WO2017181998A1 - 一种信号传输方法和装置、存储介质 - Google Patents

一种信号传输方法和装置、存储介质 Download PDF

Info

Publication number
WO2017181998A1
WO2017181998A1 PCT/CN2017/081492 CN2017081492W WO2017181998A1 WO 2017181998 A1 WO2017181998 A1 WO 2017181998A1 CN 2017081492 W CN2017081492 W CN 2017081492W WO 2017181998 A1 WO2017181998 A1 WO 2017181998A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
signal
channel
module
alarm
Prior art date
Application number
PCT/CN2017/081492
Other languages
English (en)
French (fr)
Inventor
陈中盟
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Publication of WO2017181998A1 publication Critical patent/WO2017181998A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end

Definitions

  • the present invention relates to signal transmission technologies in the field of optical communications, and in particular, to a signal transmission method and apparatus, and a storage medium.
  • optical channel transport uint (OTU) information has gradually increased to 100 Gbit/s and higher.
  • a high transmission rate means that the bit error rate of the channel increases, and the transmission reliability of the communication network decreases.
  • the communication network will increase the redundant transmission channel, and when there is a problem with one channel, it can switch to another channel with no failure.
  • the mechanism for switching a transmission channel is mainly based on the entire transmission network, and the information of each transmission node is integrated to perform transmission channel switching.
  • the primary transmission channel fails, it switches to the alternate transmission channel; the channel switching is based on Forward Error Correction (FEC) information of each node in the transmission channel, and these error correction information are transmitted in an in-band or out-of-band manner.
  • FEC Forward Error Correction
  • the receiving end evaluates all FEC error correction information on each channel to obtain the optimal transmission channel.
  • the embodiments of the present invention provide a signal transmission method and apparatus, a storage medium, a communication network protection mechanism that shortens the recovery time of a faulty transmission channel, and reduces network operation and maintenance costs.
  • the embodiment of the invention provides a signal transmission method, and the method includes:
  • the M signals are output.
  • the determining a channel failure indication of each of the N signals includes:
  • the channel failure indication according to each of the signals selects M signals from the N signals, including:
  • the method further includes:
  • the N third signals are output.
  • the outputting the N third signals includes:
  • the third signals are framing, and the N third signals after the framing are subjected to photoelectric conversion processing, and the N third signals after the photoelectric conversion processing are output.
  • An embodiment of the present invention provides a signal transmission apparatus, where the apparatus includes: N receiving units, a determining unit, and a first selecting unit, where
  • the N receiving units are configured to receive N signals transmitted by the signal input channel;
  • the determining unit is configured to determine a channel failure indication of each of the N signals
  • the first selecting unit is configured to select M signals from the N signals according to a channel failure indication of each of the signals, and further output the M signals.
  • the determining unit includes: a first photoelectric conversion module, a first framing module, a decoding module, an overhead extraction module, and a generation module, where
  • the first photoelectric conversion module is configured to perform photoelectric conversion on each of the N signals, and detect each of the N signals, when detecting the first signal of the N signals When the data is lost, generating a signal loss alarm of the first signal, deleting a channel that generates the signal loss alarm, and the first signal is any one of the N signals;
  • the first framing module is configured to frame each of the N signals after photoelectric conversion, and the first signal of the N signals cannot be framed within a preset time. Generating a framing alarm of the first signal, and deleting a channel that generates the framing alarm;
  • the decoding module is configured to decode each of the N signals after the framing, and determine an error correction information statistic value of each of the N signals, where the N signals are When the statistical value of the error correction information of the first signal is greater than the preset threshold, the error correction alarm of the first signal is generated, and the channel for generating the error correction alarm is deleted;
  • An overhead extraction module configured to perform overhead extraction on each of the decoded N signals, and when the maintenance signal indication is generated, generate a channel deletion indicated by the maintenance signal;
  • the generating module is configured to generate, according to the signal loss alarm, the framing alarm, the error correction alarm, and the maintenance signal indication of each of the N signals Channel failure indication for each signal.
  • the apparatus further includes: a channel quality decision unit, configured to determine control information according to the channel failure indication of each of the signals;
  • the first selecting unit is specifically configured to select M signals from the N signals according to the control information.
  • the device further includes: a second selection unit, a forwarding unit, and N sending units,
  • the second selecting unit is configured to select M third signals from the M signals and the input M second signals, where the selected M third signals comprise: the M signals or the Input M second signals;
  • the forwarding unit is configured to convert the M third signals into N third signals
  • the N sending units are configured to output the N third signals.
  • the sending unit includes: an overhead insertion module, an encoding module, a scrambling module, a second framing module, and a second photoelectric conversion module, where
  • the overhead insertion module is configured to perform overhead insertion on the N third signals
  • the encoding module is configured to encode the N third signals after the overhead insertion
  • the scrambling module is configured to scramble the encoded N third signals
  • a second framing module configured to frame the scrambled N third signals
  • the second photoelectric conversion module is configured to perform photoelectric conversion processing on the N third signals after the framing, and output the N third signals after the photoelectric conversion processing.
  • Embodiments of the present invention provide a storage medium including a set of instructions that, when executed, cause at least one processor to perform operations including:
  • N is an integer greater than or equal to 0;
  • the M signals are output; M is an integer greater than or equal to zero.
  • Embodiments of the present invention provide a signal transmission method and apparatus, a storage medium, receiving N signals transmitted by a signal input channel, determining a channel failure indication of each of the N signals, and a channel according to each of the signals.
  • the failure indication selects M signals from the N signals; outputs the M signals.
  • the signal transmission method and device and the storage medium provided by the embodiments of the present invention overcome the defects of in-band transmission or out-of-band transmission mode for optimal transmission channel decision, reduce manual intervention of network maintenance, and cost of optical signal transmission device, and can receive preferentially. Send the transmission signal in parallel.
  • FIG. 1 is a schematic flowchart 1 of a signal transmission method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram 1 of a signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a function of a signal transmission device receiving a single channel in a direction according to an embodiment of the present disclosure
  • FIG. 4 is a second schematic flowchart of a signal transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a function of a signal transmission device transmitting a single channel according to an embodiment of the present invention
  • FIG. 6 is a second schematic diagram of a signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram 1 of a signal transmission apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram 2 of a signal transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram 3 of a signal transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 4 of a signal transmission apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a transmission network according to an embodiment of the present invention.
  • the embodiment of the invention provides a signal transmission method. As shown in FIG. 1 , the method may include:
  • Step 101 The signal transmission device receives N signals transmitted by the signal input channel; wherein N is an integer greater than or equal to 0.
  • the signal transmission method provided by the embodiment of the present invention is applied to a signal transmission device.
  • the signal transmission device may include: N receiving channels, configured to connect external N optical signal input channels, and receive The outer N optical signals are input to the N optical signals transmitted by the channel.
  • Step 102 The signal transmission device determines a channel failure indication of each of the N signals.
