WO2017183281A1 - 送信装置、受信装置および通信方法 - Google Patents

送信装置、受信装置および通信方法 Download PDF

Info

Publication number
WO2017183281A1
WO2017183281A1 PCT/JP2017/006488 JP2017006488W WO2017183281A1 WO 2017183281 A1 WO2017183281 A1 WO 2017183281A1 JP 2017006488 W JP2017006488 W JP 2017006488W WO 2017183281 A1 WO2017183281 A1 WO 2017183281A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data
signal
control information
transmitted
Prior art date
Application number
PCT/JP2017/006488
Other languages
English (en)
French (fr)
Inventor
淳悟 後藤
中村 理
貴司 吉本
泰弘 浜口
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/090,244 priority Critical patent/US11005601B2/en
Publication of WO2017183281A1 publication Critical patent/WO2017183281A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • the present invention relates to a transmission device, a reception device, and a communication method.
  • 5G fifth generation mobile radio communication systems
  • MTC MMTC: “Massive“ Machine ”Type“ Communications ”
  • Ultra ultra-reliable and low-delay communication
  • IoT Internet of Things
  • M2M Machine-to-Machine
  • MTC Machine Type Communication
  • NB-IoT Narrow Band-IoT
  • the terminal device sends a scheduling request (SR: Scheduling Request) when transmission data traffic occurs, and the base station device After receiving the transmission permission control information (UL Grant), data transmission is performed with a transmission parameter of the control information included in the UL Grant at a predetermined timing.
  • SR Scheduling Request
  • UL Grant transmission permission control information
  • the base station apparatus performs radio resource control for all uplink data transmission (data transmission from the terminal apparatus to the base station apparatus). Therefore, the base station apparatus can realize orthogonal multiple access (OMA: Orthogonal Multiple Access) by radio resource control, and can receive uplink data by a simple reception process.
  • OMA Orthogonal Multiple Access
  • the present invention has been made in view of the above points, and realizes identification of a terminal apparatus that has transmitted data in a base station apparatus when a large number of terminal apparatuses perform uplink data transmission using contention-based wireless communication technology. It is to provide a communication method.
  • the present invention has been made to solve the above problems, and one aspect of the present invention is a transmission apparatus that transmits a data signal to a reception apparatus, and the transmission that the reception apparatus transmits.
  • a transmission processing unit that transmits the data signal without receiving permission control information, an identification signal multiplexing unit that multiplexes an identification signal into orthogonal resources, and control information that previously receives transmission parameters related to transmission of the data signal
  • the transmission processing unit transmits the identification signal and the data signal when the transmission processing unit repeatedly transmits the same data based on the transmission parameter.
  • the orthogonal resource that multiplexes the identification signal is set to a different orthogonal resource for each data transmission.
  • the orthogonal resource for multiplexing the identification signal is determined based on the number of transmissions of the same data.
  • the orthogonal resource for multiplexing the identification signal is determined based on a subframe number for transmitting the same data.
  • the orthogonal resource includes at least one of an OFDM symbol, a subcarrier, an OCC sequence, a CS pattern, and an IFDMA pattern.
  • the number of times of transmission of the same data set according to a reliability and a delay time of the data transmission requested by the transmission device is included in the transmission parameter related to the data transmission Is included.
  • a receiving device that receives data signals of a plurality of transmitting devices, the first receiving the data signal that is transmitted without transmitting transmission permission control information.
  • a reception processing unit capable of receiving the data signal and transmitting the transmission permission control information and receiving the data signal transmitted based on the control information; and an identification signal received together with the data
  • An identification signal separating unit that separates the orthogonal resources, a transmission terminal identifying unit that identifies the transmission device that has transmitted data from the identification signal, and a control information transmission unit that transmits transmission parameters used for the data transmission in advance.
  • the reception processing unit receives the identification signal and the data signal when the first data is received as the same data repeatedly transmitted based on the transmission parameter.
  • the transmission terminal identification unit is multiplexed with different orthogonal resources for each data reception.
  • the transmitting device is identified from the identification signal.
  • ACK / NACK is transmitted in the second data reception, and ACK / NACK is not transmitted in the first data reception.
  • the reception device includes a signal detection unit that detects the data signal transmitted from the transmission device, and is repeatedly transmitted in the first data reception. While receiving the same data, the signal detector transmits ACK / NACK within a predetermined time from a subframe in which the data signal is correctly received.
  • a communication method for a transmission apparatus that transmits a data signal to a reception apparatus, wherein the data is transmitted without receiving transmission permission control information transmitted by the reception apparatus.
  • the identification signal and the data signal are transmitted.
  • a communication method of a receiving apparatus that receives data signals of a plurality of transmitting apparatuses, and the data signal transmitted without transmitting transmission permission control information is received.
  • Receiving the identification signal and the data signal to the multiplexer.
  • the base station apparatus can accommodate a large number of terminal apparatuses and reduce the amount of control information.
  • M2M communication Machine-to-Machine Communication
  • MTC Machine Type Communication
  • IoT Internet of Things
  • NB-IoT Near Band-IoT
  • the transmitting apparatus is an MTC terminal (hereinafter referred to as a terminal apparatus)
  • the receiving apparatus is a base station apparatus.
  • the present invention is not limited to this example, and can also be applied to uplink transmission of a cellular system.
  • a terminal device that transmits data with human intervention is a transmission device and a base station device is a reception device.
  • the transmission / reception apparatus in data transmission becomes reverse with uplink transmission.
  • the present invention is also applicable to D2D (Device-to-Device) communication.
  • both the transmission device and the reception device are terminal devices.
  • FIG. 1 shows an example of a system configuration according to this embodiment.
  • the system includes a base station apparatus 10 and terminal apparatuses 20-1 to 20-Nm.
  • the number of terminal devices terminal, mobile terminal, mobile station, UE: “User” Equipment
  • the base station apparatus 10 may perform communication using a so-called licensed band obtained from the country or region where the wireless provider provides the service, or use permission from the country or region. Communication using a so-called unlicensed band that is not required may be performed.
  • the base station apparatus 10 may be a macro base station apparatus with a wide coverage, or a small cell base station or a pico base station apparatus (Pico ⁇ ⁇ ⁇ ⁇ ⁇ eNB: NBevolved Node B, SmallCell, Low Also called Power Node, Remote Radio Head).
  • the frequency band other than the license band is not limited to the example of the unlicensed band, and may be a white band (white space) or the like.
  • the base station apparatus 10 may apply a CA (Carrier Aggregation) technique that uses a plurality of component carriers (CC: Component Carrier or Serving cell) in a band used in LTE communication. Communication different from MTC may be transmitted by different CCs, or may be transmitted by the same CC.
  • CA Carrier Aggregation
  • communication different from MTC may be PCell (Primary cell) and MTC communication may be SCell (Secondary cell). Moreover, you may divide the communication different from MTC, and the subcarrier used by MTC within the same CC.
  • the terminal devices 20-1 to 20-Nm can transmit MTC data to the base station device 10.
  • the terminal devices 20-1 to 20-Nm receive control information necessary for data transmission in advance from the base station device 10 or another base station device when connected to the base station.
  • the terminal devices 20-1 to 20-Nm do not need to receive a scheduling request (SR: ulScheduling Request) transmission or transmission permission control information (UL Grant) transmitted by the base station device after transmission data (traffic) occurs.
  • SR ulScheduling Request
  • UL Grant transmission permission control information
  • Data transmission is performed using wireless communication technology (also called contention-based wireless communication technology, Grant-free access, Grant-free communication, Grant-free data, transmission, etc., hereinafter referred to as contention-based wireless communication technology).
  • the terminal devices 20-1 to 20-Nm are wireless communication technologies (non-contention based wireless communication) that require SR transmission such as LTE (Long Term Evolution), LTE-Advanced, LTE-Advanced Pro, and UL Grant reception.
  • SR transmission such as LTE (Long Term Evolution), LTE-Advanced, LTE-Advanced Pro, and UL Grant reception.
  • Technology, Grant-based access, Grant-based communication, Grant-based data transmission, etc. (hereinafter referred to as non-contention based wireless communication technology)
  • the contention-based wireless communication technology and the non-contention-based wireless communication technology may be switched according to the data service quality (QoS: “Quality” of “Service”). That is, terminal apparatuses 20-1 to 20-Nm transmit data using radio resources scheduled from the base station apparatus by performing SR transmission before performing data transmission, or perform radio transmission designated in advance before data generation.
  • QoS Quality of “Service”.
  • QoS may include data transmission reliability, delay time for data transmission, and communication speed, and power consumption for data transmission of the terminal device (for example, power per bit in data transmission).
  • power consumption for data transmission of the terminal device (for example, power per bit in data transmission).
  • the terminal devices 20-1 to 20-Nm are not limited to MTC, but enable H2M communication (Human-to-Machine Communication) or H2H communication (Human-to-Human Communication) involving humans. Also good.
  • the base station apparatus 10 uses UL Grant, which is control information including transmission parameters used for data transmission by dynamic scheduling or SPS (Semi-Persistent Scheduling) depending on the type of data, as PDCCH (Physical Downlink Control CHannel) or EPDCCH. (Enhanced PDCCH) or other physical channel for transmitting downlink control information may be transmitted.
  • UL Grant is control information including transmission parameters used for data transmission by dynamic scheduling or SPS (Semi-Persistent Scheduling) depending on the type of data, as PDCCH (Physical Downlink Control CHannel) or EPDCCH. (Enhanced PDCCH) or other physical channel for transmitting downlink control information may be transmitted.
  • the terminal devices 20-1 to 20-Nm perform data transmission based on UL Grant transmission parameters.
  • FIG. 2 shows an example of a sequence chart of data transmission of a terminal device according to the conventional wireless communication technology.
  • the base station device transmits configuration control information when the terminal device is connected (S100).
  • the configuration control information may be notified by RRC (Radio Resource Control), upper layer control information such as SIB (System Information Block), or the DCI format.
  • the physical channel to be used may be PDCCH, EPDCCH, PDSCH (Physical Downlink Shared CHannel), or other physical channels.
  • the terminal device transmits SR to request UL Grant (S101). After receiving the SR, the base station apparatus transmits UL Grant to the terminal apparatus using PDCCH or EPDCCH (S102).
  • the terminal device In the case of FDD (also referred to as Frequency Division Duplex or frame structure type 1), the terminal device is a subframe 4 msec after a subframe in which UL Grant is detected by blind decoding of PDCCH and EPDCCH, and is included in UL Grant. Data transmission based on the parameters is performed (S103).
  • TDD also referred to as “Time Division Duplex” or “frame structure type 2”
  • it is not limited to 4 msec, but will be described on the assumption of FDD in order to simplify the description.
  • the base station apparatus detects data transmitted by the terminal apparatus, and transmits ACK / NACK indicating whether or not there is an error in the data detected in the subframe 4 msec after the subframe in which the data signal is received (S104).
  • S101 when the resource for SR transmission is not notified by RRC, the terminal device requests UL Grant using PRACH (Physical Random Access CHannel).
  • PRACH Physical Random Access CHannel
  • S102 in the case of dynamic scheduling, data transmission of only one subframe is possible, but in the case of SPS, periodic data transmission is permitted, and information such as the SPS period is notified by the RRC of S100.
  • the terminal device stores a transmission parameter such as an SR transmission resource notified by RRC from the base station device, an SPS cycle, and the like.
  • FIG. 3 shows an example of a sequence chart of data transmission of the terminal device according to the wireless communication technology of the present embodiment.
  • the base station apparatus transmits configuration control information when the terminal apparatus is connected (S200).
  • the configuration control information may be notified by RRC, upper layer control information such as SIB, or DCI format.
  • the physical channel to be used may be PDCCH, EPDCCH, PDSCH, or other physical channels.
  • the configuration control information includes radio resources and transmission parameters used in the contention-based radio communication technology.
  • the terminal device can also use a non-contention based wireless communication technology such as LTE, LTE-Advanced, LTE-Advanced Pro, etc.
  • the control information notified in S100 of FIG. 2 may be included.
  • the terminal device When uplink data is generated and the control information of S200 is received, the terminal device transmits data using contention-based wireless communication technology that does not require SR transmission or UL Grant transmission transmitted by the base station device. (S201-1).
  • the terminal device transmits the same data transmission count, transmission period, and transmission cycle according to the required QoS (data transmission reliability, data transmission delay time, and communication speed may be included).
  • the radio resources used for transmission, transmission parameters, etc. are notified, and data similar to S201-1 is transmitted based on the control information received in S200 (S201-2 to S201-L).
  • the base station apparatus detects the data transmitted by the terminal apparatus, and transmits ACK / NACK indicating whether or not there is an error in the data detected in the subframe Xmsec after the subframe receiving the data signal (S202).
  • X may be set to 4 from data transmission or may be a different value.
  • the last data transmission (S201-L) is used as a reference.
  • the present invention is not limited to this example. For example, it may be after Xmsec with reference to a subframe in which the base station apparatus can detect data without error.
  • ACK / NACK may not be transmitted, and the base station apparatus may switch the transmission / non-transmission of ACK / NACK depending on the non-contention-based and contention-based wireless communication technology.
  • FIG. 4 shows an example of an uplink frame configuration related to the conventional wireless communication technology.
  • one frame is 10 msec, 10 subframes are configured, 1 subframe is configured by 2 slots, and 1 slot is configured by 7 OFDM symbols.
  • DMRS De-Modulation Reference Signal
  • OFDM symbol # 4 a demodulation reference signal
  • FIG. 5 shows an example of an uplink frame configuration according to the wireless communication technique of this embodiment. This figure is an example in which the frame configuration is the same as in FIG.
  • the terminal device can transmit data immediately after data is generated, and when data is generated before subframe # 1, data transmission shown in the example of FIG. 5 is performed. In subframe # 1, a transmission terminal identification signal is transmitted, and in subframe # 2, data is transmitted. Details of the transmission terminal identification signal and the data transmission method will be described later.
  • FIG. 6 shows an example of the configuration of the terminal device according to the present embodiment.
  • the terminal device is assumed to be able to use both the contention-based wireless communication technology and the above-described conventional non-contention-based wireless communication technology for MTC data transmission like the terminal devices 20-1 to 20-Nm.
  • the present invention can also be applied when the terminal apparatus can use only the contention-based wireless communication technology. In this case, there is no processing related to the non-contention-based wireless communication technology, but the basic configuration is the same.
  • the terminal apparatus receives control information transmitted from the base station apparatus via EPDCCH, PDCCH, and PDSCH by the reception antenna 110.
  • the radio reception unit 111 down-converts the received signal to a baseband frequency, performs A / D (Analog / Digital: analog / digital) conversion, and removes a CP (Cyclic Prefix) from the digital signal.
  • the control information detection unit 112 detects a DCI (Downlink Control Information) format addressed to the own station transmitted by PDCCH or EPDCCH by blind decoding. In blind decoding, decoding processing is performed on candidate CSS (Common Search Space) and USS (UE-specific Search Space) in which the DCI format is arranged, and control information is detected.
  • DCI Downlink Control Information
  • the control information detection unit 112 also performs detection when an RRC signal is received.
  • the control information detection unit 112 inputs the detected control information to the transmission parameter storage unit 113.
  • the transmission parameter storage unit 113 inputs control information to the traffic management unit 114 when receiving UL Grant such as dynamic scheduling or SPS.
  • the transmission parameter storage unit 113 retains the control information until data transmission is performed using the contention-based wireless communication technology.
  • the configuration control information held by the transmission parameter storage unit 113 will be described later.
  • the traffic management unit 114 receives a bit string of transmission data, receives control information when receiving UL Grant, and controls the configuration information for contention-based wireless communication technology in advance. Information is also entered. The traffic management unit 114 may also receive the type of transmission data, QoS, and the like. The traffic management unit 114 selects the use of contention-based or non-contention-based radio communication technology from the input information, and transmits the transmission parameters of the selected radio communication technology as an error correction coding unit 101, modulation unit 102, transmission The data is input to the signal generator 103, the signal multiplexer 104, and the identification signal generator 115, and the data bit string is input to the error correction encoder 101.
  • the error correction encoding unit 101 encodes an error correction code on the input data bit string.
  • the error correction code for example, a turbo code, an LDPC (Low Density Parity Check) code, a convolutional code, a Polar code, or the like is used.
  • the type and coding rate of the error correction code performed by the error correction coding unit 101 may be determined in advance by the transmission / reception apparatus, may be input from the traffic management unit 114, or may be contention-based or non-coding. Switching may be performed by contention-based wireless communication technology. When the error correction coding type and coding rate are notified as control information, these pieces of information are input from the traffic management unit 114 to the error correction coding unit 101.
  • the error correction encoding unit 101 may perform puncturing (decimation) and interleaving (rearrangement) of the encoded bit string in accordance with the applied coding rate.
  • the error correction encoding unit 101 performs interleaving differently for each terminal device when interleaving the encoded bit string.
  • the error correction coding unit 101 may apply scrambling. The scramble may be applied only when the scramble pattern used by the terminal device can be uniquely determined by an identification signal described later.
  • the modulation unit 102 receives the modulation scheme information from the traffic management unit 114 and modulates the encoded bit sequence input from the error correction encoding unit 101 to generate a modulation symbol sequence.
  • the modulation method include QPSK (Quaternary Phase Shift Keying) and (16-ary Quadrature Amplitude Modulation: 16 quadrature amplitude modulation).
  • the modulation method may not be Gray labeling, and set partitioning may be used.
  • GMSK Gausian Minimum-Shift ⁇ Keying
  • Modulation section 102 outputs the generated modulation symbol sequence to transmission signal generation section 103.
  • the modulation method or modulation method may be determined in advance by the transmission / reception device, may be input from the traffic management unit 114, or may be switched by a contention-based or non-contention-based wireless communication technology. good.
  • the DFT unit 1031 performs discrete Fourier transform on the input modulation symbol, thereby converting the time domain signal into the frequency domain signal, and outputs the obtained frequency domain signal to the signal allocation unit 1032.
  • the signal allocation unit 1032 receives resource allocation information, which is information of one or more RBs (Resource Block) used for data transmission, from the traffic management unit 114, and allocates a frequency domain transmission signal to the designated RB.
  • the resource allocation information input from the traffic management unit 114 is notified by UL Grant in the case of non-contention based wireless communication technology, and is notified in advance by configuration control information in the case of contention based wireless communication technology. .
  • 1 RB is defined by 12 subcarriers and 1 slot (7 OFDM symbols), and the resource allocation information is information for allocating 1 subframe (2 slots).
  • one subframe is 1 msec and the subcarrier interval is 15 kHz, but the time and subcarrier interval of one subframe is 2 msec, 7.5 kHz, 0.2 msec, 75 kHz, 0.1 msec, 150 kHz, etc.
  • the resource allocation information may be notified in units of one subframe even in different frame configurations.
