WO2017187553A1 - Uninterruptible power supply apparatus - Google Patents

Uninterruptible power supply apparatus Download PDF

Info

Publication number
WO2017187553A1
WO2017187553A1 PCT/JP2016/063194 JP2016063194W WO2017187553A1 WO 2017187553 A1 WO2017187553 A1 WO 2017187553A1 JP 2016063194 W JP2016063194 W JP 2016063194W WO 2017187553 A1 WO2017187553 A1 WO 2017187553A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
inverter
switch
power
current
Prior art date
Application number
PCT/JP2016/063194
Other languages
French (fr)
Japanese (ja)
Inventor
益永 博史
一大 日永田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2018514017A priority Critical patent/JP6585833B2/en
Priority to PCT/JP2016/063194 priority patent/WO2017187553A1/en
Priority to CN201680084999.XA priority patent/CN109075605B/en
Priority to KR1020187032765A priority patent/KR102118277B1/en
Publication of WO2017187553A1 publication Critical patent/WO2017187553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads

Definitions

  • the present invention relates to an uninterruptible power supply, and more particularly to an uninterruptible power supply having an inverter power supply mode for supplying AC power generated by an inverter to a load and a bypass power supply mode for supplying AC power from an AC power supply to the load. .
  • Patent Document 1 discloses an inverter that converts DC power supplied from a DC power source into AC power, a first switch connected between the inverter and a load, an AC power source, An uninterruptible power supply comprising a second switch connected between loads is disclosed.
  • the inverter power supply mode the first switch is turned on, and AC power is supplied from the inverter to the load via the first switch.
  • the bypass power supply mode the second switch is turned on, and AC power is supplied from the AC power source to the load via the second switch.
  • the first switch is turned off after the second switch is turned on in addition to the first switch.
  • Patent Document 1 when shifting from the inverter power supply mode to the bypass power supply mode, if the second switch fails and does not turn on, the AC power to the load is turned off when the first switch is turned off. There is a problem that the supply is stopped and the operation of the load is stopped.
  • a method may be considered in which a current detector for detecting the current flowing through the second switch is provided, and the first switch is turned off after confirming that the current has flowed through the second switch.
  • this method when the load current is small, it is not possible to accurately and quickly determine whether or not current is flowing through the second switch, and it is possible to quickly shift from the inverter power supply mode to the bypass power supply mode. There is a problem that you can not.
  • a main object of the present invention is to provide an uninterruptible power supply capable of quickly shifting from the inverter power supply mode to the bypass power supply mode even when the load current is small.
  • An uninterruptible power supply is an uninterruptible power supply that supplies AC power to a load using power supplied from a DC power supply or a first AC power supply, the DC power supplied from the DC power supply.
  • An inverter for converting AC power into AC power a reactor having one terminal connected to the output terminal of the inverter, a capacitor connected to the other terminal of the reactor, and a first connected between the other terminal of the reactor and the load A switch, a second switch connected between the first AC power source and the load, a current detector for detecting a current flowing through the second switch, an inverter based on a detection value of the current detector, 1 and a control circuit for controlling the second switch.
  • the control circuit turns on the first switch, turns off the second switch, and controls the inverter to supply reactive current to the reactor and the capacitor. And a drive current is supplied to the load.
  • the control circuit turns off the first switch, turns on the second switch, and controls the inverter.
  • the control circuit turns on the second switch, controls the inverter to reduce the reactive current supplied to the capacitor, and the detection value of the current detector is predetermined. In response to exceeding the threshold value, the first switch is turned off, and the inverter is controlled to increase the reactive current supplied to the capacitor.
  • the second switch is turned on during the transition period from the inverter power supply mode to the bypass power supply mode, and the reactive current supplied from the inverter to the capacitor is reduced.
  • the second switch is normal, a reactive current flows from the second AC power source to the capacitor via the second switch and the first switch, and from the second AC power source via the second switch. Drive current flows through the load. Therefore, since the reactive current to the capacitor and the drive current to the load flow through the second switch, it is possible to secure the current flowing through the second switch even when the load current is small. Therefore, it is possible to accurately and quickly determine whether or not current is flowing through the second switch, and it is possible to quickly shift from the inverter power supply mode to the bypass power supply mode.
  • 2 is a flowchart showing an operation of a control circuit 14 shown in FIG. It is a time chart which shows the specific example 1 of the transfer operation
  • FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply according to an embodiment of the present invention.
  • the uninterruptible power supply device includes an input terminal T1, a bypass terminal T2, a DC terminal T3, and an output terminal T4.
  • the input terminal T1 is connected to the AC power source 51.
  • the AC power source 51 may be a commercial AC power source or a private generator.
  • the AC power supply 51 supplies, for example, commercial frequency AC power to the uninterruptible power supply.
  • the bypass terminal T2 is connected to the bypass AC power source 52.
  • the bypass AC power source may be a commercial AC power source or a private generator.
  • the bypass terminal T2 may be connected to the AC power source 51 together with the input terminal T1.
  • the DC terminal T3 is connected to the storage battery 53 (power storage device).
  • the storage battery 53 stores DC power.
  • the storage battery 53 is charged when AC power is normally supplied from the AC power source 51, and is discharged when AC power is not normally supplied from the AC power source 51 (for example, during a power failure).
  • a capacitor may be connected instead of the storage battery 53.
  • the storage battery 53 may be included in the uninterruptible power supply.
  • the output terminal T4 is connected to the load 54.
  • the load 54 is driven by, for example, commercial frequency AC power supplied from the uninterruptible power supply.
  • This uninterruptible power supply further includes contactors 1, 10, 12, fuse 2, reactors 3, 8, converter 4, DC bus 5, capacitors 6, 9, inverter 7, current detectors CD 1 -CD 3, bidirectional chopper 11 , Control circuits 13 and 14, an operation unit 15, and a thyristor switch 16.
  • Contactor 1, fuse 2, and reactor 3 are connected in series between input terminal T 1 and the input terminal of converter 4.
  • the contactor 1 is turned on when the uninterruptible power supply is used, and is turned off during maintenance of the uninterruptible power supply, for example.
  • the fuse 2 is blown when an overcurrent flows to protect the uninterruptible power supply.
  • Reactor 3 allows commercial frequency AC power from AC power supply 51 to pass through converter 4 and prohibits the passage of switching frequency signals generated by converter 4.
  • Converter 4 receives AC power supplied from AC power supply 51 via contactor 1, fuse 2, and reactor 3.
  • the converter 4 is controlled by the control circuit 13 and, when AC power is normally supplied from the AC power source 51, converts the AC power from the AC power source 51 into DC power and outputs it to the output terminal.
  • AC power is not normally supplied from AC power supply 51 (that is, during a power failure), operation of converter 4 is stopped.
  • the DC bus 5 is connected between the output terminal of the converter 4 and the input terminal of the inverter 7 to transmit DC power.
  • Capacitor 6 is connected to DC bus 5 and stabilizes DC voltage VDC of DC bus 5.
  • the capacitor 6 is connected between the DC bus 5 and, for example, a neutral point (or a reference voltage line).
  • the inverter 7 is controlled by the control circuit 14 and converts the DC power received from the DC bus 5 into AC power and outputs it to the output terminal.
  • the current detector CD1 detects the output current I1 of the inverter 7 and outputs a signal indicating the detected value to the control circuit 14.
  • the reactor 8 is connected between the output terminal of the inverter 7 and one terminal of the contactor 10.
  • the capacitor 9 is connected between one terminal of the contactor 10 and, for example, a neutral point (or a reference voltage line).
  • the other terminal of the contactor 10 is connected to the output terminal T4.
  • Reactor 8 and capacitor 9 constitute a low-pass filter, which passes, for example, commercial frequency AC power generated by inverter 7 and prohibits the passage of switching frequency signals generated by inverter 7.
  • the reactor 8 and the capacitor 9 convert the rectangular wave AC voltage output from the inverter 7 into a sinusoidal AC voltage.
  • the contactor 10 is controlled by the control circuit 14 and is turned on in the inverter power supply mode for supplying AC power from the inverter 7 to the load 54, and supplies AC power from the bypass AC power source 52 to the load 54 via the thyristor switch 16. It is turned off in the bypass power supply mode.
  • the contactor 10 constitutes a first switch.
  • the current detector CD2 detects a current (that is, a load current) I2 flowing through the load 54, and outputs a signal indicating the detected value to the control circuit 14.
  • the bidirectional chopper 11 and the contactor 12 are connected in series between the DC bus 5 and the DC terminal T3.
  • the contactor 12 is turned on when the uninterruptible power supply is used, and is turned off, for example, when the storage battery 53 is maintained.
  • the bidirectional chopper 11 is controlled by the control circuit 13, and when the AC power is normally supplied from the AC power source 51, the DC power received from the DC bus 5 is stored in the storage battery 53, and the AC power is received from the AC power source 51. When not normally supplied (that is, at the time of a power failure), the DC power of the storage battery 53 is supplied to the DC bus 5.
  • the bidirectional chopper 11 steps down the DC voltage VDC of the DC bus 5 and stores it in the storage battery 53, boosts the voltage between the terminals of the storage battery 53, and gives it to the DC bus 5.
  • the control circuit 13 controls the converter 4 and the bidirectional chopper 11 based on the AC voltage VAC supplied from the AC power source 51. For example, the control circuit 13 detects the voltage of the node between the fuse 2 and the reactor 3 as the AC voltage VAC.
  • the control circuit 13 controls the converter 4 to convert AC power into DC power and
  • the bidirectional chopper 11 is controlled so that a current flows from the bus 5 to the storage battery 53, and the storage battery 53 is charged.
  • the control circuit 13 stops the operation of the converter 4 and directs DC from the storage battery 53 to the DC bus 5.
  • the bidirectional chopper 11 is controlled so that a current flows, and the storage battery 53 is discharged.
  • the thyristor switch 16 is connected between the bypass terminal T2 and the other terminal of the contactor 10, and is controlled by the control circuit 14.
  • the thyristor switch 16 includes two thyristors. The anode and cathode of one thyristor are connected to the bypass terminal T2 and the other terminal of the contactor 10, respectively, and the anode and cathode of the other thyristor are connected to the other terminal of the contactor 10 and the bypass terminal T2, respectively.
  • the thyristor switch 16 is turned on in the bypass power supply mode and turned off in the inverter power supply mode. Further, the thyristor switch 16 is instantly turned on when the inverter 7 fails. When the thyristor switch 16 is turned on, AC power is supplied from the bypass AC power supply 52 to the load 54 via the thyristor switch 16. The thyristor switch 16 constitutes a second switch.
  • the current detector CD3 detects the current I3 flowing through the thyristor switch 16, and outputs a signal indicating the detected value to the control circuit 14.
  • the operation unit 15 includes a plurality of buttons operated by the user of the uninterruptible power supply. The user operates the operation unit 15 to start or stop the uninterruptible power supply, execute the inverter power supply mode, or execute the bypass power supply mode. The operation unit 15 outputs a signal indicating the operation result of the user to the control circuit 14.
  • the control circuit 14 controls the inverter 7, the contactor 10, and the thyristor switch 16 based on the output signal of the operation unit 15, the output signals of the current detectors CD1 to CD3, and the like.
  • the control circuit 14 executes the power feeding mode selected using the operation unit 15 of the inverter power feeding mode and the bypass AC power source 52.
  • the control circuit 14 turns on the contactor 10, turns off the thyristor switch 16, controls the inverter 7, and controls the reactor 8 In addition, the reactive current is supplied to the capacitor 9 and the driving current is supplied to the load 54.
  • the control circuit 14 turns off the contactor 10, turns on the thyristor switch 16, controls the inverter 7, and controls the reactor 8 And the reactive current is supplied to the capacitor 9. In this case, the inverter 7 does not supply a drive current to the load 54.
  • the control circuit 14 turns on the thyristor switch 16 when the bypass power supply mode is selected using the operation unit 15 during the execution of the inverter power supply mode (that is, when shifting from the inverter power supply mode to the bypass power supply mode),
  • the inverter 7 is controlled to stop the supply of reactive current to the capacitor 9.
  • the control circuit 14 turns off the contactor 10 in response to the detection value of the current detector CD3 exceeding a predetermined threshold value, and controls the inverter 7 to resume the supply of the reactive current to the capacitor 9.
  • FIG. 2 is a flowchart showing the operation of the control circuit 14 when shifting from the inverter power supply mode to the bypass power supply mode.
  • step S1 the control circuit 14 determines whether or not the bypass power supply mode is selected based on the signal from the operation unit 15, and waits until the bypass power supply mode is selected.
  • the control circuit 14 outputs an on command signal ⁇ 16 to the thyristor switch 16 in step S2.
  • the thyristor switch 16 When the thyristor switch 16 is normal, the thyristor switch 16 is turned on in response to the on command signal ⁇ 16. In this case, the load current IL is supplied from the bypass AC power supply 52 to the load 54 via the thyristor switch 16, and the output current I1 of the inverter 7 decreases to -jI8 + jI9. At this time, the load current IL is detected by the current detector CD3. When the load current IL is small, the control circuit 14 accurately and quickly determines whether or not the load current IL has flown through the thyristor switch 16. There is a risk of not being able to.
  • step S3 the control circuit 14 controls the inverter 7 to reduce the reactive current jI9 flowing through the capacitor 9 to 0 A and to reduce the output current I1 of the inverter 7 to IL-jI8.
  • the load current IL is supplied from the bypass AC power supply 52 via the thyristor switch 16 to the load 54 and from the bypass AC power supply 52 via the thyristor switch 16 and the contactor 10.
  • the reactive current jI9 is supplied to the capacitor 9.
  • the control circuit 14 can accurately determine whether or not the load current IL and the reactive current jI9 have flowed through the thyristor switch 16. It is possible to quickly determine.
  • the thyristor switch 16 When the thyristor switch 16 is broken and turned off, the thyristor switch 16 is not turned on in response to the on command signal ⁇ 16. In this case, the output current I1 of the inverter 7 decreases to IL-jI8, and the load current IL is not detected by the current detector CD3.
  • step S4 the control circuit 14 determines whether or not the current I3 flowing through the thyristor switch 16 is larger than the threshold current Ith based on the detection result of the current detector CD3.
  • step S5 the control circuit 14 controls the inverter 7 to increase the reactive current jI9 flowing through the capacitor 9 to a predetermined value jIR.
  • step S6 the control circuit 14 turns off the contactor 10. As a result, the load current IL is supplied from the bypass AC power supply 52 to the load 54 via the thyristor switch 16, and the load 54 is driven.
  • step S7 the control circuit 14 outputs a signal for notifying the user of the uninterruptible power supply that the transition from the inverter power supply mode to the bypass power supply mode is completed, and ends the process.
  • You may provide the apparatus which notifies the user of an uninterruptible power supply that the transition from inverter electric power feeding mode to bypass electric power feeding mode is completed using a sound, light, an image, etc., for example.
  • step S8 the control circuit 14 controls the inverter 7 to increase the reactive current jI9 flowing through the capacitor 9 to a predetermined value jIR. . Thereby, the inverter power supply mode is continued, and the operation of the load 54 is continued.
  • step S9 the control circuit 14 outputs a signal for notifying the user of the uninterruptible power supply that a failure has occurred in the thyristor switch 16, and ends the process.
  • a device may be provided that notifies the user of the uninterruptible power supply that a failure has occurred in the thyristor switch 16 using, for example, sound, light, or an image.
  • FIG. 3A to 3L are time charts showing a specific example 1 of the transition operation from the inverter power supply mode to the bypass power supply mode.
  • FIG. 3A shows an ON command signal CON for turning on the thyristor switch 16
  • FIG. 3B shows an ON determination signal DON that defines a period for determining whether or not the thyristor switch 16 is ON
  • FIG. 3C shows an off command signal COFF for turning off the contactor 10.
  • 3D and 3E respectively show the effective current I3cos ⁇ and the reactive current I3sin ⁇ of the current I3 flowing through the thyristor switch 16.
  • FIGS. 3F and 3G show the effective current I1 cos ⁇ and the reactive current I1 sin ⁇ , respectively, of the output current I1 of the inverter 7.
  • 3 (h) and 3 (i) show the effective current I2cos ⁇ and the reactive current I2sin ⁇ , respectively, of the current I2 flowing through the load 54.
  • FIG. In the inverter power supply mode, the thyristor switch 16 is turned off, the contactor 10 is turned on, and the inverter 7 supplies the reactor 8, the capacitor 9, and the load 54 with a reactive current (-jI8), a reactive current (jI9), and an effective current ( IL).
  • the ON command signal CON, the ON determination signal DON, and the OFF command signal COFF are all set to the inactivation level “L” level (see FIGS. 3A to 3C).
  • the flowing current I3 is 0 A (see FIGS. 3D, 3E, and 3J).
  • the ON command signal CON is first set to the “H” level of the activation level, and the supply of the reactive current (jI9) from the inverter 7 to the capacitor 9 is stopped. (See FIGS. 3A and 3G).
  • the thyristor switch 16 When the thyristor switch 16 is normal, the thyristor switch 16 is actually turned on in response to the ON command signal CON. When the thyristor switch 16 is out of order, the thyristor switch 16 is not turned on in response to the ON command signal CON.
  • 3A to 3L show a case where the thyristor switch 16 is normal.
  • the ON command signal CON is lowered to the “L” level of the inactivation level, and the ON determination signal DON is raised to the “H” level of the activation level, so that the thyristor switch 16 is turned on. Is determined (see FIGS. 3A and 3B).
  • the ON determination signal DON is lowered to the “L” level of the inactivation level, and the OFF command signal COFF is raised to the “H” level of the activation level.
  • Is turned off see FIGS. 3B and 3C.
  • the transition to the bypass power supply mode is completed (see FIGS. 3 (e), (g), (j), (k), and (l)).
  • [Comparative Example 1] 4 (a) to 4 (l) are time charts showing a comparative example 1 of the transition operation from the inverter power supply mode to the bypass power supply mode, and are compared with FIGS. 3 (a) to 3 (l). .
  • the comparative example 1 is different from the specific example 1 of FIGS. 3A to 3I in that the reactive current (I9) is supplied from the inverter 7 to the capacitor 9. (See FIGS. 4G and 4K.)
  • the load current IL flowing through the thyristor switch 16 is small during the ON determination period, it may not be possible to accurately and quickly determine whether or not the current is flowing through the thyristor switch 16 (FIG. 4 ( b) (d) (see e)).
  • the supply of the reactive current (I9) from the inverter 7 to the capacitor 9 is stopped during the transition period, and the reactive current (I9) is supplied from the bypass AC power supply 52 to the capacitor 9 via the thyristor switch 16. Therefore, even when the load current IL is small, it is possible to accurately and quickly determine whether or not a current is flowing through the thyristor switch 16 (see FIGS. 3B, 3D, and 3E).
  • FIGS. 5A to 5L are time charts showing another specific example 2 of the transition operation from the inverter power supply mode to the bypass power supply mode, and are compared with FIGS. 3A to 3L. It is. Referring to FIGS. 5A to 5L, Specific Example 2 is different from Specific Example 1 of FIGS. 3A to 3I in that effective current (IL) and reactive current ( ⁇ IA) flows, and the sum (I9-IA) of the reactive current (-IA) flowing through the load 54 and the reactive current (I9) flowing through the capacitor 9 becomes substantially zero. In other words, the reactive current (IA) generated in the load 54 and the reactive current (I9) flowing through the capacitor 9 are substantially equal.
  • IL effective current
  • ⁇ IA reactive current
  • the thyristor switch 16 is turned off, the contactor 10 is turned on, and the inverter 7 supplies a reactive current ( ⁇ I8) and a reactive current (I9) to the reactor 8 and the capacitor 9, respectively, and is effective to the load 54.
  • the ON command signal CON, the ON determination signal DON, and the OFF command signal COFF are all set to the inactivation level “L” level (see FIGS. 5A to 5C), and the thyristor switch 16
  • the flowing current I3 is 0 A (see FIGS. 5D, 5E, and 5J).
  • the ON command signal CON is first set to the “H” level of the activation level, and the supply of the reactive current (jI9) from the inverter 7 to the capacitor 9 is stopped. (See FIGS. 5A and 5G).
  • the thyristor switch 16 When the thyristor switch 16 is normal, the thyristor switch 16 is actually turned on in response to the ON command signal CON. When the thyristor switch 16 is out of order, the thyristor switch 16 is not turned on in response to the ON command signal CON. 5A to 5L show a case where the thyristor switch 16 is normal.
  • the ON command signal CON is lowered to the “L” level of the inactivation level, and the ON determination signal DON is raised to the “H” level of the activation level, so that the thyristor switch 16 is turned on. Is determined (see FIGS. 5A and 5B).
  • the ON determination signal DON is lowered to the “L” level of the inactivation level, and the OFF command signal COFF is raised to the “H” level of the activation level.
  • Is turned off see FIGS. 5B and 5C.
  • FIGS. 6A to 6L are time charts showing a comparative example 2 of the transition operation from the inverter power supply mode to the bypass power supply mode, and are compared with FIGS. 5A to 5L. .
  • the comparative example 2 is different from the specific example 2 of FIGS. 5A to 5I in that the reactive current from the inverter 7 to the capacitor 9 is changed during the transition period.
  • the supply of (I9) is stopped, the supply of the reactive current (-IA) from the inverter 7 to the load 54 is further stopped (see FIGS. 6 (g) and (k)).
  • the reactive current (I9-IA) is supplied from the bypass AC power source 52 to the capacitor 9 and the load 54.
  • I9 ⁇ IA ⁇ 0 A only the effective current IL of the load current I3 flows through the thyristor switch 16. Therefore, if the load current IL flowing through the thyristor switch 16 is small during the ON determination period, it may not be possible to accurately and quickly determine whether or not the current is flowing through the thyristor switch 16 (FIG. 6 ( b) (d) (see e)).
  • the thyristor switch 16 is turned on and the supply of the reactive current from the inverter 7 to the capacitor 9 is stopped during the transition period from the inverter power supply mode to the bypass power supply mode.
  • a reactive current flows from the bypass AC power source 52 to the capacitor 9 via the thyristor switch 16 and the contactor 10, and current flows from the bypass AC power source 52 to the load 54 via the thyristor switch 16. Flowing. Therefore, since the reactive current to the capacitor 9 and the load current to the load 54 flow through the thyristor switch 16, whether or not the current is flowing through the thyristor switch 16 is determined accurately and quickly even when the load current is small.
  • the inverter power supply mode can be quickly shifted to the bypass power supply mode.
  • the apparatus can be downsized as compared with the case where the thyristor switch 16 and the contactor are connected in parallel between the bypass terminal T2 and the output terminal T4. be able to.
  • the supply of the reactive current I9 to the capacitor 9 is stopped at the time of transition from the inverter power supply mode to the bypass power supply mode.
  • the present invention is not limited to this, and the reactive current I9 supplied to the capacitor 9 is For example, it may be decreased by several tens of percent. Even in this case, since the reduced reactive current I9 flows through the thyristor switch 16, it can be easily and accurately determined whether or not the current is flowing through the thyristor switch 16.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)

Abstract

A control circuit (14) of this uninterruptible power supply apparatus turns a contactor (10) ON, turns a thyristor switch (16) OFF, and performs controlling so as to cause an inverter (7) to supply a reactive current to a reactor (8) and a capacitor (9), and cause a load (54) to supply a driving current, in an inverter power supply mode. When the mode is shifted from the inverter power supply mode to a bypass power supply mode, the control circuit turns the thyristor switch ON, performs controlling so as to cause the inverter to stop supplying the reactive current to the capacitor, and turns the contactor OFF when the detection value by a current detector (CD 3) is greater than a threshold current (Ith).

Description

無停電電源装置Uninterruptible power system
 この発明は無停電電源装置に関し、特に、インバータによって生成された交流電力を負荷に供給するインバータ給電モードと、交流電源からの交流電力を負荷に供給するバイパス給電モードとを有する無停電電源装置に関する。 The present invention relates to an uninterruptible power supply, and more particularly to an uninterruptible power supply having an inverter power supply mode for supplying AC power generated by an inverter to a load and a bypass power supply mode for supplying AC power from an AC power supply to the load. .
 特開平11-4544号公報(特許文献1)には、直流電源から供給される直流電力を交流電力に変換するインバータと、インバータと負荷の間に接続された第1のスイッチと、交流電源と負荷の間に接続された第2のスイッチとを備えた無停電電源装置が開示されている。インバータ給電モードでは、第1のスイッチがオンされ、インバータから第1のスイッチを介して負荷に交流電力が供給される。バイパス給電モードでは、第2のスイッチがオンされ、交流電源から第2のスイッチを介して負荷に交流電力が供給される。インバータ給電モードからバイパス給電モードに移行する移行期間では、第1のスイッチに加えて第2のスイッチがオンされた後に第1のスイッチがオフされる。 Japanese Patent Application Laid-Open No. 11-4544 (Patent Document 1) discloses an inverter that converts DC power supplied from a DC power source into AC power, a first switch connected between the inverter and a load, an AC power source, An uninterruptible power supply comprising a second switch connected between loads is disclosed. In the inverter power supply mode, the first switch is turned on, and AC power is supplied from the inverter to the load via the first switch. In the bypass power supply mode, the second switch is turned on, and AC power is supplied from the AC power source to the load via the second switch. In the transition period in which the inverter power supply mode shifts to the bypass power supply mode, the first switch is turned off after the second switch is turned on in addition to the first switch.
特開平11-4544号公報Japanese Patent Laid-Open No. 11-4544
 しかし、特許文献1では、インバータ給電モードからバイパス給電モードに移行する場合において、第2のスイッチが故障してオンしない場合には、第1のスイッチをオフさせたときに負荷への交流電力の供給が停止され、負荷の運転が停止してしまうという問題がある。 However, in Patent Document 1, when shifting from the inverter power supply mode to the bypass power supply mode, if the second switch fails and does not turn on, the AC power to the load is turned off when the first switch is turned off. There is a problem that the supply is stopped and the operation of the load is stopped.
 この対策として、第2のスイッチに流れる電流を検出する電流検出器を設け、第2のスイッチに電流が流れたことを確認した後に第1のスイッチをオフさせる方法が考えられる。しかし、この方法では、負荷電流が小さい場合、第2のスイッチに電流が流れているか否かを正確かつ迅速に判別することができず、インバータ給電モードからバイパス給電モードに迅速に移行することができないという問題がある。 As a countermeasure, a method may be considered in which a current detector for detecting the current flowing through the second switch is provided, and the first switch is turned off after confirming that the current has flowed through the second switch. However, with this method, when the load current is small, it is not possible to accurately and quickly determine whether or not current is flowing through the second switch, and it is possible to quickly shift from the inverter power supply mode to the bypass power supply mode. There is a problem that you can not.
 それゆえに、この発明の主たる目的は、負荷電流が小さい場合でも、インバータ給電モードからバイパス給電モードに迅速に移行することが可能な無停電電源装置を提供することである。 Therefore, a main object of the present invention is to provide an uninterruptible power supply capable of quickly shifting from the inverter power supply mode to the bypass power supply mode even when the load current is small.
 この発明に係る無停電電源装置は、直流電源または第1の交流電源から供給される電力を用いて、交流電力を負荷に供給する無停電電源装置であって、直流電源から供給される直流電力を交流電力に変換するインバータと、一方端子がインバータの出力端子に接続されたリアクトルと、リアクトルの他方端子に接続されたコンデンサと、リアクトルの他方端子と負荷との間に接続される第1のスイッチと、第1の交流電源と負荷との間に接続される第2のスイッチと、第2のスイッチに流れる電流を検出する電流検出器と、電流検出器の検出値に基づいてインバータ、第1のスイッチ、および第2のスイッチを制御する制御回路とを備えたものである。インバータによって生成された交流電力を負荷に供給するインバータ給電モード時において制御回路は、第1のスイッチをオンさせ、第2のスイッチをオフさせ、インバータを制御してリアクトルおよびコンデンサに無効電流を供給させるとともに負荷に駆動電流を供給させる。第1の交流電源からの交流電力を第2のスイッチを介して負荷に供給するバイパス給電モード時において制御回路は、第1のスイッチをオフさせ、第2のスイッチをオンさせ、インバータを制御してリアクトルおよびコンデンサに無効電流を供給させる。インバータ給電モードからバイパス給電モードに移行する移行期間において制御回路は、第2のスイッチをオンさせ、インバータを制御してコンデンサに供給する無効電流を減少させ、電流検出器の検出値が予め定められたしきい値を超えたことに応じて第1のスイッチをオフさせ、インバータを制御してコンデンサに供給する無効電流を増大させる。 An uninterruptible power supply according to the present invention is an uninterruptible power supply that supplies AC power to a load using power supplied from a DC power supply or a first AC power supply, the DC power supplied from the DC power supply. An inverter for converting AC power into AC power, a reactor having one terminal connected to the output terminal of the inverter, a capacitor connected to the other terminal of the reactor, and a first connected between the other terminal of the reactor and the load A switch, a second switch connected between the first AC power source and the load, a current detector for detecting a current flowing through the second switch, an inverter based on a detection value of the current detector, 1 and a control circuit for controlling the second switch. In the inverter power supply mode in which AC power generated by the inverter is supplied to the load, the control circuit turns on the first switch, turns off the second switch, and controls the inverter to supply reactive current to the reactor and the capacitor. And a drive current is supplied to the load. In the bypass power supply mode in which AC power from the first AC power source is supplied to the load via the second switch, the control circuit turns off the first switch, turns on the second switch, and controls the inverter. To supply reactive current to the reactor and capacitor. In the transition period from the inverter power supply mode to the bypass power supply mode, the control circuit turns on the second switch, controls the inverter to reduce the reactive current supplied to the capacitor, and the detection value of the current detector is predetermined. In response to exceeding the threshold value, the first switch is turned off, and the inverter is controlled to increase the reactive current supplied to the capacitor.
 この発明に係る無停電電源装置では、インバータ給電モードからバイパス給電モードへの移行期間において、第2のスイッチをオンさせ、インバータからコンデンサに供給される無効電流を減少させる。第2のスイッチが正常である場合には、第2の交流電源から第2のスイッチおよび第1のスイッチを介してコンデンサに無効電流が流れるとともに、第2の交流電源から第2のスイッチを介して負荷に駆動電流が流れる。したがって、第2のスイッチにはコンデンサへの無効電流と負荷への駆動電流とが流れるので、負荷電流が小さい場合でも、第2のスイッチに流れる電流を確保することができる。よって、第2のスイッチに電流が流れているか否かを正確かつ迅速に判別することができ、インバータ給電モードからバイパス給電モードに迅速に移行することができる。 In the uninterruptible power supply according to the present invention, the second switch is turned on during the transition period from the inverter power supply mode to the bypass power supply mode, and the reactive current supplied from the inverter to the capacitor is reduced. When the second switch is normal, a reactive current flows from the second AC power source to the capacitor via the second switch and the first switch, and from the second AC power source via the second switch. Drive current flows through the load. Therefore, since the reactive current to the capacitor and the drive current to the load flow through the second switch, it is possible to secure the current flowing through the second switch even when the load current is small. Therefore, it is possible to accurately and quickly determine whether or not current is flowing through the second switch, and it is possible to quickly shift from the inverter power supply mode to the bypass power supply mode.
この発明の一実施の形態による無停電電源装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the uninterruptible power supply by one embodiment of this invention. 図1に示した制御回路14の動作を示すフローチャートである。2 is a flowchart showing an operation of a control circuit 14 shown in FIG. インバータ給電モードからバイパス給電モードへの移行動作の具体例1を示すタイムチャートである。It is a time chart which shows the specific example 1 of the transfer operation | movement from an inverter electric power feeding mode to a bypass electric power feeding mode. インバータ給電モードからバイパス給電モードへの移行動作の比較例1を示すタイムチャートである。It is a time chart which shows the comparative example 1 of the transfer operation | movement from an inverter electric power feeding mode to a bypass electric power feeding mode. インバータ給電モードからバイパス給電モードへの移行動作の具体例2を示すタイムチャートである。It is a time chart which shows the specific example 2 of the transfer operation | movement from an inverter electric power feeding mode to a bypass electric power feeding mode. インバータ給電モードからバイパス給電モードへの移行動作の比較例2を示すタイムチャートである。It is a time chart which shows the comparative example 2 of the transfer operation | movement from inverter electric power feeding mode to bypass electric power feeding mode.
 図1は、この発明の一実施の形態による無停電電源装置の構成を示す回路ブロック図である。図1において、この無停電電源装置は、入力端子T1、バイパス端子T2、直流端子T3、および出力端子T4を備える。 FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply according to an embodiment of the present invention. In FIG. 1, the uninterruptible power supply device includes an input terminal T1, a bypass terminal T2, a DC terminal T3, and an output terminal T4.
 入力端子T1は、交流電源51に接続される。交流電源51は、商用交流電源でもよいし、自家用発電機でもよい。交流電源51は、たとえば商用周波数の交流電力を無停電電源装置に供給する。バイパス端子T2は、バイパス交流電源52に接続される。バイパス交流電源は、商用交流電源でもよいし、自家用発電機でもよい。バイパス端子T2が入力端子T1とともに交流電源51に接続されていても構わない。 The input terminal T1 is connected to the AC power source 51. The AC power source 51 may be a commercial AC power source or a private generator. The AC power supply 51 supplies, for example, commercial frequency AC power to the uninterruptible power supply. The bypass terminal T2 is connected to the bypass AC power source 52. The bypass AC power source may be a commercial AC power source or a private generator. The bypass terminal T2 may be connected to the AC power source 51 together with the input terminal T1.
 直流端子T3は、蓄電池53(電力貯蔵装置)に接続される。蓄電池53は、直流電力を蓄える。蓄電池53は、交流電源51から交流電力が正常に供給されている場合に充電され、交流電源51から交流電力が正常に供給されていない場合(たとえば停電時)に放電される。蓄電池53の代わりにコンデンサを接続しても構わない。蓄電池53が無停電電源装置に含まれていても構わない。出力端子T4は、負荷54に接続される。負荷54は、無停電電源装置から供給されるたとえば商用周波数の交流電力によって駆動される。 The DC terminal T3 is connected to the storage battery 53 (power storage device). The storage battery 53 stores DC power. The storage battery 53 is charged when AC power is normally supplied from the AC power source 51, and is discharged when AC power is not normally supplied from the AC power source 51 (for example, during a power failure). A capacitor may be connected instead of the storage battery 53. The storage battery 53 may be included in the uninterruptible power supply. The output terminal T4 is connected to the load 54. The load 54 is driven by, for example, commercial frequency AC power supplied from the uninterruptible power supply.
 この無停電電源装置は、さらに、コンタクタ1,10,12、ヒューズ2、リアクトル3,8、コンバータ4、直流母線5、コンデンサ6,9、インバータ7、電流検出器CD1~CD3、双方向チョッパ11、制御回路13,14、操作部15、およびサイリスタスイッチ16を備える。 This uninterruptible power supply further includes contactors 1, 10, 12, fuse 2, reactors 3, 8, converter 4, DC bus 5, capacitors 6, 9, inverter 7, current detectors CD 1 -CD 3, bidirectional chopper 11 , Control circuits 13 and 14, an operation unit 15, and a thyristor switch 16.
 コンタクタ1、ヒューズ2、およびリアクトル3は、入力端子T1とコンバータ4の入力端子との間に直列接続される。コンタクタ1は、無停電電源装置の使用時にオンされ、たとえば無停電電源装置のメンテナンス時にオフされる。ヒューズ2は、過電流が流れた場合にブローされ、無停電電源装置を保護する。リアクトル3は、交流電源51からの商用周波数の交流電力をコンバータ4に通過させ、コンバータ4で発生するスイッチング周波数の信号の通過を禁止する。 Contactor 1, fuse 2, and reactor 3 are connected in series between input terminal T 1 and the input terminal of converter 4. The contactor 1 is turned on when the uninterruptible power supply is used, and is turned off during maintenance of the uninterruptible power supply, for example. The fuse 2 is blown when an overcurrent flows to protect the uninterruptible power supply. Reactor 3 allows commercial frequency AC power from AC power supply 51 to pass through converter 4 and prohibits the passage of switching frequency signals generated by converter 4.
 コンバータ4は、交流電源51からコンタクタ1、ヒューズ2、およびリアクトル3を介して供給される交流電力を受ける。コンバータ4は、制御回路13によって制御され、交流電源51から交流電力が正常に供給されている場合に、交流電源51からの交流電力を直流電力に変換して出力端子に出力する。交流電源51から交流電力が正常に供給されていない場合(すなわち停電時)には、コンバータ4の運転は停止される。 Converter 4 receives AC power supplied from AC power supply 51 via contactor 1, fuse 2, and reactor 3. The converter 4 is controlled by the control circuit 13 and, when AC power is normally supplied from the AC power source 51, converts the AC power from the AC power source 51 into DC power and outputs it to the output terminal. When AC power is not normally supplied from AC power supply 51 (that is, during a power failure), operation of converter 4 is stopped.
 直流母線5は、コンバータ4の出力端子とインバータ7の入力端子との間に接続され、直流電力を伝達させる。コンデンサ6は、直流母線5に接続され、直流母線5の直流電圧VDCを安定化させる。コンデンサ6は、直流母線5とたとえば中性点(または基準電圧のライン)との間に接続される。インバータ7は、制御回路14によって制御され、直流母線5から受けた直流電力を交流電力に変換して出力端子に出力する。電流検出器CD1は、インバータ7の出力電流I1を検出し、検出値を示す信号を制御回路14に出力する。 The DC bus 5 is connected between the output terminal of the converter 4 and the input terminal of the inverter 7 to transmit DC power. Capacitor 6 is connected to DC bus 5 and stabilizes DC voltage VDC of DC bus 5. The capacitor 6 is connected between the DC bus 5 and, for example, a neutral point (or a reference voltage line). The inverter 7 is controlled by the control circuit 14 and converts the DC power received from the DC bus 5 into AC power and outputs it to the output terminal. The current detector CD1 detects the output current I1 of the inverter 7 and outputs a signal indicating the detected value to the control circuit 14.
 リアクトル8は、インバータ7の出力端子とコンタクタ10の一方端子との間に接続される。コンデンサ9は、コンタクタ10の一方端子とたとえば中性点(または基準電圧のライン)との間に接続される。コンタクタ10の他方端子は、出力端子T4に接続される。 The reactor 8 is connected between the output terminal of the inverter 7 and one terminal of the contactor 10. The capacitor 9 is connected between one terminal of the contactor 10 and, for example, a neutral point (or a reference voltage line). The other terminal of the contactor 10 is connected to the output terminal T4.
 リアクトル8およびコンデンサ9は、低域通過フィルタを構成し、インバータ7によって生成されたたとえば商用周波数の交流電力を通過させ、インバータ7で発生するスイッチング周波数の信号の通過を禁止する。換言すると、リアクトル8およびコンデンサ9は、インバータ7から出力される矩形波状の交流電圧を正弦波状の交流電圧に変換する。 Reactor 8 and capacitor 9 constitute a low-pass filter, which passes, for example, commercial frequency AC power generated by inverter 7 and prohibits the passage of switching frequency signals generated by inverter 7. In other words, the reactor 8 and the capacitor 9 convert the rectangular wave AC voltage output from the inverter 7 into a sinusoidal AC voltage.
 コンタクタ10は、制御回路14によって制御され、インバータ7からの交流電力を負荷54に供給するインバータ給電モード時にはオンされ、バイパス交流電源52からの交流電力をサイリスタスイッチ16を介して負荷54に供給するバイパス給電モード時にはオフされる。コンタクタ10は、第1のスイッチを構成する。電流検出器CD2は、負荷54に流れる電流(すなわち負荷電流)I2を検出し、検出値を示す信号を制御回路14に出力する。 The contactor 10 is controlled by the control circuit 14 and is turned on in the inverter power supply mode for supplying AC power from the inverter 7 to the load 54, and supplies AC power from the bypass AC power source 52 to the load 54 via the thyristor switch 16. It is turned off in the bypass power supply mode. The contactor 10 constitutes a first switch. The current detector CD2 detects a current (that is, a load current) I2 flowing through the load 54, and outputs a signal indicating the detected value to the control circuit 14.
 双方向チョッパ11およびコンタクタ12は、直流母線5と直流端子T3との間に直列接続される。コンタクタ12は、無停電電源装置の使用時にはオンされ、たとえば蓄電池53のメンテナンス時にオフされる。双方向チョッパ11は、制御回路13によって制御され、交流電源51から交流電力が正常に供給されている場合は、直流母線5から受けた直流電力を蓄電池53に蓄え、交流電源51から交流電力が正常に供給されていない場合(すなわち停電時)には、蓄電池53の直流電力を直流母線5に供給する。双方向チョッパ11は、直流母線5の直流電圧VDCを降圧して蓄電池53に蓄え、蓄電池53の端子間電圧を昇圧して直流母線5に与える。 The bidirectional chopper 11 and the contactor 12 are connected in series between the DC bus 5 and the DC terminal T3. The contactor 12 is turned on when the uninterruptible power supply is used, and is turned off, for example, when the storage battery 53 is maintained. The bidirectional chopper 11 is controlled by the control circuit 13, and when the AC power is normally supplied from the AC power source 51, the DC power received from the DC bus 5 is stored in the storage battery 53, and the AC power is received from the AC power source 51. When not normally supplied (that is, at the time of a power failure), the DC power of the storage battery 53 is supplied to the DC bus 5. The bidirectional chopper 11 steps down the DC voltage VDC of the DC bus 5 and stores it in the storage battery 53, boosts the voltage between the terminals of the storage battery 53, and gives it to the DC bus 5.
 制御回路13は、交流電源51から供給される交流電圧VACに基づいて、コンバータ4および双方向チョッパ11を制御する。制御回路13は、たとえばヒューズ2とリアクトル3の間のノードの電圧を交流電圧VACとして検出する。 The control circuit 13 controls the converter 4 and the bidirectional chopper 11 based on the AC voltage VAC supplied from the AC power source 51. For example, the control circuit 13 detects the voltage of the node between the fuse 2 and the reactor 3 as the AC voltage VAC.
 制御回路13は、交流電圧VACが正常である場合(すなわち、交流電源51から交流電力が正常に供給されている場合)は、コンバータ4を制御して交流電力を直流電力に変換させるとともに、直流母線5から蓄電池53に電流が流れるように双方向チョッパ11を制御し、蓄電池53を充電させる。 When the AC voltage VAC is normal (that is, when AC power is normally supplied from the AC power supply 51), the control circuit 13 controls the converter 4 to convert AC power into DC power and The bidirectional chopper 11 is controlled so that a current flows from the bus 5 to the storage battery 53, and the storage battery 53 is charged.
 制御回路13は、交流電圧VACが正常でない場合(すなわち、交流電源51から交流電力が正常に供給されていない場合)には、コンバータ4の運転を停止させるとともに、蓄電池53から直流母線5に直流電流が流れるように双方向チョッパ11を制御し、蓄電池53を放電させる。 When the AC voltage VAC is not normal (that is, when AC power is not normally supplied from the AC power supply 51), the control circuit 13 stops the operation of the converter 4 and directs DC from the storage battery 53 to the DC bus 5. The bidirectional chopper 11 is controlled so that a current flows, and the storage battery 53 is discharged.
 サイリスタスイッチ16は、バイパス端子T2とコンタクタ10の他方端子との間に接続され、制御回路14によって制御される。サイリスタスイッチ16は、2つのサイリスタを含む。1つのサイリスタのアノードおよびカソードはそれぞれバイパス端子T2およびコンタクタ10の他方端子に接続され、もう1つのサイリスタのアノードおよびカソードはそれぞれコンタクタ10の他方端子およびバイパス端子T2に接続される。 The thyristor switch 16 is connected between the bypass terminal T2 and the other terminal of the contactor 10, and is controlled by the control circuit 14. The thyristor switch 16 includes two thyristors. The anode and cathode of one thyristor are connected to the bypass terminal T2 and the other terminal of the contactor 10, respectively, and the anode and cathode of the other thyristor are connected to the other terminal of the contactor 10 and the bypass terminal T2, respectively.
 サイリスタスイッチ16は、バイパス給電モード時にオンされ、インバータ給電モード時にオフされる。さらに、サイリスタスイッチ16は、インバータ7が故障した場合に瞬時にオンされる。サイリスタスイッチ16がオンされると、バイパス交流電源52からサイリスタスイッチ16を介して負荷54に交流電力が供給される。サイリスタスイッチ16は、第2のスイッチを構成する。電流検出器CD3は、サイリスタスイッチ16に流れる電流I3を検出し、検出値を示す信号を制御回路14に出力する。 The thyristor switch 16 is turned on in the bypass power supply mode and turned off in the inverter power supply mode. Further, the thyristor switch 16 is instantly turned on when the inverter 7 fails. When the thyristor switch 16 is turned on, AC power is supplied from the bypass AC power supply 52 to the load 54 via the thyristor switch 16. The thyristor switch 16 constitutes a second switch. The current detector CD3 detects the current I3 flowing through the thyristor switch 16, and outputs a signal indicating the detected value to the control circuit 14.
 操作部15は、無停電電源装置の使用者によって操作される複数のボタンなどを含む。使用者は、操作部15を操作して、無停電電源装置を起動させたり、停止させたり、インバータ給電モードを実行させたり、バイパス給電モードを実行させる。操作部15は、使用者の操作結果を示す信号を制御回路14に出力する。 The operation unit 15 includes a plurality of buttons operated by the user of the uninterruptible power supply. The user operates the operation unit 15 to start or stop the uninterruptible power supply, execute the inverter power supply mode, or execute the bypass power supply mode. The operation unit 15 outputs a signal indicating the operation result of the user to the control circuit 14.
 制御回路14は、操作部15の出力信号、電流検出器CD1~CD3の出力信号などに基づいて、インバータ7、コンタクタ10、およびサイリスタスイッチ16を制御する。制御回路14は、インバータ給電モードおよびバイパス交流電源52のうちの操作部15を用いて選択された給電モードを実行する。 The control circuit 14 controls the inverter 7, the contactor 10, and the thyristor switch 16 based on the output signal of the operation unit 15, the output signals of the current detectors CD1 to CD3, and the like. The control circuit 14 executes the power feeding mode selected using the operation unit 15 of the inverter power feeding mode and the bypass AC power source 52.
 制御回路14は、操作部15を用いてインバータ給電モードが選択された場合(すなわちインバータ給電モード時)には、コンタクタ10をオンさせ、サイリスタスイッチ16をオフさせ、インバータ7を制御してリアクトル8およびコンデンサ9に無効電流を供給させるとともに負荷54に駆動電流を供給させる。 When the inverter power supply mode is selected using the operation unit 15 (that is, in the inverter power supply mode), the control circuit 14 turns on the contactor 10, turns off the thyristor switch 16, controls the inverter 7, and controls the reactor 8 In addition, the reactive current is supplied to the capacitor 9 and the driving current is supplied to the load 54.
 制御回路14は、操作部15を用いてバイパス給電モードが選択された場合(すなわちバイパス給電モード時)には、コンタクタ10をオフさせ、サイリスタスイッチ16をオンさせ、インバータ7を制御してリアクトル8およびコンデンサ9に無効電流を供給させる。この場合、インバータ7は、負荷54に駆動電流を供給しない。 When the bypass power supply mode is selected using the operation unit 15 (that is, in the bypass power supply mode), the control circuit 14 turns off the contactor 10, turns on the thyristor switch 16, controls the inverter 7, and controls the reactor 8 And the reactive current is supplied to the capacitor 9. In this case, the inverter 7 does not supply a drive current to the load 54.
 制御回路14は、インバータ給電モードの実行中に操作部15を用いてバイパス給電モードが選択された場合(すなわちインバータ給電モードからバイパス給電モードへの移行時)には、サイリスタスイッチ16をオンさせ、インバータ7を制御してコンデンサ9への無効電流の供給を停止させる。さらに制御回路14は、電流検出器CD3の検出値が予め定められたしきい値を超えたことに応じてコンタクタ10をオフさせ、インバータ7を制御してコンデンサ9への無効電流の供給を再開させる。 The control circuit 14 turns on the thyristor switch 16 when the bypass power supply mode is selected using the operation unit 15 during the execution of the inverter power supply mode (that is, when shifting from the inverter power supply mode to the bypass power supply mode), The inverter 7 is controlled to stop the supply of reactive current to the capacitor 9. Further, the control circuit 14 turns off the contactor 10 in response to the detection value of the current detector CD3 exceeding a predetermined threshold value, and controls the inverter 7 to resume the supply of the reactive current to the capacitor 9. Let
 図2は、インバータ給電モードからバイパス給電モードへの移行時における制御回路14の動作を示すフローチャートである。インバータ給電モードでは、サイリスタスイッチ16がオフされ、コンタクタ10がオンされ、インバータ7は、リアクトル8に無効電流-jI8を流し、コンデンサ9に無効電流jI9を流し、負荷54に駆動電流ILを供給しているものとする。したがって、インバータ7の出力電流I1は、I1=IL-jI8+jI9である。 FIG. 2 is a flowchart showing the operation of the control circuit 14 when shifting from the inverter power supply mode to the bypass power supply mode. In the inverter power supply mode, the thyristor switch 16 is turned off, the contactor 10 is turned on, and the inverter 7 passes the reactive current −jI8 to the reactor 8, passes the reactive current jI9 to the capacitor 9, and supplies the drive current IL to the load 54. It shall be. Therefore, the output current I1 of the inverter 7 is I1 = IL−jI8 + jI9.
 ステップS1において制御回路14は、操作部15からの信号に基づいてバイパス給電モードが選択されたか否かを判別し、バイパス給電モードが選択されるまで待機する。ステップS1においてバイパス給電モードが選択された場合、ステップS2において制御回路14は、サイリスタスイッチ16に対してオン指令信号φ16を出力する。 In step S1, the control circuit 14 determines whether or not the bypass power supply mode is selected based on the signal from the operation unit 15, and waits until the bypass power supply mode is selected. When the bypass power supply mode is selected in step S1, the control circuit 14 outputs an on command signal φ16 to the thyristor switch 16 in step S2.
 サイリスタスイッチ16が正常である場合は、オン指令信号φ16に応答してサイリスタスイッチ16がオンする。この場合は、バイパス交流電源52からサイリスタスイッチ16を介して負荷54に負荷電流ILが供給され、インバータ7の出力電流I1は-jI8+jI9に減少する。このとき、負荷電流ILが電流検出器CD3によって検出されるが、負荷電流ILが小さい場合には、負荷電流ILがサイリスタスイッチ16に流れたか否かを制御回路14が正確かつ迅速に判別することができない恐れがある。 When the thyristor switch 16 is normal, the thyristor switch 16 is turned on in response to the on command signal φ16. In this case, the load current IL is supplied from the bypass AC power supply 52 to the load 54 via the thyristor switch 16, and the output current I1 of the inverter 7 decreases to -jI8 + jI9. At this time, the load current IL is detected by the current detector CD3. When the load current IL is small, the control circuit 14 accurately and quickly determines whether or not the load current IL has flown through the thyristor switch 16. There is a risk of not being able to.
 サイリスタスイッチ16が故障している場合は、オン指令信号φ16に応答してサイリスタスイッチ16はオンしない。この場合は、インバータ7の出力電流I1は、I1=IL-jI8+jI9のまま変化せず、負荷電流ILは電流検出器CD3によって検出されない。 When the thyristor switch 16 is out of order, the thyristor switch 16 is not turned on in response to the on command signal φ16. In this case, the output current I1 of the inverter 7 remains unchanged as I1 = IL−jI8 + jI9, and the load current IL is not detected by the current detector CD3.
 ステップS3において制御回路14は、インバータ7を制御して、コンデンサ9に流す無効電流jI9を0Aに減少させ、インバータ7の出力電流I1をIL-jI8に減少させる。サイリスタスイッチ16が正常にオンしている場合には、バイパス交流電源52からサイリスタスイッチ16を介して負荷54に負荷電流ILが供給されるとともに、バイパス交流電源52からサイリスタスイッチ16およびコンタクタ10を介してコンデンサ9に無効電流jI9が供給される。 In step S3, the control circuit 14 controls the inverter 7 to reduce the reactive current jI9 flowing through the capacitor 9 to 0 A and to reduce the output current I1 of the inverter 7 to IL-jI8. When the thyristor switch 16 is normally turned on, the load current IL is supplied from the bypass AC power supply 52 via the thyristor switch 16 to the load 54 and from the bypass AC power supply 52 via the thyristor switch 16 and the contactor 10. Thus, the reactive current jI9 is supplied to the capacitor 9.
 これにより、サイリスタスイッチ16に流れる電流I3がIL+jI9に増大し、インバータ7の出力電流I1は-jI8に減少する。したがって、負荷電流ILが小さい場合であってもサイリスタスイッチ16に流れる電流量を確保することができるので、負荷電流ILおよび無効電流jI9がサイリスタスイッチ16に流れたか否かを制御回路14は正確かつ迅速に判別することが可能となる。 Thereby, the current I3 flowing through the thyristor switch 16 increases to IL + jI9, and the output current I1 of the inverter 7 decreases to -jI8. Therefore, even when the load current IL is small, the amount of current flowing through the thyristor switch 16 can be ensured. Therefore, the control circuit 14 can accurately determine whether or not the load current IL and the reactive current jI9 have flowed through the thyristor switch 16. It is possible to quickly determine.
 サイリスタスイッチ16が故障してオフしている場合には、オン指令信号φ16に応答してサイリスタスイッチ16はオンしない。この場合は、インバータ7の出力電流I1はIL-jI8に減少し、負荷電流ILは電流検出器CD3によって検出されない。 When the thyristor switch 16 is broken and turned off, the thyristor switch 16 is not turned on in response to the on command signal φ16. In this case, the output current I1 of the inverter 7 decreases to IL-jI8, and the load current IL is not detected by the current detector CD3.
 ステップS4において制御回路14は、電流検出器CD3の検出結果に基づき、サイリスタスイッチ16に流れる電流I3がしきい値電流Ithよりも大きいか否かを判別する。このしきい値電流Ithは、サイリスタスイッチ16が実際にオンし、インバータ7の出力電流I1から無効電流jI9を減少させた場合にサイリスタスイッチ16に流れる電流I3=IL+jI9よりも小さな値に設定されている。したがって、サイリスタスイッチ16が正常である場合(すなわち実際にオンした場合)はI3>Ithとなり、サイリスタスイッチ16が故障している場合(すなわちオンしない場合)はI3=0<Ithとなる。 In step S4, the control circuit 14 determines whether or not the current I3 flowing through the thyristor switch 16 is larger than the threshold current Ith based on the detection result of the current detector CD3. This threshold current Ith is set to a value smaller than the current I3 = IL + jI9 flowing through the thyristor switch 16 when the thyristor switch 16 is actually turned on and the reactive current jI9 is reduced from the output current I1 of the inverter 7. Yes. Therefore, when the thyristor switch 16 is normal (that is, when it is actually turned on), I3> Ith, and when the thyristor switch 16 is out of order (that is, when it is not turned on), I3 = 0 <Ith.
 ステップS4においてI3>Ithである場合(すなわちサイリスタスイッチ16がオンした場合)には、ステップS5において制御回路14は、インバータ7を制御して、コンデンサ9に流す無効電流jI9を所定値jIRに増大させる。ステップS6において制御回路14は、コンタクタ10をオフさせる。これにより、バイパス交流電源52からサイリスタスイッチ16を介して負荷54に負荷電流ILが供給され、負荷54が駆動される。 When I3> Ith in step S4 (that is, when the thyristor switch 16 is turned on), in step S5, the control circuit 14 controls the inverter 7 to increase the reactive current jI9 flowing through the capacitor 9 to a predetermined value jIR. Let In step S6, the control circuit 14 turns off the contactor 10. As a result, the load current IL is supplied from the bypass AC power supply 52 to the load 54 via the thyristor switch 16, and the load 54 is driven.
 ステップS7において制御回路14は、インバータ給電モードからバイパス給電モードへの移行が完了したことを無停電電源装置の使用者に通知するための信号を出力し、処理を終了する。インバータ給電モードからバイパス給電モードへの移行が完了したことを、たとえば音、光、画像などを用いて無停電電源装置の使用者に通知する装置を設けてもよい。 In step S7, the control circuit 14 outputs a signal for notifying the user of the uninterruptible power supply that the transition from the inverter power supply mode to the bypass power supply mode is completed, and ends the process. You may provide the apparatus which notifies the user of an uninterruptible power supply that the transition from inverter electric power feeding mode to bypass electric power feeding mode is completed using a sound, light, an image, etc., for example.
 ステップS4においてI3>Ithでない場合(すなわちサイリスタスイッチ16がオンしない場合)には、ステップS8において制御回路14は、インバータ7を制御して、コンデンサ9に流す無効電流jI9を所定値jIRに増大させる。これによりインバータ給電モードが続行され、負荷54の運転が継続される。ステップS9において制御回路14は、サイリスタスイッチ16に故障が発生したことを無停電電源装置の使用者に通知するための信号を出力し、処理を終了する。サイリスタスイッチ16に故障が発生したことを、たとえば音、光、画像などを用いて無停電電源装置の使用者に通知する装置を設けてもよい。 When I3> Ith is not satisfied in step S4 (that is, when the thyristor switch 16 is not turned on), in step S8, the control circuit 14 controls the inverter 7 to increase the reactive current jI9 flowing through the capacitor 9 to a predetermined value jIR. . Thereby, the inverter power supply mode is continued, and the operation of the load 54 is continued. In step S9, the control circuit 14 outputs a signal for notifying the user of the uninterruptible power supply that a failure has occurred in the thyristor switch 16, and ends the process. A device may be provided that notifies the user of the uninterruptible power supply that a failure has occurred in the thyristor switch 16 using, for example, sound, light, or an image.
 [具体例1]
 図3(a)~(l)は、インバータ給電モードからバイパス給電モードへの移行動作の具体例1を示すタイムチャートである。特に、図3(a)はサイリスタスイッチ16をオンさせるためのオン指令信号CONを示し、図3(b)はサイリスタスイッチ16がオンしているか否かを判定する期間を規定するオン判定信号DONを示し、図3(c)はコンタクタ10をオフさせるためのオフ指令信号COFFを示している。
[Specific Example 1]
3A to 3L are time charts showing a specific example 1 of the transition operation from the inverter power supply mode to the bypass power supply mode. In particular, FIG. 3A shows an ON command signal CON for turning on the thyristor switch 16, and FIG. 3B shows an ON determination signal DON that defines a period for determining whether or not the thyristor switch 16 is ON. FIG. 3C shows an off command signal COFF for turning off the contactor 10.
 図3(d)(e)は、サイリスタスイッチ16に流れる電流I3のうちの有効電流I3cosθおよび無効電流I3sinθをそれぞれ示している。図3(f)(g)は、インバータ7の出力電流I1のうちの有効電流I1cosθおよび無効電流I1sinθをそれぞれ示している。図3(h)(i)は、負荷54に流れる電流I2のうちの有効電流I2cosθおよび無効電流I2sinθをそれぞれ示している。 3D and 3E respectively show the effective current I3cosθ and the reactive current I3sinθ of the current I3 flowing through the thyristor switch 16. FIGS. 3F and 3G show the effective current I1 cos θ and the reactive current I1 sin θ, respectively, of the output current I1 of the inverter 7. 3 (h) and 3 (i) show the effective current I2cosθ and the reactive current I2sinθ, respectively, of the current I2 flowing through the load 54.
 図3(j)は、サイリスタスイッチ16に流れる電流ベクトルI3v=I3cosθ+jI3sinθを示している。図3(k)は、インバータ7の出力電流ベクトルI1v=I1cosθ+jI1sinθを示している。図3(l)は、負荷54に流れる電流ベクトルI2v=I2cosθ+jI2sinθを示している。 FIG. 3J shows a current vector I3v = I3cosθ + jI3sinθ flowing through the thyristor switch 16. FIG. 3K shows the output current vector I1v = I1cos θ + jI1sin θ of the inverter 7. FIG. 3 (l) shows the current vector I2v = I2cos θ + jI2sin θ flowing through the load 54.
 図3(a)~(l)では、負荷54に有効電流I2cosθ=ILのみが流れる場合が示されている。インバータ給電モードでは、サイリスタスイッチ16がオフされ、コンタクタ10はオンされ、インバータ7は、リアクトル8、コンデンサ9、および負荷54にそれぞれ無効電流(-jI8)、無効電流(jI9)、および有効電流(IL)を供給する。 3 (a) to 3 (l) show a case where only the effective current I2cosθ = IL flows through the load 54. FIG. In the inverter power supply mode, the thyristor switch 16 is turned off, the contactor 10 is turned on, and the inverter 7 supplies the reactor 8, the capacitor 9, and the load 54 with a reactive current (-jI8), a reactive current (jI9), and an effective current ( IL).
 インバータ給電モードでは、オン指令信号CON、オン判定信号DON、およびオフ指令信号COFFはともに非活性化レベルの「L」レベルにされ(図3(a)~(c)参照)、サイリスタスイッチ16に流れる電流I3は0Aである(図3(d)(e)(j)参照)。インバータ7は、有効電流(I1cosθ=IL)および無効電流(I1sinθ=-jI8+jI9)を出力する(図3(f)(g)(k))。負荷54には、有効電流(I2cosθ=IL)のみが流れ、無効電流(I2sinθ=0)は流れない(図3(h)(i)(l)参照)。 In the inverter power supply mode, the ON command signal CON, the ON determination signal DON, and the OFF command signal COFF are all set to the inactivation level “L” level (see FIGS. 3A to 3C). The flowing current I3 is 0 A (see FIGS. 3D, 3E, and 3J). The inverter 7 outputs an effective current (I1 cos θ = IL) and a reactive current (I1 sin θ = −jI8 + jI9) (FIGS. 3 (f) (g) (k)). Only an effective current (I2cos θ = IL) flows through the load 54, and a reactive current (I2sin θ = 0) does not flow (see FIGS. 3 (h), (i), and (l)).
 インバータ給電モードからバイパス給電モードへの移行期間では、まずオン指令信号CONが活性化レベルの「H」レベルにされるとともに、インバータ7からコンデンサ9への無効電流(jI9)の供給が停止される(図3(a)(g)参照)。 In the transition period from the inverter power supply mode to the bypass power supply mode, the ON command signal CON is first set to the “H” level of the activation level, and the supply of the reactive current (jI9) from the inverter 7 to the capacitor 9 is stopped. (See FIGS. 3A and 3G).
 サイリスタスイッチ16が正常である場合は、オン指令信号CONに応答してサイリスタスイッチ16が実際にオンする。サイリスタスイッチ16が故障している場合は、オン指令信号CONに応答してサイリスタスイッチ16はオンしない。図3(a)~(l)では、サイリスタスイッチ16が正常である場合が示されている。 When the thyristor switch 16 is normal, the thyristor switch 16 is actually turned on in response to the ON command signal CON. When the thyristor switch 16 is out of order, the thyristor switch 16 is not turned on in response to the ON command signal CON. 3A to 3L show a case where the thyristor switch 16 is normal.
 サイリスタスイッチ16がオンすると、バイパス交流電源52からサイリスタスイッチ16およびコンタクタ10を介してコンデンサ9に無効電流(I3sinθ=I9)が流れる(図3(e)参照)。さらに、バイパス交流電源52からサイリスタスイッチ16を介して負荷54に有効電流(I3cosθ=IL)が流れるとともに、インバータ7から負荷54に流れる有効電流(I1cosθ=IL)が減少する(図3(d)(f)(j)(k)(l)参照)。 When the thyristor switch 16 is turned on, a reactive current (I3sinθ = I9) flows from the bypass AC power supply 52 to the capacitor 9 via the thyristor switch 16 and the contactor 10 (see FIG. 3E). Furthermore, an effective current (I3 cos θ = IL) flows from the bypass AC power source 52 to the load 54 via the thyristor switch 16, and an effective current (I1 cos θ = IL) flowing from the inverter 7 to the load 54 decreases (FIG. 3D). (Refer to (f) (j) (k) (l)).
 次に、オン指令信号CONが非活性化レベルの「L」レベルに立ち下げられるとともに、オン判定信号DONが活性化レベルの「H」レベルに立ち上げられ、サイリスタスイッチ16がオンしているか否かが判定される(図3(a)(b)参照)。制御回路14は、電流検出器CD3によって検出された電流I3=IL+jI9がしきい値電流Ithよりも大きいか否かを判定する(図3(b)(d)(e)参照)。 Next, the ON command signal CON is lowered to the “L” level of the inactivation level, and the ON determination signal DON is raised to the “H” level of the activation level, so that the thyristor switch 16 is turned on. Is determined (see FIGS. 3A and 3B). The control circuit 14 determines whether or not the current I3 = IL + jI9 detected by the current detector CD3 is larger than the threshold current Ith (see FIGS. 3B, 3D, and 3E).
 ここでは、I3>Ithであるので、オン判定信号DONが非活性化レベルの「L」レベルに立ち下げられるとともに、オフ指令信号COFFが活性化レベルの「H」レベルに立ち上げられ、コンタクタ10がオフされる(図3(b)(c)参照)。コンタクタ10がオフされると、インバータ7からコンデンサ9への無効電流(I1sinθ=I9)の供給が再開され、バイパス交流電源52からコンデンサ9への無効電流(I3sinθ=I9)の供給は停止され、バイパス給電モードへの移行が完了する(図3(e)(g)(j)(k)(l)参照)。 Here, since I3> Ith, the ON determination signal DON is lowered to the “L” level of the inactivation level, and the OFF command signal COFF is raised to the “H” level of the activation level. Is turned off (see FIGS. 3B and 3C). When the contactor 10 is turned off, the supply of the reactive current (I1sinθ = I9) from the inverter 7 to the capacitor 9 is resumed, and the supply of the reactive current (I3sinθ = I9) from the bypass AC power supply 52 to the capacitor 9 is stopped. The transition to the bypass power supply mode is completed (see FIGS. 3 (e), (g), (j), (k), and (l)).
 [比較例1]
 図4(a)~(l)は、インバータ給電モードからバイパス給電モードへの移行動作の比較例1を示すタイムチャートであって、図3(a)~(l)と対比される図である。図4(a)~(l)を参照して、この比較例1が図3(a)~(l)の具体例1と異なる点は、インバータ7からコンデンサ9に無効電流(I9)が供給され続ける点である(図4(g)(k)参照)。このため、オン判定期間においてサイリスタスイッチ16に流れる負荷電流ILが小さい場合には、サイリスタスイッチ16に電流が流れているか否かを正確かつ迅速に判定することができなくなる恐れがある(図4(b)(d)(e)参照)。
[Comparative Example 1]
4 (a) to 4 (l) are time charts showing a comparative example 1 of the transition operation from the inverter power supply mode to the bypass power supply mode, and are compared with FIGS. 3 (a) to 3 (l). . Referring to FIGS. 4A to 4L, the comparative example 1 is different from the specific example 1 of FIGS. 3A to 3I in that the reactive current (I9) is supplied from the inverter 7 to the capacitor 9. (See FIGS. 4G and 4K.) For this reason, if the load current IL flowing through the thyristor switch 16 is small during the ON determination period, it may not be possible to accurately and quickly determine whether or not the current is flowing through the thyristor switch 16 (FIG. 4 ( b) (d) (see e)).
 これに対して具体例1では、移行期間においてインバータ7からコンデンサ9への無効電流(I9)の供給を停止し、バイパス交流電源52からサイリスタスイッチ16を介してコンデンサ9に無効電流(I9)を供給するので、負荷電流ILが小さい場合でも、サイリスタスイッチ16に電流が流れているか否かを正確かつ迅速に判定することができる(図3(b)(d)(e)参照)。 In contrast, in the first specific example, the supply of the reactive current (I9) from the inverter 7 to the capacitor 9 is stopped during the transition period, and the reactive current (I9) is supplied from the bypass AC power supply 52 to the capacitor 9 via the thyristor switch 16. Therefore, even when the load current IL is small, it is possible to accurately and quickly determine whether or not a current is flowing through the thyristor switch 16 (see FIGS. 3B, 3D, and 3E).
 [具体例2]
 図5(a)~(l)は、インバータ給電モードからバイパス給電モードへの移行動作の他の具体例2を示すタイムチャートであって、図3(a)~(l)と対比される図である。図5(a)~(l)を参照して、この具体例2が図3(a)~(l)の具体例1と異なる点は、負荷54に有効電流(IL)および無効電流(-IA)が流れ、かつ負荷54に流れる無効電流(-IA)とコンデンサ9に流れる無効電流(I9)との和(I9-IA)が略0になる点である。換言すると、負荷54で発生する無効電流(IA)とコンデンサ9に流れる無効電流(I9)とが略等しくなっている。
[Specific Example 2]
FIGS. 5A to 5L are time charts showing another specific example 2 of the transition operation from the inverter power supply mode to the bypass power supply mode, and are compared with FIGS. 3A to 3L. It is. Referring to FIGS. 5A to 5L, Specific Example 2 is different from Specific Example 1 of FIGS. 3A to 3I in that effective current (IL) and reactive current (− IA) flows, and the sum (I9-IA) of the reactive current (-IA) flowing through the load 54 and the reactive current (I9) flowing through the capacitor 9 becomes substantially zero. In other words, the reactive current (IA) generated in the load 54 and the reactive current (I9) flowing through the capacitor 9 are substantially equal.
 インバータ給電モードでは、サイリスタスイッチ16がオフされ、コンタクタ10はオンされ、インバータ7は、リアクトル8およびコンデンサ9にそれぞれ無効電流(-I8)および無効電流(I9)を供給するとともに、負荷54に有効電流(IL)および無効電流(-IA)を供給する。 In the inverter power supply mode, the thyristor switch 16 is turned off, the contactor 10 is turned on, and the inverter 7 supplies a reactive current (−I8) and a reactive current (I9) to the reactor 8 and the capacitor 9, respectively, and is effective to the load 54. Supply current (IL) and reactive current (-IA).
 インバータ給電モードでは、オン指令信号CON、オン判定信号DON、およびオフ指令信号COFFはともに非活性化レベルの「L」レベルにされ(図5(a)~(c)参照)、サイリスタスイッチ16に流れる電流I3は0Aである(図5(d)(e)(j)参照)。インバータ7は、有効電流(I1cosθ=IL)および無効電流(I1sinθ=-I8+I9-IA)を出力する(図5(f)(g)(k))。負荷54には、有効電流(I2cosθ=IL)および無効電流(I2sinθ=-IA)が流れる(図5(h)(i)(l)参照)。 In the inverter power supply mode, the ON command signal CON, the ON determination signal DON, and the OFF command signal COFF are all set to the inactivation level “L” level (see FIGS. 5A to 5C), and the thyristor switch 16 The flowing current I3 is 0 A (see FIGS. 5D, 5E, and 5J). The inverter 7 outputs an effective current (I1cosθ = IL) and a reactive current (I1sinθ = −I8 + I9−IA) (FIGS. 5 (f) (g) (k)). An effective current (I2 cos θ = IL) and a reactive current (I2 sin θ = −IA) flow through the load 54 (see FIGS. 5 (h), (i), and (l)).
 インバータ給電モードからバイパス給電モードへの移行期間では、まずオン指令信号CONが活性化レベルの「H」レベルにされるとともに、インバータ7からコンデンサ9への無効電流(jI9)の供給が停止される(図5(a)(g)参照)。 In the transition period from the inverter power supply mode to the bypass power supply mode, the ON command signal CON is first set to the “H” level of the activation level, and the supply of the reactive current (jI9) from the inverter 7 to the capacitor 9 is stopped. (See FIGS. 5A and 5G).
 サイリスタスイッチ16が正常である場合は、オン指令信号CONに応答してサイリスタスイッチ16が実際にオンする。サイリスタスイッチ16が故障している場合は、オン指令信号CONに応答してサイリスタスイッチ16はオンしない。図5(a)~(l)では、サイリスタスイッチ16が正常である場合が示されている。 When the thyristor switch 16 is normal, the thyristor switch 16 is actually turned on in response to the ON command signal CON. When the thyristor switch 16 is out of order, the thyristor switch 16 is not turned on in response to the ON command signal CON. 5A to 5L show a case where the thyristor switch 16 is normal.
 サイリスタスイッチ16がオンすると、バイパス交流電源52からサイリスタスイッチ16およびコンタクタ10を介してコンデンサ9に無効電流(I3sinθ=I9)が流れる(図5(e)参照)。さらに、バイパス交流電源52からサイリスタスイッチ16を介して負荷54に有効電流(I3cosθ=IL)が流れるとともに、インバータ7から負荷54に流れる有効電流(I1cosθ=IL)が減少する(図5(d)(f)(j)(k)(l)参照)。 When the thyristor switch 16 is turned on, a reactive current (I3sinθ = I9) flows from the bypass AC power supply 52 to the capacitor 9 via the thyristor switch 16 and the contactor 10 (see FIG. 5E). Further, an effective current (I3 cos θ = IL) flows from the bypass AC power source 52 to the load 54 via the thyristor switch 16, and an effective current (I1 cos θ = IL) flowing from the inverter 7 to the load 54 decreases (FIG. 5D). (Refer to (f) (j) (k) (l)).
 次に、オン指令信号CONが非活性化レベルの「L」レベルに立ち下げられるとともに、オン判定信号DONが活性化レベルの「H」レベルに立ち上げられ、サイリスタスイッチ16がオンしているか否かが判定される(図5(a)(b)参照)。制御回路14は、電流検出器CD3によって検出された電流I3=IL+jI9がしきい値電流Ithよりも大きいか否かを判定する(図5(b)(d)(e)参照)。 Next, the ON command signal CON is lowered to the “L” level of the inactivation level, and the ON determination signal DON is raised to the “H” level of the activation level, so that the thyristor switch 16 is turned on. Is determined (see FIGS. 5A and 5B). The control circuit 14 determines whether or not the current I3 = IL + jI9 detected by the current detector CD3 is larger than the threshold current Ith (see FIGS. 5B, 5D, and 5E).
 ここでは、I3>Ithであるので、オン判定信号DONが非活性化レベルの「L」レベルに立ち下げられるとともに、オフ指令信号COFFが活性化レベルの「H」レベルに立ち上げられ、コンタクタ10がオフされる(図5(b)(c)参照)。コンタクタ10がオフされると、バイパス交流電源52からコンデンサ9への無効電流(I3sinθ=I9)の供給は停止され、インバータ7からコンデンサ9への無効電流(I1sinθ=I9)の供給が再開され、バイパス給電モードへの移行が完了する(図5(e)(g)(j)(k)(l)参照)。 Here, since I3> Ith, the ON determination signal DON is lowered to the “L” level of the inactivation level, and the OFF command signal COFF is raised to the “H” level of the activation level. Is turned off (see FIGS. 5B and 5C). When the contactor 10 is turned off, the supply of the reactive current (I3sinθ = I9) from the bypass AC power supply 52 to the capacitor 9 is stopped, the supply of the reactive current (I1sinθ = I9) from the inverter 7 to the capacitor 9 is resumed, The transition to the bypass power supply mode is completed (see FIGS. 5 (e), (g), (j), (k), and (l)).
 [比較例2]
 図6(a)~(l)は、インバータ給電モードからバイパス給電モードへの移行動作の比較例2を示すタイムチャートであって、図5(a)~(l)と対比される図である。図6(a)~(l)を参照して、この比較例2が図5(a)~(l)の具体例2と異なる点は、移行期間において、インバータ7からコンデンサ9への無効電流(I9)の供給が停止された後、さらにインバータ7から負荷54への無効電流(-IA)の供給が停止される点である(図6(g)(k)参照)。
[Comparative Example 2]
FIGS. 6A to 6L are time charts showing a comparative example 2 of the transition operation from the inverter power supply mode to the bypass power supply mode, and are compared with FIGS. 5A to 5L. . With reference to FIGS. 6A to 6L, the comparative example 2 is different from the specific example 2 of FIGS. 5A to 5I in that the reactive current from the inverter 7 to the capacitor 9 is changed during the transition period. After the supply of (I9) is stopped, the supply of the reactive current (-IA) from the inverter 7 to the load 54 is further stopped (see FIGS. 6 (g) and (k)).
 インバータ7からコンデンサ9および負荷54への無効電流(I9-IA)の供給が停止されると、バイパス交流電源52からコンデンサ9および負荷54に無効電流(I9-IA)が供給される。ここで、I9-IA≒0Aであるので、サイリスタスイッチ16には負荷電流I3のうちの有効電流ILのみが流れる。このため、オン判定期間においてサイリスタスイッチ16に流れる負荷電流ILが小さい場合には、サイリスタスイッチ16に電流が流れているか否かを正確かつ迅速に判定することができなくなる恐れがある(図6(b)(d)(e)参照)。 When the supply of the reactive current (I9-IA) from the inverter 7 to the capacitor 9 and the load 54 is stopped, the reactive current (I9-IA) is supplied from the bypass AC power source 52 to the capacitor 9 and the load 54. Here, since I9−IA≈0 A, only the effective current IL of the load current I3 flows through the thyristor switch 16. Therefore, if the load current IL flowing through the thyristor switch 16 is small during the ON determination period, it may not be possible to accurately and quickly determine whether or not the current is flowing through the thyristor switch 16 (FIG. 6 ( b) (d) (see e)).
 これに対して具体例2では、移行期間においてインバータ7からコンデンサ9への無効電流(I9)の供給を停止し、バイパス交流電源52からサイリスタスイッチ16を介してコンデンサ9に無効電流(I9)を供給するので、I9≒IAであり、かつ負荷電流ILが小さい場合でも、サイリスタスイッチ16に電流が流れているか否かを正確かつ迅速に判定することができる(図5(b)(d)(e)参照)。 In contrast, in the specific example 2, the supply of the reactive current (I9) from the inverter 7 to the capacitor 9 is stopped during the transition period, and the reactive current (I9) is supplied from the bypass AC power supply 52 to the capacitor 9 via the thyristor switch 16. Therefore, even when I9≈IA and the load current IL is small, it is possible to accurately and quickly determine whether or not current is flowing through the thyristor switch 16 (FIGS. 5B and 5D). e)).
 以上のように、本実施の形態では、インバータ給電モードからバイパス給電モードへの移行期間には、サイリスタスイッチ16をオンさせ、インバータ7からコンデンサ9への無効電流の供給を停止させる。サイリスタスイッチ16が正常である場合には、バイパス交流電源52からサイリスタスイッチ16およびコンタクタ10を介してコンデンサ9に無効電流が流れるとともに、バイパス交流電源52からサイリスタスイッチ16を介して負荷54に電流が流れる。したがって、サイリスタスイッチ16にはコンデンサ9への無効電流と負荷54への負荷電流とが流れるので、負荷電流が小さい場合でも、サイリスタスイッチ16に電流が流れているか否かを正確かつ迅速に判別することができ、インバータ給電モードからバイパス給電モードに迅速に移行することができる。 As described above, in this embodiment, the thyristor switch 16 is turned on and the supply of the reactive current from the inverter 7 to the capacitor 9 is stopped during the transition period from the inverter power supply mode to the bypass power supply mode. When the thyristor switch 16 is normal, a reactive current flows from the bypass AC power source 52 to the capacitor 9 via the thyristor switch 16 and the contactor 10, and current flows from the bypass AC power source 52 to the load 54 via the thyristor switch 16. Flowing. Therefore, since the reactive current to the capacitor 9 and the load current to the load 54 flow through the thyristor switch 16, whether or not the current is flowing through the thyristor switch 16 is determined accurately and quickly even when the load current is small. The inverter power supply mode can be quickly shifted to the bypass power supply mode.
 さらに、バイパス端子T2と出力端子T4の間にサイリスタスイッチ16のみを接続したので、バイパス端子T2と出力端子T4の間にサイリスタスイッチ16とコンタクタを並列接続する場合に比べ、装置の小型化を図ることができる。 Furthermore, since only the thyristor switch 16 is connected between the bypass terminal T2 and the output terminal T4, the apparatus can be downsized as compared with the case where the thyristor switch 16 and the contactor are connected in parallel between the bypass terminal T2 and the output terminal T4. be able to.
 なお、本実施の形態では、インバータ給電モードからバイパス給電モードへの移行時にコンデンサ9への無効電流I9の供給を停止したが、これに限るものではなく、コンデンサ9に供給する無効電流I9を、たとえば数十%だけ減少させてもよい。この場合でも、減少させた分の無効電流I9がサイリスタスイッチ16に流れるので、サイリスタスイッチ16に電流が流れているか否かを容易かつ正確に判定することができる。 In the present embodiment, the supply of the reactive current I9 to the capacitor 9 is stopped at the time of transition from the inverter power supply mode to the bypass power supply mode. However, the present invention is not limited to this, and the reactive current I9 supplied to the capacitor 9 is For example, it may be decreased by several tens of percent. Even in this case, since the reduced reactive current I9 flows through the thyristor switch 16, it can be easily and accurately determined whether or not the current is flowing through the thyristor switch 16.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 T1 入力端子、T2 バイパス端子、T3 直流端子、T4 出力端子、1,10,12 コンタクタ、2 ヒューズ、3,8 リアクトル、4 コンバータ、5 直流母線、6,9 コンデンサ、7 インバータ、CD1~CD3 電流検出器、11 双方向チョッパ、13,14 制御回路、15 操作部、16 サイリスタスイッチ、51 交流電源、52 バイパス交流電源、53 蓄電池、54 負荷。 T1 input terminal, T2 bypass terminal, T3 DC terminal, T4 output terminal, 1,10,12 contactor, 2 fuse, 3,8 reactor, 4 converter, 5 DC bus, 6,9 capacitor, 7 inverter, CD1 to CD3 current Detector, 11 bidirectional chopper, 13, 14 control circuit, 15 operation unit, 16 thyristor switch, 51 AC power source, 52 bypass AC power source, 53 storage battery, 54 load.

Claims (6)

  1.  直流電源または第1の交流電源から供給される電力を用いて、交流電力を負荷に供給する無停電電源装置であって、
     前記直流電源から供給される直流電力を交流電力に変換するインバータと、
     一方端子が前記インバータの出力端子に接続されたリアクトルと、
     前記リアクトルの他方端子に接続されたコンデンサと、
     前記リアクトルの他方端子と前記負荷との間に接続される第1のスイッチと、
     前記第1の交流電源と前記負荷との間に接続される第2のスイッチと、
     前記第2のスイッチに流れる電流を検出する電流検出器と、
     前記電流検出器の検出値に基づいて前記インバータ、前記第1のスイッチ、および前記第2のスイッチを制御する制御回路とを備え、
     前記インバータによって生成された交流電力を前記負荷に供給するインバータ給電モード時において前記制御回路は、前記第1のスイッチをオンさせ、前記第2のスイッチをオフさせ、前記インバータを制御して前記リアクトルおよび前記コンデンサに無効電流を供給させるとともに前記負荷に駆動電流を供給させ、
     前記第1の交流電源からの交流電力を前記第2のスイッチを介して前記負荷に供給するバイパス給電モード時において前記制御回路は、前記第1のスイッチをオフさせ、前記第2のスイッチをオンさせ、前記インバータを制御して前記リアクトルおよび前記コンデンサに無効電流を供給させ、
     前記インバータ給電モードから前記バイパス給電モードに移行する移行期間において前記制御回路は、前記第2のスイッチをオンさせ、前記インバータを制御して前記コンデンサに供給する無効電流を減少させ、前記電流検出器の検出値が予め定められたしきい値を超えたことに応じて前記第1のスイッチをオフさせ、前記インバータを制御して前記コンデンサに供給する無効電流を増大させる、無停電電源装置。
    An uninterruptible power supply that supplies AC power to a load using power supplied from a DC power source or a first AC power source,
    An inverter that converts DC power supplied from the DC power source into AC power;
    A reactor having one terminal connected to the output terminal of the inverter;
    A capacitor connected to the other terminal of the reactor;
    A first switch connected between the other terminal of the reactor and the load;
    A second switch connected between the first AC power source and the load;
    A current detector for detecting a current flowing through the second switch;
    A control circuit for controlling the inverter, the first switch, and the second switch based on a detection value of the current detector;
    In an inverter power supply mode for supplying AC power generated by the inverter to the load, the control circuit turns on the first switch, turns off the second switch, controls the inverter, and controls the reactor. And a reactive current to the capacitor and a drive current to the load,
    In the bypass power supply mode in which AC power from the first AC power supply is supplied to the load via the second switch, the control circuit turns off the first switch and turns on the second switch. And controlling the inverter to supply reactive current to the reactor and the capacitor,
    In the transition period in which the inverter power supply mode shifts to the bypass power supply mode, the control circuit turns on the second switch, controls the inverter to reduce the reactive current supplied to the capacitor, and the current detector An uninterruptible power supply that turns off the first switch in response to a detected value exceeding a predetermined threshold value to increase the reactive current supplied to the capacitor by controlling the inverter.
  2.  前記移行期間において前記制御回路は、前記第2のスイッチをオンさせ、前記インバータを制御して前記コンデンサへの無効電流の供給を停止させ、前記電流検出器の検出値が予め定められたしきい値を超えたことに応じて前記第1のスイッチをオフさせ、前記インバータを制御して前記コンデンサへの無効電流の供給を再開させる、請求項1に記載の無停電電源装置。 In the transition period, the control circuit turns on the second switch, controls the inverter to stop the supply of reactive current to the capacitor, and a detection value of the current detector is set to a predetermined threshold. 2. The uninterruptible power supply according to claim 1, wherein when the value is exceeded, the first switch is turned off, and the inverter is controlled to restart the supply of reactive current to the capacitor.
  3.  前記移行期間において前記制御回路は、前記電流検出器の検出値が前記予め定められたしきい値よりも小さい場合には、前記第1のスイッチをオフさせずに前記インバータから前記負荷への駆動電流の供給を継続させる、請求項1に記載の無停電電源装置。 In the transition period, when the detection value of the current detector is smaller than the predetermined threshold, the control circuit drives the inverter to the load without turning off the first switch. The uninterruptible power supply according to claim 1 which continues supply of current.
  4.  前記移行期間において前記制御回路は、前記電流検出器の検出値が前記予め定められたしきい値よりも小さい場合には、前記第1のスイッチをオフさせずに、故障が発生したことを示す信号を出力する、請求項1に記載の無停電電源装置。 In the transition period, when the detection value of the current detector is smaller than the predetermined threshold, the control circuit indicates that a failure has occurred without turning off the first switch. The uninterruptible power supply according to claim 1 which outputs a signal.
  5.  前記第2のスイッチは、前記移行期間および前記バイパス給電モード時にオンされるサイリスタスイッチを含む、請求項1に記載の無停電電源装置。 The uninterruptible power supply according to claim 1, wherein the second switch includes a thyristor switch that is turned on during the transition period and the bypass power supply mode.
  6.  前記無停電電源装置は、前記直流電源、前記第1の交流電源、または第2の交流電源から供給される電力を用いて、交流電力を負荷に供給し、
     前記直流電源は、
     前記第2の交流電源からの交流電力を直流電力に変換するコンバータと、
     前記コンバータによって生成された直流電力を蓄える電力貯蔵装置とを含み、
     前記インバータは、前記コンバータによって生成された直流電力または前記電力貯蔵装置の直流電力を交流電力に変換する、請求項1に記載の無停電電源装置。
    The uninterruptible power supply uses the power supplied from the DC power supply, the first AC power supply, or the second AC power supply to supply AC power to a load,
    The DC power supply is
    A converter that converts AC power from the second AC power source into DC power;
    A power storage device for storing DC power generated by the converter,
    The uninterruptible power supply according to claim 1, wherein the inverter converts DC power generated by the converter or DC power of the power storage device into AC power.
PCT/JP2016/063194 2016-04-27 2016-04-27 Uninterruptible power supply apparatus WO2017187553A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018514017A JP6585833B2 (en) 2016-04-27 2016-04-27 Uninterruptible power system
PCT/JP2016/063194 WO2017187553A1 (en) 2016-04-27 2016-04-27 Uninterruptible power supply apparatus
CN201680084999.XA CN109075605B (en) 2016-04-27 2016-04-27 Uninterruptible power supply device
KR1020187032765A KR102118277B1 (en) 2016-04-27 2016-04-27 Uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063194 WO2017187553A1 (en) 2016-04-27 2016-04-27 Uninterruptible power supply apparatus

Publications (1)

Publication Number Publication Date
WO2017187553A1 true WO2017187553A1 (en) 2017-11-02

Family

ID=60161334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063194 WO2017187553A1 (en) 2016-04-27 2016-04-27 Uninterruptible power supply apparatus

Country Status (4)

Country Link
JP (1) JP6585833B2 (en)
KR (1) KR102118277B1 (en)
CN (1) CN109075605B (en)
WO (1) WO2017187553A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020021591A1 (en) * 2018-07-23 2020-07-30 東芝三菱電機産業システム株式会社 Uninterruptible power system
EP3787149A1 (en) * 2019-08-30 2021-03-03 Schneider Electric IT Corporation Uninterruptible power system bypass switch control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989537A (en) * 1982-11-15 1984-05-23 株式会社東芝 Control system for inverter
JPH0919065A (en) * 1995-06-27 1997-01-17 Mitsubishi Electric Corp Circuit for synchronization changeover of inverter
JPH114544A (en) * 1997-06-12 1999-01-06 Mitsubishi Electric Corp Power supply
JP2013150415A (en) * 2012-01-18 2013-08-01 Toshiba Mitsubishi-Electric Industrial System Corp Ups system
JP2014124017A (en) * 2012-12-20 2014-07-03 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100225769B1 (en) * 1997-06-04 1999-10-15 윤문수 Single-phase small uninterruptible power supply
JP4393182B2 (en) * 2003-05-19 2010-01-06 三菱電機株式会社 Voltage generation circuit
KR200455403Y1 (en) * 2008-12-26 2011-09-02 한국중부발전(주) Control power supply
EP2421118B1 (en) * 2009-04-17 2017-11-22 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply system
JP2011015493A (en) * 2009-06-30 2011-01-20 Fuji Electric Holdings Co Ltd Distributed power supply device
KR101308783B1 (en) * 2009-09-25 2013-10-04 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Uninterruptible power-supply system
EP2613164B1 (en) * 2011-04-08 2015-01-14 Panasonic Corporation Distributed power generation device and method for operating same
US9236768B2 (en) * 2012-01-31 2016-01-12 Lorenzo Giuntini Systems, methods, and devices for control of parallel uninterruptible power supplies
KR101212262B1 (en) * 2012-04-16 2012-12-13 아이. 에프. 텍 (주) Protection system and method when parallel uninterruptible power supply devices turnover
WO2014016919A1 (en) * 2012-07-25 2014-01-30 東芝三菱電機産業システム株式会社 Power supply system
CN203312823U (en) * 2013-07-11 2013-11-27 许征鹏 Self-coupling voltage regulating type reactive compensation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989537A (en) * 1982-11-15 1984-05-23 株式会社東芝 Control system for inverter
JPH0919065A (en) * 1995-06-27 1997-01-17 Mitsubishi Electric Corp Circuit for synchronization changeover of inverter
JPH114544A (en) * 1997-06-12 1999-01-06 Mitsubishi Electric Corp Power supply
JP2013150415A (en) * 2012-01-18 2013-08-01 Toshiba Mitsubishi-Electric Industrial System Corp Ups system
JP2014124017A (en) * 2012-12-20 2014-07-03 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020021591A1 (en) * 2018-07-23 2020-07-30 東芝三菱電機産業システム株式会社 Uninterruptible power system
EP3787149A1 (en) * 2019-08-30 2021-03-03 Schneider Electric IT Corporation Uninterruptible power system bypass switch control
US11831198B2 (en) 2019-08-30 2023-11-28 Schneider Electric It Corporation Uninterruptible power system bypass switch control

Also Published As

Publication number Publication date
CN109075605A (en) 2018-12-21
JP6585833B2 (en) 2019-10-02
KR102118277B1 (en) 2020-06-02
CN109075605B (en) 2021-09-03
KR20180132869A (en) 2018-12-12
JPWO2017187553A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
US10811898B2 (en) Uninterruptible power supply device
US10615636B2 (en) Uninterruptible power supply
JP6517862B2 (en) Converter apparatus having short circuit fault detection function and short circuit fault detection method for converter apparatus
US9680368B2 (en) Power converter installed between an electric power system and an energy storage device
JP6243554B2 (en) Uninterruptible power system
JP5875214B2 (en) Power conversion system
JP6133827B2 (en) Motor driving device having welding detection function of magnetic contactor
JP7242427B2 (en) uninterruptible power system
JP6585833B2 (en) Uninterruptible power system
JP6092800B2 (en) Uninterruptible power supply system
JP2001069689A (en) Bypass circuit for uninterruptible power supply
JP2017011910A (en) Uninterruptible power supply device
JP4868575B2 (en) Power converter
JP6886040B2 (en) Power supply system
JP6567780B1 (en) Power converter
JP6396239B2 (en) Uninterruptible power supply system
JP4839704B2 (en) AC to AC power converter
EP3379712B1 (en) Power conversion device
JP6490931B2 (en) Uninterruptible power supply and control method of uninterruptible power supply
JP2020141511A (en) Power supply system
KR102675248B1 (en) Power supply system and control method of power supply system
JP6023034B2 (en) Power converter
JP5481055B2 (en) Power converter
JP2024023046A (en) Earth fault detection system
JP2014054086A (en) Power supply device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514017

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187032765

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900425

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900425

Country of ref document: EP

Kind code of ref document: A1