in which the nitro group is exposed on the surface (FIG. 11C).
 (本実施形態5の作用効果)
 以上のように、本実施形態の製造方法によれば、各ソースバスラインに接続されたTFTのソース電極もしくはドレイン電極上に形成された改善層のみを一括して酸化することが可能になり、ソース・ドレイン電極上で双極子モーメントの向きが異なるTFTアレイを簡便に作製することが可能になる。
(Operational effect of the fifth embodiment)
As described above, according to the manufacturing method of the present embodiment, it becomes possible to oxidize only the improvement layer formed on the source electrode or the drain electrode of the TFT connected to each source bus line in a batch, It becomes possible to easily manufacture TFT arrays having different dipole moment directions on the source / drain electrodes.
 〔実施の形態6〕
 本発明に係る製造方法は、トップゲート型トランジスタの製造方法にも採用することができる。図12は、本実施形態の有機トランジスタの構成を示した断面図である。有機トランジスタ2は、図12に示すように、基板11と、基板11上に形成されたソース電極14とドレイン電極15と、ソース電極14と有機半導体層16との間に配された注入改善層40と、ドレイン電極15と有機半導体層16との間に配された抽出改善層50と、有機半導体層16に接したゲート絶縁層13と、ゲート絶縁層13に接したゲート電極12とを備えている。尚、図12を含め、本発明中で示した有機トランジスタの構成は、ソース・ドレイン電極が有機半導体層の下部と接触する、いわゆるボトムコンタクト型であるが、ソース・ドレイン電極が有機半導体層の上部と接触する、トップコンタクト型であっても構わない。
[Embodiment 6]
The manufacturing method according to the present invention can also be employed in a method for manufacturing a top gate transistor. FIG. 12 is a cross-sectional view showing the configuration of the organic transistor of this embodiment. As shown in FIG. 12, the organic transistor 2 includes a substrate 11, a source electrode 14 and a drain electrode 15 formed on the substrate 11, and an injection improvement layer disposed between the source electrode 14 and the organic semiconductor layer 16. 40, an extraction improvement layer 50 disposed between the drain electrode 15 and the organic semiconductor layer 16, a gate insulating layer 13 in contact with the organic semiconductor layer 16, and a gate electrode 12 in contact with the gate insulating layer 13. ing. Incidentally, including the Fig. 12, the configuration of organic transistor shown in this invention, the source-drain electrode is in contact with the underlying organic semiconductor layer, it is a so-called bottom contact type, source and drain electrodes of the organic semiconductor layer It may be a top contact type in contact with the upper part.
 本実施形態の有機トランジスタは、下記のように製造することができる。 The organic transistor of this embodiment can be manufactured as follows.
 基板上にソース電極とドレイン電極とを互いに離間させて形成する工程と、ソース電極およびドレイン電極の上に、電気双極子モーメントを有する材料または分子からなる材料層を形成する工程と、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層の材料または分子が有する負極から正極へ向いた電気双極子モーメントの向きを反転させて、ソース電極の上に、電荷の移動を促進する注入改善層を設けるとともに、ドレイン電極の上に、当該注入改善層とは上記電気双極子モーメントの向きが逆である、電荷の移動を促進する抽出改善層を設ける工程と、上記注入改善層および上記抽出改善層に接触する有機半導体層を形成する工程と、上記有機半導体層に接触するゲート絶縁層を形成し、さらに上記ゲート絶縁層に接触するゲート電極を形成する工程とを含むことから作製することができる。 Forming a source electrode and a drain electrode on a substrate so as to be spaced apart from each other; forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode; and Reversing the direction of the electric dipole moment from the negative electrode to the positive electrode of the material layer or material of the material layer formed on the drain electrode or the material layer formed on the drain electrode, on the source electrode A step of providing an injection improving layer for promoting the movement of charges and an extraction improving layer for promoting the movement of charges on the drain electrode, the direction of the electric dipole moment being opposite to that of the injection improving layer. Forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer, and forming a gate insulating layer in contact with the organic semiconductor layer. It can be made from it and forming a gate electrode in contact with the gate insulating layer.
 また、上記の電気双極子モーメントの向きを反転させる工程では、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、酸化反応、還元反応、光化学反応、光酸化反応、および、光還元反応のうちの何れかの反応、もしくはこれらの反応のなかの複数の反応を組み合わせた反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる。 In the step of reversing the direction of the electric dipole moment, an oxidation reaction or a reduction reaction is performed on the material layer formed on the source electrode or the material layer formed on the drain electrode. A reaction of any one of photochemical reaction, photooxidation reaction, and photoreduction reaction, or a combination of a plurality of these reactions, and the electric dipole moment of the material layer is increased. Invert the direction.
 具体的な構成部材、各層の形成手法は、それぞれ上述の実施の形態1~4のものを採用することで作製することができる。 Specific component members and formation methods of each layer can be manufactured by adopting the above-described Embodiments 1 to 4, respectively.
 なお、本発明は上述した各実施形態に限定されるものではない。当業者は、請求項に示した範囲内において、本発明をいろいろと変更できる。すなわち、請求項に示した範囲内において、適宜変更された技術的手段を組み合わせれば、新たな実施形態が得られる。すなわち、発明の詳細な説明の項においてなされた具体的な実施形態は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。 In addition, this invention is not limited to each embodiment mentioned above. Those skilled in the art can make various modifications to the present invention within the scope of the claims. That is, a new embodiment can be obtained by combining appropriately changed technical means within the scope of the claims. That is, the specific embodiments made in the section of the detailed description of the invention are merely to clarify the technical contents of the present invention, and are limited to such specific examples and are interpreted narrowly. It should be understood that the invention can be practiced with various modifications within the spirit of the invention and within the scope of the following claims.
 (本発明の総括)
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、簡易な手法によって、選択的に異なった単分子膜の作り分けをすることが可能な、有機半導体装置の製造方法を提供することを目的としている。
(Summary of the present invention)
The present invention has been made in view of the above problems, and an object of the present invention is to provide an organic semiconductor device manufacturing method capable of selectively making different monomolecular films by a simple method. The purpose is to provide.
 すなわち、本発明に係る、有機半導体装置の製造方法は、上記の課題を解決するために、
 基板上にゲート電極とゲート絶縁層とを形成する第一の工程と、
 ソース電極とドレイン電極とを互いに離間させて、上記第一の工程によって形成されたゲート絶縁層の上に形成する第二の工程と、
 ソース電極およびドレイン電極の上に、電気双極子モーメントを有する材料または分子からなる材料層を形成する第三の工程と、
 ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層の材料または分子が有する負極から正極へ向いた電気双極子モーメントの向きを反転させて、ソース電極の上に、電荷の移動を促進する注入改善層を設けるとともに、ドレイン電極の上に、当該注入改善層とは上記電気双極子モーメントの向きが逆である、電荷の移動を促進する抽出改善層を設ける第四の工程と、
 上記注入改善層および上記抽出改善層に接触する有機半導体層を形成する第五の工程とを含むことを特徴としている。
That is, the manufacturing method of the organic semiconductor device according to the present invention is to solve the above problems,
A first step of forming a gate electrode and a gate insulating layer on the substrate;
A second step in which the source electrode and the drain electrode are separated from each other and formed on the gate insulating layer formed by the first step;
A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode;
Reversing the direction of the electric dipole moment from the negative electrode to the positive electrode of the material layer or material of the material layer formed on the source electrode or the material layer formed on the drain electrode, the source electrode An extraction improvement layer for promoting charge transfer is provided on the drain electrode, and an extraction improvement layer for promoting charge transfer, wherein the direction of the electric dipole moment is opposite to that of the injection improvement layer on the drain electrode. A fourth step of providing
And a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer.
 上記の構成によれば、ソース電極およびドレイン電極を形成した後に、ソース電極およびドレイン電極の両方に、電気双極子モーメントの向きが同じである材料層を形成する工程を行い、さらに、この材料層のうちの一方について、その電気双極子モーメントの向きを反転させて、有機半導体層から電極への電荷の注入を改善する注入改善層と、電極から有機半導体層への電荷の抽出を改善する抽出改善層とを作り分ける工程を行なうことで、微細な電極パターン形成が可能になる。具体的には、注入改善層および抽出改善層を形成させる前に、ソース電極およびドレイン電極を形成することで、注入改善層および抽出改善層へのダメージが予想されるプロセス(例えばフォトリソグラフィー)を用いることが可能となる。そのため、電極の微細化が容易な上記プロセスを採用することができる。 According to the above configuration, after the source electrode and the drain electrode are formed, the material layer having the same electric dipole moment direction is formed on both the source electrode and the drain electrode. For one of these, reverse the direction of the electric dipole moment to improve the injection of charge from the organic semiconductor layer to the electrode, and the extraction to improve the extraction of charge from the electrode to the organic semiconductor layer A fine electrode pattern can be formed by performing the process of separately forming the improvement layer. Specifically, before forming the injection improvement layer and the extraction improvement layer, a process (for example, photolithography) in which damage to the injection improvement layer and the extraction improvement layer is expected by forming the source electrode and the drain electrode is performed. It can be used. Therefore, it is possible to employ the above process that facilitates miniaturization of the electrode.