  • the signal loss alarm, the framing alarm, the maintenance signal indication, and the FEC error correction alarm of each receiving channel are combined into a channel failure indication and transmitted to the processor of the signal transmission apparatus.
  • the determining a channel failure indication of each of the N signals may include:
  • FIG. 3 it is a functional block diagram of a signal transmission device receiving a single channel, completing the function of converting an optical signal into an electrical signal, and simultaneously deleting an optical signal loss alarm, a frame frame alarm, an FEC error correction alarm, and a maintenance signal indication. Merging into a generated channel failure indication and transmitting to the processor for channel quality decision.
  • the photoelectric converter converts the optical signal into an electrical signal
  • the framing device completes the framing function of the electrical signal, and generates a framing alarm at the same time.
  • it enters the descrambling module, and the descrambling module can perform descrambling through the CPU configuration.
  • the FEC decoding module completes the error correction statistics function, and generates an FEC error correction alarm according to whether the error correction statistic value is greater than the threshold value configured by the CPU, and the overhead extraction module completes whether the signal is a maintenance signal detection, according to The detection generates a maintenance signal indication.
  • FEC Forward Error Correction
  • forward error correction code which is a method to increase the credibility of data communication.
  • Step 103 The signal transmission device selects M signals from the N signals according to the channel failure indication of each of the signals; M is an integer greater than or equal to 0.
  • the processor of the signal transmission device determines the control information according to the channel failure indication of each of the signals, and transmits the control information to the N:M selector according to the processor, so as to select M optimal receptions from the N receiving channels.
  • Channel function that is, preferential reception.
  • Step 104 The signal transmission device outputs the M signals.
  • the signal transmission device directly outputs M optimal reception channels corresponding to the M signals selected by the N:M selector.
  • the signal transmission method provided by the embodiment of the invention overcomes the defects of using the FEC error correction information in-band transmission or out-band transmission mode to perform optimal transmission channel decision, reduces manual intervention of network maintenance, and costs of the optical signal transmission device, and can preferentially receive Send the transmission signal in parallel.
  • the embodiment of the invention provides a signal transmission method. As shown in FIG. 4, the method may include:
  • Step 201 The signal transmission device receives N signals transmitted by the signal input channel.
  • the signal transmission apparatus includes: N receiving channels, which are used for connecting external N optical signal input channels, and can simultaneously transmit M signals.
  • Source in the receiving direction, the input N optical signal transmission channels transmit M optical signal sources, the processor selects preferentially according to the transmission channel information occupied by each signal source, selects M letters to recover M electrical signals .
  • Step 202 The signal transmission device determines a channel failure indication of each of the N signals.
  • the signal loss alarm, the framing alarm, the maintenance signal indication, and the FEC error correction alarm of each receiving channel are combined into a channel failure indication and transmitted to the processor of the signal transmission apparatus.
  • the processor performs channel quality decision on the channel according to the severity of the alarm, and specifically includes: first checking the optical signal loss alarm, as shown in FIG. 3, when the optical converter detects that the optical signal is lost, an optical signal loss alarm is generated, which will generate The channel of the optical signal loss alarm is deleted; secondly, the frame frame alarm is checked, and the framer will frame the converted electrical signal to find the special word of the frame header. If the frame cannot be set for 3ms, the framed alarm LOF is generated.
  • the channel that generates the framing alarm LOF is deleted; then the FEC error correction information is viewed, the FEC decoding decodes the framing electrical signal, and the error correction information is counted, and according to whether the error correction statistic is greater than the CPU configured threshold, if If the threshold is greater than the threshold, the FEC error correction alarm is generated, indicating that the channel error rate is high, and the channel for generating the FEC error correction alarm is deleted. Then, the overhead of the frame after the FEC error correction is extracted, and the overhead extraction module performs overhead on the decoded electrical signal. Extract, use a 3-frame stable way to get a credible cost value, if produced The maintenance signal indicates the alarm, and the channel that generates the maintenance signal alarm is deleted. Finally, from the remaining channels, according to the FEC error correction statistics, the channel with the lowest bit error rate is selected as the optimal receiving channel to implement the preferred receiving channel.
  • Step 203 The signal transmission device selects M signals from the N signals according to the channel failure indication of each of the signals.
  • the processor of the signal transmission device determines the control information according to the channel failure indication of each of the signals, and transmits the control information to the N:M selector according to the processor, so as to select M optimal receptions from the N receiving channels.
  • Channel function that is, preferential reception.
  • Step 204 The signal transmission device selects M third signals from the M signals and the input M second signals.
  • the selected M third signals include: the M signals or the input M second signals.
  • the signal transmission device transmission direction includes: N transmission channels, connecting N external optical fiber transmission channels, and 2*M input signal sources in the transmission direction, when the relay mode enable is 0.
  • the signal source in the sending direction selects an external input of M electrical signals; when the relay mode enable is 1, the signal source in the transmitting direction selects the M electrical signals selected in the receiving direction, and the signal source is completed by the 2M:M selector.
  • Select, 2M: the output of the M selector is sent to the M:N transponder, and the M:N transponder forwards the input signal to the N transmission channels simultaneously, thereby completing the parallel transmission of the M input signals to the N channels.
  • Step 205 The signal transmission device converts the M signals into N third signals, and outputs the N third signals.
  • the outputting the N third signals may include:
  • the third signals are framing, and the N third signals after the framing are subjected to photoelectric conversion processing.
  • the N third signals after the photoelectric conversion processing are output.
  • the M:N transponder of the signal transmission device converts the M signals into N third signals, and the M:N transponder forwards the N third signals to the N transmission channels, on each of the transmission channels. Process the signal.
  • the signal transmission device sends a functional block diagram of a single channel, and the overhead insertion module allows the user to insert a corresponding overhead value through the CPU configuration.
  • the FEC encoding module completes the encoding of the signal, improves the transmission distance of the signal, and enters the encoding after the encoding.
  • the scrambling module increases the bit flip rate of the signal by scrambling, and finally generates an optical signal output through the electro-optical converter.
  • the signal transmission device transmission direction includes: N transmission channels, connecting N external optical fiber transmission channels, and two input signal sources in the transmission direction, when the relay mode enable is 0,
  • the signal source in the sending direction selects an externally input electrical signal; when the relay mode enable is 1, the signal source in the transmitting direction selects the signal rx_data_i selected in the receiving direction, where i is a value from 1 to N,
  • the selection of the source is completed by the 2:1 selector, the output of the 2:1 selector is sent to the 1:N transponder, and the 1:N transponder forwards the input signal to the N transmission channels simultaneously, thereby inputting 1 input.
  • the signals are sent in parallel to the N channels, ie in parallel.
  • the signal transmission device of FIG. 6 has the same optical signal source for transmission on the N channels in the receiving direction, preferentially selects a transmission channel, and forwards the input 1 electrical signal in the transmission direction, and transmits the signal to the N optical channels.
  • the transmission device shown in FIG. 1 is a device that preferentially receives and transmits in parallel to the same signal source signal, and adjusts the number of channels selected by the reception direction to be preferentially received and the number of input electrical signals input in the transmission direction to be M, wherein When N is greater than or equal to 2*M, the signal transmission device shown in FIG. 2 is obtained.
  • the signal transmission method provided by the embodiment of the invention overcomes the defects of using the FEC error correction information in-band transmission or out-band transmission mode to perform optimal transmission channel decision, reduces manual intervention of network maintenance, and costs of the optical signal transmission device, and can preferentially receive, The transmission signal is transmitted in parallel.
  • the embodiment of the present invention provides a signal transmission apparatus 1.
  • the apparatus 1 includes: N receiving units 10, a determining unit 11, and a first selecting unit 12, wherein
  • the N receiving units 10 are configured to receive N signals transmitted by a signal input channel
  • the determining unit 11 is configured to determine a channel failure indication of each of the N signals
  • the first selecting unit 12 is configured to select M signals from the N signals according to a channel failure indication of each of the signals, and also output the M signals.
  • the determining unit 11 includes: a first photoelectric conversion module 110, a first framing module 111, a decoding module 112, an overhead extraction module 113, and a generation module 114, where
  • the first photoelectric conversion module 110 is configured to perform photoelectric conversion on each of the N signals, and detect each of the N signals, when detecting the first of the N signals When the signal is lost, generating a signal loss alarm of the first signal, deleting a channel for generating the signal loss alarm, and the first signal is any one of the N signals;
  • the first framing module 111 is configured to frame each of the N signals after photoelectric conversion, and the first signal of the N signals cannot be framed within a preset time Generating a framing alarm of the first signal, and deleting a channel that generates the framing alarm;
  • the decoding module 112 is configured to decode each of the N signals after the framing, and determine an error correction information statistic value of each of the N signals, when the N signals When the statistic value of the error correction information of the first signal is greater than the preset threshold, the error correction alarm of the first signal is generated, and the channel for generating the error correction alarm is deleted;
  • the cost extraction module 113 is configured to perform overhead extraction on each of the decoded N signals, and when the maintenance signal indication is generated, the channel indicated by the maintenance signal is deleted.
  • the generating module 114 is configured to generate the N according to the signal loss alarm, the framing alarm, the error correction alarm, and the maintenance signal indication of each of the N signals A channel failure indication for each of the signals.
  • the apparatus further includes: a channel quality decision unit 13 configured to determine control information according to the channel failure indication of each of the signals;
  • the first selecting unit 12 is specifically configured to select M signals from the N signals according to the control information.
  • the apparatus further includes: a second selecting unit 14, a forwarding unit 15, and N sending units 16,
  • the second selecting unit 14 is configured to select M third signals from the M signals and the input M second signals, where the selected M third signals comprise: the M signals or The input M second signals;
  • the forwarding unit 15 is configured to convert the M third signals into N third signals
  • the N sending units 16 are configured to output the N third signals.
  • the sending unit 16 includes: an overhead insertion module 160, an encoding module 161, a scrambling module 162, a second framing module 163, and a second photoelectric conversion module 164, where
  • the overhead insertion module 160 is configured to perform overhead insertion on the N third signals.
  • the encoding module 161 is configured to encode the N third signals after the overhead insertion
  • the scrambling module 162 is configured to scramble the encoded N third signals
  • a second framing module 163, configured to frame the scrambled N third signals
  • the second photoelectric conversion module 164 is configured to perform photoelectric conversion processing on the N third signals after the framing, and output the N third signals after the photoelectric conversion processing.
  • the signal transmission apparatus overcomes the defect of using the FEC error correction information in-band transmission or out-band transmission mode to perform optimal transmission channel decision, and reduces network maintenance and manual work. Pre- and the cost of the optical signal transmission device can be preferentially received and transmitted in parallel.
  • An embodiment of the present invention provides a transmission network, including: the signal transmission apparatus according to Embodiment 3 above.
  • the use of such a transmission network avoids the transmission of the individual node FEC error correction information in the transmission network, and can only determine the optimal transmission channel at the channel end point using the transmitted node FEC error correction information.
  • the signal transmission apparatus may constitute a transmission network structure as shown in FIG.
  • the relay mode enable of the signal transmission device 31 in the transmission network structure is 0, and the external electrical signal input is forwarded to the N optical signal channels; the intermediate transmission node signal transmission device 32 in the transmission network structure After the mode enable is 1, a preferred one of the N input optical signal channels is selected, and the selected transport channel is sent to the N fiber channels for transmission in parallel to complete the relay function;
  • the relay mode enable of the signal transmission device 33 is 0, and the conversion of the input N fiber channels into electrical signal outputs is completed.
  • the signal transmission device 31 and the signal transmission device 32 are connected by N fiber channels, and it is assumed that i fibers are interrupted to transmit optical signals, wherein i ⁇ N, the channel quality decision module in the signal transmission device 32 According to the optical signal loss alarm, the i-fiber channel that is interrupted is automatically culled, and the optimal channel is continuously selected according to the framing alarm, the maintenance signal indication, and the FEC error correction information from the remaining Ni root channels, so that the entire network is not Interrupt signal transmission, such network transmission channel switching does not need to transmit network failure information (for example, FEC error correction information) to the end point of the channel through the entire network to determine the optimal transmission channel, but automatically switches to the optimal transmission at the fault point.
  • the channel thus, overcomes the drawbacks of in-band and out-of-band transmission of FEC error correction information.
  • the optical signal transmission network formed by the optical signal transmission device of the preferred receiving parallel transmission according to the present invention can transmit channel quality information (such as FEC error correction information) within the network without adding extra bandwidth as compared with the prior art;
  • channel quality information such as FEC error correction information
  • the reliability of the FEC error correction information in the high bit error rate channel is degraded.
  • the unreliable FEC error correction information is used to determine the optimal channel, which is easy to cause misjudgment, but is reduced.
  • the reliability of the protection network overcomes the problem that the network protection mechanism fails when the channel of the error correction signal of the out-of-band transmission FEC fails; at the same time, the optical transmission device automatically switches the function, reduces the manual intervention of the network maintenance, and the cost of the optical signal transmission device , reducing network failure recovery time.
  • Embodiments of the present invention also provide a storage medium including a set of instructions that, when executed, cause at least one processor to perform operations including:
  • N is an integer greater than or equal to 0;
  • the M signals are output; M is an integer greater than or equal to zero.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • Embodiments of the present invention disclose a signal transmission method and apparatus, a storage medium, receiving N signals transmitted by a signal input channel, and determining a channel failure indication of each of the N signals; The channel failure indication selects M signals from the N signals; outputs the M signals.
  • the signal transmission method and device and the storage medium provided by the embodiments of the present invention overcome the defects of in-band transmission or out-of-band transmission mode for optimal transmission channel decision, reduce manual intervention of network maintenance, and cost of optical signal transmission device, and can receive preferentially. Send the transmission signal in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例公开了一种信号传输方法,包括:接收信号输入信道传输的N个信号;确定所述N个信号中的每一个信号的信道失效指示;根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号;输出所述M个信号。本发明实施例还公开了一种信号传输装置及存储介质。

Description

一种信号传输方法和装置、存储介质
相关申请的交叉引用
本申请基于申请号为201610252301.2、申请日为2016年04月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及光通信领域的信号传输技术,尤其涉及一种信号传输方法和装置、存储介质。
背景技术
随着通信技术的不断发展,承载网市场带宽需求高速增长,光通道传送单元(OTU,optical channel transport uint)信息的传输速率已经逐渐发展到100G bit/s及更高的速率。高传输速率意味着信道的误码率增加,通信网络的传输可靠性下降。为了减少网络的故障率,通信网络会增加冗余的传输信道,当一个信道出现问题时,可以切换到另一条没有故障的信道上传输。
现有技术中,切换传输信道的机制主要是基于整个传输网络,综合各个传输结点的信息进行传输信道切换。当主传输信道出现故障时,切换到备用传输信道;信道切换是基于传输信道中各个结点的前向纠错(FEC,Forward Error Correction)信息,这些纠错信息通过带内或者带外的方式传输到信道的终点接收端,终点接收端评估每个信道上所有FEC纠错信息而得到最优的传输信道。
但是,带内传输时,在高误码率信道下没法保证FEC纠错信息传输的可靠性,到达信道的终点时,不可靠的FEC纠错信息用于决策最优信道容 易引起误判,反而降低了保护网络的可靠性。在带外传输时,虽然专门的信道用于传输各个结点FEC纠错信息的传输速率不高,但信道本身还是存在误码的,传输到信道终点的FEC纠错信息还是存在可靠性问题。而且,由于传输结点上的单个设备没有冗余通道,主传输信道的故障恢复往往需要人力干预,将结点上的单个设备整体切换掉,故障修复时间长、网络运营成本也增大。
发明内容
为解决上述技术问题,本发明实施例提供一种信号传输方法和装置、存储介质,缩短故障传输信道恢复时间、减少网络运营维护成本的通信网络保护机制。
本发明的技术方案是这样实现的:
本发明实施例提供一种信号传输方法,所述方法包括:
接收信号输入信道传输的N个信号;
确定所述N个信号中的每一个信号的信道失效指示;
根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号;
输出所述M个信号。
进一步地,所述确定所述N个信号中的每一个信号的信道失效指示,包括:
对所述N个信号中的每一个信号进行光电转换,检测所述N个信号中的每一个信号,当检测到所述N个信号中的第一信号丢失时,生成所述第一信号的信号丢失告警,将产生所述信号丢失告警的信道删除,所述第一信号为所述N个信号中的任意一个信号;
对光电转换后的所述N个信号中的每一个信号进行定帧,当在预设时间内所述N个信号中的第一信号无法定上帧,生成所述第一信号的定帧告 警,将产生所述定帧告警的信道删除;
对成帧后的所述N个信号中的每一个信号进行解码,确定所述N个信号中的每一个信号的纠错信息统计值,当所述N个信号中的第一信号的纠错信息统计值大于预设阈值时,生成所述第一信号的纠错告警,将产生所述纠错告警的信道删除;
对解码后的所述N个信号中的每一个信号进行开销提取,当产生维护信号指示时,将产生所述维护信号指示的信道删除;
根据所述N个信号中的每一个信号的所述信号丢失告警、所述定帧告警、所述纠错告警和所述维护信号指示生成所述N个信号中的每一个信号的信道失效指示。
进一步地,所述根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号,包括:
根据所述每一个信号的信道失效指示确定控制信息,根据所述控制信息从所述N个信号中选择出M个信号。
进一步地,在所述根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号之后,还包括:
从所述M个信号和输入的M个第二信号中选择出M个第三信号,选择出的M个第三信号包括:所述M个信号或者所述输入的M个第二信号;
将所述M个第三信号转换为N个第三信号;
输出所述N个第三信号。
进一步地,所述输出所述N个第三信号,包括:
将所述N个第三信号进行开销插入,将开销插入后的所述N个第三信号进行编码,将编码后的所述N个第三信号进行加扰,将加扰后的所述N个第三信号进行成帧,将成帧后的所述N个第三信号进行光电转换处理,将光电转换处理后的所述N个第三信号输出。
本发明实施例提供一种信号传输装置,所述装置包括:N个接收单元,确定单元,第一选择单元,其中,
所述N个接收单元,用于接收信号输入信道传输的N个信号;
所述确定单元,用于确定所述N个信号中的每一个信号的信道失效指示;
所述第一选择单元,用于根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号,还用于输出所述M个信号。
进一步地,所述确定单元包括:第一光电转换模块、第一成帧模块,解码模块、开销提取模块、生成模块,其中,
所述第一光电转换模块,用于对所述N个信号中的每一个信号进行光电转换,检测所述N个信号中的每一个信号,当检测到所述N个信号中的第一信号丢失时,生成所述第一信号的信号丢失告警,将产生所述信号丢失告警的信道删除,所述第一信号为所述N个信号中的任意一个信号;
所述第一成帧模块,用于对光电转换后的所述N个信号中的每一个信号进行定帧,当在预设时间内所述N个信号中的第一信号无法定上帧,生成所述第一信号的定帧告警,将产生所述定帧告警的信道删除;
所述解码模块,用于对成帧后的所述N个信号中的每一个信号进行解码,确定所述N个信号中的每一个信号的纠错信息统计值,当所述N个信号中的第一信号的纠错信息统计值大于预设阈值时,生成所述第一信号的纠错告警,将产生所述纠错告警的信道删除;
开销提取模块,用于对解码后的所述N个信号中的每一个信号进行开销提取,当产生维护信号指示时,将产生所述维护信号指示的信道删除;
所述生成模块,用于根据所述N个信号中的每一个信号的所述信号丢失告警、所述定帧告警、所述纠错告警和所述维护信号指示生成所述N个信号中的每一个信号的信道失效指示。
进一步地,所述装置还包括:信道质量决策单元,用于根据所述每一个信号的信道失效指示确定控制信息;
所述第一选择单元,具体用于根据所述控制信息从所述N个信号中选择出M个信号。
进一步地,所述装置还包括:第二选择单元、转发单元、N个发送单元,
所述第二选择单元,用于从所述M个信号和输入的M个第二信号中选择出M个第三信号,选择出的M个第三信号包括:所述M个信号或者所述输入的M个第二信号;
所述转发单元,用于将所述M个第三信号转换为N个第三信号;
所述N个发送单元,用于输出所述N个第三信号。
进一步地,所述发送单元包括:开销插入模块、编码模块、加扰模块、第二成帧模块、第二光电转换模块,其中,
所述开销插入模块,用于将所述N个第三信号进行开销插入;
所述编码模块,用于将开销插入后的所述N个第三信号进行编码;
所述加扰模块,用于将编码后的所述N个第三信号进行加扰;
第二成帧模块,用于将加扰后的所述N个第三信号进行成帧;
第二光电转换模块,用于将成帧后的所述N个第三信号进行光电转换处理,将光电转换处理后的所述N个第三信号输出。
本发明实施例提供一种存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:
接收信号输入信道传输的N个信号;其中,N为大于等于0的整数;
确定所述N个信号中的每一个信号的信道失效指示;
根据所述每一个信号的信道失效指示,从所述N个信号中选择出M个信号;
输出所述M个信号;M为大于等于0的整数。
本发明实施例提供一种信号传输方法和装置、存储介质,接收信号输入信道传输的N个信号;确定所述N个信号中的每一个信号的信道失效指示;根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号;输出所述M个信号。本发明实施例提供的信号传输方法和装置、存储介质,克服了带内传输或者带外传输方式进行最优传输信道决策的缺陷,减少网络维护人工干预、以及光信号传输装置成本,可以择优接收、并行发送传输信号。
附图说明
图1为本发明实施例提供的信号传输方法流程示意图一;
图2为本发明实施例提供的信号传输装置示意图一;
图3为本发明实施例提供的信号传输装置接收方向单个信道的功能示意图;
图4为本发明实施例提供的信号传输方法流程示意图二;
图5为本发明实施例提供的信号传输装置发送方向单个信道的功能示意图;
图6为本发明实施例提供的信号传输装置示意图二;
图7为本发明实施例提供的信号传输装置结构示意图一;
图8为本发明实施例提供的信号传输装置结构示意图二;
图9为本发明实施例提供的信号传输装置结构示意图三;
图10为本发明实施例提供的信号传输装置结构示意图四;
图11为本发明实施例提供的传输网络示例图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述。
实施例一
本发明实施例提供一种信号传输方法,如图1所示,该方法可以包括:
步骤101、信号传输装置接收信号输入信道传输的N个信号;其中,N为大于等于0的整数。
具体的,本发明实施例提供的信号传输方法应用于信号传输装置,如图2所示,该信号传输装置可以包括:N个接收信道,用于连接外部的N个光信号输入信道,并接收外部的N个光信号输入信道传输的N个光信号。
步骤102、信号传输装置确定所述N个信号中的每一个信号的信道失效指示。
其中,每个接收信道的信号丢失告警、定帧告警、维护信号指示、FEC纠错告警合并成信道失效指示传送给信号传输装置的处理器。
具体的,所述确定所述N个信号中的每一个信号的信道失效指示,可以包括:
对所述N个信号中的每一个信号进行光电转换,检测所述N个信号中的每一个信号,当检测到所述N个信号中的第一信号丢失时,生成所述第一信号的信号丢失告警,将产生所述信号丢失告警的信道删除,所述第一信号为所述N个信号中的任意一个信号;
对光电转换后的所述N个信号中的每一个信号进行定帧,当在预设时间内所述N个信号中的第一信号无法定上帧,生成所述第一信号的定帧告警,将产生所述定帧告警的信道删除;
对成帧后的所述N个信号中的每一个信号进行解码,确定所述N个信号中的每一个信号的纠错信息统计值,当所述N个信号中的第一信号的纠错信息统计值大于预设阈值时,生成所述第一信号的纠错告警,将产生所述纠错告警的信道删除;
对解码后的所述N个信号中的每一个信号进行开销提取,当产生维护信号指示时,将产生所述维护信号指示的信道删除;
根据所述N个信号中的每一个信号的所述信号丢失告警、所述定帧告警、所述纠错告警和所述维护信号指示生成所述N个信号中的每一个信号的信道失效指示。
具体的,如图3所示,为信号传输装置接收方向单个信道的功能框图,完成光信号转换成电信号的功能,同时将光信号丢失告警、定帧告警、FEC纠错告警、维护信号指示合并成生成信道失效指示,传送给处理器进行信道质量决策。
其中,光电转换器完成光信号转换成电信号,成帧器完成电信号的定帧功能,同时产生定帧告警,成帧后,进入到解扰模块,解扰模块可以通过CPU配置是否解扰,解扰之后,进行FEC解码,FEC解码模块完成纠错统计功能,同时根据纠错统计值是否大于CPU配置的阈值,生成FEC纠错告警,开销提取模块完成信号是否是维护信号的检测,根据检测产生维护信号指示。
其中,FEC,Forward Error Correction也叫前向纠错码,是增加数据通讯可信度的方法。
步骤103、信号传输装置根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号;M为大于等于0的整数。
具体的,信号传输装置的处理器根据所述每一个信号的信道失效指示确定控制信息,根据处理器输出控制信息传送给N:M选择器,实现从N个接收信道中选择M个最优接收信道功能,即择优接收。
步骤104、信号传输装置输出所述M个信号。
具体的,信号传输装置直接输出N:M选择器选择的M个信号对应的M个最优接收信道。
本发明实施例提供的信号传输方法,克服了使用FEC纠错信息带内传输或者带外传输方式进行最优传输信道决策的缺陷,减少网络维护人工干预、以及光信号传输装置成本,可以择优接收、并行发送传输信号。
实施例二
本发明实施例提供一种信号传输方法,如图4所示,该方法可以包括:
步骤201、信号传输装置接收信号输入信道传输的N个信号。
本发明实施例提供的信号传输方法应用于信号传输装置,如图2所示,该信号传输装置包括:N个接收信道,用于连接外部的N个光信号输入信道,可以同时传输M个信号源,在接收方向,输入的N个光信号传输通道传输了M个光信号源,处理器根据每个信号源所占用的传输信道信息择优选择,选择出M个信到恢复出M个电信号。
步骤202、信号传输装置确定所述N个信号中的每一个信号的信道失效指示。
其中,每个接收信道的信号丢失告警、定帧告警、维护信号指示、FEC纠错告警合并成信道失效指示传送给信号传输装置的处理器。
处理器根据告警的严重程度对信道进行信道质量决策,具体包括:首先查看光信号丢失告警,如图3所示,当光电转换器探测到光信号丢失时,即产生光信号丢失告警,将产生光信号丢失告警的信道删除;其次查看定帧告警,成帧器会对转换后的电信号进行定帧,查找帧头特殊字,如果累积3ms都无法定上帧,便产生定帧告警LOF,将产生定帧告警LOF的信道删除;然后查看FEC纠错信息,FEC解码会对成帧后的电信号进行解码,并统计纠错信息,同时根据纠错统计值是否大于CPU配置的阈值,如果大于阈值,则生成FEC纠错告警,表明信道误码率高,将产生FEC纠错告警的信道删除;接着提取FEC纠错后的帧的开销,开销提取模块会对解码后的电信号进行开销提取,采用3帧稳定的方式得到可信的开销值,如果产 生维护信号指示告警,将产生维护信号告警的信道删除,最后从剩下的信道中,根据FEC纠错统计,挑选误码率最低的信道作为最优接收信道,实现择优接收信道。
步骤203、信号传输装置根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号。
具体的,信号传输装置的处理器根据所述每一个信号的信道失效指示确定控制信息,根据处理器输出控制信息传送给N:M选择器,实现从N个接收信道中选择M个最优接收信道功能,即择优接收。
步骤204、信号传输装置从所述M个信号和输入的M个第二信号中选择出M个第三信号。
其中,选择出的M个第三信号包括:所述M个信号或者所述输入的M个第二信号。
具体的,如图2所示,信号传输装置发送方向包括:N个发送信道,连接外部的N个光纤传输信道,发送方向的输入信号源有2*M个,当中继模式使能为0时,发送方向的信号源选择外部输入M个的电信号;当中继模式使能为1时,发送方向的信号源选择接收方向选择出的M个电信号,由2M:M选择器完成信号源的选择,2M:M选择器的输出送给M:N转发器,M:N转发器将输入的信号同时转发到N个发送信道上,从而完成将M个输入信号并行发送到N个信道上的功能。
步骤205、信号传输装置将所述M个信号转换为N个第三信号,输出所述N个第三信号。
其中,所述输出所述N个第三信号,可以包括:
将所述N个第三信号进行开销插入,将开销插入后的所述N个第三信号进行编码,将编码后的所述N个第三信号进行加扰,将加扰后的所述N个第三信号进行成帧,将成帧后的所述N个第三信号进行光电转换处理, 将光电转换处理后的所述N个第三信号输出。
具体的,信号传输装置的M:N转发器将所述M个信号转换为N个第三信号,M:N转发器将N个第三信号转发到N个发送信道,在每一个发送信道上对信号进行处理。
如图5所示,信号传输装置发送方向单个信道的功能框图,开销插入模块供用户通过CPU配置插入对应的开销值,FEC编码模块完成信号的编码,提高信号的传输距离,编码之后进入到加扰模块,通过加扰增大信号的bit翻转率,最终通过电光转换器生成光信号输出。
示例性的,如图6所示,信号传输装置发送方向包括:N个发送信道,连接外部的N个光纤传输信道,发送方向的输入信号源有2个,当中继模式使能为0时,发送方向的信号源选择外部输入的电信号;当中继模式使能为1时,发送方向的信号源选择接收方向选择出的信号rx_data_i,其中,i的取值为1~N中的一个值,由2:1选择器完成信号源的选择,2:1选择器的输出送给1:N转发器,1:N转发器将输入的信号同时转发到N个发送信道上,从而将1个输入信号并行发送到N个信道上,即并行发送。
图6的信号传输装置,在接收方向N个信道传输的光信号源头是相同的,择优选择出一个传输信道,在发送方向对输入的1路电信号进行转发,发送到N个光信道上进行传输,因此,图1所示的传输装置是对同一信号源信号进行择优接收,并行发送的装置,调整接收方向择优接收选出的通道数量和发送方向输入的电信号输入个数为M,其中,N大于等于2*M,则得到图2所示的信号传输装置。
本发明实施例提供的信号传输方法,克服使用FEC纠错信息带内传输或者带外传输方式进行最优传输信道决策的缺陷,减少网络维护人工干预、以及光信号传输装置成本,可以择优接收、并行发送传输信号。
实施例三
本发明实施例提供一种信号传输装置1,如图7所示,所述装置1包括:N个接收单元10,确定单元11,第一选择单元12,其中,
所述N个接收单元10,用于接收信号输入信道传输的N个信号;
所述确定单元11,用于确定所述N个信号中的每一个信号的信道失效指示;
所述第一选择单元12,用于根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号,还用于输出所述M个信号。
进一步地,如图8所示,所述确定单元11包括:第一光电转换模块110、第一成帧模块111,解码模块112、开销提取模块113、生成模块114,其中,
所述第一光电转换模块110,用于对所述N个信号中的每一个信号进行光电转换,检测所述N个信号中的每一个信号,当检测到所述N个信号中的第一信号丢失时,生成所述第一信号的信号丢失告警,将产生所述信号丢失告警的信道删除,所述第一信号为所述N个信号中的任意一个信号;
所述第一成帧模块111,用于对光电转换后的所述N个信号中的每一个信号进行定帧,当在预设时间内所述N个信号中的第一信号无法定上帧,生成所述第一信号的定帧告警,将产生所述定帧告警的信道删除;
所述解码模块112,用于对成帧后的所述N个信号中的每一个信号进行解码,确定所述N个信号中的每一个信号的纠错信息统计值,当所述N个信号中的第一信号的纠错信息统计值大于预设阈值时,生成所述第一信号的纠错告警,将产生所述纠错告警的信道删除;
开销提取模块113,用于对解码后的所述N个信号中的每一个信号进行开销提取,当产生维护信号指示时,将产生所述维护信号指示的信道删除;
所述生成模块114,用于根据所述N个信号中的每一个信号的所述信号丢失告警、所述定帧告警、所述纠错告警和所述维护信号指示生成所述N 个信号中的每一个信号的信道失效指示。
进一步地,如图9所示,所述装置还包括:信道质量决策单元13,用于根据所述每一个信号的信道失效指示确定控制信息;
所述第一选择单元12,具体用于根据所述控制信息从所述N个信号中选择出M个信号。
进一步地,如图9所示,所述装置还包括:第二选择单元14、转发单元15、N个发送单元16,
所述第二选择单元14,用于从所述M个信号和输入的M个第二信号中选择出M个第三信号,选择出的M个第三信号包括:所述M个信号或者所述输入的M个第二信号;
所述转发单元15,用于将所述M个第三信号转换为N个第三信号;
所述N个发送单元16,用于输出所述N个第三信号。
进一步地,如图10所示,所述发送单元16包括:开销插入模块160、编码模块161、加扰模块162、第二成帧模块163、第二光电转换模块164,其中,
所述开销插入模块160,用于将所述N个第三信号进行开销插入;
所述编码模块161,用于将开销插入后的所述N个第三信号进行编码;
所述加扰模块162,用于将编码后的所述N个第三信号进行加扰;
第二成帧模块163,用于将加扰后的所述N个第三信号进行成帧;
第二光电转换模块164,用于将成帧后的所述N个第三信号进行光电转换处理,将光电转换处理后的所述N个第三信号输出。
具体的,本发明实施例提供的信号传输装置的理解可以参考实施例一和实施例二的信号传输方法的说明,本发明实施例在此不再赘述。
本发明实施例提供的信号传输装置,克服了使用FEC纠错信息带内传输或者带外传输方式进行最优传输信道决策的缺陷,减少网络维护人工干 预、以及光信号传输装置成本,可以择优接收、并行发送传输信号。
本发明实施例提供一种传输网络包括:如上实施例三所述信号传输装置。使用这种传输网络,避免了将各个结点FEC纠错信息在传输网络中的传输,且只能在信道终点利用传输过来的各个结点FEC纠错信息决策最优传输信道。
示例性的,基于本发明实施例提供的信号传输装置,可以组成如图11所示的传输网络结构。该传输网络结构中的信号传输装置31的中继模式使能为0,完成将外部的电信号输入转发到N个光信号信道上;传输网络结构中的中间传输结点信号传输装置32的中继模式使能为1,实现从N个输入的光信号信道中择优选取1条传输信道,并将选取的传输信道并行发送到N个光纤信道上传输,完成中继功能;传输网络结构中的信号传输装置33的中继模式使能为0,完成将输入的N个光纤信道转化为电信号输出。
图11中信号传输装置31和信号传输装置32之间由N根光纤信道连接,假设有i根光纤中断传输光信号功能,其中,i<N,信号传输装置32中的信道质量决策模块则会根据光信号丢失告警,将这中断传输的i根光纤信道自动剔除,从剩下的N-i根信道中根据定帧告警、维护信号指示、FEC纠错信息继续选择最优信道,从而使整个网络不中断信号传输,这种网络传输信道切换不需要将网络故障信息(例如,FEC纠错信息)通过整个网络传输到信道的终点才能决策最优传输信道,而是在故障点自动切换到最优传输信道,从而,克服了带内和带外传输FEC纠错信息的缺陷。
当图11中信号传输装置31和信号传输装置32之间的N根光纤信道是正常工作,但是信号传输装置32内部的N个接收信道出现问题时,比如某个通道的光电转换器出现故障时,不需要网络维护人员将信号传输装置32换掉,信号传输装置32内部会从剩下的接收信道中挑选最优信道,从而使网络传输不中断,减少了网络维护人工干预、以及光信号传输装置成本。
采用本发明所述的择优接收并行发送的光信号传输装置,组成的光信号传输网络,与现有技术相比,不需要增加额外带宽在网络内部传输信道质量信息(如FEC纠错信息);避免了带内传输时,FEC纠错信息在高误码率信道下的可靠性下降,到达信道的终点时,不可靠的FEC纠错信息用于决策最优信道容易引起误判,反而降低了保护网络的可靠性;克服了带外传输FEC的纠错信的信道出现故障时,网络保护机制失效的问题;同时光传输装置自动切换功能,减少了网络维护人工干预、以及光信号传输装置成本,减少了网络故障恢复时间。
本发明实施例还提供了一种存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:
接收信号输入信道传输的N个信号;其中,N为大于等于0的整数;
确定所述N个信号中的每一个信号的信道失效指示;
根据所述每一个信号的信道失效指示,从所述N个信号中选择出M个信号;
输出所述M个信号;M为大于等于0的整数。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得 通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例公开了一种信号传输方法和装置、存储介质,接收信号输入信道传输的N个信号;确定所述N个信号中的每一个信号的信道失效指示;根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号;输出所述M个信号。本发明实施例提供的信号传输方法和装置、存储介质,克服了带内传输或者带外传输方式进行最优传输信道决策的缺陷,减少网络维护人工干预、以及光信号传输装置成本,可以择优接收、并行发送传输信号。

Claims (11)

  1. 一种信号传输方法,所述方法包括:
    接收信号输入信道传输的N个信号;其中,N为大于等于0的整数;
    确定所述N个信号中的每一个信号的信道失效指示;
    根据所述每一个信号的信道失效指示,从所述N个信号中选择出M个信号;
    输出所述M个信号;M为大于等于0的整数。
  2. 根据权利要求1所述的方法,其中,所述确定所述N个信号中的每一个信号的信道失效指示,包括:
    对所述N个信号中的每一个信号进行光电转换,检测所述N个信号中的每一个信号,当检测到所述N个信号中的第一信号丢失时,生成所述第一信号的信号丢失告警,将产生所述信号丢失告警的信道删除,所述第一信号为所述N个信号中的任意一个信号;
    对光电转换后的所述N个信号中的每一个信号进行定帧,当在预设时间内所述N个信号中的第一信号无法定上帧,生成所述第一信号的定帧告警,将产生所述定帧告警的信道删除;
    对成帧后的所述N个信号中的每一个信号进行解码,确定所述N个信号中的每一个信号的纠错信息统计值,当所述N个信号中的第一信号的纠错信息统计值大于预设阈值时,生成所述第一信号的纠错告警,将产生所述纠错告警的信道删除;
    对解码后的所述N个信号中的每一个信号进行开销提取,当产生维护信号指示时,将产生所述维护信号指示的信道删除;
    根据所述N个信号中的每一个信号的所述信号丢失告警、所述定帧告警、所述纠错告警和所述维护信号指示生成所述N个信号中的每一个信号 的信道失效指示。
  3. 根据权利要求2所述的方法,其中,所述根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号,包括:
    根据所述每一个信号的信道失效指示确定控制信息,根据所述控制信息从所述N个信号中选择出M个信号。
  4. 根据权利要求1所述的方法,其中,在所述根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号之后,还包括:
    从所述M个信号和输入的M个第二信号中选择出M个第三信号,选择出的M个第三信号包括:所述M个信号或者所述输入的M个第二信号;
    将所述M个第三信号转换为N个第三信号;
    输出所述N个第三信号。
  5. 根据权利要求4所述的方法,其中,所述输出所述N个第三信号,包括:
    将所述N个第三信号进行开销插入,将开销插入后的所述N个第三信号进行编码,将编码后的所述N个第三信号进行加扰,将加扰后的所述N个第三信号进行成帧,将成帧后的所述N个第三信号进行光电转换处理,将光电转换处理后的所述N个第三信号输出。
  6. 一种信号传输装置,所述装置包括:N个接收单元,确定单元,第一选择单元,其中,
    所述N个接收单元,配置为接收信号输入信道传输的N个信号;N为大于等于0的整数;
    所述确定单元,配置为确定所述N个信号中的每一个信号的信道失效指示;
    所述第一选择单元,配置为根据所述每一个信号的信道失效指示从所述N个信号中选择出M个信号,还用于输出所述M个信号;M为大于等 于0的整数。
  7. 根据权利要求6所述的装置,其中,所述确定单元包括:第一光电转换模块、第一成帧模块,解码模块、开销提取模块、生成模块,其中,
    所述第一光电转换模块,配置为对所述N个信号中的每一个信号进行光电转换,检测所述N个信号中的每一个信号,当检测到所述N个信号中的第一信号丢失时,生成所述第一信号的信号丢失告警,将产生所述信号丢失告警的信道删除,所述第一信号为所述N个信号中的任意一个信号;
    所述第一成帧模块,配置为对光电转换后的所述N个信号中的每一个信号进行定帧,当在预设时间内所述N个信号中的第一信号无法定上帧,生成所述第一信号的定帧告警,将产生所述定帧告警的信道删除;
    所述解码模块,配置为对成帧后的所述N个信号中的每一个信号进行解码,确定所述N个信号中的每一个信号的纠错信息统计值,当所述N个信号中的第一信号的纠错信息统计值大于预设阈值时,生成所述第一信号的纠错告警,将产生所述纠错告警的信道删除;
    所述开销提取模块,配置为对解码后的所述N个信号中的每一个信号进行开销提取,当产生维护信号指示时,将产生所述维护信号指示的信道删除;
    所述生成模块,配置为根据所述N个信号中的每一个信号的所述信号丢失告警、所述定帧告警、所述纠错告警和所述维护信号指示生成所述N个信号中的每一个信号的信道失效指示。
  8. 根据权利要求7所述的装置,其中,所述装置还包括:信道质量决策单元,配置为根据所述每一个信号的信道失效指示确定控制信息;
    所述第一选择单元,配置为根据所述控制信息从所述N个信号中选择出M个信号。
  9. 根据权利要求6所述的装置,其中,所述装置还包括:第二选择单 元、转发单元、N个发送单元;其中,
    所述第二选择单元,配置为从所述M个信号和输入的M个第二信号中选择出M个第三信号,选择出的M个第三信号包括:所述M个信号或者所述输入的M个第二信号;
    所述转发单元,配置为将所述M个第三信号转换为N个第三信号;
    所述N个发送单元,配置为输出所述N个第三信号。
  10. 根据权利要求9所述的装置,其中,所述发送单元包括:开销插入模块、编码模块、加扰模块、第二成帧模块、第二光电转换模块,其中,
    所述开销插入模块,配置为将所述N个第三信号进行开销插入;
    所述编码模块,配置为将开销插入后的所述N个第三信号进行编码;
    所述加扰模块,配置为将编码后的所述N个第三信号进行加扰;
    第二成帧模块,配置为将加扰后的所述N个第三信号进行成帧;
    第二光电转换模块,配置为将成帧后的所述N个第三信号进行光电转换处理,将光电转换处理后的所述N个第三信号输出。
  11. 一种存储介质,该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:
    接收信号输入信道传输的N个信号;其中,N为大于等于0的整数;
    确定所述N个信号中的每一个信号的信道失效指示;
    根据所述每一个信号的信道失效指示,从所述N个信号中选择出M个信号;
    输出所述M个信号;M为大于等于0的整数。
PCT/CN2017/081492 2016-04-21 2017-04-21 一种信号传输方法和装置、存储介质 WO2017181998A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610252301.2A CN107306165B (zh) 2016-04-21 2016-04-21 一种信号传输方法和装置
CN201610252301.2 2016-04-21

Publications (1)

Publication Number Publication Date
WO2017181998A1 true WO2017181998A1 (zh) 2017-10-26

Family

ID=60116604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081492 WO2017181998A1 (zh) 2016-04-21 2017-04-21 一种信号传输方法和装置、存储介质

Country Status (2)

Country Link
CN (1) CN107306165B (zh)
WO (1) WO2017181998A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222270A (zh) * 1996-04-19 1999-07-07 艾利森公司 使用不同波束、极化和相位参考来进行干扰抑制的方法和装置
CN103532626A (zh) * 2012-07-04 2014-01-22 信泰光学(深圳)有限公司 网络终端装置及光纤网络操作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1104789C (zh) * 1999-10-18 2003-04-02 北京格林威尔科技发展有限公司 综合异步传递模式业务和同步传递模式业务的方法和设备
CN105306077B (zh) * 2014-06-12 2017-12-01 中国石油天然气集团公司 信号解码方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222270A (zh) * 1996-04-19 1999-07-07 艾利森公司 使用不同波束、极化和相位参考来进行干扰抑制的方法和装置
CN103532626A (zh) * 2012-07-04 2014-01-22 信泰光学(深圳)有限公司 网络终端装置及光纤网络操作方法

Also Published As

Publication number Publication date
CN107306165A (zh) 2017-10-31
CN107306165B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2017047093A1 (ja) 端局装置およびその制御方法ならびに端局装置の制御プログラムが格納された記録媒体
CN101682459B (zh) 对用于OTN接口的OTUk-BDI作出响应以恢复双向通信
KR101023463B1 (ko) 데이터 에러 보고를 수행하는 방법 및 장치
US7957642B2 (en) Efficient and simple bit error rate calculation on optical transport layer
JP4431113B2 (ja) データ伝送方法及びデータ伝送装置
US10454617B2 (en) Coding scheme and multiframe transmission in optical networks
CN109698728A (zh) Interlaken接口与FlexE IMP的对接方法、对接设备及存储介质
WO2021190031A1 (zh) 基于wdm的数据传输方法、装置、系统及存储介质
JP2007214656A (ja) データ送信装置及びデータ受信装置並びにデータ送信方法及びデータ受信方法
WO2017181998A1 (zh) 一种信号传输方法和装置、存储介质
CN115549774B (zh) 一种光信号的处理方法、装置、芯片、系统及介质
US20160241332A1 (en) Reception device, transmission device, optical transmission device, optical transmission system, and monitoring method
US7716560B1 (en) Protection switch decision architecture
JP6348870B2 (ja) 通信装置及び通信方法
WO2018059344A1 (zh) 复用段保护双向倒换方法、装置及系统、计算机存储介质
US6961366B1 (en) System and method for redundant path connections in digital communications network
WO2022179407A1 (zh) 一种数据编码方法、数据译码方法及相关设备
JP2015188126A (ja) 通信装置および通信システム
JP4999759B2 (ja) 光パス切替え装置
CN110190994B (zh) 一种基于报文缓冲的无损流量串接管理方法
US20180331694A1 (en) Transmission apparatus, reception apparatus, and reception method
JP6501968B2 (ja) 伝送システム
WO2011125217A1 (ja) 伝送装置及び方法
JP2005159924A (ja) 信号伝送装置及び信号伝送方法
JP5107981B2 (ja) 障害監視制御システム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785482

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785482

Country of ref document: EP

Kind code of ref document: A1