  • the resource allocation information may notify the allocation of a plurality of subframes regardless of whether it is the same as the LTE subframe configuration or different from the LTE subframe configuration.
  • the resource allocation information may be in units of one subcarrier, not in units of RBs, in units of RBGs (Resource Block Group) composed of a plurality of RBs, and may be allocated to one or more RBGs.
  • RBGs Resource Block Group
  • the phase rotation unit 1030 performs phase rotation on the input modulation symbol.
  • the phase rotation applied to the time domain data signal in the phase rotation unit 1030 uses a pattern input from the traffic management unit 114 in order to apply a different pattern for each terminal device.
  • An example of the phase rotation pattern is a pattern in which the phase rotation is different for each modulation symbol. It is assumed that the phase rotation pattern input by the traffic management unit 114 is shared between the terminal device and the base station device by, for example, being notified by UL Grant or by being notified in advance by configuration control information.
  • the DFT unit 1031 and the signal allocation unit 1032 are the same as those in FIG. Here, FIG.
  • a different cyclic delay may be given to the frequency domain signal obtained by the DFT unit 1031 for each terminal device.
  • the frequency domain signal of the terminal device 20-u that is not cyclically delayed is S U (1), S U (2), S U (3), S U (4)
  • the terminal device 20- A cyclic delay having a delay amount of 1 symbol is given to i
  • the DFT unit 1031 and the signal allocation unit 1032 in FIG. 7c are the same as those in FIG.
  • the phase rotation unit 1033 performs phase rotation on the frequency domain data signal obtained by the DFT unit 1031.
  • the phase rotation applied to the frequency domain data signal in the phase rotation unit 1033 uses a pattern input from the traffic management unit 114 in order to apply a different pattern for each terminal device.
  • An example of the phase rotation pattern is different phase rotation for each data signal unit in the frequency domain.
  • the phase rotation pattern input by the traffic management unit 114 is information shared between the terminal device and the base station device, for example, notified by UL Grant or notified in advance by configuration control information.
  • the DFT unit 1031 may give different cyclic delays to the modulation symbols before conversion into frequency domain signals for each terminal apparatus. Specifically, when the frequency domain signal of the terminal device 20-u that is not cyclically delayed is s U (1), s U (2), s U (3), and s U (4), the terminal device 20- A cyclic delay having a delay amount of 1 is given to i to make s i (4), s i (1), s i (2), s i (3), and so on. Further, both the phase rotation unit 1030 and the phase rotation unit 1033 of FIGS. 7b and 7c may be used.
  • the transmission signal generation unit 103 in FIGS. 7a to 7c inputs the transmission signal to the signal multiplexing unit 104.
  • the configuration of the transmission signal generation unit 103 may be the configuration of FIG.
  • the transmission signal generation unit 103 performs interleaving (rearrangement) on the modulation symbols input before the DFT unit 1031.
  • interleaving is performed on the modulation symbols, different interleaving is performed for each terminal apparatus.
  • FIG. 9 shows an example of the configuration of the signal multiplexing unit 104 according to the present embodiment.
  • the transmission signal input from the transmission signal generation unit 103 is input to the reference signal multiplexing unit 1041.
  • the traffic management unit 114 inputs a parameter for generating a reference signal to the reference signal generation unit 1042, and inputs control information to be transmitted to the base station apparatus to the control information generation unit 1044.
  • the reference signal multiplexing unit 1041 multiplexes the input transmission signal and the reference signal sequence (DMRS) generated by the reference signal generation unit.
  • DMRS reference signal sequence
  • the frame structure shown in FIG. 4 is generated by multiplexing the transmission signal and DMRS.
  • the frame configuration in FIG. 5 will be described later.
  • the reference signal multiplexing section 1041 may multiplex the data signal and the reference signal in the time domain when arranged in an OFDM symbol different from the data signal as in the frame configuration of FIG.
  • the control signal generation unit 1044 transmits channel quality information (CSI: Channel State Information), SR (Scheduling Request), and ACK / NACK (Acknowledgement / Negative) of uplink control information transmitted by PUCCH (Physical / Uplink / Control / CHannel). Acknowledgment) is generated and output to the control information multiplexing unit 1043.
  • the control information multiplexing unit 1043 multiplexes control information for a frame configuration composed of a data signal and a reference signal.
  • the signal multiplexing unit 104 inputs the generated transmission frame to the IFFT unit 105. However, when the terminal device cannot transmit PUSCH and PUCCH at the same time, only a signal with high priority is transmitted according to a predetermined signal priority.
  • the terminal device when there is no transmission power capacity of the terminal device and PUSCH and PUCCH cannot be transmitted at the same time, only a signal having a high priority is transmitted according to a predetermined signal priority.
  • the signal transmission priority may be different between the contention-based wireless communication technology and the non-contention-based wireless communication technology.
  • the priority of the data to transmit exists and the priority of PUSCH may change with the priority.
  • the IFFT unit 105 receives a frequency-domain transmission frame and performs inverse fast Fourier transform on each OFDM symbol unit to convert the frequency-domain signal sequence into a time-domain signal sequence.
  • IFFT unit 105 inputs the time domain signal sequence to identification signal multiplexing unit 106.
  • the identification signal generation unit 115 generates a signal to be transmitted in the identification signal subframe of FIG. 5 and inputs the signal to the identification signal multiplexing unit 106. Details of the identification signal will be described later.
  • Identification signal multiplexing section 106 multiplexes the time domain signal sequence and the identification signal into different subframes as shown in FIG. 5 and inputs the multiplexed signal to transmission power control section 107.
  • the transmission power control unit 107 performs transmission power control using only the open loop transmission power control value or both the open loop and closed loop transmission power control values, and transmits the signal sequence after the transmission power control to the transmission processing unit 108.
  • the transmission processing unit 108 inserts a CP into the input signal sequence, converts it into an analog signal by D / A (Digital / Analog) conversion, and converts the converted signal to a radio frequency used for transmission. Up-convert.
  • the transmission processing unit 108 amplifies the up-converted signal with PA (Power-Amplifier), and transmits the amplified signal via the transmission antenna 109.
  • PA Power-Amplifier
  • a DFTS-OFDM Discrete-Fourier-Transform-Spread-Orthogonal-Frequency-Division-Multiplexing, SC-FDMA
  • SC-FDMA Discrete-Fourier-Transform-Spread-Orthogonal-Frequency-Division-Multiplexing
  • the terminal apparatus does not perform DFT in the transmission signal generation unit 103, that is, if the DFT unit 1031 does not exist in any of FIGS. 7a to 7c or FIG. 8, this means that the OFDM signal is transmitted.
  • the terminal device may use the above-described method in the transmission signal generation unit 103, or may use a different spreading method or a different transmission signal waveform generation method.
  • FIG. 10 shows an example of the configuration of the base station apparatus according to this embodiment.
  • the base station apparatus receives data transmitted from the terminal apparatus through N reception antennas 201-1 to 201-N and inputs the data to the reception processing sections 202-1 to 202-N, respectively.
  • Reception processing sections 202-1 to 202-N downconvert the received signal to a baseband frequency, perform A / D conversion, and remove the CP from the digital signal.
  • Reception processing sections 202-1 to 202-N output signals after CP removal to identification signal separation sections 203-1 to 203-N.
  • Identification signal separation sections 203-1 to 203-N separate the identification signal and other signals and output them to transmitting terminal identification section 211 and FFT sections 204-1 to 204-N, respectively.
  • Transmitting terminal identifying section 211 identifies a terminal apparatus that has transmitted data from an identification signal described later, and outputs information on the transmitting terminal apparatus to propagation path estimating section 207 and signal demultiplexing sections 205-1 to 205-N.
  • the FFT units 204-1 to 204-N convert the input received signal sequence from a time domain signal sequence to a frequency domain signal sequence by fast Fourier transform, and the frequency domain signal sequence is converted to signal separation units 205-1 to 205-N. Output to.
  • the signal separators 205-1 to 205-N all have a common configuration, and FIG. 11 shows an example of the configuration of the signal separator 205-1 according to the present embodiment.
  • the frequency domain signal sequence is input to the reference signal separation unit 2041 from the FFT unit 204-1 and the information of the transmission terminal device identified by the transmission terminal identification unit 211 is input.
  • the reference signal demultiplexing unit 2051 demultiplexes the frequency domain signal sequence into a reference signal and other signals using the input information of the transmitting terminal apparatus, and outputs them to the channel estimation unit 207 and the control information demultiplexing unit 2052, respectively.
  • the control information separation unit 2052 separates the input signal into a control signal and a data signal, and outputs them to the control information detection unit 2054 and the allocation signal extraction unit 2053, respectively.
  • the control information detection unit 2054 detects a signal transmitted on the PUCCH. Since the SR is used for uplink scheduling, the CSI is used for downlink scheduling, and the ACK / NACK is used for retransmission control of downlink transmission, the control information generation unit 208 is used. Output to.
  • the allocation signal extraction unit 2053 extracts a transmission signal for each terminal device based on the resource allocation information notified to the terminal device by the control information.
  • the propagation path estimation unit 207 receives information of a transmission terminal apparatus identified as DMRS (De-Modulation Reference Signal) which is a reference signal multiplexed and transmitted with a data signal, estimates a frequency response, and performs demodulation. The estimated frequency response is output to the signal detection unit 206. Moreover, the propagation path estimation part 207 estimates the frequency response used by the next scheduling, when SRS (Sounding * Reference * Signal) is input.
  • the control information generation unit 208 performs uplink scheduling and adaptive modulation and coding (also referred to as adaptive modulation and coding, also referred to as link adaptation) based on the frequency response estimated by DMRS or SRS, and the terminal device performs uplink transmission.
  • DMRS De-Modulation Reference Signal
  • a transmission parameter to be used is generated and converted into a DCI format.
  • Control information generating section 208 generates control information for reporting ACK / NACK in uplink transmission when information on whether there is an error in the received data signal is input from signal detecting section 205.
  • ACK / NACK in uplink transmission is transmitted by PHICH (Physical HARQ CHannel), PDCCH, or EPDCCH.
  • the control information transmission unit 209 receives the control information converted from the control information generation unit 208, assigns the input control information to the PDCCH and the EPDCCH, and transmits the control information to each terminal device.
  • FIG. 12 shows an example of the configuration of the signal detection unit 206 according to the present embodiment.
  • the signal for each terminal device extracted from the signal separation units 205-1 to 205-N is input to the cancellation processing unit 2061.
  • the cancel processing unit 2061 receives the soft replica from the soft replica generation unit 2067 and performs a cancel process on each received signal.
  • the equalization unit 2062 generates an equalization weight based on the MMSE standard from the frequency response input from the propagation path estimation unit 207, and multiplies the signal after the soft cancellation.
  • the equalization unit 2062 outputs the signal for each terminal device after equalization to the IDFT units 2063-1 to 2063-U.
  • IDFT sections 2063-1 to 2063-U convert the received signal after frequency domain equalization into a time domain signal. If the terminal device performs cyclic delay, phase rotation, or interleaving on the signal before or after DFT in the transmission process, the received signal or time domain signal after frequency domain equalization is subjected to cyclic delay, phase rotation, or interleaving. Processing to restore is performed.
  • the demodulation units 2064-1 to 2064-U receive information of a modulation scheme that has been notified in advance or is determined in advance, and performs demodulation processing on the received signal sequence in the time domain, A bit sequence LLR (Log Likelihood Ratio), that is, an LLR sequence is obtained.
  • LLR Log Likelihood Ratio
  • decoding units 2065-1 to 2065-U receive information of a coding rate that is notified in advance or is determined in advance, and performs decoding processing on the LLR sequence.
  • decoding units 2065-1 to 2065-U use the external LLR or the a posteriori LLR of the decoder output as a symbol replica generation unit Output to 2066-1 to 2066-U.
  • the difference between the external LLR and the posterior LLR is whether or not the prior LLR input to the decoding units 2065-1 to 2065-U is subtracted from the decoded LLR.
  • the signal detection unit 206 inputs the decoding unit 2065-1 to 2065-U. Depuncturing (inserting 0 into the LLR of the thinned bits), deinterleaving (returning the rearrangement), and descrambling are performed on the LLR sequence.
  • the symbol replica generation units 2066-1 to 2066-U generate symbol replicas according to the modulation scheme used by the terminal apparatus for data transmission from the input LLR sequence, and output the symbol replicas to the soft replica generation unit 2067.
  • the soft replica generation unit 2067 converts the input symbol replica into a frequency domain signal by DFT, assigns a signal to a resource used by each terminal apparatus, and generates a soft replica by multiplying the frequency response.
  • the decoding units 2065-1 to 2065-U make a hard decision on the decoded LLR sequence and perform a cyclic redundancy check (CRC: Cyclic Redundancy Check) Further, the presence / absence of an error bit is determined, and information on the presence / absence of an error bit is output to the control information generation unit 208.
  • CRC Cyclic Redundancy Check
  • FIG. 13 shows an example of the configuration of the identification signal of the transmission terminal apparatus according to this embodiment.
  • the number of OFDM symbols that can be used for transmitting the identification signal is N OFDM
  • the number of subcarriers that can be used for transmitting the identification signal is N SC .
  • an OCC sequence having a length T OCC is used.
  • the OCC sequence length is a value of 1 ⁇ T OCC ⁇ T OFDM , and it is only necessary that information on the OCC sequence length used between the transmitting and receiving apparatuses can be shared in advance.
  • the number of subcarriers each transmission terminal uses the transmission of the identification signal and T SC.
  • T SC Cyclic Shift
  • CS pattern number T CS when using the IFDMA (Interleaved Frequency Division Multiple Access) uses a multiple number of patterns T RF. Therefore, the number of orthogonal resources for the identification signal is (N OFDM / T OFDM ) ⁇ T OCC ⁇ (N SC / T SC ) ⁇ T CS ⁇ T RF .
  • the configuration control information transmitted by the base station apparatus includes information indicating the orthogonal resource for transmitting the identification signal.
  • the 2OFDM symbol to transmit an identification signal defines the OFDM symbol set as T1 ⁇ T7 every 2OFDM successive symbols as in FIG.
  • an index I T of the OFDM symbol sets to be actually used there in N SC> T SC
  • the control information of the configuration of the base station apparatus transmits (I T, I F, I OCC, I CS, I RF) contains information uniquely indicating the.
  • the configuration control information may be information including only a part of (I T , I F , I OCC , I CS , I RF ).
  • the OFDM symbol set does not need to be a continuous OFDM symbol, and may be a combination such as OFDM symbol # 1 and OFDM symbol # 8. Also, may not be a sub-carrier also continuous in the sub-carrier set may be used for non-continuous on the frequency axis a cluster of a plurality of identification signals is an integral multiple of the example T RF as a cluster identification signal. Further, the subcarriers S # 1 to S # N SC that can be used for transmitting the identification signal may be the same as or different from the subcarriers that transmit data. When different from the subcarriers that can be used for transmitting the identification signal, only some of the subcarriers may overlap.
  • the transmission terminal device may be the same as or different from the subcarrier used for transmitting the identification signal. If it is different from the subcarrier used for transmitting the identification signal, only some of the subcarriers may overlap. Further, when the number of terminal devices accommodated in the base station device exceeds the number of orthogonal resources of the identification signal, it is necessary to assign the same orthogonal resource to different terminal devices in duplicate. In this case, in addition to the orthogonal resource of the identification signal, it is necessary to identify the transmission terminal device by an identifier unique to the terminal device.
  • an exclusive OR operation is performed on the CRC added to the data signal by a C-RNTI (Cell-Radio Network Temporary Identifier) which is an ID unique to the terminal device, SPS C-RNTI, or the like.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the receiving base station apparatus performs an exclusive OR operation of a plurality of identifiers and CRC after signal detection by SIC or turbo equalization, and confirms an identifier in which no error is detected by CRC.
  • the transmission terminal device can be identified.
  • FIG. 14 shows an example of the identification signal and data transmission of the terminal device according to the present embodiment.
  • data transmission is performed a plurality of times in this embodiment.
  • the predetermined quality required for uplink data transmission of the terminal apparatus is satisfied.
  • all terminal apparatuses perform retransmission data transmission at a predetermined time from data transmission.
  • DMRS transmission is not performed in OFDM symbols # 4 and # 11 of data transmission subframes (UL transmission subframes) in the frame configuration of FIG. Place. Therefore, the number of bits that can be transmitted in one transmission opportunity increases.
  • the processing of the signal multiplexing unit 104 in FIG. The reference signal multiplexing unit 1041 and the reference signal generation unit 1042 generate DMRS and multiplex the data signal.
  • the reference signal multiplexing unit 1041 is shared with the identification signal and DMRS.
  • the reference signal generation unit 1042 does nothing.
  • the reference signal multiplexing unit 1041 and the reference signal generating unit 1042 generate DMRS and data signals when transmitting data using the non-contention based wireless communication technology. Perform multiplexing.
  • the base station apparatus changes the processing of the signal demultiplexing units 205-1 to 205-N in FIG.
  • the reference signal separation unit 2051 separates the DMRS, but the contention-based wireless communication technique does nothing because the identification signal and the DMRS are shared.
  • the reference signal separation unit 2051 separates the DMRS at the time of data transmission using the non-contention based wireless communication technology.
  • FIG. 15a and FIG. 15b show an example of an uplink frame configuration according to the radio communication technology of the present embodiment.
  • FIG. 15a is an example in which a subframe for transmitting an identification signal and a subframe for data transmission (UL transmission) are set as one subframe set, and the subframe sets are set as access areas 1 to 5.
  • the base station apparatus transmits configuration control information (S200 in FIG. 3) for permitting data transmission using contention-based wireless communication technology in at least one of the access areas 1 to 5 for the accommodated terminal apparatus.
  • the transmission permission of the access areas 1 to 5 may be notified by control information indicating one or more access areas in a bitmap, or may be notified by control information indicating only one access area, You may notify by the control information which shows only two access areas.
  • the access area in which contention-based wireless communication technology can be used is limited for each terminal device.
  • the collision probability of data transmission can be reduced by setting different access areas for terminal devices that generate data transmission at the same timing.
  • the base station device grants data transmission permission with contention-based wireless communication technology in more access areas. By performing, it is possible to satisfy QoS or QoE for each terminal device.
  • FIG. 15B shows an example in which a plurality of subframe sets are used as an access area.
  • two subframe sets are assigned to access areas 1 and 2 and one subframe set is assigned to access area 3.
  • the number of terminal devices permitted to transmit data in contention-based wireless communication technology in the access areas 1 and 2 may be doubled compared to the access area 3.
  • use permission may be given to a large number of terminal devices in the access areas 1 and 2, and use permission may be given to a small number of terminal devices that require reliability in the access area 3. good.
  • FIG. 16 shows an example of an uplink frame configuration according to the wireless communication technology of this embodiment.
  • the access area is limited by the frequency resource, and the minimum frequency resource (for example, one or more resource blocks or resource block groups) is used as the access area.
  • F1 to F4 are set as access areas, and an access area in which contention-based wireless communication technology can be used is specified for each terminal device by configuration control information.
  • the subframe sets described in FIG. 15a and FIG. 15b may be used simultaneously. For example, consecutive subframe sets are T1 to T5, and 20 combinations of F1 to F4 and T1 to T5 are used as access areas. It may be defined by frequency and time.
  • the access area may be limited to one access area or a plurality of access areas.