 具体的には、上記第四の工程では、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、酸化反応、還元反応、光化学反応、光酸化反応、および、光還元反応のうちの何れかの反応、もしくはこれらの反応のなかの複数の反応を組み合わせた反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる。 Specifically, in the fourth step, the material layer formed on the source electrode or the material layer formed on the drain electrode is oxidized, reduced, photochemically reacted, A reaction of any one of a photooxidation reaction and a photoreduction reaction, or a combination of a plurality of these reactions is caused to reverse the direction of the electric dipole moment of the material layer. .
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に加えて、
 上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、光化学反応と、それに続く、縮合反応、付加反応、または、置換反応のいずれかの反応を起こさせて、当該材料層の電気双極子モーメントの向きを反転させる。
Moreover, in addition to said structure, the manufacturing method of the organic-semiconductor device based on this invention,
The fourth step, the material layer is formed on the source electrode, or, with respect to the material layer formed on the drain electrode, and photochemical reactions, followed by condensation reaction, addition reaction, or , Causing any one of the substitution reactions to reverse the direction of the electric dipole moment of the material layer.
 上記の構成によれば、精度良く、一方の電気双極子モーメントのみを反転させることができる。より具体的には、光化学反応を用いているが、光によるパターニングは一般的に指向性が高く、局所的なパターニングが可能なため、解像度を高めることが可能である。 According to the above configuration, only one electric dipole moment can be reversed with high accuracy. More specifically, although photochemical reaction is used, patterning with light generally has high directivity and local patterning is possible, so that the resolution can be increased.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に加えて、
 上記第三の工程では、上記材料層として、自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することが好ましい。
Moreover, in addition to said structure, the manufacturing method of the organic-semiconductor device based on this invention,
In the third step, it is preferable to form a self-assembled monolayer or a self-assembled molecular layer laminated film in which self-assembled molecular layers are laminated as the material layer.
 注入改善層および抽出改善層を形成する手法として、自己組織化単分子膜または自己組織化分子層積層膜を形成する手法であれば、150℃以下の低温および大気圧下で電気双極子モーメントを持った層を形成可能なため、熱可塑性のあるプラスチック基板への変質やダメージを低減させることができる。 As a method for forming the injection improving layer and the extraction improving layer, if the method is to form a self-assembled monolayer or a self-assembled molecular layer laminated film, the electric dipole moment is reduced at a low temperature of 150 ° C. or lower and atmospheric pressure. Since it is possible to form a layer with a holding property, it is possible to reduce deterioration and damage to the thermoplastic plastic substrate.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に加えて、
 上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、光化学反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる工程であり、
 上記第三の工程では、ベンゼン環およびクロロメチル基を持つ分子を、当該クロロメチル基がソース電極およびドレイン電極とは反対側に露出するよう自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することによって上記材料層を形成し、
 上記第四の工程には、
 上記クロロメチル基の上記光化学反応により、アルデヒド基に変換する工程と、
  変換した上記アルデヒド基と、芳香族もしくは脂肪族ジアミンの一方のアミンとを縮合反応させることで、アミノ基がソース電極またはドレイン電極の反対側に露出して、上記材料層の上記電気双極子モーメントの向きを反転させる工程と、が含まれることが好ましい。
Moreover, in addition to said structure, the manufacturing method of the organic-semiconductor device based on this invention,
The fourth step, the material layer is formed on the source electrode, or, with respect to the material layer formed on the drain electrode, thereby causing a photochemical reaction, the electric dipole of the material layer It is a process to reverse the direction of the child moment,
In the third step, a molecule having a benzene ring and a chloromethyl group is self-assembled monolayer or self-assembled molecular layer so that the chloromethyl group is exposed on the side opposite to the source electrode and the drain electrode. Forming the material layer by forming a self-assembled molecular layer laminated film laminated with
In the fourth step,
A step of converting to an aldehyde group by the photochemical reaction of the chloromethyl group;
By condensation reaction of the converted aldehyde group and one of aromatic or aliphatic diamine, the amino group is exposed on the opposite side of the source electrode or the drain electrode, and the electric dipole moment of the material layer And a step of reversing the direction of the.
 上記の構成によれば、精度良く、一方の電気双極子モーメントのみを反転させることができる。より具体的には、光化学反応を用いているが、光によるパターニングは一般的に指向性が高く、局所的なパターニングが可能なため、解像度を高めることが可能である。なお、芳香族ジアミンは、クロロメチル基とは化学反応を起こさず、アルデヒド基と選択的に化学反応を起こす。その結果、アルデヒド基が露出されたもののみ、イミン結合を形成し、単分子膜上に、芳香族ジアミンが積層されることになる。 According to the above configuration, only one electric dipole moment can be reversed with high accuracy. More specifically, although photochemical reaction is used, patterning with light generally has high directivity and local patterning is possible, so that the resolution can be increased. The aromatic diamine does not cause a chemical reaction with the chloromethyl group but selectively causes a chemical reaction with the aldehyde group. As a result, only those having an aldehyde group exposed form an imine bond, and an aromatic diamine is laminated on the monomolecular film.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に代えて、
 上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、酸化反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる工程であり、
 上記第三の工程では、ベンゼン環およびアミノ基、もしくは、ベンゼン環またはアルキル主鎖骨格にエチレン基を持つ分子を、当該アミノ基もしくは当該エチレン基がソース電極およびドレイン電極とは反対側に露出するよう自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することによって上記材料層を形成し、
 上記第四の工程では、上記アミノ基の上記酸化反応によって生じるニトロ基、もしくは、上記エチレン基の上記酸化反応によって生じるカルボキシル基が、ソース電極またはドレイン電極の反対側に露出して、上記材料層の上記電気双極子モーメントの向きを反転させることが好ましい。
Moreover, the manufacturing method of the organic semiconductor device according to the present invention is replaced with the above configuration,
In the fourth step, the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo an oxidation reaction, so that the electric bipolar electrode of the material layer is formed. It is a process to reverse the direction of the child moment,
In the third step, a molecule having an benzene ring and an amino group, or an ethylene group in the benzene ring or an alkyl main chain skeleton, the amino group or the ethylene group is exposed on the side opposite to the source electrode and the drain electrode. Forming the material layer by forming a self-assembled monolayer film or a self-assembled molecular layer laminated film in which self-assembled molecular layers are laminated,
In the fourth step, the nitro group generated by the oxidation reaction of the amino group or the carboxyl group generated by the oxidation reaction of the ethylene group is exposed on the opposite side of the source electrode or the drain electrode, and the material layer It is preferable to reverse the direction of the electric dipole moment.
 上記の構成によれば、1回のプロセスで、双極子モーメントを反転することが可能であり、工程数の短縮が可能である。 According to the above configuration, the dipole moment can be reversed in one process, and the number of steps can be reduced.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に代えて、
 上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、還元反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる工程であり、
 上記第三の工程では、ベンゼン環およびニトロ基、もしくは、ベンゼン環またはアルキル主鎖骨格にカルボニル基を持つ分子を、当該ニトロ基もしくは当該カルボニル基がソース電極およびドレイン電極とは反対側に露出するよう自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することによって上記材料層を形成し、
 上記第四の工程では、上記ニトロ基の上記還元反応によって生じるアミノ基、もしくは、上記カルボニル基の上記還元反応によって生じるヒドロキシル基が、ソース電極またはドレイン電極の反対側に露出して、上記材料層の電気双極子モーメントの向きを反転させることが好ましい。
Moreover, the manufacturing method of the organic semiconductor device according to the present invention is replaced with the above configuration,
In the fourth step, the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo a reduction reaction, so that the electric bipolar electrode of the material layer is formed. It is a process to reverse the direction of the child moment,
In the third step, a benzene ring and a nitro group, or a molecule having a carbonyl group in the benzene ring or alkyl main chain skeleton, the nitro group or the carbonyl group is exposed on the side opposite to the source electrode and the drain electrode. Forming the material layer by forming a self-assembled monolayer film or a self-assembled molecular layer laminated film in which self-assembled molecular layers are laminated,
In the fourth step, an amino group generated by the reduction reaction of the nitro group or a hydroxyl group generated by the reduction reaction of the carbonyl group is exposed on the opposite side of the source electrode or the drain electrode, and the material layer It is preferable to reverse the direction of the electric dipole moment.
 上記の構成によれば、1回のプロセスで、双極子モーメントを反転することが可能であり、工程数の短縮が可能である。 According to the above configuration, the dipole moment can be reversed in one process, and the number of steps can be reduced.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に代えて、
 上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、光還元反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる工程であり、
 上記第三の工程では、ベンゼン環およびニトロ基を持つ分子を、当該ニトロ基がソース電極およびドレイン電極とは反対側に露出するよう自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することによって上記材料層を形成し、
 上記第四の工程では、上記光還元反応として、上記ソース電極もしくはドレイン電極の電極材料を光照射により電子を誘発させ、当該電子により、上記ニトロ基を上記還元反応により、アミノ基がソース電極またはドレイン電極の反対側に露出して、上記材料層の上記電気双極子モーメントの向きを反転させることが好ましい。
Moreover, the manufacturing method of the organic semiconductor device according to the present invention is replaced with the above configuration,
In the fourth step, the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo a photoreduction reaction, so that the electrical property of the material layer is increased. A process of reversing the direction of the dipole moment,
In the third step, a molecule having a benzene ring and a nitro group is laminated with a self-assembled monolayer or a self-assembled molecular layer so that the nitro group is exposed on the opposite side of the source and drain electrodes. Forming the material layer by forming a self-assembled molecular layer laminate film,
In the fourth step, as the photoreduction reaction, an electron is induced in the electrode material of the source electrode or the drain electrode by light irradiation, the nitro group is reduced by the reduction reaction, and the amino group is converted into a source electrode or It is preferable to reverse the direction of the electric dipole moment of the material layer exposed on the opposite side of the drain electrode.
 上記の構成によれば、精度良く、一方の電気双極子モーメントのみを反転させることができる。より具体的には、光化学反応を用いているが、光によるパターニングは一般的に指向性が高く、局所的なパターニングが可能なため、解像度を高めることが可能である。さらに、光照射の単一工程で、電気双極子モーメントの向きを反転させることができるため、工程数が短縮される。 According to the above configuration, only one electric dipole moment can be reversed with high accuracy. More specifically, although photochemical reaction is used, patterning with light generally has high directivity and local patterning is possible, so that the resolution can be increased. Furthermore, since the direction of the electric dipole moment can be reversed in a single step of light irradiation, the number of steps is reduced.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に加えて、
 上記第四の工程は上記酸化反応を起こさせる工程であり、
 上記酸化反応は、上記ソース電極もしくは上記ドレイン電極と、走査型プローブ顕微鏡の探針との間に印加された電圧により引き起こされることが好ましい。
Moreover, in addition to said structure, the manufacturing method of the organic-semiconductor device based on this invention,
The fourth step is a step of causing the oxidation reaction,
The oxidation reaction is preferably caused by a voltage applied between the source electrode or the drain electrode and a probe of a scanning probe microscope.
 上記の構成によれば、走査型プローブ顕微鏡の探針により酸化反応を行うことで、ナノレベルで微細な領域を選択的に電気双極子モーメントの向きを反転させることが可能である。 According to the above configuration, it is possible to selectively reverse the direction of the electric dipole moment in a fine region at the nano level by performing an oxidation reaction with a probe of a scanning probe microscope.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に加えて、
 上記第四の工程は、上記還元反応を起こさせる工程であり、
 上記還元反応は、上記ソース電極もしくは上記ドレイン電極と、走査型プローブ顕微鏡の探針との間に印加された電圧により引き起こされることが好ましい。
Moreover, in addition to said structure, the manufacturing method of the organic-semiconductor device based on this invention,
The fourth step is a step of causing the reduction reaction,
The reduction reaction is preferably caused by a voltage applied between the source electrode or the drain electrode and a probe of a scanning probe microscope.
 上記の構成によれば、走査型プローブ顕微鏡の探針により還元反応を行うことで、ナノレベルで微細な領域を選択的に電気双極子モーメントの向きを反転させることが可能である。 According to the above configuration, it is possible to selectively reverse the direction of the electric dipole moment in a fine region at the nano level by performing a reduction reaction with a probe of a scanning probe microscope.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に加えて、
 上記第四の工程は、上記酸化反応を起こさせる工程であり、
 上記酸化反応は、上記ソース電極もしくは上記ドレイン電極と、該ソース電極または該ドレイン電極と電解質溶液を介して接する対極との間に印加された電圧により引き起こされることが好ましい。
Moreover, in addition to said structure, the manufacturing method of the organic-semiconductor device based on this invention,
The fourth step is a step of causing the oxidation reaction,
The oxidation reaction is preferably caused by a voltage applied between the source electrode or the drain electrode and a counter electrode in contact with the source electrode or the drain electrode through the electrolyte solution.
 上記の構成によれば、所望のソース電極またはドレイン電極の全面を一度に酸化反応もしくは還元反応を引き起こすことが可能なため、工程時間が短縮される。 According to the above configuration, since the entire surface of the desired source electrode or drain electrode can be caused to oxidize or reduce at a time, the process time is shortened.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に加えて、
 上記第四の工程は、上記還元反応を起こさせる工程であり、
 上記還元反応は、上記ソース電極もしくは上記ドレイン電極と、該ソース電極または該ドレイン電極と電解質溶液を介して接する対極との間に印加された電圧により引き起こされることが好ましい。
Moreover, in addition to said structure, the manufacturing method of the organic-semiconductor device based on this invention,
The fourth step is a step of causing the reduction reaction,
The reduction reaction is preferably caused by a voltage applied between the source electrode or the drain electrode and a counter electrode in contact with the source electrode or the drain electrode via an electrolyte solution.
 上記の構成によれば、所望のソース電極またはドレイン電極の全面を一度に酸化反応もしくは還元反応を引き起こすことが可能なため、工程時間が短縮される。 According to the above configuration, since the entire surface of the desired source electrode or drain electrode can be caused to oxidize or reduce at a time, the process time is shortened.
 また、本発明に係る、他の有機半導体装置の製造方法は、上記の課題を解決するために、
 p型有機トランジスタとn型有機トランジスタとを有する有機半導体装置の製造方法であって、
 ゲート電極の上にゲート絶縁層を形成する第一の工程と、
 p型有機トランジスタを構成するソース電極およびドレイン電極と、n型有機トランジスタを構成するソース電極およびドレイン電極とを、ゲート絶縁層の上に形成する第二の工程と、
 ソース電極およびドレイン電極の上に、電気双極子モーメントを有する材料または分子からなる材料層を形成する第三の工程と、
 p型有機トランジスタのソース電極の上の上記材料層およびn型有機トランジスタのドレイン電極の上の上記材料層、もしくは、p型有機トランジスタのドレイン電極の上の上記材料層およびn型有機トランジスタのソース電極の上の上記材料層の材料または分子の負極から正極へ向いた電気双極子モーメントの向きを反転させて、p型有機トランジスタのソース電極の上にp型注入改善層、n型有機トランジスタのドレイン電極の上にn型抽出改善層を設けるとともに、p型有機トランジスタのドレイン電極の上にp型抽出改善層、n型有機トランジスタのソース電極の上にn型注入改善層を設ける第四の工程と、
 p型有機トランジスタの注入改善層および抽出改善層に接触する有機半導体層と、n型有機トランジスタの注入改善層および抽出改善層に接触する有機半導体層とを形成する第五の工程とを含むことを特徴としている。
Moreover, in order to solve said subject, the manufacturing method of the other organic-semiconductor device based on this invention,
A method of manufacturing an organic semiconductor device having a p-type organic transistor and an n-type organic transistor,
A first step of forming a gate insulating layer on the gate electrode;
a second step of forming a source electrode and a drain electrode constituting the p-type organic transistor and a source electrode and a drain electrode constituting the n-type organic transistor on the gate insulating layer;
A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode;
The material layer above the source electrode of the p-type organic transistor and the material layer above the drain electrode of the n-type organic transistor, or the material layer above the drain electrode of the p-type organic transistor and the source of the n-type organic transistor The material of the material layer on the electrode or the direction of the electric dipole moment from the negative electrode to the positive electrode of the molecule is reversed, and the p-type injection improving layer and the n-type organic transistor are formed on the source electrode of the p-type organic transistor. A fourth type in which an n-type extraction improvement layer is provided on the drain electrode, a p-type extraction improvement layer is provided on the drain electrode of the p-type organic transistor, and an n-type injection improvement layer is provided on the source electrode of the n-type organic transistor. Process,
and a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer of the p-type organic transistor and an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer of the n-type organic transistor. It is characterized by.
 上記の構成によれば、ソース電極およびドレイン電極を同時に形成した後に、ソース電極およびドレイン電極の両方に、電気双極子モーメントの向きが同じである材料層を形成する工程を行い、さらに、この材料層のうちの一方の電気双極子モーメントの向きを反転させ、注入改善層と抽出改善層を作り分ける工程を行なうことで、微細な電極パターン形成が可能になる。具体的には、注入改善層および抽出改善層を形成させる前に、ソース電極およびドレイン電極を形成することで、注入改善層および抽出改善層へのダメージが予想されるプロセス(例えばフォトリソグラフィー)を用いることが可能となる。そのため、電極の微細化が容易な上記プロセスを採用することができる。 According to the above configuration, after forming the source electrode and the drain electrode at the same time, the material layer having the same electric dipole moment direction is formed on both the source electrode and the drain electrode. By reversing the direction of the electric dipole moment of one of the layers and separately forming the injection improving layer and the extraction improving layer, a fine electrode pattern can be formed. Specifically, before forming the injection improvement layer and the extraction improvement layer, a process (for example, photolithography) in which damage to the injection improvement layer and the extraction improvement layer is expected by forming the source electrode and the drain electrode is performed. It can be used. Therefore, it is possible to employ the above process that facilitates miniaturization of the electrode.
 具体的には、p型有機トランジスタのソース電極の上の上記材料層およびn型有機トランジスタのドレイン電極の上の上記材料層、もしくは、p型有機トランジスタのドレイン電極の上の上記材料層およびn型有機トランジスタのソース電極の上の上記材料層に対して、酸化反応、還元反応、光化学反応、光酸化反応、および、光還元反応のうちの何れかの反応、もしくはこれらの反応のなかの複数の反応を組み合わせた反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させることが好ましい。 Specifically, the material layer on the source electrode of the p-type organic transistor and the material layer on the drain electrode of the n-type organic transistor, or the material layer and n on the drain electrode of the p-type organic transistor Any of the oxidation reaction, reduction reaction, photochemical reaction, photooxidation reaction, and photoreduction reaction, or a plurality of these reactions on the material layer on the source electrode of the organic transistor It is preferable to cause a reaction combining these reactions to reverse the direction of the electric dipole moment of the material layer.
 また、本発明に係る、有機半導体装置の製造方法は、上記の構成に加えて、
 上記第二の工程では、上記ソース電極と上記ドレイン電極とを同一材料を用いて形成することが好ましい。
Moreover, in addition to said structure, the manufacturing method of the organic-semiconductor device based on this invention,
In the second step, the source electrode and the drain electrode are preferably formed using the same material.
 上記の構成によれば、同一工程でソース電極およびドレイン電極を形成することができる。 According to the above configuration, the source electrode and the drain electrode can be formed in the same process.
 以下に本発明の有機トランジスタについて、実施例を用いてより詳細に説明する。 Hereinafter, the organic transistor of the present invention will be described in more detail using examples.
 〔実施例1: 実施形態1に記載の構成の一実施例〕
 本実施例では、図3に示した製造方法に基づいて、有機トランジスタを作製し、その評価をおこなった。
[Example 1: Example of configuration described in Embodiment 1]
In this example, an organic transistor was produced and evaluated based on the production method shown in FIG.
 まず、ゲート電極およびゲート絶縁層形成工程として、図3の(a)に示すように、ガラス基板11(基板サイズ25mm×25mm)上にゲート電極12としてアルニミニウムを、メタルマスクを介して、スパッタリングにより膜厚60nmで形成し、続いて、ゲート絶縁層13として、窒化シリコンを、メタルマスクを介して、膜厚200nmで形成した。 First, as a step of forming a gate electrode and a gate insulating layer, as shown in FIG. 3A, aluminium is formed as a gate electrode 12 on a glass substrate 11 (substrate size 25 mm × 25 mm) by sputtering through a metal mask. After forming the film with a thickness of 60 nm, silicon nitride was formed as the gate insulating layer 13 with a thickness of 200 nm through a metal mask.
 次に、ソース電極およびドレイン電極形成工程として、図3の(b)に示すようにITO 60nmを、既存のフォトリソグラフィーによるパターニングを行なうことにより形成し、ソース電極14およびドレイン電極15を形成した。この時のチャネル長は、2,4,6,10,20μmとし、チャネル幅は1000μmとした。具体的には、ゲート絶縁層上に、ネガ型フォトレジストを塗布し、電極形成部以外を露光する。レジストを硬化させるため基板を加熱し、現像を行なうことで、電極形成部以外にレジストが形成された基板を用意した。さらに、ITOをスパッタリングにより60nm堆積させ、リフトオフにより、電極形成部以外のレジストを剥離することで、ソース・ドレイン電極を得た。 Next, as a source electrode and drain electrode formation step, as shown in FIG. 3B, ITO 60 nm was formed by patterning by existing photolithography, and the source electrode 14 and the drain electrode 15 were formed. The channel length at this time was 2, 4, 6, 10, 20 μm, and the channel width was 1000 μm. Specifically, a negative photoresist is applied on the gate insulating layer, and the portions other than the electrode forming portion are exposed. In order to cure the resist, the substrate was heated and developed to prepare a substrate on which the resist was formed in addition to the electrode forming portion. Furthermore, ITO was deposited to 60 nm by sputtering, and the resist other than the electrode forming portion was peeled off by lift-off to obtain a source / drain electrode.
 次に、改善層形成工程として、図3の(c)に示すように、ソース電極およびドレイン電極上に、改善層17としてのp-クロロメチルフェニルトリメトキシシランのSAMsを形成した。形成方法としては、p-クロロメチルフェニルトリメトキシシランとソース電極およびドレイン電極まで形成した基板を耐熱性の容器に封入し、オーブンにて150℃で3時間加熱した。さらに、アセトン中に基板を浸漬し、撹拌して洗浄することで、過剰に吸着したp-クロロメチルフェニルトリメトキシシランを除去することでソース電極およびドレイン電極上に改善層17を形成した。 Next, as an improved layer forming step, as shown in FIG. 3C, SAMs of p-chloromethylphenyltrimethoxysilane as the improved layer 17 were formed on the source electrode and the drain electrode. As a forming method, p-chloromethylphenyltrimethoxysilane and a substrate formed with a source electrode and a drain electrode were sealed in a heat-resistant container and heated in an oven at 150 ° C. for 3 hours. Further, the improvement layer 17 was formed on the source electrode and the drain electrode by removing the excessively adsorbed p-chloromethylphenyltrimethoxysilane by immersing the substrate in acetone, stirring and washing.
 次に、部分改変工程として、図3の(d)および(e)に示すように、ドレイン電極上のみを光化学反応させ、クロロメチル基をアルデヒド基に変換した。詳細には、まず、ドレイン電極の形成領域のみ開口されたフォトマスクを介して、ドレイン電極上のp-クロロメチルフェニル骨格を大気雰囲気下で193nmの光を1分間照射することで、ベンズアルデヒド骨格に変換した。この様にして光照射を用いてドレイン電極15上の改善層17の表面をアルデヒド基に変換した。 Next, as a partial modification step, as shown in FIGS. 3D and 3E, only the drain electrode was photochemically reacted to convert the chloromethyl group into an aldehyde group. Specifically, first, the p-chloromethylphenyl skeleton on the drain electrode is irradiated with light at 193 nm in an air atmosphere for 1 minute through a photomask in which only the drain electrode formation region is opened. Converted. In this way, the surface of the improvement layer 17 on the drain electrode 15 was converted into an aldehyde group using light irradiation.
 次に図3の(f)に示すように、ドレイン電極上表面に露出されたアルデヒド基と1,4フェニレンジアミンの片方のアミノ基と化学反応させることで、ドレイン電極上表面にアミノ基を露出させた。詳細は以下のように行った。1,4フェニレンジアミンの1mM無水エタノール溶液にドレイン電極上表面にアルデヒド基が露出された基板を、12時間浸漬することで、イミン結合を形成させ、ドレイン電極上の改善層17に1,4フェニレンジアミンを積層し、ドレイン電極上にアミノ基を露出させた。上記の手法により、表面に露出される官能基が、クロロメチル基から、アミノ基に変換されることで、ドレイン電極上の、電気双極子モーメントのベクトルが反転させた改善層を形成した。 Next, as shown in FIG. 3 (f), the amino group is exposed on the surface of the drain electrode by chemically reacting with the aldehyde group exposed on the surface of the drain electrode and one amino group of 1,4-phenylenediamine. I let you. Details were as follows. A substrate with an aldehyde group exposed on the surface of the drain electrode is immersed in a 1 mM absolute ethanol solution of 1,4 phenylenediamine for 12 hours to form an imine bond, and the improvement layer 17 on the drain electrode is subjected to 1,4 phenylene. Diamine was laminated to expose the amino group on the drain electrode. By the above method, the functional group exposed on the surface was converted from a chloromethyl group to an amino group, thereby forming an improved layer in which the electric dipole moment vector was inverted on the drain electrode.
 以上のようにして、ソース電極14上には有機半導体層からソース電極方向に向いた双極子モーメントを持った注入改善層40が形成され、ドレイン電極15上にはドレイン電極から有機半導体層方向に向いた双極子モーメントを持った抽出改善層50が形成された。 As described above, the injection improving layer 40 having a dipole moment from the organic semiconductor layer toward the source electrode is formed on the source electrode 14, and on the drain electrode 15, from the drain electrode to the organic semiconductor layer. An extraction improvement layer 50 having a directed dipole moment was formed.
 次に、有機半導体層形成工程として、図3の(g)に示すように、有機半導体層16としてのペンタセンを、メタルマスクを介して、注入改善層および抽出改善層に接触するように、60nm真空蒸着により形成した。 Next, as an organic semiconductor layer forming step, as shown in FIG. 3G, the pentacene as the organic semiconductor layer 16 is 60 nm so as to come into contact with the implantation improvement layer and the extraction improvement layer through the metal mask. Formed by vacuum evaporation.
 上記作製方法により得られた、有機トランジスタの特性を評価したところ、移動度0.3cm/V・s、ON/OFF比10と良好な値を示した。また、ソース電極/有機半導体界面および有機半導体層/ドレイン電極界面の接触抵抗を評価したところ、比較として作製した、注入改善層および抽出改善層を持たない下記比較例1の有機トランジスタと比較して、1/3に接触抵抗が減少した。 When the characteristics of the organic transistor obtained by the above manufacturing method were evaluated, the mobility was 0.3 cm 2 / V · s, and the ON / OFF ratio was 10 6, which was a favorable value. Further, when the contact resistance of the source electrode / organic semiconductor interface and the organic semiconductor layer / drain electrode interface was evaluated, it was compared with the organic transistor of Comparative Example 1 which was prepared as a comparative example and did not have an injection improvement layer and an extraction improvement layer. The contact resistance decreased to 1/3.
 〔実施例2: 実施形態2に記載の構成の一実施例〕
 本実施例と実施例1との大きな違いは改変処理のみであるため、それ以外の箇所については、簡潔に説明する。
[Example 2: Example of configuration described in Embodiment 2]
Since the major difference between the present embodiment and the first embodiment is only the modification process, other portions will be briefly described.
 なお、本実施例では、基板11がガラス、ゲート電極12がアルミニウム、ゲート絶縁層13が二酸化シリコン、ソース電極14およびゲート電極15がクロムの上に金をメタルマスクを介して順に真空蒸着することにより形成したもの、有機半導体層16がC60フラーレン、注入改善層40および抽出改善層50がそれぞれp-アミノベンゼンチオールからなる単分子膜およびp-ニトロベンゼンチオールからなる単分子膜とした。 In the present embodiment, it the substrate 11 is glass, the gate electrode 12 to turn vacuum deposited over the aluminum, the gate insulating layer 13 is silicon dioxide, the metal mask gold on the source electrode 14 and the gate electrode 15 of chromium The organic semiconductor layer 16 is a C 60 fullerene, the injection improving layer 40 and the extraction improving layer 50 are a monomolecular film made of p-aminobenzenethiol and a monomolecular film made of p-nitrobenzenethiol, respectively.
 本実施例では、ソース電極14およびドレイン電極15の上に形成された改善層17のドレイン電極15の上に形成された改善層17のみ、その表面に露出したアミノ基を酸化し、これをニトロ基に変換した。具体的には、原子間力顕微鏡(AFM)を用いて、改善層17の表面に露出したアミノ基を酸化し、これをニトロ基に変換している。具体的には、金でコーティングされたAFMの探針を用いて、ドレイン電極に対し、その探針に、+3Vの電圧を印加し、大気中で、改善層17上を走査することにより酸化反応を行なった(図4の(c))。これにより、ドレイン電極15の上に抽出改善層50を形成した。 In this embodiment, only the improvement layer 17 formed on the drain electrode 15 of the improvement layer 17 formed on the source electrode 14 and the drain electrode 15 oxidizes the amino group exposed on the surface thereof, Converted to the base. Specifically, an amino group exposed on the surface of the improvement layer 17 is oxidized using an atomic force microscope (AFM) and converted to a nitro group. Specifically, by using an AFM probe coated with gold, a voltage of +3 V is applied to the drain electrode, and the oxidation reaction is performed by scanning the improvement layer 17 in the atmosphere. Was performed ((c) of FIG. 4). Thereby, the extraction improving layer 50 was formed on the drain electrode 15.
 上記作製方法により得られた有機トランジスタの特性を評価したところ、移動度:約0.7cm/V・s、ON/OFF比約10と比較的良好な値を示した。 When the characteristics of the organic transistor obtained by the above production method were evaluated, the mobility was about 0.7 cm 2 / V · s, and the ON / OFF ratio was about 10 6 , showing relatively good values.
 また、ソース電極/有機半導体層界面、および有機半導体層/ドレイン電極界面の接触抵抗は、下記比較例1で作製した注入改善層および抽出改善層を持たない素子に対して、約1/5になった。つまり、ソース電極上およびドレイン電極上に、それぞれ注入改善層および抽出改善層を形成することで、接触抵抗の低下を実現させることができる。 Further, the contact resistance at the interface between the source electrode / organic semiconductor layer and the interface between the organic semiconductor layer / drain electrode is about 1 / that of the element having no injection improvement layer and no extraction improvement layer prepared in Comparative Example 1 below. became. That is, a contact resistance can be lowered by forming an injection improvement layer and an extraction improvement layer on the source electrode and the drain electrode, respectively.
 〔実施例3: 実施形態3に記載の構成の一実施例〕
 本実施例と実施例1との大きな違いは改変処理のみであるため、それ以外の箇所については、簡潔に説明する。
[Example 3: Example of configuration described in Embodiment 3]
Since the major difference between the present embodiment and the first embodiment is only the modification process, other portions will be briefly described.
 なお、本実施例では、基板11がガラス、ゲート電極12がアルミニウム、ゲート絶縁層13が二酸化シリコン、ソース電極14およびゲート電極15がクロムの上に金をメタルマスクを介して順に真空蒸着することにより形成したもの、有機半導体層16がペンタセン、注入改善層40および抽出改善層50がそれぞれp-ニトロベンゼンチオールからなる単分子膜およびp-アミノベンゼンチオールからなる単分子膜とした。 In this embodiment, the substrate 11 is made of glass, the gate electrode 12 is made of aluminum, the gate insulating layer 13 is made of silicon dioxide, the source electrode 14 and the gate electrode 15 are made of chromium on a chromium in order through a metal mask. The organic semiconductor layer 16 is pentacene, the injection improving layer 40 and the extraction improving layer 50 are each a monomolecular film made of p-nitrobenzenethiol and a monomolecular film made of p-aminobenzenethiol.
 本実施例では、ソース電極14およびドレイン電極15の上に形成された改善層17のドレイン電極15の上に形成された改善層17のみ、その表面に露出したニトロ基を酸化し、これをアミノ基に変換した。具体的には、原子間力顕微鏡(AFM)を用いて、プローブの針とドレイン電極との間に-3Vの電圧を大気中で印加し、走査して、改善層17の表面に露出したニトロ基を還元し、これをアミノ基に変換している(図6の(c))。これにより、ドレイン電極15の上に抽出改善層50を形成した。 In this embodiment, only the improvement layer 17 formed on the drain electrode 15 of the improvement layer 17 formed on the source electrode 14 and the drain electrode 15 oxidizes the nitro group exposed on the surface thereof, Converted to the base. Specifically, using an atomic force microscope (AFM), a voltage of −3 V is applied in the atmosphere between the probe needle and the drain electrode, and scanning is performed, so that the nitro exposed on the surface of the improvement layer 17 is exposed. The group is reduced and converted to an amino group ((c) in FIG. 6). Thereby, the extraction improving layer 50 was formed on the drain electrode 15.
 上記作製方法により得られた有機トランジスタの特性を評価したところ、移動度:約0.5cm/V・s、ON/OFF比約10と比較的良好な値を示した。 When the characteristics of the organic transistor obtained by the above production method were evaluated, the mobility was about 0.5 cm 2 / V · s, and the ON / OFF ratio was about 10 6 , showing relatively good values.
 また、ソース電極/有機半導体層界面、および有機半導体層/ドレイン電極界面の接触抵抗は、下記比較例1で作製した注入改善層および抽出改善層を持たない素子に対して、約1/3になった。つまり、ソース電極上およびドレイン電極上に、それぞれ注入改善層および抽出改善層を形成することで、接触抵抗の低下を実現させることができる。 Further, the contact resistance at the interface between the source electrode / organic semiconductor layer and the interface between the organic semiconductor layer / drain electrode is about 1 / that of the device having no injection improvement layer and no extraction improvement layer prepared in Comparative Example 1 below. became. That is, a contact resistance can be lowered by forming an injection improvement layer and an extraction improvement layer on the source electrode and the drain electrode, respectively.
 〔実施例4: 実施形態4に記載の構成の一実施例〕
 本実施例4では、図7に示す半導体装置を製造する。
[Example 4: Example of configuration described in Embodiment 4]
In the fourth embodiment, the semiconductor device shown in FIG. 7 is manufactured.
 まず、ガラス基板11(基板サイズ25mm×25mm)上にゲート電極12としてアルミニウム60nmをスパッタリングにより全面に形成した後に、既存のフォトリソグラフィーを用いて、パターン形成を行った。次に、ゲート絶縁層13として、二酸化シリコンをスパッタリングにより200nm形成した。
p型ソース電極14、p型ドレイン電極15、n型ドレイン電極25、n型ソース電極として、クロム5nm、銀60nmを、フォトリソグラフィーによって同一工程で形成した(図10の(b))。なお、p型ドレイン電極とn型ドレイン電極は電気的に接続している。
First, the aluminum 60nm after forming on the entire surface by sputtering as the gate electrode 12 on the glass substrate 11 (substrate size 25 mm × 25 mm), using existing photolithography, a pattern was formed. Next, 200 nm of silicon dioxide was formed as the gate insulating layer 13 by sputtering.
As p-type source electrode 14, p-type drain electrode 15, n-type drain electrode 25, n-type source electrode, chromium 5 nm, silver 60 nm, it was formed in the same step by photolithography (in Figure 10 (b)). Note that the p-type drain electrode and the n-type drain electrode are electrically connected.
 続いて、すべてのソース・ドレイン電極上に、p-ニトロベンゼンチオールからなる単分子膜を改善層17として形成し(図10の(c))、p型トランジスタP1のドレイン電極15上、および、n型トランジスタN1のソース電極24上の改善層17に対して、アルゴンイオンレーザーで514.5nmの光を、大気雰囲気下で照射することにより、改善層17表面のニトロ基をアミノ基に変換した(図10の(d))。 Subsequently, a monomolecular film made of p-nitrobenzenethiol is formed as an improvement layer 17 on all the source / drain electrodes (FIG. 10 (c)), on the drain electrode 15 of the p-type transistor P1, and n The improvement layer 17 on the source electrode 24 of the n-type transistor N1 is irradiated with light of 514.5 nm with an argon ion laser in an air atmosphere, thereby converting the nitro group on the surface of the improvement layer 17 into an amino group ( (D) of FIG.
 最後に、p型有機半導体層16として、ペンタセンを、メタルマスクを介して真空蒸着により60nm形成し、p型トランジスタP1を形成した。次にn型有機半導体層26として、C60フラーレンを、メタルマスクを介して真空蒸着により60nm形成し、n型トランジスタ素子N1を形成した。以上の工程により本実施例4のCMOSを作製した(図10の(e))。 Finally, as the p-type organic semiconductor layer 16, pentacene was formed to 60 nm by vacuum vapor deposition through a metal mask to form a p-type transistor P1. Then the n-type organic semiconductor layer 26, the C 60 fullerene, and 60nm formed by vacuum deposition through a metal mask to form an n-type transistor element N1. The CMOS of Example 4 was fabricated through the above steps ((e) in FIG. 10).
 上記作製方法により得られたCMOS構造を有する半導体装置の特性を評価したところ、p型トランジスタP1は移動度:約0.8cm/V・s、ON/OFF比約10であり、n型トランジスタN1は移動度:約0.7cm/V・s、ON/OFF比約10であり、比較的良好な値を示した。 When the characteristics of the semiconductor device having a CMOS structure obtained by the above manufacturing method were evaluated, the p-type transistor P1 has a mobility of about 0.8 cm 2 / V · s, an ON / OFF ratio of about 10 6 , and an n-type. The transistor N1 had a mobility: about 0.7 cm 2 / V · s, an ON / OFF ratio of about 10 6 , and showed a relatively good value.
 また、接触抵抗は、注入改善層および抽出改善層を持たない以外は実施例4と同じ構成であるCMOS構造を有する半導体装置(比較構成)に比べて、本実施例のp型トランジスタP1は当該比較構成のp型トランジスタに比べて1/10倍になり、本実施例のn型トランジスタN1は当該比較構成のn型トランジスタに比べて1/5倍になった。 In addition, the p-type transistor P1 of this embodiment has a contact resistance that is the same as that of the fourth embodiment except that it does not have an implantation improvement layer and an extraction improvement layer. Compared to the p-type transistor of the comparative configuration, it was 1/10 times, and the n-type transistor N1 of this example was 1/5 times that of the n-type transistor of the comparative configuration.
 〔比較例〕
 図13に比較例で作製した有機トランジスタの構造を示す。
[Comparative example]
FIG. 13 shows the structure of an organic transistor manufactured in a comparative example.
 本比較例では、実施例と同様の材料、作製方法により、ガラス基板211上にゲート電極212およびゲート絶縁層213を形成した。次に、ソース電極214およびドレイン電極215として、メタルマスクを介して、金を膜厚60nmで形成した。次に、有機半導体層216としてペンタセンを膜厚60nmで真空蒸着を用いて形成し、有機トランジスタを作製した。すなわち、本比較例の有機トランジスタは、改善層を全く備えていない。 In this comparative example, the gate electrode 212 and the gate insulating layer 213 were formed on the glass substrate 211 by the same material and manufacturing method as in the example. Next, gold was formed to a thickness of 60 nm as a source electrode 214 and a drain electrode 215 through a metal mask. Next, pentacene was formed as the organic semiconductor layer 216 with a film thickness of 60 nm using vacuum vapor deposition to manufacture an organic transistor. That is, the organic transistor of this comparative example does not include any improvement layer.
 本比較例の有機トランジスタの特性を評価したところ、移動度0.1cm/V・s、ON/OFF比10であった。 Evaluation of the properties of the organic transistor of the present comparative example, the mobility 0.1cm 2 / V · s, was ON / OFF ratio of 10 5.
 本発明は、各種半導体装置に搭載される電界効果型トランジスタとして最適に使用でき、産業上の利用可能性は高い。 The present invention can be optimally used as a field effect transistor mounted on various semiconductor devices and has high industrial applicability.
1 有機トランジスタ
10 半導体装置
11 基板
12 ゲート電極
13 ゲート絶縁層
14 ソース電極
14 (p型)ソース電極
15 (p型)ドレイン電極
16 (p型)有機半導体層
17 改善層(材料層)
22 ゲート電極
24 (n型)ソース電極
25 (n型)ドレイン電極
26 (n型)有機半導体層
40 注入改善層
40N n型注入改善層
40P p型注入改善層
50 抽出改善層
50N n型抽出改善層
50P p型抽出改善層
60 電解質溶液
61 対極
N1 n型トランジスタ
P1 p型トランジスタ
DESCRIPTION OF SYMBOLS 1 Organic transistor 10 Semiconductor device 11 Substrate 12 Gate electrode 13 Gate insulating layer 14 Source electrode 14 (p type) Source electrode 15 (p type) Drain electrode 16 (p type) Organic semiconductor layer 17 Improvement layer (material layer)
22 gate electrode 24 (n-type) source electrode 25 (n-type) drain electrode 26 (n-type) organic semiconductor layer 40 injection improvement layer 40N n-type injection improvement layer 40P p-type injection improvement layer 50 extraction improvement layer 50N n-type extraction improvement Layer 50P p-type extraction improving layer 60 electrolyte solution 61 counter electrode N1 n-type transistor P1 p-type transistor

Claims (15)

  1.  有機半導体装置の製造方法であって、
     基板上にゲート電極とゲート絶縁層とを形成する第一の工程と、
     ソース電極とドレイン電極とを互いに離間させて、上記第一の工程によって形成されたゲート絶縁層の上に形成する第二の工程と、
     ソース電極およびドレイン電極の上に、電気双極子モーメントを有する材料または分子からなる材料層を形成する第三の工程と、
     ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層の材料または分子が有する負極から正極へ向いた電気双極子モーメントの向きを反転させて、ソース電極の上に、電荷の移動を促進する注入改善層を設けるとともに、ドレイン電極の上に、当該注入改善層とは上記電気双極子モーメントの向きが逆である、電荷の移動を促進する抽出改善層を設ける第四の工程と、
     上記注入改善層および上記抽出改善層に接触する有機半導体層を形成する第五の工程とを含むことを特徴とする有機半導体装置の製造方法。
    A method for manufacturing an organic semiconductor device, comprising:
    A first step of forming a gate electrode and a gate insulating layer on the substrate;
    A second step in which the source electrode and the drain electrode are separated from each other and formed on the gate insulating layer formed by the first step;
    A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode;
    Reversing the direction of the electric dipole moment from the negative electrode to the positive electrode of the material layer or material of the material layer formed on the source electrode or the material layer formed on the drain electrode, the source electrode An extraction improvement layer for promoting charge transfer is provided on the drain electrode, and an extraction improvement layer for promoting charge transfer, wherein the direction of the electric dipole moment is opposite to that of the injection improvement layer on the drain electrode. A fourth step of providing
    And a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer.
  2.  上記第四の工程では、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、酸化反応、還元反応、光化学反応、光酸化反応、および、光還元反応のうちの何れかの反応、もしくはこれらの反応のなかの複数の反応を組み合わせた反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させることを特徴とする請求項1に記載の有機半導体装置の製造方法。 In the fourth step, the material layer formed on the source electrode or the material layer formed on the drain electrode is subjected to an oxidation reaction, a reduction reaction, a photochemical reaction, a photooxidation reaction, and A reaction of any one of the photoreduction reactions, or a combination of a plurality of these reactions, to reverse the direction of the electric dipole moment of the material layer. The manufacturing method of the organic-semiconductor device of Claim 1.
  3.  上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、光化学反応と、それに続く、縮合反応、付加反応、または、置換反応のいずれかの反応を起こさせて、当該材料層の電気双極子モーメントの向きを反転させることを特徴とする請求項1または2に記載の有機半導体装置の製造方法。 In the fourth step, the photochemical reaction and subsequent condensation reaction, addition reaction, or the material layer formed on the source electrode or the material layer formed on the drain electrode 3. The method of manufacturing an organic semiconductor device according to claim 1, wherein any one of substitution reactions is caused to reverse the direction of the electric dipole moment of the material layer.
  4.  上記第三の工程では、上記材料層として、自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することを特徴とする請求項1または2に記載の有機半導体装置の製造方法。 3. In the third step, as the material layer, a self-assembled monolayer or a self-assembled molecular layer laminated film in which self-assembled molecular layers are laminated is formed. The manufacturing method of the organic-semiconductor device of description.
  5.  上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、光化学反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる工程であり、
     上記第三の工程では、ベンゼン環およびクロロメチル基を持つ分子を、当該クロロメチル基がソース電極およびドレイン電極とは反対側に露出するよう自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することによって上記材料層を形成し、
     上記第四の工程には、
      上記クロロメチル基の上記光化学反応により、アルデヒド基に変換する工程と、
      変換した上記アルデヒド基と、芳香族もしくは脂肪族ジアミンの一方のアミンとを縮合反応させることで、アミノ基がソース電極またはドレイン電極の反対側に露出して、上記材料層の上記電気双極子モーメントの向きを反転させる工程と、が含まれることを特徴とする請求項1から4までの何れか1項に記載の有機半導体装置の製造方法。
    In the fourth step, the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo a photochemical reaction so that the electric bipolar electrode of the material layer is formed. It is a process to reverse the direction of the child moment,
    In the third step, a molecule having a benzene ring and a chloromethyl group is self-assembled monolayer or self-assembled molecular layer so that the chloromethyl group is exposed on the side opposite to the source electrode and the drain electrode. Forming the material layer by forming a self-assembled molecular layer laminated film laminated with
    In the fourth step,
    A step of converting to an aldehyde group by the photochemical reaction of the chloromethyl group;
    By condensation reaction of the converted aldehyde group and one of aromatic or aliphatic diamine, the amino group is exposed on the opposite side of the source electrode or the drain electrode, and the electric dipole moment of the material layer 5. The method for manufacturing an organic semiconductor device according to claim 1, further comprising a step of reversing the direction of.
  6.  上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、酸化反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる工程であり、
     上記第三の工程では、ベンゼン環およびアミノ基、もしくは、ベンゼン環またはアルキル主鎖骨格にエチレン基を持つ分子を、当該アミノ基もしくは当該エチレン基がソース電極およびドレイン電極とは反対側に露出するよう自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することによって上記材料層を形成し、
     上記第四の工程では、上記アミノ基の上記酸化反応によって生じるニトロ基、もしくは、上記エチレン基の上記酸化反応によって生じるカルボキシル基が、ソース電極またはドレイン電極の反対側に露出して、上記材料層の上記電気双極子モーメントの向きを反転させることを特徴とする請求項1から4までの何れか1項に記載の有機半導体装置の製造方法。
    In the fourth step, the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo an oxidation reaction, so that the electric bipolar electrode of the material layer is formed. It is a process to reverse the direction of the child moment,
    In the third step, a molecule having an benzene ring and an amino group, or an ethylene group in the benzene ring or an alkyl main chain skeleton, the amino group or the ethylene group is exposed on the side opposite to the source electrode and the drain electrode. Forming the material layer by forming a self-assembled monolayer film or a self-assembled molecular layer laminated film in which self-assembled molecular layers are laminated,
    In the fourth step, the nitro group generated by the oxidation reaction of the amino group or the carboxyl group generated by the oxidation reaction of the ethylene group is exposed on the opposite side of the source electrode or the drain electrode, and the material layer The method of manufacturing an organic semiconductor device according to any one of claims 1 to 4, wherein the direction of the electric dipole moment is reversed.
  7.  上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、還元反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる工程であり、
     上記第三の工程では、ベンゼン環およびニトロ基、もしくは、ベンゼン環またはアルキル主鎖骨格にカルボニル基を持つ分子を、当該ニトロ基もしくは当該カルボニル基がソース電極およびドレイン電極とは反対側に露出するよう自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することによって上記材料層を形成し、
     上記第四の工程では、上記ニトロ基の上記還元反応によって生じるアミノ基、もしくは、上記カルボニル基の上記還元反応によって生じるヒドロキシル基が、ソース電極またはドレイン電極の反対側に露出して、上記材料層の電気双極子モーメントの向きを反転させることを特徴とする請求項1から4までの何れか1項に記載の有機半導体装置の製造方法。
    In the fourth step, the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo a reduction reaction, so that the electric bipolar electrode of the material layer is formed. It is a process to reverse the direction of the child moment,
    In the third step, a benzene ring and a nitro group, or a molecule having a carbonyl group in the benzene ring or alkyl main chain skeleton, the nitro group or the carbonyl group is exposed on the side opposite to the source electrode and the drain electrode. Forming the material layer by forming a self-assembled monolayer film or a self-assembled molecular layer laminated film in which self-assembled molecular layers are laminated,
    In the fourth step, an amino group generated by the reduction reaction of the nitro group or a hydroxyl group generated by the reduction reaction of the carbonyl group is exposed on the opposite side of the source electrode or the drain electrode, and the material layer The method of manufacturing an organic semiconductor device according to claim 1, wherein the direction of the electric dipole moment is reversed.
  8.  上記第四の工程は、ソース電極の上に形成された上記材料層、もしくは、ドレイン電極の上に形成された上記材料層に対して、光還元反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させる工程であり、
     上記第三の工程では、ベンゼン環およびニトロ基を持つ分子を、当該ニトロ基がソース電極およびドレイン電極とは反対側に露出するよう自己組織化単分子膜、または、自己組織化分子層を積層した自己組織化分子層積層膜を形成することによって上記材料層を形成し、
     上記第四の工程では、上記光還元反応として、上記ソース電極もしくはドレイン電極の電極材料を光照射により電子を誘発させ、当該電子により、上記ニトロ基を上記還元反応により、アミノ基がソース電極またはドレイン電極の反対側に露出して、上記材料層の上記電気双極子モーメントの向きを反転させることを特徴とする請求項1から4までの何れか1項に記載の有機半導体装置の製造方法。
    In the fourth step, the material layer formed on the source electrode or the material layer formed on the drain electrode is caused to undergo a photoreduction reaction, so that the electrical property of the material layer is increased. A process of reversing the direction of the dipole moment,
    In the first and third step, the molecules having a benzene ring and the nitro group, the self-assembled monolayer to the nitro group is exposed on the opposite side of the source electrode and the drain electrode, or laminated self-assembled molecule layer Forming the material layer by forming a self-assembled molecular layer laminate film,
    In the fourth step, as the photoreduction reaction, electrons are induced in the electrode material of the source electrode or the drain electrode by light irradiation, the nitro group is reduced by the reduction reaction, and the amino group is converted into a source electrode or 5. The method of manufacturing an organic semiconductor device according to claim 1, wherein the direction of the electric dipole moment of the material layer is inverted by being exposed on the opposite side of the drain electrode. 6.
  9.  上記第四の工程は上記酸化反応を起こさせる工程であり、
     上記酸化反応は、上記ソース電極もしくは上記ドレイン電極と、走査型プローブ顕微鏡の探針との間に印加された電圧により引き起こされることを特徴とする請求項2または6に記載の有機半導体装置の製造方法。
    The fourth step is a step of causing the oxidation reaction,
    The oxidation reaction is the production of organic semiconductor device according to claim 2 or 6, characterized in that caused by a voltage applied between the the source electrode or the drain electrode, the probe of the scanning probe microscope Method.
  10.  上記第四の工程は、上記還元反応を起こさせる工程であり、
     上記還元反応は、上記ソース電極もしくは上記ドレイン電極と、走査型プローブ顕微鏡の探針との間に印加された電圧により引き起こされることを特徴とする請求項2または7に記載の有機半導体装置の製造方法。
    The fourth step is a step of causing the reduction reaction,
    8. The method of manufacturing an organic semiconductor device according to claim 2, wherein the reduction reaction is caused by a voltage applied between the source electrode or the drain electrode and a probe of a scanning probe microscope. Method.
  11.  上記第四の工程は、上記酸化反応を起こさせる工程であり、
     上記酸化反応は、上記ソース電極もしくは上記ドレイン電極と、該ソース電極または該ドレイン電極と電解質溶液を介して接する対極との間に印加された電圧により引き起こされることを特徴とする請求項2または6に記載の有機半導体装置の製造方法。
    The fourth step is a step of causing the oxidation reaction,
    The oxidation reaction, and the source electrode or the drain electrode, claim 2, characterized in that caused by a voltage applied between the counter electrode in contact with an electrolyte solution with the source electrode or the drain electrode or 6 The manufacturing method of the organic-semiconductor device of description.
  12.  上記第四の工程は、上記還元反応を起こさせる工程であり、
     上記還元反応は、上記ソース電極もしくは上記ドレイン電極と、該ソース電極または該ドレイン電極と電解質溶液を介して接する対極との間に印加された電圧により引き起こされることを特徴とする請求項2または7に記載の有機半導体装置の製造方法。
    The fourth step is a step of causing the reduction reaction,
    The above reduction reaction is, according to claim 2 or 7, characterized in that caused by a voltage applied between the the source electrode or the drain electrode, a counter electrode in contact with an electrolyte solution with the source electrode or said drain electrode The manufacturing method of the organic-semiconductor device of description.
  13.  p型有機トランジスタとn型有機トランジスタとを有する有機半導体装置の製造方法であって、
     ゲート電極の上にゲート絶縁層を形成する第一の工程と、
     p型有機トランジスタを構成するソース電極およびドレイン電極と、n型有機トランジスタを構成するソース電極およびドレイン電極とを、ゲート絶縁層の上に形成する第二の工程と、
     ソース電極およびドレイン電極の上に、電気双極子モーメントを有する材料または分子からなる材料層を形成する第三の工程と、
     p型有機トランジスタのソース電極の上の上記材料層およびn型有機トランジスタのドレイン電極の上の上記材料層、もしくは、p型有機トランジスタのドレイン電極の上の上記材料層およびn型有機トランジスタのソース電極の上の上記材料層の材料または分子の負極から正極へ向いた電気双極子モーメントの向きを反転させて、p型有機トランジスタのソース電極の上にp型注入改善層、n型有機トランジスタのドレイン電極の上にn型抽出改善層を設けるとともに、p型有機トランジスタのドレイン電極の上にp型抽出改善層とn型有機トランジスタのソース電極の上にn型注入改善層を設ける第四の工程と、
     p型有機トランジスタの注入改善層および抽出改善層に接触する有機半導体層と、n型有機トランジスタの注入改善層および抽出改善層に接触する有機半導体層とを形成する第五の工程とを含むことを特徴とする有機半導体装置の製造方法。
    A method of manufacturing an organic semiconductor device having a p-type organic transistor and an n-type organic transistor,
    A first step of forming a gate insulating layer on the gate electrode;
    a second step of forming a source electrode and a drain electrode constituting the p-type organic transistor and a source electrode and a drain electrode constituting the n-type organic transistor on the gate insulating layer;
    A third step of forming a material layer made of a material or molecule having an electric dipole moment on the source electrode and the drain electrode;
    The material layer above the source electrode of the p-type organic transistor and the material layer above the drain electrode of the n-type organic transistor, or the material layer above the drain electrode of the p-type organic transistor and the source of the n-type organic transistor The material of the material layer on the electrode or the direction of the electric dipole moment from the negative electrode to the positive electrode of the molecule is reversed, and the p-type injection improving layer and the n-type organic transistor are formed on the source electrode of the p-type organic transistor. A fourth type in which an n-type extraction improving layer is provided on the drain electrode, and a p-type extraction improving layer is provided on the drain electrode of the p-type organic transistor and an n-type injection improving layer is provided on the source electrode of the n-type organic transistor. Process,
    and a fifth step of forming an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer of the p-type organic transistor and an organic semiconductor layer in contact with the injection improving layer and the extraction improving layer of the n-type organic transistor. A method of manufacturing an organic semiconductor device characterized by the above.
  14.  p型有機トランジスタのソース電極の上の上記材料層およびn型有機トランジスタのドレイン電極の上の上記材料層、もしくは、p型有機トランジスタのドレイン電極の上の上記材料層およびn型有機トランジスタのソース電極の上の上記材料層に対して、酸化反応、還元反応、光化学反応、光酸化反応、および、光還元反応のうちの何れかの反応、もしくはこれらの反応のなかの複数の反応を組み合わせた反応を起こさせて、当該材料層の上記電気双極子モーメントの向きを反転させることを特徴とする請求項13に記載の有機半導体装置の製造方法。 The material layer above the source electrode of the p-type organic transistor and the material layer above the drain electrode of the n-type organic transistor, or the material layer above the drain electrode of the p-type organic transistor and the source of the n-type organic transistor The above material layer on the electrode is combined with any one of oxidation reaction, reduction reaction, photochemical reaction, photooxidation reaction, and photoreduction reaction, or a plurality of these reactions. 14. The method of manufacturing an organic semiconductor device according to claim 13, wherein a reaction is caused to reverse the direction of the electric dipole moment of the material layer.
  15.  上記第二の工程では、上記ソース電極と上記ドレイン電極とを同一材料を用いて形成することを特徴とする請求項1から14までの何れか1項に記載の有機半導体装置の製造方法。 The method of manufacturing an organic semiconductor device according to any one of claims 1 to 14, wherein, in the second step, the source electrode and the drain electrode are formed using the same material.
PCT/JP2011/057465 2010-05-27 2011-03-25 Process for production of organic semiconductor device WO2011148707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010121895 2010-05-27
JP2010-121895 2010-05-27

Publications (1)

Publication Number Publication Date
WO2011148707A1 true WO2011148707A1 (en) 2011-12-01

Family

ID=45003700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057465 WO2011148707A1 (en) 2010-05-27 2011-03-25 Process for production of organic semiconductor device

Country Status (1)

Country Link
WO (1) WO2011148707A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187885A1 (en) * 2016-04-26 2017-11-02 国立大学法人東北大学 Electrode for organic element, and organic element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294785A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor device
JP2008311594A (en) * 2007-06-18 2008-12-25 Hitachi Ltd Method for manufacturing thin film transistor and thin film transistor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294785A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor device
JP2008311594A (en) * 2007-06-18 2008-12-25 Hitachi Ltd Method for manufacturing thin film transistor and thin film transistor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187885A1 (en) * 2016-04-26 2017-11-02 国立大学法人東北大学 Electrode for organic element, and organic element

Similar Documents

Publication Publication Date Title
US9520572B2 (en) Electronic device and method of manufacturing semiconductor device
TWI300273B (en)
JP5790095B2 (en) Thin film element, manufacturing method thereof, and manufacturing method of image display device
CN101867017A (en) Thin-film transistor and the method that is used to make thin-film transistor
JP2009152355A (en) Manufacturing method of organic thin film transistor, and organic thin film transistor
US10134812B2 (en) Electronic device, image display device, and sensor to improve charge injection efficiency
JP5770104B2 (en) Method for forming source and drain electrodes of organic thin film transistor by electroless plating
JP5181487B2 (en) Semiconductor device
WO2011052434A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2012238753A (en) Thin film element assembly
JP2007273594A (en) Field-effect transistor
WO2011148699A1 (en) Organic semiconductor device, and process for production thereof
JP2010219114A (en) Carbon electrode, method for manufacturing the same, organic transistor and method for manufacturing the same
CN102067350B (en) Functionalized molecular element, manufacturing method thereof, and functionalized molecular device
WO2011148707A1 (en) Process for production of organic semiconductor device
JP2008172059A (en) Organic thin-film transistor and manufacturing method therefor
Wang et al. Soft-etching copper and silver electrodes for significant device performance improvement toward facile, cost-effective, bottom-contacted, organic field-effect transistors
JP2006303007A (en) Field effect transistor
WO2011065156A1 (en) Organic transistor and manufacturing method therefor
JP4070659B2 (en) Method for manufacturing field effect transistor
WO2011065083A1 (en) Organic thin film transistor, and process for production thereof
JP5194401B2 (en) Charge transfer complex thin film and field effect transistor
JP2004095874A (en) Organic semiconductor element and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP