WO2017183763A1 - Apparatus and method for preventing toxic material dispersion by means of vortex air curtain - Google Patents

Apparatus and method for preventing toxic material dispersion by means of vortex air curtain Download PDF

Info

Publication number
WO2017183763A1
WO2017183763A1 PCT/KR2016/005376 KR2016005376W WO2017183763A1 WO 2017183763 A1 WO2017183763 A1 WO 2017183763A1 KR 2016005376 W KR2016005376 W KR 2016005376W WO 2017183763 A1 WO2017183763 A1 WO 2017183763A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
toxic
external flow
facility
vortex
Prior art date
Application number
PCT/KR2016/005376
Other languages
French (fr)
Korean (ko)
Inventor
임만성
사나울러
이르판요나스
고종욱
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2017183763A1 publication Critical patent/WO2017183763A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/02Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area using chambers or hoods covering the area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/08Influencing flow of fluids of jets leaving an orifice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F9/00Use of air currents for screening, e.g. air curtains
    • F24F2009/007Use of air currents for screening, e.g. air curtains using more than one jet or band in the air curtain

Definitions

  • the present invention relates to a device and method for preventing the spread of toxic substances by vortex air curtain, and more particularly, is installed around a facility that is likely to leak toxic substances in the event of an accident, such as a nuclear power plant containment building, and rotates around the facility.
  • the present invention relates to an apparatus and a method for preventing the diffusion of toxic substances by forming an air curtain by an artificial air stream.
  • Patent Document 1 US5096467 A
  • the present invention was devised to solve such a problem, and by forming an air curtain by an artificial air stream rotating around such a leaking facility in a toxic material leaking situation such as leakage of radioactive material from a nuclear power plant containment building. It traps the toxic substances by such vortex air flows and also prevents the diffusion of such toxic substances by the external flow, such as the influence of surrounding winds, by the curtain effect of the vortex air streams. Its purpose is to ensure that the accident does not affect the surrounding area in case of leakage.
  • the apparatus for preventing the spread of toxic substances by forming an air curtain using vortex around the pollutant is a facility in which there is a risk of leakage of toxic substances in case of accident (hereinafter referred to as 'toxic substance leak facility').
  • a plurality of blowing towers installed around the air to discharge air for vortex generation;
  • a plurality of air inlets installed around the leaking facilities of the toxic material and sucking air around the leaking facility of the toxic materials;
  • a control unit controlling the operation of the blowing tower and the air intake port to control the performance of the toxic material diffusion prevention function by the vortex generation.
  • the toxic substance diffusion preventing device may further include a toxic substance treatment unit for removing the toxic substance component from the air sucked by the air suction port.
  • the toxic material diffusion preventing device may further include an external flow detection sensor for detecting a direction or speed of wind (hereinafter, referred to as 'external flow') surrounding the toxic material leakage facility.
  • 'external flow' a direction or speed of wind
  • the apparatus for preventing the diffusion of toxic substances simulates the direction or speed of the wind detected by the external flow detection sensor and the operation of the blowing tower and the air inlet, thereby determining the air discharge operation of the blowing tower and the air suction operation of the intake port.
  • the apparatus may further include a simulation processing unit, and the control unit may operate the blowing tower and the air suction port according to the determination of the simulation processing unit.
  • the device for preventing the diffusion of toxic substances simulates the operation of the blowing tower and the air intake with respect to the direction or speed of wind (hereinafter, referred to as 'simulation source data') that can be detected by the external flow detection sensor.
  • Simulation processing unit for deriving; And a simulation database for storing simulation result data derived for each simulation source data by the simulation processor, wherein the controller is configured to perform the simulation database with respect to the direction or speed of wind detected by the external flow detection sensor.
  • the simulation result data of may be applied to operate the blowing tower and the air inlet in real time.
  • the control unit may further include a function of adjusting the direction or speed of air emitted from the blowing tower or adjusting the amount of air absorbed by the air inlet, according to a detection result of the external flow detection sensor.
  • the air inlet may include a basic inlet that always operates when a leak occurs in the toxic material leaking facility; And a preliminary intake port selectively operated according to the direction or speed of the wind detected by the external flow detection sensor, and the control unit operates the preliminary intake port determined according to the direction or speed of the wind detected by the external flow detection sensor. It may further include a function to.
  • the toxic material diffusion preventing device may further include a toxic material leak detection sensor installed around the toxic material leaking facility to detect whether or not the toxic material leaks in the toxic material leaking facility.
  • the method for preventing the spread of toxic substances by forming an air curtain using the vortex around the pollutant, the toxic substance diffusion prevention device (a) the facility of the risk of leakage of toxic substances in an accident ( (B) a plurality of blowing towers installed around the toxic leakage facility, releasing air for vortex generation; And (b) a plurality of air inlets installed around the toxic material leaking facility to suck air around the toxic material leaking facility.
  • step (c) may further comprise the step of removing the toxic component from the air sucked by the air inlet.
  • (a01) may further comprise the step of detecting the direction or speed of the wind blowing around the toxic material leakage facility (hereinafter referred to as 'external flow').
  • (a02) simulates the direction or speed of the external flow detected in the step (a01) and the operation of the blowing tower and the air inlet, thereby releasing air from the blowing tower. Determining the operation and the air intake operation of the inlet port, the operation of the blowing tower and the air intake port of the step (a) and step (b) can be made according to the determination of the step (a02).
  • step (a001) operation of the blowing tower and the air intake for the direction or speed of wind (hereinafter, collectively referred to as 'simulation source data') detectable by the external flow sensor Deriving the simulation result and storing in the simulation database, the operation of the blowing tower and the air inlet of the step (a) and step (b), the direction of the external flow detected in the step (a01) or With respect to speed, it can be performed in real time by applying the simulation result data of the simulation database.
  • the control of the direction or speed of the air discharged from the blowing tower, or the amount of air absorbed by the air intake can be made.
  • the method may further include a function of operating the preliminary inlet determined according to the direction or speed of the sensed external flow.
  • step (a0) it may further comprise the step of detecting whether the leakage of toxic substances and leaking points from the toxic substance leak facility.
  • a toxic material leak situation such as a leak of radioactive material in a nuclear power plant containment building
  • a toxic material leak situation such as a leak of radioactive material in a nuclear power plant containment building
  • the toxic material is discharged to such vortex air.
  • Confined by the flow, and also by the curtain effect of the vortex airflow the diffusion of such toxic substances is prevented from being promoted by external flows such as the influence of the surrounding wind, and it is collected and removed to affect the surrounding area in the event of a leak. It is effective to avoid giving.
  • FIG. 1 is a schematic diagram for explaining the principle of the device for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention.
  • FIG. 2 is a diagram showing a result of simulating the air flow state around the cylinder.
  • FIG 3 is a view for explaining the principle of the air curtain (air curtain) effect.
  • Figure 4 is a bird's-eye view showing the configuration of the device for preventing the spread of toxic substances by the vortex air curtain of the present invention installed around the toxic substance leak possible facilities.
  • FIG. 5 is a view showing embodiments of a blowing tower and an air inlet arrangement of the device for preventing the diffusion of toxic substances by the vortex air curtain of the present invention.
  • Figure 6 is a view showing a simulation result of the external flow form around the toxic material leakage possible device, when the toxic material diffusion prevention device by the vortex air curtain of the present invention is not installed.
  • FIG. 7 illustrates simulation results of vortices and external flows around a toxic material leaking facility when an apparatus for preventing toxic material diffusion by the vortex air curtain of the present invention having four blowing towers disposed thereon operates.
  • FIG. 8 illustrates simulation results of vortices and external flows around a toxic material leaking facility when an apparatus for preventing toxic material diffusion by the vortex air curtain of the present invention in which six blowing towers are disposed is operated.
  • FIG. 8 illustrates simulation results of vortices and external flows around a toxic material leaking facility when an apparatus for preventing toxic material diffusion by the vortex air curtain of the present invention in which six blowing towers are disposed is operated.
  • FIG. 9 is a view showing simulation results of vortices and external flow forms around a facility capable of leaking toxic substances according to external flow rate changes.
  • FIG. 10 shows simulation results of vortices and external flows around a toxic material leaking facility according to a change in velocity of air discharged from a blowing tower of a device for preventing toxic material diffusion by the vortex air curtain of the present invention. Figure shown.
  • 11 is a view analyzing the behavior of the radioactive particle emission situation in the nuclear power plant containment building.
  • FIG. 12 is a flow chart as an embodiment for performing a method for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention.
  • Figure 13 is a flow chart as another embodiment for performing a method for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention.
  • FIG. 1 is a schematic view for explaining the principle of the device 100 for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention
  • Figure 2 is a view showing a result of simulating the state of air flow around the cylinder
  • Figure 3 Is a view for explaining the principle of the air curtain (air curtain) effect.
  • the present invention is a technology that aims to protect the environment around the nuclear power plant and to prevent damage to local residents by collecting radioactive material leaking from the hole of the nuclear power plant in the event of a serious accident such as radioactive material leakage of the nuclear power plant. to be.
  • Hazardous substances that may leak from various facilities, including radioactive substances that may leak from nuclear power plants, will be collectively referred to as toxic substances.
  • FIG. 1 (a) shows a blowing tower 110 of a device for preventing the diffusion of toxic substances by the vortex air curtain installed around the nuclear power plant containment building 200 and its surroundings.
  • Fig. 1 (b) is a perspective view thereof.
  • the eddy current generating device 100 of the present invention installs a blowing tower 110 around the nuclear power plant 200. And a suction port 120 for absorbing toxic substances such as radioactive material collected in the vortex 20 is installed on the bottom portion near the containment building 200.
  • the installed blowing tower 110 emits wind 10 and the release angle can be adjusted as necessary. Using the discharged air 10, the air around the nuclear power plant containment dog 200 is rotated to generate an artificial vortex 20 surrounding the entire containment building 200.
  • Air inlet 120 a plurality of toxic substances leaking around the installation 200 serves to suck the air around the toxic substance leaking facilities, leaked from the containment building by the vortex 20 formed as described above It is possible to effectively trap toxic substances through the air inlet 120 while confining toxic substances in the vortex.
  • the generated vortex 20 effectively blocks external flow such as sea wind, and since the vortex 20 is formed symmetrically, changes in the velocity direction of the external flow do not affect the formation of the vortex.
  • FIG. 1 is a view for explaining how to generate a vortex.
  • the blue arrow indicates the flow of air 10 emitted from the blowing tower and the air 20 rotating around the containment building
  • the red arrow 30 indicates the toxic substance leaked from the nuclear containment building 200.
  • the position and the direction which become.
  • the air 10 discharged by the blowing tower 110 is a vortex that rotates around the containment building 200 by the direction and viscosity, and the Coanda effect emitted from each blowing tower 110 Will be generated.
  • the Coanda effect will be described later.
  • the suction port 120 is installed on the bottom as shown in FIG. In FIG. 1B, the blue arrows indicate the air 10 discharged from the blowing tower 110 and the air 40 sucked into the intake port. In this way, the suction port 120 installed on the floor allows the artificial vortex to be continuously and stably formed by sucking air.
  • FIG. 2 shows the results of a flow simulation showing the Coanda effect when a nozzle is installed around a cylinder having a diameter of 10 m.
  • FIG. 2 (a) shows the case where the flow rate of air discharged from the nozzle is 0.1 m / s
  • FIG. 2 (b) shows the case where the air flow rate is 10 m / s.
  • Many fluid phenomena change as the Reynolds number changes, and the Coanda effect also changes as the Reynolds number changes.
  • the Reynolds number is proportional to the density, velocity and shape of the fluid and inversely proportional to the viscosity of the fluid.
  • the Reynolds number is 100 times greater in FIG. 2 (b) than in FIG. 2 (a). This means that the higher the Reynolds number, the stronger the Coanda effect.
  • the actual containment of the power plant is about 45m in diameter, so even at the same flow rate, the Reynolds number is larger than that of the flow simulation of FIG. Therefore, since the apparatus 100 for preventing toxic substance diffusion by the vortex air curtain of the present invention forms a vortex around the nuclear power plant, it is possible to form the vortex more effectively by using the Coanda effect as described above.
  • the toxic material diffusion prevention device 100 by the vortex air curtain of the present invention by using the air curtain (Air Curtain) effect by the formed vortex to perform the function of effectively preventing the diffusion of the toxic material.
  • the apparatus 50 for generating the air curtain 51 as shown in FIG. 3 is a device installed in many buildings, and it is possible to maintain the fluid state of the room and the fluid state of the outside differently with the door open. It is purpose equipment. As a representative example, it may be used to keep the indoor temperature warm or cool with the door open, or it may be used to maintain the density of indoor air and the density of outdoor air differently. It can also serve to shield dust and other debris from entering the building.
  • the toxic material diffusion preventing device 100 by the vortex air curtain of the present invention utilizes such an air curtain effect, but is not simply a method of air discharged from the top to the bottom, as described above.
  • an air curtain effect By generating an artificial vortex 20 rotating the 200, the entire air periphery of the nuclear power plant containment building 200 is generated by the vortex 20 to generate an air curtain effect.
  • an air barrier is formed around the containment building 200 of the nuclear power plant, which not only prevents outflowing toxic substances from spreading out, but also blocks external air flows, thereby preventing toxic substances caused by external air flow. It will serve to block the spread of.
  • Figure 4 is a bird's eye view showing the configuration of the device for preventing the diffusion of toxic substances by the vortex air curtain of the present invention installed around the toxic material leakage possible facilities
  • Figure 5 is a device for preventing the diffusion of toxic substances by the vortex air curtain of the present invention (100) Figures of embodiments of the arrangement of the blowing tower (110) and the air intake 120 of the.
  • the present invention since the plurality of blowing towers 110 are symmetrically installed, artificial vortices can be stably formed regardless of the change in the direction of the wind. However, according to the strength of the wind, the air outlet speed of the blowing tower 110 and the amount of air intake at the inlet 120 can be controlled in real time to easily maintain the artificial vortex stably. Therefore, the present invention is designed to enable real-time control according to changes in the surrounding environment.
  • FIG. 4 is a bird's eye view of a device for preventing the diffusion of toxic substances by the vortex air curtain of the present invention installed around a nuclear power plant.
  • the process of the toxic substance diffusion prevention function by vortex generation is controlled by the control part of the toxic substance diffusion prevention apparatus 100 by a vortex air curtain.
  • each blowing tower 110 is installed around the containment building. Although the blowing tower 110 is installed in the embodiment of FIG. 4, 4 to 8 or more numbers may be installed depending on the embodiment.
  • the inhaled radioactive material is to be treated in the toxic material treatment system (130).
  • nuclear power plants operate as radioactivity treatment systems.
  • the control unit blows the blowing tower 110 and the suction port 120. Start up.
  • the air emitted from the blowing tower 110 may be adjusted between an angle of 0 to 45 degrees and the speed of the air emitted from each blowing tower may be controlled at a speed of 0 to 40 m / s or more.
  • the air intake intensity at the inlet 120 may also be controlled.
  • a plurality of intake ports 120 may be provided with a basic inlet that is basically operated, and a preliminary inlet that is controlled to operate or stop in accordance with the direction of wind (external flow) blowing from the outside. You can also operate.
  • the conditions such as the angle of the blowing tower 110 and the discharged air 10, the number of the inlet 120, the suction strength, and the operation control of the primary inlet and the preliminary inlet are buildings based on the nuclear power plant containment building. It can be changed and applied according to the arrangement situation and symmetry of.
  • FIG. 5 (a) is a case in which the toxic substance diffusion prevention device 100 by the vortex air curtain is not installed
  • FIG. 5 (b) is a case in which four blowing towers 110 are installed
  • FIG. 5 (c) of FIG. 4 illustrates a case in which four blowing towers 110 and four air inlets 120 are installed
  • FIG. 5D illustrates a case in which six blowing towers 110 and four air inlets 120 are installed
  • FIG. 5E six blowing towers 110 and six air inlets 120 and 121 are shown.
  • the inlets 120 at the same positions as (b), (c) and (d) are shown. 4 may be operated as a basic suction port as described above with reference to FIG.
  • the remaining two suction ports 121 may be operated as preliminary suction ports as described above with reference to FIG. 4.
  • FIG. 5E only two preliminary suction ports 121 are shown, but two more are provided in symmetrical positions. That is, as eight preliminary inlets, it can be operated in such a manner that the two are properly operated as the wind direction 60 changes.
  • the wind 60 is an external flow blowing from the outside, and air is discharged in the direction of the arrow 10 in each blowing tower 110.
  • the speed and angle of the air emitted from each blowing tower 110 may be controlled separately, and the amount of air sucked from the inlet may be controlled in different amounts.
  • the basic suction port 120 which is basically operated, and the preliminary suction port 121 which is elastically operated according to the direction of the wind may be provided.
  • Vortex 20 (see FIG. 1) formed by the blowing tower 110 prevents the diffusion of radioactive material 30 (see FIG. 1) leaking out of the containment 200 and is radioactive by the external flow 60. It is also possible to serve as an air barrier to prevent the material 30 from spreading.
  • the toxic material diffusion prevention device 100 by the vortex air curtain of the present invention is stable regardless of the direction of the wind because the arrangement of the blowing tower 110 and the suction port 120 is symmetrical Vortex 20 can be generated.
  • the distance from the blowing tower 110 to the containment 200 is disposed in consideration of the structural stability of the roof of the attached building, and the distance between the inlets 120 and 121 and the containment 200 may be located in the air curtain by the vortex. It was set to.
  • the apparatus 100 for preventing toxic substance diffusion by the vortex air curtain of the present invention further includes an external flow detection sensor (not shown) that detects external wind, that is, direction or intensity of the external flow 60, around the nuclear power plant 200. Can be installed.
  • the external flow sensor may be installed in the blowing tower 110, or may be separately installed.
  • the controller may perform a function of adjusting the direction or speed of air emitted from the blowing tower or adjusting the amount of air absorbed by the air inlet, according to a detection result of the external flow sensor.
  • the sensor may sense the direction or intensity of the wind and perform the function of preventing the diffusion of toxic substances through the control accordingly.
  • the direction of the wind or the intensity of the wind is sensed by the external flow sensor to control the amount of air sucked in the inlet 120, or the main inlet 120 and the preliminary inlet 121 are provided to By controlling the operation or by controlling the amount, speed or direction of the air emitted from the blowing tower 110 may be controlled to generate the artificial vortex 20 in the optimum environment.
  • the method for generating the artificial vortex 20 in real time by the apparatus 100 for preventing toxic substance diffusion by the vortex air curtain of the present invention may be two.
  • the toxic material diffusion prevention device 100 by the vortex air curtain, the blowing tower and the direction from the direction or speed of the wind detected by the external flow detection sensor, and the leak point information detected by the toxic material leak detection sensor, Simulating the operation of the air inlet, and comprises a simulation processing unit for determining in real time the speed and direction of the air to be discharged from the blowing tower, the amount of air to be sucked from the inlet or the pre-intake to operate, in real time, Method of operating the blowing tower and the air inlet in accordance with the simulation processing result of the simulation processing unit
  • Toxic substance diffusion prevention device 100 by the vortex air curtain the direction or speed of the wind can be detected by the external flow detection sensor, and leak point information detectable by the toxic material leakage detection sensor (hereinafter, collectively '
  • the simulation processing unit for deriving simulation results for the operation of the blowing tower and the air inlet, and a simulation database for storing simulation result data derived for each simulation source data by the simulation processing unit.
  • the control unit operates the blowing tower and the air inlet in real time using simulation result data of a simulation database.
  • Real-time vortex generation control can be performed in the same way.
  • 6 to 10 show the results of simulating the external flow form and the formed vortex form around the toxic substance leaking facility in various cases. That is, a flow simulation was performed to confirm the feasibility to confirm that the idea of the present invention can be actually applied.
  • Figure 6 is a view showing the results of the simulation of the external flow form around the toxic material leakage possible installation, when the apparatus for preventing the diffusion of toxic substances by the vortex air curtain of the present invention.
  • the external flow directly reaches the containment building, and if radioactive material flows out of the containment building 200 in this situation, the spread of pollutants by the external flow is promoted.
  • the surrounding workers as well as the surrounding environment are heavily polluted by radioactive materials. It also directly damages residents living near power plants and pollutes their residences. If a town or city is contaminated by radioactive material, it is difficult to remove radioactive material, leaving residents unable to live in the area due to pollution for a long time.
  • the inlet port represents an embodiment where four are installed.
  • Figure 7 (a) is a view showing a streamline for the external flow. As can be seen in the figure, it can be seen that a large amount of external flow penetrates into the vortex. In other words, the effect of the air curtain is not applied properly.
  • Figure 7 (b) is a view showing the streamline of the internal vortex.
  • Fig. 7 (c) shows the velocity contour (contour) and the velocity vector. As can be seen in the figure, it can be seen that a large amount of external flow penetrates into the internal artificial vortex, and also shows that secondary flow is formed in some portions so that the vortex is not stably generated.
  • the four graphs of FIG. 7 (d) show the height direction velocity that varies with the height at each of the four intake ports, with the horizontal axis representing the speed and the vertical axis representing the height from the respective intake positions to the upper direction. A negative speed on the horizontal axis means the air goes down. Looking at the results of this graph, air is sucked down at most intakes up to 20 meters.
  • the blowing tower 110 and the four inlets are each four, the vortex is not formed properly in some parts, and the external flow penetrates into the vortex and does not properly effect the air curtain effect. You can see that. Therefore, if only four blowing towers 110 and the suction port is installed, the effect of generating the vortex is not large enough, and the air curtain effect also appears to be insufficient.
  • FIG. 8 illustrates simulation results of vortices and external flows around a toxic material leaking facility when an apparatus for preventing toxic material diffusion by the vortex air curtain of the present invention in which six blowing towers are disposed is operated.
  • One drawing. 8 also shows an embodiment in the case where four suction ports are installed.
  • FIG. 8 (a) shows a streamline for external flow. As can be seen in the drawing, it can be seen that external flow does not penetrate into the inside, unlike when four towers are installed, and the air curtain effect is effectively applied.
  • FIG 8 (b) is a view showing the streamline of the internal vortex. As can be seen in the figure, the air trapped in the vortex does not escape to the outside. Therefore, it is possible to properly apply the effect of preventing the diffusion of toxic substances by artificial vortex, it is possible to prevent the environment around the nuclear plant from radioactive pollution.
  • FIG. 8 (c) is a diagram showing a velocity contour (contour) and a velocity vector. Overall, the vortices are well formed, so that the internal flow is relatively well circulated around the containment, and the effective flow is effectively prevented from invading the external flow.
  • the four graphs of FIG. 8 (d) also show a height direction velocity that varies with the height at each of the four intake ports, with the horizontal axis representing the speed and the vertical axis representing the height from the respective intake positions to the upper direction. Looking at the graph, it can be seen that the air is sucked down at the remaining intake position except one inlet 81 up to 35m high.
  • the rotating vortex is formed around the containment building 200. And it can be confirmed that the external flow is effectively blocked by the vortex generated around the containment building 200. And the air around the containment building 200 is rotated by the vortex formed so as to hover around the containment building 200.
  • 9 and 10 are diagrams showing the results of flow analysis simulation for real time control.
  • FIG. 9 is a diagram illustrating simulation results of vortices and external flows around a toxic material leaking facility according to changes in external flow rates for real time control.
  • FIG. 9 shows the mammary gland inside the vortex when the velocity of the external flow is (a), (b), (c), and (d) in order of 1, 2, 4, 5 m / s, respectively. Show results.
  • Figure 9 (a) when the speed of the external flow is small, the artificial vortex is formed relatively stable, as a result, the air inside the artificial vortex does not leak much to the outside while blocking the external flow to some extent
  • (b) that is, the vortex is formed unstable up to the speed of the external flow up to 2m / s, but there is little air leaking out.
  • FIG. 10 shows simulation results of vortices and external flows around a toxic material leaking facility according to a change in velocity of air discharged from a blowing tower of a device for preventing toxic material diffusion by the vortex air curtain of the present invention. The figure is shown.
  • Each simulation result of FIG. 10 is obtained when the velocity of air discharged from the blowing tower 110 is 0, 5, 10, and 15 m / s in order of (a), (b), (c), and (d), respectively.
  • the results are shown and the velocity of the external flow is fixed at 5 m / s.
  • FIG. 11 is a diagram analyzing the behavior of the radioactive particle emission situation in the nuclear power plant containment 200 (particle behavior analysis).
  • FIG. 11 is an analysis result assuming a situation in which the substance in the form of particles when the vortex generation technology is applied, outflowing from the entire containment building 200 in particular.
  • the particle density was assumed to be 1 g / cm 3 , and the total outflowed mass was 10 kg, the distribution of particle size was normally distributed, the average diameter was 10 ⁇ m, and the velocity of the emitted particles was assumed to be 0.173 m / s.
  • Figures (a), (b), (c) and (d) are diagrams showing how the particles change with time, and (e) is a graph showing normalized particles inhaled with time.
  • Figure (a) shows the situation 3 seconds after the particles are released, (b) shows 20 seconds, (c) shows 35 seconds, and (d) shows 54 seconds.
  • FIG. 12 is a flow chart as an embodiment for performing a method for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention
  • Figure 13 is a flow chart as another embodiment for performing a method for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention. to be.
  • step S1202 control of the direction or speed of air emitted from the blowing tower, or control of the amount of air absorbed by the air inlet is performed, in which case the external flow detection sensor detects it. From the direction or speed of the wind and the leak point information detected by the toxic leak detection sensor, the operation of the blowing tower and the air inlet is simulated, and the speed and direction of the air to be emitted from the blowing tower, The amount of air to be sucked or the preliminary inlet to be operated is determined in real time (S1203), and the blowing tower and the inlet are operated according to the simulation processing result (S1204).
  • the air sucked by the air intake port is processed by removing the toxic substance component (S1205).
  • the differentiation point in the flowchart of FIG. 13 is the direction or speed of wind which can be detected by the external flow detection sensor in advance, and leak point information that can be detected by the toxic material leak detection sensor (hereinafter, collectively referred to as 'simulation source data').
  • 'simulation source data' the toxic material leak detection sensor
  • the operation of the blowing tower and the air intake port is derived from a simulation result and stored in a simulation database (S1301). Thereafter, the operation of the blowing tower and the air inlet is performed in real time using the simulation result data of the simulation database stored as described above (S1304).

Abstract

The present invention relates to an apparatus and method for preventing toxic material dispersion by means of a vortex air curtain, and more specifically, to: an apparatus for preventing toxic material dispersion by being installed near a facility, such as a containment building of a nuclear power plant, where the danger exists of a toxic material leak in case of an accident, and by forming an air curtain by means of an artificial air flow rotating around the surroundings of the facility; and a method therefor. According to the present invention, in a toxic material leak situation, such as a radiation leak in a containment building of a nuclear power plant, an air curtain is formed by means of an artificial air flow rotating around the surroundings of the facility where the leak has occurred, and thus the toxic material is captured by such vortex air flow, and by means of the curtain effect of the vortex air flow, the facilitation of the dispersion of such toxic material by means of an external flow, such as the influence of a surrounding wind, is prevented, and at the same time, the toxic material is collected and removed, and thus the surrounding areas are not impacted despite the leak accident.

Description

와류 에어커튼에 의한 유독물질 확산 방지 장치 및 방법Device and method for preventing diffusion of toxic substances by vortex air curtain
본 발명은 와류 에어커튼에 의한 유독물질 확산 방지 장치 및 방법에 관한 것으로서, 더욱 상세하게는 원자력 발전소 격납건물과 같이 사고발생시 유독물질을 유출할 위험이 있는 시설 주변에 설치되어, 해당 시설 주위를 회전하는 인공적인 공기 흐름에 의한 에어커튼을 형성시킴으로써, 유독물질의 확산을 방지하기 위한 장치 및 그 방법에 관한 것이다.The present invention relates to a device and method for preventing the spread of toxic substances by vortex air curtain, and more particularly, is installed around a facility that is likely to leak toxic substances in the event of an accident, such as a nuclear power plant containment building, and rotates around the facility. The present invention relates to an apparatus and a method for preventing the diffusion of toxic substances by forming an air curtain by an artificial air stream.
후쿠시마 원전 사고 이후 원전의 중대사고에 대처하기 위한 새로운 기술에 대한 연구 개발과, 이를 현장에 적용하여 원전의 안전성을 더욱 향상시키는 노력이 시도되어져 왔다. 그러나 후쿠시마 원전사고에서와 같이 만약 방사성 물질이 원전 밖으로 유출되는 상황이 발생한 경우에, 그러한 물질을 신속히 포집하고 확산을 방지하기 위한 해법을 제시하는 기술의 개발은 아직도 미미한 상황이다. 따라서 원전의 방사성물질 유출사고와 같은 중대사고시에, 원전 주변 환경 및 거주민들의 안전을 보장하기 위해 유독물질 확산을 신속히 차단하는 기술의 개발이 절실한 상황이다.Since the Fukushima nuclear accident, research and development on new technologies to cope with serious accidents of nuclear power plants have been attempted, and efforts have been made to further improve the safety of nuclear power plants by applying them to the site. However, if there is a situation where radioactive material leaks out of the nuclear power plant, such as in the Fukushima nuclear accident, the development of techniques to quickly capture such material and provide a solution to prevent its spread is still insignificant. Therefore, in the case of a serious accident such as a radioactive spill of nuclear power plants, the development of technology that quickly blocks the spread of toxic substances in order to ensure the safety of the environment and residents of the nuclear power plant is urgently needed.
<선행기술문헌><Preceding technical literature>
<특허문헌><Patent Documents>
(특허문헌 1) US5096467 A (Patent Document 1) US5096467 A
본 발명은 이와 같은 문제점을 해결하기 위해 창안된 것으로서, 원자력발전소 격납건물에서 방사성물질의 누출되는 것과 같은 유독물질 누출 상황에서, 그러한 누출 시설 주변을 회전하는 인공적인 공기 흐름에 의한 에어커튼을 형성시킴으로써, 유독물질을 그와 같은 와류 공기흐름에 의해 가두어두고, 또한 와류 공기흐름의 커튼 효과에 의해 주변의 바람의 영향과 같은 외부 유동에 의해 그러한 유독물질의 확산이 촉진되는 것을 방지하는 동시에, 포집하여 제거함으로써 누출사고에도 주변지역에 영향을 주지 않도록 하는데 그 목적이 있다.The present invention was devised to solve such a problem, and by forming an air curtain by an artificial air stream rotating around such a leaking facility in a toxic material leaking situation such as leakage of radioactive material from a nuclear power plant containment building. It traps the toxic substances by such vortex air flows and also prevents the diffusion of such toxic substances by the external flow, such as the influence of surrounding winds, by the curtain effect of the vortex air streams. Its purpose is to ensure that the accident does not affect the surrounding area in case of leakage.
이와 같은 목적을 달성하기 위하여 본 발명에 따른 오염원 주위에 와류를 이용한 에어커튼을 형성하여 유독물질의 확산을 방지하는 장치는, 사고시 유독물질의 누출 위험이 있는 시설(이하 '유독물질 누출시설'이라 한다) 주위에 복수개 설치되어, 와류 생성을 위한 공기를 방출하는 블로윙 타워(blowing tower); 상기 유독물질 누출시설 주위에 복수개 설치되어, 상기 유독물질 누출시설 주위의 공기를 흡입하는 공기 흡입구; 및 상기 블로윙 타워 및 공기 흡입구의 작동을 제어하여 와류 생성에 의한 유독물질 확산 방지 기능의 수행을 제어하는 제어부를 포함한다.In order to achieve the above object, the apparatus for preventing the spread of toxic substances by forming an air curtain using vortex around the pollutant according to the present invention is a facility in which there is a risk of leakage of toxic substances in case of accident (hereinafter referred to as 'toxic substance leak facility'). A plurality of blowing towers installed around the air to discharge air for vortex generation; A plurality of air inlets installed around the leaking facilities of the toxic material and sucking air around the leaking facility of the toxic materials; And a control unit controlling the operation of the blowing tower and the air intake port to control the performance of the toxic material diffusion prevention function by the vortex generation.
상기 유독물질 확산 방지 장치는, 상기 공기 흡입구에 의해 흡입된 공기로부터 유독물질 성분을 제거 처리하는 유독물질 처리부를 더 포함할 수 있다.The toxic substance diffusion preventing device may further include a toxic substance treatment unit for removing the toxic substance component from the air sucked by the air suction port.
상기 유독물질 확산 방지 장치는, 상기 유독물질 누출시설 주위에서 부는 바람(이하 '외부유동'이라 한다)의 방향 또는 속도를 감지하는 외부유동 감지 센서를 더 포함할 수 있다.The toxic material diffusion preventing device may further include an external flow detection sensor for detecting a direction or speed of wind (hereinafter, referred to as 'external flow') surrounding the toxic material leakage facility.
상기 유독물질 확산 방지 장치는, 상기 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도 및, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션하여, 상기 블로윙 타워의 공기 방출 동작 및 흡입구의 공기 흡입 동작을 결정하는 시뮬레이션 처리부를 더 포함하고, 상기 제어부는, 상기 시뮬레이션 처리부의 결정에 따라 상기 블로윙 타워 및 공기 흡입구를 작동시킬 수 있다.The apparatus for preventing the diffusion of toxic substances simulates the direction or speed of the wind detected by the external flow detection sensor and the operation of the blowing tower and the air inlet, thereby determining the air discharge operation of the blowing tower and the air suction operation of the intake port. The apparatus may further include a simulation processing unit, and the control unit may operate the blowing tower and the air suction port according to the determination of the simulation processing unit.
상기 유독물질 확산 방지 장치는, 상기 외부유동 감지 센서에서 감지 가능한 바람의 방향 또는 속도(이하, 총칭하여 '시뮬레이션 소스 데이터'라 한다)들에 대하여, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션한 결과를 도출하는 시뮬레이션 처리부; 및 상기 시뮬레이션 처리부에 의해 각 시뮬레이션 소스 데이터에 대하여 도출된 시뮬레이션 결과 데이터를 저장하는 시뮬레이션 데이터베이스를 더 포함하고, 상기 제어부는, 상기 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도에 대하여, 상기 시뮬레이션 데이터베이스의 시뮬레이션 결과 데이터를 적용하여 실시간으로 상기 블로윙 타워 및 공기 흡입구를 작동시킬 수 있다.The device for preventing the diffusion of toxic substances simulates the operation of the blowing tower and the air intake with respect to the direction or speed of wind (hereinafter, referred to as 'simulation source data') that can be detected by the external flow detection sensor. Simulation processing unit for deriving; And a simulation database for storing simulation result data derived for each simulation source data by the simulation processor, wherein the controller is configured to perform the simulation database with respect to the direction or speed of wind detected by the external flow detection sensor. The simulation result data of may be applied to operate the blowing tower and the air inlet in real time.
상기 제어부는, 상기 외부유동 감지 센서의 감지 결과에 따라, 상기 블로윙 타워에서 방출하는 공기의 방향 또는 속도를 조정하거나, 상기 공기 흡입구에서 흡수하는 공기의 양을 조정하는 기능 을 더 포함할 수 있다.The control unit may further include a function of adjusting the direction or speed of air emitted from the blowing tower or adjusting the amount of air absorbed by the air inlet, according to a detection result of the external flow detection sensor.
상기 공기 흡입구는, 상기 유독물질 누출시설에서 누출사고 발생시 항상 작동하는 기본 흡입구; 및 상기 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도에 따라 선택적으로 작동하는 예비 흡입구를 포함하고, 상기 제어부는, 상기 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도에 따라 결정된 예비 흡입구를 작동시키는 기능을 더 포함할 수 있다.The air inlet may include a basic inlet that always operates when a leak occurs in the toxic material leaking facility; And a preliminary intake port selectively operated according to the direction or speed of the wind detected by the external flow detection sensor, and the control unit operates the preliminary intake port determined according to the direction or speed of the wind detected by the external flow detection sensor. It may further include a function to.
상기 유독물질 확산 방지 장치는, 상기 유독물질 누출시설 주위에 복수개 설치되어, 상기 유독물질 누출시설에서의 유독물질 누출 여부 및 누출지점을 감지하는 유독물질 누출 감지 센서를 더 포함할 수 있다.The toxic material diffusion preventing device may further include a toxic material leak detection sensor installed around the toxic material leaking facility to detect whether or not the toxic material leaks in the toxic material leaking facility.
본 발명의 다른 측면에 따르면, 상기 유독물질 확산 방지 장치가, 오염원 주위에 와류를 이용한 에어커튼을 형성하여 유독물질의 확산을 방지하는 방법은, (a) 사고시 유독물질의 누출 위험이 있는 시설(이하 '유독물질 누출시설'이라 한다) 주위에 복수개 설치되어 있는 블로윙 타워(blowing tower)가 와류 생성을 위한 공기를 방출하는 단계; 및 (b) 상기 유독물질 누출시설 주위에 복수개 설치되어 있는 공기 흡입구가, 상기 유독물질 누출시설 주위의 공기를 흡입하는 단계를 포함한다.According to another aspect of the present invention, the method for preventing the spread of toxic substances by forming an air curtain using the vortex around the pollutant, the toxic substance diffusion prevention device, (a) the facility of the risk of leakage of toxic substances in an accident ( (B) a plurality of blowing towers installed around the toxic leakage facility, releasing air for vortex generation; And (b) a plurality of air inlets installed around the toxic material leaking facility to suck air around the toxic material leaking facility.
상기 단계(b) 이후, (c) 상기 공기 흡입구에 의해 흡입된 공기로부터 유독물질 성분을 제거 처리하는 단계를 더 포함할 수 있다.After the step (b), (c) may further comprise the step of removing the toxic component from the air sucked by the air inlet.
상기 단계(a) 이전에, (a01) 유독물질 누출시설 주위에서 부는 바람(이하 '외부유동'이라 한다)의 방향 또는 속도를 감지하는 단계를 더 포함할 수 있다.Prior to the step (a), (a01) may further comprise the step of detecting the direction or speed of the wind blowing around the toxic material leakage facility (hereinafter referred to as 'external flow').
상기 단계(a01)와 단계(a) 사이에, (a02) 상기 단계(a01)에서 감지한 외부유동의 방향 또는 속도 및, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션하여, 상기 블로윙 타워의 공기 방출 동작 및 흡입구의 공기 흡입 동작을 결정하는 단계를 더 포함하고, 상기 단계(a) 및 단계(b)의 블로윙 타워 및 공기 흡입구의 작동은, 상기 단계(a02)의 결정에 따라 이루어질 수 있다.Between the steps (a01) and (a), (a02) simulates the direction or speed of the external flow detected in the step (a01) and the operation of the blowing tower and the air inlet, thereby releasing air from the blowing tower. Determining the operation and the air intake operation of the inlet port, the operation of the blowing tower and the air intake port of the step (a) and step (b) can be made according to the determination of the step (a02).
상기 단계(a01) 이전에, (a001) 상기 외부유동 감지 센서에서 감지 가능한 바람의 방향 또는 속도(이하, 총칭하여 '시뮬레이션 소스 데이터'라 한다)들에 대하여, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션한 결과를 도출하여 시뮬레이션 데이터베이스에 저장하는 단계를 더 포함하고, 상기 단계(a) 및 단계(b)의 블로윙 타워 및 공기 흡입구의 작동은, 상기 단계(a01)에서 감지한 외부유동의 방향 또는 속도에 대하여, 상기 시뮬레이션 데이터베이스의 시뮬레이션 결과 데이터를 적용하여 실시간으로 수행될 수 있다.Before the step (a01), (a001) operation of the blowing tower and the air intake for the direction or speed of wind (hereinafter, collectively referred to as 'simulation source data') detectable by the external flow sensor Deriving the simulation result and storing in the simulation database, the operation of the blowing tower and the air inlet of the step (a) and step (b), the direction of the external flow detected in the step (a01) or With respect to speed, it can be performed in real time by applying the simulation result data of the simulation database.
상기 단계(a01)에서 감지한 외부유동의 방향 또는 속도에 따라, 상기 블로윙 타워에서 방출하는 공기의 방향 또는 속도의 제어, 또는 상기 공기 흡입구에서 흡수하는 공기의 양의 제어가 이루어질 수 있다.According to the direction or speed of the external flow detected in the step (a01), the control of the direction or speed of the air discharged from the blowing tower, or the amount of air absorbed by the air intake can be made.
상기 단계(b)의 공기 흡입구 작동시, 상기 감지된 외부유동의 방향 또는 속도에 따라 결정된 예비 흡입구를 작동시키는 기능을 더 포함할 수 있다.In the operation of the air inlet of step (b), the method may further include a function of operating the preliminary inlet determined according to the direction or speed of the sensed external flow.
상기 단계(a) 이전에, (a0) 상기 유독물질 누출시설로부터, 유독물질 누출 여부 및 누출지점을 감지하는 단계를 더 포함할 수 있다.Before the step (a), (a0) it may further comprise the step of detecting whether the leakage of toxic substances and leaking points from the toxic substance leak facility.
본 발명에 의하면, 원자력발전소 격납건물에서 방사성물질의 누출되는 것과 같은 유독물질 누출 상황에서, 그러한 누출 시설 주변을 회전하는 인공적인 공기 흐름에 의한 에어커튼을 형성시킴으로써, 유독물질을 그와 같은 와류 공기흐름에 의해 가두어두고, 또한 와류 공기흐름의 커튼 효과에 의해 주변의 바람의 영향과 같은 외부 유동에 의해 그러한 유독물질의 확산이 촉진되는 것을 방지하는 동시에, 포집하여 제거함으로써 누출사고에도 주변지역에 영향을 주지 않도록 하는 효과가 있다.According to the present invention, in a toxic material leak situation, such as a leak of radioactive material in a nuclear power plant containment building, by forming an air curtain by an artificial air stream rotating around such a leaking facility, the toxic material is discharged to such vortex air. Confined by the flow, and also by the curtain effect of the vortex airflow, the diffusion of such toxic substances is prevented from being promoted by external flows such as the influence of the surrounding wind, and it is collected and removed to affect the surrounding area in the event of a leak. It is effective to avoid giving.
도 1은 본 발명에 따른 와류 에어커튼에 의한 유독물질 확산 방지 장치의 원리를 설명하기 위한 모식도.1 is a schematic diagram for explaining the principle of the device for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention.
도 2는 원통 주변에서의 공기 유동 상태를 시뮬레이션한 결과를 나타내는 도면.2 is a diagram showing a result of simulating the air flow state around the cylinder.
도 3은 에어 커튼(air curtain) 효과의 원리를 설명하기 위한 도면.3 is a view for explaining the principle of the air curtain (air curtain) effect.
도 4는 유독물질 누출 가능 시설 주변에 설치된 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치의 구성을 나타내는 조감도.Figure 4 is a bird's-eye view showing the configuration of the device for preventing the spread of toxic substances by the vortex air curtain of the present invention installed around the toxic substance leak possible facilities.
도 5는 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치의 블로윙 타워(blowing tower) 및 공기 흡입구 배치의 실시예들을 도시한 도면.FIG. 5 is a view showing embodiments of a blowing tower and an air inlet arrangement of the device for preventing the diffusion of toxic substances by the vortex air curtain of the present invention. FIG.
도 6은 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치가 설치되지 않은 경우, 유독물질 누출 가능시설 주변의 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면.Figure 6 is a view showing a simulation result of the external flow form around the toxic material leakage possible device, when the toxic material diffusion prevention device by the vortex air curtain of the present invention is not installed.
도 7은 4개의 블로윙 타워(blowing tower)가 배치된 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치가 동작하는 경우, 유독물질 누출 가능시설 주변의 와류 및 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면.FIG. 7 illustrates simulation results of vortices and external flows around a toxic material leaking facility when an apparatus for preventing toxic material diffusion by the vortex air curtain of the present invention having four blowing towers disposed thereon operates. FIG. One drawing.
도 8은 6개의 블로윙 타워(blowing tower)가 배치된 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치가 동작하는 경우, 유독물질 누출 가능시설 주변의 와류 및 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면.FIG. 8 illustrates simulation results of vortices and external flows around a toxic material leaking facility when an apparatus for preventing toxic material diffusion by the vortex air curtain of the present invention in which six blowing towers are disposed is operated. One drawing.
도 9는 외부 유동 속도 변화에 따른, 유독물질 누출 가능시설 주변의 와류 및 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면.FIG. 9 is a view showing simulation results of vortices and external flow forms around a facility capable of leaking toxic substances according to external flow rate changes. FIG.
도 10은 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치의 블로윙 타워(blowing tower)에서 방출된 공기의 속도 변화에 따른, 유독물질 누출 가능시설 주변의 와류 및 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면.FIG. 10 shows simulation results of vortices and external flows around a toxic material leaking facility according to a change in velocity of air discharged from a blowing tower of a device for preventing toxic material diffusion by the vortex air curtain of the present invention. Figure shown.
도 11은 원자력발전소 격납건물에서의 방사성 입자 방출 상황에 대한 거동을 분석한 도면.11 is a view analyzing the behavior of the radioactive particle emission situation in the nuclear power plant containment building.
도 12는 본 발명에 따른 와류 에어커튼에 의한 유독물질 확산 방지 방법을 수행하는 일 실시예로서의 순서도.12 is a flow chart as an embodiment for performing a method for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention.
도 13은 본 발명에 따른 와류 에어커튼에 의한 유독물질 확산 방지 방법을 수행하는 다른 실시예로서의 순서도.Figure 13 is a flow chart as another embodiment for performing a method for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
도 1은 본 발명에 따른 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)의 원리를 설명하기 위한 모식도이고, 도 2는 원통 주변에서의 공기 유동 상태를 시뮬레이션한 결과를 나타내는 도면이고, 도 3은 에어 커튼(air curtain) 효과의 원리를 설명하기 위한 도면이다.1 is a schematic view for explaining the principle of the device 100 for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention, Figure 2 is a view showing a result of simulating the state of air flow around the cylinder, Figure 3 Is a view for explaining the principle of the air curtain (air curtain) effect.
본 발명은 원자력발전서의 방사성 물질 누출 등과 같은 중대사고의 발생시, 원자력발전소의 파공 부위에서 새어나오는 방사성 물질을 포집하여 원자력발전소 주변의 환경을 보호하고 지역주민의 피해를 방지하는 것을 목적으로 하는 기술이다. 원자력발전소에서 누출 가능한 방사성 물질을 포함하여, 각종 시설에서 유출 가능한 유해물질을 총칭하여 이하에서 '유독물질'이라 칭하기로 한다.The present invention is a technology that aims to protect the environment around the nuclear power plant and to prevent damage to local residents by collecting radioactive material leaking from the hole of the nuclear power plant in the event of a serious accident such as radioactive material leakage of the nuclear power plant. to be. Hazardous substances that may leak from various facilities, including radioactive substances that may leak from nuclear power plants, will be collectively referred to as toxic substances.
도 1을 참조하면, 도 1(a)는 원자력발전소 격납건물(200) 및 그 주변에 설치된 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)의 블로윙 타워(blowing tower)(110)를 위에서 바라본 평면도이며, 도 1(b)는 그 사시도이다.Referring to FIG. 1, FIG. 1 (a) shows a blowing tower 110 of a device for preventing the diffusion of toxic substances by the vortex air curtain installed around the nuclear power plant containment building 200 and its surroundings. Fig. 1 (b) is a perspective view thereof.
원자력발전소 격납건물(200)의 파손된 부분에서 새나오는 방사성 물질 확산을 저지하기 위해 본 발명의 와류 생성 장치(100)는, 원자력 발전소(200) 주변에 블로윙 타워(blowing tower)(110)를 설치하고 격납건물(200) 근처 바닥부분에 와류(20)에 포집된 방사성 물질 등의 유독물질을 흡수하기 위한 흡입구(120)가 설치되어 있다. 설치된 블로윙 타워(110)에서는 바람을 방출(10)하며 이때 방출 각도는 필요에 따라 조절할 수 있다. 방출된 공기(10)를 이용하여 원자력 발전소 격납견물(200) 주변의 공기를 회전시켜 격납건물(200) 전체를 둘러싸는 인공적인 와류(20)를 발생시킨다. 공기 흡입구(120)는, 유독물질 누출시설(200) 주위에 복수개 설치되어, 유독물질 누출시설 주위의 공기를 흡입하는 역할을 수행하는데, 전술한 바와 같이 형성된 와류(20)에 의해서 격납건물에서 새어나온 유독물질들을 와류 내부에 가두는 동시에 공기 흡입구(120)를 통해서 유독물질을 효과적으로 포집이 가능하다. 또한 생성된 와류(20)는 해풍과 같은 외부 유동을 효과적으로 차단하며, 와류(20)는 대칭적으로 형성되기 때문에 외부 유동의 속도 방향 등의 변화가 와류 형성에 영향을 미치지 않는다. In order to prevent the spread of radioactive material leaking from the damaged part of the nuclear power plant containment building 200, the eddy current generating device 100 of the present invention installs a blowing tower 110 around the nuclear power plant 200. And a suction port 120 for absorbing toxic substances such as radioactive material collected in the vortex 20 is installed on the bottom portion near the containment building 200. The installed blowing tower 110 emits wind 10 and the release angle can be adjusted as necessary. Using the discharged air 10, the air around the nuclear power plant containment dog 200 is rotated to generate an artificial vortex 20 surrounding the entire containment building 200. Air inlet 120, a plurality of toxic substances leaking around the installation 200 serves to suck the air around the toxic substance leaking facilities, leaked from the containment building by the vortex 20 formed as described above It is possible to effectively trap toxic substances through the air inlet 120 while confining toxic substances in the vortex. In addition, the generated vortex 20 effectively blocks external flow such as sea wind, and since the vortex 20 is formed symmetrically, changes in the velocity direction of the external flow do not affect the formation of the vortex.
도 1은 와류를 어떻게 발생시키는지 설명하는 도면이다. 도 1(a)에서 파란색 화살표는 블로윙 타워에서 방출되는 공기(10) 및 격납건물 주변에서 회전하는 공기(20)의 흐름을 나타내며 빨간색 화살표(30)는 원전 격납건물(200)에서 유독물질이 유출되는 위치 및 방향을 나타낸다. 이때 블로윙 타워(110)에 의해서 방출된 공기(10)는 각 블로윙 타워(110)로부터의 방출된 방향과 점성, 그리고 코안다 효과(Coanda effect)에 의해서 격납건물(200) 주위에 회전하는 와류를 생성시키게 된다. 코안다 효과(Coanda effect)에 대하여는 이후에 후술한다.1 is a view for explaining how to generate a vortex. In FIG. 1 (a), the blue arrow indicates the flow of air 10 emitted from the blowing tower and the air 20 rotating around the containment building, and the red arrow 30 indicates the toxic substance leaked from the nuclear containment building 200. The position and the direction which become. At this time, the air 10 discharged by the blowing tower 110 is a vortex that rotates around the containment building 200 by the direction and viscosity, and the Coanda effect emitted from each blowing tower 110 Will be generated. The Coanda effect will be described later.
격납건물(200) 주변에 와류를(20) 생성시키기 위해서 공기(10)를 계속해서 방출시키기만 한다면 들어온 질량은 어디론가 배출되어야 하기 때문에 어디론가 새어나오는 공기의 유량에 의해서 와류 생성이 방해될 수도 있다. 따라서 인공적인 와류를 안정적으로 형성시키기 위해 도 1(b)와 같이 바닥에 흡입구(120)를 설치한다. 도 1(b)에서 파란색 화살표는 블로윙 타워(110)에서 방출된 공기(10) 및, 흡입구로 흡입되는 공기(40)를 나타낸다. 이렇게 바닥에 설치된 흡입구(120)는 공기를 흡입함에 의해서 인공적인 와류가 지속적으로 안정적으로 형성될 수 있게 한다.As long as the air 10 is continuously discharged to generate the vortex 20 around the containment 200, the volume of the incoming air must be discharged somewhere, so the vortex generation may be prevented by the flow of air leaking somewhere. have. Therefore, the suction port 120 is installed on the bottom as shown in FIG. In FIG. 1B, the blue arrows indicate the air 10 discharged from the blowing tower 110 and the air 40 sucked into the intake port. In this way, the suction port 120 installed on the floor allows the artificial vortex to be continuously and stably formed by sucking air.
전술한 코안다 효과(Coanda effect)는 유체가 벽면으로 타고 흐르려는 성질을 일컫는 용어이다. 도 2는 지름을 10m 가지는 원통 주변에 노즐을 설치했을 경우, 코안다 효과(Coanda effect)를 나타내는 유동 시뮬레이션을 한 결과이다.The Coanda effect described above is a term that refers to a property in which a fluid is intended to flow on a wall. FIG. 2 shows the results of a flow simulation showing the Coanda effect when a nozzle is installed around a cylinder having a diameter of 10 m.
도 2(a)는 노즐에서 방출되는 공기의 유속이 0.1m/s일 경우이고, 도 2(b)는 공기의 유속이 10m/s일 경우이다. 많은 유체 현상이 레이놀즈 수(Reynolds number)의 변화에 따라 변하게 되는데, 코안다 효과 역시 레이놀즈 수의 변화에 따라 변할 수 있다. 레이놀즈 수는 유체의 밀도, 속도, 형상의 크기에 비례하며 유체의 점도에는 반비례한다. 따라서 레이놀즈 수가 위 예에서 도 2(a)보다 도 2(b)가 100배 더 크다. 이 결과는 레이놀즈 수가 커질수록 코안다 효과는 더 강하게 일어난다는 것을 의미한다. 실제 발전소의 격납건물의 크기는 지름이 약 45m 정도 되기 때문에 같은 유속이라도 레이놀즈 수가 도 2의 유동 시뮬레이션의 경우보다 크기 때문에 실제 원전에서 코안다 효과에 의한 와류 형성 효과가 더욱 크게 된다. 따라서 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)는, 원전건물 주위에 와류를 형성시키게 되므로, 전술한 바와 같은 코안다 효과를 이용하여 더욱 효과적으로 와류를 형성시킬 수 있게 된다.FIG. 2 (a) shows the case where the flow rate of air discharged from the nozzle is 0.1 m / s, and FIG. 2 (b) shows the case where the air flow rate is 10 m / s. Many fluid phenomena change as the Reynolds number changes, and the Coanda effect also changes as the Reynolds number changes. The Reynolds number is proportional to the density, velocity and shape of the fluid and inversely proportional to the viscosity of the fluid. Thus, the Reynolds number is 100 times greater in FIG. 2 (b) than in FIG. 2 (a). This means that the higher the Reynolds number, the stronger the Coanda effect. The actual containment of the power plant is about 45m in diameter, so even at the same flow rate, the Reynolds number is larger than that of the flow simulation of FIG. Therefore, since the apparatus 100 for preventing toxic substance diffusion by the vortex air curtain of the present invention forms a vortex around the nuclear power plant, it is possible to form the vortex more effectively by using the Coanda effect as described above.
또한 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)는, 형성된 와류에 의한 에어 커튼(Air Curtain)효과를 활용하여 더욱 효과적으로 유독물질의 확산 방지 기능을 수행하게 된다.In addition, the toxic material diffusion prevention device 100 by the vortex air curtain of the present invention, by using the air curtain (Air Curtain) effect by the formed vortex to perform the function of effectively preventing the diffusion of the toxic material.
도 3에 도시된 바와 같은 에어 커튼(51)을 발생시키는 장치(50)는, 많은 건물에 설치되어 있는 장치로서, 문이 열려있는 상태에서 실내의 유체 상태와 실외의 유체상태를 다르게 유지시키는 것을 목적으로 하는 장비이다. 대표적인 예로 문을 열어 놓은 채로 실내의 온도를 따뜻하게 혹은 시원하게 유지시키는데 사용하기도 하며, 실내의 공기의 밀도와 실외의 공기의 밀도가 다르게 유지시킬 경우에도 사용하기도 한다. 또한 건물 외부에서 들어올 수 있는 먼지나 그 외에 이물질들을 차폐시키는 역할 또한 할 수 있다. The apparatus 50 for generating the air curtain 51 as shown in FIG. 3 is a device installed in many buildings, and it is possible to maintain the fluid state of the room and the fluid state of the outside differently with the door open. It is purpose equipment. As a representative example, it may be used to keep the indoor temperature warm or cool with the door open, or it may be used to maintain the density of indoor air and the density of outdoor air differently. It can also serve to shield dust and other debris from entering the building.
본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)는, 이와 같은 에어 커튼(Air Curtain) 효과를 이용하되, 단순히 위에서 아래로 방출되는 공기에 의한 방식이 아니라, 전술한 바와 같이 원자력 발전소(200)를 회전하는 인공적인 와류(20)를 발생시켜 원자력발전소 격납건물(200) 주변 전체를 이 와류(20)에 의해 에어 커튼(Air Curtain) 효과를 발생시키는 것이다. 이에 의해 원자력 발전소 격납건물(200) 주변에 에어 베리어(Air Barrier)를 형성시키게 됨으로써, 유출되고 있는 유독물질이 밖으로 확산되는 것을 차단할 뿐만 아니라, 외부의 공기 유동을 차단함으로써 외부 공기 유동에 의한 유독물질의 확산을 차단하는 기능을 수행하게 된다.The toxic material diffusion preventing device 100 by the vortex air curtain of the present invention utilizes such an air curtain effect, but is not simply a method of air discharged from the top to the bottom, as described above. By generating an artificial vortex 20 rotating the 200, the entire air periphery of the nuclear power plant containment building 200 is generated by the vortex 20 to generate an air curtain effect. As a result, an air barrier is formed around the containment building 200 of the nuclear power plant, which not only prevents outflowing toxic substances from spreading out, but also blocks external air flows, thereby preventing toxic substances caused by external air flow. It will serve to block the spread of.
도 4는 유독물질 누출 가능 시설 주변에 설치된 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치의 구성을 나타내는 조감도이고, 도 5는 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)의 블로윙 타워(blowing tower)(110) 및 공기 흡입구(120) 배치의 실시예들을 도시한 도면이다.Figure 4 is a bird's eye view showing the configuration of the device for preventing the diffusion of toxic substances by the vortex air curtain of the present invention installed around the toxic material leakage possible facilities, Figure 5 is a device for preventing the diffusion of toxic substances by the vortex air curtain of the present invention (100) Figures of embodiments of the arrangement of the blowing tower (110) and the air intake 120 of the.
대부분의 원자력 발전소는 냉각수를 끌어오기 용이한 바다 주변에 건설된다. 해안가 주변에는 밤낮으로 육지와 바다의 기압차에 의해 바람이 지속적으로 발생하며 바람의 세기와 방향 역시 주기적으로 변화한다. 이러한 상황에서 격납건물(200) 주변에 인공적인 와류를 안정적으로 유지시키기 위해서는 주변 환경의 변화에 따라서 블로윙 타워(110)에서 방출되는 공기의 유속 및 흡입구(120)에서 흡입되는 공기의 흡입양을 주변의 환경에 따라서 변화되도록 제어할 수 있도록 하는 것이 바람직하다.Most nuclear power plants are built around the sea, where it is easy to draw cooling water. Around the coast, the wind is continuously generated day and night due to the pressure difference between the land and the sea, and the strength and direction of the wind also change periodically. In this situation, in order to maintain the artificial vortex around the containment building 200 stably, the flow rate of the air discharged from the blowing tower 110 and the suction amount of the air sucked from the inlet 120 are changed according to the change of the surrounding environment. It is desirable to be able to control to change according to the environment of the.
본 발명의 경우 복수의 블로윙 타워(110)가 대칭적으로 설치되기 때문에 바람의 방향의 변화에는 크게 상관없이 안정적으로 인공적인 와류를 형성시킬 수 있다. 그러나 바람의 세기에 따라서 블로윙 타워(110)의 공기 유출 속도 및 흡입구(120)에서의 공기 흡입 양은 실시간으로 제어가 가능하게 하는 것이 인공 와류를 안정적으로 유지시키기에 용이하다. 따라서 본 발명은 주변 환경 변화에 따라서 실시간 제어가 가능하도록 설계를 하도록 한다.In the case of the present invention, since the plurality of blowing towers 110 are symmetrically installed, artificial vortices can be stably formed regardless of the change in the direction of the wind. However, according to the strength of the wind, the air outlet speed of the blowing tower 110 and the amount of air intake at the inlet 120 can be controlled in real time to easily maintain the artificial vortex stably. Therefore, the present invention is designed to enable real-time control according to changes in the surrounding environment.
도 4는 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)가 원자력발전소 주변에 설치된 조감도이다. 와류 생성에 의한 유독물질 확산 방지 기능의 과정은, 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)의 제어부에 의해 제어된다.4 is a bird's eye view of a device for preventing the diffusion of toxic substances by the vortex air curtain of the present invention installed around a nuclear power plant. The process of the toxic substance diffusion prevention function by vortex generation is controlled by the control part of the toxic substance diffusion prevention apparatus 100 by a vortex air curtain.
도 4에서 볼 수 있는 바와 같이, 각각의 블로윙 타워(110)가 격납건물 주변에 설치된다. 도 4의 실시예에서는 블로윙 타워(110)가 설치되었으나, 실시예에 따라 4~8개 혹은 그 이상의 수가 설치될 수도 있다.As can be seen in Figure 4, each blowing tower 110 is installed around the containment building. Although the blowing tower 110 is installed in the embodiment of FIG. 4, 4 to 8 or more numbers may be installed depending on the embodiment.
또한 바닥면에는, 2~8개 혹은 그 이상의 갯수의 흡입구(120)를 설치하여 공기를 흡입함으로써 와류가 지속적으로 원활하게 형성될 수 있도록 돕는 동시에, 격납건물(200)로부터 유출된 방사성 물질을 흡입하는 역할을 한다. 흡입된 방사성 물질은, 유독물질 처리부(toxic material treatment system)(130)에서 처리되어지게 된다. 특히 원전의 경우는 방사성 물질을 처리하는 시스템(radioactivity treatment system)으로 작동하게 된다.In addition, on the bottom surface, by installing two to eight or more suction ports 120 to inhale air to help continuously form the vortex, and at the same time to suck the radioactive material flowing out of the containment building 200 It plays a role. The inhaled radioactive material is to be treated in the toxic material treatment system (130). In particular, nuclear power plants operate as radioactivity treatment systems.
원전과 같은 유독물질 누출시설(200)에서의 유독물질 누출 여부를 감지하는 유독물질 누출 감지 센서에 의해 방사성 물질과 같은 유독물질 누출이 감지된 경우, 제어부는 블로윙 타워(110) 및 흡입구(120)를 가동한다.When a toxic material leak such as radioactive material is detected by the toxic material leak detection sensor that detects whether the toxic material leaks in the facility 200 such as nuclear power plants, the control unit blows the blowing tower 110 and the suction port 120. Start up.
블로윙 타워(110)에서 방출되는 공기는 각도가 0~45도 사이로 조절될 수 있으며 각각의 블로윙 타워에서 방출되는 공기의 속도는 0~40 m/s 혹은 그 이상의 속도로 제어될 수 있다. 또한 흡입구(120)에서의 공기 흡입 강도 역시 제어될 수 있다. 또는 다수의 흡입구(120) 중 기본적으로 작동하는 기본 흡입구와, 외부로부터 불어오는 바람(외부 유동)의 방향에 따라 작동시키거나 중지시키도록 제어하는 예비 흡입구를 두어 제어부의 제어에 따라 작동 및 중지 과정을 운용할 수도 있다.The air emitted from the blowing tower 110 may be adjusted between an angle of 0 to 45 degrees and the speed of the air emitted from each blowing tower may be controlled at a speed of 0 to 40 m / s or more. In addition, the air intake intensity at the inlet 120 may also be controlled. Alternatively, a plurality of intake ports 120 may be provided with a basic inlet that is basically operated, and a preliminary inlet that is controlled to operate or stop in accordance with the direction of wind (external flow) blowing from the outside. You can also operate.
이러한 블로윙 타워(110)와 방출되는 공기(10)의 각도, 흡입구(120)의 수, 흡입 강도 및, 기본 흡입구와 예비 흡입구의 운용 제어와 같은 조건들은 원자력 발전소 격납건물을 기준으로 제시된 것이기 때문에 건물의 배치 상황과 대칭성에 따라 변경하여 적용할 수 있다.The conditions such as the angle of the blowing tower 110 and the discharged air 10, the number of the inlet 120, the suction strength, and the operation control of the primary inlet and the preliminary inlet are buildings based on the nuclear power plant containment building. It can be changed and applied according to the arrangement situation and symmetry of.
도 5의 (a)는 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)가 설치되지 않은 경우, 도 5의 (b)는 4개의 블로윙 타워(110)가 설치된 경우, 도 5의 (c)는 4개의 블로윙 타워(110)와 4개의 공기 흡입구(120)가 설치된 경우, 도 5의 (d)는 6개의 블로윙 타워(110)와 4개의 공기 흡입구(120)가 설치된 경우를 도시하고 있다. 도 5의 (e)는 6개의 블로윙 타워(110)와 6개의 공기 흡입구(120,121)가 도시되어 있는데, 이 경우, (b),(c),(d)와 동일한 위치의 흡입구(120)는 도 4를 참조하여 전술한 바와 같은 기본 흡입구로 운용하고, 나머지 2개의 흡입구(121)는 도 4를 참조하여 전술한 바와 같은 예비 흡입구로 운용할 수 있다. 도 5의 (e)에서는 예비 흡입구(121)를 2개만 도시하였으나, 대칭적인 위치에 2개가 더 설치되어 있는 것이 바람직하다. 즉, 8개의 예비 흡입구로써, 바람의 방향(60)이 변화함에 따라 적절히 2개씩 작동시키는 방식으로 운용할 수 있다.5 (a) is a case in which the toxic substance diffusion prevention device 100 by the vortex air curtain is not installed, FIG. 5 (b) is a case in which four blowing towers 110 are installed, (c) of FIG. 4 illustrates a case in which four blowing towers 110 and four air inlets 120 are installed, and FIG. 5D illustrates a case in which six blowing towers 110 and four air inlets 120 are installed. In FIG. 5E, six blowing towers 110 and six air inlets 120 and 121 are shown. In this case, the inlets 120 at the same positions as (b), (c) and (d) are shown. 4 may be operated as a basic suction port as described above with reference to FIG. 4, and the remaining two suction ports 121 may be operated as preliminary suction ports as described above with reference to FIG. 4. In FIG. 5E, only two preliminary suction ports 121 are shown, but two more are provided in symmetrical positions. That is, as eight preliminary inlets, it can be operated in such a manner that the two are properly operated as the wind direction 60 changes.
도 5에서 바람(60)은, 바깥에서 불어오는 외부 유동이며, 각각의 블로윙 타워(110)에서는 화살표 방향(10)으로 공기가 방출된다. 또한 각 블로윙 타워(110)에서 방출되는 공기의 속도 및 각도는 각각 별개로 제어가 될 수 있으며 흡입구에서 흡입하는 공기의 양 역시 서로 다른 양으로 제어가 가능하다. 이 경우 전술한 바와 같이 기본적으로 작동하는 기본 흡입구(120)와, 바람의 방향에 따라 탄력적으로 작동시키는 예비 흡입구(121)를 구비할 수도 있다.In FIG. 5, the wind 60 is an external flow blowing from the outside, and air is discharged in the direction of the arrow 10 in each blowing tower 110. In addition, the speed and angle of the air emitted from each blowing tower 110 may be controlled separately, and the amount of air sucked from the inlet may be controlled in different amounts. In this case, as described above, the basic suction port 120 which is basically operated, and the preliminary suction port 121 which is elastically operated according to the direction of the wind may be provided.
블로윙 타워(110)에 의해 형성되는 와류(20, 도 1 참조)로 인해 격납건물(200)에서 누출되는 방사성 물질(30, 도 1 참조)의 확산이 저지되며, 외부유동(60)에 의해 방사성 물질(30)이 확산되는 것을 방지하는 에어 베리어(air barrier) 역할 역시 가능하다.Vortex 20 (see FIG. 1) formed by the blowing tower 110 prevents the diffusion of radioactive material 30 (see FIG. 1) leaking out of the containment 200 and is radioactive by the external flow 60. It is also possible to serve as an air barrier to prevent the material 30 from spreading.
도 5에서 볼 수 있는 바와 같이, 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)는 블로윙 타워(110) 및 흡입구(120)의 배치 형태가 대칭적이기 때문에 바람의 방향에 상관없이 안정적으로 와류(20)를 생성시킬 수 있다. 블로윙 타워(110)가 격납건물(200)로부터 떨어진 거리는 부속건물의 옥상의 구조적 안정성을 고려하여 배치되며, 흡입구(120,121)와 격납건물(200) 간의 간격은 와류에 의한 에어 커튼 안에 위치하게 할 수 있도록 설정하였다. As can be seen in Figure 5, the toxic material diffusion prevention device 100 by the vortex air curtain of the present invention is stable regardless of the direction of the wind because the arrangement of the blowing tower 110 and the suction port 120 is symmetrical Vortex 20 can be generated. The distance from the blowing tower 110 to the containment 200 is disposed in consideration of the structural stability of the roof of the attached building, and the distance between the inlets 120 and 121 and the containment 200 may be located in the air curtain by the vortex. It was set to.
본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)는 외부의 바람, 즉 외부유동(60)의 방향 또는 강도를 감지하는 외부유동 감지 센서(미도시)를 원전(200) 주변에 더 설치되도록 할 수 있다. 외부유동 감지 센서는, 블로윙 타워(110)에 설치될 수도 있으나, 별도로 설치될 수도 있다. 제어부는, 외부유동 감지 센서의 감지 결과에 따라, 상기 블로윙 타워에서 방출하는 공기의 방향 또는 속도를 조정하거나, 상기 공기 흡입구에서 흡수하는 공기의 양을 조정하는 기능을 수행할 수 있다.The apparatus 100 for preventing toxic substance diffusion by the vortex air curtain of the present invention further includes an external flow detection sensor (not shown) that detects external wind, that is, direction or intensity of the external flow 60, around the nuclear power plant 200. Can be installed. The external flow sensor may be installed in the blowing tower 110, or may be separately installed. The controller may perform a function of adjusting the direction or speed of air emitted from the blowing tower or adjusting the amount of air absorbed by the air inlet, according to a detection result of the external flow sensor.
본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)는, 앞서 기술한 바와 같은, 블로윙 타워(110)와 흡입구(120) 등의 배치 형태나 갯수 등의 형상학적인 접근 이외에, 외부유동 감지 센서에 의하여 바람의 방향 또는 강도를 감지하여 그에 따른 제어를 통해서도 적절하게 유독물질 확산 방지 기능을 수행하도록 할 수 있다.Device for preventing the diffusion of toxic substances by the vortex air curtain of the present invention, as described above, in addition to the morphological approach such as the arrangement form and number of the blowing tower 110 and the suction port 120, the external flow The sensor may sense the direction or intensity of the wind and perform the function of preventing the diffusion of toxic substances through the control accordingly.
즉, 외부유동 감지 센서에 의하여 바람의 방향 또는 강도를 감지하여 흡입구(120)에서 흡입하는 공기의 양을 제어하거나, 또는 기본 흡입구(120)와 예비 흡입구(121)를 두어 예비 흡입구(121)의 작동 여부를 조절하거나, 블로윙 타워(110)에서 방출되는 공기의 양, 속도 또는 방향을 제어함으로써 최적의 환경으로 인공와류(20)를 생성하도록 제어할 수 있다.That is, the direction of the wind or the intensity of the wind is sensed by the external flow sensor to control the amount of air sucked in the inlet 120, or the main inlet 120 and the preliminary inlet 121 are provided to By controlling the operation or by controlling the amount, speed or direction of the air emitted from the blowing tower 110 may be controlled to generate the artificial vortex 20 in the optimum environment.
본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)가 실시간으로 인공와류(20)를 생성하는 방법은 이하에서 설명하는 바와 같이 2가지가 있을 수 있다.As described below, the method for generating the artificial vortex 20 in real time by the apparatus 100 for preventing toxic substance diffusion by the vortex air curtain of the present invention may be two.
i) 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)는, 상기 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도 및, 상기 유독물질 누출 감지 센서에서 감지한 누출지점 정보로부터, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션하여, 상기 블로윙 타워에서 방출할 공기의 속도 및 방향과, 상기 흡입구에서 흡입할 공기의 양 또는 작동시킬 예비 흡입구를 실시간으로 결정하는 시뮬레이션 처리부를 포함하고, 상기 제어부는, 상기 시뮬레이션 처리부의 시뮬레이션 처리 결과에 따라 상기 블로윙 타워 및 공기 흡입구를 작동시키는 방식i) The toxic material diffusion prevention device 100 by the vortex air curtain, the blowing tower and the direction from the direction or speed of the wind detected by the external flow detection sensor, and the leak point information detected by the toxic material leak detection sensor, Simulating the operation of the air inlet, and comprises a simulation processing unit for determining in real time the speed and direction of the air to be discharged from the blowing tower, the amount of air to be sucked from the inlet or the pre-intake to operate, in real time, Method of operating the blowing tower and the air inlet in accordance with the simulation processing result of the simulation processing unit
ii) 와류 에어커튼에 의한 유독물질 확산 방지 장치(100)는, 상기 외부유동 감지 센서에서 감지 가능한 바람의 방향 또는 속도 및, 상기 유독물질 누출 감지 센서에서 감지 가능한 누출지점 정보(이하, 총칭하여 '시뮬레이션 소스 데이터'라 한다)들에 대하여, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션 결과를 도출하는 시뮬레이션 처리부 및, 시뮬레이션 처리부에 의해 각 시뮬레이션 소스 데이터에 대하여 도출된 시뮬레이션 결과 데이터를 저장하는 시뮬레이션 데이터베이스를 포함하고, 상기 제어부가, 시뮬레이션 데이터베이스의 시뮬레이션 결과 데이터를 이용하여 실시간으로 상기 블로윙 타워 및 공기 흡입구를 작동시키는 방식ii) Toxic substance diffusion prevention device 100 by the vortex air curtain, the direction or speed of the wind can be detected by the external flow detection sensor, and leak point information detectable by the toxic material leakage detection sensor (hereinafter, collectively ' The simulation processing unit for deriving simulation results for the operation of the blowing tower and the air inlet, and a simulation database for storing simulation result data derived for each simulation source data by the simulation processing unit. And the control unit operates the blowing tower and the air inlet in real time using simulation result data of a simulation database.
과 같은 방식으로 실시간 와류 생성제어를 수행할 수 있다.Real-time vortex generation control can be performed in the same way.
도 6 내지 도 10은, 여러가지 경우에 있어서 유독물질 누출 가능시설 주변의 외부 유동 형태 및 형성된 와류 형태를 시뮬레이션한 결과를 도시한 도면이다. 즉, 본 발명의 발상이 실제 적용될 수 있는지를 확인하기 위해 실현 가능성을 확인하기 위해서 유동 시뮬레이션을 수행하였다. 6 to 10 show the results of simulating the external flow form and the formed vortex form around the toxic substance leaking facility in various cases. That is, a flow simulation was performed to confirm the feasibility to confirm that the idea of the present invention can be actually applied.
먼저, 도 6은 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치가 설치되지 않은 경우, 유독물질 누출 가능시설 주변의 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면이다.First, Figure 6 is a view showing the results of the simulation of the external flow form around the toxic material leakage possible installation, when the apparatus for preventing the diffusion of toxic substances by the vortex air curtain of the present invention.
도 6의 결과에 나타난 바와 같이, 외부 유동이 직접적으로 격납건물에 도달하게 되며, 만약 이런 상황에서 방사성 물질이 격납건물(200) 밖으로 유출되게 된다면, 외부 유동에 의해 오염물질의 확산이 촉진되면서 발전소 주변의 작업자는 물론 주변 환경이 방사성 물질에 의해 크게 오염되는 결과를 낳게 된다. 또한 발전소 주변에 사는 거주민에게 직접적으로 피해를 주고 거주민들의 사는 거주지를 오염시킨다. 만약 방사성 물질에 의해 마을이나 도시가 오염이 된다면 방사성 물질은 제거하기도 어렵기 때문에 거주민들이 오랜 기간 동안 오염에 의해 그 지역에서 살 수 없게 되는 상황에 처해지게 된다.As shown in the results of FIG. 6, the external flow directly reaches the containment building, and if radioactive material flows out of the containment building 200 in this situation, the spread of pollutants by the external flow is promoted. As a result, the surrounding workers as well as the surrounding environment are heavily polluted by radioactive materials. It also directly damages residents living near power plants and pollutes their residences. If a town or city is contaminated by radioactive material, it is difficult to remove radioactive material, leaving residents unable to live in the area due to pollution for a long time.
도 7은 4개의 블로윙 타워(blowing tower)(110)가 배치된 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치가 동작하는 경우, 유독물질 누출 가능시설 주변의 와류 및 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면이다. 흡입구는 4개가 설치된 경우의 실시예를 나타낸다.7 is a simulation of vortices and external flow around the toxic material leakage possible device when the apparatus for preventing toxic material diffusion by the vortex air curtain of the present invention having four blowing towers 110 disposed therein. It is a figure which shows the result. The inlet port represents an embodiment where four are installed.
도 7(a)는 외부 유동에 대한 유선을 보여주는 도면이다. 도면에서 볼 수 있듯이, 많은 양의 외부 유동이 인공와류 내부로 침투하는 것을 볼 수 있다. 즉, 에어커튼의 효과가 제대로 적용되지 않고 있는 것을 보여준다.Figure 7 (a) is a view showing a streamline for the external flow. As can be seen in the figure, it can be seen that a large amount of external flow penetrates into the vortex. In other words, the effect of the air curtain is not applied properly.
도 7(b)는 내부 와류의 유선을 보여주는 도면이다. 인공 와류 안에 있는 공기가 외부로 새어나가지 않아야 오염물질이 누출될 시 외부로 누출이 되지 않게 되는데, 도면에서 볼 수 있듯이 많은 양의 공기가 외부로 누출되는 것을 볼 수 있다. 따라서 인공 와류로 인한 오염물질 유출 방지 효과는 제대로 이루어지지 않는 것을 보여준다. Figure 7 (b) is a view showing the streamline of the internal vortex. When the air inside the artificial vortex does not leak to the outside, when the pollutant leaks, it does not leak outside. As can be seen in the drawing, a large amount of air leaks to the outside. Therefore, the effect of preventing pollutant outflow due to artificial vortex is not shown properly.
도 7(c)는 속도 컨투어(등고선) 및 속도 벡터를 보여주는 도면이다. 도면에서 볼 수 있듯이, 많은 양의 외부 유동이 내부 인공 와류에 침입하는 것을 볼 수 있고, 또한 일부 부분에는 이차 유동이 형성되어 와류가 안정적으로 생성되지 않는 것을 보여준다.Fig. 7 (c) shows the velocity contour (contour) and the velocity vector. As can be seen in the figure, it can be seen that a large amount of external flow penetrates into the internal artificial vortex, and also shows that secondary flow is formed in some portions so that the vortex is not stably generated.
도 7(d)의 4개의 그래프는 4개의 흡입구 각각의 위치에서 높이에 따라 변하는 높이 방향 속도를 보여주며, 가로축은 속도, 세로축은 각 흡입구 위치에서 상부 방향으로의 높이이다. 가로축의 속도가 음수이면 공기가 아래 방향으로 내려간다는 것을 의미한다. 이 그래프의 결과를 살펴보았을 때, 20m까지는 대부분의 흡입구에서 공기가 빨려 내려온다. 그러나, 도 7의 다른 도면에서 확인할 수 있듯이, 블로윙 타워(110) 및 흡입구가 각각 4개일 경우 일부 부분에서는 와류가 제대로 형성되지 않게 되며, 외부 유동이 와류 내부로 침입하여 에어커튼 효과를 제대로 내지 않는 것을 확인할 수 있다. 따라서 블로윙 타워(110) 및 흡입구가 4개만 설치될 경우 와류 생성 효과가 충분히 크지 않아, 에어커튼 효과 역시 충분하지 않은 것으로 나타난다.The four graphs of FIG. 7 (d) show the height direction velocity that varies with the height at each of the four intake ports, with the horizontal axis representing the speed and the vertical axis representing the height from the respective intake positions to the upper direction. A negative speed on the horizontal axis means the air goes down. Looking at the results of this graph, air is sucked down at most intakes up to 20 meters. However, as can be seen in the other drawings of FIG. 7, when the blowing tower 110 and the four inlets are each four, the vortex is not formed properly in some parts, and the external flow penetrates into the vortex and does not properly effect the air curtain effect. You can see that. Therefore, if only four blowing towers 110 and the suction port is installed, the effect of generating the vortex is not large enough, and the air curtain effect also appears to be insufficient.
도 8은 6개의 블로윙 타워(blowing tower)가 배치된 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치가 동작하는 경우, 유독물질 누출 가능시설 주변의 와류 및 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면이다. 도 8의 경우 역시 흡입구는 4개가 설치된 경우의 실시예를 나타낸다.FIG. 8 illustrates simulation results of vortices and external flows around a toxic material leaking facility when an apparatus for preventing toxic material diffusion by the vortex air curtain of the present invention in which six blowing towers are disposed is operated. One drawing. 8 also shows an embodiment in the case where four suction ports are installed.
도 8(a)는 외부 유동에 대한 유선을 보여주는 도면이다. 도면에서 볼 수 있듯이 타워가 4개가 설치되었을 경우와는 다르게 외부 유동이 내부로 잘 침입하지 못하는 것을 볼 수 있으며, 에어커튼 효과가 효과적으로 적용되어 있는 것을 보여준다. 8 (a) shows a streamline for external flow. As can be seen in the drawing, it can be seen that external flow does not penetrate into the inside, unlike when four towers are installed, and the air curtain effect is effectively applied.
도 8(b)는 내부 와류의 유선을 보여주는 도면이다. 도면에서 볼 수 있듯이 인공 와류 안에 갇힌 공기가 외부로 빠져나가지 않는 것을 보여준다. 따라서 인공와류에 의한 유독물질 확산 방지 효과를 제대로 적용할 수 있으며, 원전 주위의 환경을 방사성 오염으로부터 방지할 수 있게 된다. 8 (b) is a view showing the streamline of the internal vortex. As can be seen in the figure, the air trapped in the vortex does not escape to the outside. Therefore, it is possible to properly apply the effect of preventing the diffusion of toxic substances by artificial vortex, it is possible to prevent the environment around the nuclear plant from radioactive pollution.
도 8(c)는 속도 컨투어(등고선) 및 속도 벡터를 보여주는 도면이다. 전반적으로 인공와류가 제대로 형성되어 있어 내부 유동이 비교적 격납건물 주위를 잘 순환하고 있는 것을 볼 수 있으며, 또한 외부 유동의 침입을 효과적으로 막고 있는 것을 볼 수 있다.8 (c) is a diagram showing a velocity contour (contour) and a velocity vector. Overall, the vortices are well formed, so that the internal flow is relatively well circulated around the containment, and the effective flow is effectively prevented from invading the external flow.
도 8(d)의 4개의 그래프 역시 도 7과 마찬가지로, 4개의 흡입구 각각의 위치에서 높이에 따라 변하는 높이 방향 속도를 보여주며, 가로축은 속도, 세로축은 각 흡입구 위치에서 상부 방향으로의 높이이다. 그래프를 살펴보았을 때, 35m 높이까지는 하나의 흡입구(81)를 제외한 나머지 흡입구 위치에서는 공기가 빨려 내려오는 것을 확인할 수 있다. 또한, 도 8의 다른 도면에서 볼 수 있듯이, 격납건물(200) 주변에 회전하는 와류가 형성되는 것을 확인할 수 있다. 그리고 격납건물(200) 주변에 생긴 와류에 의해 외부 유동이 효과적으로 차단되는 것을 확인할 수 있다. 그리고 형성된 와류에 의해 격납건물(200) 주변의 공기가 회전하면서 격납건물(200) 주변에 맴돌게 된다. 따라서 방사성 물질이 격납건물(200)에서 유출된다 하더라도 이 와류에 의해서 방사성 물질의 확산을 효과적으로 막을 수 있게 되는 효과를 볼 수 있다. 이러한 결과는 본 기술의 특성상 주변의 바람의 방향과 속도의 변화에 대해 크게 영향을 받지 않는다는 것을 보여준다.The four graphs of FIG. 8 (d) also show a height direction velocity that varies with the height at each of the four intake ports, with the horizontal axis representing the speed and the vertical axis representing the height from the respective intake positions to the upper direction. Looking at the graph, it can be seen that the air is sucked down at the remaining intake position except one inlet 81 up to 35m high. In addition, as can be seen in the other drawings of Figure 8, it can be seen that the rotating vortex is formed around the containment building 200. And it can be confirmed that the external flow is effectively blocked by the vortex generated around the containment building 200. And the air around the containment building 200 is rotated by the vortex formed so as to hover around the containment building 200. Therefore, even if the radioactive material is leaked from the containment building 200, it is possible to effectively prevent the diffusion of the radioactive material by the vortex. These results show that due to the nature of the present technology, the change in the direction and speed of the surrounding wind is not significantly affected.
도 9 및 도 10은, 실시간 제어를 위한 유동 해석 시뮬레이션 결과를 나타내는 도면이다.9 and 10 are diagrams showing the results of flow analysis simulation for real time control.
먼저, 도 9는 실시간 제어를 위하여 외부 유동 속도 변화에 따른, 유독물질 누출 가능시설 주변의 와류 및 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면이다.First, FIG. 9 is a diagram illustrating simulation results of vortices and external flows around a toxic material leaking facility according to changes in external flow rates for real time control.
도 9의 각 시뮬레이션 결과는, 외부 유동의 속도가 (a), (b), (c), (d) 차례로 각각 1, 2, 4, 5 m/s일 때의 인공와류 내부의 유선에 대한 결과를 보여준다. 도 9(a)에서 볼 수 있듯이, 외부 유동의 속도가 작을 경우에는 인공와류가 비교적 안정적으로 형성되며, 그 결과 외부 유동을 어느 정도 잘 차단하면서 인공와류 내부의 공기가 외부로 많이 새어나가지 않는 것을 볼 수 있다, (b)의 결과, 즉 외부 유동의 속도가 2m/s 까지는 인공와류가 불안정하게 형성되나, 외부로 새나가는 공기는 적은 것을 확인할 수 있다. 하지만 (c), (d)에서 볼 수 있듯이, 외부 유동의 속도가 커질수록 인공와류는 점점 불안정하게 형성되게 되며, 내부의 공기가 많이 새나가고 그 결과 유독물질이 격납건물에서 새어나올 경우 확산을 제대로 방지하지 못하게 될 수 있다. 즉 정리하면, 외부 유동의 속도가 커질수록 와류 형성을 방해하게 되며 또한 와류 내부에 가두어져 있던 공기가 외부로 빠져나가는 양이 더 많아진다. 따라서 외부 유동의 변화에 따라서 대응하는 것이 필요하다.Each simulation result of FIG. 9 shows the mammary gland inside the vortex when the velocity of the external flow is (a), (b), (c), and (d) in order of 1, 2, 4, 5 m / s, respectively. Show results. As can be seen in Figure 9 (a), when the speed of the external flow is small, the artificial vortex is formed relatively stable, as a result, the air inside the artificial vortex does not leak much to the outside while blocking the external flow to some extent It can be seen that, as a result of (b), that is, the vortex is formed unstable up to the speed of the external flow up to 2m / s, but there is little air leaking out. However, as can be seen in (c) and (d), as the velocity of external flow increases, the vortex becomes more and more unstable, and the internal air leaks a lot, and as a result, toxic substances leak out of the containment building. You may not be able to prevent it properly. In other words, as the velocity of the external flow increases, the vortex formation is hindered, and the amount of air trapped inside the vortex increases more. Therefore, it is necessary to respond according to the change of the external flow.
도 10은 본 발명의 와류 에어커튼에 의한 유독물질 확산 방지 장치의 블로윙 타워(blowing tower)에서 방출된 공기의 속도 변화에 따른, 유독물질 누출 가능시설 주변의 와류 및 외부 유동 형태를 시뮬레이션한 결과를 도시한 도면이다.FIG. 10 shows simulation results of vortices and external flows around a toxic material leaking facility according to a change in velocity of air discharged from a blowing tower of a device for preventing toxic material diffusion by the vortex air curtain of the present invention. The figure is shown.
도 10의 각 시뮬레이션 결과는, 블로윙 타워(110)에서 방출된 공기의 속도가 (a), (b), (c), (d) 차례로 각각 0, 5, 10, 15 m/s일 때의 결과를 보여주며, 외부 유동의 속도는 5m/s로 고정되어 있도록 한 것이다.Each simulation result of FIG. 10 is obtained when the velocity of air discharged from the blowing tower 110 is 0, 5, 10, and 15 m / s in order of (a), (b), (c), and (d), respectively. The results are shown and the velocity of the external flow is fixed at 5 m / s.
도면에서 볼 수 있듯이, 블로윙 타워(110)에서 공기 방출이 되지 않을 경우에는 외부 유동에 그대로 격납건물(200)에 닿게되며 만약 유독물질이 새어나오게 된다면 유독물질의 확산을 촉진하게 된다. 그리고 블로윙 타워(100)가 작동하게 되면 도 10의 다른 결과에서 볼 수 있듯이 와류가 생성되는 것을 볼 수 있으며, 블로윙 속도가 빨라질수록 와류 내부의 공기가 적게 빠져나오게 된다. 그러나, 블로윙 타워(110)에서의 유속이 10 m/s인 경우와 15 m/s인 경우는, 와류 생성 효과에 있어서 큰 차이가 나지 않는 것을 알 수 있다. 따라서 블로윙 타워(110)에서 방출되는 공기의 속도가 10m/s인 경우가, 외부 유동에 의해 확산이 되는 것을 효과적으로 방지할 수 있는 동시에 블로윙 타워(110)에서 소비되는 전력을 줄일 수 있는 최적의 값으로 판단할 수 있다. 이로부터, 만약 외부 유동의 속도가 5m/s일 때는 블로윙 타워(11)에서 방출되는 공기의 유속을 10m/s로 조정하는 것이 적절하다. 이와 같은 시뮬레이션을 통한 해석을 여러번 수행함으로써, 각각의 외부 유동에 속도 변화에 따라서 실시간으로 블로윙타워(110) 및 흡입구(120)의 공기 흡입양을 제어함으로써 와류 생성을 경제적이며 효과적으로 만들수 있는 데이터를 만들어 낼 수 있다.As can be seen in the figure, when the air is not discharged from the blowing tower 110, the external flow is in contact with the containment 200 as it is, if toxic substances leak out, it promotes the diffusion of toxic substances. When the blowing tower 100 operates, as shown in the other results of FIG. 10, it can be seen that vortices are generated. As the blowing speed increases, less air is released inside the vortex. However, when the flow velocity in the blowing tower 110 is 10 m / s and 15 m / s, it can be seen that there is no significant difference in the vortex generation effect. Therefore, when the speed of the air emitted from the blowing tower 110 is 10m / s, the optimal value that can effectively prevent the diffusion by the external flow and at the same time reduce the power consumed in the blowing tower 110 Judging by From this, it is appropriate to adjust the flow rate of air discharged from the blowing tower 11 to 10 m / s if the velocity of the external flow is 5 m / s. By performing the analysis through this simulation several times, by controlling the air intake amount of the blowing tower 110 and the inlet port 120 in real time according to the speed change in each external flow to create data that can make the vortex generation economically and effectively I can make it.
도 11은 원자력발전소 격납건물(200)에서의 방사성 입자 방출 상황에 대한 거동을 분석(입자 거동 해석)한 도면이다.FIG. 11 is a diagram analyzing the behavior of the radioactive particle emission situation in the nuclear power plant containment 200 (particle behavior analysis).
도 11은 특히, 와류 생성 기술이 적용되었을 경우의 입자 형태의 물질이 격납건물(200) 전체에서 유출되는 상황을 가정한 해석 결과이다. 입자의 밀도는 1g/cm3 이라 가정하였으며 총 유출되는 입자의 질량은 10kg으로, 입자 크기의 분포는 정규분포를 따르며 평균 직경은 10μm로, 방출되는 입자의 속도는 0.173m/s로 가정되었다. 각 도면 (a),(b),(c),(d)는 입자가 시간에 따라서 어떻게 변하는지 보여주는 도면이며, 도면 (e)는 시간에 따라 흡입된 입자를 정규화해서 보여주는 그래프이다. 도면 (a)는 입자가 방출되고 나서 3초 후의 상황을 보여주며, (b)는 20초, (c)는 35초, (d)는 54초 후의 상황을 보여준다. 입자가 유출된 후 3초까지는 방출된 입자가 흡입구까지 도달하지 않기 때문에 포집되지 않는 것으로 나오나 시간이 지날수록 입자가 흡입구에 도달하고 흡입되어 효율이 올라가는 것을 볼 수 있다. 시뮬레이션 결과 최종적으로는 방출된 입자 중 80%가 넘는 양이 흡입되었으며, 실제 입자형태로 방출되는 방사성 물질인 CsI의 밀도가 4.51g/cm3인 것을 고려해본다면 실제 상황에서는 더 높은 효율을 가질 것으로 보이고, 연구개발을 통해 흡입 효율을 더욱 향상시킬 수 있다. 이 정도의 방사성 물질을 흡입한다면 원전 주변의 오염도를 상당히 낮출 수 있으며, 지역 주민들의 받는 피해를 최소화 시킬 수 있다. 또한 중대 사고 후 원전주변의 방사성 물질을 제거할 경우에 드는 비용 역시 크게 줄일 수 있다.11 is an analysis result assuming a situation in which the substance in the form of particles when the vortex generation technology is applied, outflowing from the entire containment building 200 in particular. The particle density was assumed to be 1 g / cm 3 , and the total outflowed mass was 10 kg, the distribution of particle size was normally distributed, the average diameter was 10 μm, and the velocity of the emitted particles was assumed to be 0.173 m / s. Figures (a), (b), (c) and (d) are diagrams showing how the particles change with time, and (e) is a graph showing normalized particles inhaled with time. Figure (a) shows the situation 3 seconds after the particles are released, (b) shows 20 seconds, (c) shows 35 seconds, and (d) shows 54 seconds. 3 seconds after the outflow of particles, the released particles do not reach the intake port, so they do not appear to be collected, but as time passes, the particles reach the intake port and are sucked up and the efficiency increases. Simulation results show that more than 80% of the emitted particles are finally inhaled, and the actual efficiency of the CsI, a radioactive material released in the form of particles, is 4.51 g / cm 3 , which is expected to be higher in practical situations. In addition, research and development can further improve inhalation efficiency. Inhaling this level of radioactive material can significantly reduce the pollution around the plant and minimize the damage to local residents. In addition, the cost of removing radioactive material around nuclear power plants after a major accident can be greatly reduced.
도 12는 본 발명에 따른 와류 에어커튼에 의한 유독물질 확산 방지 방법을 수행하는 일 실시예로서의 순서도이고, 도 13은 본 발명에 따른 와류 에어커튼에 의한 유독물질 확산 방지 방법을 수행하는 다른 실시예로서의 순서도이다.12 is a flow chart as an embodiment for performing a method for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention, Figure 13 is a flow chart as another embodiment for performing a method for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention. to be.
본 발명에 따른 와류 에어커튼에 의한 유독물질 확산 방지 방법에 대하여는 이미 도 1 내지 도 11을 참조하여 상세하게 설명한 바 있으므로, 이하, 도 12 및 도 13을 참조하여서는 그와 같은 유독물질 확산 방지 방법을 수행하는 시퀀스에 대하여 간단히 정리하는 정도로 설명하기로 한다.Since the method for preventing the diffusion of toxic substances by the vortex air curtain according to the present invention has been described in detail with reference to FIGS. 1 to 11, the method for preventing the diffusion of such toxic substances will now be described with reference to FIGS. 12 and 13. The sequence to be performed is briefly described.
먼저 도 12의 순서도를 참조하면, 유독물질 누출시설로부터, 유독물질 누출 여부 및 누출지점을 감지하고(S1201), 유독물질 누출시설 주위에서 부는 외부유동의 방향 또는 속도를 감지한다(S1202).First, referring to the flowchart of FIG. 12, from the toxic substance leak facility, the toxic substance leak and the leak point is detected (S1201), and the direction or speed of the external flow blowing around the toxic substance leak facility is detected (S1202).
단계(S1202)에서의 감지 결과에 따라, 상기 블로윙 타워에서 방출하는 공기의 방향 또는 속도의 제어, 또는 상기 공기 흡입구에서 흡수하는 공기의 양의 제어가 이루어지는데, 이 경우, 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도 및, 상기 유독물질 누출 감지 센서에서 감지한 누출지점 정보로부터, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션하여, 상기 블로윙 타워에서 방출할 공기의 속도 및 방향과, 상기 흡입구에서 흡입할 공기의 양 또는 작동시킬 예비 흡입구를 실시간으로 결정하여(S1203), 그 시뮬레이션 처리 결과에 따라 블로윙 타워 및 흡입구를 작동시키게 된다(S1204).According to the detection result in step S1202, control of the direction or speed of air emitted from the blowing tower, or control of the amount of air absorbed by the air inlet is performed, in which case the external flow detection sensor detects it. From the direction or speed of the wind and the leak point information detected by the toxic leak detection sensor, the operation of the blowing tower and the air inlet is simulated, and the speed and direction of the air to be emitted from the blowing tower, The amount of air to be sucked or the preliminary inlet to be operated is determined in real time (S1203), and the blowing tower and the inlet are operated according to the simulation processing result (S1204).
공기 흡입구에 의해 흡입된 공기는, 유독물질 성분을 제거하여 처리한다(S1205).The air sucked by the air intake port is processed by removing the toxic substance component (S1205).
도 13의 순서도에서의 차별점은, 미리 상기 외부유동 감지 센서에서 감지 가능한 바람의 방향 또는 속도 및, 상기 유독물질 누출 감지 센서에서 감지 가능한 누출지점 정보(이하, 총칭하여 '시뮬레이션 소스 데이터'라 한다)들에 대하여, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션 결과를 도출하여 시뮬레이션 데이터베이스에 저장한다는 점이다(S1301). 이후 블로윙 타워 및 공기 흡입구의 작동은, 이와 같이 저장되어 있는 시뮬레이션 데이터베이스의 시뮬레이션 결과 데이터를 이용하여 실시간으로 수행되게 된다(S1304). 즉, 시뮬레이션 데이터베이스의 시뮬레이션 결과 데이터를 이용하여 실시간으로, 상기 블로윙 타워에서 방출할 공기의 속도 및 방향과, 상기 흡입구에서 흡입할 공기의 양 또는 작동시킬 예비 흡입구를 실시간으로 결정하여, 블로윙 타워 및 흡입구를 작동시키게 된다(S1304).The differentiation point in the flowchart of FIG. 13 is the direction or speed of wind which can be detected by the external flow detection sensor in advance, and leak point information that can be detected by the toxic material leak detection sensor (hereinafter, collectively referred to as 'simulation source data'). In this regard, the operation of the blowing tower and the air intake port is derived from a simulation result and stored in a simulation database (S1301). Thereafter, the operation of the blowing tower and the air inlet is performed in real time using the simulation result data of the simulation database stored as described above (S1304). That is, by using the simulation result data of the simulation database in real time, the speed and direction of the air to be discharged from the blowing tower, the amount of air to be sucked from the inlet or the preliminary inlet to be operated are determined in real time, the blowing tower and the inlet It will be activated (S1304).
<부호의 설명><Description of the code>
10: 블로윙 타워(blowing tower)에서 방출한 공기 방향10: direction of air emitted from the blowing tower
20: 원자력발전소 주변에 형성시킨 와류20: Vortex formed around the nuclear power plant
30: 원자력발전소로부터 누출되는 방사성물질30: Radioactive materials leaking from nuclear power plants
40: 흡입구로 흡수되는 공기40: Air absorbed into the inlet
50: 건물 출입구 등에 설치되는 에어 커튼 발생장치50: air curtain generator installed in the building entrance
51: 에어 커튼51: air curtain
60: 바람(외부 유동)60: wind (external flow)
100: 와류 에어커튼에 의한 유독물질 확산 방지 장치100: device for preventing the diffusion of toxic substances by vortex air curtain
110: 와류 에어커튼에 의한 유독물질 확산 방지 장치의 블로윙 타워110: blowing tower of the device to prevent the diffusion of toxic substances by vortex air curtain
111: 블로윙 타워의 송풍구111: blowhole of the Blowing Tower
120: 와류 에어커튼에 의한 유독물질 확산 방지 장치의 공기 흡입구120: air inlet of the device for preventing the diffusion of toxic substances by the vortex air curtain
130: 와류 에어커튼에 의한 유독물질 확산 방지 장치의 유독물질 처리부130: toxic substance treatment unit of the toxic substance diffusion prevention device by the vortex air curtain
200: 원자력발전소 등의 유독물질 방출가능 시설200: facilities that can release toxic substances such as nuclear power plants

Claims (16)

  1. 오염원 주위에 와류를 이용한 에어커튼을 형성하여 유독물질의 확산을 방지하는 장치로서,As a device to prevent the spread of toxic substances by forming an air curtain using vortex around the pollutant,
    사고시 유독물질의 누출 위험이 있는 시설(이하 '유독물질 누출시설'이라 한다) 주위에 복수개 설치되어, 와류 생성을 위한 공기를 방출하는 블로윙 타워(blowing tower);A blowing tower installed around the facility (hereinafter referred to as a 'toxic material leaking facility') where there is a risk of leakage of toxic material in an accident, and releasing air for vortex generation;
    상기 유독물질 누출시설 주위에 복수개 설치되어, 상기 유독물질 누출시설 주위의 공기를 흡입하는 공기 흡입구; 및A plurality of air inlets installed around the leaking facilities of the toxic material and sucking air around the leaking facility of the toxic materials; And
    상기 블로윙 타워 및 공기 흡입구의 작동을 제어하여 와류 생성에 의한 유독물질 확산 방지 기능의 수행을 제어하는 제어부Control unit for controlling the operation of the blowing tower and the air inlet to control the diffusion of toxic substances by vortex generation
    를 포함하는 유독물질 확산 방지 장치.Toxic substance diffusion prevention device comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 공기 흡입구에 의해 흡입된 공기로부터 유독물질 성분을 제거 처리하는 유독물질 처리부Toxic substance processing unit for removing the toxic substance component from the air sucked by the air inlet
    를 더 포함하는 것을 특징으로 하는 유독물질 확산 방지 장치.Device for preventing the diffusion of toxic substances further comprising a.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 유독물질 누출시설 주위에서 부는 바람(이하 '외부유동'이라 한다)의 방향 또는 속도를 감지하는 외부유동 감지 센서External flow detection sensor for detecting the direction or speed of the wind (hereinafter referred to as 'external flow') blowing around the toxic material leakage facility
    를 더 포함하는 것을 특징으로 하는 유독물질 확산 방지 장치.Device for preventing the diffusion of toxic substances further comprising a.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도 및, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션하여, 상기 블로윙 타워의 공기 방출 동작 및 흡입구의 공기 흡입 동작을 결정하는 시뮬레이션 처리부Simulation processing unit for determining the direction or speed of the wind detected by the external flow detection sensor, the operation of the blowing tower and the air inlet, the air discharge operation of the blowing tower and the air intake operation of the inlet
    를 더 포함하고,More,
    상기 제어부는,The control unit,
    상기 시뮬레이션 처리부의 결정에 따라 상기 블로윙 타워 및 공기 흡입구를 작동시키는 것Operating the blowing tower and the air intake in accordance with the determination of the simulation processing section
    을 특징으로 하는 유독물질 확산 방지 장치.Toxic substance diffusion prevention device characterized in that.
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 외부유동 감지 센서에서 감지 가능한 바람의 방향 또는 속도(이하, 총칭하여 '시뮬레이션 소스 데이터'라 한다)들에 대하여, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션한 결과를 도출하는 시뮬레이션 처리부; 및A simulation processor configured to derive a result of simulating the operation of the blowing tower and the air intake with respect to the direction or speed of wind (hereinafter, collectively referred to as 'simulation source data') detectable by the external flow sensor; And
    상기 시뮬레이션 처리부에 의해 각 시뮬레이션 소스 데이터에 대하여 도출된 시뮬레이션 결과 데이터를 저장하는 시뮬레이션 데이터베이스Simulation database for storing the simulation result data derived for each simulation source data by the simulation processing unit
    를 더 포함하고,More,
    상기 제어부는,The control unit,
    상기 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도에 대하여, 상기 시뮬레이션 데이터베이스의 시뮬레이션 결과 데이터를 적용하여 실시간으로 상기 블로윙 타워 및 공기 흡입구를 작동시키는 것Applying the simulation result data of the simulation database to the direction or speed of the wind detected by the external flow detection sensor to operate the blowing tower and the air inlet in real time
    는 것을 특징으로 하는 유독물질 확산 방지 장치.Toxic substance diffusion prevention device, characterized in that.
  6. 청구항 3에 있어서,The method according to claim 3,
    상기 제어부는,The control unit,
    상기 외부유동 감지 센서의 감지 결과에 따라,According to the detection result of the external flow detection sensor,
    상기 블로윙 타워에서 방출하는 공기의 방향 또는 속도를 조정하거나,Adjust the direction or speed of air emitted from the blowing tower,
    상기 공기 흡입구에서 흡수하는 공기의 양을 조정하는 기능A function of adjusting the amount of air absorbed by the air intake
    을 더 포함하는 것을 특징으로 하는 유독물질 확산 방지 장치.Device for preventing the diffusion of toxic substances further comprising a.
  7. 청구항 3에 있어서,The method according to claim 3,
    상기 공기 흡입구는,The air inlet,
    상기 유독물질 누출시설에서 누출사고 발생시 항상 작동하는 기본 흡입구; 및A basic suction port which always operates when a leakage accident occurs in the toxic material leakage facility; And
    상기 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도에 따라 선택적으로 작동하는 예비 흡입구Preliminary suction port selectively operates according to the direction or speed of the wind detected by the external flow sensor
    를 포함하고,Including,
    상기 제어부는,The control unit,
    상기 외부유동 감지 센서에서 감지한 바람의 방향 또는 속도에 따라 결정된 예비 흡입구를 작동시키는 기능을 더 포함하는 것The method may further include a function of operating the preliminary inlet determined according to the direction or speed of the wind detected by the external flow detection sensor.
    을 특징으로 하는 유독물질 확산 방지 장치.Toxic substance diffusion prevention device characterized in that.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 유독물질 누출시설 주위에 복수개 설치되어, 상기 유독물질 누출시설에서의 유독물질 누출 여부 및 누출지점을 감지하는 유독물질 누출 감지 센서A plurality of toxic substance leak detection sensor is installed around the toxic substance leak facility, to detect whether the toxic substance leak in the toxic substance leak facility and the leak point
    를 더 포함하는 것을 특징으로 하는 유독물질 확산 방지 장치.Device for preventing the diffusion of toxic substances further comprising a.
  9. 청구항 1의 유독물질 확산 방지 장치가, 오염원 주위에 와류를 이용한 에어커튼을 형성하여 유독물질의 확산을 방지하는 방법으로서,A method of preventing the diffusion of toxic substances by forming an air curtain using vortices around a pollutant, wherein the toxic substance diffusion preventing device of claim 1 is provided.
    (a) 사고시 유독물질의 누출 위험이 있는 시설(이하 '유독물질 누출시설'이라 한다) 주위에 복수개 설치되어 있는 블로윙 타워(blowing tower)가 와류 생성을 위한 공기를 방출하는 단계; 및(a) blowing air for vortex generation by a blowing tower, which is installed around a facility that is at risk of leakage of toxic substances in an accident (hereinafter referred to as `` toxic substance leak facility ''); And
    (b) 상기 유독물질 누출시설 주위에 복수개 설치되어 있는 공기 흡입구가, 상기 유독물질 누출시설 주위의 공기를 흡입하는 단계(b) a plurality of air inlets provided around the toxic material leaking facility to suck air around the toxic material leaking facility
    를 포함하는 유독물질 확산 방지 방법.Toxic substance diffusion prevention method comprising a.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 단계(b) 이후,After step (b),
    (c) 상기 공기 흡입구에 의해 흡입된 공기로부터 유독물질 성분을 제거 처리하는 단계(c) removing the toxic component from the air sucked by the air inlet;
    를 더 포함하는 것을 특징으로 하는 유독물질 확산 방지 방법.Toxic substance diffusion prevention method further comprising a.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 단계(a) 이전에,Before step (a),
    (a01) 유독물질 누출시설 주위에서 부는 바람(이하 '외부유동'이라 한다)의 방향 또는 속도를 감지하는 단계(a01) Detecting the direction or velocity of wind blowing around the toxic release facility (hereinafter referred to as 'external flow').
    를 더 포함하는 것을 특징으로 하는 유독물질 확산 방지 방법.Toxic substance diffusion prevention method further comprising a.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 단계(a01)와 단계(a) 사이에,Between step (a01) and step (a),
    (a02) 상기 단계(a01)에서 감지한 외부유동의 방향 또는 속도 및, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션하여, 상기 블로윙 타워의 공기 방출 동작 및 흡입구의 공기 흡입 동작을 결정하는 단계(a02) determining the direction or speed of the external flow detected in the step (a01) and the operation of the blowing tower and the air inlet to determine the air discharge operation of the blowing tower and the air suction operation of the inlet;
    를 더 포함하고,More,
    상기 단계(a) 및 단계(b)의 블로윙 타워 및 공기 흡입구의 작동은,The operation of the blowing tower and the air intake of step (a) and step (b),
    상기 단계(a02)의 결정에 따라 이루어지는 것As determined in step (a02) above
    을 특징으로 하는 유독물질 확산 방지 방법.Toxic substance diffusion prevention method characterized in that the.
  13. 청구항 11에 있어서,The method according to claim 11,
    상기 단계(a01) 이전에,Before step (a01) above,
    (a001) 상기 외부유동 감지 센서에서 감지 가능한 바람의 방향 또는 속도(이하, 총칭하여 '시뮬레이션 소스 데이터'라 한다)들에 대하여, 상기 블로윙 타워 및 공기 흡입구의 작동을 시뮬레이션한 결과를 도출하여 시뮬레이션 데이터베이스에 저장하는 단계(a001) Simulation database for deriving a simulation result of the operation of the blowing tower and the air intake for the wind direction or speed (hereinafter, collectively referred to as 'simulation source data') detectable by the external flow detection sensor Steps to save on
    를 더 포함하고,More,
    상기 단계(a) 및 단계(b)의 블로윙 타워 및 공기 흡입구의 작동은,The operation of the blowing tower and the air intake of step (a) and step (b),
    상기 단계(a01)에서 감지한 외부유동의 방향 또는 속도에 대하여, 상기 시뮬레이션 데이터베이스의 시뮬레이션 결과 데이터를 적용하여 실시간으로 수행되는 것It is performed in real time by applying the simulation result data of the simulation database to the direction or speed of the external flow detected in the step (a01)
    을 특징으로 하는 유독물질 확산 방지 방법.Toxic substance diffusion prevention method characterized in that the.
  14. 청구항 11에 있어서,The method according to claim 11,
    상기 단계(a01)에서 감지한 외부유동의 방향 또는 속도에 따라,According to the direction or speed of the external flow detected in the step (a01),
    상기 블로윙 타워에서 방출하는 공기의 방향 또는 속도의 제어, 또는Control of the direction or velocity of air emitted from the blowing tower, or
    상기 공기 흡입구에서 흡수하는 공기의 양의 제어Control of the amount of air absorbed by the air inlet
    가 이루어지는 것을 특징으로 하는 유독물질 확산 방지 방법.Method for preventing the spread of toxic substances, characterized in that made.
  15. 청구항 11에 있어서,The method according to claim 11,
    상기 단계(b)의 공기 흡입구 작동시,In operation of the air inlet of step (b),
    상기 감지된 외부유동의 방향 또는 속도에 따라 결정된 예비 흡입구를 작동시키는 기능을 더 포함하는 것Further comprising a function of operating a preliminary inlet determined according to the sensed direction or speed of the external flow.
    을 특징으로 하는 유독물질 확산 방지 방법.Toxic substance diffusion prevention method characterized in that the.
  16. 청구항 9에 있어서,The method according to claim 9,
    상기 단계(a) 이전에,Before step (a),
    (a0) 상기 유독물질 누출시설로부터, 유독물질 누출 여부 및 누출지점을 감지하는 단계(a0) detecting whether the toxic substance leaks and the leak point from the toxic substance leakage facility
    를 더 포함하는 것을 특징으로 하는 유독물질 확산 방지 방법.Toxic substance diffusion prevention method further comprising a.
PCT/KR2016/005376 2016-04-22 2016-05-20 Apparatus and method for preventing toxic material dispersion by means of vortex air curtain WO2017183763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0049227 2016-04-22
KR1020160049227A KR20170121365A (en) 2016-04-22 2016-04-22 Apparatus and method for prevention of dispersion of toxic materials by using vortex-air curtain

Publications (1)

Publication Number Publication Date
WO2017183763A1 true WO2017183763A1 (en) 2017-10-26

Family

ID=60116209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005376 WO2017183763A1 (en) 2016-04-22 2016-05-20 Apparatus and method for preventing toxic material dispersion by means of vortex air curtain

Country Status (2)

Country Link
KR (1) KR20170121365A (en)
WO (1) WO2017183763A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096467A (en) * 1986-05-09 1992-03-17 Japan Air Curtain Company, Ltd. Artificial tornado generating mechanism and method of utilizing generated artificial tornados
KR100268044B1 (en) * 1995-09-15 2000-11-01 마 쯔이 시게오 Artificial whirlwind generator and its use
KR20150078485A (en) * 2013-12-30 2015-07-08 한국유지관리 주식회사 Apparatus for removing pollutants
KR20160015856A (en) * 2014-08-01 2016-02-15 (주)에이엠케이 Automatic ejection angle adjustable air curtain system
KR101607579B1 (en) * 2015-12-11 2016-04-20 이균봉 Protection system of the tunnel entering vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096467A (en) * 1986-05-09 1992-03-17 Japan Air Curtain Company, Ltd. Artificial tornado generating mechanism and method of utilizing generated artificial tornados
KR100268044B1 (en) * 1995-09-15 2000-11-01 마 쯔이 시게오 Artificial whirlwind generator and its use
KR20150078485A (en) * 2013-12-30 2015-07-08 한국유지관리 주식회사 Apparatus for removing pollutants
KR20160015856A (en) * 2014-08-01 2016-02-15 (주)에이엠케이 Automatic ejection angle adjustable air curtain system
KR101607579B1 (en) * 2015-12-11 2016-04-20 이균봉 Protection system of the tunnel entering vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ULLAH, SANA ET AL.: "Preliminary Investigations of Vortex Based Ex-Containment Safety System for Severe Accident Management at NPPs", INTERNATIONAL CONGRESS ON ADVANCES IN NUCLEAR POWER PLANTS, 20 April 2016 (2016-04-20) *

Also Published As

Publication number Publication date
KR20170121365A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
CN107749142A (en) A kind of anti-mountain fire early warning system of transmission line of electricity and its method for early warning
WO2017159946A1 (en) Safety management system for worker at tunnel construction site
WO2014104580A1 (en) Evacuation device
CN103097660A (en) Method and system for tunnel ventilation in normal conditions and in conditions of fire
BR102018005410B1 (en) SIMULATOR FOR TRAINING IN CONFINED AND/OR SUSPECTED POLLUTION ENVIRONMENTS
CN113018728B (en) Cable tunnel fire hazard classification studying and judging fire-fighting system
WO2017164457A1 (en) Apparatus for creating artificial atmospheric environment containing fine dust, and system for analyzing fine dust blocking ability of cosmetics by using same
CN106779189A (en) A kind of intelligent fire evacuation method
WO2017183763A1 (en) Apparatus and method for preventing toxic material dispersion by means of vortex air curtain
KR102441874B1 (en) Fire fighting system in tunnel using CCTV
TWI664339B (en) Monitoring device for clean room and method for monitoring clean room
CN103677020A (en) Laboratory high-safety processing method
CN107137837A (en) Underground nuclear plant fire compartment design method
Price et al. Protecting buildings from a biological or chemical attack: Actions to take before or during a release
KR100719505B1 (en) Accident preventing &amp; management system of inner tunnel
CN109142634A (en) Work well ventilating gas detection device
CN104320629A (en) Cable branch box monitoring system
CN110222670B (en) Classifier training method of optical cable vibration interruption early warning system
CN206785415U (en) The independently pressurized supply air system in the horizontal hole in tunnel
US5203644A (en) System to control contamination during retrieval of buried TRU waste
CN205026860U (en) Aftertreatment factory air exhaust center fan equipment
MURAKAMI et al. Numerical simulation in effect of compartmentalization with Water Screen (WS) in a tunnel fire
CN114783126B (en) Illegal intrusion control management system for tunnel pipe gallery
CN211578111U (en) Real-environment simulation rescue training system
CN115759949A (en) Electric power construction site monitoring and management system based on multi-point sensing layer equipment

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899532

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899532

Country of ref document: EP

Kind code of ref document: A1