  • the terminal device accommodated in the base station device does not always require data transmission. Therefore, in the present embodiment, in the contention-based wireless communication technology, the base station device is permitted to transmit the access area for each terminal device (a state in which activation and data transmission using the contention-based wireless communication technology are possible). In addition, a transmission interruption (deactivation, data transmission using contention-based wireless communication technology is not possible) is notified. This is because the base station apparatus can reduce the probability that data transmissions collide stochastically by reducing the number of activated terminal apparatuses in each access region, thereby improving the communication quality. When switching between activation and deactivation is frequently repeated, the amount of control information increases if control information is transmitted each time switching is performed.
  • the base station apparatus notifies the activation and deactivation cycle in the configuration control information, notifies the activation and deactivation subframe set, or activates and deactivates the subframe.
  • the set may be notified for each frequency resource. Further, activation, deactivation, and orthogonal resource hopping of identification signals may be applied simultaneously.
  • the configuration control information transmitted by the base station apparatus in the present embodiment will be described.
  • the configuration control information is transmitted in advance as in S200 of FIG.
  • the control information of this configuration includes not only information indicating the orthogonal resource for transmitting the identification signal, but also frequency resources (frequency position and bandwidth) used for data transmission, MCS (Modulation and Coding scheme), and data transmission multiple times.
  • MCS Modulation and Coding scheme
  • transmission the number of transmissions, presence / absence of application of HARQ, closed loop control value of transmission power control, target reception specific to cells and terminal devices, fractional transmission power control parameters, data transmission subframe (UL transmission in FIG.
  • the base station apparatus may transmit configuration control information according to the state and capability of the terminal apparatus and the QoS.
  • An example of a data transmission sequence chart in this case is shown in FIG. In FIG. 17, the base station apparatus transmits configuration control information that does not change depending on the state and capability of the terminal apparatus and the QoS (S300). For example, the presence / absence of CSI transmission, the presence / absence of DMRS transmission in the data transmission subframe, the presence / absence of SRS transmission, and the like.
  • the terminal device transmits transmission data and information about the terminal device (S301). For example, there are the data size and data rate transmitted by the terminal device, transmission quality (required packet error rate), path loss value, and the like.
  • the base station device After receiving the transmission data and terminal device information from the terminal device, the base station device transmits configuration control information according to the state and capability of the terminal device and QoS (S302). For example, there are frequency resources (frequency position, bandwidth), MCS, cell-specific and terminal device-specific target reception, and the like.
  • the terminal device has a plurality of transmission antennas, the number of transmission layers (number of ranks), MCS for each layer (or for each codeword), and precoding information may also be included.
  • steps S201-1 to S202 in FIG. 3 are the same as those in FIG.
  • the terminal device may perform the same data transmission a plurality of times and the number of transmissions may be notified from the terminal device as QoS, or the base station device may determine it on a cell basis.
  • the DMRS and the identification signal can be shared and the frequency use efficiency can be improved.
  • the base station device designates the access area for each terminal device, it is possible to reduce the probability of data transmission collision, and the communication quality is improved. As a result, it is possible to improve the reception quality and the frequency utilization efficiency of the entire system, and to accommodate a large number of terminals efficiently.
  • the configuration example of the terminal device is the same as that of the first embodiment, and is FIGS. 6, 7, 8, and 9.
  • the configuration example of the base station device is also the same as that of the first embodiment, and FIGS. 12.
  • a sequence chart of data transmission of the terminal device is the same as that in the first embodiment and is shown in FIG. Therefore, in the present embodiment, only different processing will be described, and description of similar processing will be omitted.
  • the identification signal is used for identifying transmission data (identification of the presence or absence of transmission data or the presence of transmission data) rather than identification of the transmission terminal device, transmission of the identification signal in the frame configuration of FIG. Do.
  • the identification signal multiplexing unit 106 and the identification signal generation unit 115 in FIG. 6 generate and multiplex an identification signal not for identifying the transmitting terminal device but for identifying that data is being transmitted.
  • identification signal multiplexing section 106 and identification signal generation section 115 select orthogonal resources for the identification signal. The method for selecting the orthogonal resource of the identification signal may be selected randomly by the terminal device.
  • the orthogonal resource candidates of the identification signal may be notified by the base station device of a plurality of candidates using configuration control information, or may be notified by broadcast information transmission (broadcast) from the base station device. May be notified, or may be determined in advance between the terminal apparatus and the base station apparatus.
  • the terminal device may be notified of orthogonal resource candidates from a base station device different from the data transmission destination base station device.
  • the terminal device receives information on a base station device capable of contention-based wireless communication technology, such as a cell ID, usable frequency and bandwidth, and an identification signal from a base station device different from the base station device to which data is transmitted. Even when information such as orthogonal resources is received and the synchronization signal and broadcast information of a base station apparatus capable of contention-based wireless communication technology can be detected, the contention-based wireless communication technology can be used. good.
  • the base station apparatus uses the identification signal separation sections 203-1 to 203-N and the transmission terminal identification section 211 in FIG. 10 to identify not receiving the transmission terminal apparatus but receiving data.
  • the identification signal is separated and detected. Even if the identification signal is detected, the transmission terminal apparatus cannot be uniquely identified. Therefore, identification information of the transmission terminal apparatus is put in the data transmission subframe (UL transmission subframe).
  • the terminal device includes the terminal device identifier in the data bit string. This identifier may be C-RNTI, may be assigned in advance by configuration control information, or may be information unique to other terminal devices.
  • the base station device confirms that there is no error bit by CRC in the decoding units 2065-1 to 2065-U in FIG.
  • the identifier of the included terminal device is acquired and the transmitting terminal device is identified.
  • the decoding units 2065-1 to 2065-U may input identification information unique to the terminal device in the obtained information bit string to the transmission terminal identification unit 211.
  • control information such as ACK / NACK
  • the information of the identified transmitting terminal device is output to the control information generating unit 208. Subsequent processing is the same as in the first embodiment, and a description thereof will be omitted.
  • the signal detection unit 206 detects the signal.
  • Decoding sections 2065-1 to 2065-U obtain the bit string after error correction decoding, and then check for the presence of error bits after performing an exclusive OR operation on CRC and C-RNTI.
  • C-RNTI is information unique to the terminal device.
  • the transmitting terminal device cannot be identified by the identification signal, the C-RNTI to be used cannot be determined.
  • the decoding units 2065-1 to 2065-U hold information (C-RNTI) of terminal devices that may transmit data using contention-based wireless communication technology, and all of the held C -Check whether there is an error bit from the result of the exclusive OR operation of RNTI and CRC. That is, the base station apparatus can identify the terminal apparatus using C-RNTI, which has been confirmed by the CRC to have no error bits, as the terminal apparatus that transmitted the data.
  • control information related to other data transmission may be broadcast transmission of broadcast information.
  • control information transmission in the configuration of S200 in the sequence chart of FIG. 3 is terminal-specific control information. It is sufficient to use a broadcast channel.
  • the terminal device if the terminal device acquires the identifier at the first connection with the base station device, the terminal device discovers the base station device from the synchronization signal or reference signal of the base station device, and receives information on the broadcast channel. If so, data transmission (contention-based wireless communication technology) can be realized without transmitting / receiving control information unique to the terminal device.
  • the identifier may not be acquired by the base station apparatus that performs data transmission. For example, there is a macro base station apparatus with a wide coverage and a small base station apparatus with a narrow coverage, and the terminal apparatus acquires an identifier when connecting to the macro base station apparatus, and after entering the coverage of the small base station apparatus, the control specific to the terminal apparatus It is possible to transmit data without transmitting / receiving information.
  • the terminal device since the terminal device can freely select orthogonal resources, and the base station device cannot grasp the number of terminal devices that may use contention-based wireless communication technology, the terminal device requires high reliability for data transmission. It is unsuitable for. Therefore, the base station apparatus allocates orthogonal resources different from the orthogonal resources of the identification signal notified by the broadcast channel, frequency resources for data transmission, or at least subframes to terminal apparatuses that require high reliability. One of them may be transmitted as configuration control information. Therefore, when using a contention-based wireless communication technology, a terminal device that requires high reliability transmits a configuration control information request in advance, and a terminal device that does not require high reliability requires a configuration control information request. The data is transmitted based on the information of the broadcast channel without transmitting. Further, the terminal device may select the use of the orthogonal resource of the identification signal notified by the broadcast channel and the orthogonal resource of the identification signal notified by the configuration control information depending on the reliability required in the transmission data. .
  • the terminal device may perform the same data transmission a plurality of times, and the number of transmissions may be notified from the terminal device to the base station device as QoS, or the base station device may determine on a cell basis.
  • the terminal device is notified in advance of the access area permitted to transmit as in the first embodiment, and the terminal device selects the orthogonal resource of the identification signal in the access area permitted to transmit as in this embodiment.
  • the identification signal and the data signal may be transmitted.
  • the access area information permitted to be transmitted may be time domain information such as subframe set and OFDM symbol information, frequency resource information, or a resource defined by both time and frequency.
  • a signal for identifying the transmitting terminal device is included in the data bit string, and the terminal device can freely determine the orthogonal resource used for transmitting the identification signal for data transmission. it can. Therefore, when the terminal device has acquired the identifier in advance, if the base station device is found and information on the broadcast channel is received, data transmission can be performed without transmission / reception of control information unique to the terminal device. As a result, the amount of control information can be reduced, the frequency utilization efficiency of the entire system can be improved, and a large number of terminals can be accommodated efficiently.
  • the configuration example of the terminal device is the same as that of the first embodiment, and is FIGS. 6, 7, 8, and 9.
  • the configuration example of the base station device is also the same as that of the first embodiment, and FIGS. 12.
  • a sequence chart of data transmission of the terminal device is the same as that in the first embodiment and is shown in FIG. Therefore, in the present embodiment, only different processing will be described, and description of similar processing will be omitted.
  • FIG. 14 shows an example of the identification signal and data transmission of the third embodiment, and the same data transmission is performed a plurality of times.
  • the predetermined quality required for uplink data transmission of the terminal apparatus is satisfied.
  • all terminal apparatuses perform retransmission data transmission at a predetermined time from data transmission.
  • the contention-based (Grant Free) wireless communication technique when all terminal apparatuses have the same initial transmission and retransmission times or retransmission and retransmission times, the result is as shown in FIG.
  • the first data transmission is called initial transmission
  • the second and subsequent data transmissions of the same data are called retransmission.
  • the terminal apparatus ACK / NACK between the initial transmission and the use of retransmission. May not be received.
  • the present embodiment will be described as repeated transmission of the same data, it is not limited to this example, and ACK / NACK may be received for each data transmission.
  • the initial transmission which is the contention-based first data transmission after the data generation of the terminal devices 1 and 2
  • ACK / NACK may be received for each data transmission.
  • FIG. 18 when the initial transmission, which is the contention-based first data transmission after the data generation of the terminal devices 1 and 2, has the same timing, data collision always occurs even when the same data is transmitted a plurality of times. Basically, signal detection is possible even if data collision occurs, but signal detection becomes difficult if data signals of a very large number of terminals collide. Therefore, as shown in FIG. 19, it is possible to reduce the collision probability by shifting the transmission interval for each terminal device, and it is possible to improve the communication quality.
  • the terminal device 2 has a transmission cycle that is twice that of the terminal device 1, but instead of such an integral multiple, the transmission cycle is set to the number of subframes that are relatively prime, and the collision probability is lowered. Alternatively, other subframe numbers may be selected.
  • the accuracy of transmitting terminal identification can be improved by changing the orthogonal resource of the identification signal for each transmission.
  • the control information of the configuration of the base station apparatus transmits (I T, I F, I OCC, I CS, I RF) information that uniquely indicates the included, (I T, I F, I A hopping pattern in which OCC , I CS , and I RF ) are different parameters for each data transmission is also included as configuration control information.
  • At least one of (I T , I F , I OCC , I CS , I RF ) parameters may be changed, or all may be changed.
  • the terminal apparatus 1 is arranged to T1, T2, T3 of the identification signal for every data transmission, ... and to continue, the terminal device 2 the arrangement of the identification signal of each data transmission T1, T3, T5, and so on.
  • the range is set to I OCC ⁇ ⁇ 0, 1 ⁇ , 1 ⁇ I CS ⁇ 12, I RF ⁇ ⁇ 0, 1 ⁇ . Hops (0, 1, 0), (1, 2, 1), (0, 3, 0), ...
  • the terminal device 1 (0, 1, 0) for each data transmission, It may be hopped as (0, 3, 1), (1, 5, 0),. Further, instead of associating the number of times of transmission of the same data with the hopping pattern, it may be associated with the subframe number for data transmission.
  • hopping is performed by associating the orthogonal frame of the identification signal with the orthogonal frame of the identification signal, the base station device does not need to know the number of times of data transmission, and the transmission is performed from the orthogonal resource and the identification of the identification frame. The terminal device can be easily identified.
  • the configuration control information is transmitted in advance as in S200 of FIG.
  • the configuration control information includes information indicating an orthogonal resource for transmitting the identification signal and an orthogonal resource hopping pattern.
  • the control information of this configuration includes frequency resources (frequency position, bandwidth) used for data transmission, MCS (Modulation and Coding scheme), the number of transmissions when data transmission is performed a plurality of times, whether HARQ is applied, Closed loop control values for transmission power control, target reception specific to cells and terminals, parameters for fractional transmission power control, presence / absence of DMRS transmission in data transmission subframe (UL transmission subframe in FIG.
  • the DMRS CS pattern ⁇ and OCC pattern [w (0), w (1)], transmission / non-transmission of CSI, transmission / non-transmission of SRS, and the like may be included.
  • the base station apparatus may transmit configuration control information according to the state and capability of the terminal apparatus and the QoS.
  • An example of a data transmission sequence chart in this case is shown in FIG. In FIG. 17, the base station apparatus transmits configuration control information that does not change depending on the state and capability of the terminal apparatus and the QoS (S300). For example, the presence / absence of CSI transmission, the presence / absence of DMRS transmission in the data transmission subframe, the presence / absence of SRS transmission, and the like.
  • the terminal device transmits transmission data and information about the terminal device (S301). For example, there are the data size and data rate transmitted by the terminal device, transmission quality (required packet error rate), path loss value, and the like.
  • the base station device After receiving the transmission data and terminal device information from the terminal device, the base station device transmits configuration control information according to the state and capability of the terminal device and QoS (S302). For example, there are frequency resources (frequency position, bandwidth), MCS, cell-specific and terminal device-specific target reception, and the like.
  • the terminal device has a plurality of transmission antennas, the number of transmission layers (number of ranks), MCS for each layer, and precoding information may also be included.
  • a process number may be added to the data signal so that the base station apparatus can identify that it is the same data transmission.
  • the information about the number of times that the terminal apparatus performs the same data transmission and the number of times of transmission may be notified from the terminal apparatus as QoS, or the base station apparatus may determine on a cell basis.
  • the same data is transmitted a plurality of times, the collision probability in a plurality of data transmissions is reduced, the detection accuracy of identification signals is improved by orthogonal resource hopping, etc. realizable.
  • it is possible to improve the reception quality and the frequency utilization efficiency of the entire system, and to accommodate a large number of terminals efficiently.
  • the program that operates on the device related to the present invention may be a program that controls the central processing unit (CPU) and the like to function the computer so as to realize the functions of the embodiments related to the present invention.
  • the program or information handled by the program is temporarily stored in a volatile memory such as a Random Access Memory (RAM), a nonvolatile memory such as a flash memory, a Hard Disk Drive (HDD), or other storage device system.
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiments according to the present invention may be recorded on a computer-readable recording medium.
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” refers to a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically holds a program for a short time, or other recording medium that can be read by a computer. Also good.
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, for example, an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured with a digital circuit or an analog circuit. Further, in the case where an integrated circuit technology that replaces the current integrated circuit appears due to the progress of semiconductor technology, the present invention can also use a new integrated circuit based on the technology.
  • the present invention is not limited to the above-described embodiment.
  • an example of the apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • DESCRIPTION OF SYMBOLS 10 Base station apparatus 20-1 to 20-Nm ... Terminal apparatus 101 ... Error correction encoding part 102 ... Modulation part 103 ... Transmission signal generation part 104 ... Signal multiplexing part 105 ... IFFT part 106 ... Identification signal multiplexing part 107 ... Transmission Power control unit 108 ... transmission processing unit 109 ... transmission antenna 110 ... reception antenna 111 ... radio reception unit 112 ... control information detection unit 113 ... transmission parameter storage unit 114 ... traffic management unit 1030 ... phase rotation unit 1031 ... DFT unit 1032 ... signal Allocation unit 1033 ... Phase rotation unit 1034 ... Interleaving unit 1041 ... Reference signal multiplexing unit 1042 ...
  • Reference signal generation unit 1043 Control information multiplexing unit 1044 ...
  • Control information generation units 201-1 to 201-N Receive antennas 202-1 to 202 -N: reception processing units 203-1 to 203-N ... identification signal separation unit 2
  • Reference symbols 04-1 to 204-N FFT units 205-1 to 205-N ...
  • Signal separation units 206 ...
  • Signal detection units 207 ...
  • Propagation path estimation units 208 ...
  • Control information generation units 209 ... Control information transmission units 210 ... Transmission antennas 211 ... Transmission terminal identification unit 2051... Reference signal separation unit 2052... Control information separation unit 2053... Assignment signal extraction unit 2054...
  • Control information detection unit 2061 ... Cancel processing unit 2062 ... Equalization unit 2063-1 to 2063 -U ...
  • IDFT unit 2064 DESCRIPTION OF SYMBOLS 1-2064-U ... Demodulation part 2065-1-2065-U ... Decoding part 2066-1-2066-U ... Symbol replica production

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

コンテンションベースの無線通信技術の場合、周波数リソースを共有している端末装置の中でデータ送信を行なった端末装置の識別が必要になる。空間的に非直交多重される端末装置の数が増加すると、データ送信した端末装置の識別が困難になる問題があった。受信装置に対してデータ信号を送信する送信装置であって、SR送信や前記受信装置が送信する送信許可の制御情報の受信をせずに前記データ信号を送信する送信処理部と、識別信号を直交リソースに多重する識別信号多重部と、前記データ信号の送信に係る送信パラメータを予め受信する制御情報受信部とを有し、前記送信処理部は、前記送信処理部が前記送信パラメータに基づいて同一の前記データを繰り返し送信する送信する場合に、前記識別信号とデータ信号を送信する。

Description

送信装置、受信装置および通信方法
 本発明は、送信装置、受信装置および通信方法に関する。
 近年、第五世代移動無線通信システム(5G: Fifth Generation mobile telecommunication systems)が注目されており、主に多数の端末装置によるMTC(mMTC: Massive Machine Type Communications)、超高信頼・低遅延通信(Ultra-reliable and low latency communications)、大容量・高速通信(Enhanced mobile broadband)を満たす通信技術の仕様化が見込まれている。特に、今後はIoT(Internet of Things)が多様な機器で実現されることが予想されており、mMTCの実現が5Gの重要な要素の一つになっている。
 例えば、3GPP(3rd Generation Partnership Project)では、小さいサイズのデータ送受信を行なう端末装置を収容するMTC(Machine Type Communication)として、M2M(Machine-to-Machine)通信技術の標準化がされている(非特許文献1)。さらに、低レートでのデータ送信を狭帯域でサポートするため、NB-IoT(Narrow Band-IoT)の仕様化も進められている。
 3GPPで仕様化されているLTE(Long Term Evolution)、LTE-Advanced、LTE-Advanced Pro等では、端末装置が送信データのトラフィック発生時にスケジューリング要求(SR: Scheduling Request)を送信し、基地局装置より送信許可の制御情報(UL Grant)を受信した後に、所定のタイミングでUL Grantに含まれる制御情報の送信パラメータでデータ送信を行なう。このように基地局装置が全ての上りリンクのデータ送信(端末装置から基地局装置へのデータ送信)の無線リソース制御を行なう無線通信技術を実現している。よって、基地局装置は、無線リソース制御により直交多元接続(OMA: Orthogonal Multiple Access)を実現でき、簡易な受信処理により上りリンクのデータ受信を可能としている。
 一方、このような従来の無線通信技術では、基地局装置が全ての無線リソース制御を行なうために、端末装置が送信するデータ量に関わらず、データ送信前に制御情報の送受信が必要であり、特に送信するデータサイズが小さいと相対的に制御情報の占める割合が高くなる。そこで、端末が小さいサイズのデータ送信を行なう場合、端末装置がSR送信や基地局装置が送信するUL Grantの受信なしにデータ送信を行なうコンテンションベース(Grant Free)の無線通信技術が制御情報によるオーバヘッドの観点で効果的である。さらに、コンテンションベースの無線通信技術では、データ発生からデータ送信までの時間も短くできる。
3GPP, TS22.368 V11.6.0, "Service requirements for Machine-Type communications(MTC)", Sept. 2012
 しかしながら、多数の端末装置がコンテンションベースの無線通信技術で上りリンクのデータ送信を行なう場合、複数の端末装置で周波数リソースを共有することが想定され、複数の端末装置のデータ信号が同一時間・同一周波数で衝突する問題がある。データ信号が同一時間・同一周波数で衝突し、基地局の受信アンテナ数を超える端末装置からデータが空間で非直交多重される場合であっても、基地局装置が受信処理にターボ等化や逐次干渉キャンセラ(SIC: Successive Interference Canceller)、SLIC(Symbol Level Interference Canceller)を適用することで、送信データ信号の検出をすることが可能である。一方で、コンテンションベースの無線通信技術の場合、周波数リソースを共有している端末装置の中でデータ送信を行なった端末装置の識別が必要になる。特に、空間的に非直交多重される端末装置の数が増加すると、データ送信した端末装置の識別が困難になる問題があった。
 本発明は上記の点に鑑みてなされたものであり、多数の端末装置がコンテンションベースの無線通信技術で上りリンクのデータ送信を行なう場合の基地局装置におけるデータ送信した端末装置の識別を実現する通信方法を提供することにある。
 (1)本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、受信装置に対してデータ信号を送信する送信装置であって、前記受信装置が送信する送信許可の制御情報の受信をせずに前記データ信号を送信する送信処理部と、識別信号を直交リソースに多重する識別信号多重部と、前記データ信号の送信に係る送信パラメータを予め受信する制御情報受信部とを有し、前記送信処理部は、前記送信処理部が前記送信パラメータに基づいて同一の前記データを繰り返し送信する送信する場合に、前記識別信号とデータ信号を送信する。
 (2)また、本発明の一態様は、前記送信処理部が同一データを繰り返し送信する場合、前記識別信号を多重する前記直交リソースを前記データ送信毎に異なる直交リソースにする。
 (3)また、本発明の一態様は、同一データの送信回数により前記識別信号を多重する前記直交リソースを決定する。
 (4)また、本発明の一態様は、同一データを送信するサブフレーム番号により前記識別信号を多重する前記直交リソースを決定する。
 (5)また、本発明の一態様は、前記直交リソースにはOFDMシンボル、サブキャリア、OCC系列、CSパターン、IFDMAパターンの少なくとも1つが含まれる。
 (6)また、本発明の一態様は、前記データ送信に係る送信パラメータには、前記送信装置で要求される前記データ送信の信頼度や遅延時間に応じて設定される前記同一データの送信回数が含まれる。
 (7)また、本発明の一態様は、複数の送信装置のデータ信号を受信する受信装置であって、送信許可の制御情報の送信をせずに送信される前記データ信号を受信する第一のデータ受信と前記送信許可の制御情報の送信をし、前記制御情報に基づいて送信される前記データ信号を受信する第二のデータ受信が可能な受信処理部と、前記データと共に受信する識別信号を直交リソースから分離する識別信号分離部と、前記識別信号からデータ送信をした前記送信装置を識別する送信端末識別部と、前記データ送信に用いる送信パラメータを予め送信する制御情報送信部と、を有し、前記受信処理部が前記送信パラメータに基づいて繰り返し送信される同一の前記データを前記第一のデータ受信する場合に前記識別信号とデータ信号を受信する。
 (8)また、本発明の一態様は、前記受信処理部が前記送信装置より繰り返し送信された同一データを受信する場合、前記送信端末識別部は前記データ受信毎に異なる前記直交リソースで多重された前記識別信号から前記送信装置を識別する。
 (9)また、本発明の一態様は、前記第二のデータ受信では、ACK/NACKを送信し、前記第一のデータ受信では、ACK/NACKを送信しない。
 (10)また、本発明の一態様は、前記受信装置は、送信装置から送信された前記データ信号を検出する信号検出部と、を有し、前記第一のデータ受信では、繰り返し送信される同一データを受信する中で前記信号検出部が前記データ信号を正しく受信したサブフレームから所定の時間内にACK/NACKを送信する。
 (11)また、本発明の一態様は、受信装置に対してデータ信号を送信する送信装置の通信方法であって、前記受信装置が送信する送信許可の制御情報の受信をせずに前記データ信号を送信する送信ステップと、識別信号を直交リソースに多重する多重ステップと、前記データ信号の送信に係る送信パラメータを予め受信する受信ステップとを有し、前記送信ステップは、前記送信パラメータに基づいて同一の前記データ信号を繰り返し送信する場合に、前記識別信号とデータ信号を送信する。
 (12)また、本発明の一態様は、複数の送信装置のデータ信号を受信する受信装置の通信方法であって、送信許可の制御情報の送信をせずに送信される前記データ信号を受信する第一のデータ受信と前記送信許可の制御情報の送信をし、前記制御情報に基づいて送信される前記データ信号を受信する第二のデータ受信が可能な受信ステップと、前記データと共に受信する識別信号を直交リソースから分離する識別信号分離ステップと、前記識別信号からデータ送信をした前記送信装置を識別する送信端末識別ステップと、前記データ送信に用いる送信パラメータを予め送信する制御情報送信ステップと、を有し、前記受信ステップにおいて前記送信パラメータに基づいて繰り返し送信される同一の前記データを前記第一のデータ受信する場合に前記識別信号とデータ信号を受信する。
 本発明によれば、多数の端末装置がコンテンションベースの無線通信技術で上りリンクのデータ送信を行なう場合に、基地局装置においてデータ送信した端末装置の識別を実現できる。その結果、基地局装置は多数の端末装置の収容と制御情報量の低減を実現できる。
本実施形態に係るシステムの構成の一例を示す図である。 従来の無線通信技術に係る端末装置のデータ送信のシーケンスチャートの一例を示す図である。 本実施形態の無線通信技術に係る端末装置のデータ送信のシーケンスチャートの一例を示す図である。 従来の無線通信技術に係る上りリンクのフレーム構成の一例を示す図である。 本実施形態の無線通信技術に係る上りリンクのフレーム構成の一例を示す図である。 本実施形態に係る端末装置の構成の一例を示す図である。 本実施形態に係る送信信号生成部103の構成の一例を示す図である。 本実施形態に係る送信信号生成部103の構成の一例を示す図である。 本実施形態に係る送信信号生成部103の構成の一例を示す図である。 本実施形態に係る送信信号生成部103の構成の一例を示す図である。 本実施形態に係る信号多重部104の構成の一例を示す図である。 本実施形態に係る基地局装置の構成の一例を示す図である。 本実施形態に係る信号分離部205-1の構成の一例を示す図である。 本実施形態に係る信号検出部206の構成の一例を示す図である。 本実施形態に係る送信端末装置の識別信号の構成の一例を示す図である。 本実施形態に係る端末装置の識別信号とデータ送信の一例を示す図である。 本実施形態の無線通信技術に係る上りリンクのフレーム構成の一例を示す図である。 本実施形態の無線通信技術に係る上りリンクのフレーム構成の一例を示す図である。 本実施形態の無線通信技術に係る上りリンクのフレーム構成の一例を示す図である。 本実施形態の無線通信技術に係る端末装置のデータ送信のシーケンスチャートの一例を示す図である。 本実施形態に係る複数の端末装置のデータ送信の一例を示す図である。 本実施形態に係る複数の端末装置のデータ送信方法の一例を示す図である。
 以下、図面を参照しながら、実施形態について説明する。以下の各実施形態では、M2M通信(Machine-to-Machine Communication、MTC(Machine Type Communication)、IoT(Internet of Things)用の通信、NB-IoT(Narrow Band-IoT)とも呼称される)を前提として、送信装置をMTC端末(以下、端末装置とする)とし、受信装置を基地局装置として説明する。ただし、この例に限定されるものではなく、セルラシステムのアップリンク伝送にも適用可能であり、その場合は人間が介在したデータ送信する端末装置が送信装置、基地局装置が受信装置となる。また、セルラシステムのダウンリンク伝送にも適用可能であり、その場合はデータ送信における送受信装置がアップリンク伝送と逆になる。また、D2D(Device-to-Device)通信にも適用可能であり、その場合は送信装置も受信装置も共に端末装置になる。
 図1は、本実施形態に係るシステムの構成の一例を示す。該システムは、基地局装置10、端末装置20-1~20-Nmから構成される。なお、端末装置(端末、移動端末、移動局、UE: User Equipment)の数は限定されない他、各装置のアンテナ数は1であっても良いし、複数あっても良い。また、基地局装置10は無線事業者がサービスを提供する国や地域から使用許可が得られた、いわゆるライセンスバンド(licensed band)による通信を行なっても良いし、国や地域からの使用許可を必要としない、いわゆるアンライセンスバンド(unlicensed band)による通信を行なっても良い。また、基地局装置10は、カバレッジの広いマクロ基地局装置であっても良いし、マクロ基地局装置よりカバレッジが狭いスモールセル基地局またはピコ基地局装置(Pico eNB: evolved Node B、SmallCell、Low Power Node、Remote Radio Headとも呼称される)でも良い。また、本明細書においてライセンスバンド以外の周波数帯域は、アンライセンスバンドの例に限定されず、ホワイトバンド(ホワイトスペース)等でも良い。また、基地局装置10はLTEの通信で用いられる帯域のコンポーネントキャリア(CC: Component CarrierもしくはServing cellとも呼称される)を複数使用するCA(Carrier Aggregation)技術を適用しても良く、MTCと、MTCと異なる通信を異なるCCでデータ伝送しても良いし、同一のCCでデータ伝送しても良い。CAを適用する例としては、MTCと異なる通信をPCell(Primary cell)とし、MTC通信をSCell(Secondary cell)としても良い。また、同一のCC内でMTCと異なる通信とMTCで使用するサブキャリアを分けても良い。
 端末装置20-1~20-Nmは、MTCのデータを基地局装置10へ送信可能とする。端末装置20-1~20-Nmは、基地局との接続時に基地局装置10もしくは他の基地局装置より予めデータ送信に必要な制御情報を受信する。端末装置20-1~20-Nmは、送信するデータ(トラフィック)発生後に、スケジューリング要求(SR: Scheduling Request)送信や基地局装置が送信する送信許可の制御情報(UL Grant)の受信の不要な無線通信技術(コンテンションベースの無線通信技術、Grant free access、Grant free communication、Grant free data transmission等とも呼称される。以下、コンテンションベースの無線通信技術と呼ぶ)でデータ送信を行なう。ただし、端末装置20-1~20-Nmは、LTE(Long Term Evolution)、LTE-Advanced、LTE-Advanced Pro等のSR送信やUL Grant受信が必要な無線通信技術(ノンコンテンションベースの無線通信技術、Grant-based access、Grant-based communication、Grant-based data transmission等とも呼称される。以下、ノンコンテンションベースの無線通信技術と呼ぶ)も使用できる場合には、送信データやデータサイズ、送信データのサービス品質(QoS: Quality of Service)等に応じてコンテンションベースの無線通信技術とノンコンテンションベースの無線通信技術を切り替えて使用しても良い。つまり、端末装置20-1~20-Nmは、データ送信を行なう前にSR送信することで基地局装置からスケジューリングされた無線リソースを用いたデータ送信するか、データ発生前に予め指定された無線リソースの少なくとも一部でデータ送信するかを決めても良い。また、QoSには、データ送信の信頼度、データ送信にかかる遅延時間、通信速度が含まれても良く、さらに端末装置のデータ送信に係る消費電力(例えば、データ送信において1ビット当たりの電力)等の指標があっても良い。ここで、端末装置20-1~20-Nmは、MTCのみに限定されず、人が介在するH2M通信(Human-to-Machine Communication)やH2H通信(Human-to-Human Communication)等を可能としても良い。その場合には、基地局装置10がデータの種類によりダイナミックスケジューリングやSPS(Semi-Persistent Scheduling)によりデータ送信に用いる送信パラメータを含む制御情報であるUL GrantをPDCCH(Physical Downlink Control CHannel)、もしくはEPDCCH(Enhanced PDCCH)、もしくはその他の下りリンクの制御情報を送信する物理チャネルで送信しても良い。端末装置20-1~20-Nmは、UL Grantの送信パラメータに基づくデータ送信を行なう。
 (第1の実施形態)
 図2に、従来の無線通信技術に係る端末装置のデータ送信のシーケンスチャートの一例を示す。基地局装置は、端末装置が接続時にコンフィグレーションの制御情報を送信する(S100)。コンフィグレーションの制御情報は、RRC(Radio Resource Control)で通知しても良いし、SIB(System Information Block)等の上位層の制御情報でも良いし、DCIフォーマットでも良い。また、使用する物理チャネルは、PDCCHやEPDCCH、PDSCH(Physical Downlink Shared CHannel)でも良いし、その他の物理チャネルを使用しても良い。端末装置は、アップリンクのデータが発生し、UL Grantを受信していない場合、UL Grantを要求するためにSRを送信する(S101)。基地局装置は、SRを受信後、PDCCHやEPDCCHでUL Grantを端末装置に送信する(S102)。端末装置は、FDD(Frequency Division Duplexもしくはframe structure type1とも呼称される)の場合、PDCCHやEPDCCHをブラインドデコーディングでUL Grantを検出したサブフレームの4msec後のサブフレームで、UL Grantに含まれる送信パラメータに基づくデータ送信を行なう(S103)。ただし、TDD(Time Division Duplexもしくはframe structure type2とも呼称される)の場合は、4msecとは限らないが、説明を簡単にするためFDDを前提に説明する。基地局装置は、端末装置が送信したデータを検出し、データ信号を受信したサブフレームから4msec後のサブフレームで検出したデータに誤りがあったか否かを示すACK/NACKを送信する(S104)。ここで、S101において、端末装置はRRCでSR送信用のリソースが通知されていない場合、PRACH(Physical Random Access CHannel)を用いてUL Grantを要求する。また、S102において、ダイナミックスケジューリングの場合は、1サブフレームのみのデータ送信が可能だが、SPSの場合は周期的なデータ送信が許可され、SPSの周期等の情報はS100のRRCで通知されるものとする。端末装置は、基地局装置よりRRCで通知されたSR送信用のリソース等の送信パラメータやSPSの周期等を記憶する。
 図3に、本実施形態の無線通信技術に係る端末装置のデータ送信のシーケンスチャートの一例を示す。まず、基地局装置は、端末装置が接続時にコンフィグレーションの制御情報を送信する(S200)。コンフィグレーションの制御情報は、RRCで通知しても良いし、SIB等の上位層の制御情報でも良いし、DCIフォーマットでも良い。また、使用する物理チャネルは、PDCCHやEPDCCH、PDSCHでも良いし、その他の物理チャネルを使用しても良い。このコンフィグレーションの制御情報には、コンテンションベースの無線通信技術で使用する無線リソースや送信パラメータ等が含まれる。また、端末装置がLTE、LTE-Advanced、LTE-Advanced Pro等のノンコンテンションベースの無線通信技術も使用できる場合、図2のS100で通知される制御情報も含まれても良い。端末装置は、アップリンクのデータが発生し、S200の制御情報を受信している場合、SR送信や基地局装置が送信するUL Grantの受信の不要なコンテンションベースの無線通信技術によりデータを送信する(S201-1)。ここで、端末装置は、要求されるQoS(データ送信の信頼度、データ送信にかかる遅延時間、通信速度も含まれても良い)に応じてS200で同一データの送信回数や送信期間、送信周期、送信に用いる無線リソース、送信パラメータ等が通知されており、S200で受信した制御情報に基づいてS201-1と同様のデータを送信する(S201-2~S201-L)。ただし、本発明は、同一データを複数回送信することに限定されるものではなく、L=1とし、1回のみ送信しても良い。基地局装置は、端末装置が送信したデータを検出し、データ信号を受信したサブフレームからXmsec後のサブフレームで検出したデータに誤りがあったか否かを示すACK/NACKを送信する(S202)。ただし、従来のFDDと同様に、データ送信からX=4としても良いし、異なる値としても良い。図3では、最後のデータ送信(S201-L)を基準としているが、本例に限らず、例えば基地局装置がデータを誤りなく検出できたサブフレームを基準としてXmsec後としても良い。また、コンテンションベースの無線通信技術では、ACK/NACKを送信しないとしても良く、基地局装置はノンコンテンションベースとコンテンションベースの無線通信技術によってACK/NACKの送信有無を切り替えても良い。
 図4に、従来の無線通信技術に係る上りリンクのフレーム構成の一例を示す。従来の上りリンクのフレーム構成は、1フレームが10msecであり、10サブフレームで構成され、1サブフレームが2スロットで構成され、1スロットが7OFDMシンボルで構成される。各スロットの真ん中のOFDMシンボル、つまりOFDMシンボル#1~#7が存在する場合はOFDMシンボル#4に復調用参照信号(DMRS: De-Modulation Reference Signal)が配置される。また、従来は、端末装置がサブフレーム#1でUL Grantを受信した場合、4msec後のサブフレーム#5でデータ送信が可能となる。図5に、本実施形態の無線通信技術に係る上りリンクのフレーム構成の一例を示す。同図は、フレーム構成を図4と同様としてコンテンションベースの無線通信技術を用いる場合の例である。コンテンションベースの無線通信技術では、端末装置がデータ発生後にすぐにデータ送信可能であり、サブフレーム#1の前にデータが発生した場合は、図5の例で示すデータ送信を行なう。サブフレーム#1では、送信端末識別用信号を送信し、サブフレーム#2ではデータを送信する。送信端末識別用信号とデータの送信方法の詳細は後述する。
 図6に、本実施形態に係る端末装置の構成の一例を示す。ただし、本発明に必要な最低限のブロックを示している。端末装置は、端末装置20-1~20-NmのようにMTCのデータ送信としてコンテンションベースの無線通信技術、前述の従来技術であるノンコンテンションベースの無線通信技術の両方を使用できることを前提に説明する。ただし、端末装置がコンテンションベースの無線通信技術のみ使用できる場合にも本発明は適用でき、その場合、ノンコンテンションベースの無線通信技術に関する処理が存在しないが、基本構成は同様となる。端末装置は、基地局装置からEPDCCHやPDCCH、PDSCHで送信された制御情報を受信アンテナ110で受信する。無線受信部111は、受信信号をベースバンド周波数にダウンコンバートし、A/D(Analog/Digital: アナログ/ディジタル)変換し、ディジタル信号からCP(Cyclic Prefix)を除去した信号を制御情報検出部112に入力する。制御情報検出部112は、PDCCHやEPDCCHで送信された自局宛てのDCI(Downlink Control Information)フォーマットをブラインドデコーディングにより検出する。ブラインドデコーディングはDCIフォーマットが配置される候補のCSS(Common Search Space)やUSS(UE-specific Search Space)に対して復号処理を行ない、制御情報を検出する。ここで、DCIフォーマットは、用途に応じて複数のフォーマットが規定され、アップリンクのシングルアンテナ用のDCIフォーマット0、MIMO(Multiple Input Multiple Output)用のDCIフォーマット4等が定義されている。また、制御情報検出部112は、RRCの信号を受信した場合も検出を行なう。制御情報検出部112は、検出した制御情報を送信パラメータ記憶部113に入力する。送信パラメータ記憶部113は、ダイナミックスケジューリングやSPS等のUL Grantを受信した場合には、トラフィック管理部114に制御情報を入力する。また、送信パラメータ記憶部113は、RRCによりコンフィグレーションの制御情報を受信した場合、コンテンションベースの無線通信技術によるデータ送信を行なうまで、これらの制御情報を保持する。送信パラメータ記憶部113が保持するコンフィグレーションの制御情報は、後述する。
 トラフィック管理部114は、送信データのビット列が入力され、UL Grantを受信時には制御情報が入力され、コンテンションベースの無線通信技術用のコンフィグレーションの制御情報を予め受信している場合、これらの制御情報も入力される。また、トラフィック管理部114は、送信データの種類やQoS等も入力されても良い。トラフィック管理部114は、入力された情報からコンテンションベースもしくはノンコンテンションベースの無線通信技術の使用を選択し、選択した無線通信技術の送信パラメータを誤り訂正符号化部101、変調部102、送信信号生成部103、信号多重部104、識別信号生成部115に入力し、データビット列を誤り訂正符号化部101に入力する。
 誤り訂正符号化部101は、入力されたデータビット列に対し、誤り訂正符号の符号化を施す。誤り訂正符号には、例えば、ターボ符号やLDPC(Low Density Parity Check)符号、畳み込み符号、Polar符号等が用いられる。誤り訂正符号化部101で施される誤り訂正符号の種類や符号化率は、送受信装置で予め決められていても良いし、トラフィック管理部114より入力されても良いし、コンテンションベースもしくはノンコンテンションベースの無線通信技術により切り替えても良い。誤り訂正符号化の種類や符号化率が制御情報として通知される場合は、これらの情報がトラフィック管理部114より誤り訂正符号化部101へ入力される。また、誤り訂正符号化部101は、適用する符号化率に応じて符号化ビット列のパンクチャリング(間引き)やインターリーブ(並び換え)を行なっても良い。誤り訂正符号化部101は、符号化ビット列のインターリーブを行なう場合、端末装置毎に異なる並びにするインターリーブを行なう。また、誤り訂正符号化部101は、スクランブルを適用しても良い。スクランブルを適用は、後述の識別信号により端末装置が使用しているスクランブルパターンを一意に判別できる場合のみとしても良い。
 変調部102は、変調方式の情報がトラフィック管理部114より入力され、誤り訂正符号化部101から入力された符号化ビット列に対して変調を施すことで、変調シンボル列を生成する。変調方式には、例えば、QPSK(Quaternary Phase Shift Keying: 四相位相偏移変調)、(16-ary Quadrature Amplitude Modulation: 16直交振幅変調)ある。または、変調方式はGrayラベリングでなくても良く、セットパーティショニングを使用しても良い。また、GMSK(Gaussian Minimum-Shift Keying)を使用しても良い。変調部102は、生成した変調シンボル列を送信信号生成部103へ出力する。ここで、変調方式もしくは変調方法は、送受信装置で予め決められていても良いし、トラフィック管理部114より入力されても良いし、コンテンションベースもしくはノンコンテンションベースの無線通信技術により切り替えても良い。
 図7a~cに、本実施形態に係る送信信号生成部103の構成の一例を示す。図7aでは、DFT部1031は、入力された変調シンボルを離散フーリエ変換することで、時間領域信号から周波数領域信号に変換し、得られた周波数領域信号を信号割当部1032へ出力する。信号割当部1032は、トラフィック管理部114よりデータ伝送に用いる1以上のRB(Resource Block)の情報であるリソース割当情報が入力され、指定されたRBに周波数領域の送信信号を割り当てる。トラフィック管理部114より入力されるリソース割当情報は、ノンコンテンションベースの無線通信技術の場合、UL Grantで通知され、コンテンションベースの無線通信技術の場合、コンフィグレーションの制御情報で予め通知される。ここで、1RBは12サブキャリア、1スロット(7OFDMシンボル)で定義され、リソース割当情報とは1サブフレーム分(2スロット)を割り当てる情報である。ただし、LTEでは1サブフレームを1msec、サブキャリア間隔15kHzとなっているが、1サブフレームの時間とサブキャリア間隔を2msec、7.5kHzもしくは、0.2msec、75kHzもしくは、0.1msec、150kHz等異なっても良く、異なるフレーム構成でも1サブフレーム単位でリソース割当情報を通知しても良い。また、リソース割当情報は、LTEのサブフレーム構成と同様の場合もLTEのサブフレーム構成と異なる場合のいずれであっても複数のサブフレームの割当を通知しても良いし、スロット単位の割当を通知しても良いし、OFDMシンボル単位の割当を通知しても良いし、2OFDMシンボル単位の割当を通知しても良い。また、リソース割当情報は、RB単位ではなく、1サブキャリア単位でも良いし、複数のRBから構成されるRBG(Resource Block Group)単位でも良く、1以上のRBGに割り当てても良い。
 図7bでは、位相回転部1030は、入力された変調シンボルに対して位相回転を施す。位相回転部1030における時間領域のデータ信号に与える位相回転は、端末装置毎に異なるパターンを適用するために、トラフィック管理部114より入力されたパターンを用いる。位相回転のパターンの例は、変調シンボル単位で異なる位相回転とするパターン等である。トラフィック管理部114が入力する位相回転のパターンは、UL Grantで通知される、もしくはコンフィグレーションの制御情報で予め通知される等により、端末装置と基地局装置間で共有されているとする。DFT部1031と信号割当部1032は、図7aと同様であるため説明は省略する。ここで、図7bでは時間領域のデータ信号に位相回転が与えられる例を示したが、異なる方法で同様の効果を得ても良い。例えば、DFT部1031により得られた周波数領域の信号に端末装置毎に異なる巡回遅延を与えても良い。具体的には、端末装置20-uの巡回遅延しない周波数領域の信号をS(1)、S(2)、S(3)、S(4)とした場合、端末装置20-iに遅延量1シンボルの巡回遅延を与え、S(4)、S(1)、S(2)、S(3)とする等である。
 図7cのDFT部1031と信号割当部1032は、図7aと同様であるため説明は省略する。位相回転部1033は、DFT部1031により得られた周波数領域のデータ信号に対して位相回転を施す。位相回転部1033における周波数領域のデータ信号に与える位相回転は、端末装置毎に異なるパターンを適用するため、トラフィック管理部114より入力されたパターンを用いる。位相回転のパターンの例は、周波数領域のデータ信号単位で異なる位相回転とする等である。トラフィック管理部114が入力する位相回転のパターンは、UL Grantで通知される、もしくはコンフィグレーションの制御情報で予め通知される等により、端末装置と基地局装置間で共有されている情報とする。ここで、図7cでは周波数領域のデータ信号に位相回転が与えられる例を示したが、異なる方法で同様の効果を得ても良い。例えば、DFT部1031で周波数領域信号に変換前の変調シンボルに端末装置毎に異なる巡回遅延を与えても良い。具体的には、端末装置20-uの巡回遅延しない周波数領域の信号をs(1)、s(2)、s(3)、s(4)とした場合、端末装置20-iに遅延量1の巡回遅延を与え、s(4)、s(1)、s(2)、s(3)とする等である。また、図7bと図7cの位相回転部1030と位相回転部1033の両方が使用されても良い。図7a~cの送信信号生成部103は、送信信号を信号多重部104に入力する。
 なお、送信信号生成部103の構成は、図8の構成でも良い。この例では、送信信号生成部103はDFT部1031の前に入力された変調シンボルに対してインターリーブ(並び換え)を施す。変調シンボルに対してインターリーブが行なわれる場合、端末装置毎に異なる並びにするインターリーブが行なわれる。
 図9に、本実施形態に係る信号多重部104の構成の一例を示す。送信信号生成部103から入力された送信信号は、参照信号多重部1041に入力される。また、トラフィック管理部114は、参照信号を生成するパラメータを参照信号生成部1042に入力し、基地局装置に送信する制御情報が制御情報生成部1044に入力する。参照信号多重部1041は入力された送信信号と参照信号生成部より生成された参照信号列(DMRS)を多重する。このように送信信号とDMRSを多重することで、図4のフレーム構成を生成する。図5のフレーム構成については、後述する。ただし、参照信号多重部1041は、図4のフレーム構成のようにデータ信号と異なるOFDMシンボルに配置する場合、時間領域でデータ信号と参照信号を多重しても良い。
 一方、制御信号生成部1044は、PUCCH(Physical Uplink Control CHannel)で送信するアップリンクの制御情報の伝搬路品質情報(CSI: Channel State Information)やSR(Scheduling Request)、ACK/NACK(Acknowledgement / Negative Acknowledgement)を生成し、制御情報多重部1043に出力する。制御情報多重部1043は、データ信号と参照信号で構成されるフレーム構成に対して制御情報を多重する。信号多重部104は、生成した送信フレームをIFFT部105に入力する。ただし、端末装置がPUSCHとPUCCHを同時に送信できない場合は、予め決められている信号の優先順位に従って、優先度の高い信号のみを送信する。また、端末装置の送信電力余力がなく、PUSCHとPUCCHを同時に送信できない場合も同様に予め決められている信号の優先順位に従って、優先度の高い信号のみを送信する。信号の送信の優先順位は、コンテンションベースの無線通信技術とノンコンテンションベースの無線通信技術で異なる優先順位としても良い。また、送信するデータの優先度が存在し、その優先度によってPUSCHの優先度が変わっても良い。
 IFFT部105は、周波数領域の送信フレームが入力され、各OFDMシンボル単位で逆高速フーリエ変換することで、周波数領域信号列から時間領域信号列に変換する。IFFT部105は、時間領域信号列を識別信号多重部106に入力する。識別信号生成部115は、図5の識別信号用のサブフレームで送信する信号を生成し、識別信号多重部106に入力する。識別信号の詳細は後述する。識別信号多重部106は、時間領域信号列と識別信号を図5のように異なるサブフレームに多重し、多重された信号を送信電力制御部107に入力する。ただし、同一サブフレームの異なるOFDMシンボルや異なるスロットに多重しても良い。送信電力制御部107は、オープンループの送信電力制御値のみもしくはオープンループとクローズループの送信電力制御値の両方を使用して送信電力制御を行ない、送信電力制御後の信号列を送信処理部108に入力する。送信処理部108は、入力された信号列にCPを挿入し、D/A(Digital/Analog: ディジタル/アナログ)変換によりアナログの信号に変換し、変換後の信号を伝送に使用する無線周波数にアップコンバートする。送信処理部108は、アップコンバートした信号を、PA(Power Amplifier)で増幅し、増幅後の信号を、送信アンテナ109を介して送信する。以上のように、端末装置は、データ送信を行なう。端末装置が送信信号生成部103で図7aを行なう場合はDFTS-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing、SC-FDMAとも称される)信号を送信することを意味する。また、端末装置が送信信号生成部103で図7bもしくは図7cを行なう場合はDFTS-OFDMに位相回転、もしくは巡回遅延を適用した信号を送信することを意味する。また、端末装置が送信信号生成部103で図8を行なう場合はDFTS-OFDM信号を送信することを意味する。また、端末装置が送信信号生成部103でDFTを行なわない、つまり図7a~7cもしくは図8のいずれかでDFT部1031が存在しない構成の場合、OFDM信号を送信することを意味する。また、端末装置が送信信号生成部103で上述の方法を使用しても良いし、異なる拡散方法や異なる送信信号の波形生成法を用いても良い。
 図10に、本実施形態に係る基地局装置の構成の一例を示す。同図より、基地局装置は、N本の受信アンテナ201-1~201-Nで端末装置が送信したデータを受信し、受信処理部202-1~202-Nにそれぞれ入力する。受信処理部202-1~202-Nは、受信信号をベースバンド周波数にダウンコンバートし、A/D変換し、ディジタル信号からCPを除去する。受信処理部202-1~202-NはCP除去後の信号を識別信号分離部203-1~203-Nに出力する。識別信号分離部203-1~203-Nは、識別信号とその他の信号を分離し、それぞれ送信端末識別部211とFFT部204-1~204-Nに出力する。送信端末識別部211は、後述する識別信号よりデータ送信した端末装置を識別し、送信端末装置の情報を伝搬路推定部207と信号分離部205-1~205-Nに出力する。FFT部204-1~204-Nは、入力された受信信号列を高速フーリエ変換により時間領域信号列から周波数領域信号列に変換し、周波数領域信号列を信号分離部205-1~205-Nに出力する。
 信号分離部205-1~205-Nはすべて共通の構成であり、図11に、本実施形態に係る信号分離部205-1の構成の一例を示す。同図より、信号分離部205-1では、FFT部204-1より周波数領域信号列が参照信号分離部2041に入力され、送信端末識別部211より識別された送信端末装置の情報が入力される。参照信号分離部2051は、入力された送信端末装置の情報を用い、周波数領域信号列を参照信号とその他の信号に分離し、それぞれ伝搬路推定部207と制御情報分離部2052に出力する。制御情報分離部2052は、入力された信号を制御信号とデータ信号に分離し、それぞれ制御情報検出部2054と割当信号抽出部2053に出力する。制御情報検出部2054は、PUCCHで送信された信号を検出し、SRはアップリンクのスケジューリング、CSIはダウンリンクのスケジューリング、ACK/NACKはダウンリンク伝送の再送制御に用いるため、制御情報生成部208に出力する。一方、割当信号抽出部2053は、端末装置に制御情報で通知したリソース割当情報に基づいて端末装置毎の送信信号を抽出する。
 伝搬路推定部207は、データ信号と多重されて送信された参照信号であるDMRS(De-Modulation Reference Signal)と識別された送信端末装置の情報が入力され、周波数応答を推定し、復調用に推定した周波数応答を信号検出部206に出力する。また、伝搬路推定部207は、SRS(Sounding Reference Signal)が入力された場合、次回のスケジューリングで使用する周波数応答を推定する。制御情報生成部208は、DMRSやSRSで推定した周波数応答を基にアップリンクのスケジューリング、適応変調符号化(Adaptive Modulation and Coding、リンクアダプテーションとも呼称される)を行ない、端末装置がアップリンク伝送に用いる送信パラメータを生成し、DCIフォーマットに変換する。また、制御情報生成部208は、受信したデータ信号の誤りの有無の情報が信号検出部205より入力された場合、アップリンク伝送におけるACK/NACKを通知する制御情報を生成する。ここで、アップリンク伝送におけるACK/NACKは、PHICH(Physical HARQ CHannel)もしくはPDCCH、EPDCCHの少なくとも一つで送信される。制御情報送信部209は、制御情報生成部208より変換された制御情報が入力され、入力された制御情報をPDCCHやEPDCCHに割り当てて各端末装置へ送信する。
 図12に、本実施形態に係る信号検出部206の構成の一例を示す。信号検出部206は、信号分離部205-1~205-Nより抽出された端末装置毎の信号がキャンセル処理部2061に入力される。キャンセル処理部2061は、ソフトレプリカ生成部2067よりソフトレプリカが入力され、各受信信号に対してキャンセル処理を行なう。等化部2062は、伝搬路推定部207より入力された周波数応答よりMMSE規範に基づく等化重みを生成し、ソフトキャンセル後の信号に乗算する。等化部2062は、等化後の端末装置毎の信号をIDFT部2063-1~2063-Uに出力する。IDFT部2063-1~2063-Uは、周波数領域の等化後の受信信号を時間領域信号に変換する。なお、端末装置が送信処理でDFTの前もしくは後に信号に巡回遅延や位相回転、インターリーブが施している場合、周波数領域の等化後の受信信号もしくは時間領域信号は巡回遅延や位相回転、インターリーブを元に戻す処理が施される。復調部2064-1~2064-Uは、図示していないが予め通知されている、もしくは予め決められている変調方式の情報が入力され、時間領域の受信信号列に対して復調処理を施し、ビット系列のLLR(Log Likelihood Ratio)、つまりLLR列を得る。
 復号部2065-1~2065-Uは、図示していないが予め通知されているもしくは予め決められている符号化率の情報が入力され、LLR列に対して復号処理を行なう。ここで、逐次干渉キャンセラ(SIC: Successive Interference Canceller)やターボ等化のキャンセル処理を行なうために、復号部2065-1~2065-Uは、復号器出力の外部LLRもしくは事後LLRをシンボルレプリカ生成部2066-1~2066-Uに出力する。外部LLRと事後LLRの違いは、それぞれ復号後のLLRから復号部2065-1~2065-Uに入力される事前LLRを減算するか、否かである。なお、端末装置が送信処理で誤り訂正符号化後の符号化ビット列にパンクチャリング(間引き)やインターリーブ、スクランブルが施している場合、信号検出部206は復号部2065-1~2065-Uに入力するLLR列に対してデパンクチャリング(間引きされたビットのLLRに0を挿入)、デインターリーブ(並び換えを元に戻す)、デスクランブルを施す。シンボルレプリカ生成部2066-1~2066-Uは、入力されたLLR列を端末装置がデータ伝送に用いた変調方式に応じてシンボルレプリカを生成し、ソフトレプリカ生成部2067に出力する。ソフトレプリカ生成部2067は、入力されたシンボルレプリカをDFTで周波数領域の信号に変換し、各端末装置が使用したリソースに信号を割り当て、周波数応答を乗算することでソフトレプリカを生成する。復号部2065-1~2065-Uは、SICの処理やターボ等化の繰り返し回数が所定の回数に達した場合、復号後のLLR列を硬判定し、巡回冗長検査(CRC: Cyclic Redundancy Check)より誤りビットの有無を判別し、誤りビットの有無の情報を制御情報生成部208に出力する。
 図13に、本実施形態に係る送信端末装置の識別信号の構成の一例を示す。ここで、識別信号の送信に使用可能なOFDMシンボル数をNOFDM、識別信号の送信に使用可能なサブキャリア数をNSCとする。さらに、各送信端末が識別信号の送信に使用するOFDMシンボル数をTOFDM、時間方向にOCC(Orthogonal Cover Code)を使用する場合は長さTOCCのOCC系列を使用する。ただし、OCC系列長は1≦TOCC≦TOFDMの値とし、送受信装置間で使用するOCCの系列長の情報を予め共有できていれば良い。また、各送信端末が識別信号の送信に使用するサブキャリア数をTSCとする。周波数方向にCS(Cyclic Shift)を使用する場合は、CSパターン数TCSを使用し、IFDMA(Interleaved Frequency Division Multiple Access)を使用する場合は、多重パターン数TRFを使用する。よって、識別信号用の直交リソース数は(NOFDM/TOFDM)×TOCC×(NSC/TSC)×TCS×TRFになる。図13は、識別信号を送信可能な時間・周波数リソースが1サブフレーム(NOFDM=14)、サブキャリア数NSC、TOFDM=TOCC=2の場合の例であるが、本発明はこの例に限定されない。同図の場合、NSC=TSC=48かつTCS=12、TRF=2とすると直交リソース数は336個存在することを意味する。基地局装置が送信するコンフィグレーションの制御情報には、識別信号を送信する直交リソースを示す情報が含まれる。識別信号を送信する2OFDMシンボルを図13のように連続する2OFDMシンボル毎にT1~T7としてOFDMシンボルセットを定義し、実際に使用するOFDMシンボルセットのインデックスIとし、NSC>TSCであれば使用するサブキャリアセットの情報がX個あるとF1~FXと定義し、実際に使用するサブキャリアセットのインデックスIとし、使用するOCC系列のインデックスをIOCCとし、使用するCSパターンをICSとし、使用するIFDMAの多重パターンをIRFとする。この場合、基地局装置が送信するコンフィグレーションの制御情報に(I、I、IOCC、ICS、IRF)を一意に示す情報が含まれている。コンフィグレーションの制御情報は、(I、I、IOCC、ICS、IRF)の一部のみを含む情報でも良い。ただし、OFDMシンボルセットは、連続するOFDMシンボルである必要はなく、OFDMシンボル#1とOFDMシンボル#8のような組合せでも良い。また、サブキャリアセットにおいても連続するサブキャリアでなくても良く、例えばTRFの整数倍を識別信号のクラスタとして複数の識別信号のクラスタを周波数軸上で非連続に使用しても良い。また、識別信号の送信に使用可能なサブキャリアS#1~S#NSCはデータ送信するサブキャリアと同一でも良いし、異なっても良い。識別信号の送信に使用可能なサブキャリアと異なる場合は、一部のサブキャリアだけ重複するようにしても良い。また、識別信号の送信に使用するサブキャリアと同一でも良いし、異なっても良い。識別信号の送信に使用するサブキャリアと異なる場合は、一部のサブキャリアだけ重複するようにしても良い。また、基地局装置で収容されている端末装置数が識別信号の直交リソース数を超える場合は、異なる端末装置に同一の直交リソースを重複して割り当てる必要がある。この場合は、識別信号の直交リソースに加えて端末装置固有の識別子による送信端末装置の識別が必要になる。具体的には、データ信号に付加されているCRCを端末装置固有のIDであるC-RNTI(Cell-Radio Network Temporary Identifier)やSPS C―RNTI等で排他的論理和演算する。このようにすることで、受信側の基地局装置は、SICやターボ等化による信号検出後に、複数の識別子とCRCの排他的論理和演算を行ない、CRCで誤りが検出されない識別子を確認することで、送信端末装置の識別を行なうことができる。
 図14に、本実施形態に係る端末装置の識別信号とデータ送信の一例を示す。同図に示す通りデータを送信する際に、本実施形態では複数回のデータ送信を行なう。その結果、端末装置の上りリンクのデータ送信で要求される所定の品質を満たす。ここで、従来のLTE等では、全ての端末装置がデータ送信から所定の時間で再送のデータ送信を行なう。
 本実施形態では、識別信号により伝搬路推定を実現するため、図5のフレーム構成において、データ送信サブフレーム(UL送信のサブフレーム)のOFDMシンボル#4と#11でDMRS送信を行なわず、データを配置する。よって、1回の送信機会にける送信可能なビット数が増加する。また、本実施形態では、端末装置は図9の信号多重部104の処理が変わる。参照信号多重部1041と参照信号生成部1042ではDMRSの生成とデータ信号と多重するが、コンテンションベース(Grant Free)の無線通信技術においては識別信号とDMRSを共用することから参照信号多重部1041と参照信号生成部1042は何もしない。ただし、端末装置がノンコンテンションベースの無線通信技術も使用する場合、ノンコンテンションベースの無線通信技術でデータ送信時は参照信号多重部1041と参照信号生成部1042ではDMRSの生成とデータ信号と多重を行なう。また、本実施形態では、基地局装置は図11の信号分離部205-1~205-Nの処理が変わる。参照信号分離部2051ではDMRSを分離するが、コンテンションベースの無線通信技術においては識別信号とDMRSを共用することから何もしない。ただし、端末装置がノンコンテンションベースの無線通信技術も使用する場合、ノンコンテンションベースの無線通信技術でデータ送信時では参照信号分離部2051はDMRSの分離を行なう。
 図15aおよび図15bに、本実施形態の無線通信技術に係る上りリンクのフレーム構成の一例を示す。図15aは、識別信号を送信するサブフレームとデータ送信(UL送信)のサブフレームを1つのサブフレームセットとし、サブフレームセットをアクセス領域1~5と設定する例である。また、基地局装置は収容する端末装置をアクセス領域1~5の少なくとも1つでコンテンションベースの無線通信技術によるデータ送信許可するコンフィグレーションの制御情報(図3のS200)を送信する。ここで、アクセス領域1~5の送信許可は、ビットマップで1以上のアクセス領域を示す制御情報で通知しても良いし、1つのアクセス領域のみを示す制御情報で通知しても良いし、2つのアクセス領域のみを示す制御情報で通知しても良い。このように端末装置毎にコンテンションベースの無線通信技術を使用できるアクセス領域を限定する。例えば、同一タイミングでデータ送信が発生する端末装置を異なるアクセス領域にすることで、データ送信の衝突確率を低減することができる。また、識別信号の直交リソースが重複する端末装置を異なるアクセス領域にすることで、識別信号の直交リソースの衝突による送信端末の識別精度の低下を回避できる。また、データ送信頻度が高い、もしくはデータ送信までの遅延時間を短くする必要がある送信端末に対して、基地局装置がより多くのアクセス領域でコンテンションベースの無線通信技術でのデータ送信許可を行なうことで、端末装置毎のQoSもしくはQoEを満たすことができる。
 一方、図15bでは、複数のサブフレームセットをアクセス領域とする例である。同図では、アクセス領域1と2に二つのサブフレームセットを割り当て、アクセス領域3に一つのサブフレームセットを割り当てる例である。この場合、アクセス領域1と2でコンテンションベースの無線通信技術でのデータ送信を許可する端末装置数をアクセス領域3と比較して2倍にしても良い。また、別のアクセス領域1~3の使用例として、アクセス領域1と2に多数の端末装置に使用許可を与え、アクセス領域3に信頼性が求められる少数の端末装置に使用許可を与えても良い。
 図16に、本実施形態の無線通信技術に係る上りリンクのフレーム構成の一例を示す。同図では、周波数リソースでアクセス領域を限定するものであり、最小の周波数リソース(例えば1以上のリソースブロックやリソースブロックグループ等)をアクセス領域としている。この例では、F1~F4をアクセス領域とし、各端末装置にコンフィグレーションの制御情報でコンテンションベースの無線通信技術を使用できるアクセス領域を指定する。ただし、図15aおよび図15bで説明したサブフレームセットを同時に使用しても良く、例えば、連続するサブフレームセットをT1~T5とし、F1~F4とT1~T5の組み合わせの20個をアクセス領域とし、周波数・時間で定義しても良い。端末装置に使用できるアクセス領域を指定する場合、一つのアクセス領域に限定しても良いし、複数のアクセス領域としても良い。
 また、基地局装置で収容されている端末装置は、必ずデータ送信が必要とは限らない。そこで、本実施形態では、コンテンションベースの無線通信技術において、基地局装置が端末装置毎にアクセス領域の送信許可(アクティベーション、コンテンションベースの無線通信技術でのデータ送信が可能な状態)に加えて送信中断(ディアクティベーション、コンテンションベースの無線通信技術でのデータ送信が可能でない状態)の通知を行なう。これは、基地局装置は各アクセス領域におけるアクティベーションされている端末装置数が少なくなることで、確率的にデータ送信が衝突する確率を下げることが可能となり、通信品質の改善が可能になる。アクティベーションとディアクティベーションの切り替えを頻繁に繰り返す場合に、切り替えの度に制御情報を送信すると制御情報量が増加する。よって、基地局装置は、コンフィグレーションの制御情報でアクティベーションとディアクティベーションの周期を通知する、もしくはアクティベーションとディアクティベーションのサブフレームセットを通知する、もしくはアクティベーションとディアクティベーションのサブフレームセットを周波数リソース毎に通知する等をしても良い。また、アクティベーションとディアクティベーションと識別信号の直交リソースのホッピングを同時に適用しても良い。
 本実施形態における基地局装置が送信するコンフィグレーションの制御情報について、説明する。コンフィグレーションの制御情報は、図3のS200のように予め送信する。このコンフィグレーションの制御情報には、識別信号を送信する直交リソースを示す情報だけでなく、データ送信に用いる周波数リソース(周波数位置、帯域幅)、MCS(Modulation and Coding Scheme)、データ送信を複数回送信する場合は送信回数、HARQの適用有無、送信電力制御のクローズドループの制御値やセル固有と端末装置固有の目標受信、フラクショナル送信電力制御のパラメータ、データ送信サブフレーム(図5のUL送信のサブフレーム)でDMRSの送信の有無、データ送信サブフレームでDMRSを送信する場合のDMRSのCSパターンαとOCCパターン[w(0)、w(1)]、CSIの送信有無、SRSの送信有無等が含まれても良い。ただし、端末装置の状態や能力、QoSに応じて、基地局装置がコンフィグレーションの制御情報を送信しても良い。この場合のデータ送信のシーケンスチャートの一例を図17に示す。図17では、基地局装置は、端末装置の状態や能力、QoSによって変わらないコンフィグレーションの制御情報を送信する(S300)。例えば、CSIの送信有無、データ送信サブフレームでDMRSの送信の有無、SRSの送信有無等がある。次に、端末装置は、送信データや端末装置の情報を送信する(S301)。例えば、端末装置が送信するデータサイズやデータレート、送信品質(必要とされるパケット誤り率)、パスロス値等がある。基地局装置は、端末装置より送信データや端末装置の情報を受信後、端末装置の状態や能力、QoSに応じたコンフィグレーションの制御情報を送信する(S302)。例えば、周波数リソース(周波数位置、帯域幅)、MCS、セル固有と端末装置固有の目標受信等がある。また、端末装置が複数の送信アンテナを有する場合、送信レイヤ数(ランク数)、レイヤ毎(もしくはコードワード毎)のMCS、プリコーディング情報も含まれても良い。以下、図3のS201-1~S202までは図3と同様の処理であるため、説明を省略する。
 本実施形態では、FDDの例について説明したが、TDDにも適用可能である。なお、端末装置が同一のデータ送信を複数回行なうか、およびその送信回数は、端末装置からQoSとして通知しても良いし、基地局装置がセル単位で決定しても良い。
 以上のように本実施形態では、コンテンションベースの無線通信技術において、DMRSと識別信号を共通化し、周波数利用効率を向上できる。また、基地局装置がアクセス領域を端末装置毎に指定することで、データ送信が衝突する確率を下げることが可能となり、通信品質が改善する。その結果、受信品質の向上やシステム全体の周波数利用効率の向上を実現でき、多数端末を効率的に収容することができる。
 (第2の実施形態)
 本発明の第2の実施形態では、送信端末装置の識別信号ではなく、送信データの有無の識別信号を送信する例について説明する。
 本実施形態では、端末装置の構成例は第1の実施形態と同様で図6、7、8、9であり、基地局装置の構成例も第1の実施形態と同様で図10、11、12である。また、端末装置のデータ送信のシーケンスチャートも第1の実施形態と同様で図3もしくは17である。そのため、本実施形態では、異なる処理のみを説明し、同様の処理の説明は省略する。
 本実施形態では、識別信号を送信端末装置の識別ではなく、送信データの識別(送信データの有無、もしくは送信データの存在の識別)に使用するため、図5のフレーム構成において、識別信号の送信は行なう。本実施形態では、端末装置において、図6の識別信号多重部106と識別信号生成部115は、送信端末装置の識別ではなく、データ送信していることの識別のために識別信号の生成と多重を行なう。ここで、識別信号多重部106と識別信号生成部115は、識別信号の直交リソースの選択を行なう。識別信号の直交リソースの選択方法は、端末装置によりランダムに選択されても良い。また、識別信号の直交リソースの候補は、基地局装置よりコンフィグレーション制御情報で複数の候補を端末装置固有に通知されても良いし、基地局装置より報知情報の伝送(ブロードキャスト)で複数の候補を通知されても良いし、端末装置と基地局装置間で予め決められていても良い。また、端末装置はデータ送信先の基地局装置と異なる基地局装置より直交リソースの候補を通知されても良い。さらに端末装置は、データ送信先の基地局装置と異なる基地局装置より、コンテンションベースの無線通信技術が可能な基地局装置の情報、例えばセルIDや使用可能な周波数や帯域幅、識別信号の直交リソース等の情報を受信し、コンテンションベースの無線通信技術が可能な基地局装置の同期信号や報知情報等の検知が可能となった時点でコンテンションベースの無線通信技術を使用しても良い。
 本実施形態では、基地局装置は図10の識別信号分離部203-1~203-Nと送信端末識別部211において、送信端末装置の識別ではなく、データを受信していることの識別のために識別信号の分離と検出を行なう。識別信号を検出したとしても送信端末装置を一意に識別できないため、データ送信サブフレーム(UL送信のサブフレーム)に送信端末装置の識別情報を入れる。端末装置は、図6のトラフィック管理部114においてコンテンションベースの無線通信技術を選択した場合、データビット列に端末装置の識別子を含める。この識別子はC-RNTIでも良いし、コンフィグレーション制御情報で予め割り当てられても良いし、その他の端末装置固有の情報であっても良い。また、データ信号の中に端末装置固有の識別情報が含まれる場合は、基地局装置は図12の復号部2065-1~2065-UにおいてCRCにより誤りビットが無いことを確認後、データビット列に含まれる端末装置の識別子を取得し、送信端末装置の識別を行なう。復号部2065-1~2065-Uは得られた情報ビット列の中の端末装置固有の識別情報を送信端末識別部211に入力しても良い。該送信端末装置にACK/NACK等の制御情報を送信する場合は、識別した送信端末装置の情報を制御情報生成部208に出力する。その後の処理は第1の実施形態と同様のため、説明を省略する。
 本実施形態の送信端末装置の識別方法の別の例について説明する。基地局装置は、送信データの有無を識別信号により識別後、信号検出部206において信号の検出を行なう。復号部2065-1~2065-Uは、誤り訂正復号後のビット列を得た後に、CRCとC-RNTIを排他的論理和演算後に誤りビットの有無を確認する。ここで、C-RNTIは端末装置固有の情報であり、本実施形態では識別信号により送信端末装置の識別ができないことから使用すべきC-RNTIを判別できない。そこで、復号部2065-1~2065-Uは、コンテンションベースの無線通信技術でデータ送信する可能性のある端末装置の情報(C-RNTI)を保持しており、保持されている全てのC-RNTIとCRCの排他的論理和演算の結果から誤りビットの有無を確認する。つまり、基地局装置はCRCにより誤りビットが無いことが確認できたC-RNTIを使用している端末装置がデータを送信した端末装置と識別できる。
 上記のようにすることで、基地局装置は、端末装置がデータ送信時に使用する識別信号の直交リソースをコンフィグレーション制御情報で通知する必要が無くなる。一方、端末装置は任意の直交リソースを使用すれば良い。本実施形態では、その他のデータ送信に係る制御情報を報知情報の伝送(ブロードキャスト)としても良く、その場合には、図3のシーケンスチャートによるS200のコンフィグレーションの制御情報送信は端末固有の制御情報にする必要がなくなり、報知チャネルを使用すれば良い。報知情報として識別信号の直交リソースを通知している場合には、報知情報を受信可能な端末装置であれば、通知されている識別信号の直交リソースを使用することを意味し、多くの端末装置で共有して使用することを意味する。
 このような場合、端末装置は初回の基地局装置との接続時に識別子を取得していれば、基地局装置の同期信号や参照信号により基地局装置を発見し、報知チャネルの情報を受信後であれば、端末装置固有の制御情報の送受信なくデータ伝送(コンテンションベースの無線通信技術)を実現できる。また、識別子の取得はデータ伝送を行なう基地局装置でなくても良い。例えばカバレッジの広いマクロ基地局装置とカバレッジの狭いスモール基地局装置が存在し、端末装置はマクロ基地局装置と接続時に識別子を取得し、スモール基地局装置のカバレッジに入ってから端末装置固有の制御情報の送受信なくデータ伝送をする等が可能である。
 一方、端末装置が直交リソースを自由に選択し、さらに基地局装置でコンテンションベースの無線通信技術を使用する可能性の端末装置数を把握できないため、データ送信に高い信頼性が必要な端末装置に対しては不向きである。そこで、基地局装置は、高い信頼性が必要な端末装置に対して、報知チャネルで通知している識別信号の直交リソースと異なる直交リソースの割当やデータ送信用の周波数リソース、もしくはサブフレームの少なくとも一方をコンフィグレーションの制御情報として送信しても良い。そのため、高い信頼性が必要な端末装置は、コンテンションベースの無線通信技術を使用する場合、コンフィグレーションの制御情報要求を予め送信し、高い信頼性が要求されない端末装置はコンフィグレーションの制御情報要求を送信せずに報知チャネルの情報を基にデータ伝送をする。また、端末装置は、送信データで要求される信頼性により報知チャネルで通知している識別信号の直交リソースとコンフィグレーションの制御情報で通知された識別信号の直交リソースの使用を選択しても良い。
 なお、端末装置が同一のデータ送信を複数回行なうか、およびその送信回数は、端末装置から基地局装置にQoSとして通知されても良いし、基地局装置がセル単位で決定しても良い。なお、端末装置は第1の実施形態のように送信許可されるアクセス領域を予め通知されており、送信許可されるアクセス領域で、本実施形態のように端末装置が識別信号の直交リソースを選択し、識別信号とデータ信号を送信しても良い。また、送信許可されるアクセス領域の情報はサブフレームセットやOFDMシンボルの情報等時間領域の情報でも良いし、周波数リソースの情報でも良いし、時間・周波数の両方により定義されるリソースでも良い。
 以上のように本実施形態では、コンテンションベースの無線通信技術において、送信端末装置の識別用の信号をデータビット列に含め、データ送信の識別信号の送信に用いる直交リソースを端末装置が自由に決定できる。そのため、端末装置は、予め識別子を取得している場合、基地局装置を発見し、報知チャネルの情報を受信すれば、端末装置固有の制御情報の送受信なく、データ送信が可能となる。その結果、制御情報量を削減でき、システム全体の周波数利用効率の向上を実現でき、多数端末を効率的に収容することができる。
 (第3の実施形態)
 本発明の第3の実施形態では、同一のデータを複数回の送信を行なう場合、各データ送信で識別信号の直交リソースを変える例について説明する。
 本実施形態では、端末装置の構成例は第1の実施形態と同様で図6、7、8、9であり、基地局装置の構成例も第1の実施形態と同様で図10、11、12である。また、端末装置のデータ送信のシーケンスチャートも第1の実施形態と同様で図3もしくは17である。そのため、本実施形態では、異なる処理のみを説明し、同様の処理の説明は省略する。
 第3の実施形態の識別信号とデータ送信の例は図14であり、同一のデータ送信を複数回行なう。その結果、端末装置の上りリンクのデータ送信で要求される所定の品質を満たす。ここで、従来のLTE等では、全ての端末装置がデータ送信から所定の時間で再送のデータ送信を行なう。しかしながら、コンテンションベース(Grant Free)の無線通信技術では、全ての端末装置が初送と再送の時間、もしくは再送と再送の時間が同じ場合には図18のようになる。ここで、本実施形態では、最初のデータ伝送を初送と呼び、同一データの2回目以降のデータ伝送を再送と呼んでいるが、初送と再送の使用の間に端末装置がACK/NACKの受信を行なわなくても良い。本実施形態では同一のデータの繰り返し伝送として説明するが、本例に限定されるものではなく、データ伝送毎にACK/NACKの受信があっても良い。図18より、端末装置1と2のデータ発生後にコンテンションベースの最初のデータ伝送である初送が同一のタイミングの場合、同一データを複数回送信時も常にデータ衝突が発生する。基本的には、データ衝突が発生しても信号検出可能であるが、非常に多い端末数のデータ信号が衝突してしまうと、信号検出が難しくなる。そこで、図19のように端末装置単位で送信間隔をずらすことで衝突確率を下げることが可能となり、通信品質の改善が可能になる。図19の例では、端末装置2が端末装置1の2倍の送信周期としているが、このような整数倍とするのではなく、送信周期を互いに素となるサブフレーム数として衝突確率を下げても良いし、その他のサブフレーム数を選んでも良い。
 次に、図18のように常に衝突するような場合、複数回送信されるデータ信号を受信して合成することで受信品質を高めることが重要であり、識別信号による送信端末識別の精度が重要である。しかしながら、基地局装置が収容している端末数よりも識別信号の直交リソース数の方が少ない場合、直交リソースが重複して割り当てられることになる。特に、データ送信が衝突した端末装置が同一の識別信号の直交リソースを使用している場合は送信端末装置の識別が困難となる。そのため、各端末装置が固定の直交リソースを使い続けると、図18のような全データ送信で衝突し、送信端末装置が失敗し続ける状況になり、通信品質が大幅に劣化してしまう。そこで、各端末装置は、複数回のデータ送信を行なう場合、送信毎に識別信号の直交リソースを変えることで送信端末識別の精度を向上させることができる。具体的には、基地局装置が送信するコンフィグレーションの制御情報に(I、I、IOCC、ICS、IRF)を一意に示す情報が含まれ、(I、I、IOCC、ICS、IRF)がデータ送信毎に異なるパラメータとなるようなホッピングパターンもコンフィグレーションの制御情報として含める。その結果、初送で識別信号の直交リソースが同一であったとしても、再送では異なる直交リソースにホッピングすることで、常に直交リソースが衝突し続けることがなくなる。ホッピングは、(I、I、IOCC、ICS、IRF)のパラメータの中で少なくとも1つを変更しても良いし、全てを変更しても良い。例えば、Iのみをホッピングする場合、端末装置1はデータ送信毎の識別信号の配置をT1、T2、T3、…としていき、端末装置2はデータ送信毎の識別信号の配置をT1、T3、T5、…としていく等である。また、(IOCC、ICS、IRF)の組み合わせをホッピングする場合、IOCC∈{0、1}、1≦ICS≦12、IRF∈{0、1}の範囲とし、端末装置1はデータ送信毎に(0、1、0)、(1、2、1)、(0、3、0)、…とホッピングさせ、端末装置1はデータ送信毎に(0、1、0)、(0、3、1)、(1、5、0)、…とホッピングさせても良い。また、同一データの送信回数とホッピングパターンを関連付けるのではなく、データ送信するサブフレーム番号と関連付けても良く、その場合は図19のようなデータ送信時にも適切な設定ができる。データ送信するサブフレーム番号と識別信号の直交リソースを関連付けてホッピングする場合、基地局装置は端末装置が何回目のデータ伝送を知る必要がなく、識別信号を検知した直交リソースとサブフレーム番号から送信端末装置を容易に識別できる。
 本実施形態における基地局装置が送信するコンフィグレーションの制御情報について、説明する。コンフィグレーションの制御情報は、図3のS200のように予め送信する。このコンフィグレーションの制御情報には、識別信号を送信する直交リソースを示す情報、直交リソースのホッピングパターンが含まれる。さらに、このコンフィグレーションの制御情報には、データ送信に用いる周波数リソース(周波数位置、帯域幅)、MCS(Modulation and Coding Scheme)、データ送信を複数回送信する場合は送信回数、HARQの適用有無、送信電力制御のクローズドループの制御値やセル固有と端末装置固有の目標受信、フラクショナル送信電力制御のパラメータ、データ送信サブフレーム(図5のUL送信のサブフレーム)でDMRSの送信の有無、データ送信サブフレームでDMRSを送信する場合のDMRSのCSパターンαとOCCパターン[w(0)、w(1)]、CSIの送信有無、SRSの送信有無等が含まれても良い。ただし、端末装置の状態や能力、QoSに応じて、基地局装置がコンフィグレーションの制御情報を送信しても良い。この場合のデータ送信のシーケンスチャートの一例を図17に示す。図17では、基地局装置は、端末装置の状態や能力、QoSによって変わらないコンフィグレーションの制御情報を送信する(S300)。例えば、CSIの送信有無、データ送信サブフレームでDMRSの送信の有無、SRSの送信有無等がある。次に、端末装置は、送信データや端末装置の情報を送信する(S301)。例えば、端末装置が送信するデータサイズやデータレート、送信品質(必要とされるパケット誤り率)、パスロス値等がある。基地局装置は、端末装置より送信データや端末装置の情報を受信後、端末装置の状態や能力、QoSに応じたコンフィグレーションの制御情報を送信する(S302)。例えば、周波数リソース(周波数位置、帯域幅)、MCS、セル固有と端末装置固有の目標受信等がある。また、端末装置が複数の送信アンテナを有する場合、送信レイヤ数(ランク数)、レイヤ毎のMCS、プリコーディング情報も含まれても良い。
 本実施形態では、FDDの例について説明したが、TDDにも適用可能である。なお、同一データを複数回送信する場合に、基地局装置で同一データ送信であることを識別可能とするために、データ信号にプロセス番号を付加して送信しても良い。なお、端末装置が同一のデータ送信を複数回行なうかの情報や送信回数は、端末装置からQoSとして通知しても良いし、基地局装置がセル単位で決定しても良い。
 以上のように本実施形態では、コンテンションベースの無線通信技術において、同一のデータを複数回送信し、複数のデータ送信における衝突確率の低下、直交リソースのホッピングによる識別信号の検出精度向上等を実現できる。その結果、受信品質の向上やシステム全体の周波数利用効率の向上を実現でき、多数端末を効率的に収容することができる。
 本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)等の揮発性メモリあるいはフラッシュメモリ等の不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。
 なお、本発明に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、例えば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、ディジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んで良い。汎用用途プロセッサは、マイクロプロセッサであっても良いし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていても良いし、アナログ回路で構成されていても良い。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明は当該技術による新たな集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器等の端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 なお、本国際出願は、2016年4月19日に出願した日本国特許出願第2016-083426号に基づく優先権を主張するものであり、日本国特許出願第2016-083426号の全内容を本国際出願に援用する。
 10…基地局装置
 20-1~20-Nm…端末装置
 101…誤り訂正符号化部
 102…変調部
 103…送信信号生成部
 104…信号多重部
 105…IFFT部
 106…識別信号多重部
 107…送信電力制御部
 108…送信処理部
 109…送信アンテナ
 110…受信アンテナ
 111…無線受信部
 112…制御情報検出部
 113…送信パラメータ記憶部
 114…トラフィック管理部
 1030…位相回転部
 1031…DFT部
 1032…信号割当部
 1033…位相回転部
 1034…インターリーブ部
 1041…参照信号多重部
 1042…参照信号生成部
 1043…制御情報多重部
 1044…制御情報生成部
 201-1~201-N…受信アンテナ
 202-1~202-N…受信処理部
 203-1~203-N…識別信号分離部
 204-1~204-N…FFT部
 205-1~205-N…信号分離部
 206…信号検出部
 207…伝搬路推定部
 208…制御情報生成部
 209…制御情報送信部
 210…送信アンテナ
 211…送信端末識別部
 2051…参照信号分離部
 2052…制御情報分離部
 2053…割当信号抽出部
 2054…制御情報検出部
 2061…キャンセル処理部
 2062…等化部
 2063-1~2063-U…IDFT部
 2064-1~2064-U…復調部
 2065-1~2065-U…復号部
 2066-1~2066-U…シンボルレプリカ生成部
 2067…ソフトレプリカ生成部

Claims (12)

  1.  受信装置に対してデータ信号を送信する送信装置であって、
     前記受信装置が送信する送信許可の制御情報の受信をせずに前記データ信号を送信する送信処理部と、識別信号を直交リソースに多重する識別信号多重部と、前記データ信号の送信に係る送信パラメータを予め受信する制御情報受信部とを有し、
     前記送信処理部は、前記送信パラメータに基づいて同一の前記データ信号を繰り返し送信する場合に、前記識別信号とデータ信号を送信することを特徴とする送信装置。
  2.  前記送信処理部が同一データを繰り返し送信する場合、前記識別信号を多重する前記直交リソースを前記データ送信毎に異なる直交リソースにすることを特徴とする請求項1記載の送信装置。
  3.  同一データの送信回数により前記識別信号を多重する前記直交リソースを決定することを特徴とする請求項2記載の送信装置。
  4.  同一データを送信するサブフレーム番号により前記識別信号を多重する前記直交リソースを決定することを特徴とする請求項2記載の送信装置。
  5.  前記直交リソースは、OFDMシンボル、サブキャリア、OCC系列、CSパターン、IFDMAパターンの少なくとも1つの要素により設定されることを特徴とする請求項1記載の送信装置。
  6.  前記データ送信に係る送信パラメータには、前記送信装置で要求される前記データ送信の信頼度や遅延時間に応じて設定される前記同一データの送信回数が含まれることを特徴とする請求項1記載の送信装置。
  7.  複数の送信装置のデータ信号を受信する受信装置であって、
     送信許可の制御情報の送信をせずに送信される前記データ信号を受信する第一のデータ受信と前記送信許可の制御情報の送信をし、前記制御情報に基づいて送信される前記データ信号を受信する第二のデータ受信が可能な受信処理部と、前記データと共に受信する識別信号を直交リソースから分離する識別信号分離部と、前記識別信号からデータ送信をした前記送信装置を識別する送信端末識別部と、前記データ送信に用いる送信パラメータを予め送信する制御情報送信部と、を有し、
     前記受信処理部が前記送信パラメータに基づいて繰り返し送信される同一の前記データを前記第一のデータ受信する場合に前記識別信号とデータ信号を受信することを特徴とする受信装置。
  8.  前記受信処理部が前記送信装置より繰り返し送信された同一データを受信する場合、前記送信端末識別部は前記データ受信毎に異なる前記直交リソースで多重された前記識別信号から前記送信装置を識別することを特徴とする請求項7記載の受信装置。
  9.  前記第二のデータ受信では、ACK/NACKを送信し、前記第一のデータ受信では、ACK/NACKを送信しないことを特徴とする請求項7記載の受信装置。
  10.  前記受信装置は、送信装置から送信された前記データ信号を検出する信号検出部と、を有し、
     前記第一のデータ受信では、繰り返し送信される同一データを受信する中で前記信号検出部が前記データ信号を正しく受信したサブフレームから所定の時間内にACK/NACKを送信することを特徴とする請求項7記載の受信装置。
  11.  受信装置に対してデータ信号を送信する送信装置の通信方法であって、
     前記受信装置が送信する送信許可の制御情報の受信をせずに前記データ信号を送信する送信ステップと、識別信号を直交リソースに多重する多重ステップと、前記データ信号の送信に係る送信パラメータを予め受信する受信ステップとを有し、
     前記送信ステップは、前記送信パラメータに基づいて同一の前記データ信号を繰り返し送信する場合に、前記識別信号とデータ信号を送信することを特徴とする通信方法。
  12.  複数の送信装置のデータ信号を受信する受信装置の通信方法であって、
     送信許可の制御情報の送信をせずに送信される前記データ信号を受信する第一のデータ受信と前記送信許可の制御情報の送信をし、前記制御情報に基づいて送信される前記データ信号を受信する第二のデータ受信が可能な受信ステップと、前記データと共に受信する識別信号を直交リソースから分離する識別信号分離ステップと、前記識別信号からデータ送信をした前記送信装置を識別する送信端末識別ステップと、前記データ送信に用いる送信パラメータを予め送信する制御情報送信ステップと、を有し、
     前記受信ステップにおいて前記送信パラメータに基づいて繰り返し送信される同一の前記データを前記第一のデータ受信する場合に前記識別信号とデータ信号を受信することを特徴とする通信方法。
PCT/JP2017/006488 2016-04-19 2017-02-22 送信装置、受信装置および通信方法 WO2017183281A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/090,244 US11005601B2 (en) 2016-04-19 2017-02-22 Transmission device, reception device, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-083426 2016-04-19
JP2016083426A JP2019106564A (ja) 2016-04-19 2016-04-19 送信装置および受信装置

Publications (1)

Publication Number Publication Date
WO2017183281A1 true WO2017183281A1 (ja) 2017-10-26

Family

ID=60116014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006488 WO2017183281A1 (ja) 2016-04-19 2017-02-22 送信装置、受信装置および通信方法

Country Status (3)

Country Link
US (1) US11005601B2 (ja)
JP (1) JP2019106564A (ja)
WO (1) WO2017183281A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107508652A (zh) * 2016-06-14 2017-12-22 索尼公司 用于交织多址接入通信的电子设备和方法
US10645730B2 (en) 2017-04-06 2020-05-05 Huawei Technologies Co., Ltd. Flexible grant-free resource configuration signaling
CN111200571B (zh) * 2018-11-19 2021-10-01 华为技术有限公司 一种信号传输方法及装置
CN113678480B (zh) * 2019-04-30 2024-05-14 富士通株式会社 边链路数据的发送和接收方法以及装置
US11621799B2 (en) * 2020-05-08 2023-04-04 Qualcomm Incorporated Peak-to-average power ratio reduction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180092A (ja) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd インタリーブ装置およびインタリーブ方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100850821B1 (ko) * 2006-10-25 2008-08-06 엘지전자 주식회사 다중 접속을 지원하는 디지털 데이터 송수신 방법 및 장치
KR101603338B1 (ko) * 2008-08-11 2016-03-15 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
US8767644B2 (en) * 2010-01-15 2014-07-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for contention-based granting in a wireless communication network
EP3107228B1 (en) * 2014-02-10 2020-11-11 LG Electronics Inc. Signal transmitting method and device for device-to-device (d2d) communication in wireless communication system
WO2016031115A1 (ja) * 2014-08-27 2016-03-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局、送信方法及び受信方法
US10541791B2 (en) * 2014-11-25 2020-01-21 Qualcomm Incorporated Techniques for reducing latency in a wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180092A (ja) * 2004-12-21 2006-07-06 Matsushita Electric Ind Co Ltd インタリーブ装置およびインタリーブ方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CMCC ET AL.: "WF on multiple access for NR", 3GPP TSG-RAN WG1#84B R1-163656, 15 April 2016 (2016-04-15), pages 4, XP051088732 *
ERICSSON: "Random access for Rel-13 low complexity and enhanced coverage UEs", 3GPP TSG- RAN WG2#91 R2-153717, 14 August 2015 (2015-08-14), pages 2.1, XP050993722 *
HUAWEI, HISILICON: "Contention based uplink transmission", 3GPP TSG-RAN WG2#91BIS R2-154191, 26 September 2015 (2015-09-26), pages 2, XP051004774 *
INTEL CORPORATION: "Multiple access schemes for new radio interface", 3 GPP TSG-RAN WG1#84B R1-162385, 2 April 2016 (2016-04-02), pages 3, XP051080164 *

Also Published As

Publication number Publication date
US20190116004A1 (en) 2019-04-18
JP2019106564A (ja) 2019-06-27
US11005601B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
US11109267B2 (en) Base station apparatus, terminal apparatus, and communication method for these apparatuses
WO2017175502A1 (ja) 受信装置および送信装置
WO2017195654A1 (ja) 送信装置、受信装置および通信方法
WO2019138912A1 (ja) 基地局装置および端末装置
US11026251B2 (en) Base station apparatus, terminal apparatus, and communication method therefor
CN111165061A (zh) 无线通信系统中处理用于随机接入信道过程的带宽部分配置的装置和方法
JP7199184B2 (ja) 通信システムおよび通信装置
US20210243784A1 (en) Terminal apparatus
WO2017183281A1 (ja) 送信装置、受信装置および通信方法
WO2017175501A1 (ja) 送信装置および受信装置
US11012111B2 (en) Transmitter and communication method
US20210315002A1 (en) Terminal apparatus and base station apparatus
EP4195602A1 (en) Terminal device, base station device, and communication method
WO2017195656A1 (ja) 送信装置、受信装置および通信方法
EP4014370A1 (en) Group hopping enhancement for base sequences
JP2019125823A (ja) 送信装置および受信装置
JP2024081813A (ja) 端末装置、基地局装置、および、通信方法
WO2023021864A1 (en) User equipments and methods
WO2024070993A1 (en) User equipments, base stations and methods
WO2022249718A1 (en) User equipments, base stations, and methods

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785626

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP