WO2017185357A1 - 可穿戴设备及无人机系统 - Google Patents

可穿戴设备及无人机系统 Download PDF

Info

Publication number
WO2017185357A1
WO2017185357A1 PCT/CN2016/080779 CN2016080779W WO2017185357A1 WO 2017185357 A1 WO2017185357 A1 WO 2017185357A1 CN 2016080779 W CN2016080779 W CN 2016080779W WO 2017185357 A1 WO2017185357 A1 WO 2017185357A1
Authority
WO
WIPO (PCT)
Prior art keywords
display screen
eyepiece
optical lens
wearable device
display
Prior art date
Application number
PCT/CN2016/080779
Other languages
English (en)
French (fr)
Inventor
刘怀宇
龚明
蒋梦瑶
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/080779 priority Critical patent/WO2017185357A1/zh
Priority to CN201680003131.2A priority patent/CN107076998B/zh
Publication of WO2017185357A1 publication Critical patent/WO2017185357A1/zh
Priority to US16/053,105 priority patent/US11036050B2/en
Priority to US17/347,559 priority patent/US20210311314A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/35Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using reflective optical elements in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/12Adjusting pupillary distance of binocular pairs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0147Head-up displays characterised by optical features comprising a device modifying the resolution of the displayed image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0183Adaptation to parameters characterising the motion of the vehicle
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye

Definitions

  • the present invention relates to virtual reality technology, and more particularly to a wearable device and a drone system.
  • Virtual reality the specific meaning is: comprehensive use of computer graphics systems and various interfaces such as reality and control, in the interactive three-dimensional environment generated on the computer to provide immersive feeling technology
  • representative products are Oculus Rift and Sony Morpheus .
  • Augmented reality is a new technology developed on the basis of virtual reality. It is a technology that increases the user's perception of the real world through the information provided by the computer system, and superimposes the computer-generated virtual object, scene or system prompt information into the real scene.
  • the representative products are Google Glass and Microsoft's Hololens.
  • the most popular virtual reality glasses solution on the market today is to place a single display horizontally in front of the human eye, the left half of the screen to display the image viewed by the left eye, the right half of the screen to display the image viewed by the right eye, and the two images through the lens Group zoom in to further enhance the field of view to achieve a virtual reality experience.
  • the display screen is placed in front of the human eye, and because the eyelid is limited by the human eye (the average eyelid distance is 55 mm to 75 mm), the size of the display screen cannot be too large, usually about 5.5 inches, and the existing The maximum resolution of the 5.5-inch display is 2560 ⁇ 1440.
  • the effective display area of the single eye is only about 2.7 inches, and the resolution is 1280 ⁇ 720.
  • the display area is small, and the higher magnification of the lens group is required to improve the immersion feeling, and it is because of the higher magnification that the visual effect has a strong graininess and the display effect is poor.
  • the wearable device and the drone system provided by the present invention can solve the problem that the virtual reality glasses in the prior art cannot simultaneously satisfy the better immersion and display. Show the problem of the effect.
  • a first aspect of the present invention provides a wearable device including a first display screen, a second display screen, a first optical lens, a second optical lens, and a first display screen and the first optical lens a first eyepiece, a second eyepiece disposed between the second display screen and the second optical lens;
  • a display surface of the first display screen is parallel to an optical axis direction of the first eyepiece, and a display surface of the second display screen is parallel to an optical axis direction of the second eyepiece;
  • a reflective surface is formed on the first optical lens and the second optical lens, respectively, and a reflective surface of the first optical lens faces the first display screen and forms a first surface with the first display screen a preset angle such that the object image projected onto the first optical lens by the first display screen is perpendicular to the optical axis direction of the first eyepiece; the reflective surface of the second optical lens faces the second display Forming a second predetermined angle between the screen and the second display screen, so that the object image projected onto the second optical lens by the second display screen is perpendicular to the optical axis direction of the second eyepiece .
  • a second aspect of the present invention provides a wearable device including a display screen, an optical lens, a light shielding member, and an adjusting device, wherein the optical lens is formed with a reflecting surface, and the display surface of the display screen and the reflecting surface A predetermined angle is formed therebetween, and the optical lens is partially transmissive partially reflective, and the adjusting device is configured to adjust the luminous flux of external light passing through the light blocking member to reach the inside of the wearable device.
  • a third aspect of the present invention provides a wearable device including a first display screen, a second display screen, a first optical lens, a second optical lens, a light shielding member, and an adjusting device;
  • the device is used to adjust the amount of light that external light passes through the shade to reach the interior of the wearable device.
  • a fourth aspect of the present invention provides a wearable device comprising: a display screen, an optical lens, a light shielding member, and an adjusting device, wherein the number of the display screen and the optical lens is one, and the optical lens is formed on the optical lens a reflective surface is formed, a predetermined angle is formed between the display surface and the reflective surface of the display screen, the optical lens is partially transmissive and partially reflective, and the adjusting device is configured to adjust external light to pass through the light shielding member to reach The luminous flux inside the wearable device.
  • a fifth aspect of the present invention provides a wearable device including: a display screen, a first eyepiece, a second eyepiece, a light blocking member, and an adjusting device, the display screen and the first eyepiece and the second eyepiece The direction of the optical axis is vertical, the display screen is for transmitting light, and the adjusting device is for adjusting the luminous flux of external light passing through the light shielding member to reach the inside of the wearable device.
  • a sixth aspect of the present invention provides a drone system system including a camera for taking a picture at a first angle of view of an unmanned aerial vehicle, the camera being communicably coupled to a wearable device;
  • the wearable device includes: a first display screen, a second display screen, a first optical lens, a second optical lens, and a first eyepiece disposed between the first display screen and the first optical lens, and disposed at the second a second eyepiece between the display screen and the second optical lens;
  • a display surface of the first display screen is parallel to an optical axis direction of the first eyepiece, and a display surface of the second display screen is parallel to an optical axis direction of the second eyepiece;
  • a reflective surface is formed on the first optical lens and the second optical lens, respectively, and a reflective surface of the first optical lens faces the first display screen and forms a first surface with the first display screen a preset angle such that the object image projected onto the first optical lens by the first display screen is perpendicular to the optical axis direction of the first eyepiece; the reflective surface of the second optical lens faces the second display Forming a second predetermined angle between the screen and the second display screen, so that the object image projected onto the second optical lens by the second display screen is perpendicular to the optical axis direction of the second eyepiece .
  • a seventh aspect of the present invention provides a UAV system, including a camera for taking a picture from a first angle of view of an unmanned aerial vehicle, the camera being communicably coupled to a wearable device;
  • the wearable device includes: a display screen, an optical lens, a light shielding member and an adjusting device, wherein the optical lens is formed with a reflecting surface, and a predetermined angle is formed between the display surface of the display screen and the reflecting surface,
  • the optical lens may be partially transmissive partially reflective, and the adjustment device is configured to adjust the amount of external light that passes through the light blocking member to reach the interior of the wearable device.
  • An eighth aspect of the present invention provides a drone system including a camera for taking a picture at a first angle of view of an unmanned aerial vehicle, the camera being communicably coupled to a wearable device;
  • the wearable device includes: a first display screen, a second display screen, a first optical lens, a second optical lens, a light shielding member, and an adjusting device;
  • the adjusting device It is used to adjust the luminous flux of external light passing through the shading device to reach the inside of the wearable device.
  • a ninth aspect of the present invention provides a drone system including a camera for taking a picture at a first angle of view of an unmanned aerial vehicle, the camera being communicably coupled to a wearable device;
  • the wearable device includes: a display screen, an optical lens, a light shielding member and an adjusting device, wherein the number of the display screen and the optical lens is one, and the optical lens is formed with a reflecting surface, and the display of the display screen A predetermined angle is formed between the surface and the reflecting surface, the optical lens is partially transmissive, and the adjusting device is configured to adjust the luminous flux of external light passing through the light blocking member to reach the inside of the wearable device.
  • a tenth aspect of the present invention provides a drone system including a camera for taking a picture at a first angle of view of an unmanned aerial vehicle, the camera being communicably coupled to a wearable device;
  • the wearable device includes: a display screen, a first eyepiece, a second eyepiece, a light shielding member, and an adjusting device, the display screen being perpendicular to an optical axis direction of the first eyepiece and the second eyepiece, the display screen
  • the light is transmissive, and the adjusting device is configured to adjust the luminous flux of the external light passage through the light blocking member to reach the inside of the wearable device.
  • the wearable device provided by the first aspect of the present invention and the unmanned aerial vehicle system provided by the sixth aspect have the following technical effects: by using a dual screen display, the dual screen is placed in a position parallel to the optical axis direction of the eyepiece, and is reflected by the optical lens.
  • the content displayed on the screen is in the human eye, and the object image formed by the display screen reflected by the optical lens is perpendicular to the optical axis direction of the eyepiece.
  • the display content can be displayed in front of the human eye in a direction perpendicular to the optical axis of the human eye, as compared with
  • the dual-screen display wearable device provided by the present solution has a larger effective display area of a single eye, a stronger immersion feeling, and a better display effect than the prior art.
  • the first perspective flight can be experienced in the virtual reality mode using the wearable device.
  • the wearable device provided by the second aspect and the fourth aspect of the present invention, and the UAV system provided by the seventh aspect and the ninth aspect have the following technical effects: the wearable device passes the optical lens that reflects the display screen and the partially transmissive portion Forming a preset angle and adjusting the luminous flux passing through the light shielding member to reach the inside of the wearable device through the adjusting device, so that the wearable device can be switched in the virtual reality and augmented reality mode when applied to the unmanned aerial vehicle , using the wearable device can be virtual Switching between the simulated reality mode and the augmented reality mode has different experiences.
  • the wearable device provided by the third aspect of the present invention and the UAV system provided by the eighth aspect have the following technical effects: the dual screen display mode can have strong immersion and better in the virtual reality mode.
  • the display effect is such that a preset angle is formed between the display screen and the optical lens that is partially transmissive, and the light flux that passes through the light shielding member to reach the inside of the wearable device is adjusted by the adjusting device, so that the wearable device can be virtualized Switching between reality and augmented reality mode, when applied to an unmanned aerial vehicle, the wearable device can be switched between virtual reality mode and augmented reality mode, has different experiences, and has better performance in virtual reality mode.
  • the immersion is such that a preset angle is formed between the display screen and the optical lens that is partially transmissive, and the light flux that passes through the light shielding member to reach the inside of the wearable device is adjusted by the adjusting device, so that the wearable device can be virtualized Switching between reality and augmented reality mode, when applied to an unmanned aerial vehicle, the wearable
  • the wearable device provided by the fifth aspect of the present invention and the drone system provided by the tenth aspect have the following technical effects: the wearable device is placed in front of the human eye through a display screen for transmitting light, and is adjusted by an adjusting device Passing through the light blocking member to reach the luminous flux inside the wearable device, so that the wearable device can be switched in the virtual reality and augmented reality mode, and when applied to the unmanned aerial vehicle, the wearable device can be utilized in the virtual reality mode and Switching in augmented reality mode has a different experience.
  • FIG. 1 is a schematic structural diagram of a wearable device according to an embodiment of the present invention.
  • Figure 2 is a top plan view of the wearable device of Figure 1;
  • FIG. 3 is another schematic structural diagram of a wearable device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of still another wearable device according to an embodiment of the present invention.
  • Figure 5 is a front elevational view of the wearable device of Figure 4.
  • FIG. 6 is a schematic structural diagram of a fourth type of a wearable device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of control of a pitch adjustment system according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • first and second are used merely to facilitate the description of different components, and are not to be construed as indicating or implying a sequence relationship, relative importance or implicit indication.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • FIG. 1 is a schematic structural view of a wearable device according to an embodiment of the present invention
  • FIG. 2 is a top view of the wearable device of FIG. 1; please refer to FIGS.
  • the wearable device provided in this embodiment includes a first display screen 10a, a second display screen 10b, a first optical lens 20a, a second optical lens 20b, and a first display screen 10a and a first optical lens 20a.
  • the first eyepiece 30a is disposed on the second eyepiece 30b between the second display screen 10b and the second optical lens 20b.
  • the display surface 11a of the first display screen 10a is parallel to the optical axis direction of the first eyepiece 30a.
  • the display surface 11b of the second display screen 10b is parallel to the optical axis direction of the second eyepiece 30b.
  • Reflecting surfaces (21a, 21b) are formed on the first optical lens 20a and the second optical lens 20b, respectively.
  • the reflective surface 21a of the first optical lens 20a faces the first display screen 10a, and a first predetermined angle ⁇ is formed between the reflective surface 21a of the first optical lens 20a and the first display screen 10a, so that the first display screen 10a
  • the object image 101a projected onto the first optical lens 20a is perpendicular to the optical axis direction of the first eyepiece 30a.
  • the reflective surface of the second optical lens 20b faces the second display screen 10b, and the second predetermined angle ⁇ is formed between the reflective surface 21b of the second optical lens 20b and the second display screen 10b to project the second display screen 10b.
  • the object image formed on the second optical lens 20b is perpendicular to the optical axis direction of the second eyepiece 30b.
  • the reflective surface 21a of the first optical lens 20a and the second optical lens 20b may be plated with a reflective film or a transflective film.
  • the reflective surface may be plated with a reflective film;
  • the reflective surface 21a of the first optical lens 20a and the reflective surface 21b of the second optical lens 20b may be plated with a semi-transparent film, for example, in augmented reality mode.
  • the first optical lens 20a and the second optical lens 20b are both partially transmissive and partially reflective. Therefore, the reflective surface 21a of the first optical lens 20a and the reflective surface 21b of the second optical lens 20b may be plated with a transflective film. .
  • the eyepiece is generally an optical component for magnifying the image formed by the objective lens, and the image seen by the user through the first eyepiece 30a and the second eyepiece 30b is The enlarged image.
  • the first eyepiece 30a and the second eyepiece 30b are each a lens group formed by laminating at least one convex lens and at least one concave lens.
  • the convex lens can further enlarge the image, improve the angle of view, and improve the immersion.
  • the concave lens can be used to limit the field of view, allowing only a certain range of light to pass through the lens group.
  • the first display screen 10a and the second display screen 10b are displays having a display function, and the specific shape and structure thereof are not limited.
  • the first display screen 10a and the second display screen 10b may be an LCD display screen (liquid crystal display).
  • an OLED display organic light-emitting display
  • the specific types of the first display 10a and the second display 10b may be other types, and both the first display 10a and the second display 10b Types can also be different from each other.
  • the screen displayed in the first display screen 10a and the second display screen 10b is reflected by the first optical lens 20a and the second optical lens 20b and enters the human eye, so that the user can view the first display screen 10a and the second display screen.
  • the content of the screen in 10b for example, the left eye sees the content displayed on the first display screen 10a, and the right eye sees the content displayed on the second display screen 10b, and the binocular disparity can produce a 3D feeling.
  • the first eyepiece 30a can be viewed by the user's left eye and the second eyepiece 30b can be viewed by the user's right eye.
  • the display surface 11a of the first display screen 10a is parallel to the optical axis direction of the first eyepiece 30a, that is, the display surface 11a of the first display screen 10a is parallel to the optical axis direction of the left eye of the person.
  • the display surface 11b of the second display screen 10b is parallel to the optical axis direction of the second eyepiece 30b, that is, the display surface 11b of the second display screen 10b is parallel to the direction of the optical axis of the right eye of the person.
  • a first predetermined angle ⁇ is formed between the reflective surface 21a of the first optical lens 20a and the first display screen 10a
  • a second predetermined angle is formed between the reflective surface 21b of the second optical lens 20b and the second display screen 10b.
  • the specific value of the first preset angle ⁇ and the second preset angle ⁇ may be specifically set, which is not specifically limited in this embodiment, but the first display screen 10a is required to be secured.
  • the object image projected onto the first optical lens 20a is perpendicular to the optical axis direction of the first eyepiece 30a
  • the second display screen 10b is projected onto the image formed on the second optical lens 20b and the optical axis of the second eyepiece 30b.
  • the direction is vertical, that is, the distance between the object points and the eyepiece plane is the same, so that the object image is trapezoidal, which affects the viewing effect.
  • the first eyepiece 30a and the second eyepiece 30b are both lens groups formed by laminating at least one convex lens and at least one concave lens, the first display screen 10a and the second display are provided.
  • the image of the screen displayed on the screen 10b is reflected by the first optical lens 20a and the second optical lens 20b to form a virtual image.
  • the wearable device provided in this embodiment may be a product such as glasses or a helmet, which is not limited in this embodiment.
  • the wearable device provided in this embodiment displays content by the dual display screens (the first display screen 10a and the second display screen 10b), and passes through the first optical lens 20a and the second optical lens 20b having the reflective function respectively.
  • the display contents on one display screen 10a and the second display screen 10b are respectively incident on the left and right eyes of the person.
  • the effective display area of the single eye can reach 5.5 inches, and the resolution is 2560 ⁇ 1440, after the test, the angle of view of the eyepiece can reach 45°, and by adding 1.5 times to the eyepiece, the angle of view of 70° can be achieved, which can achieve strong immersion and monocular
  • the effective display area is large, the magnification of the eyepiece does not need to be high, and the immersion feeling can be achieved, and the user's visual effect on the graininess is weak, and the display effect is fine.
  • a larger size and higher resolution display can be used to achieve a better display.
  • first display screen 10a and the second display screen 10b may be disposed in parallel with each other. More specifically, as shown in FIG. 1 and FIG. 2, a preset distance may be formed between the first display screen 10a and the second display screen 10b, and the first optical lens 20a, the second optical lens 20b, the first eyepiece 30a, and The second eyepiece 30b is disposed between the first display screen 10a and the second display screen 10b.
  • the placement position between the first display screen 10a and the second display screen 10b may be substantially set according to the width of the face or the head such that the first display screen 10a and the second display screen 10b can be used in use.
  • the two sides of the person's eyes are arranged in a substantially parallel manner. On the one hand, the user can have a better viewing experience when using the device, and on the other hand, the structural space of the wearable device can be saved, and the entire wearable device can be small in size.
  • FIG. 3 is a schematic diagram of another structure of the wearable device according to the embodiment of the present invention. As shown in FIG. 3, the embodiment is based on the first embodiment, and different from the second embodiment, the first display in this embodiment
  • the screen 10a and the second display screen 10b may be placed in a facing manner, and the display surface 11a of the first display screen 10a faces away from the display surface 11b of the second display screen 10b, and the reflective surface 21a of the first optical lens 20a faces The display surface 11a of the first display screen 10a and the reflection surface 21b of the second optical lens 20b face the display surface 11b of the second display screen 10b.
  • the first display screen 10a and the second display screen 10b may be located in the middle of the two eyes.
  • the first display screen 10a and the second display screen 10b When worn, the first display screen 10a and the second display screen 10b are placed in front of the nose of the person, and the first The display screen 10a and the second display screen 10b may select an ultra-thin display screen to ensure that the first display screen 10a and the second display screen 10b block the line of sight of the human eye as much as possible, thereby ensuring a better viewing experience.
  • the first preset angle ⁇ and the second preset angle ⁇ may be equal. Since the optical axes of the first eyepiece 30a and the second eyepiece 30b are substantially parallel, the first display screen 10a and the second display screen 10b are also substantially parallel, and the first preset angle ⁇ and the second preset are The angles ⁇ are equal, and the first optical lens 20a and the second optical lens 20b may be symmetrically disposed about the axis of symmetry of the first eyepiece 30a and the second eyepiece 30b, whereby the first optical lens 20a and the second optical lens 20b are substantially It can form two waists of an isosceles triangle.
  • the first preset angle ⁇ and the second preset angle ⁇ may be 45°.
  • the object image projected onto the first optical lens 20a by the first display screen 10a may be perpendicular to the optical axis direction of the first eyepiece 30a, and the second display screen 10b may be projected onto the image formed by the second optical lens 20b.
  • the optical axis direction of the second eyepiece 30b is perpendicular.
  • the first preset angle ⁇ and the second preset angle ⁇ can also be changed within a range allowed by the error, for example, the permission of the first preset angle ⁇ .
  • the range is 45° ⁇ 5°, and the allowable range of the second preset angle ⁇ is 45° ⁇ 5°.
  • the first preset angle ⁇ and the second preset angle ⁇ are at about 45° so that the first display screen 10a projects onto the image formed on the first optical lens 20a and the optical axis of the first eyepiece 30a.
  • the direction can be substantially vertical, and the object image projected onto the second optical lens 20b by the second display screen 10b can be substantially perpendicular to the optical axis direction of the second eyepiece 30b. The user can see the object image displayed in the front view direction when viewing, and the user experience is better.
  • This embodiment is based on any of the above embodiments, and the present embodiment further defines the first optical lens 20a and the second optical lens 20b.
  • Both the first optical lens 20a and the second optical lens 20b are partially transmissive partially reflective.
  • the light of the first display screen 10a is projected onto the first optical lens 20a, it can be reflected and then enter the human eye.
  • the light of the second display screen 10b is projected onto the second optical lens 20b, it can be reflected. Enter the eyes of the people.
  • the real scene of the outside world can be transmitted into the human eye through the first optical lens 20a and the second optical lens 20b.
  • the human eye can observe the external real scene in front of the line of sight through the first optical lens 20a and the second optical lens 20b having the transmissive function.
  • the content displayed on the first display screen 10a and the second display screen 10b is reflected by the first optical lens 20a and the second optical lens 20b and is incident on the human eye, and the human eye can simultaneously view the current scene and the display screen.
  • the displayed content forms the augmented reality effect of the real scene superimposed on the virtual content on the display.
  • the superimposed effect of the external real scene and the display content of the display screen is the transmittance of the first optical lens 20a and the second optical lens 20b, the external light intensity, the first display screen 10a, the second display
  • the brightness of the screen 10b is determined jointly, and the brightness of the first display screen 10a and the second display screen 10b can be automatically adjusted according to the change of the external light intensity.
  • the user can also manually adjust the first display screen 10a and the second display screen 10b.
  • the brightness is used to achieve a stable superposition effect in different scenes and improve the experience of augmented reality.
  • a camera can also be provided, and the camera can be electrically connected to the first display screen 10a and the second display screen 10b, and the first display screen 10a and the second display screen 10b are displayed and captured according to the content captured by the camera.
  • the content is matched with the display content; the camera is further configured to acquire gesture information of the user, so that the processor performs an operation of matching the gesture information according to the gesture information.
  • the camera can capture the current real scene, and the processor can generate related information matching the current scene according to the current scene captured by the camera, and display the display content related to the current scene on the first display screen 10a and the second display screen 10b.
  • the user wears the wearable device, implements pedestrian detection, face recognition, two-dimensional code recognition and the like.
  • the user can observe the content displayed on the display screen and the current external real scene. Since the overlay image seen by the user is a virtual screen, the user can only see the content displayed on the display screen, but the user cannot truly Touching the screen, for example, the camera in this embodiment can capture an image of a position that the user clicks on the virtual screen by a finger, and the user clicks an operation menu in the screen with a finger, and the camera captures an image of the user's click operation and recognizes
  • the coordinates of the user's finger position are stable for a certain period of time, and the wearable device
  • the real menu is compared with the image, so that the control instruction corresponding to the menu clicked by the user's finger can be recognized, so that the processor performs the corresponding operation, and displays the display screen corresponding to the selected command on the display screen.
  • the user can also perform a selection operation by a finger gesture, a frame selection, or the like, and is not limited to the manner of clicking.
  • the number of cameras in this embodiment is not limited, and specifically, one camera can implement multiple functions, for example, simultaneous implementation of pedestrian detection, face recognition, two-dimensional code recognition, and user finger position coordinate recognition, etc.
  • the above-mentioned different functions are implemented by capturing different screens by one or more cameras.
  • the present embodiment is not limited thereto, and those skilled in the art may specifically select according to specific actual scenarios.
  • the UAV For the operation of the UAV, it is possible to combine the actual flight state of the UAV with the flight-related text or graphic information of the UAV in the line of sight when operating the UAV, for example, Visualize the UAV status, flight direction, flight path, obstacle information and operation prompts, first view image, and more.
  • the embodiments of the present invention are not mentioned here.
  • the first optical lens 20a and the second optical lens 20b may both be half mirrors.
  • the reflective surface 21a of the first optical lens 20a and the reflective surface 21b of the second optical lens 20b may be plated with a transflective film.
  • the so-called half mirror is a glass or plexiglass lens that can transmit a partially reflective portion of the incident light.
  • the first optical lens 20a and the second optical lens 20b can be the same type of lens, both of which are The transmittance and reflectance can be the same, respectively.
  • the first optical lens 20a may have a transmittance of 30% and a reflectance of 70%; similarly, the second optical lens 20b has a transmittance of 30% and a reflectance of 70%.
  • the ratio of the transmittance and the reflectance of the first optical lens 20a and the second optical lens 20b may determine the final superimposing effect, that is, the display effect in the augmented reality mode.
  • the wearable device may further include an adjusting device, where the adjusting device is specifically configured to adjust the external light to penetrate the first optical lens 20a and the second optical lens 20b. Luminous flux.
  • the wearable device In the augmented reality mode, the wearable device should have a light-transmissive area for the user to view the front of the line of sight, when the light enters the wearable device from the light-transmitting area and penetrates the first optical lens 20a and the second optical lens 20b to enter the person. In the eyes, the human eye can see the real scene outside. And for realizing in virtual In the present embodiment, the switching between the reality and the augmented reality requires blocking or not blocking external light from entering the human eye from the light-transmitting region. In this embodiment, the adjusting device adjusts whether the external light passes through the light-transmitting region, because in this embodiment.
  • the adjusting device is specifically configured to adjust the external light to penetrate the first optical lens 20a. And the luminous flux of the second optical lens 20b.
  • the mode is a virtual reality mode.
  • the luminous flux is not zero, for example, the external light can be totally incident on the first optical lens 20a and the second optical lens 20b without blocking, and pass Part of the first optical lens 20a and the second optical lens 20b transmits a partial reflection function, and external light can be transmitted into the human eye.
  • the content displayed on the first display screen 10a and the second display screen 10b also passes through the first optical lens.
  • the object image formed by the reflection of 20a and the second optical lens 20b is also incident into the human eye and superimposed on the real scene to form an augmented reality display mode in the human eye.
  • the wearable device provided by the embodiment adjusts the luminous flux entering the wearable device through the adjusting device, and when the external light penetrates into the wearable device, the luminous flux is zero, and the virtual reality display mode is when the external light can be incident.
  • the first optical lens 20a and the second optical lens 20b are augmented reality display modes, so that the wearable device can realize the integration of virtual reality and augmented reality under the adjustment function of the adjusting device, and realize virtual reality. Switching between augmented reality.
  • the embodiment will be described in detail on the basis of the sixth embodiment.
  • the light shielding member 40 is further included.
  • the light shielding member 40 may face the surface of the first optical lens 20a opposite to the reflective surface 21a and the surface of the second optical lens 20b opposite to the reflective surface 21b. Light for blocking the real scene of the outside is projected onto the first optical lens 20a and the second optical lens 20b.
  • the wearable device provided in this embodiment may include a wearable device body 50.
  • the wearable device body 50 may be a box-like structure as shown in FIG. 1
  • the light blocking member 40 may be a thin plate type structure. Or other structure.
  • the structure of the wearable device body 50 and the structure of the light-shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, which are not described herein.
  • the embodiment is based on the seventh embodiment.
  • the light shielding member 40 can be an adjustable light transmittance member, and the adjusting device can be electrically connected to the light shielding member 40 (not shown).
  • the voltage applied by the member 40 is varied to change the light transmittance of the light blocking member 40.
  • the light blocking member 40 can be an LCD liquid crystal screen.
  • the light blocking member 40 can also be other types, such as a TN LCD liquid crystal screen, or an electrochromic glass or the like.
  • Liquid crystal is an organic compound composed of long rod-shaped molecules. In the natural state, the long axes of these rod-shaped molecules are substantially parallel.
  • the LCD screen can change the arrangement of molecules in the liquid crystal material by voltage to achieve the purpose of shading and light transmission.
  • the shading member 40 provided in this embodiment can be controlled by voltage so that it works in two states: one is transparent
  • the state is the light-shielding state.
  • the light transmittance is close to 10%.
  • the external light can not pass through the light-shielding member at all, and the light transmittance is 0%.
  • the wearable device In the transparent state, the wearable device is in augmented reality display mode, and the user can see the real outside scene.
  • the wearable device In the blackout state, the wearable device is in the display mode of the virtual reality, and the real scene of the outside world cannot enter the user's eyes. At this time, the user can only see the content displayed on the first display screen 10a and the second display screen 10b.
  • the entire wearable device is in a virtual reality display mode.
  • the light shielding member 40 provided in the present embodiment can be disposed perpendicular to the first display screen 10a and the second display screen 10b, so that the light shielding member 40 can achieve a better light shielding effect.
  • the position of the light shielding member 40 is not limited thereto.
  • the light shielding member 40 may also be disposed at an acute or obtuse angle with the first display screen 10a and the second display screen 10b.
  • the shape of the light shielding member 40 may be a straight plate shape, a curved surface shape, or other regular or irregular shapes, which does not affect the functional realization of the light shielding member.
  • the number of the light shielding members 40 may be one or two, or multiple, for example, the plurality of light shielding members 40 are spliced to completely shield the external light.
  • the light shielding member 40 used in the embodiment is a single light shielding member. .
  • the embodiment is not limited, and the light shielding member 40 can block the outside light from entering the wearable body.
  • the first optical lens 20a and the second optical lens 20b may be penetrated in the device.
  • the adjusting device in this embodiment is electrically connected to the light blocking member 40, and the adjusting device can be disposed inside the wearable device without being exposed to ensure the neatness of the appearance of the wearable device.
  • the wearable device provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters the wearable device by adjusting the light transmittance of the light shielding member 40.
  • the wearable device operates in the virtual reality mode when the voltage applied to the light blocking member 40 is applied.
  • another preset value is reached and the light blocking member 40 is completely transparent, external light can enter the wearable device through the light shielding member 40, and the human eye can view the real scene outside, and the wearable device works in the augmented reality mode. .
  • the embodiment is based on the seventh embodiment, and provides an implementation different from the eighth embodiment.
  • the arrangement position of the light shielding member 40 can be the same as that of the eighth embodiment.
  • the difference from the eighth embodiment is that the light shielding member 40 can be detachably It is disposed on the wearable device body 50.
  • the light shielding member 40 may be made of a common opaque material, for example, a common plastic plate, a wooden board, or the like.
  • the light shielding member 40 is light in weight to minimize the lightening member 40. The weight of the entire wearable device increases the comfort of wearing.
  • the light shielding member 40 is detachably disposed on the wearable device, the switching of the virtual reality and the augmented reality mode is realized by disassembly.
  • the light blocking member 40 itself can function as an adjusting device.
  • the visor 40 can be disposed on the wearable device body 50 in a detachable manner.
  • a detachable connection mode there are many detachable connection modes. This embodiment exemplifies only a few preferred methods, but It can be understood that the actual operation process is not limited to the above manner.
  • the present invention provides a wearable device that is simple in structure and low in cost, and can also adjust the luminous flux of external light projected into the interior of the wearable device, but the operation is slightly complicated.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding member body and a support member (shown in the drawing), and the support member may be a transparent glass plate or The other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and form a side wall of the wearable device body 50.
  • the light shielding member body is placed.
  • the inner side of the wearable device body 50 is disposed and laminated with the support member, and when the light shielding is not required, the light shielding member body is removed from the wearable device body 50. It can not only ensure the appearance of the wearable device, but also protect the internal components of the wearable device to a certain extent.
  • the wearable device may further include a distance adjustment system connected to the first eyepiece 30a and the second eyepiece 30b, respectively, for driving the first eyepiece 30a and the first
  • the binoculars 30b are relatively close or relatively far apart to adjust the distance between the first eyepiece 30a and the second eyepiece 30b.
  • the wearable device provided in this embodiment further has a distance adjustment function, in order to adapt to the use of different people.
  • the first eyepiece 30a and the second eyepiece 30b are movably disposed on the wearable device body 50, thereby ensuring that the distance between the first eyepiece 30a and the second eyepiece 30b can be changed.
  • the interim adjustment system may be a manual adjustment system.
  • the first eyepiece 30a and the second eyepiece 30b may be movably connected to the wearable device body 50 by means of a rail, and the first eyepiece 30a and the second eyepiece 30b may be connected.
  • the lever is connected and the user can operate the link to adjust the position of the first eyepiece 30a and the second eyepiece 30b.
  • the first eyepiece 30a and the second eyepiece 30b can realize the movement of the first eyepiece 30a and the second eyepiece 30b by means of a threaded spindle.
  • the screw can have two segments of different threads, two different threads.
  • a segment is respectively screwed on the segment, and the first eyepiece 30a and the second eyepiece 30b are respectively fixedly connected to the corresponding silk nut, and the user can manually rotate the screw so that the first eyepiece 30a and the second eyepiece 30b respectively correspond to the silk mother.
  • the first eyepiece 30a and the second eyepiece 30b are relatively close to or relatively far apart in a straight line direction, and the first eyepiece 30a and the second eyepiece 30b are relatively close or relatively far apart, thereby achieving manual adjustment of the lay length.
  • the adjustment of the interpupillary distance can also be realized by an automatic adjustment manner, and the distance measuring unit for measuring the pupil distance of the user can be set on the wearable device body 50, and the interpupillary distance adjusting system can measure the current measured according to the interpupillary distance measuring unit.
  • the user's interpupillary value and specifically adjusts the distance between the first eyepiece 30a and the second eyepiece 30b, thereby making the interpupillary adjustment more precise.
  • FIG. 7 is a schematic diagram of control of a pitch adjustment system according to an embodiment of the present invention.
  • the embodiment is based on the tenth embodiment.
  • the interpupillary adjustment system may specifically include The servo motor 60, the servo motor control module 70 and the transmission device 80, the servo motor control module 70 can be used to control the rotation angle of the output shaft of the servo motor 60, and the transmission device 80 is used to convert the rotary motion into a linear motion, the servo motor 60 Connected to the input of the transmission 80, the output of the transmission 80 is coupled to the first eyepiece 30a and the second eyepiece 30b.
  • the servo motor 60 in this embodiment is a micro servo motor, and is suitable for wearable devices such as glasses or helmets having a small size.
  • the transmission device 80 can be a matching manner of the lead screw nut of the tenth embodiment, and the output shaft of the servo motor 60 can be fixedly connected with the lead screw, for example, can be connected through a coupling, and the servo motor control module 70 can receive the lay length. Measuring the measured distance information of the unit and controlling the operation of the servo motor 60, or the servo motor control module 70 can receive the trigger signal of the user and control the start or stop of the servo motor 60 according to the trigger signal to control the first eyepiece. The movement or stopping of the 30a and the second eyepiece 30b. In this embodiment, the distance between the first eyepiece 30a and the second eyepiece 30b is precisely adjusted by the servo motor 60 to achieve accurate pitch adjustment.
  • the pictures on the first display screen 10a and the second display screen 10b can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and The three points in the center of the screen can be on the same line, improving the comfort of viewing.
  • the embodiment provides a wearable device, including a display screen, an optical lens, a light shielding member and an adjusting device.
  • the optical lens is formed with a reflecting surface, and a preset angle is formed between the display surface of the display screen and the reflecting surface of the optical lens.
  • the optical lens may be partially transmissive and partially reflected, and the adjusting device is configured to adjust the luminous flux of external light passing through the light blocking member to reach the inside of the wearable device.
  • 4 is a schematic structural diagram of still another wearable device according to an embodiment of the present invention; and FIG. 5 is a front view of the wearable device of FIG. 4.
  • the wearable device provided by this embodiment can refer to FIG. 1 and FIG. 2, or FIG. 4 and FIG.
  • the number of display screens may be two (first display screen 10a, second display screen 10b), and correspondingly, the number of optical lenses is also two (first optical lens 20a)
  • the second optical lens 20b) is matched with the two display screens respectively, and the angle between the reflective surface 21a of the first optical lens 20a and the display surface 11a of the first display screen 10a is a first predetermined angle ⁇ .
  • the angle between the reflecting surface 21b of the second optical lens 20b and the display surface 11b of the second display screen 10b is a second predetermined angle ⁇ .
  • the number of display screens is one, as shown in FIG. 4 and FIG. 5, the number of optical lenses is one, as shown in FIGS. 4 and 5, the display screen 10 versus The angle between the optical lenses 20 is ⁇ .
  • the display screen may be a display having a display function, and the specific shape and structure thereof are not limited, for example, the display screen is an LCD display screen (liquid crystal display screen), or the OLED display screen (organic light-emitting display screen) is used for light projection of the display screen.
  • the display screen is an LCD display screen (liquid crystal display screen), or the OLED display screen (organic light-emitting display screen) is used for light projection of the display screen.
  • LCD display screen liquid crystal display screen
  • OLED display screen organic light-emitting display screen
  • the superposition effect of the external scene and the display content of the display screen is determined by the transmittance of the optical lens, the intensity of the external light, and the brightness of the display screen, and the brightness of the display screen can be based on the intensity of the external light.
  • Automatically adjust to change of course, the user can also manually adjust the brightness of the display, in order to achieve a stable superposition effect in different scenes, improve the experience of augmented reality.
  • a camera can also be set, and the camera can be electrically connected to the display screen, and the display screen displays the display content matched with the captured content according to the content captured by the camera; the camera is also used to acquire the gesture information of the user,
  • the processor is caused to perform an operation of matching the gesture information according to the gesture information.
  • the camera can capture the current real scene, and the processor can generate related information matching the current scene according to the current scene captured by the camera, and display the display content related to the current scene on the display screen.
  • the user wears the wearable device, implements pedestrian detection, face recognition, two-dimensional code recognition and the like.
  • the user can observe the content displayed on the display screen and the current external real scene.
  • the user can only see the content displayed on the display screen, but the user
  • the camera in this embodiment can capture an image of a position that the user clicks on the virtual screen by a finger.
  • the user clicks an operation menu in the screen with a finger, and the camera captures an image of the user's click operation.
  • identifying the coordinates of the position of the user's finger in a certain period of time by performing image comparison with the real menu in the wearable device, thereby being able to recognize the control instruction corresponding to the menu clicked by the user's finger, so that the processor performs the corresponding operation.
  • the display screen corresponding to the selected command is displayed on the display.
  • the user can also perform a selection operation by a finger gesture, a frame selection, or the like, and is not limited to the manner of clicking.
  • the number of cameras in this embodiment is not limited, and specifically, one camera can implement multiple functions, for example, simultaneous implementation of pedestrian detection, face recognition, two-dimensional code recognition, and user finger position coordinate recognition, etc. Or capture more different images with more than one camera
  • the different functions described above are not limited herein, and those skilled in the art may specifically select according to specific actual scenarios.
  • the UAV For the operation of the UAV, it is possible to combine the actual flight state of the UAV with the flight-related text or graphic information of the UAV in the line of sight when operating the UAV, for example, Visualize the UAV status, flight direction, flight path, obstacle information and operation prompts, first view image, and more.
  • the embodiments of the present invention are not mentioned here.
  • the optical lens may be a half mirror.
  • a transflective film may be plated on the reflective surface of the optical lens.
  • the half mirror is a glass or plexiglass lens that can transmit a partially reflective portion of the incident light.
  • the optical lens may have a transmittance of 30% and a reflectance of 70%.
  • the ratio of the transmittance and the reflectance of the optical lens may be other forms, which is not limited in this embodiment. The ratio of the transmittance and reflectance of the optical lens can determine the final superposition effect, that is, the display effect in the augmented reality mode.
  • the wearable device In the augmented reality mode, the wearable device should have a light-transmissive area for the user to view the front of the line of sight.
  • the wearable device When the light enters the wearable device from the light-transmitting area and penetrates the optical lens and enters the human eye, the human eye can see the outside world. Scenes.
  • the adjusting device In order to achieve the switching between the virtual reality and the augmented reality, it is necessary to block or not block the external light from entering the human eye from the light-transmitting region.
  • the adjusting device adjusts whether the external light passes through the transparent region, because In this embodiment, as long as light can pass through the light transmissive area, light can enter the human eye through the optical lens.
  • the adjusting device can adjust the luminous flux that the external light passes through the light shielding member to reach the inside of the wearable device.
  • the adjusting device adjusts the light flux of the external light into the wearable device to be zero, the external light cannot be transmitted through the optical lens.
  • the human eye In the human eye, the human eye cannot see the outside scene, and is immersed in the object image scene formed by the reflection of the optical lens in the wearable device, and the mode is the virtual reality mode.
  • the adjusting device adjusts the light flux of the external light into the wearable device to be non-zero, for example, the external light can be totally incident on the optical lens without being blocked, and the partial light transmitting part of the optical lens reflects the external light. It can be transmitted into the human eye. At this time, the image displayed on the display screen through the reflection of the optical lens is also incident into the human eye and superimposed on the real scene to form an augmented reality display mode in the human eye.
  • the wearable device in the prior art can only implement virtual reality or augmented reality, and cannot implement virtual reality and augmented reality simultaneously on one wearable device product, and can not realize the relationship between the two modes.
  • the wearable device provided by the embodiment adjusts the luminous flux of the external light penetrating through the optical lens through the adjusting device, and when the luminous flux of the external light passing through the optical lens is zero, the virtual reality display mode is when the external light can be incident on the optical On the lens, the augmented reality display mode enables the wearable device to realize the integration of the virtual reality and the augmented reality under the adjustment of the adjustment device, and realize the switching between the virtual reality and the augmented reality.
  • the embodiment is further limited to the adjustable device according to the embodiment 12.
  • the light shielding member 40 can face the surface of the optical lens opposite to the reflective surface of the optical lens, and the light shielding member is used to block the light of the real scene from being projected to the outside.
  • the light blocking member 40 as shown in FIGS. 1 and 2 faces the surface of the first optical lens 20a opposite to the reflecting surface 21a, and the surface of the second optical lens 20b opposite to the reflecting surface 21b.
  • the light blocking member 40 as shown in FIGS. 4 and 5 faces the surface of the optical lens 20 opposite to the reflecting surface 21.
  • the wearable device provided in this embodiment may include a wearable device body 50.
  • the wearable device body 50 may be a box-like structure as shown in FIG. 1 or FIG. 4, and the light blocking member 40 may be a thin plate type structure or other. structure.
  • the light blocking member 40 may be a thin plate type structure or other. structure.
  • the structure of the wearable device body 50 and the structure of the light-shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, which are not described herein.
  • the angle between the light blocking member 40 and the optical lens may be equal to a preset angle between the display screen and the optical lens.
  • the angle between the light shielding member 40 and the first optical lens 20a may be equal to the angle between the first optical lens 20a and the first display screen 10a
  • the light shielding member 40 and the second The angle of the optical lens 20b is equal to the angle between the second optical lens 20b and the second display screen 10b.
  • the optical lens 20 may be disposed obliquely in the wearable device body 50.
  • the display screen 10 is disposed at a predetermined angle with the optical lens 20, and the optical lens 20 and the light shielding member are disposed.
  • the angle between 40 is equal to the preset angle between display 10 and optical lens 20.
  • the embodiment is based on the thirteenth embodiment.
  • the light shielding member 40 can be an adjustable light transmittance, and the adjusting device is electrically connected to the light blocking member 40 (not shown), and the adjusting device is used for adjusting the light shielding member 40.
  • the magnitude of the applied voltage is varied to change the light transmittance of the light blocking member 40.
  • the light blocking member 40 can be an LCD liquid crystal screen.
  • the light blocking member 40 can also be other types, such as a TN LCD liquid crystal screen, or an electrochromic glass or the like.
  • Liquid crystal is an organic compound composed of long rod-shaped molecules. In the natural state, the long axes of these rod-shaped molecules are substantially parallel.
  • the LCD screen can change the arrangement of molecules in the liquid crystal material by voltage to achieve the purpose of shading and light transmission.
  • the shading member 40 provided in this embodiment can be controlled by voltage so that it works in two states: one is transparent
  • the state is the light-shielding state. In the transparent state, the light transmittance is close to 10%. Under the light-shielding state, the external light can not pass through the light-shielding member at all, and the light transmittance is 0%.
  • the wearable device In the transparent state, the wearable device is in augmented reality display mode, and the user can see the real outside scene.
  • the wearable device In the blackout state, the wearable device is in a virtual reality display mode, and the real scene of the outside world cannot enter the user's eyes. At this time, the user can only see the content displayed on the display, and the entire wearable device is in the virtual reality display. mode.
  • the wearable device provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters the wearable device by adjusting the light transmittance of the light shielding member 40.
  • the wearable device operates in the virtual reality mode when the voltage applied to the light blocking member 40 is applied.
  • another preset value is reached and the light blocking member 40 is completely transparent, external light can enter the wearable device through the light shielding member 40, and the human eye can view the real scene outside, and the wearable device works in the augmented reality mode. .
  • the embodiment is based on the thirteenth embodiment, and provides an implementation different from the fourteenth embodiment.
  • the arrangement position of the light shielding member 40 can be the same as that of the fourteenth embodiment, and the difference from the fourteenth embodiment is that the light shielding member 40 is different from the fourteenth embodiment.
  • It may be detachably disposed on the wearable device body 50.
  • the light shielding member 40 may be made of a common opaque material, for example, a common plastic plate, a wooden board, or the like.
  • the light shielding member 40 is light in weight to minimize the lightening member 40. The weight of the entire wearable device increases the comfort of wearing.
  • the light shielding member 40 is detachably disposed on the wearable device, the switching of the virtual reality and the augmented reality mode is realized by disassembly.
  • the light blocking member 40 itself functions as an adjusting device.
  • the visor 40 can be disposed on the wearable device body 50 in a detachable manner.
  • detachable connection modes there are many detachable connection modes.
  • This embodiment only exemplifies a preferred embodiment. There are several ways, but it can be understood that the actual application process is not limited to the above.
  • the wearable device has a simple structure and a low cost, and can also realize the light flux for adjusting the external light to enter the inside of the wearable device, but the operation is slightly complicated.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding member body and a support member (shown in the drawing), and the support member may be a transparent glass plate or The other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and form a side wall of the wearable device body 50.
  • the light shielding member body is placed.
  • the inside of the wearable device body 50 and the support member are stacked, and when the light shielding is not required, the shade body can be removed from the wearable device body 50. It can not only ensure the appearance of the wearable device, but also protect the internal components of the wearable device to a certain extent.
  • the wearable device may further include a first eyepiece 30a and a second eyepiece 30b, the first eyepiece.
  • the 30a and the second eyepiece 30b are disposed between the display surface of the display screen and the reflective surface of the optical lens.
  • the first eyepiece 30a is disposed between the display surface 11a of the first display screen 10a and the reflective surface 21a of the first optical lens 20a
  • the second eyepiece 30b is disposed on the display of the second display screen 10b.
  • the surface 11b is between the surface 11b and the reflecting surface 21b of the second optical lens 20b.
  • the first display screen 10a and the second display screen 10b may be disposed opposite to each other in parallel. More specifically, a preset distance may be formed between the first display screen 10a and the second display screen 10b, and the first optical lens 20a, the second optical lens 20b, the first eyepiece 30a, and the second eyepiece 30b are disposed on the first display.
  • the placement position between the first display screen 10a and the second display screen 10b may be substantially set according to the width of the face or the head such that the first display screen 10a and the second display screen 10b can be used in use.
  • the two sides of the person's eyes are arranged in a substantially parallel manner.
  • the user can have a better viewing experience when using the device, and on the other hand, the structural space of the wearable device can be saved, and the entire wearable device can be small in size.
  • the first predetermined angle ⁇ between the first display screen 10a and the first optical lens 20a and the second predetermined angle ⁇ between the second display screen 10b and the second optical lens 20b may be equal. Since the optical axes of the first eyepiece 30a and the second eyepiece 30b are substantially parallel, the first display screen 10a and the second display are The screen 10b is also substantially parallel between the two, the first preset angle ⁇ is equal to the second preset angle ⁇ , and the first optical lens 20a and the second optical lens 20b can be the first eyepiece 30a and the second eyepiece 30b.
  • the axis of symmetry is symmetrically disposed centrally, whereby the first optical lens 20a and the second optical lens 20b can substantially form two waists of an isosceles triangle.
  • the first preset angle ⁇ and the second preset angle ⁇ may be 45°.
  • the object image projected onto the first optical lens 20a by the first display screen 10a may be perpendicular to the optical axis direction of the first eyepiece 30a, and the second display screen 10b may be projected onto the image formed by the second optical lens 20b.
  • the optical axis direction of the second eyepiece 30b is perpendicular.
  • the first preset angle ⁇ and the second preset angle ⁇ can also be changed within a range allowed by the error, for example, the permission of the first preset angle ⁇ .
  • the range is 45° ⁇ 5°, and the allowable range of the second preset angle ⁇ is 45° ⁇ 5°.
  • the first preset angle ⁇ and the second preset angle ⁇ are at about 45° so that the first display screen 10a projects onto the image formed on the first optical lens 20a and the optical axis of the first eyepiece 30a.
  • the direction can be substantially vertical, and the object image projected onto the second optical lens 20b by the second display screen 10b can be substantially perpendicular to the optical axis direction of the second eyepiece 30b. The user can see the object image displayed in the front view direction when viewing, and the user experience is better.
  • the first eyepiece 30a and the second eyepiece 30b may both be disposed between the display surface 11 of the display screen 10 and the reflective surface 21 of the optical lens 20. Thereby, the human eye can completely pass the content displayed on the display screen reflected by the optical lens through the first eyepiece 30a and the second eyepiece 30b.
  • the object image projected on the optical lens by the display surface of the display screen is perpendicular to the optical axis direction of the first eyepiece 30a and the second eyepiece 30b.
  • the display surface 11a of the first display screen 10a is projected onto the first optical lens 20a
  • the object image 101a is perpendicular to the optical axis direction of the first eyepiece 30a and the second eyepiece 30b, and second.
  • the object image (not shown) projected onto the second optical lens 20b by the display surface 11b of the display screen 10b is perpendicular to the optical axis directions of the first eyepiece 30a and the second eyepiece 30b.
  • the object image 101 projected onto the optical lens 20 by the display surface 11 of the display screen 10 is perpendicular to the optical axis directions of the first eyepiece 30a and the second eyepiece 30b.
  • the first eyepiece 30a can be viewed by the user's left eye
  • the second eyepiece 30b can be viewed by the user's right eye.
  • the object image projected on the optical lens of the display screen is perpendicular to the optical axis direction of the first eyepiece 30a and the second eyepiece 30b, that is, the distance between the object images and the eyepiece plane is the same, so that the object image can be prevented from being trapezoidal. , affecting the user's viewing effect.
  • the eyepiece is generally formed by an objective lens.
  • the image is enlarged for the optical component for eye observation, and the image seen by the user through the first eyepiece 30a and the second eyepiece 30b is an enlarged image.
  • the first eyepiece 30a and the second eyepiece 30b are each a lens group formed by laminating at least one convex lens and at least one concave lens.
  • the convex lens can further enlarge the image, improve the angle of view, and improve the immersion.
  • the concave lens can be used to limit the field of view, allowing only a certain range of light to pass through the lens group.
  • the screens displayed in the first display screen 10a and the second display screen 10b may pass through the first optical respectively.
  • the reflection of the lens 20a and the second optical lens 20b enters the human eye, so that the user can view the screen content in the first display screen 10a and the second display screen 10b, for example, the left eye sees the content displayed on the first display screen 10a.
  • the right eye sees the content displayed on the second display screen 10b, and due to the binocular parallax, a 3D feeling can be generated.
  • the number of display screens is one, that is, as shown in FIGS. 4 and 5
  • the screen displayed in the display screen 10 is amplified by the first eyepiece 30a and the second eyepiece 30b to achieve a certain immersion.
  • the embodiment is based on the sixteenth embodiment.
  • the wearable device provided in this embodiment may further include a distance adjustment system, which is respectively connected to the first eyepiece 30a and the second eyepiece 30b for driving the first eyepiece 30a and
  • the second eyepiece 30b is relatively close or relatively far apart to adjust the distance between the first eyepiece 30a and the second eyepiece 30b.
  • the wearable device provided in this embodiment further has a distance adjustment function, in order to adapt to the use of different people.
  • the first eyepiece 30a and the second eyepiece 30b are movably disposed on the wearable device body 50, thereby ensuring that the distance between the first eyepiece 30a and the second eyepiece 30b can be changed.
  • the interim adjustment system may be a manual adjustment system.
  • the first eyepiece 30a and the second eyepiece 30b may be movably connected to the wearable device body 50 by means of a rail, and the first eyepiece 30a and the second eyepiece 30b may be connected.
  • the lever is connected and the user can operate the link to adjust the position of the first eyepiece 30a and the second eyepiece 30b.
  • the first eyepiece 30a and the second eyepiece 30b can realize the movement of the first eyepiece 30a and the second eyepiece 30b by means of a threaded spindle.
  • the screw can have two segments of different threads, two different threads.
  • a segment is respectively screwed on the segment, and the first eyepiece 30a and the second eyepiece 30b are respectively fixedly connected to the corresponding silk nut, and the user can manually rotate the screw so that the first eyepiece 30a and the second eyepiece 30b respectively correspond to the silk mother.
  • the adjustment of the interpupillary distance can also be realized by an automatic adjustment manner, and the distance measuring unit for measuring the pupil distance of the user can be set on the wearable device body 50, and the interpupillary distance adjusting system can measure the current measured according to the interpupillary distance measuring unit.
  • the user's interpupillary value and specifically adjusts the distance between the first eyepiece 30a and the second eyepiece 30b, thereby making the interpupillary adjustment more precise.
  • FIG. 7 is a schematic diagram of control of a pitch adjustment system according to an embodiment of the present invention.
  • the embodiment is based on the seventeenth embodiment.
  • the interpupillary adjustment system may specifically include a servo motor 60, a servo motor control module 70, and a transmission device 80.
  • the servo motor control module 70 It can be used to control the rotation angle of the output shaft of the servo motor 60.
  • the transmission 80 is used to convert the rotary motion into a linear motion.
  • the servo motor 60 is connected to the input end of the transmission device 80.
  • the output end of the transmission device 80 and the first eyepiece 30a is connected to the second eyepiece 30b.
  • the servo motor 60 in this embodiment is a micro servo motor, and is suitable for wearable devices such as glasses or helmets having a small size.
  • the transmission device 80 can be a matching manner of the lead screw nut of the ninth embodiment, and the output shaft of the servo motor 60 can be fixedly connected with the lead screw, for example, can be connected through a coupling, and the servo motor control module 70 can receive the cymbal.
  • the distance information measured by the measuring unit is controlled, and the operation of the servo motor 60 is controlled.
  • the servo motor control module 70 can receive the trigger signal of the user, and control the start or stop of the servo motor 60 according to the trigger signal to control the first.
  • the movement or stop of the eyepiece 30a and the second eyepiece 30b In this embodiment, the distance between the first eyepiece 30a and the second eyepiece 30b is precisely adjusted by the servo motor 60 to achieve accurate pitch adjustment.
  • the pictures on the first display screen 10a and the second display screen 10b can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and The three points in the center of the screen can be on the same line, improving the comfort of viewing.
  • the embodiment provides a wearable device including a first display screen 10a, a second display screen 10b, a first optical lens 20a, a second optical lens 20b, a light shielding member and an adjusting device.
  • Reflecting surfaces (21a, 21b) are formed on the first optical lens 20a and the second optical lens 20b, respectively, between the display surface 11a of the first display screen 10a and the reflecting surface 21a of the first optical lens 20a.
  • the partially transmissive portion is reflective, and the adjusting device is configured to adjust the luminous flux of external light passing through the light blocking member to reach the inside of the wearable device.
  • the first display screen 10a and the second display screen 10b are displays having a display function, and the specific shape and structure thereof are not limited.
  • the first display screen 10a and the second display screen 10b may be an LCD display screen (liquid crystal display).
  • an OLED display organic light-emitting display
  • the specific types of the first display 10a and the second display 10b may be other types, and both the first display 10a and the second display 10b Types can also be different from each other.
  • the screen displayed in the first display screen 10a and the second display screen 10b is reflected by the first optical lens 20a and the second optical lens 20b and enters the human eye, so that the user can view the first display screen 10a and the second display screen.
  • the content of the screen in 10b for example, the left eye sees the content displayed on the first display screen 10a, and the right eye sees the content displayed on the second display screen 10b, and the binocular disparity can produce a 3D feeling.
  • a first predetermined angle ⁇ is formed between the reflective surface 21a of the first optical lens 20a and the first display screen 10a
  • a second predetermined angle is formed between the reflective surface 21b of the second optical lens 20b and the second display screen 10b.
  • the specific value of the first preset angle ⁇ and the second preset angle ⁇ may be specifically set, which is not specifically limited in this embodiment, but it is required to ensure that the display content on the first display screen 10a can be all projected to the first On the optical lens 20a, the display content on the second display screen 10b can be all projected onto the second optical lens 20b, and the first optical lens 20a and the second optical lens 20b which ensure the specific partial transmission and partial reflection functions can make the display screen
  • the display content on the screen is viewed by the human eye, and it can also ensure that the real scene outside can be seen by the human eye.
  • the adjusting device can adjust the luminous flux of the external light passing through the first optical lens 20a and the second optical lens 20b, and the adjusting device adjusts the external light to wear.
  • the luminous flux passing through the first optical lens 20a and the second optical lens 20b is zero, external light cannot be transmitted into the human eye through the first optical lens 20a and the second optical lens 20b, and the human eye cannot see the external scene and is immersed in In the object image scene formed by the reflection of the first optical lens 20a and the second optical lens 20b in the first display screen 10a and the second display screen 10b of the wearable device, the mode is a virtual reality mode.
  • the adjusting device adjusts that the light flux of the external light passing through the first optical lens 20a and the second optical lens 20b is not zero, for example, the external light can be totally incident on the first optical lens 20a without being blocked.
  • the second optical lens 20b and through the partial transmission partial reflection function of the first optical lens 20a and the second optical lens 20b, external light can be transmitted into the human eye, at this time, the first display screen 10a and the second display screen 10b
  • the object image displayed on the upper side through the reflection of the first optical lens 20a and the second optical lens 20b is also incident into the human eye and superimposed on the real scene to form an augmented reality display mode in the human eye.
  • the first optical lens 20a and the second optical lens 20b may both be half mirrors.
  • the reflective surface 21a of the first optical lens 20a and the reflective surface 21b of the second optical lens 20b may be plated with a transflective film.
  • the so-called half mirror is a glass or plexiglass lens that can transmit a partially reflective portion of the incident light.
  • the first optical lens 20a and the second optical lens 20b can be the same type of lens, both of which are The transmittance and reflectance can be the same, respectively.
  • the first optical lens 20a may have a transmittance of 30% and a reflectance of 70%; similarly, the second optical lens 20b has a transmittance of 30% and a reflectance of 70%.
  • the ratio of the transmittance and the reflectance of the first optical lens 20a and the second optical lens 20b may determine the final superimposing effect, that is, the display effect in the augmented reality mode.
  • the superimposed effect of the external real scene and the display content of the display screen is the transmittance of the first optical lens 20a and the second optical lens 20b, the external light intensity, the first display screen 10a, the second display
  • the brightness of the screen 10b is determined jointly, and the brightness of the first display screen 10a and the second display screen 10b can be automatically adjusted according to the change of the external light intensity.
  • the user can also manually adjust the first display screen 10a and the second display screen.
  • the brightness of 10b in order to achieve a stable superposition effect in different scenes, improve the experience of augmented reality.
  • a camera can also be provided, and the camera can be electrically connected to the first display screen 10a and the second display screen 10b, and the first display screen 10a and the second display screen 10b are displayed and captured according to the content captured by the camera.
  • the content is matched with the display content; the camera is further configured to acquire gesture information of the user, so that the processor performs an operation of matching the gesture information according to the gesture information.
  • the camera can capture the current real scene, and the processor can generate related information matching the current scene according to the current scene captured by the camera, and display the display content related to the current scene on the first display screen 10a and the second display screen 10b.
  • the user wears the wearable device, implements pedestrian detection, face recognition, two-dimensional code recognition and the like.
  • the user can observe the content displayed on the display screen and the current external real scene. Since the overlay image seen by the user is a virtual screen, the user can only see the content displayed on the display screen, but the user Can't really touch the screen
  • the camera in this embodiment can capture an image of a position that the user clicks on the virtual screen by a finger. For example, the user clicks an operation menu in the screen with a finger, and the camera captures an image of the user's click operation and recognizes a certain time.
  • the coordinate of the position of the user's finger is stabilized, and the image is compared with the real menu in the wearable device, so that the control instruction corresponding to the menu clicked by the user's finger can be recognized, so that the processor performs the corresponding operation and is displayed on the display screen.
  • the display screen corresponding to the selected command is displayed.
  • the user can also perform a selection operation by a finger gesture, a frame selection, or the like, and is not limited to the manner of clicking.
  • the number of cameras in this embodiment is not limited, and specifically, one camera can implement multiple functions, for example, simultaneous implementation of pedestrian detection, face recognition, two-dimensional code recognition, and user finger position coordinate recognition, etc.
  • the above-mentioned different functions are implemented by capturing different screens by one or more cameras.
  • the present embodiment is not limited thereto, and those skilled in the art may specifically select according to specific actual scenarios.
  • the UAV For the operation of the UAV, it is possible to combine the actual flight state of the UAV with the flight-related text or graphic information of the UAV in the line of sight when operating the UAV, for example, Visualize the UAV status, flight direction, flight path, obstacle information and operation prompts, first view image, and more.
  • the embodiments of the present invention are not mentioned here.
  • the wearable device in the prior art can only implement virtual reality or augmented reality, and cannot implement virtual reality and augmented reality simultaneously on one wearable device product, and can not realize switching between the two modes.
  • the wearable device provided in this embodiment may be a product such as glasses or a helmet, which is not limited in this embodiment.
  • the wearable device provided by the embodiment displays the first display through the dual display screen (the first display screen 10a and the second display screen 10b) and through the first optical lens 20a and the second optical lens 20b having the reflective function respectively.
  • the display contents on the screen 10a and the second display screen 10b are respectively incident into the left and right eyes of the person.
  • the adjusting device can adjust the external light to penetrate the first The luminous flux of an optical lens 20a and the second optical lens 20b, thereby enabling the wearable device to realize the integration of virtual reality and augmented reality under the adjustment of the adjusting device, and realizing the virtual reality mode and the augmented reality mode. Switch between.
  • the embodiment is based on the nineteenth embodiment. Further, in a specific setting, the light shielding member 40 may face To the surface of the first optical lens 20a opposite to the reflecting surface 21a and the surface of the second optical lens 20b opposite to the reflecting surface 21b, the light blocking member 40 is for blocking the light of the real scene from being projected onto the first optical lens 20a and the second On the optical lens 20b.
  • the wearable device provided in this embodiment may include a wearable device body 50.
  • the wearable device body 50 may be a box-like structure as shown in FIG. 1
  • the light blocking member 40 may be a thin plate type structure or other structures.
  • the structure of the wearable device body 50 and the structure of the light-shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, which are not described herein.
  • the amount of light that external light is projected onto the first optical lens 20a and the second optical lens 20b is controlled by the light shielding member 40, thereby switching between the virtual reality mode and the augmented reality mode.
  • the embodiment is based on the embodiment 20.
  • the light shielding member 40 can be an adjustable light transmittance, and the adjusting device is electrically connected to the light blocking member 40 (not shown).
  • the adjusting device is used to adjust the application of the light shielding member 40.
  • the voltage is sized to change the light transmittance of the light blocking member 40.
  • the light blocking member 40 can be an LCD liquid crystal screen.
  • the light blocking member 40 can also be other types, such as a TN LCD liquid crystal screen, or an electrochromic glass or the like.
  • Liquid crystal is an organic compound composed of long rod-shaped molecules. In the natural state, the long axes of these rod-shaped molecules are substantially parallel.
  • the LCD screen can change the arrangement of molecules in the liquid crystal material by voltage to achieve the purpose of shading and light transmission.
  • the shading member 40 provided in this embodiment can be controlled by voltage so that it works in two states: one is transparent
  • the state is the light-shielding state. In the transparent state, the light transmittance is close to 10%. Under the light-shielding state, the external light can not pass through the light-shielding member at all, and the light transmittance is 0%.
  • the wearable device In the transparent state, the wearable device is in augmented reality display mode, and the user can see the real outside scene.
  • the wearable device In the blackout state, the wearable device is in a virtual reality display mode, and the real scene of the outside world cannot enter the user's eyes. At this time, the user can only see the content displayed on the display, and the entire wearable device is in the virtual reality display. mode.
  • the light shielding member 40 provided in the present embodiment can be disposed perpendicular to the first display screen 10a and the second display screen 10b, so that the light shielding member 40 can achieve a better light shielding effect.
  • the position at which the light blocking member 40 is disposed is not limited thereto.
  • the light blocking member 40 may also be disposed at an acute or obtuse angle with the first display screen 10a and the second display screen 10b.
  • the shape of the light shielding member 40 may be a straight plate shape, a curved surface shape, or other regular or irregular shapes, which does not affect the functional realization of the light shielding member.
  • the number of the light shielding members 40 may be one or two, or multiple, for example, the plurality of light shielding members 40 are spliced to completely shield the external light.
  • the light shielding member 40 used in the embodiment is a single light shielding member. .
  • the light shielding member 40 can block external light from entering the wearable device and penetrate the first optical lens 20a and the second optical lens 20b.
  • the adjusting device in this embodiment is electrically connected to the light blocking member 40, and the adjusting device can be disposed inside the wearable device without being exposed to ensure the neatness of the appearance of the wearable device.
  • the wearable device provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters the wearable device by adjusting the light transmittance of the light shielding member 40.
  • the wearable device operates in the virtual reality mode when the voltage applied to the light blocking member 40 is applied.
  • another preset value is reached and the light blocking member 40 is completely transparent, external light can enter the wearable device through the light shielding member 40, and the human eye can view the real scene outside, and the wearable device works in the augmented reality mode. .
  • the embodiment is based on the embodiment 20, and provides a different implementation from the twenty-first embodiment.
  • the arrangement position of the light shielding member 40 can be the same as that of the twenty-first embodiment, and the difference from the twenty-first embodiment is that
  • the light blocking member 40 may be detachably disposed on the wearable device body 50.
  • the light shielding member 40 may be made of a common opaque material, for example, a common plastic plate, a wooden board, or the like.
  • the light shielding member 40 is light in weight to minimize the lightening member 40. The weight of the entire wearable device increases the comfort of wearing.
  • the light shielding member 40 is detachably disposed on the wearable device, the switching of the virtual reality and the augmented reality mode is realized by disassembly.
  • the light blocking member 40 itself functions as an adjusting device.
  • the visor 40 can be disposed on the wearable device body 50 in a detachable manner.
  • a detachable connection mode there are many detachable connection modes. This embodiment exemplifies only a few preferred methods, but It can be understood that the actual operation process is not limited to the above manner.
  • This embodiment provides a wearable device that is simpler in structure and cost than the twenty-first embodiment. Lower, it can also achieve the adjustment of the external light into the wearable device's luminous flux, but the operation is slightly more complicated.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding member body and a support member (shown in the drawing), and the support member may be a transparent glass plate or The other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and form a side wall of the wearable device body 50.
  • the light shielding member body is placed.
  • the inside of the wearable device body 50 and the support member are stacked, and when the light shielding is not required, the shade body can be removed from the wearable device body 50. It can not only ensure the appearance of the wearable device, but also protect the internal components of the wearable device to a certain extent.
  • the present embodiment is based on any one of the embodiments 19 to 22, and the first eyepiece 30a, the second display screen 10b and the second optical device may be disposed between the first display screen 10a and the first optical lens 20a.
  • a second eyepiece 30b is disposed between the lenses 20b.
  • the first eyepiece 30a and the second eyepiece 30b may each be a lens group formed by laminating at least one convex lens and at least one concave lens.
  • the first display screen 10a is projected onto the first optical lens 20a.
  • the object image 101a is perpendicular to the optical axis direction of the first eyepiece 30a, and the second display screen 10b is transmitted to the second optical lens 20b so that the object image is perpendicular to the optical axis direction of the second eyepiece 30b.
  • the eyepiece is generally an optical component for magnifying the image formed by the objective lens, and the image seen by the user through the first eyepiece 30a and the second eyepiece 30b is The enlarged image.
  • the first eyepiece 30a and the second eyepiece 30b are each a lens group formed by laminating at least one convex lens and at least one concave lens.
  • the convex lens can further enlarge the image, improve the angle of view, and improve the immersion.
  • the concave lens can be used to limit the field of view, allowing only a certain range of light to pass through the lens group.
  • the first eyepiece 30a can be viewed by the left eye of the user, and the second eyepiece 30b can be viewed by the right eye of the user.
  • the display surface 11a of the first display screen 10a is parallel to the optical axis direction of the first eyepiece 30a, that is, the display surface 11a of the first display screen 10a is parallel to the optical axis direction of the left eye of the person.
  • the display surface 11b of the second display screen 10b is parallel to the optical axis direction of the second eyepiece 30b, that is, the display surface 11b of the second display screen 10b is parallel to the direction of the optical axis of the right eye of the person.
  • the object image projected onto the first optical lens 20a by the first display screen 10a is perpendicular to the optical axis direction of the first eyepiece 30a, and the second display screen 10b is projected onto the object image and the second image of the second optical lens 20b.
  • Eyepiece The optical axis direction of 30b is perpendicular, that is, the distances of the object images from the respective points to the eyepiece plane are the same, thereby preventing the object image from being trapezoidal and affecting the viewing effect.
  • the first predetermined angle ⁇ between the first display screen 10a and the first optical lens 20a, and the second preset angle ⁇ between the second display screen 10b and the second optical lens 20b may determine the value Whether the object image formed by the display screen 10a and the second display screen 10b after being reflected by the optical lens is perpendicular to the optical axis direction of the first eyepiece 30a and the second eyepiece 30b.
  • the first eyepiece 30a and the second eyepiece 30b are both lens groups formed by laminating at least one convex lens and at least one concave lens, the first display screen 10a and the second display are provided.
  • the image of the screen displayed on the screen 10b is reflected by the first optical lens 20a and the second optical lens 20b to form a virtual image.
  • the wearable device displayed the first display through the dual display screen (the first display screen 10a and the second display screen 10b) and through the first optical lens 20a and the second optical lens 20b having the reflective function respectively.
  • the display contents on the screen 10a and the second display screen 10b are respectively incident into the left and right eyes of the person. Since the first optical lens 20a and the second optical lens 20b can partially transmit partial reflection, the adjusting device can adjust the external light to penetrate the first The luminous flux of an optical lens 20a and the second optical lens 20b, thereby enabling the wearable device to realize the integration of virtual reality and augmented reality under the adjustment of the adjusting device, and realizing the virtual reality mode and the augmented reality mode. Switch between.
  • the effective display area of the single eye can reach 5.5 inches
  • the resolution is 2560 ⁇ 1440
  • the angle of view of the eyepiece can reach 45°.
  • the angle of view of 70° can be achieved, which can achieve a strong immersion, and because the effective display area of the single eye is large, the magnification of the eyepiece does not need to be high and can be better.
  • the immersive feeling, and the user's visual effect on the graininess is weak, the display effect is more delicate.
  • a larger size and higher resolution display can be used to achieve a better display.
  • the embodiment is based on any one of the nineteenth embodiment to the twenty-third embodiment.
  • the first display screen 10a and the second display screen 10b may be disposed in parallel with each other. More specifically, as shown in FIG. 1 and FIG. 2, a preset distance may be formed between the first display screen 10a and the second display screen 10b, and the first optical lens 20a, the second optical lens 20b, the first eyepiece 30a, and The second eyepiece 30b is disposed between the first display screen 10a and the second display screen 10b.
  • the placement position between the first display screen 10a and the second display screen 10b may be substantially set according to the width of the face or the head such that, in use, The first display screen 10a and the second display screen 10b can be disposed on opposite sides of the eyes of the person in substantially parallel direction.
  • the user can have a better viewing experience when using the device, and on the other hand, the structural space of the wearable device can be saved. To ensure that the entire wearable device is small.
  • the embodiment is based on any one of the nineteenth embodiment to the twenty-third embodiment, and is different from the twenty-seventh embodiment.
  • the first display screen 10a and the second display screen 10b in this embodiment may be attached.
  • the display surface 11a of the first display screen 10a faces away from the display surface 11b of the second display screen 10b, and the reflective surface 21a of the first optical lens 20a faces the display surface 11a of the first display screen 10a.
  • the reflecting surface 21b of the second optical lens 20b faces the display surface 11b of the second display screen 10b. In this manner, the first display screen 10a and the second display screen 10b may be located in the middle of the two eyes.
  • the first display screen 10a and the second display screen 10b When worn, the first display screen 10a and the second display screen 10b are placed in front of the nose of the person, and the first The display screen 10a and the second display screen 10b may select an ultra-thin display screen to ensure that the first display screen 10a and the second display screen 10b block the line of sight of the human eye as much as possible, thereby ensuring a better viewing experience.
  • the embodiment is based on any one of the nineteenth embodiment to the twenty-fifth embodiment.
  • the first preset angle ⁇ and the second preset angle ⁇ may be equal. Since the optical axes of the first eyepiece 30a and the second eyepiece 30b are substantially parallel, the first display screen 10a and the second display screen 10b are also substantially parallel, and the first preset angle ⁇ and the second preset are The angles ⁇ are equal, and the first optical lens 20a and the second optical lens 20b may be symmetrically disposed about the axis of symmetry of the first eyepiece 30a and the second eyepiece 30b, whereby the first optical lens 20a and the second optical lens 20b are substantially It can form two waists of an isosceles triangle.
  • the first preset angle ⁇ and the second preset angle ⁇ may be 45°.
  • the object image projected onto the first optical lens 20a by the first display screen 10a may be perpendicular to the optical axis direction of the first eyepiece 30a, and the second display screen 10b may be projected onto the image formed by the second optical lens 20b.
  • the optical axis direction of the second eyepiece 30b is perpendicular.
  • the first preset angle ⁇ and the second preset angle ⁇ can also be changed within a range allowed by the error, for example, the permission of the first preset angle ⁇ .
  • the range is 45° ⁇ 5°, and the allowable range of the second preset angle ⁇ is 45° ⁇ 5°.
  • the first preset angle ⁇ and the second preset angle ⁇ are at about 45° so that the first display screen 10a projects onto the first optical lens 20a.
  • the optical axis direction of the first eyepiece 30a can be substantially perpendicular, and the object image projected onto the second optical lens 20b by the second display screen 10b can be substantially perpendicular to the optical axis direction of the second eyepiece 30b. The user can see the object image displayed in the front view direction when viewing, and the user experience is better.
  • the wearable device may further include a distance adjustment system connected to the first eyepiece 30a and the second eyepiece 30b for driving the first eyepiece.
  • the 30a and second eyepieces 30b are relatively close or relatively far apart to adjust the distance between the first eyepiece 30a and the second eyepiece 30b.
  • the wearable device provided in this embodiment further has a distance adjustment function, in order to adapt to the use of different people.
  • the first eyepiece 30a and the second eyepiece 30b are movably disposed on the wearable device body 50, thereby ensuring that the distance between the first eyepiece 30a and the second eyepiece 30b can be changed.
  • the interim adjustment system may be a manual adjustment system.
  • the first eyepiece 30a and the second eyepiece 30b may be movably connected to the wearable device body 50 by means of a rail, and the first eyepiece 30a and the second eyepiece 30b may be connected.
  • the lever is connected and the user can operate the link to adjust the position of the first eyepiece 30a and the second eyepiece 30b.
  • the first eyepiece 30a and the second eyepiece 30b can realize the movement of the first eyepiece 30a and the second eyepiece 30b by means of a threaded spindle.
  • the screw can have two segments of different threads, two different threads.
  • a segment is respectively screwed on the segment, and the first eyepiece 30a and the second eyepiece 30b are respectively fixedly connected to the corresponding silk nut, and the user can manually rotate the screw so that the first eyepiece 30a and the second eyepiece 30b respectively correspond to the silk mother.
  • the first eyepiece 30a and the second eyepiece 30b are relatively close to or relatively far apart in a straight line direction, and the first eyepiece 30a and the second eyepiece 30b are relatively close or relatively far apart, thereby achieving manual adjustment of the lay length.
  • the adjustment of the interpupillary distance can also be realized by an automatic adjustment manner, and the distance measuring unit for measuring the pupil distance of the user can be set on the wearable device body 50, and the interpupillary distance adjusting system can measure the current measured according to the interpupillary distance measuring unit.
  • the user's interpupillary value and specifically adjusts the distance between the first eyepiece 30a and the second eyepiece 30b, thereby making the interpupillary adjustment more precise.
  • the embodiment is based on the twenty-seventh embodiment.
  • the pitch adjustment system may specifically include a servo motor 60, a servo motor control module 70, and a transmission device.
  • the servo motor control module 70 can be used to control the rotation angle of the output shaft of the servo motor 60
  • the transmission device 80 is used to convert the rotary motion into a linear motion
  • the servo motor 60 is connected to the input end of the transmission device 80.
  • the output of 80 is coupled to first eyepiece 30a and second eyepiece 30b.
  • the servo motor 60 in this embodiment is a micro servo motor, and is suitable for wearable devices such as glasses or helmets having a small size.
  • the transmission device 80 can be a matching manner of the lead screw nut of the twenty-seventh example, and the output shaft of the servo motor 60 can be fixedly connected with the lead screw, for example, can be connected through a coupling, and the servo motor control module 70 can receive The distance measurement information measured by the distance measuring unit controls the operation of the servo motor 60, or the servo motor control module 70 can receive the trigger signal of the user and control the start or stop of the servo motor 60 according to the trigger signal to control the first The movement or stop of the eyepiece 30a and the second eyepiece 30b.
  • the distance between the first eyepiece 30a and the second eyepiece 30b is precisely adjusted by the servo motor 60 to achieve accurate pitch adjustment.
  • the pictures on the first display screen 10a and the second display screen 10b can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and The three points in the center of the screen can be on the same line, improving the comfort of viewing.
  • the wearable device provided by the embodiment includes: a display screen 10, an optical lens 20, a light shielding member 40, and an adjusting device, the display screen 10 and the optical device.
  • the number of the lenses 20 is one, the reflective surface 21 is formed on the optical lens 20, a predetermined angle ⁇ is formed between the display surface 11 of the display screen 10 and the reflective surface 21 of the optical lens 20, and the optical lens 20 can partially transmit the portion
  • the reflection and adjustment device is for adjusting the luminous flux of external light passing through the light shielding member 40 to reach the inside of the wearable device.
  • the display screen 20 can be placed obliquely in the wearable device body 50, and in use, the display screen 20 should be located in front of the human eye.
  • the display screen 20 is a display having a display function, and its specific shape and structure are not limited.
  • the display screen 10 may be an LCD display (liquid crystal display), or an OLED display (organic light-emitting display), of course, display.
  • the screen can also be of other types, and the screen displayed in the display screen 10 is reflected by the optical lens 20 and enters the human eye, so that the user can view the screen content in the display screen 10.
  • the adjusting device can adjust the luminous flux of external light penetrating through the optical lens, and the adjusting device adjusts the external light to pass through the optical lens 20.
  • the luminous flux is zero, external light cannot be transmitted into the human eye through the optical lens 20, the human eye cannot see the external scene, and is immersed in the wearable device, and the display screen 10 is formed in the object image scene formed by the reflection of the optical lens 20.
  • This mode is a virtual reality mode.
  • the adjusting device adjusts that the light flux of the external light penetrating through the optical lens 20 is not zero, for example, the external light can be totally incident on the optical lens 20 without being blocked, and the partial transmitting portion of the optical lens 20 is reflected. The external light can be transmitted into the human eye.
  • the image displayed on the display screen 10 and also reflected by the optical lens 20 is also incident into the human eye, and is superimposed with the real scene to form an augmented reality display in the human eye. mode.
  • the wearable device In the augmented reality mode, the wearable device should have a light-transmissive area for the user to view the front of the line of sight.
  • the wearable device When the light enters the wearable device from the light-transmitting area and penetrates the optical lens 20 and enters the human eye, the human eye can see the outside world. Real scene.
  • the adjusting device adjusts whether the external light passes through the transparent region, because In the present embodiment, as long as the light can pass through the light-transmitting region, the light can enter the human eye through the optical lens 20. Therefore, the adjusting device is specifically used to adjust the luminous flux of the external light passing through the optical lens 20.
  • the optical lens 20 may be a half mirror.
  • a transflective film may be plated on the reflective surface of the optical lens.
  • the so-called half mirror is a glass or plexiglass lens that can partially transmit the reflected portion of the incident light.
  • the transmittance of the optical lens 20 can be 30%, and the reflectance can be 70%; the optical lens 20 The ratio of the transmittance to the reflectance determines the final superposition effect, that is, the display effect in the augmented reality mode.
  • the superimposed effect of the external scene and the display content of the display screen is determined by the light transmittance of the optical lens 20, the external light intensity, and the brightness of the display screen 10, and the brightness of the display screen 10 can be based on the outside world.
  • the light intensity is automatically adjusted according to the change of the light intensity.
  • the user can also manually adjust the brightness of the display screen 10 to achieve a stable superimposition effect in different scenes and improve the experience of the augmented reality.
  • a camera can also be provided, and the camera can be electrically connected to the display screen 10.
  • the display screen 10 displays the display content matched with the captured content according to the content captured by the camera; the camera is also used to acquire the gesture information of the user. So that the processor performs an operation of matching the gesture information according to the gesture information.
  • the camera can capture the current scene, and the processor can generate related information matching the current scene according to the current scene captured by the camera, and display and display the current field on the display 10.
  • Scene related display content For example, the user wears the wearable device, implements pedestrian detection, face recognition, two-dimensional code recognition and the like.
  • the user can observe the content displayed on the display screen and the current external real scene.
  • the user can only see the content displayed on the display screen, but the user
  • the camera in this embodiment can capture an image of a position that the user clicks on the virtual screen by a finger.
  • the user clicks an operation menu in the screen with a finger, and the camera captures an image of the user's click operation.
  • identifying the coordinates of the position of the user's finger in a certain period of time by performing image comparison with the real menu in the wearable device, thereby being able to recognize the control instruction corresponding to the menu clicked by the user's finger, so that the processor performs the corresponding operation.
  • the display screen corresponding to the selected command is displayed on the display.
  • the user can also perform a selection operation by a finger gesture, a frame selection, or the like, and is not limited to the manner of clicking.
  • the number of cameras in this embodiment is not limited, and specifically, one camera can implement multiple functions, for example, simultaneous implementation of pedestrian detection, face recognition, two-dimensional code recognition, and user finger position coordinate recognition, etc.
  • the above-mentioned different functions are implemented by capturing different screens by one or more cameras.
  • the present embodiment is not limited thereto, and those skilled in the art may specifically select according to specific actual scenarios.
  • the UAV For the operation of the UAV, it is possible to combine the actual flight state of the UAV with the flight-related text or graphic information of the UAV in the line of sight when operating the UAV, for example, Visualize the UAV status, flight direction, flight path, obstacle information and operation prompts, first view image, and more.
  • the embodiments of the present invention are not mentioned here.
  • the wearable device in the prior art can only implement virtual reality or augmented reality, and cannot implement virtual reality and augmented reality simultaneously on one wearable device product, and can not realize switching between the two modes.
  • the wearable device provided in this embodiment may be a product such as glasses or a helmet, which is not limited in this embodiment.
  • the wearable device provided in this embodiment is displayed by a single display screen 10, has a simple structure, and the entire wearable device can be made smaller.
  • the display content on the display screen 10 can be incident into the left and right eyes of the person through the optical lens 20 having the reflective function. Since the optical lens 20 can be partially transmitted and partially reflected, the adjusting device can adjust the external light to pass through the light blocking member 40 to reach the wearable.
  • the luminous flux inside the device thereby enabling the wearable device to integrate the virtual reality and the augmented reality under the adjustment of the adjusting device, and realize the virtual reality mode and the augmented reality mode Switching.
  • the embodiment is based on the twenty-ninth embodiment.
  • the light blocking member 40 may face the surface of the optical lens 20 opposite to the reflecting surface 21, and the light blocking member 40 is configured to block the light of the real scene from being projected onto the optical lens. 20 on.
  • the wearable device body 50 provided in this embodiment may be a box-like structure as shown in FIG. 4, and the light blocking member 40 may be a thin plate type structure or other structures.
  • the light blocking member 40 may be a thin plate type structure or other structures.
  • the structure of the wearable device body 50 and the structure of the light-shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, which are not described herein.
  • the amount of light that external light is projected onto the optical lens 20 is controlled by the light shielding member 40, thereby switching between the virtual reality mode and the augmented reality mode.
  • the embodiment is based on the thirty-first embodiment.
  • the light shielding member 40 can be an adjustable light transmittance member, and the adjusting device is electrically connected to the light blocking member 40 (not shown), and the adjusting device is used for adjusting the light shielding member 40.
  • the magnitude of the applied voltage is varied to change the light transmittance of the light blocking member 40.
  • the light blocking member 40 can be an LCD liquid crystal screen.
  • the light blocking member 40 can also be other types, such as a TN LCD liquid crystal screen, or an electrochromic glass or the like.
  • Liquid crystal is an organic compound composed of long rod-shaped molecules. In the natural state, the long axes of these rod-shaped molecules are substantially parallel.
  • the LCD screen can change the arrangement of molecules in the liquid crystal material by voltage to achieve the purpose of shading and light transmission.
  • the shading member 40 provided in this embodiment can be controlled by voltage so that it works in two states: one is transparent
  • the state is the light-shielding state. In the transparent state, the light transmittance is close to 10%. Under the light-shielding state, the external light can not pass through the light-shielding member at all, and the light transmittance is 0%.
  • the wearable device In the transparent state, the wearable device is in augmented reality display mode, and the user can see the real outside scene.
  • the wearable device In the blackout state, the wearable device is in a virtual reality display mode, and the real scene of the outside world cannot enter the user's eyes. At this time, the user can only see the content displayed on the display, and the entire wearable device is in the virtual reality display. mode.
  • the angle between the display screen 10 of the light shielding member 40 provided in the present embodiment may be equal to the preset angle setting between the display screen 10 and the optical lens 20, so that the light shielding member 40 can achieve a better light shielding effect.
  • the wearable device provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters the wearable device by adjusting the light transmittance of the light shielding member 40.
  • the wearable device operates in the virtual reality mode when the voltage applied to the light blocking member 40 is applied.
  • another preset value is reached and the light blocking member 40 is completely transparent, external light can enter the wearable device through the light shielding member 40, and the human eye can view the real scene outside, and the wearable device works in the augmented reality mode. .
  • the embodiment is based on Embodiment 30, and provides an implementation different from Embodiment 31.
  • the arrangement position of the light shielding member 40 can be the same as that of Embodiment 31, and the difference from Embodiment 31 is that
  • the light blocking member 40 may be detachably disposed on the wearable device body 50.
  • the light shielding member 40 may be made of a common opaque material, for example, a common plastic plate, a wooden board, or the like.
  • the light shielding member 40 is light in weight to minimize the lightening member 40. The weight of the entire wearable device increases the comfort of wearing.
  • the light shielding member 40 is detachably disposed on the wearable device, the switching of the virtual reality and the augmented reality mode is realized by disassembly.
  • the light blocking member 40 itself functions as an adjusting device.
  • the visor 40 can be disposed on the wearable device body 50 in a detachable manner.
  • a detachable connection mode there are many detachable connection modes. This embodiment exemplifies only a few preferred methods, but It can be understood that the actual operation process is not limited to the above manner.
  • the wearable device provided by the embodiment has a simple structure and a low cost, and can also realize the light flux for adjusting the external light to enter the inside of the wearable device, but the operation is slightly complicated.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding member body and a support member (shown in the drawing), and the support member may be a transparent glass plate or The other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and form a side wall of the wearable device body 50.
  • the light shielding member body is placed.
  • the inner side of the wearable device body 50 is disposed and laminated with the support member, and when the light shielding is not required, the light shielding member body is removed from the wearable device body 50. It can not only ensure the appearance of the wearable device, but also protect the internal components of the wearable device to a certain extent.
  • the present embodiment is based on any one of Embodiment 29 to Embodiment 32.
  • the wearable device provided in this embodiment further includes a first eyepiece 30a and a second eyepiece 30b, and the first eyepiece 30a and the second eyepiece 30b. It is disposed between the display surface 11 of the display screen 10 and the reflective surface 21 of the optical lens 20.
  • the first eyepiece 30a and the second eyepiece 30b may each be a lens group formed by laminating at least one convex lens and at least one concave lens.
  • the eyepiece is generally an optical component for magnifying the image formed by the objective lens, and the image seen by the user through the first eyepiece 30a and the second eyepiece 30b is The enlarged image.
  • the first eyepiece 30a and the second eyepiece 30b are each a lens group formed by laminating at least one convex lens and at least one concave lens.
  • the convex lens can further enlarge the image, improve the angle of view, and improve the immersion.
  • the concave lens can be used to limit the field of view, allowing only a certain range of light to pass through the lens group.
  • the first eyepiece 30a can be viewed by the left eye of the user, and the second eyepiece 30b can be viewed by the right eye of the user.
  • the display surface 11 of the display screen 10 and the optical axis direction of the first eyepiece 30a may be at an angle, and the object image projected onto the optical lens 20 by the display screen 10 is perpendicular to the optical axis direction of the first eyepiece 30a and the second eyepiece 30b. That is, the distance between the object points and the plane of the eyepiece is the same, so that the object image is trapezoidal, which affects the viewing effect.
  • the value of the preset angle ⁇ between the display screen 10 and the optical lens 20 determines whether the object image formed by the display screen 10 after being reflected by the optical lens 20 is perpendicular to the optical axis directions of the first eyepiece 30a and the second eyepiece 30b.
  • the first eyepiece 30a and the second eyepiece 30b are both lens groups formed by laminating at least one convex lens and at least one concave lens, the screen content displayed on the display screen 10 passes through.
  • the object image formed by the reflection of the optical lens 20 is a virtual image.
  • the wearable device may further include a distance adjustment system connected to the first eyepiece 30a and the second eyepiece 30b, respectively, for driving the first eyepiece 30a and the first
  • the second eyepiece 30b is relatively close or relatively far apart to adjust the first eyepiece 30a and The distance between the second eyepieces 30b.
  • the wearable device provided in this embodiment further has a distance adjustment function, in order to adapt to the use of different people.
  • the first eyepiece 30a and the second eyepiece 30b are movably disposed on the wearable device body 50, thereby ensuring that the distance between the first eyepiece 30a and the second eyepiece 30b can be changed.
  • the interim adjustment system may be a manual adjustment system.
  • the first eyepiece 30a and the second eyepiece 30b may be movably connected to the wearable device body 50 by means of a rail, and the first eyepiece 30a and the second eyepiece 30b may be connected.
  • the lever is connected and the user can operate the link to adjust the position of the first eyepiece 30a and the second eyepiece 30b.
  • the first eyepiece 30a and the second eyepiece 30b can realize the movement of the first eyepiece 30a and the second eyepiece 30b by means of a threaded spindle.
  • the screw can have two segments of different threads, two different threads.
  • a segment is respectively screwed on the segment, and the first eyepiece 30a and the second eyepiece 30b are respectively fixedly connected to the corresponding silk nut, and the user can manually rotate the screw so that the first eyepiece 30a and the second eyepiece 30b respectively correspond to the silk mother.
  • the first eyepiece 30a and the second eyepiece 30b are relatively close to or relatively far apart in a straight line direction, and the first eyepiece 30a and the second eyepiece 30b are relatively close or relatively far apart, thereby achieving manual adjustment of the lay length.
  • the adjustment of the interpupillary distance can also be realized by an automatic adjustment manner, and the distance measuring unit for measuring the pupil distance of the user can be set on the wearable device body 50, and the interpupillary distance adjusting system can measure the current measured according to the interpupillary distance measuring unit.
  • the user's interpupillary value and specifically adjusts the distance between the first eyepiece 30a and the second eyepiece 30b, thereby making the interpupillary adjustment more precise.
  • the pitch adjustment system may specifically include a servo motor 60, a servo motor control module 70, and a transmission device 80, and the servo motor is controlled.
  • the module 70 can be used to control the angle of rotation of the output shaft of the servo motor 60.
  • the transmission 80 is used to convert the rotary motion into a linear motion.
  • the servo motor 60 is coupled to the input of the transmission 80, and the output of the transmission 80 is One eyepiece 30a and second eyepiece 30b are connected.
  • the servo motor 60 in this embodiment is a micro servo motor, and is suitable for wearable devices such as glasses or helmets having a small size.
  • the transmission device 80 can be a matching manner of the lead screw nut of the thirty-eighth example of the embodiment, and the output shaft of the servo motor 60 can be fixedly connected with the lead screw, for example, can be connected through a coupling, and the servo motor control module 70 can receive The distance measurement signal measured by the distance measuring unit And controlling the operation of the servo motor 60, or the servo motor control module 70 can receive the trigger signal of the user and control the start or stop of the servo motor 60 according to the trigger signal to control the movement of the first eyepiece 30a and the second eyepiece 30b. Or stop.
  • the distance between the first eyepiece 30a and the second eyepiece 30b is precisely adjusted by the servo motor 60 to achieve accurate pitch adjustment.
  • the screen on the display screen 10 can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and the center of the screen can be in the same line. Improve the comfort of viewing.
  • FIG. 6 is a schematic diagram of a fourth structure of a wearable device according to an embodiment of the present invention.
  • the present embodiment provides a wearable device including: a display screen 10, a first eyepiece 30a, a second eyepiece 30b, and , the light shielding member 40 and the adjusting device, the display screen 10 is perpendicular to the optical axis direction of the first eyepiece 30a and the second eyepiece 30b, the display screen 10 is for transmitting light, and the adjusting device is used for adjusting the external light to pass through the light shielding member to reach The luminous flux inside the wearable device.
  • the wearable device may include a wearable device body 50, and a closed space may be formed in the wearable device body 50.
  • the display screen 10 is installed in the closed space, and the display surface 11 of the display screen 10 is displayed. It can be placed in front of the human eye in parallel, and the human eye directly views the content displayed on the display screen 10.
  • the display screen 20 may be a display having a display function, and its specific shape and structure are not limited.
  • the display screen 10 may be an LCD display (liquid crystal display) or an OLED display (organic light-emitting display).
  • the display can also be of other types.
  • the display screen 10 has a function of partially transmitting partial reflection.
  • the display screen is a transparent display screen.
  • the so-called transparent display screen means that the display screen is transparent under normal conditions and can have a display screen.
  • the wearable device adjusts the luminous flux through the display screen to zero, that is, the light of the real scene in front of the human eye cannot enter the human eye, and the human eye can only see the content displayed on the display screen.
  • the wearable device is virtual. Realistic display mode.
  • the adjusting device adjusts the luminous flux through the display screen to be non-zero, that is, the light of the real scene in front of the human eye can enter the human eye, and the human eye can see both the content displayed on the display screen 10 and the real scene outside.
  • the wearable device is an augmented reality display mode.
  • the wearable device in the prior art can only implement virtual reality or augmented reality, and cannot implement virtual reality and augmented reality simultaneously on one wearable device product, and can not realize switching between the two modes.
  • the wearable device provided in this embodiment directly places the display 10 for transmitting light.
  • the user In front of the human eye, the user can view the content on the display screen 10, and can also see the real scene outside the eyes at the same time, that is, the display mode capable of realizing the augmented reality, and the adjusting device can adjust the luminous flux of the display screen 10 to adjust the real scene of the outside world.
  • the wearable device is in a virtual reality display mode.
  • the wearable device provided in this embodiment can implement virtual reality and augmented reality integration, and can realize switching between virtual reality and augmented reality.
  • the embodiment is based on the thirty-sixth embodiment.
  • the light blocking member 40 can be disposed in parallel with the display screen 10.
  • the light blocking member 40 is configured to block the light of the real scene from being projected onto the display screen 10.
  • the light blocking member 40 may be a thin plate type structure or other structure. Since the external light needs to pass through the display screen 10 to reach the human eye, when the light shielding member 40 blocks the external light from entering, the user cannot see the real scene in front of the eyes and is immersed in the virtual scene in the virtual reality mode.
  • the structure of the wearable device body 50 and the structure of the light-shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, which are not described herein.
  • the embodiment is based on the thirty-seventh embodiment.
  • the light shielding member 40 is an adjustable light transmittance member, and the adjusting device and the light shielding member 40 are electrically connected to the adjusting device, and the adjusting device is used for adjusting the voltage applied to the light shielding member 40.
  • the light blocking member 40 can be an LCD liquid crystal screen.
  • the light blocking member 40 can also be other types, such as a TN LCD liquid crystal screen, or an electrochromic glass or the like.
  • Liquid crystal is an organic compound composed of long rod-shaped molecules. In the natural state, the long axes of these rod-shaped molecules are substantially parallel.
  • the LCD screen can change the arrangement of molecules in the liquid crystal material by voltage to achieve the purpose of shading and light transmission.
  • the shading member 40 provided in this embodiment can be controlled by voltage so that it works in two states: one is transparent
  • the state is the light-shielding state.
  • the light transmittance is close to 10%.
  • Under the light-shielding state the external light can not pass through the light-shielding member at all, and the light transmittance is 0%.
  • the wearable device In the transparent state, the wearable device is in augmented reality display mode, and the user can see the real outside scene.
  • the wearable device In the blackout state, the wearable device is in a virtual reality display mode, and the real scene of the outside world cannot enter the user's eyes. At this time, the user can only see the content displayed on the display screen 10, and the entire wearable device is in virtual reality. Display mode.
  • the wearable device provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters the wearable device by adjusting the light transmittance of the light shielding member 40.
  • the wearable device operates in the virtual reality mode when the voltage applied to the light blocking member 40 is applied.
  • another preset value is reached and the light blocking member 40 is completely transparent, external light can enter the wearable device through the light shielding member 40, and the human eye can view the real scene outside, and the wearable device works in the augmented reality mode. .
  • the embodiment is based on the embodiment thirty-seven, and provides an implementation different from the thirty-eighth embodiment.
  • the arrangement position of the light shielding member 40 can be the same as that of the thirty-eighth embodiment, and the difference from the thirty-eighth embodiment is that
  • the light blocking member 40 may be detachably disposed on the wearable device body 50.
  • the light shielding member 40 may be made of a common opaque material, for example, a common plastic plate, a wooden board, or the like.
  • the light shielding member 40 is light in weight to minimize the lightening member 40. The weight of the entire wearable device increases the comfort of wearing.
  • the light shielding member 40 is detachably disposed on the wearable device, the switching of the virtual reality and the augmented reality mode is realized by disassembly. Different from the thirty-eighth embodiment, in the present embodiment, the light blocking member 40 itself functions as an adjusting device.
  • the visor 40 can be disposed on the wearable device body 50 in a detachable manner.
  • a detachable connection mode there are many detachable connection modes. This embodiment exemplifies only a few preferred methods, but It can be understood that the actual operation process is not limited to the above manner.
  • the present embodiment provides a wearable device that is simpler in structure and lower in cost than the thirty-eighth embodiment. It can also realize the adjustment of the luminous flux of external light projected onto the display screen 10, but the operation is slightly complicated.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding member body and a support member (shown in the drawing), and the support member may be a transparent glass plate or The other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and form a side wall of the wearable device body 50.
  • the light shielding member body is placed.
  • the inside of the wearable device body 50 and the support member are stacked, and when the light shielding is not required, the shade body can be removed from the wearable device body 50. Can ensure the appearance of the wearable device Degrees can also protect the internal components of wearable devices to a certain extent.
  • the embodiment is based on any one of Embodiments 36 to 39, and the wearable device may further include a distance adjustment system, the first eyepiece 30a and the second eyepiece 30b, respectively. Connected for driving the first eyepiece 30a and the second eyepiece 30b relatively close to or relatively far apart to adjust the distance between the first eyepiece 30a and the second eyepiece 30b.
  • the wearable device provided in this embodiment further has a distance adjustment function, in order to adapt to the use of different people.
  • the first eyepiece 30a and the second eyepiece 30b are movably disposed on the wearable device body 50, thereby ensuring that the distance between the first eyepiece 30a and the second eyepiece 30b can be changed.
  • the interim adjustment system may be a manual adjustment system.
  • the first eyepiece 30a and the second eyepiece 30b may be movably connected to the wearable device body 50 by means of a rail, and the first eyepiece 30a and the second eyepiece 30b may be connected.
  • the lever is connected and the user can operate the link to adjust the position of the first eyepiece 30a and the second eyepiece 30b.
  • the first eyepiece 30a and the second eyepiece 30b can realize the movement of the first eyepiece 30a and the second eyepiece 30b by means of a threaded spindle.
  • the screw can have two segments of different threads, two different threads.
  • a segment is respectively screwed on the segment, and the first eyepiece 30a and the second eyepiece 30b are respectively fixedly connected to the corresponding silk nut, and the user can manually rotate the screw so that the first eyepiece 30a and the second eyepiece 30b respectively correspond to the silk mother.
  • the first eyepiece 30a and the second eyepiece 30b are relatively close to or relatively far apart in a straight line direction, and the first eyepiece 30a and the second eyepiece 30b are relatively close or relatively far apart, thereby achieving manual adjustment of the lay length.
  • the adjustment of the interpupillary distance can also be realized by an automatic adjustment manner, and the distance measuring unit for measuring the pupil distance of the user can be set on the wearable device body 50, and the interpupillary distance adjusting system can measure the current measured according to the interpupillary distance measuring unit.
  • the user's interpupillary value and specifically adjusts the distance between the first eyepiece 30a and the second eyepiece 30b, thereby making the interpupillary adjustment more precise.
  • the embodiment is based on the forty-seventh embodiment.
  • the interpupillary adjustment system may specifically include a servo motor 60, a servo motor control module 70, and a transmission device 80.
  • the servo motor control module 70 It can be used to control the rotation angle of the output shaft of the servo motor 60, and the transmission 80 is used to convert the rotary motion into a linear motion, and the servo motor 60 and the transmission 80 are transmitted.
  • the output of the transmission 80 is coupled to the first eyepiece 30a and the second eyepiece 30b.
  • the servo motor 60 in this embodiment is a micro servo motor, and is suitable for wearable devices such as glasses or helmets having a small size.
  • the transmission device 80 can be a combination of the screw springs of the forty example of the embodiment, and the output shaft of the servo motor 60 can be fixedly connected with the lead screw, for example, can be connected through a coupling, and the servo motor control module 70 can receive the cymbal.
  • the distance information measured by the measuring unit is controlled, and the operation of the servo motor 60 is controlled.
  • the servo motor control module 70 can receive the trigger signal of the user, and control the start or stop of the servo motor 60 according to the trigger signal to control the first.
  • the movement or stop of the eyepiece 30a and the second eyepiece 30b In this embodiment, the distance between the first eyepiece 30a and the second eyepiece 30b is precisely adjusted by the servo motor 60 to achieve accurate pitch adjustment.
  • the screen on the display screen 10 can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and the center of the screen can be in the same line. Improve the comfort of viewing.
  • the embodiment provides an unmanned aerial vehicle system
  • the unmanned aerial vehicle system includes a camera (not shown) for taking a picture from a first angle of view of the unmanned aerial vehicle, and the camera is communicably connected with the wearable device; 1 to 2.
  • the wearable device includes a first display screen 10a, a second display screen 10b, a first optical lens 20a, a second optical lens 20b, and a first eyepiece disposed between the first display screen 10a and the first optical lens 20a.
  • a second eyepiece 30b disposed between the second display screen 10b and the second optical lens 20b.
  • the display surface 11a of the first display screen 10a is parallel to the optical axis direction of the first eyepiece 30a.
  • the display surface 11b of the second display screen 10b is parallel to the optical axis direction of the second eyepiece 30b.
  • Reflecting surfaces (21a, 21b) are formed on the first optical lens 20a and the second optical lens 20b, respectively.
  • the reflective surface 21a of the first optical lens 20a faces the first display screen 10a, and a first predetermined angle ⁇ is formed between the reflective surface 21a of the first optical lens 20a and the first display screen 10a, so that the first display screen 10a
  • the object image 101a projected onto the first optical lens 20a is perpendicular to the optical axis direction of the first eyepiece 30a.
  • the reflective surface of the second optical lens 20b faces the second display screen 10b, and the second predetermined angle ⁇ is formed between the reflective surface 21b of the second optical lens 20b and the second display screen 10b to project the second display screen 10b.
  • the object image formed on the second optical lens 20b is perpendicular to the optical axis direction of the second eyepiece 30b.
  • the reflective surface 21a of the first optical lens 20a and the second optical lens 20b may be plated with a reflective film or a transflective film.
  • the reflective surface may be plated with a reflective film;
  • the reflective surface 21a of the first optical lens 20a and the reflective surface 21b of the second optical lens 20b may be plated with a semi-transparent film, for example, in augmented reality mode.
  • the first optical lens 20a and the second optical lens 20b are both partially transmissive and partially reflective. Therefore, the reflective surface 21a of the first optical lens 20a and the reflective surface 21b of the second optical lens 20b may be plated with a transflective film. .
  • the UAV system provided by the embodiment adopts a camera to collect a first view of the UAV and communicates the camera with the wearable device. Through the wearable device with strong immersion, the user can experience the immersion. A better first-angle flight experience.
  • the embodiment is based on the forty-second embodiment. Further, the first display screen 10a and the second display screen 10b may be disposed in parallel with each other. More specifically, as shown in FIG. 1 and FIG. 2, a preset distance may be formed between the first display screen 10a and the second display screen 10b, and the first optical lens 20a, the second optical lens 20b, the first eyepiece 30a, and The second eyepiece 30b is disposed between the first display screen 10a and the second display screen 10b.
  • the wearable device in the UAV system provided by the embodiment can ensure that the user has a better immersion feeling, and the entire wearable device is also small in size.
  • the embodiment is based on the forty-second embodiment, and different from the forty-third embodiment, the first display screen 10a and the second display screen 10b in this embodiment can be placed in a relative manner, and the first display
  • the display surface 11a of the screen 10a faces away from the display surface 11b of the second display screen 10b.
  • the reflection surface 21a of the first optical lens 20a faces the display surface 11a of the first display screen 10a
  • the reflection surface 21b of the second optical lens 20b faces the The display surface 11b of the second display screen 10b.
  • the first display screen 10a and the second display screen 10b may be located in the middle of the two eyes, and when worn, the first display screen 10a And the second display screen 10b is placed in front of the nose bridge of the person, and the first display screen 10a and the second display screen 10b can select an ultra-thin display screen to ensure that the first display screen 10a and the second display screen 10b are shielded as little as possible.
  • the sight of the human eye ensures a better viewing experience.
  • the first preset angle ⁇ and the second preset angle ⁇ may be equal. Since the optical axes of the first eyepiece 30a and the second eyepiece 30b are substantially parallel, the first display screen 10a and the second display screen 10b are also substantially parallel, and the first preset angle ⁇ and the second preset are The angles ⁇ are equal, and the first optical lens 20a and the second optical lens 20b may be symmetrically disposed about the axis of symmetry of the first eyepiece 30a and the second eyepiece 30b, whereby the first optical lens 20a and the second optical lens 20b are substantially It can form two waists of an isosceles triangle.
  • the wearable device in the UAV system provided in this embodiment can ensure that the user can see the object image displayed in the front view direction when viewing, and the user experience is better.
  • the present embodiment is based on any one of Embodiment 42 to Embodiment 45.
  • the present embodiment further defines the first optical lens 20a and the second optical lens 20b. Both the first optical lens 20a and the second optical lens 20b are partially transmissive partially reflective. In this embodiment, preferably, the first optical lens 20a and the second optical lens 20b may both be half mirrors.
  • the reflective surface 21a of the first optical lens 20a and the reflective surface 21b of the second optical lens 20b may be plated with a transflective film.
  • a camera can also be provided, and the camera can be electrically connected to the first display screen 10a and the second display screen 10b, and the first display screen 10a and the second display screen 10b are displayed and captured according to the content captured by the camera. Content that matches the display content.
  • the camera can capture the current real scene, and the processor can generate related information matching the current scene according to the current scene captured by the camera, and display the display content related to the current scene on the first display screen 10a and the second display screen 10b.
  • the wearable device in the UAV system provided by this embodiment enables the user experience to realize the actual flight state of the UAV and the flight of the UAV in the line of sight range when operating the UAV in the user experience.
  • Relevant text or graphic information is combined, for example, to visualize the UAV status, flight direction, flight path, obstacle information and operation prompts, first view image, and the like.
  • the embodiment is based on the forty-sixth embodiment.
  • the wearable device may further include an adjusting device, where the adjusting device is specifically configured to adjust the external light to penetrate the first optical lens 20a and the second. The luminous flux of the optical lens 20b.
  • the unmanned aerial vehicle system provided by the embodiment, wherein the wearable device of the unmanned aerial vehicle can realize the integration of the virtual reality and the augmented reality, and can realize the switching between the virtual reality and the augmented reality, and the user is using the wearable device.
  • the above two modes can be switched to give the user a richer simulation flight experience.
  • the wearable device may further include a light shielding member 40.
  • the light shielding member 40 may face the surface of the first optical lens 20a opposite to the reflective surface 21a and the surface of the second optical lens 20b opposite to the reflective surface 21b.
  • the light blocking member 40 is configured to block the light of the real scene from the outside from being projected onto the first optical lens 20a and the second optical lens 20b.
  • the wearable device in the UAV system of the present embodiment may include a wearable device body 50.
  • the wearable device body 50 may be a box-like structure as shown in FIG. 1
  • the light blocking member 40 may be a thin plate structure. , or other structure.
  • the structure of the wearable device body 50 and the structure of the light shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, and the present embodiment does not Make a statement.
  • the embodiment is based on the forty-eighth embodiment.
  • the light shielding member 40 can be an adjustable light transmittance member, and the adjusting device is electrically connected to the light blocking member 40 (not shown), and the adjusting device is used to adjust the application of the light shielding member 40.
  • the voltage is sized to change the light transmittance of the light blocking member 40.
  • the light shielding member 40 provided in the present embodiment can be disposed perpendicular to the first display screen 10a and the second display screen 10b, so that the light shielding member 40 can achieve a better light shielding effect.
  • the wearable device in the UAV system provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters by adjusting the light transmittance of the light shielding member 40.
  • the wearable device when the size of the voltage applied to the light shielding member 40 reaches a certain preset value or no voltage is applied to make the light shielding member 40 completely opaque, the wearable device operates in the virtual reality mode when the light is blocked by the pair.
  • the magnitude of the voltage applied by the member 40 reaches another preset value so that the light blocking member 40 is completely transparent, external light can enter the wearable device through the light blocking member 40, and the user can view the unmanned aerial vehicle within the line of sight.
  • the true flight state of the wearable device works in augmented reality mode.
  • the embodiment is based on the forty-eighth embodiment, and provides an implementation different from the forty-ninth embodiment.
  • the arrangement position of the light shielding member 40 can be the same as that of the forty-ninth embodiment, and the difference from the forty-ninth embodiment is that the shading is
  • the piece 40 can be detachably disposed on the wearable device body 50.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding member body and a support member (shown in the drawing), and the support member may be a transparent glass plate or The other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and form a side wall of the wearable device body 50. When the light shielding is required, the light shielding member body is placed.
  • the inner side of the wearable device body 50 is disposed and laminated with the support member, and when the light shielding is not required, the light shielding member body is removed from the wearable device body 50. It can not only ensure the appearance of the wearable device, but also protect the internal components of the wearable device to a certain extent.
  • the wearable device in the unmanned aerial vehicle realizes the virtualization of the wearable device by installing or detaching the light shielding member 40 through the detachable light shielding member 40.
  • the switch between the reality mode and the augmented reality mode is simple in structure and low in cost.
  • Embodiment 51 of the UAV system provided in this embodiment is identical to Embodiment 51 of the UAV system provided in this embodiment.
  • the embodiment is based on any one of Embodiment 42 to Embodiment 50.
  • the wearable device in the UAV may further include a distance adjustment system, respectively, and the first eyepiece 30a and The second eyepiece 30b is coupled for driving the first eyepiece 30a and the second eyepiece 30b relatively close to or relatively far apart to adjust the distance between the first eyepiece 30a and the second eyepiece 30b. Since the distance between different people may be different, the distance adjustment is adjusted to suit the needs of different people.
  • the wearable device in the UAV system provided by this embodiment can adjust the distance between the first eyepiece 30a and the second eyepiece 30b by the interpupillary adjustment system to adapt to different pupil distances of different people.
  • FIG. 7 is a schematic diagram of control of a pitch adjustment system according to an embodiment of the present invention.
  • the embodiment is based on the fifty-first embodiment.
  • the pitch adjustment system may specifically include a servo motor 60, a servo motor control module 70, and a transmission device 80, and the servo motor is controlled.
  • the module 70 can be used to control the angle of rotation of the output shaft of the servo motor 60.
  • the transmission 80 is used to convert the rotary motion into a linear motion.
  • the servo motor 60 is coupled to the input of the transmission 80, and the output of the transmission 80 is One eyepiece 30a and second eyepiece 30b are connected.
  • the pictures on the first display screen 10a and the second display screen 10b can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and The three points in the center of the screen can be on the same line, improving the comfort of viewing.
  • the wearable device in the UAV system provided by this embodiment can accurately adjust the interpupillary distance, and the user is more comfortable in use.
  • the embodiment provides an unmanned aerial vehicle system including a camera for taking a picture from a first angle of view of an unmanned aerial vehicle, the camera being communicably connected with a wearable device.
  • the wearable device comprises a display screen, an optical lens, a light shielding member and an adjusting device.
  • the optical lens is formed with a reflecting surface, and a predetermined angle is formed between the display surface of the display screen and the reflecting surface of the optical lens, and the optical lens is partially transmissive.
  • the partial reflection, adjustment device is used to adjust the luminous flux of external light passing through the light shielding member to reach the inside of the wearable device.
  • 4 is a schematic structural diagram of still another wearable device according to an embodiment of the present invention; and FIG. 5 is a front view of the wearable device of FIG. 4.
  • the wearable device provided by this embodiment can refer to FIG. 1 and FIG. 2, or FIG. 4 and FIG.
  • the optical lens may be a half mirror.
  • a transflective film may be plated on the reflective surface of the optical lens.
  • the number of display screens may be two (first display screen 10a, second display screen 10b), and correspondingly, the number of optical lenses is also two (first optical lens 20a)
  • the second optical lens 20b) is matched with the two display screens respectively, and the angle between the reflective surface 21a of the first optical lens 20a and the display surface 11a of the first display screen 10a is a first predetermined angle ⁇ .
  • the angle between the reflecting surface 21b of the second optical lens 20b and the display surface 11b of the second display screen 10b is a second predetermined angle ⁇ .
  • the number of display screens is one, as shown in FIG. 4 and FIG. 5
  • the number of optical lenses is one, as shown in FIGS. 4 and 5, the display screen 10
  • the angle between the optical lens 20 and the optical lens 20 is ⁇ .
  • a camera can also be provided, and the camera can be electrically connected to the display screen, and the display screen displays the display content matched with the captured content according to the content captured by the camera.
  • the camera can capture the current real scene, and the processor can generate related information matching the current scene according to the current scene captured by the camera, and display the display content related to the current scene on the display screen.
  • the processor can generate related information matching the current scene according to the current scene captured by the camera, and display the display content related to the current scene on the display screen.
  • the wearable device in the UAV system adjusts the luminous flux of external light penetrating into the wearable device through the adjusting device, and displays the virtual reality when the external light enters the light flux inside the wearable device is zero.
  • the mode when external light can be incident on the optical lens, is an augmented reality display mode, so that the wearable device can realize the integration of virtual reality and augmented reality under the adjustment function of the adjusting device, and realize virtual reality and enhancement. Switching between reality.
  • Embodiment 53 This embodiment is based on Embodiment 53.
  • the present embodiment further defines an adjustable device on the wearable device.
  • the light blocking member 40 may face the reflective surface of the optical lens opposite to the optical lens. The surface, the light blocking member is used to block the light of the real scene from outside to be projected onto the optical lens.
  • the unmanned aerial vehicle system provided in this embodiment, the wearable device in the unmanned aerial vehicle, when the light shielding member 40 blocks the external light from entering, the user cannot see the real scene in front of the eye and is immersed in the virtual scene in the virtual reality mode.
  • the structure of the wearable device body 50 and the structure of the light-shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, which are not described herein.
  • the embodiment is based on Embodiment 54.
  • the light shielding member 40 can be an adjustable light transmittance member, and the adjusting device is further electrically connected to the light shielding member 40 (not shown), and the adjusting device is used for adjusting the light shielding member. 40 The magnitude of the applied voltage to change the light transmittance of the light blocking member 40.
  • the wearable device in the UAV system provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters by adjusting the light transmittance of the light shielding member 40.
  • the wearable device when the voltage applied to the light blocking member 40 is reached The wearable device operates in the virtual reality mode when a certain preset value or no voltage is applied to make the light blocking member 40 completely opaque, and the light shielding member is made when the voltage applied to the light blocking member 40 reaches another preset value.
  • the 40 is completely transparent, external light can enter the wearable device through the light shielding member 40, and the human eye can view the real scene outside, and the wearable device works in the augmented reality mode.
  • the embodiment is based on the embodiment fifty-four, and provides an implementation different from the fifty-fifth embodiment.
  • the arrangement position of the light shielding member 40 can be the same as that of the fifty-fifth embodiment, and the difference from the fifty-fifth embodiment is that
  • the light blocking member 40 may be detachably disposed on the wearable device body 50.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding member body and a support member (shown in the drawing), and the support member may be a transparent glass plate or The other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and form a side wall of the wearable device body 50. When the light shielding is required, the light shielding member body is placed.
  • the inside of the wearable device body 50 and the support member are stacked, and when the light shielding is not required, the shade body can be removed from the wearable device body 50. It can not only ensure the appearance of the wearable device, but also protect the internal components of the wearable device to a certain extent.
  • the wearable device in the unmanned aerial vehicle realizes the virtual wearable device by installing or detaching the light-shielding member 40 through the detachable light-shielding member 40.
  • the switch between the reality mode and the augmented reality mode is simple in structure and low in cost.
  • the wearable device may further include a first eyepiece 30a and a second eyepiece 30b, the first eyepiece 30a and the first The dimocular 30b is disposed between the display surface of the display screen and the reflective surface of the optical lens.
  • the distance adjustment is adjusted to suit the needs of different people.
  • the wearable device in the drone system provided by this embodiment can improve the immersion and display effect of the entire wearable device by the first eyepiece 30a and the second eyepiece 30b.
  • the embodiment is based on Embodiment 57.
  • the wearable device in the UAV system provided in this embodiment may further include a distance adjustment system, and the interpupillary adjustment system is respectively connected to the first eyepiece 30a and the second eyepiece 30b.
  • the first eyepiece 30a and the second eyepiece 30b are driven relatively close to or relatively far apart to adjust the distance between the first eyepiece 30a and the second eyepiece 30b. Since the distance between different people may be different, the distance adjustment is adjusted to suit the needs of different people.
  • the wearable device in the UAV system provided by this embodiment can adjust the distance between the first eyepiece 30a and the second eyepiece 30b by the interpupillary adjustment system to adapt to different pupil distances of different people.
  • FIG. 7 is a schematic diagram of control of a pitch adjustment system according to an embodiment of the present invention. As shown in FIG. 7, the embodiment is based on the fifty-eighth embodiment.
  • the pitch adjustment system may specifically include a servo motor 60, a servo motor control module 70, and a transmission device 80, and the servo motor is controlled.
  • the module 70 can be used to control the angle of rotation of the output shaft of the servo motor 60.
  • the transmission 80 is used to convert the rotary motion into a linear motion.
  • the servo motor 60 is coupled to the input of the transmission 80, and the output of the transmission 80 is One eyepiece 30a and second eyepiece 30b are connected.
  • the pictures on the first display screen 10a and the second display screen 10b can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and The three points in the center of the screen can be on the same line, improving the comfort of viewing.
  • the wearable device in the UAV system provided by this embodiment can accurately adjust the interpupillary distance, and the user is more comfortable in use.
  • the embodiment provides an unmanned aerial vehicle system including a camera for taking a picture from a first angle of view of an unmanned aerial vehicle, the camera being communicably connected with a wearable device.
  • a wearable device includes a first display screen 10a, a second display screen 10b, a first optical lens 20a, a second optical lens 20b, a light blocking member 40, and an adjustment device.
  • a reflective surface (21a, 21b) is formed on the first optical lens 20a and the second optical lens 20b, respectively, and a first preset is formed between the display surface 11a of the first display screen 10a and the reflective surface 21a of the first optical lens 20a.
  • the angle ⁇ is formed; a second predetermined angle ⁇ is formed between the display surface 11b of the second display screen 10b and the reflective surface 21b of the second optical lens 20b.
  • Both the first optical lens 20a and the second optical lens 20b can partially transmit partial reflection.
  • An adjustment device is used to adjust the amount of light that passes through the shade to the interior of the wearable device.
  • the first optical lens 20a and the second optical lens 20b may both be half mirrors.
  • a camera can also be provided, and the camera can be electrically connected to the first display screen 10a and the second display screen 10b, and the first display screen 10a and the second display screen 10b are displayed and captured according to the content captured by the camera. Content that matches the display content.
  • the camera can capture the current real scene, and the processor can generate related information matching the current scene according to the current scene captured by the camera, and display the display content related to the current scene on the first display screen 10a and the second display screen 10b.
  • the actual flight state of the UAV with the flight-related text or graphic information of the UAV in the line of sight when operating the UAV, for example, visually displaying the UAV status and flight direction. , flight trajectory, obstacle information and operation tips, first view image, and so on.
  • the wearable device in the UAV system provided in this embodiment may be a product such as glasses or a helmet, which is not limited in this embodiment.
  • the wearable device in the UAV system provided by this embodiment is displayed through a dual display screen (the first display screen 10a and the second display screen 10b), and passes through the first optical lens 20a and the second optical lens having a reflective function.
  • 20b respectively injects the display contents on the first display screen 10a and the second display screen 10b into the left and right eyes of the person, respectively, since the first optical lens 20a and the second optical lens 20b can partially partially transmit the reflection, and the adjustment device can be adjusted.
  • the external light penetrates the luminous flux of the first optical lens 20a and the second optical lens 20b, thereby making the wearable device Under the adjustment of the adjustment device, the integration of virtual reality and augmented reality is realized, and the switching between the virtual reality mode and the augmented reality mode is realized.
  • the embodiment is based on Embodiment 60. Further, in a specific arrangement, the light blocking member 40 may face the surface of the first optical lens 20a opposite to the reflecting surface 21a and the surface of the second optical lens 20b opposite to the reflecting surface 21b. The light blocking member 40 is for blocking the light of the real scene from outside to be projected onto the first optical lens 20a and the second optical lens 20b.
  • the wearable device provided in this embodiment may include a wearable device body 50.
  • the wearable device body 50 may be a box-like structure as shown in FIG. 1
  • the light blocking member 40 may be a thin plate type structure or other structures.
  • the structure of the wearable device body 50 and the structure of the light-shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, which are not described herein.
  • the unmanned aerial vehicle system provided in this embodiment, the wearable device in the unmanned aerial vehicle, when the light shielding member 40 blocks the external light from entering, the user cannot see the real scene in front of the eye and is immersed in the virtual scene in the virtual reality mode.
  • the structure of the wearable device body 50 and the structure of the light-shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, which are not described herein.
  • the amount of light that external light is projected onto the first optical lens 20a and the second optical lens 20b can be controlled by the light shielding member 40, thereby switching between the virtual reality mode and the augmented reality mode.
  • the embodiment is based on the sixty-first embodiment.
  • the light shielding member 40 can be an adjustable light transmittance member, and the adjusting device is electrically connected to the light shielding member 40 (not shown), and the adjusting device is used for adjusting the light shielding member 40.
  • the magnitude of the applied voltage is varied to change the light transmittance of the light blocking member 40.
  • the light shielding member 40 provided in the present embodiment may be perpendicular to the first display screen 10a and The second display screen 10b is disposed such that the light blocking member 40 can achieve a better light blocking effect.
  • the wearable device in the UAV system provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters by adjusting the light transmittance of the light shielding member 40.
  • the wearable device when the size of the voltage applied to the light shielding member 40 reaches a certain preset value or no voltage is applied to make the light shielding member 40 completely opaque, the wearable device operates in the virtual reality mode when the light is blocked by the pair.
  • the magnitude of the voltage applied by the member 40 reaches another preset value so that the light blocking member 40 is completely transparent, external light can enter the wearable device through the light shielding member 40, and the human eye can view the real scene outside, the wearable device Work in augmented reality mode.
  • the embodiment is based on the sixty-first embodiment and provides an implementation different from the sixty-two embodiment.
  • the arrangement position of the light shielding member 40 can be the same as that of the sixty-second embodiment, and the difference from the sixty-two embodiment is that
  • the light blocking member 40 may be detachably disposed on the wearable device body 50.
  • the light shielding member 40 may be made of a common opaque material, for example, a common plastic plate, a wooden board, or the like.
  • the light shielding member 40 is light in weight to minimize the lightening member 40. The weight of the entire wearable device increases the comfort of wearing.
  • the visor 40 can be disposed on the wearable device body 50 in a detachable manner.
  • a detachable connection mode there are many detachable connection modes. This embodiment exemplifies only a few preferred methods, but It can be understood that the actual operation process is not limited to the above manner.
  • the present embodiment provides a wearable device that is simpler in structure and lower in cost than the sixty-two embodiment.
  • the light flux that regulates the projection of external light onto the optical lens can also be achieved, but the operation is slightly complicated.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding member body and a support member (shown in the drawing), and the support member may be a transparent glass plate or The other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and form a side wall of the wearable device body 50.
  • the light shielding member body is placed.
  • the inside of the wearable device body 50 and the support member are stacked, and when the light shielding is not required, the shade body can be removed from the wearable device body 50. It can not only ensure the appearance of the wearable device, but also protect the internal components of the wearable device to a certain extent.
  • a first eyepiece 30a, a second display screen 10b and a second optical device may be disposed between the first display screen 10a and the first optical lens 20a.
  • a second eyepiece 30b is disposed between the lenses 20b.
  • the first eyepiece 30a and the second eyepiece 30b may each be a lens group formed by laminating at least one convex lens and at least one concave lens.
  • the first display screen 10a is projected onto the first optical lens 20a.
  • the object image 101a is perpendicular to the optical axis direction of the first eyepiece 30a, and the second display screen 10b is transmitted to the second optical lens 20b so that the object image is perpendicular to the optical axis direction of the second eyepiece 30b.
  • the wearable device in the UAV system provided by this embodiment is displayed through a dual display screen (the first display screen 10a and the second display screen 10b), and passes through the first optical lens 20a and the second optical lens having a reflective function.
  • 20b respectively injects the display contents on the first display screen 10a and the second display screen 10b into the left and right eyes of the person, respectively, since the first optical lens 20a and the second optical lens 20b can partially partially transmit the reflection, and the adjustment device can be adjusted.
  • the external light penetrates the luminous flux of the first optical lens 20a and the second optical lens 20b, thereby enabling the wearable device to integrate the virtual reality and the augmented reality under the adjustment function of the adjusting device, and realize the virtual reality Switch between mode and augmented reality mode.
  • the effective display area of the single eye can reach 5.5 inches
  • the resolution is 2560 ⁇ 1440
  • the angle of view of the eyepiece can reach 45°.
  • the angle of view of 70° can be achieved, which can achieve a strong immersion, and because the effective display area of the single eye is large, the magnification of the eyepiece does not need to be high and can be better.
  • the immersive feeling, and the user's visual effect on the graininess is weak, the display effect is more delicate.
  • a larger size and higher resolution display can be used to achieve a better display.
  • the embodiment is based on any one of Embodiments 60 to 46.
  • the first display screen 10a and the second display screen 10b may be disposed opposite to each other. More specifically, as shown in FIG. 1 and FIG. 2, a preset distance may be formed between the first display screen 10a and the second display screen 10b, and the first optical lens 20a, the second optical lens 20b, the first eyepiece 30a, and The second eyepiece 30b is disposed between the first display screen 10a and the second display screen 10b.
  • the placement position between the first display screen 10a and the second display screen 10b may be substantially set according to the width of the face or the head such that the first display screen 10a and the second display screen 10b can be used in use. Basically placed in parallel on both sides of the human eye, On the one hand, it can ensure that the user has a better viewing experience when using, and on the other hand, the structural space of the wearable device can be saved, and the size of the entire wearable device is small.
  • the embodiment is based on any one of the sixteenth embodiment to the sixty-fourth embodiment, and is different from the sixty-fifth embodiment.
  • the first display screen 10a and the second display screen 10b in this embodiment can be attached.
  • the display surface 11a of the first display screen 10a faces away from the display surface 11b of the second display screen 10b, and the reflective surface 21a of the first optical lens 20a faces the display surface 11a of the first display screen 10a.
  • the reflecting surface 21b of the second optical lens 20b faces the display surface 11b of the second display screen 10b. In this manner, the first display screen 10a and the second display screen 10b may be located in the middle of the two eyes.
  • the first display screen 10a and the second display screen 10b When worn, the first display screen 10a and the second display screen 10b are placed in front of the nose of the person, and the first The display screen 10a and the second display screen 10b may select an ultra-thin display screen to ensure that the first display screen 10a and the second display screen 10b block the line of sight of the human eye as much as possible, thereby ensuring a better viewing experience.
  • the embodiment is based on any one of the sixty to sixty-sixth embodiments.
  • the first preset angle ⁇ and the second preset angle ⁇ may be equal. Since the optical axes of the first eyepiece 30a and the second eyepiece 30b are substantially parallel, the first display screen 10a and the second display screen 10b are also substantially parallel, and the first preset angle ⁇ and the second preset are The angles ⁇ are equal, and the first optical lens 20a and the second optical lens 20b may be symmetrically disposed about the axis of symmetry of the first eyepiece 30a and the second eyepiece 30b, whereby the first optical lens 20a and the second optical lens 20b are substantially It can form two waists of an isosceles triangle.
  • the first preset angle ⁇ and the second preset angle ⁇ may be 45°.
  • the object image projected onto the first optical lens 20a by the first display screen 10a may be perpendicular to the optical axis direction of the first eyepiece 30a, and the second display screen 10b may be projected onto the image formed by the second optical lens 20b.
  • the optical axis direction of the second eyepiece 30b is perpendicular.
  • the first preset angle ⁇ and the second preset angle ⁇ can also be changed within a range allowed by the error, for example, the permission of the first preset angle ⁇ .
  • the range is 45° ⁇ 5°, and the allowable range of the second preset angle ⁇ is 45° ⁇ 5°.
  • the first preset angle ⁇ and the second preset angle ⁇ are at about 45° so that the first display screen 10a projects onto the image formed on the first optical lens 20a and the optical axis of the first eyepiece 30a.
  • the direction can be substantially vertical, and the second display screen 10b projects to the second optical mirror
  • the object image formed on the sheet 20b can be substantially perpendicular to the optical axis direction of the second eyepiece 30b. The user can see the object image displayed in the front view direction when viewing, and the user experience is better.
  • the wearable device in the unmanned aerial vehicle may further include a distance adjustment system connected to the first eyepiece 30a and the second eyepiece 30b, respectively.
  • the first eyepiece 30a and the second eyepiece 30b are driven relatively close to or relatively far apart to adjust the distance between the first eyepiece 30a and the second eyepiece 30b. Since the distance between different people may be different, the distance adjustment is adjusted to suit the needs of different people.
  • the wearable device in the UAV system provided by this embodiment can adjust the distance between the first eyepiece 30a and the second eyepiece 30b by the interpupillary adjustment system to adapt to different pupil distances of different people.
  • the embodiment is based on the sixty-eighth embodiment.
  • the interpupillary adjustment system may specifically include a servo motor 60, a servo motor control module 70, and a transmission device 80, and the servo motor is controlled.
  • the module 70 can be used to control the angle of rotation of the output shaft of the servo motor 60.
  • the transmission 80 is used to convert the rotary motion into a linear motion.
  • the servo motor 60 is coupled to the input of the transmission 80, and the output of the transmission 80 is One eyepiece 30a and second eyepiece 30b are connected.
  • the pictures on the first display screen 10a and the second display screen 10b can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and The three points in the center of the screen can be on the same line, improving the comfort of viewing.
  • the wearable device in the UAV system provided by this embodiment can accurately adjust the interpupillary distance, and the user is more comfortable in use.
  • the embodiment provides an unmanned aerial vehicle system, including the unmanned aerial vehicle A camera (not shown) for taking a picture, the camera is communicably connected with a wearable device; referring to FIG. 4 or FIG. 5, the wearable device of the UAV system of the present embodiment includes: a display 10.
  • the optical lens 20, the light shielding member 40 and the adjusting device, the number of the display screen 10 and the optical lens 20 are all one, the reflecting surface 21 is formed on the optical lens 20, and the display surface 11 of the display screen 10 and the reflecting surface of the optical lens 20 are formed.
  • a predetermined angle ⁇ is formed between 21, and the optical lens 20 is partially transmissive partially reflective, and the adjusting device is used to adjust the luminous flux that passes through the light blocking member 40 to reach the inside of the wearable device.
  • the optical lens 20 may be a half mirror.
  • a camera can also be provided, and the camera can be electrically connected to the display screen 10.
  • the display screen 10 displays the display content matched with the captured content according to the content captured by the camera.
  • the camera can capture the current real scene, and the processor can generate related information matching the current scene according to the current scene captured by the camera, and cause the display content related to the current scene to be displayed on the display screen 10.
  • the actual flight state of the UAV can be combined with the flight related text or graphic information of the UAV in the line of sight range, for example, visually displaying the state of the UAV, the direction of flight, Flight trajectory, obstacle information and operation tips, first view image, and the like.
  • the wearable device of the UAV system provided in this embodiment may be a product such as glasses or a helmet, which is not limited in this embodiment.
  • the wearable device provided in this embodiment is displayed by a single display screen 10, has a simple structure, and the entire wearable device can be made smaller.
  • the display content on the display screen 10 can be incident into the left and right eyes of the person through the optical lens 20 having the reflective function. Since the optical lens 20 can partially transmit the partial reflection, the adjusting device can adjust the external light to pass through the light shielding member to reach the wearable device.
  • the internal luminous flux thereby enabling the wearable device to realize the integration of virtual reality and augmented reality under the adjustment of the adjusting device, and realize switching between the virtual reality mode and the augmented reality mode.
  • the embodiment is based on the seventy-seventh embodiment.
  • the light shielding member 40 may face the surface of the optical lens 20 opposite to the reflective surface 21, and the light shielding member 40 is configured to block the light of the real scene from being projected onto the optical lens 20. on.
  • the wearable device in the drone system provided by the embodiment controls the amount of external light projected onto the optical lens 20 through the light shielding member 40, thereby implementing switching between the virtual reality mode and the augmented reality mode.
  • the embodiment is based on Embodiment 71.
  • the light shielding member 40 can be an adjustable light transmittance member, and the adjusting device is further electrically connected to the light shielding member 40 (not shown), and the adjusting device is used for adjusting the light shielding member. 40 The magnitude of the applied voltage to change the light transmittance of the light blocking member 40.
  • the angle between the display screen 10 of the light shielding member 40 provided in the present embodiment may be equal to the preset angle setting between the display screen 10 and the optical lens 20, so that the light shielding member 40 can achieve a better light shielding effect.
  • the wearable device of the UAV system provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters by adjusting the light transmittance of the light shielding member 40.
  • the wearable device when the size of the voltage applied to the light shielding member 40 reaches a certain preset value or no voltage is applied to make the light shielding member 40 completely opaque, the wearable device operates in the virtual reality mode when passing through the pair of light shielding members. 40 When the applied voltage reaches another preset value and the light blocking member 40 is completely transparent, external light can enter the wearable device through the light shielding member 40, and the human eye can view the real scene outside, and the wearable device works. In augmented reality mode.
  • the embodiment is based on the seventy-first embodiment and provides an implementation different from the seventy-second embodiment.
  • the arrangement position of the light shielding member 40 can be the same as that of the seventy-second embodiment, and the difference from the seventy-second embodiment is that
  • the light blocking member 40 may be detachably disposed on the wearable device body 50.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding body and The support member (shown in the figure), the support member may be a transparent glass plate or other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and formed One side wall of the device body 50 is worn, and when the light shielding is required, the light shielding body is placed inside the wearable device body 50 and laminated with the support member, and when the light shielding is not required, the light shielding body is removed from the wearable device body 50. Can be removed. It can not only ensure the appearance of the wearable device, but also protect the internal components of the wearable device to a certain extent.
  • the unmanned aerial vehicle system provided in this embodiment is compared with the seventy-second embodiment.
  • the wearable device in the UAV realizes the virtual wearable device by installing or detaching the light shielding member 40 through the detachable light shielding member 40.
  • the switch between the reality mode and the augmented reality mode is simple in structure and low in cost.
  • the present embodiment is based on any one of Embodiments 70 to 73, and the wearable device provided in the unmanned aerial vehicle further includes a first eyepiece 30a and a second eyepiece 30b, the first eyepiece 30a and The second eyepiece 30b is disposed between the display surface 11 of the display screen 10 and the reflective surface 21 of the optical lens 20.
  • the first eyepiece 30a and the second eyepiece 30b may each be a lens group formed by laminating at least one convex lens and at least one concave lens.
  • the eyepiece is generally an optical component for magnifying the image formed by the objective lens, and the image seen by the user through the first eyepiece 30a and the second eyepiece 30b is The enlarged image.
  • the first eyepiece 30a and the second eyepiece 30b are each a lens group formed by laminating at least one convex lens and at least one concave lens.
  • the convex lens can further enlarge the image, improve the angle of view, and improve the immersion.
  • the concave lens can be used to limit the field of view, allowing only a certain range of light to pass through the lens group.
  • the first eyepiece 30a can be viewed by the left eye of the user, and the second eyepiece 30b can be viewed by the right eye of the user.
  • the display surface 11 of the display screen 10 and the optical axis direction of the first eyepiece 30a may be at an angle, and the object image projected onto the optical lens 20 by the display screen 10 is perpendicular to the optical axis direction of the first eyepiece 30a and the second eyepiece 30b. That is, the distance between the object points and the plane of the eyepiece is the same, so that the object image is trapezoidal, which affects the viewing effect.
  • the value of the preset angle ⁇ between the display screen 10 and the optical lens 20 determines whether the object image formed by the display screen 10 after being reflected by the optical lens 20 is perpendicular to the optical axis directions of the first eyepiece 30a and the second eyepiece 30b.
  • Each of the 30b is a lens group formed by laminating at least one convex lens and at least one concave lens, and the object image formed on the display screen 10 is reflected by the optical lens 20 to be a virtual image.
  • the wearable device may further include a distance adjustment system connected to the first eyepiece 30a and the second eyepiece 30b, respectively, for driving the first eyepiece 30a and the first
  • the binoculars 30b are relatively close or relatively far apart to adjust the distance between the first eyepiece 30a and the second eyepiece 30b. Since the distance between different people may be different, the distance adjustment is adjusted to suit the needs of different people.
  • the wearable device in the UAV system provided by this embodiment can adjust the distance between the first eyepiece 30a and the second eyepiece 30b by the interpupillary adjustment system to adapt to different pupil distances of different people.
  • the pitch adjustment system may specifically include a servo motor 60, a servo motor control module 70, and a transmission device 80, and the servo motor is controlled.
  • the module 70 can be used to control the angle of rotation of the output shaft of the servo motor 60.
  • the transmission 80 is used to convert the rotary motion into a linear motion.
  • the servo motor 60 is coupled to the input of the transmission 80, and the output of the transmission 80 is One eyepiece 30a and second eyepiece 30b are connected.
  • the screen on the display screen 10 can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and the center of the screen can be in the same line. Improve the comfort of viewing.
  • the wearable device in the UAV system provided by this embodiment can accurately adjust the interpupillary distance, and the user is more comfortable in use.
  • FIG. 6 is a schematic diagram of a fourth structure of a wearable device according to an embodiment of the present invention.
  • the wearable device in the UAV system of the present embodiment includes: a display screen 10, a first eyepiece 30a, The second eyepiece 30b, the light blocking member 40 and the adjusting device, the display screen 10 is perpendicular to the optical axis direction of the first eyepiece 30a and the second eyepiece 30b, the display screen 10 is adapted to transmit light, and the adjusting device is configured to adjust through the light blocking member 40.
  • the luminous flux that reaches the inside of the wearable device.
  • the wearable device in the UAV system provided in this embodiment directly places the display 10 with light transmissive light in front of the human eye, and the user can view the content on the display screen 10, and can simultaneously see the outside world at the same time.
  • the real scene that is, the display mode capable of realizing the augmented reality
  • the adjusting device can adjust the luminous flux of the display screen 10 to adjust whether the light of the real scene of the outside world enters the human eye through the display screen 10, and can not enter the human eye when the external light is adjusted.
  • the wearable device is in a virtual reality display mode.
  • the wearable device in the UAV system provided by the embodiment can realize the integration of the virtual reality and the augmented reality, and can realize the switching between the virtual reality and the augmented reality, and the user can observe the unmanned aerial vehicle by using the wearable device.
  • you can experience different viewing effects in virtual reality and augmented reality mode with better flexibility.
  • the embodiment is based on the seventy-seventh embodiment.
  • the light blocking member 40 can be disposed in parallel with the display screen 10.
  • the light blocking member 40 is configured to block the light of the real scene from being projected onto the display screen 10.
  • the light blocking member 40 may be a thin plate type structure or other structure. Since the external light needs to pass through the display screen 10 to reach the human eye, when the light shielding member 40 blocks the external light from entering, the user cannot see the real scene in front of the eyes and is immersed in the virtual scene in the virtual reality mode.
  • the structure of the wearable device body 50 and the structure of the light-shielding member 40 are not limited thereto, and those skilled in the art may specifically design different feasible structures according to actual needs, which are not described herein.
  • the light shielding member 40 can be an optical transmittance adjustable member, and the adjusting device is electrically connected to the light shielding member 40.
  • the adjusting device is used to adjust the voltage applied to the light shielding member 40 to change the light transmission of the light shielding member 40. rate.
  • the wearable device in the UAV system provided in this embodiment can work in two working modes of virtual reality and augmented reality, and can adjust whether the external light enters by adjusting the light transmittance of the light shielding member 40.
  • the wearable device when the size of the voltage applied to the light shielding member 40 reaches a certain preset value or no voltage is applied to make the light shielding member 40 completely opaque, the wearable device operates in the virtual reality mode when the light is blocked by the pair.
  • the magnitude of the voltage applied by the member 40 reaches another preset value so that the light blocking member 40 is completely transparent, external light can enter the wearable device through the light shielding member 40, and the human eye can view the real scene outside, the wearable device Work in augmented reality mode.
  • the embodiment is based on the seventy-eighth embodiment, and provides an implementation different from the seventy-ninth embodiment.
  • the arrangement position of the light shielding member 40 can be the same as that of the seventy-ninth embodiment, and the difference from the seventy-ninth embodiment is that
  • the light blocking member 40 may be detachably disposed on the wearable device body 50.
  • the specific principles, specific implementation manners, and connection relationships of the wearable device of the UAV system provided in this embodiment are the same as those in Embodiment 39, and details are not described herein again.
  • an opening may be disposed on the wearable device body 50 and located in front of the line of sight of the human eye, and the light blocking member 40 is directly detachably disposed at the opening.
  • the light blocking member 40 may further include a light shielding member body and a support member (shown in the drawing), and the support member may be a transparent glass plate or The other light transmissive material, the support member and the light shielding member body may be stacked, and the support member may be fixed on the wearable device body 50 and form a side wall of the wearable device body 50. When the light shielding is required, the light shielding member body is placed.
  • the inside of the wearable device body 50 and the support member are stacked, and when the light shielding is not required, the shade body can be removed from the wearable device body 50. It can not only ensure the appearance of the wearable device, but also protect the internal components of the wearable device to a certain extent.
  • the wearable device in the unmanned aerial vehicle realizes the virtual wearable device by installing or detaching the light shielding member 40 through the detachable light shielding member 40.
  • the switch between the reality mode and the augmented reality mode is simple in structure and low in cost.
  • the embodiment is based on any one of the seventy-seventh embodiment to the eighty-eighth embodiment.
  • the wearable device in the unmanned aerial vehicle system further provided by the embodiment further includes a distance adjustment system, and the distance adjustment system respectively
  • the first eyepiece 30a and the second eyepiece 30b are coupled for driving the first eyepiece 30a and the second eyepiece 30b relatively close to or relatively far apart to adjust the distance between the first eyepiece 30a and the second eyepiece 30b. Since the distance between different people may be different, the distance adjustment is adjusted to suit the needs of different people.
  • the wearable device in the UAV system provided by this embodiment can adjust the distance between the first eyepiece 30a and the second eyepiece 30b by the interpupillary adjustment system to adapt to different pupil distances of different people.
  • the embodiment is based on the eighty-first embodiment.
  • the pitch adjustment system may specifically include a servo motor 60, a servo motor control module 70, and a transmission device 80, and the servo motor is controlled.
  • the module 70 can be used to control the angle of rotation of the output shaft of the servo motor 60.
  • the transmission 80 is used to convert the rotary motion into a linear motion.
  • the servo motor 60 is coupled to the input of the transmission 80, and the output of the transmission 80 is One eyepiece 30a and second eyepiece 30b are connected.
  • the screen on the display screen 10 can be synchronously translated according to the distance between the first eyepiece 30a and the second eyepiece 30b, so that the center of the human eye, the center of the eyepiece, and the center of the screen can be in the same line. Improve the comfort of viewing.
  • the wearable device in the UAV system provided by this embodiment can accurately adjust the interpupillary distance, and the user is more comfortable in use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

一种可穿戴设备及无人机系统,第一显示屏(10a)的显示面(11a)与第一目镜(30a)的光轴方向平行,第二显示屏(10b)的显示面(11b)与第二目镜(30b)的光轴方向平行;第一光学镜片(20a)的反射面(21a)朝向第一显示屏(10a),且与第一显示屏(10a)间形成第一预设夹角,使第一显示屏(10a)投射到第一光学镜片(20a)上所成物像与第一目镜(30a)的光轴方向垂直;第二光学镜片(20b)的反射面(21b)朝向第二显示屏(10b),且与第二显示屏(10b)之间形成第二预设夹角,使第二显示屏(10b)投射到第二光学镜片(20b)上所成物像与第二目镜(30b)的光轴方向垂直。

Description

可穿戴设备及无人机系统 技术领域
本发明涉及虚拟现实技术,尤其涉及一种可穿戴设备及无人机系统。
背景技术
随着科技的发展,越来越多的眼镜或头盔产品在影音播放,视频游戏以及无人机第一视角飞行等领域大量涌现,这些产品从原理与用户体验上大概分为虚拟现实与增强现实两大类。虚拟现实,具体含义是:综合利用计算机图形系统和各种现实及控制等接口设备,在计算机上生成的、可交互的三维环境中提供沉浸感觉的技术,代表产品有Oculus的Rift和Sony的Morpheus。增强现实,是在虚拟现实基础上发展起来的新技术,是通过计算机系统提供的信息增加用户对现实世界感知的技术,并将计算机生成的虚拟物体、场景或系统提示信息叠加到真实场景中,从而实现对现实的“增强”,代表产品有谷歌眼镜和微软的Hololens。
目前市场上最流行的虚拟现实眼镜方案为:将单个显示屏水平放置在人眼前方,屏幕的左半边显示左眼观看的图像,屏幕的右半边显示右眼观看的图像,两幅图像经过透镜组放大以进一步提高视场来实现虚拟现实的体验。
上述的现有技术由于将显示屏放置在人眼前,而由于人眼的瞳距限制(一般人眼瞳距为55mm到75mm),显示屏的尺寸不能过大,通常在5.5英寸左右,而现有5.5英寸显示屏的最大分辨率为2560×1440,分左右眼并保持观看内容16:9的长宽比后,单眼的有效显示区域仅为为2.7英寸左右,分辨率为1280×720,由于有效显示区域较小,需要透镜组较高的放大倍数才能提高沉浸感,而正是因为较高的放大倍数则会导致视觉效果上有很强的颗粒感,显示效果较差。
发明内容
针对现有技术中的上述缺陷,本发明提供的可穿戴设备及无人机系统,能够解决现有技术中虚拟现实眼镜无法同时满足较好的沉浸感和显 示效果的问题。
本发明的第一个方面是提供一种可穿戴设备,包括第一显示屏、第二显示屏、第一光学镜片、第二光学镜片、以及设置在第一显示屏与第一光学镜片之间的第一目镜、设置在第二显示屏与第二光学镜片之间的第二目镜;
所述第一显示屏的显示面与所述第一目镜的光轴方向平行,所述第二显示屏的显示面与所述第二目镜的光轴方向平行;
所述第一光学镜片上和所述第二光学镜片上分别形成有反射面,所述第一光学镜片的反射面朝向所述第一显示屏,且与所述第一显示屏之间形成第一预设夹角,以使所述第一显示屏投射到第一光学镜片上所成物像与第一目镜的光轴方向垂直;所述第二光学镜片的反射面朝向所述第二显示屏,且与所述第二显示屏之间形成第二预设夹角,以使所述第二显示屏投射到第二光学镜片上所成物像与所述第二目镜的光轴方向垂直。
本发明的第二个方面是提供一种可穿戴设备,包括显示屏、光学镜片、遮光件和调节装置,所述光学镜片上形成有反射面,所述显示屏的显示面与所述反射面之间形成有预设夹角,所述光学镜片可部分透射部分反射,所述调节装置用于调节外界光线穿透过所述遮光件而到达可穿戴设备内部的光通量。
本发明的第三个方面是提供一种可穿戴设备,包括第一显示屏、第二显示屏、第一光学镜片、第二光学镜片、遮光件和调节装置;
所述第一光学镜片上和所述第二光学镜片上分别形成有反射面,所述第一显示屏的显示面与所述第一光学镜片的反射面之间形成第一预设夹角;所述第二显示屏的显示面与所述第二光学镜片的反射面之间形成第二预设夹角;所述第一光学镜片和所述第二光学镜片均可部分透射部分反射,调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
本发明的第四个方面是提供一种可穿戴设备,包括:显示屏、光学镜片、遮光件和调节装置,所述显示屏和所述光学镜片的数量均为一个,所述光学镜片上形成有反射面,所述显示屏的显示面与反射面之间形成有预设夹角,所述光学镜片可部分透射部分反射,所述调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
本发明的第五个方面是提供一种可穿戴设备,包括:显示屏、第一目镜、第二目镜、遮光件和调节装置,所述显示屏与所述第一目镜和所述第二目镜的光轴方向垂直,所述显示屏可供光线透射,所述调节装置用于调节外界光线穿透过所述遮光件而到达可穿戴设备内部的光通量。
本发明的第六个方面是提供一种无人机系统机系统,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
所述可穿戴设备包括:第一显示屏、第二显示屏、第一光学镜片、第二光学镜片、以及设置在第一显示屏与第一光学镜片之间的第一目镜、设置在第二显示屏与第二光学镜片之间的第二目镜;
所述第一显示屏的显示面与所述第一目镜的光轴方向平行,所述第二显示屏的显示面与所述第二目镜的光轴方向平行;
所述第一光学镜片上和所述第二光学镜片上分别形成有反射面,所述第一光学镜片的反射面朝向所述第一显示屏,且与所述第一显示屏之间形成第一预设夹角,以使所述第一显示屏投射到第一光学镜片上所成物像与第一目镜的光轴方向垂直;所述第二光学镜片的反射面朝向所述第二显示屏,且与所述第二显示屏之间形成第二预设夹角,以使所述第二显示屏投射到第二光学镜片上所成物像与所述第二目镜的光轴方向垂直。
本发明的第七个方面是提供一种无人机系统机系统,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
所述可穿戴设备包括:显示屏、光学镜片、遮光件和调节装置,所述光学镜片上形成有反射面,所述显示屏的显示面与所述反射面之间形成有预设夹角,所述光学镜片可部分透射部分反射,所述调节装置用于调节外界光线穿透过所述遮光件而到达可穿戴设备内部的光通量。
本发明的第八个方面是提供一种无人机系统,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
所述可穿戴设备包括:第一显示屏、第二显示屏、第一光学镜片、第二光学镜片、遮光件和调节装置;
所述第一光学镜片上和所述第二光学镜片上分别形成有反射面,所述第一显示屏的显示面与所述第一光学镜片的反射面之间形成第一预设夹角;所 述第二显示屏的显示面与所述第二光学镜片的反射面之间形成第二预设夹角;所述第一光学镜片和所述第二光学镜片均可部分透射部分反射,调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
本发明的第九个方面是提供一种无人机系统,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
所述可穿戴设备包括:显示屏、光学镜片、遮光件和调节装置,所述显示屏和所述光学镜片的数量均为一个,所述光学镜片上形成有反射面,所述显示屏的显示面与反射面之间形成有预设夹角,所述光学镜片可部分透射部分反射,所述调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
本发明的第十个方面是提供一种无人机系统,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
所述可穿戴设备包括:显示屏、第一目镜、第二目镜、遮光件和调节装置,所述显示屏与所述第一目镜和所述第二目镜的光轴方向垂直,所述显示屏可供光线透射,所述调节装置用于调外界光线节穿透过所述遮光件而到达可穿戴设备内部的光通量。
本发明第一方面提供的可穿戴设备及第六方面提供的无人机系统具有以下技术效果:通过采用双屏显示,双屏放置在与目镜光轴方向平行的位置,并通过光学镜片反射显示屏上所显示的内容到人眼中,显示屏通过光学镜片反射后形成的物像与目镜光轴方向垂直,因此,显示内容能够以垂直于人眼光轴方向的方式显示在人眼前,相较于现有技术,本方案提供的双屏显示的可穿戴设备,相较于现有技术,在同样的屏幕参数下,单眼的有效显示区域更大,沉浸感更强,显示效果更好,在运用到无人飞行器上时,利用该可穿戴设备可以在虚拟现实模式下体验第一视角飞行。
本发明第二方面、第四方面提供的可穿戴设备及第七方面、第九方面提供的无人机系统具有以下技术效果:可穿戴设备通过将显示屏与可部分透射部分反射的光学镜片之间形成预设夹角,并通过调节装置调节穿过遮光件而到达可穿戴设备内部的光通量,从而使得可穿戴设备可以在虚拟现实与增强现实的模式下切换,在运用到无人飞行器上时,利用该可穿戴设备可以在虚 拟现实模式和增强现实的模式下切换,具有不同的体验。
本发明的第三个方面提供的可穿戴设备及第八方面提供的无人机系统具有以下技术效果:采用双屏显示的方式可以在虚拟现实的模式下具有较强的沉浸感和较好的显示效果,通过将显示屏与可部分透射部分反射的光学镜片之间形成预设夹角,并通过调节装置调节穿过遮光件而到达可穿戴设备内部的光通量,从而使得可穿戴设备可以在虚拟现实与增强现实的模式下切换,在运用到无人飞行器上时,利用该可穿戴设备可以在虚拟现实模式和增强现实的模式下切换,具有不同的体验,且在虚拟现实模式下具有较好的沉浸感。
本发明的第五个方面提供的可穿戴设备及第十方面提供的无人机系统具有以下技术效果:可穿戴设备通过可供光线透射的显示屏放置于人眼前,并通过调节装置用于调节穿过遮光件而到达可穿戴设备内部的光通量,以使得可穿戴设备可以在虚拟现实与增强现实的模式下切换,在运用到无人飞行器上时,利用该可穿戴设备可以在虚拟现实模式和增强现实的模式下切换,具有不同的体验。
附图说明
图1为本发明实施例提供的可穿戴设备的一种结构示意图;
图2为图1中的可穿戴设备的俯视图;
图3为本发明实施例提供的可穿戴设备的另一种结构示意图;
图4为本发明实施例提供的可穿戴设备的又一种结构示意图;
图5为图4中的可穿戴设备的主视图;
图6为本发明实施例提供的可穿戴设备的第四种结构示意图;
图7为本发明实施例提供的瞳距调节系统的控制原理图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
需要说明的是,在本发明的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
实施例一
图1为本发明实施例提供的可穿戴设备的一种结构示意图;图2为图1中的可穿戴设备的俯视图;请参考附图1~2。本实施例提供的可穿戴设备包括第一显示屏10a、第二显示屏10b、第一光学镜片20a、第二光学镜片20b、以及设置在第一显示屏10a与第一光学镜片20a之间的第一目镜30a、设置在第二显示屏10b与第二光学镜片20b之间的第二目镜30b。
其中,第一显示屏10a的显示面11a与第一目镜30a的光轴方向平行。第二显示屏10b的显示面11b与第二目镜30b的光轴方向平行。
第一光学镜片20a上和第二光学镜片20b上分别形成有反射面(21a、21b)。第一光学镜片20a的反射面21a朝向第一显示屏10a,且第一光学镜片20a的反射面21a与第一显示屏10a之间形成第一预设夹角α,以使第一显示屏10a投射到第一光学镜片20a上所成物像101a与第一目镜30a的光轴方向垂直。第二光学镜片20b的反射面朝向第二显示屏10b,且第二光学镜片20b的反射面21b与第二显示屏10b之间形成第二预设夹角β,以使第二显示屏10b投射到第二光学镜片20b上所成物像与第二目镜30b的光轴方向垂直。
在本实施例中,第一光学镜片20a的反射面21a和第二光学镜片20b的 反射面21b上可以镀有反射膜或半透半反膜,例如,当第一光学镜片20a、第二光学镜片20b只需要全反射时,该反射面可以镀有反射膜;而当第一光学镜片20a和第二光学镜片20b既需要反射又需要透射时,第一光学镜片20a的反射面21a和第二光学镜片20b的反射面21b可以镀有半反半透膜,例如,在增强现实模式下,第一光学镜片20a和第二光学镜片20b应均能部分透射部分反射,因此,第一光学镜片20a的反射面21a和第二光学镜片20b的反射面21b可以镀有半透半反膜。
本领域技术人员能够理解的是,在光学系统中,目镜一般为将物镜所成的像放大后供眼睛观察用的光学部件,用户通过第一目镜30a和第二目镜30b看到的图像是呈放大后的图像。在本实施例中,优选的,第一目镜30a和第二目镜30b均为由至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。凸透镜可以起到进一步放大图像,提高视场角,提高沉浸感的作用。而凹透镜可以起到限制视场,只允许一定范围内的光线通过透镜组的作用。
第一显示屏10a和第二显示屏10b是具有显示功能的显示器,其具体的形状和结构并不限定,例如第一显示屏10a和第二显示屏10b可以为LCD显示屏(液晶显示屏),或者,OLED显示屏(有机发光显示屏),当然,第一显示屏10a和第二显示屏10b的具体类型也可以为其他类型,并且第一显示屏10a与第二显示屏10b两者的类型也可以互不相同。第一显示屏10a和第二显示屏10b内所显示的画面经过第一光学镜片20a和第二光学镜片20b的反射后进入人眼中,使得用户能够观看到第一显示屏10a和第二显示屏10b中的画面内容,例如,左眼看到第一显示屏10a上显示的内容,右眼看到第二显示屏10b上显示的内容,由于两眼视差,可以产生3D的感觉。
在使用过程中,第一目镜30a可以供用户的左眼观看,第二目镜30b可以供用户右眼观看。第一显示屏10a的显示面11a与第一目镜30a的光轴方向平行,即,第一显示屏10a的显示面11a与人的左眼光轴方向平行。第二显示屏10b的显示面11b与第二目镜30b的光轴方向平行,即,第二显示屏10b的显示面11b与人的右眼光轴方向平行。第一光学镜片20a的反射面21a与第一显示屏10a之间形成第一预设夹角α,第二光学镜片20b的反射面21b与第二显示屏10b之间形成第二预设夹角β,第一预设夹角α和第二预设夹角β的具体值可以具体设定,本实施例不具体限定,但需保证第一显示屏10a 投射到第一光学镜片20a上所成物像与第一目镜30a的光轴方向垂直,第二显示屏10b投射到第二光学镜片20b上所成物像与所述第二目镜30b的光轴方向垂直,即,物像各个点到目镜平面的距离相同,从而避免物像呈梯形,影响观看效果。
需要说明的是,在本实施例中,由于优选的,第一目镜30a和第二目镜30b均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组,则第一显示屏10a和第二显示屏10b上显示的画面内容经过第一光学镜片20a和第二光学镜片20b反射后形成的物像为虚像。
本实施例提供的可穿戴设备可以为眼镜或者头盔等产品,本实施例不作限定。本实施例提供的可穿戴设备,由于通过双显示屏(第一显示屏10a和第二显示屏10b)显示内容,并通过具有反射功能的第一光学镜片20a和第二光学镜片20b分别将第一显示屏10a和第二显示屏10b上的显示内容分别入射至人的左右眼中,相较于现有技术,在同样的屏幕参数下,单眼的有效显示区域能够达到为5.5英寸,分辨率为2560×1440,经过试验,不通过目镜的视场角即可达到45°左右,并通过加入目镜放大1.5倍后,可实现70°的视场角,能够实现很强的沉浸感,并且由于单眼的有效显示区域较大,目镜的放大倍数不需要很高也能达到较好的沉浸感,且用户在使用时视觉效果上的颗粒感较弱,显示效果较为细腻。而对于头盔产品来说,则可采用更大的尺寸更高分辨率的显示屏来达到更好的显示效果。
实施例二
本实施例在实施例一的基础上,进一步的,第一显示屏10a与第二显示屏10b可以平行相对设置。更具体的,如图1和图2所示,第一显示屏10a与第二显示屏10b之间可以形成预设距离,且第一光学镜片20a、第二光学镜片20b、第一目镜30a以及第二目镜30b设置在第一显示屏10a与第二显示屏10b之间。第一显示屏10a与第二显示屏10b之间的放置位置大体上可以根据人脸部或者头部的宽度而设定,以使得在使用时,第一显示屏10a和第二显示屏10b能够基本平行相对地设置在人的眼睛两侧,一方面能够保证用户在使用时具有较好的观看感受,另一方面能够节省可穿戴设备的结构空间,保证整个可穿戴设备的体积较小。
实施例三
图3为本发明实施例提供的可穿戴设备的另一种结构示意图;如图3所示,本实施例基于实施例一,并与实施例二不同的是,本实施例中的第一显示屏10a与第二显示屏10b可以以贴合相对的方式放置,且第一显示屏10a的显示面11a与第二显示屏10b的显示面11b相背离,第一光学镜片20a的反射面21a朝向第一显示屏10a的显示面11a,第二光学镜片20b的反射面21b朝向第二显示屏10b的显示面11b。在该种方式下,第一显示屏10a和第二显示屏10b可以位于两眼的中间,在佩戴上时,第一显示屏10a和第二显示屏10b放置在人的鼻梁前方,而第一显示屏10a和第二显示屏10b可以选用超薄显示屏,以保证第一显示屏10a和第二显示屏10b尽量较少地遮挡住人眼的视线,保证较好的观看感受。
实施例四
本实施例基于上述任一实施例,请继续参照附图2,第一预设夹角α与第二预设夹角β可以相等。由于第一目镜30a与第二目镜30b的光轴方向基本平行,因此,第一显示屏10a与第二显示屏10b两者之间也基本平行,第一预设夹角α与第二预设夹角β相等,第一光学镜片20a与第二光学镜片20b可以以第一目镜30a和第二目镜30b的对称轴为中心对称设置,由此,第一光学镜片20a和第二光学镜片20b大致可以形成一等腰三角形的两腰。
在上述实施例的基础上,优选的,第一预设夹角α和第二预设夹角β可以为45°。可以使得第一显示屏10a投射到第一光学镜片20a上所成物像与第一目镜30a的光轴方向垂直,第二显示屏10b投射到第二光学镜片20b上所成物像与所述第二目镜30b的光轴方向垂直。当然,本领域技术人员可以理解,在具体设计时,第一预设夹角α和第二预设夹角β也可以在误差允许的范围内变动,例如,第一预设夹角α的允许范围为45°±5°,第二预设夹角β的允许范围为45°±5°。第一预设夹角α和第二预设夹角β的取值在45°左右,以使得第一显示屏10a投射到第一光学镜片20a上所成物像与第一目镜30a的光轴方向能够基本垂直,第二显示屏10b投射到第二光学镜片20b上所成物像与所述第二目镜30b的光轴方向能够基本垂直。用户在观看时能够看到以正视方向显示的物像,用户体验较好。
实施例五
本实施例基于以上任意一个实施例,本实施例对第一光学镜片20a和第二光学镜片20b进行进一步限定。第一光学镜片20a和第二光学镜片20b均可部分透射部分反射。当第一显示屏10a的光线投射到第一光学镜片20a上时,可经过反射后进入人眼中,同样的,第二显示屏10b的光线投射到第二光学镜片20b上时,可以经过反射后进入人眼中。而外界的真实景象可以经过第一光学镜片20a和第二光学镜片20b透射入人眼中人眼可以通过具有透射功能的第一光学镜片20a和第二光学镜片20b观察到视线前方的外界真实场景。第一显示屏10a和第二显示屏10b上显示的内容经过第一光学镜片20a和第二光学镜片20b的反射后入射人眼中,人眼能够同时观看到当前所处的真实场景以及显示屏上显示的内容,形成真实场景与显示屏上的虚拟内容叠加的增强现实的效果。
在增强现实的模式下,外界真实场景与显示屏的显示内容的叠加效果由第一光学镜片20a和第二光学镜片20b的透光率,外界的光线强度,第一显示屏10a、第二显示屏10b的亮度共同决定,而第一显示屏10a、第二显示屏10b的亮度可以根据外界光线强度的改变而自动调整,当然,用户也可以手动调节第一显示屏10a和第二显示屏10b的亮度,以此来达到不同场景下稳定的叠加效果,提高增强现实的体验效果。
在该可穿戴设备上,还可以设置摄像头,摄像头可以与第一显示屏10a和第二显示屏10b电连接,第一显示屏10a和第二显示屏10b根据摄像头拍摄的内容显示与拍摄到的内容相配合的显示内容;摄像头还用于获取用户的手势信息,以使处理器根据手势信息执行与手势信息匹配的操作。摄像头可以拍摄当前实景,而处理器则可根据摄像头所拍摄的当前场景生成与当前场景匹配的相关信息,并使得第一显示屏10a和第二显示屏10b上显示与当前场景相关的显示内容。例如,用户佩戴该可穿戴设备、实现行人检测、人脸识别、二维码识别等功能。在增强现实模式下,用户可以观察到显示屏上显示的内容以及当前外界真实场景,由于用户看到的叠加画面是虚拟的画面,用户仅仅能够看到显示屏上显示的内容,但是用户无法真正触碰到屏幕,例如,本实施例中的摄像头可以拍摄用户通过手指点击到该虚拟画面上的位置的图像,用户用手指点击画面中的操作菜单,摄像头捕捉出用户点击操作的图像,并识别出一定时间内用户手指位置稳定的坐标,通过与可穿戴设备中 真实的菜单做图像比对,从而能够识别出用户手指所点击菜单对应的控制指令,以使得处理器执行对应的操作,并在显示屏上显示出所选命令对应的显示画面。当然,用户还可以通过手指滑动、框选等手势动作进行选择操作,而并不限于点击的方式,在此,本实施例不做限定。
需要说明的是,本实施例中的摄像头的数量并不限定,具体可以是一个摄像头实现多个功能,例如,同时实现行人检测、人脸识别、二维码识别、用户手指位置坐标识别等,或者,通过一个以上的摄像头捕捉不同的画面实现上述不同的功能,在此,本实施例不做限定,本领域技术人员可以根据具体实际场景而具体选择。
而对于无人飞行器的运用来讲,则可以实现在操作无人飞行器时,在视距范围内,将无人飞行器的实际飞行状态与无人飞行器的飞行相关文字或图形信息结合起来,例如,直观显示无人飞行器状态、飞行方向、飞行轨迹、障碍物信息和操作提示、第一视角影像等等。具体的应用场景有很多,在此,本发明实施例不一一例举。
在本实施例中,优选的,第一光学镜片20a和第二光学镜片20b可以均为半透半反镜。第一光学镜片20a的反射面21a和第二光学镜片20b的反射面21b上可以镀有半透半反膜。所谓半透半反镜,为可将入射光部分反射部分透射的玻璃或者有机玻璃镜片,在本实施例中,第一光学镜片20a和第二光学镜片20b可以为同种类型的镜片,两者的透射率和反射率可以分别相同。例如,第一光学镜片20a的透射率可以为30%,反射率可以为70%;同样的,第二光学镜片20b的透射率为30%,反射率为70%。第一光学镜片20a和第二光学镜片20b的透射率和反射率的比例可以决定最后的叠加效果,即在增强现实模式下的显示效果。
实施例六
本实施例基于实施例五,在实施例五的基础上,该可穿戴设备还可以进一步包括调节装置,调节装置具体用于调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量。
在增强现实模式下,可穿戴设备上应具有可供用户观看视线前方的透光区域,当光线从透光区域进入可穿戴设备并穿透第一光学镜片20a和第二光学镜片20b而进入人眼中时,人眼才能看见外界真实场景。而为实现在虚拟 现实和增强现实之间切换,则需要阻挡或不阻挡外界光线从透光区域射入人眼中,而本实施例中则通过调节装置调节外界光线是否穿过透光区域,由于在本实施例中,只要光线能够穿过透光区域,则光线便能穿过第一光学镜片20a和第二光学镜片20b进入到人眼中,因此,调节装置具体用于调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量。
当调节装置调节外界光线进入到可穿戴设备内部的光通量为零时,外界光线无法通过第一光学镜片20a和第二光学镜片20b透射进入人眼中,人眼无法看到外界场景,而沉浸在该可穿戴设备中第一显示屏10a和第二显示屏10b通过第一光学镜片20a和第二光学镜片20b的反射形成的物像场景中,该种模式则为虚拟现实模式。而当调节装置调节至外界光线进入到可穿戴设备内部光通量不为零时,例如,可以使得外界光线可以不经过阻挡而全部入射到第一光学镜片20a上和第二光学镜片20b上,并通过第一光学镜片20a和第二光学镜片20b的部分透射部分反射功能,外界光线可以透射入人眼中,此时,第一显示屏10a和第二显示屏10b上显示的内容也经过第一光学镜片20a和第二光学镜片20b的反射形成的物像也入射入人眼中,并与真实场景叠加,在人眼中形成增强现实的显示模式。
本实施例提供的可穿戴设备,通过调节装置调节进入到可穿戴设备内部的光通量,当外界光线穿透入可穿戴设备内部的光通量为零时,为虚拟现实显示模式,当外界光线能够入射到第一光学镜片20a上和第二光学镜片20b上时,为增强现实显示模式,从而使得该可穿戴设备可在调节装置的调节作用下,实现虚拟现实与增强现实的一体化,并实现虚拟现实与增强现实之间的切换。
实施例七
请继续参照附图1和附图2,本实施例在实施例六的基础上,对调节装置做详细描述。具体的,还包括遮光件40,在具体设置时,遮光件40可以朝向第一光学镜片20a上与反射面21a相对的表面以及第二光学镜片20b上与反射面21b相对的表面,遮光件40用于阻挡外界真实场景的光线投射到第一光学镜片20a和第二光学镜片20b上。
其中,本实施例提供的可穿戴设备可以包括可穿戴设备本体50,该可穿戴设备本体50可以为如图1所示的盒状结构,遮光件40可以为薄板类结构, 或者其他结构。当外界光线需要投射到第一光学镜片20a上与反射面21a相对的表面,以及第二光学镜片20b上与反射面21b相对的表面,则首先需要穿透过遮光件40,因此,当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不作赘述。
实施例八
本实施例基于实施例七,具体的,遮光件40可以为透光率可调件,调节装置可以与遮光件40电连接的调节装置(图中未示出),调节装置用于调节对遮光件40施加的电压大小,以改变遮光件40的透光率。在本实施例中,优选的,该遮光件40可以为LCD液晶屏,当然,遮光件40还可以为其他类型,例如,TN LCD液晶屏,或者电致变色玻璃等等。液晶是一种有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。LCD液晶屏可以通过电压来改变液晶材料内部分子的排列状况,以达到遮光和透光的目的,本实施例提供的遮光件40可以通过电压控制,以使得其工作在两个状态:一是透明状态,二是遮光状态,在透明的状态下,透光率接近10%,在遮光状态下,外界光线完全不能通过遮光件,透光率为0%。透明状态时,该可穿戴设备为增强现实的显示模式,用户可以看到真实的外界场景。在遮光状态下,该可穿戴设备为虚拟现实的显示模式,外界的真实场景不能进入到用户眼中,此时,用户只能看到第一显示屏10a和第二显示屏10b上显示的内容,整个可穿戴设备处于虚拟现实的显示模式。
另外,优选的,在本实施提供的遮光件40可以垂直于第一显示屏10a和第二显示屏10b设置,从而遮光件40能够达到较好的遮光效果。当然,本领域技术人员可以理解的是,遮光件40的设置位置并不限于此,例如,遮光件40也可以与第一显示屏10a和第二显示屏10b呈锐角或钝角设置。而遮光件40的形状可以为直板状、弧面状、或者其他规则或不规则形状均可,这并不影响遮光件的功能实现。并且遮光件40的数量可以为一个或者两个,或者多个,例如多个遮光件40拼接而起到完全遮挡外界光线的作用,为简化结构,本实施例采用的遮光件40为单个遮光件。对于遮光件40的设置位置、形状和数量,本实施例均不限定,遮光件40只要能够阻挡外界光线进入到可穿戴 设备内并穿透第一光学镜片20a和第二光学镜片20b即可。
另外,本实施例中的调节装置与遮光件40电连接,调节装置可以设置在可穿戴设备的内部而不外露,以保证可穿戴设备的外型上的整齐。
本实施例提供的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得人眼可以观看到外界真实场景,可穿戴设备工作在增强现实模式下。
实施例九
本实施例基于实施例七,并且提供一种与实施例八不同的实现方式,遮光件40的设置位置可以与实施例八相同,与实施例八不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。在本实施例中,遮光件40可以为普通的不透光的材料构成,例如,可以为普通的塑料板,木板等等,当然,优选的,该遮光件40的质量较轻,以尽量减轻整个可穿戴设备的重量,提高佩戴的舒适性。在本实施例中,由于遮光件40通过可拆卸的方式设置在可穿戴设备上,因此,以拆装实现虚拟现实和增强现实模式的切换。与实施例八不同的是,本实施例中,遮光件40本身可以充当调节装置。
遮光件40可以采用卡接或者插接等可拆卸的方式设置在可穿戴设备本体50上,当然,可拆卸的连接方式有很多种,本实施例仅例举了较为优选的几种方式,但可以理解的是,实际运用过程中,并不限于上述方式。
本实施例提供可穿戴设备相较于实施例八,其结构简单,并且成本较低,也能实现调节外界光线投射到进入到可穿戴设备内部的光通量,只是操作上稍复杂。在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放 置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程度,也能在一定程度上可以保护可穿戴设备的内部零部件。
实施例十
本实施例基于以上任一实施例,该可穿戴设备还可以进一步包括瞳距调节系统,该瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,为适应不同人的使用,本实施例提供的可穿戴设备还具有瞳距调整功能。第一目镜30a和第二目镜30b可活动地设置在可穿戴设备本体50上,由此来保证第一目镜30a和第二目镜30b之间的距离可以改变。
瞳距调节系统可以为手动调节系统,例如,第一目镜30a和第二目镜30b可以通过导轨的方式可活动地连接在可穿戴设备本体50上,第一目镜30a与第二目镜30b可通过连杆连接,用户可操作连杆来调节第一目镜30a与第二目镜30b的位置。或者,第一目镜30a和第二目镜30b通过丝杠丝母的传动方式实现第一目镜30a和第二目镜30b的移动,丝杠上可以具有两段旋向不同的螺纹,两段不同的螺纹段上分别螺接有一个丝母,第一目镜30a和第二目镜30b分别于对应的丝母固定连接,用户可以手动转动丝杠,使得第一目镜30a和第二目镜30b分别对应的丝母沿直线方向相对靠近或相对远离,并带动第一目镜30a和第二目镜30b相对靠近或相对远离,实现瞳距的手动调节。实现手动调节第一目镜30a与第二目镜30b之间距离的方式较多,本实施例不一一例举,本领域技术人员可以根据需求而具体设计。
当然,瞳距的调节也可以通过自动调节的方式实现,可穿戴设备本体50上可以设置用于测量用户瞳孔距离的瞳距测量单元,瞳距调节系统可以根据瞳距测量单元所测得的当前用户的瞳距值,而具体调整第一目镜30a与第二目镜30b之间的距离,由此,使得瞳距调整更为精确。
实施例十一
图7为本发明实施例提供的瞳距调节系统的控制原理图。如图7所示,本实施例基于实施例十,在实施例十的基础上,瞳距调节系统可以具体包括 伺服电机60、伺服电机控制模块70以及传动装置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
具体的,本实施例中的伺服电机60为微型伺服电机,以适用尺寸较小的眼镜或者头盔等可穿戴设备。传动装置80可以为实施例十例举的丝杠丝母的配合方式,而伺服电机60的输出轴可以与丝杠固定连接,例如可以通过联轴器连接,伺服电机控制模块70可以接收瞳距测量单元所测得的瞳距信息,并控制伺服电机60的运作,或者,伺服电机控制模块70可以接收用户的触发信号,并根据触发信号控制伺服电机60的启动或停止,以控制第一目镜30a和第二目镜30b的运动或停止。本实施例通过伺服电机60精确调整第一目镜30a与第二目镜30b之间的距离,以做到精确的瞳距调整。
另外,当调整瞳距时,第一显示屏10a和第二显示屏10b上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
实施例十二
本实施例提供一种可穿戴设备,包括显示屏、光学镜片、遮光件和调节装置,光学镜片上形成有反射面,显示屏的显示面与光学镜片的反射面之间形成有预设夹角,光学镜片可部分透射部分反射,调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。图4为本发明实施例提供的可穿戴设备的又一种结构示意图;图5为图4中的可穿戴设备的主视图。本实施例提供的可穿戴设备可以参照附图1和附图2,或者,附图4和附图5。
例如,参照附图1和附图2,显示屏的数量可以为两个(第一显示屏10a、第二显示屏10b),对应的,光学镜片的数量也为两个(第一光学镜片20a、第二光学镜片20b),并分别与两个显示屏配合,第一光学镜片20a的反射面21a与第一显示屏10a的显示面11a之间的夹角为第一预设夹角α,第二光学镜片20b的反射面21b与第二显示屏10b的显示面11b之间的夹角为第二预设夹角β。
例如,参照附图4和附图5,显示屏的数量为一个,如图4和图5中的显示屏,光学镜片的数量为一个,如图4和图5中的光学镜片,显示屏10与 光学镜片20之间的夹角为γ。
显示屏可以是具有显示功能的显示器,其具体的形状和结构并不限定,例如显示屏为LCD显示屏(液晶显示屏),或者,OLED显示屏(有机发光显示屏)当显示屏的光线投射到光学镜片上时,可以经过反射后进入人眼中并且人眼可以通过具有透射功能的光学镜片观察到视线前方的外界真实场景,形成真实场景与显示屏上的虚拟内容叠加的增强现实的效果。
在增强现实的模式下,外界真实场景与显示屏的显示内容的叠加效果由光学镜片的透光率,外界的光线强度,显示屏的亮度共同决定,而显示屏的亮度可以根据外界光线强度的改变而自动调整,,当然,用户也可以手动调节显示屏的亮度,以此来达到不同场景下稳定的叠加效果,提高增强现实的体验效果。
在该可穿戴设备上,还可以设置摄像头,摄像头可以与显示屏电连接,显示屏根据摄像头拍摄的内容显示与拍摄到的内容相配合的显示内容;摄像头还用于获取用户的手势信息,以使处理器根据手势信息执行与手势信息匹配的操作。摄像头可以拍摄当前实景,而处理器则可根据摄像头所拍摄的当前场景生成与当前场景匹配的相关信息,并使得显示屏上显示与当前场景相关的显示内容。例如,用户佩戴该可穿戴设备、实现行人检测、人脸识别、二维码识别等功能。另外,在增强现实模式下,用户可以观察到显示屏上显示的内容以及当前外界真实场景,由于用户看到的叠加画面是虚拟的画面,用户仅仅能够看到显示屏上显示的内容,但是用户无法真正触碰到屏幕,本实施例中的摄像头可以拍摄用户通过手指点击到该虚拟画面上的位置的图像,例如,用户用手指点击画面中的操作菜单,摄像头捕捉出用户点击操作的图像,并识别出一定时间内用户手指位置稳定的坐标,通过与可穿戴设备中真实的菜单做图像比对,从而能够识别出用户手指所点击菜单对应的控制指令,以使得处理器执行对应的操作,并在显示屏上显示出所选命令对应的显示画面。当然,用户还可以通过手指滑动、框选等手势动作进行选择操作,而并不限于点击的方式,在此,本实施例不做限定。
需要说明的是,本实施例中的摄像头的数量并不限定,具体可以是一个摄像头实现多个功能,例如,同时实现行人检测、人脸识别、二维码识别、用户手指位置坐标识别等,或者,通过一个以上的摄像头捕捉不同的画面实 现上述不同的功能,在此,本实施例不做限定,本领域技术人员可以根据具体实际场景而具体选择。
而对于无人飞行器的运用来讲,则可以实现在操作无人飞行器时,在视距范围内,将无人飞行器的实际飞行状态与无人飞行器的飞行相关文字或图形信息结合起来,例如,直观显示无人飞行器状态、飞行方向、飞行轨迹、障碍物信息和操作提示、第一视角影像等等。具体的应用场景有很多,在此,本发明实施例不一一例举。
在本实施例中,优选的,光学镜片可以为半透半反镜。在光学镜片的反射面上可以镀有半透半反膜。所谓半透半反镜,为可将入射光部分反射部分透射的玻璃或者有机玻璃镜片,在本实施例中,例如,光学镜片的透射率可以为30%,反射率可以为70%。当然,光学镜片的透射率和反射率的比例也可以为其他形式,本实施例不做限定。光学镜片的透射率和反射率的比例可以决定最后的叠加效果,即在增强现实模式下的显示效果。
在增强现实模式下,可穿戴设备上应具有可供用户观看视线前方的透光区域,当光线从透光区域进入可穿戴设备并穿透光学镜片而进入人眼中时,人眼才能看见外界真实场景。而为实现在虚拟现实和增强现实之间切换,则需要阻挡或不阻挡外界光线从透光区域射入人眼中,而本实施例中则通过调节装置调节外界光线是否穿过透光区域,由于在本实施例中,只要光线能够穿过透光区域,则光线便能穿过光学镜片进入到人眼中。
本实施例可以通过调节装置调节调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量,当调节装置调节外界光线进入到可穿戴设备的光通量为零时,外界光线无法通过光学镜片透射进入人眼中,人眼无法看到外界场景,而沉浸在该可穿戴设备中显示屏通过光学镜片的反射形成的物像场景中,该种模式则为虚拟现实模式。而当调节装置调节外界光线进入到可穿戴设备的光通量不为零时,例如,可以使得外界光线可以不经过阻挡而全部入射到光学镜片上,并通过光学镜片的部分透射部分反射功能,外界光线可以透射入人眼中,此时,显示屏上显示的内容也经过光学镜片的反射形成的物像也入射入人眼中,并与真实场景叠加,在人眼中形成增强现实的显示模式。
现有技术中的可穿戴设备只能实现虚拟现实或增强现实,不能在一个可穿戴设备产品上同时实现虚拟现实和增强现实,更不能实现两种模式之间的 切换。本实施例提供的可穿戴设备,通过调节装置调节外界光线穿透过光学镜片的光通量,当外界光线穿透过光学镜片的光通量为零时,为虚拟现实显示模式,当外界光线能够入射到光学镜片上时,为增强现实显示模式,从而使得该可穿戴设备可在调节装置的调节作用下,实现虚拟现实与增强现实的一体化,并实现虚拟现实与增强现实之间的切换。
实施例十三
本实施例基于实施例十二,对可调节装置做进一步限定,具体的,遮光件40可以朝向光学镜片上与光学镜片的反射面相对的表面,遮光件用于阻挡外界真实场景的光线投射到光学镜片上。例如,如图1和图2所示中的遮光件40朝向第一光学镜片20a上与反射面21a相对的表面,以及第二光学镜片20b上与反射面21b相对的表面。或者,如图4和图5所示中的遮光件40朝向光学镜片20上与反射面21相对的表面。
其中,本实施例提供的可穿戴设备可以包括可穿戴设备本体50,该可穿戴设备本体50可以为如图1或图4所示的盒状结构,遮光件40可以为薄板类结构,或者其他结构。当外界光线需要投射到光学镜片上与反射面,则首先需要穿透过遮光件40,因此,当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不作赘述。
另外,遮光件40与光学镜片之间的夹角可以等于显示屏与光学镜片之间的预设夹角。例如,如图1和图2所示,遮光件40与第一光学镜片20a之间的夹角可以等于第一光学镜片20a与第一显示屏10a之间的夹角,遮光件40与第二光学镜片20b的夹角等于第二光学镜片20b与第二显示屏10b之间的夹角。又或者,如图4和图5所示,光学镜片20可以倾斜地设置在可穿戴设备本体50内,显示屏10设置在与光学镜片20之间具有预设夹角,光学镜片20与遮光件40之间的夹角等于显示屏10与光学镜片20之间的预设夹角。
实施例十四
本实施例基于实施例十三,具体的,遮光件40可以为透光率可调件,调节装置与遮光件40电连接(图中未示出),调节装置用于调节对遮光件40 施加的电压大小,以改变遮光件40的透光率。在本实施例中,优选的,该遮光件40可以为LCD液晶屏,当然,遮光件40还可以为其他类型,例如,TN LCD液晶屏,或者电致变色玻璃等等。液晶是一种有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。LCD液晶屏可以通过电压来改变液晶材料内部分子的排列状况,以达到遮光和透光的目的,本实施例提供的遮光件40可以通过电压控制,以使得其工作在两个状态:一是透明状态,二是遮光状态,在透明的状态下,透光率接近10%,在遮光状态下,外界光线完全不能通过遮光件,透光率为0%。透明状态时,该可穿戴设备为增强现实的显示模式,用户可以看到真实的外界场景。在遮光状态下,该可穿戴设备为虚拟现实的显示模式,外界的真实场景不能进入到用户眼中,此时,用户只能看到显示屏上显示的内容,整个可穿戴设备处于虚拟现实的显示模式。
本实施例提供的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得人眼可以观看到外界真实场景,可穿戴设备工作在增强现实模式下。
实施例十五
本实施例基于实施例十三,并且提供一种与实施例十四不同的实现方式,遮光件40的设置位置可以与实施例十四相同,与实施例十四不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。在本实施例中,遮光件40可以为普通的不透光的材料构成,例如,可以为普通的塑料板,木板等等,当然,优选的,该遮光件40的质量较轻,以尽量减轻整个可穿戴设备的重量,提高佩戴的舒适性。在本实施例中,由于遮光件40通过可拆卸的方式设置在可穿戴设备上,因此,以拆装实现虚拟现实和增强现实模式的切换。与实施例十三不同的是,本实施例中,遮光件40本身充当调节装置。
遮光件40可以采用卡接或者插接等可拆卸的方式设置在可穿戴设备本体50上,当然,可拆卸的连接方式有很多种,本实施例仅例举了较为优选的 几种方式,但可以理解的是,实际运用过程中,并不限于上述方式。
本实施例提供可穿戴设备相较于实施例十四,其结构简单,并且成本较低,也能实现调节外界光线进入到可穿戴设备内部的光通量,只是操作上稍复杂。在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程度,也能在一定程度上可以保护可穿戴设备的内部零部件。
实施例十六
本实施例基于实施例十二至实施例十五中任一实施例,进一步的,可参照附图1至图5,可穿戴设备还可以包括第一目镜30a和第二目镜30b,第一目镜30a和第二目镜30b设置在显示屏的显示面与光学镜片的反射面之间。
例如,如图1和图2,第一目镜30a设置在第一显示屏10a的显示面11a与第一光学镜片20a的反射面21a之间,第二目镜30b设置在第二显示屏10b的显示面11b与第二光学镜片20b的反射面21b之间。第一显示屏10a与第二显示屏10b可以平行相对设置。更具体的,第一显示屏10a与第二显示屏10b之间可以形成预设距离,且第一光学镜片20a、第二光学镜片20b、第一目镜30a以及第二目镜30b设置在第一显示屏10a与第二显示屏10b之间。第一显示屏10a与第二显示屏10b之间的放置位置大体上可以根据人脸部或者头部的宽度而设定,以使得在使用时,第一显示屏10a和第二显示屏10b能够基本平行相对地设置在人的眼睛两侧,一方面能够保证用户在使用时具有较好的观看感受,另一方面能够节省可穿戴设备的结构空间,保证整个可穿戴设备的体积较小。
第一显示屏10a与第一光学镜片20a之间的第一预设夹角α与第二显示屏10b与第二光学镜片20b之间的第二预设夹角β可以相等。由于第一目镜30a与第二目镜30b的光轴方向基本平行,因此,第一显示屏10a与第二显示 屏10b两者之间也基本平行,第一预设夹角α与第二预设夹角β相等,第一光学镜片20a与第二光学镜片20b可以以第一目镜30a和第二目镜30b的对称轴为中心对称设置,由此,第一光学镜片20a和第二光学镜片20b大致可以形成一等腰三角形的两腰。
在上述实施例的基础上,优选的,第一预设夹角α和第二预设夹角β可以为45°。可以使得第一显示屏10a投射到第一光学镜片20a上所成物像与第一目镜30a的光轴方向垂直,第二显示屏10b投射到第二光学镜片20b上所成物像与所述第二目镜30b的光轴方向垂直。当然,本领域技术人员可以理解,在具体设计时,第一预设夹角α和第二预设夹角β也可以在误差允许的范围内变动,例如,第一预设夹角α的允许范围为45°±5°,第二预设夹角β的允许范围为45°±5°。第一预设夹角α和第二预设夹角β的取值在45°左右,以使得第一显示屏10a投射到第一光学镜片20a上所成物像与第一目镜30a的光轴方向能够基本垂直,第二显示屏10b投射到第二光学镜片20b上所成物像与所述第二目镜30b的光轴方向能够基本垂直。用户在观看时能够看到以正视方向显示的物像,用户体验较好。
如图4和图5所示,第一目镜30a和第二目镜30b可以均设置在显示屏10的显示面11与光学镜片20的反射面21之间。由此,人眼可以通过第一目镜30a和第二目镜30b全面地通过光学镜片反射的显示屏上显示的内容。
进一步的,显示屏的显示面投射到光学镜片上所成物像与第一目镜30a和第二目镜30b的光轴方向垂直。例如,如图1和图2中,第一显示屏10a的显示面11a投射到第一光学镜片20a上所成物像101a与第一目镜30a和第二目镜30b的光轴方向垂直,第二显示屏10b的显示面11b投射到第二光学镜片20b上所成物像(图中未示出)与第一目镜30a和第二目镜30b的光轴方向垂直。或者,如图4和图5所示,显示屏10的显示面11投射到光学镜片20上所成物像101与第一目镜30a和第二目镜30b的光轴方向垂直。在使用过程中,第一目镜30a可以供用户的左眼观看,第二目镜30b可以供用户右眼观看。显示屏的显示面投射到光学镜片上所成物像与第一目镜30a和第二目镜30b的光轴方向垂直,即,物像各个点到目镜平面的距离相同,从而能够避免物像呈梯形,影响用户的观看效果。
本领域技术人员能够理解的是,在光学系统中,目镜一般为将物镜所成 的像放大后供眼睛观察用的光学部件,用户通过第一目镜30a和第二目镜30b看到的图像是呈放大后的图像。在本实施例中,优选的,第一目镜30a和第二目镜30b均为由至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。凸透镜可以起到进一步放大图像,提高视场角,提高沉浸感的作用。而凹透镜可以起到限制视场,只允许一定范围内的光线通过透镜组的作用。
在本实施例中,当显示屏的数量为两个时,即,如图1和图2所示时,第一显示屏10a和第二显示屏10b内所显示的画面可分别经过第一光学镜片20a和第二光学镜片20b的反射后进入人眼中,使得用户能够观看到第一显示屏10a和第二显示屏10b中的画面内容,例如,左眼看到第一显示屏10a上显示的内容,右眼看到第二显示屏10b上显示的内容,由于两眼视差,可以产生3D的感觉。当显示屏的数量为一个时,即,如图4和图5所示时,显示屏10内所显示的画面经过第一目镜30a和第二目镜30b的放大作用来达到一定的沉浸感。
实施例十七
本实施例基于实施例十六,本实施例提供的可穿戴设备还可以包括瞳距调节系统,瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,为适应不同人的使用,本实施例提供的可穿戴设备还具有瞳距调整功能。第一目镜30a和第二目镜30b可活动地设置在可穿戴设备本体50上,由此来保证第一目镜30a和第二目镜30b之间的距离可以改变。
瞳距调节系统可以为手动调节系统,例如,第一目镜30a和第二目镜30b可以通过导轨的方式可活动地连接在可穿戴设备本体50上,第一目镜30a与第二目镜30b可通过连杆连接,用户可操作连杆来调节第一目镜30a与第二目镜30b的位置。或者,第一目镜30a和第二目镜30b通过丝杠丝母的传动方式实现第一目镜30a和第二目镜30b的移动,丝杠上可以具有两段旋向不同的螺纹,两段不同的螺纹段上分别螺接有一个丝母,第一目镜30a和第二目镜30b分别于对应的丝母固定连接,用户可以手动转动丝杠,使得第一目镜30a和第二目镜30b分别对应的丝母沿直线方向相对靠近或相对远离,并带动第一目镜30a和第二目镜30b相对靠近或相对远离,实现瞳距的手动调 节。实现手动调节第一目镜30a与第二目镜30b之间距离的方式较多,本实施例不一一例举,本领域技术人员可以根据需求而具体设计。
当然,瞳距的调节也可以通过自动调节的方式实现,可穿戴设备本体50上可以设置用于测量用户瞳孔距离的瞳距测量单元,瞳距调节系统可以根据瞳距测量单元所测得的当前用户的瞳距值,而具体调整第一目镜30a与第二目镜30b之间的距离,由此,使得瞳距调整更为精确。
实施例十八
图7为本发明实施例提供的瞳距调节系统的控制原理图。如图7所示,本实施例基于实施例十七,在实施例十七的基础上,瞳距调节系统可以具体包括伺服电机60、伺服电机控制模块70以及传动装置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
具体的,本实施例中的伺服电机60为微型伺服电机,以适用尺寸较小的眼镜或者头盔等可穿戴设备。传动装置80可以为实施例十九例举的丝杠丝母的配合方式,而伺服电机60的输出轴可以与丝杠固定连接,例如可以通过联轴器连接,伺服电机控制模块70可以接收瞳距测量单元所测得的瞳距信息,并控制伺服电机60的运作,或者,伺服电机控制模块70可以接收用户的触发信号,并根据触发信号控制伺服电机60的启动或停止,以控制第一目镜30a和第二目镜30b的运动或停止。本实施例通过伺服电机60精确调整第一目镜30a与第二目镜30b之间的距离,以做到精确的瞳距调整。
另外,当调整瞳距时,第一显示屏10a和第二显示屏10b上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
实施例十九
请参考附图1~2。本实施例提供一种可穿戴设备,包括第一显示屏10a、第二显示屏10b、第一光学镜片20a、第二光学镜片20b、遮光件和调节装置。
第一光学镜片20a上和第二光学镜片20b上分别形成有反射面(21a、21b),第一显示屏10a的显示面11a与第一光学镜片20a的反射面21a之间 形成第一预设夹角α;第二显示屏10b的显示面11b与第二光学镜片20b的反射面21b之间形成第二预设夹角β,第一光学镜片20a和第二光学镜片20b均可部分透射部分反射,调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
第一显示屏10a和第二显示屏10b是具有显示功能的显示器,其具体的形状和结构并不限定,例如第一显示屏10a和第二显示屏10b可以为LCD显示屏(液晶显示屏),或者,OLED显示屏(有机发光显示屏),当然,第一显示屏10a和第二显示屏10b的具体类型也可以为其他类型,并且第一显示屏10a与第二显示屏10b两者的类型也可以互不相同。第一显示屏10a和第二显示屏10b内所显示的画面经过第一光学镜片20a和第二光学镜片20b的反射后进入人眼中,使得用户能够观看到第一显示屏10a和第二显示屏10b中的画面内容,例如,左眼看到第一显示屏10a上显示的内容,右眼看到第二显示屏10b上显示的内容,由于两眼视差,可以产生3D的感觉。
第一光学镜片20a的反射面21a与第一显示屏10a之间形成第一预设夹角α,第二光学镜片20b的反射面21b与第二显示屏10b之间形成第二预设夹角β,第一预设夹角α和第二预设夹角β的具体值可以具体设定,本实施例不具体限定,但需要保证第一显示屏10a上的显示内容可以全部投射到第一光学镜片20a上,第二显示屏10b上的显示内容可以全部投射到第二光学镜片20b上,保证具体部分透射和部分反射功能的第一光学镜片20a和第二光学镜片20b既能够使得显示屏上的显示内容被人眼观看到,也能够保证外界真实场景能够被人眼观看到。
由于第一光学镜片20a和第二光学镜片20b均可部分透射部分反射,而调节装置可以调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量,当调节装置调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量为零时,外界光线无法通过第一光学镜片20a和第二光学镜片20b透射进入人眼中,人眼无法看到外界场景,而沉浸在该可穿戴设备中第一显示屏10a和第二显示屏10b通过第一光学镜片20a和第二光学镜片20b的反射形成的物像场景中,该种模式则为虚拟现实模式。而当调节装置调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量不为零时,例如,可以使得外界光线可以不经过阻挡而全部入射到第一光学镜片20a上 和第二光学镜片20b上,并通过第一光学镜片20a和第二光学镜片20b的部分透射部分反射功能,外界光线可以透射入人眼中,此时,第一显示屏10a和第二显示屏10b上显示的内容也经过第一光学镜片20a和第二光学镜片20b的反射形成的物像也入射入人眼中,并与真实场景叠加,在人眼中形成增强现实的显示模式。
在本实施例中,优选的,第一光学镜片20a和第二光学镜片20b可以均为半透半反镜。第一光学镜片20a的反射面21a和第二光学镜片20b的反射面21b上可以镀有半透半反膜。所谓半透半反镜,为可将入射光部分反射部分透射的玻璃或者有机玻璃镜片,在本实施例中,第一光学镜片20a和第二光学镜片20b可以为同种类型的镜片,两者的透射率和反射率可以分别相同。例如,第一光学镜片20a的透射率可以为30%,反射率可以为70%;同样的,第二光学镜片20b的透射率为30%,反射率为70%。第一光学镜片20a和第二光学镜片20b的透射率和反射率的比例可以决定最后的叠加效果,即在增强现实模式下的显示效果。
在增强现实的模式下,外界真实场景与显示屏的显示内容的叠加效果由第一光学镜片20a和第二光学镜片20b的透光率,外界的光线强度,第一显示屏10a、第二显示屏10b的亮度共同决定,而第一显示屏10a、第二显示屏10b的亮度可以根据外界光线强度的改变而自动调整,,当然,用户也可以手动调节第一显示屏10a和第二显示屏10b的亮度,以此来达到不同场景下稳定的叠加效果,提高增强现实的体验效果。
在该可穿戴设备上,还可以设置摄像头,摄像头可以与第一显示屏10a和第二显示屏10b电连接,第一显示屏10a和第二显示屏10b根据摄像头拍摄的内容显示与拍摄到的内容相配合的显示内容;摄像头还用于获取用户的手势信息,以使处理器根据手势信息执行与手势信息匹配的操作。摄像头可以拍摄当前实景,而处理器则可根据摄像头所拍摄的当前场景生成与当前场景匹配的相关信息,并使得第一显示屏10a和第二显示屏10b上显示与当前场景相关的显示内容。例如,用户佩戴该可穿戴设备、实现行人检测、人脸识别、二维码识别等功能。另外,在增强现实模式下,用户可以观察到显示屏上显示的内容以及当前外界真实场景,由于用户看到的叠加画面是虚拟的画面,用户仅仅能够看到显示屏上显示的内容,但是用户无法真正触碰到屏 幕,本实施例中的摄像头可以拍摄用户通过手指点击到该虚拟画面上的位置的图像,例如,用户用手指点击画面中的操作菜单,摄像头捕捉出用户点击操作的图像,并识别出一定时间内用户手指位置稳定的坐标,通过与可穿戴设备中真实的菜单做图像比对,从而能够识别出用户手指所点击菜单对应的控制指令,以使得处理器执行对应的操作,并在显示屏上显示出所选命令对应的显示画面。当然,用户还可以通过手指滑动、框选等手势动作进行选择操作,而并不限于点击的方式,在此,本实施例不做限定。
需要说明的是,本实施例中的摄像头的数量并不限定,具体可以是一个摄像头实现多个功能,例如,同时实现行人检测、人脸识别、二维码识别、用户手指位置坐标识别等,或者,通过一个以上的摄像头捕捉不同的画面实现上述不同的功能,在此,本实施例不做限定,本领域技术人员可以根据具体实际场景而具体选择。
而对于无人飞行器的运用来讲,则可以实现在操作无人飞行器时,在视距范围内,将无人飞行器的实际飞行状态与无人飞行器的飞行相关文字或图形信息结合起来,例如,直观显示无人飞行器状态、飞行方向、飞行轨迹、障碍物信息和操作提示、第一视角影像等等。具体的应用场景有很多,在此,本发明实施例不一一例举。
现有技术中的可穿戴设备只能实现虚拟现实或增强现实,不能在一个可穿戴设备产品上同时实现虚拟现实和增强现实,更不能实现两种模式之间的切换。本实施例提供的可穿戴设备可以为眼镜或者头盔等产品,本实施例不作限定。本实施例提供的可穿戴设备,通过双显示屏显示(第一显示屏10a和第二显示屏10b),并通过具有反射功能的第一光学镜片20a和第二光学镜片20b分别将第一显示屏10a和第二显示屏10b上的显示内容分别入射至人的左右眼中,由于第一光学镜片20a和第二光学镜片20b均可部分透射部分反射,而调节装置可以调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量,由此,使得该可穿戴设备可在调节装置的调节作用下,实现虚拟现实与增强现实的一体化,并实现虚拟现实模式与增强现实模式之间的切换。
实施例二十
本实施例基于实施例十九,进一步的,在具体设置时,遮光件40可以朝 向第一光学镜片20a上与反射面21a相对的表面以及第二光学镜片20b上与反射面21b相对的表面,遮光件40用于阻挡外界真实场景的光线投射到第一光学镜片20a和第二光学镜片20b上。
其中,本实施例提供的可穿戴设备可以包括可穿戴设备本体50,该可穿戴设备本体50可以为如图1所示的盒状结构,遮光件40可以为薄板类结构,或者其他结构。当外界光线需要投射到第一光学镜片20a上与反射面21a相对的表面,以及第二光学镜片20b上与反射面21b相对的表面,则首先需要穿透过遮光件40,因此,当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不作赘述。
本实施例通过遮光件40控制外界光线投射到第一光学镜片20a和第二光学镜片20b上的光量,从而实现虚拟现实模式与增强现实模式之间的切换。
实施例二十一
本实施例基于实施例二十,具体的,遮光件40可以为透光率可调件,调节装置与遮光件40电连接(图中未示出),调节装置用于调节对遮光件40施加的电压大小,以改变遮光件40的透光率。在本实施例中,优选的,该遮光件40可以为LCD液晶屏,当然,遮光件40还可以为其他类型,例如,TN LCD液晶屏,或者电致变色玻璃等等。液晶是一种有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。LCD液晶屏可以通过电压来改变液晶材料内部分子的排列状况,以达到遮光和透光的目的,本实施例提供的遮光件40可以通过电压控制,以使得其工作在两个状态:一是透明状态,二是遮光状态,在透明的状态下,透光率接近10%,在遮光状态下,外界光线完全不能通过遮光件,透光率为0%。透明状态时,该可穿戴设备为增强现实的显示模式,用户可以看到真实的外界场景。在遮光状态下,该可穿戴设备为虚拟现实的显示模式,外界的真实场景不能进入到用户眼中,此时,用户只能看到显示屏上显示的内容,整个可穿戴设备处于虚拟现实的显示模式。
另外,优选的,在本实施提供的遮光件40可以垂直于第一显示屏10a和第二显示屏10b设置,从而遮光件40能够达到较好的遮光效果。当然,本领 域技术人员可以理解的是,遮光件40的设置位置并不限于此,例如,遮光件40也可以与第一显示屏10a和第二显示屏10b呈锐角或钝角设置。而遮光件40的形状可以为直板状、弧面状、或者其他规则或不规则形状均可,这并不影响遮光件的功能实现。并且遮光件40的数量可以为一个或者两个,或者多个,例如多个遮光件40拼接而起到完全遮挡外界光线的作用,为简化结构,本实施例采用的遮光件40为单个遮光件。对于遮光件40的设置位置、形状和数量,本实施例均不限定,遮光件40只要能够阻挡外界光线进入到可穿戴设备内并穿透第一光学镜片20a和第二光学镜片20b即可。
另外,本实施例中的调节装置与遮光件40电连接,调节装置可以设置在可穿戴设备的内部而不外露,以保证可穿戴设备的外型上的整齐。
本实施例提供的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得人眼可以观看到外界真实场景,可穿戴设备工作在增强现实模式下。
实施例二十二
本实施例基于实施例二十,并且提供一种与实施例二十一不同的实现方式,遮光件40的设置位置可以与实施例二十一相同,与实施例二十一不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。在本实施例中,遮光件40可以为普通的不透光的材料构成,例如,可以为普通的塑料板,木板等等,当然,优选的,该遮光件40的质量较轻,以尽量减轻整个可穿戴设备的重量,提高佩戴的舒适性。在本实施例中,由于遮光件40通过可拆卸的方式设置在可穿戴设备上,因此,以拆装实现虚拟现实和增强现实模式的切换。与实施例二十一不同的是,本实施例中,遮光件40本身充当调节装置。
遮光件40可以采用卡接或者插接等可拆卸的方式设置在可穿戴设备本体50上,当然,可拆卸的连接方式有很多种,本实施例仅例举了较为优选的几种方式,但可以理解的是,实际运用过程中,并不限于上述方式。
本实施例提供可穿戴设备相较于实施例二十一,其结构简单,并且成本 较低,也能实现调节外界光线进入到可穿戴设备的光通量,只是操作上稍复杂。在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程度,也能在一定程度上可以保护可穿戴设备的内部零部件。
实施例二十三
本实施了基于实施例十九至实施例二十二中任一实施例,第一显示屏10a与第一光学镜片20a之间可以设有第一目镜30a,第二显示屏10b与第二光学镜片20b之间设有第二目镜30b,第一目镜30a和第二目镜30b可以均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组,第一显示屏10a投射到第一光学镜片20a上所成物像101a与第一目镜30a的光轴方向垂直,第二显示屏10b透射到第二光学镜片20b上物像与第二目镜30b的光轴方向垂直。
本领域技术人员能够理解的是,在光学系统中,目镜一般为将物镜所成的像放大后供眼睛观察用的光学部件,用户通过第一目镜30a和第二目镜30b看到的图像是呈放大后的图像。在本实施例中,优选的,第一目镜30a和第二目镜30b均为由至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。凸透镜可以起到进一步放大图像,提高视场角,提高沉浸感的作用。而凹透镜可以起到限制视场,只允许一定范围内的光线通过透镜组的作用。
本实施例提供的可穿戴设备在使用过程中,第一目镜30a可以供用户的左眼观看,第二目镜30b可以供用户右眼观看。第一显示屏10a的显示面11a与第一目镜30a的光轴方向平行,即,第一显示屏10a的显示面11a与人的左眼光轴方向平行。第二显示屏10b的显示面11b与第二目镜30b的光轴方向平行,即,第二显示屏10b的显示面11b与人的右眼光轴方向平行。第一显示屏10a投射到第一光学镜片20a上所成物像与第一目镜30a的光轴方向垂直,第二显示屏10b投射到第二光学镜片20b上所成物像与所述第二目镜 30b的光轴方向垂直,即,物像各个点到目镜平面的距离相同,从而避免物像呈梯形,影响观看效果。第一显示屏10a与第一光学镜片20a之间的第一预设夹角α,以及第二显示屏10b与第二光学镜片20b之间的第二预设夹角β的取值可以决定第一显示屏10a和第二显示屏10b经过光学镜片反射后形成的物像是否与第一目镜30a和第二目镜30b的光轴方向垂直。
需要说明的是,在本实施例中,由于优选的,第一目镜30a和第二目镜30b均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组,则第一显示屏10a和第二显示屏10b上显示的画面内容经过第一光学镜片20a和第二光学镜片20b反射后形成的物像为虚像。
本实施例提供的可穿戴设备,通过双显示屏显示(第一显示屏10a和第二显示屏10b),并通过具有反射功能的第一光学镜片20a和第二光学镜片20b分别将第一显示屏10a和第二显示屏10b上的显示内容分别入射至人的左右眼中,由于第一光学镜片20a和第二光学镜片20b均可部分透射部分反射,而调节装置可以调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量,由此,使得该可穿戴设备可在调节装置的调节作用下,实现虚拟现实与增强现实的一体化,并实现虚拟现实模式与增强现实模式之间的切换。并且,相较于现有技术,在同样的屏幕参数下,单眼的有效显示区域能够达到为5.5英寸,分辨率为2560×1440,经过试验,不通过目镜的视场角即可达到45°左右,并通过加入目镜放大1.5倍后,可实现70°的视场角,能够实现很强的沉浸感,并且由于单眼的有效显示区域较大,目镜的放大倍数不需要很高也能达到较好的沉浸感,且用户在使用时视觉效果上的颗粒感较弱,显示效果较为细腻。而对于头盔产品来说,则可采用更大的尺寸更高分辨率的显示屏来达到更好的显示效果。
实施例二十四
本实施例基于实施例十九至实施例二十三中任一实施例,进一步的,第一显示屏10a与第二显示屏10b可以平行相对设置。更具体的,如图1和图2所示,第一显示屏10a与第二显示屏10b之间可以形成预设距离,且第一光学镜片20a、第二光学镜片20b、第一目镜30a以及第二目镜30b设置在第一显示屏10a与第二显示屏10b之间。第一显示屏10a与第二显示屏10b之间的放置位置大体上可以根据人脸部或者头部的宽度而设定,以使得在使用时, 第一显示屏10a和第二显示屏10b能够基本平行相对地设置在人的眼睛两侧,一方面能够保证用户在使用时具有较好的观看感受,另一方面能够节省可穿戴设备的结构空间,保证整个可穿戴设备的体积较小。
实施例二十五
本实施例基于实施例十九至实施例二十三中任一实施例,并与实施例二十七不同的是,本实施例中的第一显示屏10a与第二显示屏10b可以以贴合相对的方式放置,且第一显示屏10a的显示面11a与第二显示屏10b的显示面11b相背离,第一光学镜片20a的反射面21a朝向第一显示屏10a的显示面11a,第二光学镜片20b的反射面21b朝向第二显示屏10b的显示面11b。在该种方式下,第一显示屏10a和第二显示屏10b可以位于两眼的中间,在佩戴上时,第一显示屏10a和第二显示屏10b放置在人的鼻梁前方,而第一显示屏10a和第二显示屏10b可以选用超薄显示屏,以保证第一显示屏10a和第二显示屏10b尽量较少地遮挡住人眼的视线,保证较好的观看感受。
实施例二十六
本实施例基于实施例十九至实施例二十五中任一实施例,请继续参照附图2,第一预设夹角α与第二预设夹角β可以相等。由于第一目镜30a与第二目镜30b的光轴方向基本平行,因此,第一显示屏10a与第二显示屏10b两者之间也基本平行,第一预设夹角α与第二预设夹角β相等,第一光学镜片20a与第二光学镜片20b可以以第一目镜30a和第二目镜30b的对称轴为中心对称设置,由此,第一光学镜片20a和第二光学镜片20b大致可以形成一等腰三角形的两腰。
在上述实施例的基础上,优选的,第一预设夹角α和第二预设夹角β可以为45°。可以使得第一显示屏10a投射到第一光学镜片20a上所成物像与第一目镜30a的光轴方向垂直,第二显示屏10b投射到第二光学镜片20b上所成物像与所述第二目镜30b的光轴方向垂直。当然,本领域技术人员可以理解,在具体设计时,第一预设夹角α和第二预设夹角β也可以在误差允许的范围内变动,例如,第一预设夹角α的允许范围为45°±5°,第二预设夹角β的允许范围为45°±5°。第一预设夹角α和第二预设夹角β的取值在45°左右,以使得第一显示屏10a投射到第一光学镜片20a上所成物像与 第一目镜30a的光轴方向能够基本垂直,第二显示屏10b投射到第二光学镜片20b上所成物像与所述第二目镜30b的光轴方向能够基本垂直。用户在观看时能够看到以正视方向显示的物像,用户体验较好。
实施例二十七
本实施例基于实施例二十三,进一步的,该可穿戴设备还可以进一步包括瞳距调节系统,该瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,为适应不同人的使用,本实施例提供的可穿戴设备还具有瞳距调整功能。第一目镜30a和第二目镜30b可活动地设置在可穿戴设备本体50上,由此来保证第一目镜30a和第二目镜30b之间的距离可以改变。
瞳距调节系统可以为手动调节系统,例如,第一目镜30a和第二目镜30b可以通过导轨的方式可活动地连接在可穿戴设备本体50上,第一目镜30a与第二目镜30b可通过连杆连接,用户可操作连杆来调节第一目镜30a与第二目镜30b的位置。或者,第一目镜30a和第二目镜30b通过丝杠丝母的传动方式实现第一目镜30a和第二目镜30b的移动,丝杠上可以具有两段旋向不同的螺纹,两段不同的螺纹段上分别螺接有一个丝母,第一目镜30a和第二目镜30b分别于对应的丝母固定连接,用户可以手动转动丝杠,使得第一目镜30a和第二目镜30b分别对应的丝母沿直线方向相对靠近或相对远离,并带动第一目镜30a和第二目镜30b相对靠近或相对远离,实现瞳距的手动调节。实现手动调节第一目镜30a与第二目镜30b之间距离的方式较多,本实施例不一一例举,本领域技术人员可以根据需求而具体设计。
当然,瞳距的调节也可以通过自动调节的方式实现,可穿戴设备本体50上可以设置用于测量用户瞳孔距离的瞳距测量单元,瞳距调节系统可以根据瞳距测量单元所测得的当前用户的瞳距值,而具体调整第一目镜30a与第二目镜30b之间的距离,由此,使得瞳距调整更为精确。
实施例二十八
如图7所示,本实施例基于实施例二十七,在实施例二十七的基础上,瞳距调节系统可以具体包括伺服电机60、伺服电机控制模块70以及传动装 置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
具体的,本实施例中的伺服电机60为微型伺服电机,以适用尺寸较小的眼镜或者头盔等可穿戴设备。传动装置80可以为实施例二十七例举的丝杠丝母的配合方式,而伺服电机60的输出轴可以与丝杠固定连接,例如可以通过联轴器连接,伺服电机控制模块70可以接收瞳距测量单元所测得的瞳距信息,并控制伺服电机60的运作,或者,伺服电机控制模块70可以接收用户的触发信号,并根据触发信号控制伺服电机60的启动或停止,以控制第一目镜30a和第二目镜30b的运动或停止。本实施例通过伺服电机60精确调整第一目镜30a与第二目镜30b之间的距离,以做到精确的瞳距调整。
另外,当调整瞳距时,第一显示屏10a和第二显示屏10b上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
实施例二十九
本实施例提供一种可穿戴设备,请参照附图4或附图5,本实施例提供的可穿戴设备包括:显示屏10、光学镜片20、遮光件40和调节装置,显示屏10和光学镜片20的数量均为一个,光学镜片20上形成有反射面21,显示屏10的显示面11与光学镜片20的反射面21之间形成有预设夹角γ,光学镜片20可部分透射部分反射,调节装置用于调节外界光线穿透过遮光件40而到达可穿戴设备内部的光通量。
显示屏20可以倾斜地放置在可穿戴设备本体50中,并且在使用时,显示屏20应该位于人眼前方。显示屏20是具有显示功能的显示器,其具体的形状和结构并不限定,例如显示屏10可以为LCD显示屏(液晶显示屏),或者,OLED显示屏(有机发光显示屏),当然,显示屏也可以为其他类型,显示屏10内所显示的画面经过光学镜片20的反射后进入人眼中,使得用户能够观看到显示屏10中的画面内容。
由于光学镜片20可部分透射部分反射,而调节装置可以调节外界光线穿透过光学镜片的光通量,当调节装置调节外界光线穿透过光学镜片20的 光通量为零时,外界光线无法通过光学镜片20透射进入人眼中,人眼无法看到外界场景,而沉浸在该可穿戴设备中,显示屏10通过光学镜片20的反射形成的物像场景中,该种模式则为虚拟现实模式。而当调节装置调节外界光线穿透过光学镜片20的光通量不为零时,例如,可以使得外界光线可以不经过阻挡而全部入射到光学镜片20上,并通过光学镜片20的部分透射部分反射功能,外界光线可以透射入人眼中,此时,显示屏10上显示的内容也经过光学镜片20的反射形成的物像也入射入人眼中,并与真实场景叠加,在人眼中形成增强现实的显示模式。
在增强现实模式下,可穿戴设备上应具有可供用户观看视线前方的透光区域,当光线从透光区域进入可穿戴设备并穿透光学镜片20而进入人眼中时,人眼才能看见外界真实场景。而为实现在虚拟现实和增强现实之间切换,则需要阻挡或不阻挡外界光线从透光区域射入人眼中,而本实施例中则通过调节装置调节外界光线是否穿过透光区域,由于在本实施例中,只要光线能够穿过透光区域,则光线便能穿过光学镜片20进入到人眼中,因此,调节装置具体用于调节外界光线穿透过光学镜片20的光通量。
在本实施例中,优选的,光学镜片20可以为半透半反镜。在光学镜片的反射面上可以镀有半透半反膜。所谓半透半反镜,为可将入射光部分反射部分透射的玻璃或者有机玻璃镜片,在本实施例中,光学镜片20的透射率可以为30%,反射率可以为70%;光学镜片20和的透射率和反射率的比例可以决定最后的叠加效果,即在增强现实模式下的显示效果。
在增强现实的模式下,外界真实场景与显示屏的显示内容的叠加效果由光学镜片20的透光率,外界的光线强度,显示屏10的亮度共同决定,而显示屏10的亮度可以根据外界光线强度的改变而自动调整,,当然,用户也可以手动调节显示屏10的亮度,以此来达到不同场景下稳定的叠加效果,提高增强现实的体验效果。
在该可穿戴设备上,还可以设置摄像头,摄像头可以与显示屏10电连接,显示屏10根据摄像头拍摄的内容显示与拍摄到的内容相配合的显示内容;摄像头还用于获取用户的手势信息,以使处理器根据手势信息执行与手势信息匹配的操作。摄像头可以拍摄当前实景,而处理器则可根据摄像头所拍摄的当前场景生成与当前场景匹配的相关信息,并使得显示屏10上显示与当前场 景相关的显示内容。例如,用户佩戴该可穿戴设备、实现行人检测、人脸识别、二维码识别等功能。另外,在增强现实模式下,用户可以观察到显示屏上显示的内容以及当前外界真实场景,由于用户看到的叠加画面是虚拟的画面,用户仅仅能够看到显示屏上显示的内容,但是用户无法真正触碰到屏幕,本实施例中的摄像头可以拍摄用户通过手指点击到该虚拟画面上的位置的图像,例如,用户用手指点击画面中的操作菜单,摄像头捕捉出用户点击操作的图像,并识别出一定时间内用户手指位置稳定的坐标,通过与可穿戴设备中真实的菜单做图像比对,从而能够识别出用户手指所点击菜单对应的控制指令,以使得处理器执行对应的操作,并在显示屏上显示出所选命令对应的显示画面。当然,用户还可以通过手指滑动、框选等手势动作进行选择操作,而并不限于点击的方式,在此,本实施例不做限定。
需要说明的是,本实施例中的摄像头的数量并不限定,具体可以是一个摄像头实现多个功能,例如,同时实现行人检测、人脸识别、二维码识别、用户手指位置坐标识别等,或者,通过一个以上的摄像头捕捉不同的画面实现上述不同的功能,在此,本实施例不做限定,本领域技术人员可以根据具体实际场景而具体选择。
而对于无人飞行器的运用来讲,则可以实现在操作无人飞行器时,在视距范围内,将无人飞行器的实际飞行状态与无人飞行器的飞行相关文字或图形信息结合起来,例如,直观显示无人飞行器状态、飞行方向、飞行轨迹、障碍物信息和操作提示、第一视角影像等等。具体的应用场景有很多,在此,本发明实施例不一一例举。
现有技术中的可穿戴设备只能实现虚拟现实或增强现实,不能在一个可穿戴设备产品上同时实现虚拟现实和增强现实,更不能实现两种模式之间的切换。本实施例提供的可穿戴设备可以为眼镜或者头盔等产品,本实施例不作限定。本实施例提供的可穿戴设备,通过单个显示屏10显示,结构简单,整个可穿戴设备的体积可以做得较小。显示屏10上的显示内容可以通过具有反射功能的光学镜片20入射至人的左右眼中,由于光学镜片20可部分透射部分反射,而调节装置可以调节外界光线穿透过遮光件40而到达可穿戴设备内部的光通量,由此,使得该可穿戴设备可在调节装置的调节作用下,实现虚拟现实与增强现实的一体化,并实现虚拟现实模式与增强现实模式之间 的切换。
实施例三十
本实施例基于实施例二十九,进一步的,在具体设置时,遮光件40可以朝向光学镜片20上与反射面21相对的表面,遮光件40用于阻挡外界真实场景的光线投射到光学镜片20上。
其中,本实施例提供的可穿戴设备本体50可以为如图4所示的盒状结构,遮光件40可以为薄板类结构,或者其他结构。当外界光线需要投射到光学镜片20上与反射面21相对的表面,则首先需要穿透过遮光件40,因此,当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不作赘述。
本实施例通过遮光件40控制外界光线投射到光学镜片20上的光量,从而实现虚拟现实模式与增强现实模式之间的切换。
实施例三十一
本实施例基于实施例三十一,具体的,遮光件40可以为透光率可调件,调节装置与遮光件40电连接(图中未示出),调节装置用于调节对遮光件40施加的电压大小,以改变遮光件40的透光率。在本实施例中,优选的,该遮光件40可以为LCD液晶屏,当然,遮光件40还可以为其他类型,例如,TN LCD液晶屏,或者电致变色玻璃等等。液晶是一种有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。LCD液晶屏可以通过电压来改变液晶材料内部分子的排列状况,以达到遮光和透光的目的,本实施例提供的遮光件40可以通过电压控制,以使得其工作在两个状态:一是透明状态,二是遮光状态,在透明的状态下,透光率接近10%,在遮光状态下,外界光线完全不能通过遮光件,透光率为0%。透明状态时,该可穿戴设备为增强现实的显示模式,用户可以看到真实的外界场景。在遮光状态下,该可穿戴设备为虚拟现实的显示模式,外界的真实场景不能进入到用户眼中,此时,用户只能看到显示屏上显示的内容,整个可穿戴设备处于虚拟现实的显示模式。
另外,优选的,在本实施提供的遮光件40显示屏10之间的角度可以等于显示屏10与光学镜片20之间的预设夹角设置,从而遮光件40能够达到较好的遮光效果。
本实施例提供的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得人眼可以观看到外界真实场景,可穿戴设备工作在增强现实模式下。
实施例三十二
本实施例基于实施例三十,并且提供一种与实施例三十一不同的实现方式,遮光件40的设置位置可以与实施例三十一相同,与实施例三十一不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。在本实施例中,遮光件40可以为普通的不透光的材料构成,例如,可以为普通的塑料板,木板等等,当然,优选的,该遮光件40的质量较轻,以尽量减轻整个可穿戴设备的重量,提高佩戴的舒适性。在本实施例中,由于遮光件40通过可拆卸的方式设置在可穿戴设备上,因此,以拆装实现虚拟现实和增强现实模式的切换。与实施例三十一不同的是,本实施例中,遮光件40本身充当调节装置。
遮光件40可以采用卡接或者插接等可拆卸的方式设置在可穿戴设备本体50上,当然,可拆卸的连接方式有很多种,本实施例仅例举了较为优选的几种方式,但可以理解的是,实际运用过程中,并不限于上述方式。
本实施例提供的可穿戴设备相较于实施例三十一,其结构简单,并且成本较低,也能实现调节外界光线进入到可穿戴设备内部的光通量,只是操作上稍复杂。在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放 置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程度,也能在一定程度上可以保护可穿戴设备的内部零部件。
实施例三十三
本实施了基于实施例二十九至实施例三十二中任一实施例,本实施例提供的可穿戴设备还包括第一目镜30a和第二目镜30b,第一目镜30a和第二目镜30b设置在显示屏10的显示面11与光学镜片20的反射面21之间。具体的,第一目镜30a和第二目镜30b可以均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。
本领域技术人员能够理解的是,在光学系统中,目镜一般为将物镜所成的像放大后供眼睛观察用的光学部件,用户通过第一目镜30a和第二目镜30b看到的图像是呈放大后的图像。在本实施例中,优选的,第一目镜30a和第二目镜30b均为由至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。凸透镜可以起到进一步放大图像,提高视场角,提高沉浸感的作用。而凹透镜可以起到限制视场,只允许一定范围内的光线通过透镜组的作用。
本实施例提供的可穿戴设备在使用过程中,第一目镜30a可以供用户的左眼观看,第二目镜30b可以供用户右眼观看。显示屏10的显示面11与第一目镜30a的光轴方向可以呈一定角度,显示屏10投射到光学镜片20上所成物像与第一目镜30a和第二目镜30b的光轴方向垂直,即,物像各个点到目镜平面的距离相同,从而避免物像呈梯形,影响观看效果。显示屏10与光学镜片20之间的预设夹角γ的取值可以决定显示屏10经过光学镜片20反射后形成的物像是否与第一目镜30a和第二目镜30b的光轴方向垂直。
需要说明的是,在本实施例中,由于优选的,第一目镜30a和第二目镜30b均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组,则显示屏10上显示的画面内容经过光学镜片20反射后形成的物像为虚像。
实施例三十四
本实施例基于实施例三十三,该可穿戴设备还可以进一步包括瞳距调节系统,该瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与 第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,为适应不同人的使用,本实施例提供的可穿戴设备还具有瞳距调整功能。第一目镜30a和第二目镜30b可活动地设置在可穿戴设备本体50上,由此来保证第一目镜30a和第二目镜30b之间的距离可以改变。
瞳距调节系统可以为手动调节系统,例如,第一目镜30a和第二目镜30b可以通过导轨的方式可活动地连接在可穿戴设备本体50上,第一目镜30a与第二目镜30b可通过连杆连接,用户可操作连杆来调节第一目镜30a与第二目镜30b的位置。或者,第一目镜30a和第二目镜30b通过丝杠丝母的传动方式实现第一目镜30a和第二目镜30b的移动,丝杠上可以具有两段旋向不同的螺纹,两段不同的螺纹段上分别螺接有一个丝母,第一目镜30a和第二目镜30b分别于对应的丝母固定连接,用户可以手动转动丝杠,使得第一目镜30a和第二目镜30b分别对应的丝母沿直线方向相对靠近或相对远离,并带动第一目镜30a和第二目镜30b相对靠近或相对远离,实现瞳距的手动调节。实现手动调节第一目镜30a与第二目镜30b之间距离的方式较多,本实施例不一一例举,本领域技术人员可以根据需求而具体设计。
当然,瞳距的调节也可以通过自动调节的方式实现,可穿戴设备本体50上可以设置用于测量用户瞳孔距离的瞳距测量单元,瞳距调节系统可以根据瞳距测量单元所测得的当前用户的瞳距值,而具体调整第一目镜30a与第二目镜30b之间的距离,由此,使得瞳距调整更为精确。
实施例三十五
本实施例基于实施例三十四,在实施例三十四的基础上,如图7所示,瞳距调节系统可以具体包括伺服电机60、伺服电机控制模块70以及传动装置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
具体的,本实施例中的伺服电机60为微型伺服电机,以适用尺寸较小的眼镜或者头盔等可穿戴设备。传动装置80可以为实施例三十八例举的丝杠丝母的配合方式,而伺服电机60的输出轴可以与丝杠固定连接,例如可以通过联轴器连接,伺服电机控制模块70可以接收瞳距测量单元所测得的瞳距信 息,并控制伺服电机60的运作,或者,伺服电机控制模块70可以接收用户的触发信号,并根据触发信号控制伺服电机60的启动或停止,以控制第一目镜30a和第二目镜30b的运动或停止。本实施例通过伺服电机60精确调整第一目镜30a与第二目镜30b之间的距离,以做到精确的瞳距调整。
另外,当调整瞳距时,显示屏10上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
实施例三十六
图6为本发明实施例提供的可穿戴设备的第四种结构示意图;如图6所示,本实施例提供一种可穿戴设备包括:显示屏10、第一目镜30a、第二目镜30b和、遮光件40和调节装置,显示屏10与第一目镜30a和第二目镜30b的光轴方向垂直,显示屏10可供光线透射,调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
具体的,本实施例提供的可穿戴设备可以包括可穿戴设备本体50,该可穿戴设备本体50内可以形成封闭的空间,在该封闭的空间内安装显示屏10,显示屏10的显示面11可以平行放置在人眼前,人眼直接观看该显示屏10上显示的内容。特别的,显示屏20可以是是具有显示功能的显示器,其具体的形状和结构并不限定,例如显示屏10可以为LCD显示屏(液晶显示屏),或者,OLED显示屏(有机发光显示屏),当然,显示屏也可以为其他类型。在本实施例中,显示屏10具有部分透射部分反射的功能,优选的,显示屏为透明显示屏,所谓透明显示屏是指该显示屏在平常状态下是透明的,并且能够具有显示画面的功能。当调节装置调节穿过显示屏10光通量为零时,即,人眼前外界真实场景的光线无法进入到人眼中,人眼只能看见显示屏10上显示的内容,此时,可穿戴设备为虚拟现实显示模式。当调节装置调节穿过显示屏10光通量为不为零时,即,人眼前外界真实场景的光线可以进入到人眼中,人眼既能看见显示屏10上显示的内容,也能够看见外界真实场景,此时,可穿戴设备为增强现实显示模式。
现有技术中的可穿戴设备只能实现虚拟现实或增强现实,不能在一个可穿戴设备产品上同时实现虚拟现实和增强现实,更不能实现两种模式之间的切换。本实施例提供的可穿戴设备,将可供光线透射的显示屏10直接放置在 人眼前,用户可观看到显示屏10上的内容,也可以同时看到眼前的外界真实场景,即能够实现增强现实的显示模式,而调节装置可以调节显示屏10的光通量,以调节外界真实场景的光线是否通过显示屏10进入到人眼中,当调节至外界光线无法进入到人眼中时,该可穿戴设备为虚拟现实显示模式。本实施例提供的可穿戴设备能够实现虚拟现实和增强现实一体化,并且能够实现虚拟现实与增强现实之间的切换。
实施例三十七
本实施例基于实施例三十六,进一步的,遮光件40可以与显示屏10平行设置,遮光件40用于阻挡外界真实场景的光线投射到显示屏10上。遮光件40可以为薄板类结构,或者其他结构。由于外界光线需要穿过到显示屏10才能到达人眼中,当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不作赘述。
实施例三十八
本实施例基于实施例三十七,优选的,遮光件40可以为透光率可调件,调节装置与遮光件40电连接调节装置,调节装置用于调节对遮光件40施加的电压大小,以改变遮光件40的透光率。在本实施例中,优选的,该遮光件40可以为LCD液晶屏,当然,遮光件40还可以为其他类型,例如,TN LCD液晶屏,或者电致变色玻璃等等。液晶是一种有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。LCD液晶屏可以通过电压来改变液晶材料内部分子的排列状况,以达到遮光和透光的目的,本实施例提供的遮光件40可以通过电压控制,以使得其工作在两个状态:一是透明状态,二是遮光状态,在透明的状态下,透光率接近10%,在遮光状态下,外界光线完全不能通过遮光件,透光率为0%。透明状态时,该可穿戴设备为增强现实的显示模式,用户可以看到真实的外界场景。在遮光状态下,该可穿戴设备为虚拟现实的显示模式,外界的真实场景不能进入到用户眼中,此时,用户只能看到显示屏10上显示的内容,整个可穿戴设备处于虚拟现实的显示模式。
本实施例提供的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得人眼可以观看到外界真实场景,可穿戴设备工作在增强现实模式下。
实施例三十九
本实施例基于实施例三十七,并且提供一种与实施例三十八不同的实现方式,遮光件40的设置位置可以与实施例三十八相同,与实施例三十八不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。在本实施例中,遮光件40可以为普通的不透光的材料构成,例如,可以为普通的塑料板,木板等等,当然,优选的,该遮光件40的质量较轻,以尽量减轻整个可穿戴设备的重量,提高佩戴的舒适性。在本实施例中,由于遮光件40通过可拆卸的方式设置在可穿戴设备上,因此,以拆装实现虚拟现实和增强现实模式的切换。与实施例三十八不同的是,本实施例中,遮光件40本身充当调节装置。
遮光件40可以采用卡接或者插接等可拆卸的方式设置在可穿戴设备本体50上,当然,可拆卸的连接方式有很多种,本实施例仅例举了较为优选的几种方式,但可以理解的是,实际运用过程中,并不限于上述方式。
本实施例提供可穿戴设备相较于实施例三十八,其结构简单,并且成本较低,也能实现调节外界光线投射到显示屏10上的光通量,只是操作上稍复杂。在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程 度,也能在一定程度上可以保护可穿戴设备的内部零部件。
实施例四十
本实施例基于实施例三十六至实施例三十九中任一实施例,该可穿戴设备还可以进一步包括瞳距调节系统,该瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,为适应不同人的使用,本实施例提供的可穿戴设备还具有瞳距调整功能。第一目镜30a和第二目镜30b可活动地设置在可穿戴设备本体50上,由此来保证第一目镜30a和第二目镜30b之间的距离可以改变。
瞳距调节系统可以为手动调节系统,例如,第一目镜30a和第二目镜30b可以通过导轨的方式可活动地连接在可穿戴设备本体50上,第一目镜30a与第二目镜30b可通过连杆连接,用户可操作连杆来调节第一目镜30a与第二目镜30b的位置。或者,第一目镜30a和第二目镜30b通过丝杠丝母的传动方式实现第一目镜30a和第二目镜30b的移动,丝杠上可以具有两段旋向不同的螺纹,两段不同的螺纹段上分别螺接有一个丝母,第一目镜30a和第二目镜30b分别于对应的丝母固定连接,用户可以手动转动丝杠,使得第一目镜30a和第二目镜30b分别对应的丝母沿直线方向相对靠近或相对远离,并带动第一目镜30a和第二目镜30b相对靠近或相对远离,实现瞳距的手动调节。实现手动调节第一目镜30a与第二目镜30b之间距离的方式较多,本实施例不一一例举,本领域技术人员可以根据需求而具体设计。
当然,瞳距的调节也可以通过自动调节的方式实现,可穿戴设备本体50上可以设置用于测量用户瞳孔距离的瞳距测量单元,瞳距调节系统可以根据瞳距测量单元所测得的当前用户的瞳距值,而具体调整第一目镜30a与第二目镜30b之间的距离,由此,使得瞳距调整更为精确。
实施例四十一
如图7所示,本实施例基于实施例四十,在实施例四十的基础上,瞳距调节系统可以具体包括伺服电机60、伺服电机控制模块70以及传动装置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输 入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
具体的,本实施例中的伺服电机60为微型伺服电机,以适用尺寸较小的眼镜或者头盔等可穿戴设备。传动装置80可以为实施例四十例举的丝杠丝母的配合方式,而伺服电机60的输出轴可以与丝杠固定连接,例如可以通过联轴器连接,伺服电机控制模块70可以接收瞳距测量单元所测得的瞳距信息,并控制伺服电机60的运作,或者,伺服电机控制模块70可以接收用户的触发信号,并根据触发信号控制伺服电机60的启动或停止,以控制第一目镜30a和第二目镜30b的运动或停止。本实施例通过伺服电机60精确调整第一目镜30a与第二目镜30b之间的距离,以做到精确的瞳距调整。
另外,当调整瞳距时,显示屏10上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
实施例四十二
本实施例提供一种无人机系统,该无人机系统包括用于以无人飞行器第一视角拍摄画面的摄像头(图中未示出),摄像头通信连接有可穿戴设备;请参考附图1~2。其中,可穿戴设备包括第一显示屏10a、第二显示屏10b、第一光学镜片20a、第二光学镜片20b、以及设置在第一显示屏10a与第一光学镜片20a之间的第一目镜30a、设置在第二显示屏10b与第二光学镜片20b之间的第二目镜30b。
其中,第一显示屏10a的显示面11a与第一目镜30a的光轴方向平行。第二显示屏10b的显示面11b与第二目镜30b的光轴方向平行。
第一光学镜片20a上和第二光学镜片20b上分别形成有反射面(21a、21b)。第一光学镜片20a的反射面21a朝向第一显示屏10a,且第一光学镜片20a的反射面21a与第一显示屏10a之间形成第一预设夹角α,以使第一显示屏10a投射到第一光学镜片20a上所成物像101a与第一目镜30a的光轴方向垂直。第二光学镜片20b的反射面朝向第二显示屏10b,且第二光学镜片20b的反射面21b与第二显示屏10b之间形成第二预设夹角β,以使第二显示屏10b投射到第二光学镜片20b上所成物像与第二目镜30b的光轴方向垂直。
在本实施例中,第一光学镜片20a的反射面21a和第二光学镜片20b的 反射面21b上可以镀有反射膜或半透半反膜,例如,当第一光学镜片20a、第二光学镜片20b只需要全反射时,该反射面可以镀有反射膜;而当第一光学镜片20a和第二光学镜片20b既需要反射又需要透射时,第一光学镜片20a的反射面21a和第二光学镜片20b的反射面21b可以镀有半反半透膜,例如,在增强现实模式下,第一光学镜片20a和第二光学镜片20b应均能部分透射部分反射,因此,第一光学镜片20a的反射面21a和第二光学镜片20b的反射面21b可以镀有半透半反膜。
本实施例中的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例一相同,在此不再赘述。
本实施例提供的无人机系统,采用摄像头采集无人飞行器的第一视角的画面,并将该摄像头与可穿戴设备通信连接,通过该沉浸感较强的可穿戴设备,用户可以体验到沉浸感较好的第一视角飞行体验。
实施例四十三
本实施例在实施例四十二的基础上,进一步的,第一显示屏10a与第二显示屏10b可以平行相对设置。更具体的,如图1和图2所示,第一显示屏10a与第二显示屏10b之间可以形成预设距离,且第一光学镜片20a、第二光学镜片20b、第一目镜30a以及第二目镜30b设置在第一显示屏10a与第二显示屏10b之间。
本实施例中的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例二相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备能够保证用户具有较好的沉浸感,并且整个可穿戴设备的体积也较小。
实施例四十四
本实施例基于实施例四十二,并与实施例四十三不同的是,本实施例中的第一显示屏10a与第二显示屏10b可以以贴合相对的方式放置,且第一显示屏10a的显示面11a与第二显示屏10b的显示面11b相背离,第一光学镜片20a的反射面21a朝向第一显示屏10a的显示面11a,第二光学镜片20b的反射面21b朝向第二显示屏10b的显示面11b。在该种方式下,第一显示屏10a和第二显示屏10b可以位于两眼的中间,在佩戴上时,第一显示屏10a 和第二显示屏10b放置在人的鼻梁前方,而第一显示屏10a和第二显示屏10b可以选用超薄显示屏,以保证第一显示屏10a和第二显示屏10b尽量较少地遮挡住人眼的视线,保证较好的观看感受。
实施例四十五
本实施例基于实施例四十二至实施例四十四中的任一实施例,请继续参照附图2,第一预设夹角α与第二预设夹角β可以相等。由于第一目镜30a与第二目镜30b的光轴方向基本平行,因此,第一显示屏10a与第二显示屏10b两者之间也基本平行,第一预设夹角α与第二预设夹角β相等,第一光学镜片20a与第二光学镜片20b可以以第一目镜30a和第二目镜30b的对称轴为中心对称设置,由此,第一光学镜片20a和第二光学镜片20b大致可以形成一等腰三角形的两腰。
本实施例提供的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例四相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备能够保证用户在观看时能够看到以正视方向显示的物像,用户体验较好。
实施例四十六
本实施例基于实施例四十二至实施例四十五中的任一实施例,本实施例对第一光学镜片20a和第二光学镜片20b进行进一步限定。第一光学镜片20a和第二光学镜片20b均可部分透射部分反射。在本实施例中,优选的,第一光学镜片20a和第二光学镜片20b可以均为半透半反镜。第一光学镜片20a的反射面21a和第二光学镜片20b的反射面21b上可以镀有半透半反膜。
在该可穿戴设备上,还可以设置摄像头,摄像头可以与第一显示屏10a和第二显示屏10b电连接,第一显示屏10a和第二显示屏10b根据摄像头拍摄的内容显示与拍摄到的内容相配合的显示内容。摄像头可以拍摄当前实景,而处理器则可根据摄像头所拍摄的当前场景生成与当前场景匹配的相关信息,并使得第一显示屏10a和第二显示屏10b上显示与当前场景相关的显示内容。
本实施例提供的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例五相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备能够使得用户体验用增强现实模式实现在操作无人飞行器时,在视距范围内,将无人飞行器的实际飞行状态与无人飞行器的飞行相关文字或图形信息结合起来,例如,直观显示无人飞行器状态、飞行方向、飞行轨迹、障碍物信息和操作提示、第一视角影像等等。具体的应用场景有很多,在此,本发明实施例不一一例举。
实施例四十七
本实施例基于实施例四十六,在实施例四十六的基础上,该可穿戴设备还可以进一步包括调节装置,调节装置具体用于调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量。
本实施例提供的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例六相同,在此不再赘述。
本实施例提供的无人机系统,其中无人飞行器的可穿戴设备,能够实现虚拟现实与增强现实的一体化,并能够实现虚拟现实与增强现实之间的切换,用户在利用该可穿戴设备观察无人飞行器时,能够切换上述两种模式,给用户更丰富的模拟飞行体验。
实施例四十八
请继续参照附图1和附图2,本实施例在实施例四十七的基础上,本实施例对调节装置做详细描述。具体的,可穿戴设备还可以包括遮光件40,在具体设置时,遮光件40可以朝向第一光学镜片20a上与反射面21a相对的表面以及第二光学镜片20b上与反射面21b相对的表面,遮光件40用于阻挡外界真实场景的光线投射到第一光学镜片20a和第二光学镜片20b上。
其中,本实施例提供的无人机系统中的可穿戴设备可以包括可穿戴设备本体50,该可穿戴设备本体50可以为如图1所示的盒状结构,遮光件40可以为薄板类结构,或者其他结构。当外界光线需要投射到第一光学镜片20a上与反射面21a相对的表面,以及第二光学镜片20b上与反射面21b相对的表面,则首先需要穿透过遮光件40,因此,当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不 作赘述。
实施例四十九
本实施例基于实施例四十八,具体的,遮光件40可以为透光率可调件,调节装置与遮光件40电连接(图中未示出),调节装置用于调节对遮光件40施加的电压大小,以改变遮光件40的透光率。
另外,优选的,在本实施提供的遮光件40可以垂直于第一显示屏10a和第二显示屏10b设置,从而遮光件40能够达到较好的遮光效果。
本实施例提供的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例八相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得用户可以在视距范围内,观看无人飞行器的真实飞行状态,可穿戴设备工作在增强现实模式下。
实施例五十
本实施例基于实施例四十八,并且提供一种与实施例四十九不同的实现方式,遮光件40的设置位置可以与实施例四十九相同,与实施例四十九不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例九相同,在此不再赘述。
另外,在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放 置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程度,也能在一定程度上可以保护可穿戴设备的内部零部件。
本实施例提供的无人机系统相较于实施例四十九,该无人飞行器中的可穿戴设备通过可拆卸的遮光件40,通过将遮光件40安装或者拆卸,实现可穿戴设备的虚拟现实模式和增强现实模式之间的切换,其结构简单,并且成本较低。
本实施例提供的无人机系统实施例五十一
本实施例基于实施例四十二至实施例五十中任一实施例,该无人飞行器中的可穿戴设备还可以进一步包括瞳距调节系统,该瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,通过瞳距调节为适应不同人的需求。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例十相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,由于通过瞳距调节系统可以调节第一目镜30a和第二目镜30b之间的距离,以适应不同人的不同瞳距。
实施例五十二
图7为本发明实施例提供的瞳距调节系统的控制原理图。如图7所示,本实施例基于实施例五十一,在实施例五十一的基础上,瞳距调节系统可以具体包括伺服电机60、伺服电机控制模块70以及传动装置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
另外,当调整瞳距时,第一显示屏10a和第二显示屏10b上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式 以及连接关系均与实施例十一相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备可以精确调整瞳距,用户在使用时的舒适度更好。
实施例五十三
本实施例提供一种无人机系统,包括用于以无人飞行器第一视角拍摄画面的摄像头,该摄像头通信连接有可穿戴设备。
该可穿戴设备包括显示屏、光学镜片、遮光件和调节装置,光学镜片上形成有反射面,显示屏的显示面与光学镜片的反射面之间形成有预设夹角,光学镜片可部分透射部分反射,调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。图4为本发明实施例提供的可穿戴设备的又一种结构示意图;图5为图4中的可穿戴设备的主视图。本实施例提供的可穿戴设备可以参照附图1和附图2,或者,附图4和附图5。在本实施例中,优选的,光学镜片可以为半透半反镜。在光学镜片的反射面上可以镀有半透半反膜。
例如,参照附图1和附图2,显示屏的数量可以为两个(第一显示屏10a、第二显示屏10b),对应的,光学镜片的数量也为两个(第一光学镜片20a、第二光学镜片20b),并分别与两个显示屏配合,第一光学镜片20a的反射面21a与第一显示屏10a的显示面11a之间的夹角为第一预设夹角α,第二光学镜片20b的反射面21b与第二显示屏10b的显示面11b之间的夹角为第二预设夹角β。
例如,参照附图4和附图5,显示屏的数量为一个,如图4和图5中的显示屏,光学镜片的数量为一个,如图4和图5中的光学镜片,显示屏10与光学镜片20之间的夹角为γ。
在该可穿戴设备上,还可以设置摄像头,摄像头可以与显示屏电连接,显示屏根据摄像头拍摄的内容显示与拍摄到的内容相配合的显示内容。摄像头可以拍摄当前实景,而处理器则可根据摄像头所拍摄的当前场景生成与当前场景匹配的相关信息,并使得显示屏上显示与当前场景相关的显示内容。例如,可以实现在操作无人飞行器时,在视距范围内,将无人飞行器的实际飞行状态与无人飞行器的飞行相关文字或图形信息结合起来,例如,直观显示无人飞行器状态、飞行方向、飞行轨迹、障碍物信息和操作提示、第一视 角影像等等。具体的应用场景有很多,在此,本发明实施例不一一例举。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例十二相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,通过调节装置调节外界光线穿透入可穿戴设备内部的光通量,当外界光线进入到可穿戴设备内部的光通量为零时,为虚拟现实显示模式,当外界光线能够入射到光学镜片上时,为增强现实显示模式,从而使得该可穿戴设备可在调节装置的调节作用下,实现虚拟现实与增强现实的一体化,并实现虚拟现实与增强现实之间的切换。
实施例五十四
本实施例基于实施例五十三,本实施例对可穿戴设备上的可调节装置做进一步限定,具体的,在具体设置时,遮光件40可以朝向光学镜片上与光学镜片的反射面相对的表面,遮光件用于阻挡外界真实场景的光线投射到光学镜片上。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例十三相同,在此不再赘述。
本实施例提供的无人机系统,无人飞行器中的可穿戴设备当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不作赘述。
实施例五十五
本实施例基于实施例五十四,具体的,遮光件40可以为透光率可调件,调节装置还与遮光件40电连接(图中未示出),调节装置用于调节对遮光件40施加的电压大小,以改变遮光件40的透光率。
本实施例提供的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例十四相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到 某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得人眼可以观看到外界真实场景,可穿戴设备工作在增强现实模式下。
实施例五十六
本实施例基于实施例五十四,并且提供一种与实施例五十五不同的实现方式,遮光件40的设置位置可以与实施例五十五相同,与实施例五十五不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例十五相同,在此不再赘述。
另外,在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程度,也能在一定程度上可以保护可穿戴设备的内部零部件。
本实施例提供的无人机系统相较于实施例五十五,该无人飞行器中的可穿戴设备通过可拆卸的遮光件40,通过将遮光件40安装或者拆卸,实现可穿戴设备的虚拟现实模式和增强现实模式之间的切换,其结构简单,并且成本较低。
本实施例提供的无人机系统实施例五十七
本实施例基于实施例五十三至实施例五十六,进一步的,可参照附图1至图5,可穿戴设备还可以包括第一目镜30a和第二目镜30b,第一目镜30a和第二目镜30b设置在显示屏的显示面与光学镜片的反射面之间。
由于不同人的瞳距可能不同,因此,通过瞳距调节为适应不同人的需求。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式 以及连接关系均与实施例十六相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,由于通过第一目镜30a和第二目镜30b可以提高整个可穿戴设备的沉浸感和显示效果。
实施例五十八
本实施例基于实施例五十七,本实施例提供的无人机系统中的可穿戴设备还可以包括瞳距调节系统,瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,通过瞳距调节为适应不同人的需求。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例十七相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,由于通过瞳距调节系统可以调节第一目镜30a和第二目镜30b之间的距离,以适应不同人的不同瞳距。
实施例五十九
图7为本发明实施例提供的瞳距调节系统的控制原理图。如图7所示,本实施例基于实施例五十八,在实施例五十八的基础上,瞳距调节系统可以具体包括伺服电机60、伺服电机控制模块70以及传动装置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
另外,当调整瞳距时,第一显示屏10a和第二显示屏10b上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例十八相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备可以精确调整瞳距,用户在使用时的舒适度更好。
实施例六十
本实施例提供一种无人机系统,包括用于以无人飞行器第一视角拍摄画面的摄像头,该摄像头通信连接有可穿戴设备。本实施例中的可穿戴设备的结构请参照附图1~2。该可穿戴设备包括第一显示屏10a、第二显示屏10b、第一光学镜片20a、第二光学镜片20b、遮光件40和调节装置。
第一光学镜片20a上和第二光学镜片20b上分别形成有反射面(21a、21b),第一显示屏10a的显示面11a与第一光学镜片20a的反射面21a之间形成第一预设夹角α;第二显示屏10b的显示面11b与第二光学镜片20b的反射面21b之间形成第二预设夹角β第一光学镜片20a和第二光学镜片20b均可部分透射部分反射,调节装置用于调节穿过遮光件而到达可穿戴设备内部的光通量。在本实施例中,优选的,第一光学镜片20a和第二光学镜片20b可以均为半透半反镜。
在该可穿戴设备上,还可以设置摄像头,摄像头可以与第一显示屏10a和第二显示屏10b电连接,第一显示屏10a和第二显示屏10b根据摄像头拍摄的内容显示与拍摄到的内容相配合的显示内容。摄像头可以拍摄当前实景,而处理器则可根据摄像头所拍摄的当前场景生成与当前场景匹配的相关信息,并使得第一显示屏10a和第二显示屏10b上显示与当前场景相关的显示内容。例如,可以实现在操作无人飞行器时,在视距范围内,将无人飞行器的实际飞行状态与无人飞行器的飞行相关文字或图形信息结合起来,例如,直观显示无人飞行器状态、飞行方向、飞行轨迹、障碍物信息和操作提示、第一视角影像等等。具体的应用场景有很多,在此,本发明实施例不一一例举。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例十九相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备可以为眼镜或者头盔等产品,本实施例不作限定。本实施例提供的无人机系统中的可穿戴设备,通过双显示屏显示(第一显示屏10a和第二显示屏10b),并通过具有反射功能的第一光学镜片20a和第二光学镜片20b分别将第一显示屏10a和第二显示屏10b上的显示内容分别入射至人的左右眼中,由于第一光学镜片20a和第二光学镜片20b均可部分透射部分反射,而调节装置可以调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量,由此,使得该可穿戴设备可 在调节装置的调节作用下,实现虚拟现实与增强现实的一体化,并实现虚拟现实模式与增强现实模式之间的切换。
实施例六十一
本实施例基于实施例六十,进一步的,在具体设置时,遮光件40可以朝向第一光学镜片20a上与反射面21a相对的表面以及第二光学镜片20b上与反射面21b相对的表面,遮光件40用于阻挡外界真实场景的光线投射到第一光学镜片20a和第二光学镜片20b上。
其中,本实施例提供的可穿戴设备可以包括可穿戴设备本体50,该可穿戴设备本体50可以为如图1所示的盒状结构,遮光件40可以为薄板类结构,或者其他结构。当外界光线需要投射到第一光学镜片20a上与反射面21a相对的表面,以及第二光学镜片20b上与反射面21b相对的表面,则首先需要穿透过遮光件40,因此,当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不作赘述。
本实施例提供的无人机系统,无人飞行器中的可穿戴设备当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不作赘述。本实施例可以通过遮光件40控制外界光线投射到第一光学镜片20a和第二光学镜片20b上的光量,从而实现虚拟现实模式与增强现实模式之间的切换。
实施例六十二
本实施例基于实施例六十一,具体的,遮光件40可以为透光率可调件,调节装置与遮光件40电连接(图中未示出),调节装置用于调节对遮光件40施加的电压大小,以改变遮光件40的透光率。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例二十一相同,在此不再赘述。
另外,优选的,在本实施提供的遮光件40可以垂直于第一显示屏10a和 第二显示屏10b设置,从而遮光件40能够达到较好的遮光效果。
本实施例提供的无人机系统中的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得人眼可以观看到外界真实场景,可穿戴设备工作在增强现实模式下。
实施例六十三
本实施例基于实施例六十一,并且提供一种与实施例六十二不同的实现方式,遮光件40的设置位置可以与实施例六十二相同,与实施例六十二不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。在本实施例中,遮光件40可以为普通的不透光的材料构成,例如,可以为普通的塑料板,木板等等,当然,优选的,该遮光件40的质量较轻,以尽量减轻整个可穿戴设备的重量,提高佩戴的舒适性。
遮光件40可以采用卡接或者插接等可拆卸的方式设置在可穿戴设备本体50上,当然,可拆卸的连接方式有很多种,本实施例仅例举了较为优选的几种方式,但可以理解的是,实际运用过程中,并不限于上述方式。
本实施例提供可穿戴设备相较于实施例六十二,其结构简单,并且成本较低,也能实现调节外界光线投射到光学镜片上的光通量,只是操作上稍复杂。在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程度,也能在一定程度上可以保护可穿戴设备的内部零部件。
实施例六十四
本实施了基于实施例六十至实施例六十三中任一实施例,第一显示屏10a与第一光学镜片20a之间可以设有第一目镜30a,第二显示屏10b与第二光学镜片20b之间设有第二目镜30b,第一目镜30a和第二目镜30b可以均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组,第一显示屏10a投射到第一光学镜片20a上所成物像101a与第一目镜30a的光轴方向垂直,第二显示屏10b透射到第二光学镜片20b上物像与第二目镜30b的光轴方向垂直。
本实施例提供的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例二十三相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,通过双显示屏显示(第一显示屏10a和第二显示屏10b),并通过具有反射功能的第一光学镜片20a和第二光学镜片20b分别将第一显示屏10a和第二显示屏10b上的显示内容分别入射至人的左右眼中,由于第一光学镜片20a和第二光学镜片20b均可部分透射部分反射,而调节装置可以调节外界光线穿透过第一光学镜片20a和第二光学镜片20b的光通量,由此,使得该可穿戴设备可在调节装置的调节作用下,实现虚拟现实与增强现实的一体化,并实现虚拟现实模式与增强现实模式之间的切换。并且,相较于现有技术,在同样的屏幕参数下,单眼的有效显示区域能够达到为5.5英寸,分辨率为2560×1440,经过试验,不通过目镜的视场角即可达到45°左右,并通过加入目镜放大1.5倍后,可实现70°的视场角,能够实现很强的沉浸感,并且由于单眼的有效显示区域较大,目镜的放大倍数不需要很高也能达到较好的沉浸感,且用户在使用时视觉效果上的颗粒感较弱,显示效果较为细腻。而对于头盔产品来说,则可采用更大的尺寸更高分辨率的显示屏来达到更好的显示效果。
实施例六十五
本实施例基于实施例六十至实施例六十四中任一实施例,进一步的,第一显示屏10a与第二显示屏10b可以平行相对设置。更具体的,如图1和图2所示,第一显示屏10a与第二显示屏10b之间可以形成预设距离,且第一光学镜片20a、第二光学镜片20b、第一目镜30a以及第二目镜30b设置在第一显示屏10a与第二显示屏10b之间。第一显示屏10a与第二显示屏10b之间的放置位置大体上可以根据人脸部或者头部的宽度而设定,以使得在使用时,第一显示屏10a和第二显示屏10b能够基本平行相对地设置在人的眼睛两侧, 一方面能够保证用户在使用时具有较好的观看感受,另一方面能够节省可穿戴设备的结构空间,保证整个可穿戴设备的体积较小。
实施例六十六
本实施例基于实施例六十至实施例六十四中任一实施例,并与实施例六十五不同的是,本实施例中的第一显示屏10a与第二显示屏10b可以以贴合相对的方式放置,且第一显示屏10a的显示面11a与第二显示屏10b的显示面11b相背离,第一光学镜片20a的反射面21a朝向第一显示屏10a的显示面11a,第二光学镜片20b的反射面21b朝向第二显示屏10b的显示面11b。在该种方式下,第一显示屏10a和第二显示屏10b可以位于两眼的中间,在佩戴上时,第一显示屏10a和第二显示屏10b放置在人的鼻梁前方,而第一显示屏10a和第二显示屏10b可以选用超薄显示屏,以保证第一显示屏10a和第二显示屏10b尽量较少地遮挡住人眼的视线,保证较好的观看感受。
实施例六十七
本实施例基于实施例六十至实施例六十六中任一实施例,请继续参照附图2,第一预设夹角α与第二预设夹角β可以相等。由于第一目镜30a与第二目镜30b的光轴方向基本平行,因此,第一显示屏10a与第二显示屏10b两者之间也基本平行,第一预设夹角α与第二预设夹角β相等,第一光学镜片20a与第二光学镜片20b可以以第一目镜30a和第二目镜30b的对称轴为中心对称设置,由此,第一光学镜片20a和第二光学镜片20b大致可以形成一等腰三角形的两腰。
在上述实施例的基础上,优选的,第一预设夹角α和第二预设夹角β可以为45°。可以使得第一显示屏10a投射到第一光学镜片20a上所成物像与第一目镜30a的光轴方向垂直,第二显示屏10b投射到第二光学镜片20b上所成物像与所述第二目镜30b的光轴方向垂直。当然,本领域技术人员可以理解,在具体设计时,第一预设夹角α和第二预设夹角β也可以在误差允许的范围内变动,例如,第一预设夹角α的允许范围为45°±5°,第二预设夹角β的允许范围为45°±5°。第一预设夹角α和第二预设夹角β的取值在45°左右,以使得第一显示屏10a投射到第一光学镜片20a上所成物像与第一目镜30a的光轴方向能够基本垂直,第二显示屏10b投射到第二光学镜 片20b上所成物像与所述第二目镜30b的光轴方向能够基本垂直。用户在观看时能够看到以正视方向显示的物像,用户体验较好。
实施例六十八
本实施例基于实施例六十四,进一步的,该无人飞行器中的可穿戴设备还可以进一步包括瞳距调节系统,该瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,通过瞳距调节为适应不同人的需求。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例二十七相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,由于通过瞳距调节系统可以调节第一目镜30a和第二目镜30b之间的距离,以适应不同人的不同瞳距。
实施例六十九
如图7所示,本实施例基于实施例六十八,在实施例六十八的基础上,瞳距调节系统可以具体包括伺服电机60、伺服电机控制模块70以及传动装置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
另外,当调整瞳距时,第一显示屏10a和第二显示屏10b上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例二十八相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备可以精确调整瞳距,用户在使用时的舒适度更好。
实施例七十
本实施例提供一种无人机系统,该无人飞行器包括用于以无人飞行器第 一视角拍摄画面的摄像头(图中未示出),摄像头通信连接有可穿戴设备;请参照附图4或附图5,本实施例提供的无人机系统器的可穿戴设备包括:显示屏10、光学镜片20、遮光件40和调节装置,显示屏10和光学镜片20的数量均为一个,光学镜片20上形成有反射面21,显示屏10的显示面11与光学镜片20的反射面21之间形成有预设夹角γ,光学镜片20可部分透射部分反射,调节装置用于调节穿透过遮光件40而到达可穿戴设备内部的光通量。在本实施例中,优选的,光学镜片20可以为半透半反镜。
在该可穿戴设备上,还可以设置摄像头,摄像头可以与显示屏10电连接,显示屏10根据摄像头拍摄的内容显示与拍摄到的内容相配合的显示内容。摄像头可以拍摄当前实景,而处理器则可根据摄像头所拍摄的当前场景生成与当前场景匹配的相关信息,并使得显示屏10上显示与当前场景相关的显示内容。例如可以实现在操作无人飞行器时,在视距范围内,将无人飞行器的实际飞行状态与无人飞行器的飞行相关文字或图形信息结合起来,例如,直观显示无人飞行器状态、飞行方向、飞行轨迹、障碍物信息和操作提示、第一视角影像等等。具体的应用场景有很多,在此,本发明实施例不一一例举。
本实施例中的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例二十九相同,在此不再赘述。
本实施例提供的无人机系统的可穿戴设备可以为眼镜或者头盔等产品,本实施例不作限定。本实施例提供的可穿戴设备,通过单个显示屏10显示,结构简单,整个可穿戴设备的体积可以做得较小。显示屏10上的显示内容可以通过具有反射功能的光学镜片20入射至人的左右眼中,由于光学镜片20可部分透射部分反射,而调节装置可以调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量,由此,使得该可穿戴设备可在调节装置的调节作用下,实现虚拟现实与增强现实的一体化,并实现虚拟现实模式与增强现实模式之间的切换。
实施例七十一
本实施例基于实施例七十,进一步的,在具体设置时,遮光件40可以朝向光学镜片20上与反射面21相对的表面,遮光件40用于阻挡外界真实场景的光线投射到光学镜片20上。
本实施例中的无人机系统的可穿戴设备的具体原理和实现方式以及连 接关系均与实施例三十相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备通过遮光件40控制外界光线投射到光学镜片20上的光量,从而实现虚拟现实模式与增强现实模式之间的切换。
实施例七十二
本实施例基于实施例七十一,具体的,遮光件40可以为透光率可调件,调节装置还与遮光件40电连接(图中未示出),调节装置用于调节对遮光件40施加的电压大小,以改变遮光件40的透光率。
另外,优选的,在本实施提供的遮光件40显示屏10之间的角度可以等于显示屏10与光学镜片20之间的预设夹角设置,从而遮光件40能够达到较好的遮光效果。
本实施例提供的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例三十一相同,在此不再赘述。
本实施例提供的无人机系统的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得人眼可以观看到外界真实场景,可穿戴设备工作在增强现实模式下。
实施例七十三
本实施例基于实施例七十一,并且提供一种与实施例七十二不同的实现方式,遮光件40的设置位置可以与实施例七十二相同,与实施例七十二不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例三十二相同,在此不再赘述。
另外,在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及 支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程度,也能在一定程度上可以保护可穿戴设备的内部零部件。
本实施例提供的无人机系统相较于实施例七十二,该无人飞行器中的可穿戴设备通过可拆卸的遮光件40,通过将遮光件40安装或者拆卸,实现可穿戴设备的虚拟现实模式和增强现实模式之间的切换,其结构简单,并且成本较低。
实施例七十四
本实施了基于实施例七十至实施例七十三中任一实施例,本实施例提供无人飞行器中的的可穿戴设备还包括第一目镜30a和第二目镜30b,第一目镜30a和第二目镜30b设置在显示屏10的显示面11与光学镜片20的反射面21之间。具体的,第一目镜30a和第二目镜30b可以均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。
本领域技术人员能够理解的是,在光学系统中,目镜一般为将物镜所成的像放大后供眼睛观察用的光学部件,用户通过第一目镜30a和第二目镜30b看到的图像是呈放大后的图像。在本实施例中,优选的,第一目镜30a和第二目镜30b均为由至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。凸透镜可以起到进一步放大图像,提高视场角,提高沉浸感的作用。而凹透镜可以起到限制视场,只允许一定范围内的光线通过透镜组的作用。
本实施例提供的可穿戴设备在使用过程中,第一目镜30a可以供用户的左眼观看,第二目镜30b可以供用户右眼观看。显示屏10的显示面11与第一目镜30a的光轴方向可以呈一定角度,显示屏10投射到光学镜片20上所成物像与第一目镜30a和第二目镜30b的光轴方向垂直,即,物像各个点到目镜平面的距离相同,从而避免物像呈梯形,影响观看效果。显示屏10与光学镜片20之间的预设夹角γ的取值可以决定显示屏10经过光学镜片20反射后形成的物像是否与第一目镜30a和第二目镜30b的光轴方向垂直。
需要说明的是,在本实施例中,由于优选的,第一目镜30a和第二目镜 30b均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组,则显示屏10上显示的画面内容经过光学镜片20反射后形成的物像为虚像。
实施例七十五
本实施例基于实施例七十四,该可穿戴设备还可以进一步包括瞳距调节系统,该瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,通过瞳距调节为适应不同人的需求。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例三十四相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,由于通过瞳距调节系统可以调节第一目镜30a和第二目镜30b之间的距离,以适应不同人的不同瞳距。
实施例七十六
本实施例基于实施例七十五,在实施例七十五的基础上,如图7所示,瞳距调节系统可以具体包括伺服电机60、伺服电机控制模块70以及传动装置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
另外,当调整瞳距时,显示屏10上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例三十五相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备可以精确调整瞳距,用户在使用时的舒适度更好。
实施例七十七
本实施例提供一种无人机系统,包括用于以无人飞行器第一视角拍摄画 面的摄像头,该摄像头通信连接有可穿戴设备。图6为本发明实施例提供的可穿戴设备的第四种结构示意图;如图6所示,本实施例提供的无人机系统中的可穿戴设备包括:显示屏10、第一目镜30a、第二目镜30b、遮光件40和调节装置,显示屏10与第一目镜30a和第二目镜30b的光轴方向垂直,显示屏10可供光线透射,调节装置用于调节穿过遮光件40而到达可穿戴设备内部的光通量。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例三十六相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,将具有可供光线透射的显示屏10直接放置在人眼前,用户可观看到显示屏10上的内容,也可以同时看到眼前的外界真实场景,即能够实现增强现实的显示模式,而调节装置可以调节显示屏10的光通量,以调节外界真实场景的光线是否通过显示屏10进入到人眼中,当调节至外界光线无法进入到人眼中时,该可穿戴设备为虚拟现实显示模式。本实施例提供的无人机系统中的可穿戴设备能够实现虚拟现实和增强现实一体化,并且能够实现虚拟现实与增强现实之间的切换,用户能够在利用该可穿戴设备观察无人飞行器的飞行状态时,可以在虚拟现实和增强现实模式下体验不同的观看效果,灵活性较好。
实施例七十八
本实施例基于实施例七十七,进一步的,遮光件40可以与显示屏10平行设置,遮光件40用于阻挡外界真实场景的光线投射到显示屏10上。遮光件40可以为薄板类结构,或者其他结构。由于外界光线需要穿过到显示屏10才能到达人眼中,当遮光件40阻挡外界光线射入时,用户便无法看到眼前真实景象而沉浸在虚拟现实模式下的虚拟场景中。当然,可穿戴设备本体50的结构以及遮光件40的结构并不限于此,本领域技术人员可以根据实际需求而具体设计不同的可行结构,在此,本实施例不作赘述。
实施例七十九
本实施例基于实施例遮光件40可以为透光率可调件,调节装置与遮光件40电连接的,调节装置用于调节对遮光件40施加的电压大小,以改变遮光件40的透光率。
本实施例提供的无人机系统的可穿戴设备的具体原理和实现方式以及连接关系均与实施例三十八相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,其可以工作在虚拟现实和增强现实的两种工作模式下,并可以通过调节遮光件40的透光率,从而调节外界光线是否进入到可穿戴设备内,当通过对遮光件40施加的电压大小达到某一预设值或者不加电压而使得遮光件40完全不透光时,可穿戴设备工作在虚拟现实模式下,当通过对遮光件40施加的电压大小达到另一预设值而使得遮光件40完全透明时,外界光线可以透过遮光件40进入到可穿戴设备内,并使得人眼可以观看到外界真实场景,可穿戴设备工作在增强现实模式下。
实施例八十
本实施例基于实施例七十八,并且提供一种与实施例七十九不同的实现方式,遮光件40的设置位置可以与实施例七十九相同,与实施例七十九不同之处在于,遮光件40可以可拆卸地设置在可穿戴设备本体50上。本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例三十九相同,在此不再赘述。
另外,在本实施例中,可穿戴设备本体50上,且位于人眼的视线前方处可以设置开口,遮光件40直接可拆卸地设在该开口处。或者,在本实施例中,可选的,为保证整个装置的完整性,该遮光件40还可以包括遮光件本体以及支撑件(图中为示出),支撑件可以为透明的玻璃板或者其他透光性材料,支撑件和遮光件本体可以层叠布置,支撑件可以固定在可穿戴设备本体50上,并形成可穿戴设备本体50的一个侧壁,当需要遮光时,将遮光件本体放置在可穿戴设备本体50的内侧并与支撑件层叠布置,当不需要遮光时,将遮光件本体从可穿戴设备本体50上拆除即可。既能保证可穿戴设备外观上的美观程度,也能在一定程度上可以保护可穿戴设备的内部零部件。
本实施例提供的无人机系统相较于实施例七十八,该无人飞行器中的可穿戴设备通过可拆卸的遮光件40,通过将遮光件40安装或者拆卸,实现可穿戴设备的虚拟现实模式和增强现实模式之间的切换,其结构简单,并且成本较低。
实施例八十一
本实施例基于实施例七十七至实施例八十中任一实施例,本实施例提供的无人机系统中的可穿戴设备还可以进一步包括瞳距调节系统,该瞳距调节系统分别与第一目镜30a和第二目镜30b相连,用于驱动第一目镜30a和第二目镜30b相对靠近或相对远离,以调节第一目镜30a与第二目镜30b之间的距离。由于不同人的瞳距可能不同,因此,通过瞳距调节为适应不同人的需求。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例四十相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备,由于通过瞳距调节系统可以调节第一目镜30a和第二目镜30b之间的距离,以适应不同人的不同瞳距。
实施例八十二
如图7所示,本实施例基于实施例八十一,在实施例八十一的基础上,瞳距调节系统可以具体包括伺服电机60、伺服电机控制模块70以及传动装置80,伺服电机控制模块70可以用于控制伺服电机60的输出轴的转动角度,传动装置80用于将旋转运动转化为直线运动的,伺服电机60与传动装置80的输入端连接,传动装置80的输出端与第一目镜30a和第二目镜30b连接。
另外,当调整瞳距时,显示屏10上的画面可以根据第一目镜30a与第二目镜30b之间的距离做同步平移,以使得人眼中心、目镜中心以及画面中心三点能够处于同一直线上,提高观看的舒适度。
本实施例提供的无人机系统的可穿戴设备的具体原理和具体实现方式以及连接关系均与实施例四十一相同,在此不再赘述。
本实施例提供的无人机系统中的可穿戴设备可以精确调整瞳距,用户在使用时的舒适度更好。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对 其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (168)

  1. 一种可穿戴设备,其特征在于,包括第一显示屏、第二显示屏、第一光学镜片、第二光学镜片、以及设置在第一显示屏与第一光学镜片之间的第一目镜、设置在第二显示屏与第二光学镜片之间的第二目镜;
    所述第一显示屏的显示面与所述第一目镜的光轴方向平行,所述第二显示屏的显示面与所述第二目镜的光轴方向平行;
    所述第一光学镜片上和所述第二光学镜片上分别形成有反射面,所述第一光学镜片的反射面朝向所述第一显示屏,且与所述第一显示屏之间形成第一预设夹角,以使所述第一显示屏投射到第一光学镜片上所成物像与第一目镜的光轴方向垂直;所述第二光学镜片的反射面朝向所述第二显示屏,且与所述第二显示屏之间形成第二预设夹角,以使所述第二显示屏投射到第二光学镜片上所成物像与所述第二目镜的光轴方向垂直。
  2. 根据权利要求1所述的可穿戴设备,其特征在于,所述第一显示屏与所述第二显示屏平行相对设置。
  3. 根据权利要求2所述的可穿戴设备,其特征在于,所述第一显示屏与所述第二显示屏之间形成预设距离,且所述第一光学镜片、所述第二光学镜片、所述第一目镜以及所述第二目镜设置在所述第一显示屏与所述第二显示屏之间。
  4. 根据权利要求2所述的可穿戴设备,其特征在于,所述第一显示屏与所述第二显示屏贴合相对,且所述第一显示屏的显示面与所述第二显示屏的显示面相背离,所述第一光学镜片的反射面朝向所述第一显示屏的显示面,所述第二光学镜片的反射面朝向所述第二显示屏的显示面。
  5. 根据权利要求1所述的可穿戴设备,其特征在于,所述第一预设夹角与所述第二预设夹角相等。
  6. 根据权利要求1所述的可穿戴设备,其特征在于,所述第一预设夹角为45°±5°,所述第二预设夹角为45°±5°。
  7. 根据权利要求6所述的可穿戴设备,其特征在于,所述第一预设夹角为45°,所述第二预设夹角为45°。
  8. 根据权利要求1~7任一项所述的可穿戴设备,其特征在于,所述第一光学镜片上和所述第二光学镜片上的反射面上镀设有反射膜或半透半反 膜。
  9. 根据权利要求1所述的可穿戴设备,其特征在于,所述第一光学镜片和所述第二光学镜片均可部分透射部分反射。
  10. 根据权利要求9所述的可穿戴设备,其特征在于,所述第一光学镜片和所述第二光学镜片均为半透半反镜。
  11. 根据权利要求10所述的可穿戴设备,其特征在于,所述第一光学镜片和所述第二光学镜片的反射面上镀设有半透半反膜。
  12. 根据权利要求9所述的可穿戴设备,其特征在于,还包括遮光件,所述遮光件朝向第一光学镜片上与反射面相对的表面以及第二光学镜片上与反射面相对的表面,所述遮光件用于阻挡外界真实场景的光线投射到所述第一光学镜片和所述第二光学镜片上。
  13. 根据权利要求12所述的可穿戴设备,其特征在于,还包括调节装置,所述调节装置用于调节穿透过所述遮光件而到达可穿戴设备内部的光通量。
  14. 根据权利要求13所述的可穿戴设备,其特征在于,所述遮光件为透光率可调件,所述遮光件与所述调节装置电连接,所述调节装置用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  15. 根据权利要求14所述的可穿戴设备,其特征在于,所述遮光件为LCD液晶屏。
  16. 根据权利要求12所述的可穿戴设备,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  17. 根据权利要求12~16任一项所述的可穿戴设备,其特征在于,所述遮光件垂直于所述第一显示屏和所述第二显示屏。
  18. 根据权利要求1所述的可穿戴设备,其特征在于,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。
  19. 根据权利要求1所述的可穿戴设备,其特征在于,还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  20. 根据权利要求19所述的可穿戴设备,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  21. 根据权利要求1所述的可穿戴设备,其特征在于,还设置有摄像头,所述摄像头与所述第一显示屏和所述第二显示屏电连接,所述第一显示屏和所述第二显示屏根据摄像头拍摄的内容显示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
  22. 一种可穿戴设备,其特征在于,包括显示屏、光学镜片、遮光件和调节装置,所述光学镜片上形成有反射面,所述显示屏的显示面与所述光学镜片的反射面之间形成有预设夹角,所述光学镜片可部分透射部分反射,所述调节装置用于调节外界光线穿透过所述遮光件而到达可穿戴设备内部的光通量。
  23. 根据权利要求22所述的可穿戴设备,其特征在于,所述光学镜片为半透半反镜。
  24. 根据权利要求23所述的可穿戴设备,其特征在于,所述光学镜片的反射面上镀设有半透半反膜。
  25. 根据权利要求22所述的可穿戴设备,其特征在于,所述遮光件朝向所述光学镜片上与反射面相对的表面,所述遮光件用于阻挡外界真实场景的光线投射到所述光学镜片上。
  26. 根据权利要求25所述的可穿戴设备,其特征在于,所述遮光件为透光率可调件,所述遮光件与所述调节装置电连接,调节装置所述调节装置用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  27. 根据权利要求26所述的可穿戴设备,其特征在于,所述遮光件为LCD液晶屏。
  28. 根据权利要求22所述的可穿戴设备,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  29. 根据权利要求25~28任一项所述的可穿戴设备,其特征在于,所 述遮光件与所述光学镜片之间的夹角等于所述显示屏与所述光学镜片之间的预设夹角。
  30. 根据权利要求22所述的可穿戴设备,其特征在于,还包括第一目镜和第二目镜,所述第一目镜和所述第二目镜设置在所述显示屏的显示面与所述光学镜片的反射面之间。
  31. 根据权利要求30所述的可穿戴设备,其特征在于,所述显示屏的显示面投射到所述光学镜片上所成物像与所述第一目镜和所述第二目镜的光轴方向垂直。
  32. 根据权利要求30所述的可穿戴设备,其特征在于,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。
  33. 根据权利要求31所述的可穿戴设备,其特征在于,所述显示屏包括第一显示屏和第二显示屏,所述光学镜片包括第一光学镜片和第二光学镜片,所述第一显示屏的显示面与所述第一光学镜片的反射面之间形成第一预设夹角,以使第一显示屏投射到所述第一光学镜片上所成物像与所述第一目镜的光轴方向垂直;所述第二显示屏的显示面与所述第二光学镜片的反射面之间形成第二预设夹角,以使所述第二显示屏投射到所述第二光学镜片上所成物像与所述第二目镜的光轴方向垂直。
  34. 根据权利要求33所述的可穿戴设备,其特征在于,所述第一显示屏与所述第二显示屏平行相对设置。
  35. 根据权利要求34所述的可穿戴设备,其特征在于,所述第一显示屏与所述第二显示屏之间形成预设距离,且所述第一光学镜片、所述第二光学镜片、所述第一目镜以及所述第二目镜设置在所述第一显示屏与所述第二显示屏之间。
  36. 根据权利要求33所述的可穿戴设备,其特征在于,所述第一预设夹角与所述第二预设夹角相等。
  37. 根据权利要求36所述的可穿戴设备,其特征在于,所述第一预设夹角为45°±5°,所述第二预设夹角为45°±5°。
  38. 根据权利要求37所述的可穿戴设备,其特征在于,所述第一预设夹角为45°,所述第二预设夹角为45°。
  39. 根据权利要求30所述的可穿戴设备,其特征在于,所述显示屏的数量为一个,所述光学镜片的数量为一个,所述第一目镜和所述第二目镜均位于所述显示屏与所述光学镜片之间。
  40. 根据权利要求30所述的可穿戴设备,其特征在于,还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  41. 根据权利要求40所述的可穿戴设备,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  42. 根据权利要求22所述的可穿戴设备,其特征在于,还设置有摄像头,所述摄像头与所述显示屏电连接,所述显示屏根据摄像头拍摄的内容显示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
  43. 一种可穿戴设备,其特征在于,包括第一显示屏、第二显示屏、第一光学镜片、第二光学镜片、遮光件和调节装置;
    所述第一光学镜片上和所述第二光学镜片上分别形成有反射面,所述第一显示屏的显示面与所述第一光学镜片的反射面之间形成第一预设夹角;所述第二显示屏的显示面与所述第二光学镜片的反射面之间形成第二预设夹角;所述第一光学镜片和所述第二光学镜片均可部分透射部分反射,所述调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
  44. 根据权利要求43所述的可穿戴设备,其特征在于,所述第一光学镜片和所述第二光学镜片均为半透半反镜。
  45. 根据权利要求44所述的可穿戴设备,其特征在于,所述第一光学镜片和所述第二光学镜片的反射面上镀设有半透半反膜。
  46. 根据权利要求43所述的可穿戴设备,其特征在于,所述遮光件朝向第一光学镜片上与反射面相对的表面以及第二光学镜片上与反射面相对的表面,所述遮光件用于阻挡外界真实场景的光线投射到所述第一光学镜片和 所述第二光学镜片上。
  47. 根据权利要求46所述的可穿戴设备,其特征在于,所述遮光件为透光率可调件,所述遮光件与所述调节装置电连接,调节装置所述调节装置用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  48. 根据权利要求47所述的可穿戴设备,其特征在于,所述遮光件为LCD液晶屏。
  49. 根据权利要求43所述的可穿戴设备,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  50. 根据权利要求46~49任一项所述的可穿戴设备,其特征在于,所述遮光件垂直于所述第一显示屏和所述第二显示屏。
  51. 根据权利要求43所述的可穿戴设备,其特征在于,所述第一显示屏与所述第一光学镜片之间设有第一目镜,所述第二显示屏与所述第二光学镜片之间设有第二目镜,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组,所述第一显示屏投射到第一光学镜片上所成物像与第一目镜的光轴方向垂直,所述第二显示屏透射到第二光学镜片上所述物像与第二目镜的光轴方向垂直。
  52. 根据权利要求43所述的可穿戴设备,其特征在于,所述第一显示屏与所述第二显示屏平行相对设置。
  53. 根据权利要求52所述的可穿戴设备,其特征在于,所述第一显示屏与所述第二显示屏之间形成预设距离,且所述第一光学镜片、所述第二光学镜片、所述第一目镜以及所述第二目镜设置在所述第一显示屏与所述第二显示屏之间。
  54. 根据权利要求52所述的可穿戴设备,其特征在于,所述第一显示屏与所述第二显示屏贴合相对,且所述第一显示屏的显示面与所述第二显示屏的显示面相背离,所述第一光学镜片的反射面朝向所述第一显示屏的显示面,所述第二光学镜片的反射面朝向所述第二显示屏的显示面。
  55. 根据权利要求43所述的可穿戴设备,其特征在于,所述第一预设夹角与所述第二预设夹角相等。
  56. 根据权利要求55所述的可穿戴设备,其特征在于,所述第一预设夹角为45°±5°,所述第二预设夹角为45°±5°。
  57. 根据权利要求56所述的可穿戴设备,其特征在于,所述第一预设夹角为45°,所述第二预设夹角为45°。
  58. 根据权利要求51所述的可穿戴设备,其特征在于,还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  59. 根据权利要求58所述的可穿戴设备,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  60. 根据权利要求43所述的可穿戴设备,其特征在于,还设置有摄像头,所述摄像头与所述第一显示屏和所述第二显示屏电连接,所述第一显示屏和所述第二显示屏根据摄像头拍摄的内容显示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
  61. 一种可穿戴设备,其特征在于,包括:显示屏、光学镜片、遮光件和调节装置,所述显示屏和所述光学镜片的数量均为一个,所述光学镜片上形成有反射面,所述显示屏的显示面与所述光学镜片的反射面之间形成有预设夹角,所述光学镜片可部分透射部分反射,所述调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
  62. 根据权利要求61所述的可穿戴设备,其特征在于,所述光学镜片为半透半反镜。
  63. 根据权利要求62所述的可穿戴设备,其特征在于,所述光学镜片的反射面上镀设有半透半反膜。
  64. 根据权利要求61所述的可穿戴设备,其特征在于,所述遮光件朝向所述光学镜片上与反射面相对的表面,所述遮光件用于阻挡外界真实场景的光线投射到所述光学镜片上。
  65. 根据权利要求64所述的可穿戴设备,其特征在于,所述遮光件为透光率可调件,所述遮光件与所述调节装置电连接,调节装置所述调节装置 用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  66. 根据权利要求65所述的可穿戴设备,其特征在于,所述遮光件为LCD液晶屏。
  67. 根据权利要求61所述的可穿戴设备,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  68. 根据权利要求64~67任一项所述的可穿戴设备,其特征在于,所述遮光件与所述光学镜片之间的夹角等于所述显示屏与所述光学镜片之间的预设夹角。
  69. 根据权利要求61所述的可穿戴设备,其特征在于,还包括第一目镜和第二目镜,所述第一目镜和所述第二目镜设置在所述显示屏的显示面与所述光学镜片的反射面之间。
  70. 根据权利要求69所述的可穿戴设备,其特征在于,所述显示屏的显示面投射到所述光学镜片上所成物像与所述第一目镜和所述第二目镜的光轴方向垂直。
  71. 根据权利要求69所述的可穿戴设备,其特征在于,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。
  72. 根据权利要求69所述的可穿戴设备,其特征在于,还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  73. 根据权利要求72所述的可穿戴设备,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  74. 根据权利要求61所述的可穿戴设备,其特征在于,还设置有摄像头,所述摄像头与所述显示屏电连接,所述显示屏根据摄像头拍摄的内容显示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
  75. 一种可穿戴设备,其特征在于,包括:显示屏、第一目镜、第二目镜、遮光件和调节装置,所述显示屏与所述第一目镜和所述第二目镜的光轴方向垂直,所述显示屏可供光线透射,所述调节装置用于调节外界光线穿透过所述遮光件而到达可穿戴设备内部的光通量。
  76. 根据权利要求75所述的可穿戴设备,其特征在于,所述显示屏为透明显示屏。
  77. 根据权利要求75或76所述的可穿戴设备,其特征在于,所述遮光件与所述显示屏平行设置,所述遮光件用于阻挡外界真实场景的光线投射到所述显示屏上。
  78. 根据权利要求77所述的可穿戴设备,其特征在于,所述遮光件为透光率可调件,所述遮光件与所述调节装置电连接,调节装置所述调节装置用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  79. 根据权利要求78所述的可穿戴设备,其特征在于,所述遮光件为LCD液晶屏。
  80. 根据权利要求75所述的可穿戴设备,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  81. 根据权利要求75所述的可穿戴设备,其特征在于,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。
  82. 根据权利要求75所述的可穿戴设备,其特征在于,还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  83. 根据权利要求82所述的可穿戴设备,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  84. 根据权利要求75所述的可穿戴设备,其特征在于,还设置有摄像头,所述摄像头与所述显示屏电连接,所述显示屏根据摄像头拍摄的内容显 示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
  85. 一种无人机系统,其特征在于,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
    所述可穿戴设备包括:第一显示屏、第二显示屏、第一光学镜片、第二光学镜片、以及设置在第一显示屏与第一光学镜片之间的第一目镜、设置在第二显示屏与第二光学镜片之间的第二目镜;
    所述第一显示屏的显示面与所述第一目镜的光轴方向平行,所述第二显示屏的显示面与所述第二目镜的光轴方向平行;
    所述第一光学镜片上和所述第二光学镜片上分别形成有反射面,所述第一光学镜片的反射面朝向所述第一显示屏,且与所述第一显示屏之间形成第一预设夹角,以使所述第一显示屏投射到第一光学镜片上所成物像与第一目镜的光轴方向垂直;所述第二光学镜片的反射面朝向所述第二显示屏,且与所述第二显示屏之间形成第二预设夹角,以使所述第二显示屏投射到第二光学镜片上所成物像与所述第二目镜的光轴方向垂直。
  86. 根据权利要求85所述的无人机系统,其特征在于,所述第一显示屏与所述第二显示屏平行相对设置。
  87. 根据权利要求86所述的无人机系统,其特征在于,所述第一显示屏与所述第二显示屏之间形成预设距离,且所述第一光学镜片、所述第二光学镜片、所述第一目镜以及所述第二目镜设置在所述第一显示屏与所述第二显示屏之间。
  88. 根据权利要求86所述的无人机系统,其特征在于,所述第一显示屏与所述第二显示屏贴合相对,且所述第一显示屏的显示面与所述第二显示屏的显示面相背离,所述第一光学镜片的反射面朝向所述第一显示屏的显示面,所述第二光学镜片的反射面朝向所述第二显示屏的显示面。
  89. 根据权利要求85所述的无人机系统,其特征在于,所述第一预设夹角与所述第二预设夹角相等。
  90. 根据权利要求85所述的无人机系统,其特征在于,所述第一预设夹角为45°±5°,所述第二预设夹角为45°±5°。
  91. 根据权利要求90所述的无人机系统,其特征在于,所述第一预设 夹角为45°,所述第二预设夹角为45°。
  92. 根据权利要求85~91任一项所述的无人机系统,其特征在于,所述第一光学镜片上和所述第二光学镜片上的反射面上镀设有反射膜或半透半反膜。
  93. 根据权利要求85所述的无人机系统,其特征在于,所述第一光学镜片和所述第二光学镜片均可部分透射部分反射。
  94. 根据权利要求93所述的无人机系统,其特征在于,所述第一光学镜片和所述第二光学镜片均为半透半反镜。
  95. 根据权利要求94所述的无人机系统,其特征在于,所述第一光学镜片和所述第二光学镜片的反射面上镀设有半透半反膜。
  96. 根据权利要求93所述的无人机系统,其特征在于,所述可穿戴设备还包括遮光件,所述遮光件朝向第一光学镜片上与反射面相对的表面以及第二光学镜片上与反射面相对的表面,所述遮光件用于阻挡外界真实场景的光线投射到所述第一光学镜片和所述第二光学镜片上。
  97. 根据权利要求96所述的无人机系统,其特征在于,所述可穿戴设备还包括调节装置,所述调节装置用于调节穿透过所述遮光件而到达可穿戴设备内部的光通量。
  98. 根据权利要求97所述的无人机系统,其特征在于,所述遮光件为透光率可调件,所述遮光件与所述调节装置电连接,调节装置所述调节装置用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  99. 根据权利要求98所述的无人机系统,其特征在于,所述遮光件为LCD液晶屏。
  100. 根据权利要求96所述的无人机系统,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  101. 根据权利要求97~100任一项所述的无人机系统,其特征在于,所述遮光件垂直于所述第一显示屏和所述第二显示屏。
  102. 根据权利要求85所述的无人机系统,其特征在于,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。
  103. 根据权利要求85所述的无人机系统,其特征在于,所述可穿戴设 备还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  104. 根据权利要求103所述的无人机系统,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  105. 根据权利要求85所述的无人机系统,其特征在于,所述可穿戴设备上还设置有摄像头,所述摄像头与所述第一显示屏和所述第二显示屏电连接,所述第一显示屏和所述第二显示屏根据摄像头拍摄的内容显示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
  106. 一种无人机系统,其特征在于,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
    所述可穿戴设备包括:显示屏、光学镜片、遮光件和调节装置,所述光学镜片上形成有反射面,所述显示屏的显示面与所述光学镜片的所述反射面之间形成有预设夹角,所述光学镜片可部分透射部分反射,所述调节装置用于调节外界光线穿透过所述遮光件而到达可穿戴设备内部的光通量。
  107. 根据权利要求106所述的无人机系统,其特征在于,所述光学镜片为半透半反镜。
  108. 根据权利要求107所述的无人机系统,其特征在于,所述光学镜片的反射面上镀设有半透半反膜。
  109. 根据权利要求106所述的无人机系统,其特征在于,所述遮光件朝向所述光学镜片上与反射面相对的表面,所述遮光件用于阻挡外界真实场景的光线投射到所述光学镜片上。
  110. 根据权利要求109所述的无人机系统,其特征在于,所述遮光件为透光率可调件,所述遮光件与所述调节装置电连接,调节装置所述调节装置用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  111. 根据权利要求110所述的无人机系统,其特征在于,所述遮光件 为LCD液晶屏。
  112. 根据权利要求109所述的无人机系统,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  113. 根据权利要求109~112任一项所述的无人机系统,其特征在于,所述遮光件与所述光学镜片之间的夹角等于所述显示屏与所述光学镜片之间的预设夹角。
  114. 根据权利要求106所述的无人机系统,其特征在于,还包括第一目镜和第二目镜,所述第一目镜和所述第二目镜设置在所述显示屏的显示面与所述光学镜片的反射面之间。
  115. 根据权利要求114所述的无人机系统,其特征在于,所述显示屏的显示面投射到所述光学镜片上所成物像与所述第一目镜和所述第二目镜的光轴方向垂直。
  116. 根据权利要求114所述的无人机系统,其特征在于,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。
  117. 根据权利要求115所述的无人机系统,其特征在于,所述显示屏包括第一显示屏和第二显示屏,所述光学镜片包括第一光学镜片和第二光学镜片,所述第一显示屏的显示面与所述第一光学镜片的反射面之间形成第一预设夹角,以使第一显示屏投射到所述第一光学镜片上所成物像与所述第一目镜的光轴方向垂直;所述第二显示屏的显示面与所述第二光学镜片的反射面之间形成第二预设夹角,以使所述第二显示屏投射到所述第二光学镜片上所成物像与所述第二目镜的光轴方向垂直。
  118. 根据权利要求117所述的无人机系统,其特征在于,所述第一显示屏与所述第二显示屏平行相对设置。
  119. 根据权利要求118所述的无人机系统,其特征在于,所述第一显示屏与所述第二显示屏之间形成预设距离,且所述第一光学镜片、所述第二光学镜片、所述第一目镜以及所述第二目镜设置在所述第一显示屏与所述第二显示屏之间。
  120. 根据权利要求117所述的无人机系统,其特征在于,所述第一预设夹角与所述第二预设夹角相等。
  121. 根据权利要求120所述的无人机系统,其特征在于,所述第一预设夹角为45°±5°,所述第二预设夹角为45°±5°。
  122. 根据权利要求121所述的无人机系统,其特征在于,所述第一预设夹角为45°,所述第二预设夹角为45°。
  123. 根据权利要求114所述的无人机系统,其特征在于,所述显示屏的数量为一个,所述光学镜片的数量为一个,所述第一目镜和所述第二目镜均位于所述显示屏与所述光学镜片之间。
  124. 根据权利要求114所述的无人机系统,其特征在于,苏搜可穿戴设备还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  125. 根据权利要求124所述的无人机系统,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  126. 根据权利要求106所述的无人机系统,其特征在于,所述可穿戴设备上还设置有摄像头,所述摄像头与所述显示屏电连接,所述显示屏根据摄像头拍摄的内容显示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
  127. 一种无人机系统,其特征在于,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
    所述可穿戴设备包括:第一显示屏、第二显示屏、第一光学镜片、第二光学镜片、遮光件和调节装置;
    所述第一光学镜片上和所述第二光学镜片上分别形成有反射面,所述第一显示屏的显示面与所述第一光学镜片的反射面之间形成第一预设夹角;所述第二显示屏的显示面与所述第二光学镜片的反射面之间形成第二预设夹角;所述第一光学镜片和所述第二光学镜片均可部分透射部分反射,调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
  128. 根据权利要求127所述的无人机系统,其特征在于,所述第一光学镜片和所述第二光学镜片均为半透半反镜。
  129. 根据权利要求128所述的无人机系统,其特征在于,所述第一光学镜片和所述第二光学镜片的反射面上镀设有半透半反膜。
  130. 根据权利要求127所述的无人机系统,其特征在于,所述遮光件朝向第一光学镜片上与反射面相对的表面以及第二光学镜片上与反射面相对的表面,所述遮光件用于阻挡外界真实场景的光线投射到所述第一光学镜片和所述第二光学镜片上。
  131. 根据权利要求130所述的无人机系统,其特征在于,所述遮光件为透光率可调件,所述遮光件与所述调节装置电连接,调节装置所述调节装置用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  132. 根据权利要求131所述的无人机系统,其特征在于,所述遮光件为LCD液晶屏。
  133. 根据权利要求130所述的无人机系统,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  134. 根据权利要求130~133任一项所述的无人机系统,其特征在于,所述遮光件垂直于所述第一显示屏和所述第二显示屏。
  135. 根据权利要求130所述的无人机系统,其特征在于,所述第一显示屏与所述第一光学镜片之间设有第一目镜,所述第二显示屏与所述第二光学镜片之间设有第二目镜,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组,所述第一显示屏投射到第一光学镜片上所成物像与第一目镜的光轴方向垂直,所述第二显示屏透射到第二光学镜片上所述物像与第二目镜的光轴方向垂直。
  136. 根据权利要求127所述的无人机系统,其特征在于,所述第一显示屏与所述第二显示屏平行相对设置。
  137. 根据权利要求136所述的无人机系统,其特征在于,所述第一显示屏与所述第二显示屏之间形成预设距离,且所述第一光学镜片、所述第二光学镜片、所述第一目镜以及所述第二目镜设置在所述第一显示屏与所述第二显示屏之间。
  138. 根据权利要求136所述的无人机系统,其特征在于,所述第一显 示屏与所述第二显示屏贴合相对,且所述第一显示屏的显示面与所述第二显示屏的显示面相背离,所述第一光学镜片的反射面朝向所述第一显示屏的显示面,所述第二光学镜片的反射面朝向所述第二显示屏的显示面。
  139. 根据权利要求127所述的无人机系统,其特征在于,所述第一预设夹角与所述第二预设夹角相等。
  140. 根据权利要求139所述的无人机系统,其特征在于,所述第一预设夹角为45°±5°,所述第二预设夹角为45°±5°。
  141. 根据权利要求140所述的无人机系统,其特征在于,所述第一预设夹角为45°,所述第二预设夹角为45°。
  142. 根据权利要求135所述的无人机系统,其特征在于,所述可穿戴设备还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  143. 根据权利要求142所述的无人机系统,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  144. 根据权利要求127所述的无人机系统,其特征在于,所述可穿戴设备上还设置有摄像头,所述摄像头与所述第一显示屏和所述第二显示屏电连接,所述第一显示屏和所述第二显示屏根据摄像头拍摄的内容显示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
  145. 一种无人机系统,其特征在于,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
    所述可穿戴设备包括:显示屏、光学镜片、遮光件和调节装置,所述显示屏和所述光学镜片的数量均为一个,所述光学镜片上形成有反射面,所述显示屏的显示面与所述光学镜片的所述反射面之间形成有预设夹角,所述光学镜片可部分透射部分反射,所述调节装置用于调节外界光线穿透过遮光件而到达可穿戴设备内部的光通量。
  146. 根据权利要求145所述的无人机系统,其特征在于,所述光学镜片为半透半反镜。
  147. 根据权利要求146所述的无人机系统,其特征在于,所述光学镜片的反射面上镀设有半透半反膜。
  148. 根据权利要求145所述的无人机系统,其特征在于,所述遮光件朝向所述光学镜片上与反射面相对的表面,所述遮光件用于阻挡外界真实场景的光线投射到所述光学镜片上。
  149. 根据权利要求148所述的无人机系统,其特征在于,所述遮光件为透光率可调件,所述遮光件与所述调节装置电连接,调节装置所述调节装置用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  150. 根据权利要求149所述的无人机系统,其特征在于,所述遮光件为LCD液晶屏。
  151. 根据权利要求148所述的无人机系统,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  152. 根据权利要求148~151任一项所述的无人机系统,其特征在于,所述遮光件与所述光学镜片之间的夹角等于所述显示屏与所述光学镜片之间的预设夹角。
  153. 根据权利要求145所述的无人机系统,其特征在于,所述可穿戴设备还包括第一目镜和第二目镜,所述第一目镜和所述第二目镜设置在所述显示屏的显示面与所述光学镜片的反射面之间。
  154. 根据权利要求153所述的无人机系统,其特征在于,所述显示屏的显示面投射到所述光学镜片上所成物像与所述第一目镜和所述第二目镜的光轴方向垂直。
  155. 根据权利要求153所述的无人机系统,其特征在于,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透镜组。
  156. 根据权利要求153所述的无人机系统,其特征在于,还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  157. 根据权利要求156所述的无人机系统,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  158. 根据权利要求145所述的无人机系统,其特征在于,所述可穿戴设备上还设置有摄像头,所述摄像头与所述显示屏电连接,所述显示屏根据摄像头拍摄的内容显示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
  159. 一种无人机系统,其特征在于,包括用于以无人飞行器第一视角拍摄画面的摄像头,所述摄像头通信连接有可穿戴设备;
    所述可穿戴设备包括:显示屏、第一目镜、第二目镜、遮光件和调节装置,所述显示屏与所述第一目镜和所述第二目镜的光轴方向垂直,所述显示屏可供光线透射,所述调节装置用于调节外界光线穿透过所述遮光件而到达可穿戴设备内部的光通量。
  160. 根据权利要求159所述的无人机系统,其特征在于,所述显示屏为透明显示屏。
  161. 根据权利要求159或160所述的无人机系统,其特征在于,所述遮光件与所述显示屏平行设置,所述遮光件用于阻挡外界真实场景的光线投射到所述显示屏上。
  162. 根据权利要求161所述的无人机系统,其特征在于,所述遮光件为透光率可调件,调节装置所述遮光件与所述调节装置电连接,所述调节装置用于调节对所述遮光件施加的电压大小,以改变所述遮光件的透光率。
  163. 根据权利要求162所述的无人机系统,其特征在于,所述遮光件为LCD液晶屏。
  164. 根据权利要求161所述的无人机系统,其特征在于,所述遮光件可拆卸地设置在可穿戴设备本体上。
  165. 根据权利要求159所述的无人机系统,其特征在于,所述第一目镜和所述第二目镜均为至少一个凸透镜和至少一个凹透镜层叠布置形成的透 镜组。
  166. 根据权利要求159所述的无人机系统,其特征在于,所述可穿戴设备还包括瞳距调节系统,所述瞳距调节系统分别与第一目镜和第二目镜相连,用于驱动所述第一目镜和所述第二目镜相对靠近或相对远离,以调节所述第一目镜与所述第二目镜之间的距离。
  167. 根据权利要求166所述的无人机系统,其特征在于,所述瞳距调节系统包括伺服电机,用于控制所述伺服电机的输出轴的转动角度的伺服电机控制模块,以及用于将旋转运动转化为直线运动的传动装置,所述伺服电机与所述传动装置的输入端连接,所述传动装置的输出端与所述第一目镜和第二目镜连接。
  168. 根据权利要求159所述的无人机系统,其特征在于,所述可穿戴设备上还设置有摄像头,所述摄像头与所述显示屏电连接,所述显示屏根据摄像头拍摄的内容显示与所述拍摄到的内容相配合的显示内容;所述摄像头还用于获取用户的手势信息,以使处理器根据所述手势信息执行与所述手势信息匹配的操作。
PCT/CN2016/080779 2016-04-29 2016-04-29 可穿戴设备及无人机系统 WO2017185357A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/080779 WO2017185357A1 (zh) 2016-04-29 2016-04-29 可穿戴设备及无人机系统
CN201680003131.2A CN107076998B (zh) 2016-04-29 2016-04-29 可穿戴设备及无人机系统
US16/053,105 US11036050B2 (en) 2016-04-29 2018-08-02 Wearable apparatus and unmanned aerial vehicle system
US17/347,559 US20210311314A1 (en) 2016-04-29 2021-06-14 Wearable apparatus and unmanned aerial vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080779 WO2017185357A1 (zh) 2016-04-29 2016-04-29 可穿戴设备及无人机系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/053,105 Continuation US11036050B2 (en) 2016-04-29 2018-08-02 Wearable apparatus and unmanned aerial vehicle system

Publications (1)

Publication Number Publication Date
WO2017185357A1 true WO2017185357A1 (zh) 2017-11-02

Family

ID=59623443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080779 WO2017185357A1 (zh) 2016-04-29 2016-04-29 可穿戴设备及无人机系统

Country Status (3)

Country Link
US (2) US11036050B2 (zh)
CN (1) CN107076998B (zh)
WO (1) WO2017185357A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906842A (zh) * 2021-01-18 2021-06-04 清华大学 基于动态交通信息码的信息处理方法和引导系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102607861B1 (ko) * 2018-08-08 2023-11-29 삼성전자주식회사 투시형 디스플레이 장치
CN109883360B (zh) * 2019-03-28 2020-11-13 歌尔光学科技有限公司 一种应用于光学系统的角度测量方法及测量装置
CN111617471A (zh) * 2020-06-08 2020-09-04 浙江商汤科技开发有限公司 虚拟射击的展示方法、装置、电子设备及存储介质
WO2023141989A1 (zh) * 2022-01-28 2023-08-03 深圳市大疆创新科技有限公司 无人机的控制方法、设备及存储介质
US20230350203A1 (en) * 2022-04-29 2023-11-02 Snap Inc. Ar/vr enabled contact lens
CN115032727B (zh) * 2022-05-19 2024-01-30 苏州奥浦迪克光电技术有限公司 一种透镜及检测模组和穿戴设备
CN116149065B (zh) * 2023-04-24 2023-08-04 歌尔光学科技有限公司 光学模组以及可穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029968A (zh) * 2007-04-06 2007-09-05 北京理工大学 可寻址光线屏蔽机制光学透视式头盔显示器
CN203480126U (zh) * 2013-08-28 2014-03-12 成都理想境界科技有限公司 头戴显示装置
CN203786396U (zh) * 2014-03-20 2014-08-20 成都理想境界科技有限公司 一种头戴显示设备
CN203786395U (zh) * 2014-03-20 2014-08-20 成都理想境界科技有限公司 一种头戴显示设备
CN203981975U (zh) * 2014-06-17 2014-12-03 东莞伟信电子有限公司 一种近眼显示器光机
CN204101817U (zh) * 2014-10-27 2015-01-14 青岛歌尔声学科技有限公司 头戴式显示器
CN204679715U (zh) * 2015-05-29 2015-09-30 北京小鸟看看科技有限公司 一种微型投影设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100538437C (zh) * 2005-02-23 2009-09-09 北京理工大学 一种头盔显示器的光学系统
CN102906623A (zh) * 2010-02-28 2013-01-30 奥斯特豪特集团有限公司 交互式头戴目镜上的本地广告内容
JP6119091B2 (ja) * 2011-09-30 2017-04-26 セイコーエプソン株式会社 虚像表示装置
US8872853B2 (en) * 2011-12-01 2014-10-28 Microsoft Corporation Virtual light in augmented reality
JP5919899B2 (ja) * 2012-03-08 2016-05-18 セイコーエプソン株式会社 虚像表示装置及び虚像表示装置の位置調整方法
US10527859B2 (en) * 2013-04-11 2020-01-07 Sony Corporation Image display device and display apparatus
WO2015123775A1 (en) * 2014-02-18 2015-08-27 Sulon Technologies Inc. Systems and methods for incorporating a real image stream in a virtual image stream
CN105093536B (zh) * 2014-05-06 2018-07-06 联想(北京)有限公司 显示设备和电子设备
CN105094304B (zh) * 2014-05-20 2018-08-10 联想(北京)有限公司 一种信息处理方法以及电子设备
CN104216841A (zh) * 2014-09-15 2014-12-17 联想(北京)有限公司 一种信息处理方法及电子设备
KR20170067856A (ko) * 2014-10-15 2017-06-16 세이코 엡슨 가부시키가이샤 두부 장착형 표시 장치, 두부 장착형 표시 장치의 제어 방법 및 컴퓨터 프로그램을 갖는 컴퓨터 판독 가능 기록 매체
CN104898276A (zh) * 2014-12-26 2015-09-09 成都理想境界科技有限公司 头戴式显示装置
CN204855937U (zh) * 2015-04-10 2015-12-09 上海旗娱网络科技有限公司 一种具有虚拟现实和增强现实功能的头戴式显示器
CN204613516U (zh) * 2015-04-21 2015-09-02 杨振亚 头戴式手机类小屏幕多功能拓展装置
CN205015835U (zh) * 2015-08-03 2016-02-03 众景视界(北京)科技有限公司 头戴式智能交互系统
US10261319B2 (en) * 2015-11-03 2019-04-16 Google Llc Display of binocular overlapping images in a head mounted display
CN105376556A (zh) * 2015-12-14 2016-03-02 天马微电子股份有限公司 立体显示组件、立体显示系统和立体显示方法
US10459230B2 (en) * 2016-02-02 2019-10-29 Disney Enterprises, Inc. Compact augmented reality / virtual reality display

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029968A (zh) * 2007-04-06 2007-09-05 北京理工大学 可寻址光线屏蔽机制光学透视式头盔显示器
CN203480126U (zh) * 2013-08-28 2014-03-12 成都理想境界科技有限公司 头戴显示装置
CN203786396U (zh) * 2014-03-20 2014-08-20 成都理想境界科技有限公司 一种头戴显示设备
CN203786395U (zh) * 2014-03-20 2014-08-20 成都理想境界科技有限公司 一种头戴显示设备
CN203981975U (zh) * 2014-06-17 2014-12-03 东莞伟信电子有限公司 一种近眼显示器光机
CN204101817U (zh) * 2014-10-27 2015-01-14 青岛歌尔声学科技有限公司 头戴式显示器
CN204679715U (zh) * 2015-05-29 2015-09-30 北京小鸟看看科技有限公司 一种微型投影设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906842A (zh) * 2021-01-18 2021-06-04 清华大学 基于动态交通信息码的信息处理方法和引导系统

Also Published As

Publication number Publication date
US11036050B2 (en) 2021-06-15
CN107076998A (zh) 2017-08-18
US20180373040A1 (en) 2018-12-27
US20210311314A1 (en) 2021-10-07
CN107076998B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2017185357A1 (zh) 可穿戴设备及无人机系统
US10725535B2 (en) Head-worn image display apparatus for stereoscopic microsurgery
US9851565B1 (en) Increasing effective eyebox size of an HMD
US10600352B1 (en) Display device with a switchable window and see-through pancake lens assembly
Inami et al. Visuo-haptic display using head-mounted projector
CN104898276A (zh) 头戴式显示装置
CN205942090U (zh) 可穿戴设备及无人机系统
US20120050140A1 (en) Head-mounted display control
US20200201038A1 (en) System with multiple displays and methods of use
JPH03110593A (ja) フライトシミュレータ用観測者頭部搭載のデイスプレイ装置
WO2021082798A1 (zh) 一种头戴式显示设备
CN108398787B (zh) 增强现实显示设备、方法和增强现实眼镜
CN204595329U (zh) 头戴式显示装置
TW201843494A (zh) 具有視訊透視之顯示系統
US11906750B1 (en) Varifocal display with actuated reflectors
CN107783289B (zh) 多模式头戴式可视设备
WO2016101861A1 (zh) 头戴式显示装置
CN117980808A (zh) 用于混合现实头戴式显示设备中多个焦平面的组合双折射材料和反射波导
CN204595328U (zh) 头戴式显示装置
KR20220118445A (ko) 도광 광학 엘리먼트와 연관된 광학 배열체를 사용하여 눈으로부터 광을 방향 전환시키는 것에 기초한 시선 추적을 위한 광학계 및 방법
EP3532890B1 (en) Display apparatus, wearable apparatus, and method of operating display apparatus
CN106773061B (zh) 一种近眼显示光学系统
CN107111143B (zh) 视觉系统及观片器
US11327561B1 (en) Display system
JP6741643B2 (ja) 表示装置、およびコンテキストディスプレイとプロジェクタを用いた表示方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899868

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899868

Country of ref document: EP

Kind code of ref document: A1