WO2017181812A1 - 得到频差幅度谱图的装置、故障定位系统及天线系统 - Google Patents

得到频差幅度谱图的装置、故障定位系统及天线系统 Download PDF

Info

Publication number
WO2017181812A1
WO2017181812A1 PCT/CN2017/077944 CN2017077944W WO2017181812A1 WO 2017181812 A1 WO2017181812 A1 WO 2017181812A1 CN 2017077944 W CN2017077944 W CN 2017077944W WO 2017181812 A1 WO2017181812 A1 WO 2017181812A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency difference
amplitude spectrum
difference amplitude
branch
Prior art date
Application number
PCT/CN2017/077944
Other languages
English (en)
French (fr)
Inventor
黄维恒
许海堤
付江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17785297.7A priority Critical patent/EP3355605B1/en
Publication of WO2017181812A1 publication Critical patent/WO2017181812A1/zh
Priority to US16/000,555 priority patent/US10470065B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas

Definitions

  • the present application relates to the field of communications, and in particular, to a device for obtaining a frequency difference amplitude spectrum, a fault location system, and an antenna system.
  • DAS distributed antenna systems
  • Embodiments of the present invention provide a device, a fault location system, and an antenna system for obtaining a frequency difference amplitude spectrum, which can locate a faulty node in a DAS, thereby accurately positioning a fault point in the DAS.
  • the embodiment of the present invention adopts the following technical solutions:
  • an embodiment of the present invention provides an apparatus for obtaining a frequency difference amplitude spectrum, where the apparatus is applied to a DAS, the DAS includes a main path and a plurality of branches, and the main path includes M coupling nodes, and each branch includes N antenna nodes and K coupling nodes, M, N and K are positive integers, and the device for obtaining the frequency difference amplitude spectrum includes a signal generation module, a signal transmission module connected to the signal generation module, and a signal connected to the signal transmission module. A processing module and a signal analysis module coupled to the signal processing module.
  • the signal generating module is configured to generate a detection signal and send the detection signal to the signal transmission module;
  • the signal transmission module is configured to receive the detection signal sent by the signal generation module, and send the detection signal to the signal processing module, and for multiple branches
  • Each of the at least one branch of the road transmits a detection signal from the signal input end of the DAS to the branch, receives an echo signal returned by the branch, and transmits the echo signal to the signal processing module.
  • the echo signal is the M coupling node on the main road through which the detection signal passes sequentially and the signal reflected by the detection signal by the N antenna nodes and K coupling nodes on the branch;
  • the signal processing module is used for receiving the detection sent by the signal transmission module.
  • the signal analysis module is configured to receive the superimposed signal sent by the signal processing module, and superimpose the signal Frequency conversion is performed to obtain a frequency difference amplitude spectrum, and the frequency difference amplitude spectrum is used to indicate M coupling nodes on the main road and the The correspondence between the position of each of the N antenna nodes and the K coupling nodes on the branch and the amplitude of the echo signal corresponding to the node.
  • the apparatus for obtaining a frequency difference amplitude spectrum provided by the embodiment of the present invention generates a detection signal by a signal generation module, and transmits signals through each of at least one of the plurality of branches
  • the module sends a detection signal from the signal input end of the DAS to the branch, receives the echo signal reflected by the detection signal reflected by the branch, and superimposes the detection signal and the echo signal through the signal processing module, and analyzes the signal through the signal.
  • the module performs spectral conversion on the superposed signal to obtain a frequency difference amplitude spectrum.
  • the fault analysis device in the fault location system can locate the faulty node in the DAS by analyzing the frequency difference amplitude spectrum obtained by the device that obtains the frequency difference amplitude spectrum. To accurately locate the point of failure in the DAS.
  • the signal transmission module includes a power divider, a circulator, and a transmission interface; and an input end of the power divider is connected to an output end of the signal generation module, The first output end of the power splitter is connected to the first end of the circulator, the second output end of the power splitter is connected to the signal processing module, the second end of the circulator is connected to the transmission interface, and the third end of the circulator is connected with the signal Processing module connection.
  • the power splitter is configured to receive the detection signal sent by the signal generating module through the input end of the power splitter, and send the detection signal to the circulator through the first output end of the power splitter, and pass the detection signal through the second of the power splitter
  • the output end is sent to the signal processing module
  • the circulator is configured to receive the detection signal sent by the power splitter through the first end of the circulator, and send the detection signal to the transmission interface through the second end of the circulator, and send the signal to the transmission interface And receiving an echo signal returned by the branch through the second end of the circulator and transmitting the echo signal to the signal processing module through the third end of the circulator.
  • the foregoing transmission interface may be a cable, or may be a wireless module, such as a WIreless-Fidelity (Wi-Fi) module or a radio frequency (RF) module.
  • a wireless module such as a WIreless-Fidelity (Wi-Fi) module or a radio frequency (RF) module.
  • the detection signal can be divided into two paths by the power divider, and the circulator can ensure that the N antenna nodes and the K coupling nodes on the branch can return the echo signals reflected by the detection signal to the circulator. Therefore, the signal processing module can superimpose the detection signal and the echo signal and send it to the signal analysis module for analysis.
  • the detection signal is an incident wave signal
  • the echo signal is a signal reflected by the M coupling nodes on the main path and the N antenna nodes and K coupling nodes on the branch signal reflected by the detection signal, so the detection is performed.
  • the signal superimposed on the signal and the echo signal can be referred to as a standing wave signal.
  • the signal processing module includes a mixer and a filter; and the first input end of the mixer is connected to the second output end of the power splitter.
  • the second input of the mixer is connected to the third end of the circulator, the output of the mixer is connected to the input of the filter, and the output of the filter is connected to the signal analysis module.
  • the mixer is configured to superimpose the detection signal and the echo signal, and send the superposed signal to the filter;
  • the filter is configured to receive the superimposed signal sent by the mixer, and filter the superposed signal, And transmitting the filtered superimposed signal to the signal analysis module.
  • the filter may be a band pass filter.
  • the detection signal and the echo signal may be superimposed to obtain a corresponding standing wave signal (ie, the superposed signal). Since the positions of the nodes and antinodes of the standing wave signal are always constant, the frequency difference amplitude spectrum obtained by the standing wave signal can more accurately indicate the M coupling nodes on the main road and the N antenna nodes on the branch. And a correspondence between the position of each of the K coupled nodes and the amplitude of the echo signal corresponding to the node, so that when a fault occurs in the DAS, the fault point in the DAS can be accurately located.
  • the signal analysis module includes an analog-to-digital converter and a spectrum converter; and an input end of the analog-to-digital converter is connected to an output end of the filter, and the module is The output of the digital converter is connected to a spectrum converter.
  • the analog-to-digital converter is configured to convert the filtered superimposed signal outputted by the filter into a digital signal, and send the digital signal to the spectrum converter;
  • the spectrum converter is configured to receive the digital signal sent by the analog-to-digital converter, and The digital signal is spectrally converted to obtain a frequency difference amplitude spectrum.
  • the analog signal is converted into a digital signal by an analog-to-digital converter, and the digital signal is spectrally converted into a corresponding frequency difference amplitude spectrum, so that the frequency difference amplitude spectrum can accurately indicate the main road.
  • the apparatus for obtaining the frequency difference amplitude spectrum provided by the embodiment of the present invention further includes at least one of the following three amplifiers: connected between the first input end of the mixer and the second output end of the power splitter.
  • An amplifier an amplifier connected between the second input of the mixer and the third end of the circulator, and an amplifier connected between the input of the analog to digital converter and the output of the filter.
  • an amplifier connected between the first input end of the mixer and the second output end of the power splitter is used for amplifying the detection signal outputted by the second output end of the power splitter, and the amplified detection signal is Transmitted to the mixer; an amplifier connected between the second input of the mixer and the third end of the circulator is used to amplify the echo signal outputted from the third end of the circulator, and the amplified back The wave signal is sent to the mixer; an amplifier connected between the input of the analog to digital converter and the output of the filter for amplifying the filtered superimposed signal of the filter output, and amplifying the amplified signal The signal is sent to an analog to digital converter.
  • the signal strength of the detection signal may be reduced during the transmission process (ie, the detection signal is attenuated during transmission), and the signal strength of the echo signal obtained after the detection signal is reflected is relatively small
  • Amplifying the detection signal by an amplifier connected between the first input of the mixer and the second output of the splitter increases the signal strength of the detected signal and is connected to the second input of the mixer
  • Amplifying the echo signal between the amplifier and the third end of the circulator can increase the signal strength of the echo signal, thereby enabling the device that obtains the frequency difference amplitude spectrum to superimpose the detected signal and the echo signal.
  • the signal intensity is large, and the device for obtaining the frequency difference amplitude spectrum can ensure that the frequency difference amplitude spectrum obtained by the superimposed signal is relatively accurate.
  • the signal strength may be relatively small, so that an amplifier pair is connected between the input end of the analog-to-digital converter and the output end of the filter.
  • the filtered superimposed signal is amplified to increase the filtered stack The signal strength of the added signal can be ensured that the frequency difference amplitude spectrum obtained by the device for obtaining the frequency difference amplitude spectrum is more accurate.
  • an embodiment of the present invention provides an apparatus for obtaining a frequency difference amplitude spectrum, where the apparatus is applied to a DAS, the DAS includes a main path and a plurality of branches, and the main path includes M coupling nodes, and each branch includes N antenna nodes and K coupling nodes, M, N and K are positive integers, and the device for obtaining the frequency difference amplitude spectrum comprises a first signal generating module, a first signal transmitting module connected to the first signal generating module, and a first signal processing module connected to the first signal transmission module, and a first signal analysis module connected to the first signal processing module.
  • the first signal generating module is configured to generate a detection signal, and send the detection signal to the first signal transmission module;
  • the first signal transmission module is configured to receive the detection signal sent by the first signal generation module, and send the detection signal to the first a signal processing module, and for each of at least one of the plurality of branches, and for each of the N antenna nodes of the branch, transmitting from the antenna node to the branch Detecting a signal, and receiving a first echo signal returned by the branch, and transmitting the first echo signal to the first signal processing module, where the first echo signal is the M coupling nodes on the main path through which the detection signal passes sequentially and The antenna node and the K coupling nodes on the branch pair detect signals reflected by the signal;
  • the first signal processing module is configured to receive the detection signal and the first echo signal sent by the first signal transmission module, and the detection signal and the An echo signal is superimposed, and the superposed signal is sent to the first signal analysis module;
  • the first signal analysis module is configured to receive the first signal processing module to send The
  • the apparatus for obtaining a frequency difference amplitude spectrum provided by an embodiment of the present invention generates a detection signal by a first signal generating module, and for each of at least one of the plurality of branches, and for the branch
  • Each of the N antenna nodes transmits a detection signal from the antenna node to the branch through the first signal transmission module, and receives the first echo signal reflected by the detection signal returned by the branch, and passes
  • the first signal processing module superimposes the detection signal and the first echo signal, and performs spectrum conversion on the superposed signal by the first signal analysis module to obtain a first frequency difference amplitude spectrum.
  • the fault analysis device in the fault location system can generate the first frequency difference amplitude spectrum obtained by analyzing the device for obtaining the frequency difference amplitude spectrum, which can occur in the DAS
  • the faulty node is positioned to accurately locate the fault point in the DAS.
  • the first signal transmission module includes a first power divider, a first circulator, and a first transmission interface; and an input of the first power divider The end is connected to the output end of the first signal generating module, the first output end of the first power splitter is connected to the first end of the first circulator, and the second output end of the first power splitter is connected to the first signal processing module The second end of the first circulator is connected to the first transmission interface, and the third end of the first circulator is connected to the first signal processing module.
  • the first power splitter is configured to receive the first signal through the input end of the first power splitter Generating a detection signal sent by the module, and transmitting the detection signal to the first circulator through the first output end of the first power divider, and transmitting the detection signal to the first signal processing module through the second output end of the first power divider
  • the first circulator is configured to receive the detection signal sent by the first power divider through the first end of the first circulator, and send the detection signal to the first transmission interface through the second end of the first circulator, by the first Transmitting the interface to the branch, and receiving, by the second end of the first circulator, the first echo signal returned by the branch, and transmitting the first echo signal to the first through the third end of the first circulator Signal processing module.
  • the first transmission interface may be a cable, or may be a wireless module, such as a Wi-Fi module or an RF module.
  • the detection signal can be divided into two paths by the first power divider, and the first circulator can ensure that the antenna node at the detection signal and the K coupling nodes on the branch reflect the detection signal.
  • An echo signal can be returned to the first circulator, so that the first signal processing module can superimpose the detection signal and the first echo signal and send it to the first signal analysis module for analysis.
  • the detection signal is an incident wave signal
  • the first echo signal is the M coupling nodes on the main path through which the detection signals sequentially pass, and the antenna nodes at the transmission detection signal and the K coupling nodes on the branch reflect the detection signals.
  • the signal, and thus the signal superimposed by the detection signal and the first echo signal, may be referred to as a first standing wave signal.
  • the first signal processing module includes a first mixer and a first filter; and the first input end of the first mixer a second output of the first mixer is connected, a second input of the first mixer is connected to the third end of the first circulator, and an output of the first mixer is connected to the input of the first filter.
  • the output of the first filter is coupled to the first signal analysis module.
  • the first mixer is configured to superimpose the detection signal and the first echo signal, and send the superposed signal to the first filter;
  • the first filter is configured to receive the superposed signal sent by the first mixer And filtering the superposed signal and transmitting the filtered superimposed signal to the first signal analysis module.
  • the first filter may be a band pass filter.
  • the detection signal and the first echo signal may be superposed to obtain a corresponding first standing wave signal (ie, superimposed).
  • the first frequency difference amplitude spectrum obtained by the first standing wave signal can more accurately indicate the M on the main road.
  • the first signal analysis module includes a first analog-to-digital converter and a first spectrum converter; and an input end of the first analog-to-digital converter An output of the first filter is coupled, and an output of the first analog to digital converter is coupled to the first spectral converter.
  • the first analog to digital converter is used to filter the superimposed output of the first filter output Converting the signal into a digital signal and transmitting the digital signal to the first spectrum converter;
  • the first spectrum converter is configured to receive the digital signal sent by the first analog to digital converter, and perform spectral conversion on the digital signal to obtain a first frequency difference amplitude spectrum Figure.
  • the analog signal is converted into a digital signal by the first analog-to-digital converter, and the digital signal is spectrally converted into a corresponding first frequency difference amplitude spectrum, so that the first frequency difference amplitude spectrum can be made.
  • the first analog-to-digital converter converts the digital signal into a digital signal into a digital signal by the first analog-to-digital converter, and the digital signal is spectrally converted into a corresponding first frequency difference amplitude spectrum, so that the first frequency difference amplitude spectrum can be made. Precisely indicating the correspondence between the position of the M coupling nodes on the main road and the position of each of the antenna nodes transmitting the detection signal and the K coupling nodes on the branch and the amplitude of the first echo signal corresponding to the node relationship.
  • the apparatus for obtaining a frequency difference amplitude spectrum further includes at least one of the following three amplifiers: a first input end connected to the first mixer and a second input end of the first power splitter a first amplifier between the output terminals, a second amplifier coupled between the second input of the first mixer and the third end of the first circulator, and coupled to the input of the first analog to digital converter A third amplifier between the outputs of the first filter.
  • the first amplifier is configured to amplify the detection signal outputted by the second output end of the first power splitter, and send the amplified detection signal to the first mixer; the second amplifier is used to the first circulator The first echo signal outputted by the third end is amplified, and the amplified first echo signal is sent to the first mixer; the third amplifier is used for filtering the superimposed output of the first filter output The signal is amplified and the amplified signal is sent to the first analog to digital converter.
  • the signal strength may be reduced during the transmission process (ie, the detection signal is attenuated during transmission), and the signal strength of the first echo signal obtained after the detection signal is reflected is relatively small. Therefore, the amplification of the detection signal by the first amplifier can increase the signal strength of the detection signal, and the amplification of the first echo signal by the second amplifier can increase the signal strength of the first echo signal, thereby enabling the frequency to be obtained.
  • the device of the difference amplitude spectrum has a larger signal intensity of the signal superimposed by the detection signal and the first echo signal, thereby ensuring the first frequency difference amplitude spectrum obtained by the device with the frequency difference amplitude spectrum obtained by the superimposed signal. More accurate.
  • the signal strength may be relatively small, so that the filtered amplified superimposed signal may be amplified by the third amplifier.
  • the filtered signal strength of the superimposed signal can ensure that the first frequency difference amplitude spectrum obtained by the device for obtaining the frequency difference amplitude spectrum is more accurate.
  • the detection signal is a chirped continuous wave signal.
  • the linear frequency modulated continuous wave signal is used as the detection signal, and the frequency difference between the echo signal (or the first echo signal) reflected by the detection signal and the detection signal is ensured by each node in which the detection signal and the detection signal pass sequentially.
  • the frequency of the signal superimposed by the detection signal and the echo signal is the frequency difference, so that by analyzing and calculating the superposed signal, the distance between the nodes and the test point can be accurately obtained, so that it can be guaranteed
  • the frequency difference amplitude spectrum (or the first frequency difference amplitude spectrum) is relatively accurate.
  • an embodiment of the present invention provides a fault location system, which is applied to a DAS.
  • the DAS includes a main path and a plurality of branches.
  • the main path includes M coupling nodes, and each branch includes N antennas.
  • Node and K coupling nodes, M, N and K are positive integers, fault location system
  • the device comprising the first device for obtaining the amplitude difference amplitude spectrum, the second device for obtaining the frequency difference amplitude spectrum, and the device connected to the first device for obtaining the frequency difference amplitude spectrum and the second device for obtaining the frequency difference amplitude spectrum Analytical device.
  • the first device for obtaining a frequency difference amplitude spectrum is the device for obtaining a frequency difference amplitude spectrum according to any one of the above first aspects and various alternative manners thereof; and the second obtaining the frequency difference amplitude spectrum Apparatus for obtaining a frequency difference amplitude spectrum according to any of the above second aspects and various alternatives; the fault analysis apparatus for each of at least one of the plurality of branches a branch, and at least one first frequency difference amplitude spectrum of the N first frequency difference amplitude spectra corresponding to the N antenna nodes of the branch transmitted by the second obtained frequency difference amplitude spectrum device, The at least one first frequency difference amplitude spectrum is mutually confirmed with the frequency difference amplitude spectrum sent by the first device for obtaining the frequency difference amplitude spectrum, and the first frequency difference amplitude spectrum is determined on the frequency difference amplitude spectrum.
  • the frequency difference amplitude spectrum is obtained by the first device for obtaining the frequency difference amplitude spectrum
  • the N first frequency difference amplitude spectrum is obtained by the second device for obtaining the frequency difference amplitude spectrum
  • the fault analysis device correcting, by the fault analysis device, at least one first frequency difference amplitude spectrum of the N first frequency difference amplitude spectra and the frequency difference amplitude spectrum respectively, and determining the main road on the frequency difference amplitude spectrum Position of at least one of the M coupling nodes, and a position of at least one antenna node and at least one coupling node on the branch, so that M coupling nodes on the main path and the same can be determined on the frequency difference amplitude spectrum The position of the N antenna nodes and K coupling nodes on the branch.
  • the fault location system can determine the frequency difference amplitude spectrum after each node position by analyzing, and can locate the faulty node in the DAS, thereby accurately positioning the fault point in the DAS.
  • an embodiment of the present invention provides a fault location system, which is applied to a DAS.
  • the DAS includes a main path and a plurality of branches.
  • the main path includes M coupling nodes, and each branch includes N antennas.
  • the node and the K coupling nodes, M, N and K are positive integers, and the fault location system comprises a first device for obtaining a frequency difference amplitude spectrum and a fault analysis device connected to the first device for obtaining the frequency difference amplitude spectrum.
  • the apparatus for obtaining a frequency difference amplitude spectrum is the apparatus for obtaining a frequency difference amplitude spectrum according to any one of the above first aspect and various alternative manners; and the first obtained frequency difference amplitude spectrum
  • the apparatus is configured to, when the DAS fails, send a detection signal to the branch from the signal input end of the DAS for each of the plurality of branches, and receive the echo returned by the branch
  • the signal, and the detection signal and the echo signal are superimposed, and the superposed signal is spectrally converted to obtain a fault frequency difference amplitude spectrum, and the fault frequency difference amplitude spectrum is sent to the fault analysis device, and the echo signal is the detection signal in turn.
  • the M coupling nodes on the main road and the N antenna nodes and K coupling nodes on the branch signal reflect the signal reflected by the detection signal.
  • the fault frequency difference amplitude spectrum is used to indicate the M on the main road when the branch fails.
  • the fault analysis device is used to connect A first means for transmitting a failure to obtain the frequency spectrum amplitude difference frequency difference amplitude spectrum, the amplitude spectrum of the frequency difference and the fault analysis device and fault standard frequency difference
  • the amplitude spectrum is mutually verified, and the M coupling nodes on the main road and the N antenna nodes on the branch road and the fault nodes in the K coupling nodes are determined, and the amplitude of the echo signal corresponding to the fault node on the fault frequency difference amplitude spectrum is determined.
  • the amplitude of the echo signal corresponding to the fault node on the standard frequency difference amplitude spectrum is different, and the standard frequency difference amplitude spectrum is used to indicate that the branch has no fault, the M coupling nodes on the main road and the N on the branch road.
  • the standard frequency difference amplitude spectrum in the fault analysis apparatus may be obtained by the apparatus for obtaining the first frequency difference amplitude spectrum, and then sent to the fault analysis apparatus.
  • the standard frequency difference amplitude spectrum may be the frequency difference amplitude spectrum described in any one of the foregoing first aspects and various alternative manners, that is, the foregoing first aspect and various
  • the frequency difference amplitude spectrum described in any one of the selection methods is a frequency difference amplitude spectrum obtained by the device that obtains the first frequency difference amplitude spectrum when there is no failure in the DAS.
  • the fault frequency difference amplitude spectrum of the branch in the DAS is obtained by the first device that obtains the frequency difference amplitude spectrum spectrum, because the frequency difference amplitude of the fault is
  • the spectrum indicates that when the branch fails, the positions of the M coupling nodes on the main road and each of the N antenna nodes and the K coupling nodes on the branch and the amplitude of the echo signal corresponding to the node Correspondence relationship between the two; and the standard frequency difference amplitude spectrum in the fault analysis device indicates that the branch has no fault, the M coupling nodes on the main road and each of the N antenna nodes and the K coupling nodes on the branch
  • the amplitude of the corresponding echo signal on the difference amplitude spectrum and the amplitude of the echo signal corresponding to each node on the standard frequency difference amplitude spectrum are the same, and will be in the two frequency difference amplitudes. Different amplitudes of echo signals corresponding to the failed node is a node determines FIG.
  • the fault location system provided by the embodiment of the present invention can locate the faulty node in the DAS, so as to accurately locate the fault point in the DAS.
  • an embodiment of the present invention provides an antenna system, where the antenna system includes the fault location system according to the above third aspect or the fourth aspect, and the DAS, the DAS includes a main road and multiple branches, and the main road It includes M coupling nodes, each branch includes N antenna nodes and K coupling nodes, and M, N and K are positive integers.
  • the faulty positioning system in the third aspect or the fourth aspect may be used to locate the faulty node in the DAS, thereby accurately positioning the node. The point of failure in the DAS.
  • FIG. 1 is a schematic structural diagram of a DAS according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram 1 of an apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram 2 of an apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present invention. three;
  • FIG. 5 is a schematic structural diagram 4 of an apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram 5 of an apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present invention
  • FIG. 7 is a first schematic diagram of relative positions of nodes in a DAS according to an embodiment of the present invention.
  • FIG. 8 is a simulation diagram 1 of a frequency difference amplitude spectrum according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram 1 of another apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 2 of another apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram 3 of another apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram 4 of another apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram 5 of another apparatus for obtaining a frequency difference amplitude spectrum according to an embodiment of the present disclosure
  • FIG. 14A is a second schematic diagram of relative positions of nodes in a DAS according to an embodiment of the present invention.
  • 14B is a third schematic diagram of relative positions of nodes in a DAS according to an embodiment of the present invention.
  • 14C is a fourth schematic diagram of relative positions of nodes in a DAS according to an embodiment of the present invention.
  • 14D is a fifth schematic diagram of relative positions of nodes in a DAS according to an embodiment of the present invention.
  • 14E is a schematic diagram 6 showing relative positions of nodes in a DAS according to an embodiment of the present invention.
  • 15A is a simulation diagram 1 of a first frequency difference amplitude spectrum according to an embodiment of the present invention.
  • 15B is a second simulation diagram of a first frequency difference amplitude spectrum according to an embodiment of the present invention.
  • 15C is a third simulation diagram of a first frequency difference amplitude spectrum according to an embodiment of the present invention.
  • 15D is a simulation diagram 4 of a first frequency difference amplitude spectrum according to an embodiment of the present invention.
  • 15E is a simulation diagram 5 of a first frequency difference amplitude spectrum according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a fault location system according to an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a fault location system applied to a DAS according to an embodiment of the present invention.
  • FIG. 18 is a second schematic diagram of relative positions of nodes in a DAS according to an embodiment of the present disclosure.
  • FIG. 19 is a second simulation diagram of a frequency difference amplitude spectrum according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of another fault location system according to an embodiment of the present invention.
  • FIG. 21 is a simulation diagram of a frequency spectrum of a fault frequency difference according to an embodiment of the present invention.
  • an embodiment of the present invention provides a device, a fault location system, and an antenna system for obtaining a frequency difference amplitude spectrum.
  • the antenna system includes a fault location system and a DAS.
  • the fault location system includes a first device for obtaining a frequency difference amplitude spectrum, and a second device for obtaining a frequency difference amplitude spectrum.
  • the DAS includes a main path and a plurality of branches.
  • the main path includes M coupling nodes, each of which includes N antenna nodes and K coupling nodes, and M, N, and K are positive integers (ie, M, N, and K). All are integers greater than or equal to 1.)
  • a frequency difference amplitude spectrum is obtained by the first device that obtains the frequency difference amplitude spectrum, and the frequency difference amplitude spectrum is obtained.
  • the first frequency difference amplitude spectrum corresponding to the antenna node is obtained by the second device for obtaining the frequency difference amplitude spectrum, the first frequency difference amplitude spectrum
  • the figure is used to indicate the correspondence between the M coupling nodes on the main road and the position of each of the antenna nodes and the K coupling nodes on the branch and the amplitude of the first echo signal corresponding to the node, Therefore, the second device for obtaining the frequency difference amplitude spectrum can obtain N first frequency difference amplitude spectra corresponding
  • At least one of the first frequencies The amplitude spectrum is mutually confirmed with the frequency difference amplitude spectrum obtained by the first device for obtaining the frequency difference amplitude spectrum, and the position of the antenna node displayed in each of the first frequency difference amplitude spectrum is determined on the frequency difference amplitude spectrum. And a location of the coupling node near the antenna nodes to determine a location of at least one of the M coupling nodes on the primary path and at least one antenna node and at least one of the branches on the frequency difference amplitude spectrum The location of the coupling node.
  • the fault frequency difference amplitude spectrum is obtained by the first device that obtains the frequency difference amplitude spectrum, and the fault frequency difference amplitude spectrum is obtained.
  • the failure analysis device will verify the fault frequency difference amplitude spectrum and the standard frequency difference amplitude spectrum in the fault analysis device (that is, the frequency difference amplitude spectrum of each node position determined above), and confirm the main road M coupling nodes and N antenna nodes on the branch and fault nodes in the K coupling nodes, wherein the amplitude of the echo signal corresponding to the fault node on the fault frequency difference amplitude spectrum and the fault node are in the standard frequency difference
  • the amplitude of the corresponding echo signal on the amplitude spectrum is different
  • the standard frequency difference amplitude spectrum is used to indicate that the branch has no fault, the M coupling nodes on the main road and the N antenna nodes and K on the branch.
  • the device for obtaining the frequency difference amplitude spectrum provided by the embodiment of the present invention can obtain the corresponding frequency difference amplitude spectrum, and the fault analysis device in the fault location system can finally determine the occurrence of the DAS according to the frequency difference amplitude spectrum.
  • the node that is faulty That is, the apparatus for obtaining the frequency difference amplitude spectrum, the fault location system, and the antenna system provided by the embodiments of the present invention can locate the faulty node in the DAS, thereby accurately positioning the fault point in the DAS.
  • the fault location system and the antenna system the following describes the architecture of the DAS.
  • FIG. 1 is a schematic structural diagram of a possible DAS according to an embodiment of the present invention.
  • the DAS includes a main road and two branches, and the two branches are referred to as a branch 1 and a branch 2, respectively.
  • the coupling node on the main road is denoted as C00; the five antenna nodes on the branch 1 are denoted as A11, A12, A13, A14 and A15, respectively, and the four coupling nodes on the branch 1 are denoted as C11, respectively.
  • any two adjacent coupling nodes, or any two adjacent antenna nodes and coupling nodes are connected by a cable, for example, a cable is passed between C00 and C11 in FIG. 1 (FIG. 1) In the middle, the connection line between C00 and C11 is used), and C11 and A11 are also connected by cables.
  • the DAS further includes a signal input terminal, and the signal input terminal may be a signal source, for example, a signal transmission tower of each operator.
  • the signal source is connected by a cable to a coupling node on the main road, such as C00.
  • the coupling node in the DAS may be a coupler, a power splitter, or another coupling capable of coupling.
  • the coupling node on the main road in the DAS is usually a coupler or a combiner;
  • the coupling node on the branch in the DAS is usually a coupler or a power splitter, and the specific can be determined according to the design requirements of the actual DAS, and the present invention The examples are not specifically limited.
  • An embodiment of the present invention provides an apparatus for obtaining a frequency difference amplitude spectrum.
  • the apparatus for obtaining a frequency difference amplitude spectrum is applied to a DAS.
  • the DAS includes a main path and at least one branch, and the main path includes M coupling nodes, each of which The branch includes N antenna nodes and K coupling nodes, and M, N, and K are positive integers.
  • the DAS can be the DAS shown in Figure 1 above. Specifically, for the description of the DAS, refer to the related description of the DAS in the foregoing embodiment shown in FIG. 1 , and details are not described herein again.
  • the device for obtaining the frequency difference amplitude spectrum includes a signal generating module 20, a signal transmitting module 22 connected to the signal generating module 20, and a signal processing module 21 connected to the signal transmitting module 22. And a signal analysis module 23 connected to the signal processing module 21.
  • the signal generating module 20 is configured to generate a detection signal, and send the detection signal to the signal transmission module 22; the signal transmission module 22 is configured to receive the detection signal sent by the signal generation module 20, and send the detection signal to the signal processing module. 21 , and for each of at least one of the plurality of branches of the DAS, transmitting a detection signal from the signal input end of the DAS to the branch, and receiving an echo signal returned by the branch, and The echo signal is sent to the signal processing module 21, and the echo signal is a signal that is reflected by the detection signals after the M coupling nodes on the main path and the N antenna nodes and K coupling nodes on the branch.
  • the signal processing module 21 is configured to receive the detection signal and the echo signal sent by the signal transmission module 22, superimpose the detection signal and the echo signal, and send the superposed signal to the signal analysis module 23; the signal analysis module 23 And for receiving the superposed signal sent by the signal processing module 21, and performing spectral conversion on the superposed signal to obtain a frequency difference amplitude spectrum, the frequency difference amplitude
  • the spectrum is used to indicate the M coupling nodes on the main road and the position of each of the N antenna nodes and the K coupling nodes on the branch and the corresponding node Correspondence between the amplitudes of the echo signals.
  • the apparatus for obtaining a frequency difference amplitude spectrum provided by the embodiment of the present invention generates a detection signal by a signal generation module, and signals from the DAS through the signal transmission module for each of at least one of the plurality of branches
  • the input end sends a detection signal to the branch, and receives an echo signal returned by the branch to the detection signal, and superimposes the detection signal and the echo signal through the signal processing module, and superimposes the signal through the signal analysis module.
  • the signal is spectrally converted to obtain a frequency difference amplitude spectrum.
  • the fault analysis device in the fault location system can locate the faulty node in the DAS by analyzing the frequency difference amplitude spectrum obtained by the device that obtains the frequency difference amplitude spectrum. To accurately locate the point of failure in the DAS.
  • the echo signal is detected by C00 on the main path as shown in FIG. 1 and the A11, C11, A12, C12, A13, C13, A14, C14 and A15 pairs on the branch 1
  • the signal after the signal is reflected.
  • the signal generating module may be a signal source.
  • the signal transmission module 22 includes a power divider 220, a circulator 221, and a transmission interface 222;
  • the input end 2200 of the device 220 is connected to the output end 200 of the signal generating module 20, the first output end 2201 of the power splitter 220 is connected to the first end 2210 of the circulator 221, and the second output end 2202 of the splitter 220 is coupled with the signal.
  • the processing module 21 is connected, the second end 2211 of the circulator 221 is connected to the transmission interface 222, and the third end 2212 of the circulator 221 is connected to the signal processing module 21.
  • the power divider 220 is configured to receive the detection signal sent by the signal generation module 20 through the input end 2200 of the power divider 220, and send the detection signal to the circulator 221 through the first output terminal 2201 of the power divider 220.
  • the detection signal is sent to the signal processing module 21 through the second output terminal 2202 of the power divider 220.
  • the circulator 221 is configured to receive the detection signal sent by the power divider 220 through the first end 2210 of the circulator 221, and The detection signal is sent to the transmission interface 222 through the second end 2211 of the circulator 221, sent to the branch by the transmission interface 222, and the echo signal returned by the branch is received through the second end 2211 of the circulator 221 and passed through the ring.
  • the third end 2212 of the 221 transmits the echo signal to the signal processing module 21.
  • the transmission interface may be a cable or a wireless module.
  • the wireless module may be a Wi-Fi module, or may be an RF module, and may be another wireless module capable of implementing signal transmission, which is not specifically limited in the embodiment of the present invention.
  • the detection signal can be divided into two paths by the power divider, and the circulator can ensure that the N antenna nodes and the K coupling nodes on the branch can return the echo signals reflected by the detection signal to the circulator. Therefore, the signal processing module can superimpose the detection signal and the echo signal and send it to the signal analysis module for analysis.
  • the detection signal is an incident wave signal
  • the echo signal is M coupling nodes on the main path through which the detection signals sequentially pass, and N antenna nodes and K coupling nodes on the branch reflect the detection signal. After the signal, so the signal after the detection signal and the echo signal are superimposed The number can be called a standing wave signal.
  • the signal processing module 21 includes a mixer 210 and a filter 211;
  • An input terminal 2100 is connected to the second output terminal 2202 of the power divider 220, a second input terminal 2101 of the mixer 210 is connected to the third terminal 2212 of the circulator 221, and an output terminal 2102 of the mixer 210 is connected to the filter 211.
  • the input terminal 2110 is connected, and the output terminal 2111 of the filter 211 is connected to the signal analysis module 23.
  • the mixer 210 is configured to superimpose the detection signal and the echo signal, and send the superposed signal to the filter 211; the filter 211 is configured to receive the superposed signal sent by the mixer 210, and The superimposed signal is filtered, and the filtered superimposed signal is sent to the signal analysis module 23.
  • the filter may be a band pass filter.
  • the detection signal and the echo signal can be superimposed to obtain a corresponding standing wave signal (ie, the superposed signal), due to the standing wave.
  • the position of the node and the antinode of the signal is always constant, so the frequency difference amplitude spectrum obtained by the standing wave signal can more accurately indicate the M coupling nodes on the main road and the N antenna nodes and K on the branch.
  • the signal analysis module 23 includes an analog-to-digital converter 230 and a spectrum converter 231; and an analog-to-digital converter.
  • the input 2300 of the 230 is coupled to the output 2111 of the filter 211, and the output 2301 of the analog to digital converter 230 is coupled to the spectral converter 231.
  • the analog-to-digital converter 230 is configured to convert the filtered superimposed signal outputted by the filter 211 into a digital signal, and send the digital signal to the spectrum converter 231; the spectrum converter 231 is configured to receive the modulus The digital signal transmitted by the converter 230 is spectrally converted to obtain a frequency difference amplitude spectrum.
  • the analog signal is converted into a digital signal by an analog-to-digital converter, and the digital signal is spectrally converted into a corresponding frequency difference amplitude spectrum, so that the frequency difference amplitude spectrum can accurately indicate the main road.
  • the apparatus for obtaining a frequency difference amplitude spectrum may further include at least one of the following three amplifiers: a first input connected to the mixer 210.
  • An amplifier 24 between the terminal 2100 and the second output 2202 of the power divider 220, an amplifier 25 connected between the second input terminal 2101 of the mixer 210 and the third terminal 2212 of the circulator 221, and the connection mode
  • An amplifier 26 between the input 2300 of the digital converter 230 and the output 2111 of the filter 211.
  • the amplifier 24 connected between the first input terminal 2100 of the mixer 210 and the second output terminal 2202 of the power divider 220 is configured to amplify the detection signal outputted by the second output terminal 2202 of the power divider 220. And transmitting the amplified detection signal to the mixer 210; an amplifier 25 connected between the second input terminal 2101 of the mixer 210 and the third end 2212 of the circulator 221, for the circulator 221
  • the echo signal outputted by the three-terminal 2212 is amplified, and the amplified echo signal is sent to the mixer 210;
  • the amplifier 26 is connected between the input terminal 2300 of the analog-to-digital converter 230 and the output terminal 2111 of the filter 211. And for amplifying the filtered superimposed signal outputted by the filter 211, and transmitting the amplified signal to the analog to digital converter 230.
  • the signal strength of the detection signal may be reduced during the transmission process (ie, the detection signal is attenuated during transmission), and the signal strength of the echo signal obtained after the detection signal is reflected is relatively small
  • Amplifying the detection signal by an amplifier connected between the first input of the mixer and the second output of the splitter increases the signal strength of the detected signal and is connected to the second input of the mixer
  • Amplifying the echo signal between the amplifier and the third end of the circulator can increase the signal strength of the echo signal, thereby enabling the device that obtains the frequency difference amplitude spectrum to superimpose the detected signal and the echo signal.
  • the signal intensity is large, and the device for obtaining the frequency difference amplitude spectrum can ensure that the frequency difference amplitude spectrum obtained by the superimposed signal is relatively accurate.
  • the signal strength may be relatively small, so that an amplifier pair is connected between the input end of the analog-to-digital converter and the output end of the filter.
  • the filtered superimposed signal is amplified to increase the signal strength of the filtered superimposed signal, thereby ensuring that the frequency difference amplitude spectrum obtained by the device for obtaining the frequency difference amplitude spectrum is more accurate.
  • the detection signal may be a chirped continuous wave signal.
  • the frequency of the detection signal sent by the device for obtaining the frequency difference amplitude spectrum is f1
  • the frequency of the detection signal sent by the device for obtaining the frequency difference amplitude spectrum is f1
  • the detection signal passes through a certain node ( It can be the time when the reflected echo signal is reflected by the coupled node on the main road in the DAS, or the antenna node or the coupled node on the branch in the DAS, and returned to the device that obtains the frequency difference amplitude spectrum.
  • the frequency of the detection signal generated and emitted by the device that obtains the amplitude difference amplitude spectrum has changed to f1+k*t (k is the frequency variation coefficient), and the device that obtains the frequency difference amplitude spectrum will return the spectrum
  • the wave signal and the detection signal are mixed and superimposed to obtain a superimposed signal (that is, a standing wave signal)
  • the frequency of the superposed signal is k*t
  • the device that obtains the frequency difference amplitude spectrum passes the superposition
  • the apparatus for obtaining the frequency difference amplitude spectrum adopts the above-mentioned node for detecting the detection signal to the test point.
  • the principle of distance after transmitting the detection signal from the signal input end of the DAS to the branch 1, the coupling node on the main road in the DAS, and the distance from each antenna node on each branch 1 and each coupling node to the test point can be obtained. That is, the coupling node on the main road in the DAS and each antenna on the branch 1 can be obtained.
  • FIG. 7 is a schematic diagram of a coupling node on the main road in the DAS, and a relative position between each antenna node and each coupling node on the branch 1, and each vertical line in FIG. 7 represents a detection signal.
  • the reflected node, the position of the vertical line on the abscissa represents the relative position of the node in the DAS with other nodes, and the ordinate of the vertical line represents the amplitude of the echo signal reflected by the node to the detection signal.
  • the branch 1 in the DAS shown in FIG. 1 is taken as an example to obtain the frequency difference.
  • the simulation results of the frequency difference amplitude spectrum obtained by the device of the amplitude spectrum are exemplarily illustrated.
  • the main road in the DAS the cable length between C00 and the combiner located before it is 200;
  • the coupling node portion on the branch 1 in the DAS the length of the cable between C11 and C00 before it is 250; the length of the cable between C12 and C11 before it is 510; C13 and C12 before it The length of the cable is 420; the length of the cable between C14 and C13 before it is 600.
  • Antenna node portion on branch 1 in DAS cable length between A11 and C11 before it is 250; cable length between A12 and C12 before it is 2000; A13 and C13 before it The length of the cable is 1500; the length of the cable between A14 and C14 before it is 2200; the length of cable between A15 and C14 before it is 210.
  • the cable lengths between the nodes described above are represented by transmission delays of signals (detection signals or echo signals) in cables between the nodes, that is, the above 200, 250, 510, 420, 600, 250, 2000, 1500, 2200, and 210 all refer to transmission delays of signals in cables between respective nodes, wherein the units of these transmission delays are nanoseconds.
  • the actual cable length between each node can be calculated by the following formula:
  • the actual cable length between the respective nodes can be calculated based on the transmission speed of the signal in the cable between the respective nodes and the transmission delay in the cable between the respective nodes.
  • the device for obtaining the frequency difference amplitude spectrum is from the signal input end of the DAS to the branch 1 and the branch 2 Simulation diagram of the frequency difference amplitude spectrum corresponding to the branch 1 and the branch 2 obtained after transmitting the detection signal (can be understood as the frequency difference amplitude spectrum corresponding to each node in the DAS when there is no faulty node in the DAS).
  • the frequency difference amplitude spectrum shown in Figure 8 is used to indicate the coupling node on the main road in the DAS, all antenna nodes and all coupling nodes on the branch 1, and all antenna nodes and all coupling nodes on the branch 2
  • the position of each node and the amplitude of the echo signal corresponding to the node Correspondence between the two. 8 is a frequency difference amplitude spectrum of the branch 1 and the branch 2 in the DAS obtained by the apparatus for obtaining the frequency difference amplitude spectrum.
  • the branch 1 is taken as an example for description.
  • the frequency difference amplitude spectrum of the branch 2 shown in Fig. 8 (which is similar to the frequency difference amplitude spectrum of the branch 1) will not be described in detail.
  • the coupling node on the main road in the DAS shown in FIG. 7 and the relative position between each antenna node and each coupling node on the branch 1 are as follows.
  • the frequency difference amplitude spectrum obtained by the simulation shown in FIG. 8 is similar.
  • the relative position diagram shown in FIG. 7 is only for the purpose of more clearly describing the principle of obtaining the frequency difference amplitude spectrum provided by the embodiment of the present invention.
  • the simplification of the frequency difference amplitude spectrum is a theoretical diagram, and the frequency difference amplitude spectrum obtained by the device which actually obtains the frequency difference amplitude spectrum is the frequency difference amplitude spectrum shown in FIG.
  • the foregoing embodiment of the present invention is only exemplified by a branch in the DAS, that is, an example of the branch 1 in the DAS shown in FIG. 1 is used as an example for other branches in the DAS.
  • the method for obtaining the frequency difference amplitude spectrum of the device for obtaining the frequency difference amplitude spectrum is the same as the method for obtaining the frequency difference amplitude spectrum of the branch 1 in the DAS described above, specifically For details, refer to the related description in the embodiment shown in FIG. 7 and FIG. 8 , and details are not described herein again.
  • An embodiment of the present invention provides another apparatus for obtaining a frequency difference amplitude spectrum.
  • the apparatus for obtaining a frequency difference amplitude spectrum is applied to a DAS.
  • the DAS includes a main path and at least one branch, and the main path includes M coupling nodes.
  • the branches include N antenna nodes and K coupling nodes, and M, N and K are positive integers.
  • the DAS can be the DAS shown in Figure 1 above. Specifically, for the description of the DAS, refer to the related description of the DAS in the foregoing embodiment shown in FIG. 1 , and details are not described herein again.
  • the apparatus for obtaining a frequency difference amplitude spectrum includes a first signal generating module 30, a first signal transmitting module 32 connected to the first signal generating module 30, and a first signal transmitting module. 32 connected first signal processing module 31, and first signal analysis module 33 connected to the first signal processing module 31.
  • the first signal generating module 30 is configured to generate a detection signal, and send the detection signal to the first signal transmission module 32.
  • the first signal transmission module 32 is configured to receive the detection signal sent by the first signal generation module, 30, And transmitting a detection signal to the first signal processing module 31, and for each of at least one of the plurality of branches, and for each of the N antenna nodes on the branch,
  • the antenna node sends a detection signal to the branch, receives the first echo signal returned by the branch, and sends the first echo signal to the first signal processing module 31, where the first echo signal passes through the detection signal
  • the first signal processing module 31 is configured to receive the detection signals sent by the first signal transmission module 32 and a first echo signal, and superimposing the detection signal and the first echo signal, and transmitting the superposed signal to the first signal analysis module 33;
  • the first signal analysis module 33 is configured to receive a superimposed signal sent by
  • the apparatus for obtaining a frequency difference amplitude spectrum provided by an embodiment of the present invention generates a detection signal by a first signal generating module, and for each of at least one of the plurality of branches, and for the branch
  • Each of the N antenna nodes transmits a detection signal from the antenna node to the branch through the first signal transmission module, and receives the first echo signal reflected by the detection signal returned by the branch, and passes
  • the first signal processing module superimposes the detection signal and the first echo signal, and performs spectrum conversion on the superposed signal by the first signal analysis module to obtain a first frequency difference amplitude spectrum.
  • the fault analysis device in the fault location system can generate the first frequency difference amplitude spectrum obtained by analyzing the device for obtaining the frequency difference amplitude spectrum, which can occur in the DAS
  • the faulty node is positioned to accurately locate the fault point in the DAS.
  • the first echo signal is a signal that the detection signal sequentially passes through C00 on the main path as shown in FIG. 1 and C11, C12, C13, C14, and A15 on the branch 1 reflect the detection signal.
  • the first signal transmission module 32 includes a first power divider 320, a first circulator 321 and The first transmission interface 322; the input end 3200 of the first power splitter 320 is connected to the output terminal 300 of the first signal generating module 30, and the first output end 3201 of the first splitter 320 and the first end of the first circulator 321
  • the second output end 3202 of the first power divider 320 is connected to the first signal processing module 31, and the second end 3211 of the first circulator 321 is connected to the first transmission interface 322.
  • the three terminals 3212 are connected to the first signal processing module 31.
  • the first power splitter 320 is configured to receive the detection signal sent by the first signal generating module 30 through the input end 3200 of the first power splitter 320, and pass the detection signal to the first output end of the first power splitter 320.
  • the first circulator 321 is sent to the first circulator 321 and the detection signal is sent to the first signal processing module 31 through the second output 3202 of the first power divider 320.
  • the first circulator 321 is configured to pass the first circulator 321
  • the first end 3210 receives the detection signal sent by the first power divider 320, and sends the detection signal to the first transmission interface 322 through the second end 3211 of the first circulator 321 to be sent by the first transmission interface 322 to the branch. And receiving the first echo signal returned by the branch through the second end 3211 of the first circulator 321 and transmitting the first echo signal to the first signal processing module through the third end 3212 of the first circulator 321 31.
  • the first transmission interface may be a cable, or may be a wireless module, such as a Wi-Fi module or an RF module.
  • the detection signal can be divided into two paths by the first power divider, and the first circulator can ensure that the antenna node at the detection signal and the K coupling nodes on the branch reflect the detection signal.
  • An echo signal can be returned to the first circulator, so that the first signal processing module can superimpose the detection signal and the first echo signal and send it to the first signal analysis module for analysis.
  • the detection signal is an incident wave signal
  • the first echo signal is a detection signal in sequence
  • the M coupling nodes on the main road and the antenna nodes at the detection signal and the K coupling nodes on the branch detect the signal reflected by the signal, so the signal after the detection signal and the first echo signal are superimposed may be called A standing wave signal.
  • the first signal processing module 31 includes a first mixer 310 and a first filter 311;
  • the first input end 3100 of the first mixer 310 is connected to the second output end 3202 of the first power splitter 320, and the second input end 3101 of the first mixer 310 and the third end 3212 of the first circulator 321
  • the output 3102 of the first mixer 310 is connected to the input 3110 of the first filter 311, and the output 3111 of the first filter 311 is connected to the first signal analysis module 33.
  • the first mixer 310 is configured to superimpose the detection signal and the first echo signal, and send the superposed signal to the first filter 311.
  • the first filter 311 is configured to receive the first mixing.
  • the superimposed signal sent by the device 310 filters the superimposed signal and sends the filtered superimposed signal to the first signal analysis module 33.
  • the first filter may be a band pass filter.
  • the detection signal and the first echo signal may be superposed to obtain a corresponding first standing wave signal (ie, superimposed).
  • the first frequency difference amplitude spectrum obtained by the first standing wave signal can more accurately indicate the M on the main road.
  • the first signal analysis module 33 includes a first analog-to-digital converter 330 and a first spectrum converter.
  • the input terminal 3300 of the first analog-to-digital converter 330 is connected to the output terminal 3111 of the first filter 311, and the output terminal 3301 of the first analog-to-digital converter 330 is connected to the first spectrum converter 331.
  • the first analog-to-digital converter 330 is configured to convert the filtered superimposed signal output by the first filter 311 into a digital signal, and send the digital signal to the first spectrum converter 331; the first spectrum converter The 331, is configured to receive the digital signal sent by the first analog-to-digital converter 330, and perform spectral conversion on the digital signal to obtain a first frequency difference amplitude spectrum.
  • the analog signal is converted into a digital signal by the first analog-to-digital converter, and the digital signal is spectrally converted into a corresponding first frequency difference amplitude spectrum, so that the first frequency difference amplitude spectrum can be made.
  • the first analog-to-digital converter converts the digital signal into a digital signal into a digital signal by the first analog-to-digital converter, and the digital signal is spectrally converted into a corresponding first frequency difference amplitude spectrum, so that the first frequency difference amplitude spectrum can be made. Precisely indicating the correspondence between the position of the M coupling nodes on the main road and the position of each of the antenna nodes transmitting the detection signal and the K coupling nodes on the branch and the amplitude of the first echo signal corresponding to the node relationship.
  • the apparatus for obtaining a frequency difference amplitude spectrum further includes at least one of the following three amplifiers: first connected to the first mixer 310. a first amplifier 34 between the input terminal 3100 and the second output terminal 3202 of the first power divider 320, a second amplifier 35 connected between the second input terminal 3101 of the first mixer 310 and the third terminal 3212 of the first circulator 321 , and an input terminal 3300 connected to the first analog-to-digital converter 330 and the first A third amplifier 36 between the outputs 3111 of the filter 311.
  • the first amplifier 34 is configured to amplify the detection signal outputted by the second output end 3202 of the first power divider 320, and send the amplified detection signal to the first mixer 310.
  • the second amplifier 35 The first echo signal outputted by the third end 3212 of the first circulator 321 is amplified, and the amplified first echo signal is sent to the first mixer 310; the third amplifier 36 is used for The filtered superimposed signal output by the first filter 311 is amplified, and the amplified signal is sent to the first analog to digital converter 330.
  • the signal strength may be reduced during the transmission process (ie, the detection signal is attenuated during transmission), and the signal strength of the first echo signal obtained after the detection signal is reflected is relatively small. Therefore, the amplification of the detection signal by the first amplifier can increase the signal strength of the detection signal, and the amplification of the first echo signal by the second amplifier can increase the signal strength of the first echo signal, thereby enabling the frequency to be obtained.
  • the device of the difference amplitude spectrum has a larger signal intensity of the signal superimposed by the detection signal and the first echo signal, thereby ensuring the first frequency difference amplitude spectrum obtained by the device with the frequency difference amplitude spectrum obtained by the superimposed signal. More accurate.
  • the signal strength may be relatively small, so that the filtered amplified superimposed signal may be amplified by the third amplifier.
  • the filtered signal strength of the superimposed signal can ensure that the first frequency difference amplitude spectrum obtained by the device for obtaining the frequency difference amplitude spectrum is more accurate.
  • the detection signal may be a chirped continuous wave signal.
  • the apparatus for obtaining the frequency difference amplitude spectrum adopts the principle of obtaining the distance from each node of the detection signal to the test point, from the antenna node A15 on the branch 1 in the DAS.
  • a relative position map corresponding to the antenna node A15 on the branch 1 in the DAS can be obtained.
  • the relative position diagram represents the coupling node on the main road in the DAS, and the distance from the antenna node A15 on the branch 1 and each coupling node on the branch 1 to the test point, that is, the relative position diagram represents the coupling on the main road in the DAS.
  • each vertical line in FIG. 14A respectively represents a node that reflects the detection signal
  • the position of the vertical line on the abscissa represents the relative position of the node in the DAS with other nodes
  • the vertical line of the vertical line The coordinates represent the amplitude of the echo signal after the node reflects the detected signal.
  • the apparatus for obtaining the frequency difference amplitude spectrum continues to adopt the above method of obtaining the distance from each node of the detection signal to the test point, respectively, from the antenna nodes A14, A13, A12 and A11 on the branch 1 in the DAS.
  • a relative position map corresponding to each antenna node on the branch 1 can be obtained.
  • FIG. 14B, FIG. 14C, and FIG. 14D and FIG. 14E are schematic diagrams of relative positions corresponding to antenna nodes A14, A13, A12, and A11, respectively.
  • the branch 1 in the DAS shown in FIG. 1 is taken as an example to obtain the frequency difference.
  • the simulation results of the frequency difference amplitude spectrum obtained by the device of the amplitude spectrum are exemplarily illustrated.
  • the device for obtaining the frequency difference amplitude spectrum is from the antenna node A11 on the branch 1 to the branch 1
  • a simulation diagram of the first frequency difference amplitude spectrum corresponding to the antenna node A11 obtained after transmitting the detection signal can be understood as a first frequency difference amplitude spectrum corresponding to the antenna node A11 in the DAS when there is no faulty node in the DAS).
  • a simulation diagram of the first frequency difference amplitude spectrum corresponding to the antenna node A12 obtained by the device for obtaining the frequency difference amplitude spectrum from the antenna node A12 on the branch 1 to the branch 1 transmits the detection signal.
  • a simulation diagram of the first frequency difference amplitude spectrum corresponding to the antenna node A13 obtained by the device for obtaining the frequency difference amplitude spectrum from the antenna node A13 on the branch 1 to the branch 1 transmits the detection signal.
  • a simulation diagram of the first frequency difference amplitude spectrum corresponding to the antenna node A14 obtained by the device for obtaining the frequency difference amplitude spectrum from the antenna node A14 on the branch 1 to the branch 1 transmits the detection signal.
  • FIG. 15E a simulation diagram of the first frequency difference amplitude spectrum corresponding to the antenna node A15 obtained by transmitting the detection signal from the antenna node A15 on the branch 1 to the branch 1 is shown in FIG. 15E. (It can be understood as the first frequency difference amplitude spectrum corresponding to the antenna node A15 in the DAS when there is no faulty node in the DAS).
  • the apparatus for obtaining the frequency difference amplitude spectrum in this embodiment can obtain the first frequency difference amplitude spectrum corresponding to each antenna node on the branch 1.
  • the first frequency difference amplitude spectrum as shown in FIGS. 15A-15E is used to indicate the coupling node on the main path in the DAS, and the antenna nodes (eg, A11, A12, A13, A14, and A15) at the detection signal on the branch 1 and The correspondence between the position of each of all the coupled nodes on the branch 1 and the amplitude of the first echo signal corresponding to the node.
  • the relative positional map corresponding to each antenna node shown in FIG. 14A to FIG. 14E is only for the purpose of more clearly describing the obtained frequency difference amplitude spectrum provided by the embodiment of the present invention.
  • the simplification of the simulated first frequency difference amplitude spectrum obtained by the principle is a theoretical diagram, and the frequency difference amplitude spectrum obtained by the device which actually obtains the frequency difference amplitude spectrum is as shown in FIGS. 15A to 15E.
  • the first frequency difference amplitude spectrum is a theoretical diagram, and the frequency difference amplitude spectrum obtained by the device which actually obtains the frequency difference amplitude spectrum.
  • the foregoing embodiment of the present invention is only exemplified by a branch in the DAS, that is, an example of the branch 1 in the DAS shown in FIG. 1 is used as an example for other branches in the DAS.
  • branch 2 shown in FIG. 1 the apparatus for obtaining the frequency difference amplitude spectrum obtains the first frequency difference amplitude spectrum and the first frequency difference of each antenna node in the branch 1 in the DAS described above.
  • the method of the amplitude spectrum is the same.
  • FIG. 14A-14E and FIG. 15A-15E details are not described herein again.
  • the embodiment of the invention provides a fault location system, which can be applied to a DAS.
  • the DAS includes a main road and a plurality of branches.
  • the main road includes M coupling nodes, and each branch includes N antenna nodes and K. Coupled nodes, M, N and K are positive integers.
  • the DAS can be the DAS shown in Figure 1 above. Specifically, for the description of the DAS, refer to the related description of the DAS in the foregoing embodiment shown in FIG. 1 , and details are not described herein again.
  • the fault location system may include a first device 10 for obtaining a frequency difference amplitude spectrum, a second device 11 for obtaining a frequency difference amplitude spectrum, and a device 10 for first obtaining a frequency difference amplitude spectrum.
  • the second device 11 that obtains the frequency difference amplitude spectrum is connected to the failure analysis device 12.
  • the device 10 for obtaining the frequency difference amplitude spectrum may be the device for obtaining the frequency difference amplitude spectrum as shown in any one of the above embodiments in FIG. 2 to FIG. 6; and the second device for obtaining the frequency difference amplitude spectrum 11 may be a device for obtaining a frequency difference amplitude spectrum as shown in any one of FIGS.
  • the failure analysis device 12 is configured to be used in at least one of the plurality of branches in the DAS At least one first frequency difference amplitude spectrum of each of the N first frequency difference amplitude spectra corresponding to the N antenna nodes of the branch transmitted by the means for obtaining the second frequency difference amplitude spectrum
  • the at least one first frequency difference amplitude spectrum is respectively verified with the frequency difference amplitude spectrum sent by the first device for obtaining the frequency difference amplitude spectrum, and each first frequency difference amplitude is determined on the frequency difference amplitude spectrum.
  • a position of an antenna node displayed in the spectrum and a position of at least one coupling node near the antenna node to determine a position of at least one of the M coupling nodes on the main road on the frequency difference amplitude spectrum, and At least one day on the branch And at least one coupling node position of the node.
  • the frequency difference amplitude spectrum is obtained by the first device for obtaining the frequency difference amplitude spectrum
  • the N first frequency difference amplitude spectrum is obtained by the second device for obtaining the frequency difference amplitude spectrum
  • the fault analysis device correcting, by the fault analysis device, at least one first frequency difference amplitude spectrum of the N first frequency difference amplitude spectra and the frequency difference amplitude spectrum respectively, and determining the main road on the frequency difference amplitude spectrum Position of at least one of the M coupling nodes, and a position of at least one antenna node and at least one coupling node on the branch, so that M coupling nodes on the main path and the same can be determined on the frequency difference amplitude spectrum The position of the N antenna nodes and K coupling nodes on the branch.
  • the fault location system can determine the frequency difference amplitude spectrum after each node position by analyzing, and can locate the faulty node in the DAS, thereby accurately positioning the fault point in the DAS.
  • the description of the device 10 for obtaining the first frequency difference amplitude spectrum may be specifically See the related description of the device for obtaining the frequency difference amplitude spectrum in the embodiment shown in any one of the above-mentioned FIG. 2 to FIG. 6 , and details are not described herein again.
  • a description of the device 11 for obtaining the frequency difference amplitude spectrum refer to the related description of the device for obtaining the frequency difference amplitude spectrum in the embodiment shown in any one of the above-mentioned FIG. 9 to FIG. Narration.
  • the first device 10 for obtaining the frequency difference amplitude spectrum may be disposed at the signal input end of the DAS, for example, the device 10 for obtaining the first frequency difference amplitude spectrum may be disposed at the signal input end as shown in FIG.
  • the first device 10 and the signal input terminal for obtaining the amplitude difference amplitude spectrum are connected to C00 through a combiner.
  • the second means 11 for obtaining the amplitude difference amplitude spectrum can be independent of the DAS, i.e. the second means 11 for obtaining the amplitude difference amplitude spectrum can be an independent or movable detection device.
  • the fault analysis device 12 can be a separate host that can be implemented by running a corresponding computer program or computer command on the host; of course, the fault analysis device 12 can also be integrated with the first device 10 that obtains the amplitude difference amplitude spectrum. Implemented in a host or detection device. Specifically, the specific implementation of the apparatus 10 for obtaining the frequency difference amplitude spectrum, the apparatus 11 for obtaining the frequency difference amplitude spectrum, and the fault analysis apparatus 12 may be determined according to actual use requirements, which is not specifically limited in the embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a fault location system according to an embodiment of the present invention applied to a DAS. 17 is only disposed between the signal input terminal of the DAS and the C00 in the first device 10 for obtaining the frequency difference amplitude spectrum, and the second device 11 for obtaining the frequency difference amplitude spectrum is a movable detecting device and the failure analysis.
  • the device 12 is exemplified by an independent host as an example. In FIG.
  • the second device 11 for obtaining the frequency difference amplitude spectrum is wirelessly connected with the branch 1, the branch 2 and the fault analysis device 12; the first device 10 for obtaining the frequency difference amplitude spectrum and the failure analysis
  • the device 12 may be a wired connection (for example, connected by a cable) or a wireless connection, and may be determined according to actual use requirements, which is not specifically limited in the embodiment of the present invention.
  • the first device 10 for obtaining the frequency difference amplitude spectrum, the second device 11 for obtaining the frequency difference amplitude spectrum, and the failure analysis device 12 perform fault location for each branch in the DAS.
  • the process specific can include:
  • the first device 10 that obtains the frequency difference amplitude spectrum transmits the obtained frequency difference amplitude spectrum of the branch to the fault analysis device 12.
  • the second device 11 for obtaining the frequency difference amplitude spectrum transmits the obtained N first frequency difference amplitude spectra corresponding to the N antenna nodes on the branch to the fault analyzing device 12.
  • the fault analysis device 12 mutually confirms at least one first frequency difference amplitude spectrum of the N first frequency difference amplitude spectra and the frequency difference amplitude spectrum sent by the first frequency difference amplitude spectrum device, respectively, at the frequency Determining, on the difference amplitude spectrum, a position of the antenna node displayed in each of the first frequency difference amplitude spectra, and a position of at least one coupling node near the antenna node, to determine the M on the main path on the frequency difference amplitude spectrum
  • the DAS includes two branches, and the main path in the DAS includes one coupling node, and each branch includes five antenna nodes and four coupling nodes as an example for example.
  • the embodiment of the present invention is no longer one. An enumeration.
  • the description of the DAS as shown in FIG. 17 refer to the related description of the DAS as shown in FIG. 1 , and details are not described herein again.
  • the first device for obtaining the frequency difference amplitude spectrum obtains the relative position as shown in FIG. 7 and the second device for obtaining the frequency difference amplitude spectrum is obtained as shown in FIG. 14A to FIG. 14E.
  • the first device for obtaining the frequency difference amplitude spectrum and the second device for obtaining the frequency difference amplitude spectrum can transmit the relative positions to the fault analysis device, and then the fault analysis device mutually confirms the engineering construction drawing of the DAS.
  • the relative positions as shown in Figs. 7 and 14A to 14E described above the respective nodes in the DAS as shown in Fig. 7 are determined, i.e., which vertical line in Fig. 7 indicates which node is indicated.
  • the fault analysis device can determine the physical location of the coupled nodes on the main road in the DAS and the antenna nodes and coupling nodes of each branch in the DAS, and the relative positions between the nodes, so that the fault analysis device can determine these
  • the length of the cable also called the feeder
  • the fault analysis device can also describe the topology of the DAS according to the physical location of the nodes in the DAS and the cable length between any two nodes.
  • the topology of the DAS depicted by the fault analysis device is a real topology of the DAS, and there may be a certain difference between the DAS and the DAS, and the fault analysis device is combined with the real topology of the DAS.
  • the faulty nodes on each branch of the DAS can be accurately determined, thereby improving the accuracy of fault location.
  • the first device for obtaining the frequency difference amplitude spectrum obtains the frequency difference amplitude spectrum shown in FIG. 8 and the second device for obtaining the frequency difference amplitude spectrum obtains the above-mentioned FIG. 15A to After the first frequency difference amplitude spectrum shown in FIG. 15E, the first device for obtaining the frequency difference amplitude spectrum and the second device for obtaining the frequency difference amplitude spectrum may send the frequency difference amplitude spectrum to the fault analysis device, The fault analysis device mutually verifies the frequency difference amplitude spectrum, and determines the coupling node C00 on the main road and the antenna nodes A11, A12, A13, A14 and A15 on the branch 1 on the frequency difference amplitude spectrum as shown in FIG.
  • the fault analysis device can determine the antenna node that has failed on the branch 1 by analyzing the amplitude difference spectrum after determining the position of each node.
  • the foregoing embodiment of the present invention uses only one branch in the DAS as an example, that is, the branch 1 in the DAS is taken as an example to locate the fault point of the branch 1 by the fault location system provided by the embodiment of the present invention.
  • the principle is described in detail.
  • the method and principle of fault location for other branches in the DAS (for example, the branch 2 shown in FIG. 1 or 3) are the same as the above fault location system.
  • the method and the principle for performing fault location are the same.
  • the embodiment of the invention provides a fault location system, which is applied to DAS, DAS
  • the utility model comprises a main road and a plurality of branches, the main road comprises M coupling nodes, each branch comprises N antenna nodes and K coupling nodes, and M, N and K are positive integers.
  • DAS refers to the related description of the DAS in the foregoing embodiment shown in FIG. 1 , and details are not described herein again.
  • the fault location system includes a first device 10 for obtaining a frequency difference amplitude spectrum and a fault analysis device 12 coupled to the first device 10 for obtaining a frequency difference amplitude spectrum.
  • the first device for obtaining the frequency difference amplitude spectrum may be the device for obtaining the frequency difference amplitude spectrum as shown in any one of the above embodiments in FIG. 2 to FIG.
  • the first device 10 for obtaining the frequency difference amplitude spectrum For transmitting, when a DAS fails, for each of the plurality of branches, transmitting a detection signal from the signal input end of the DAS to the branch, and receiving the echo returned by the branch And superimposing the detection signal and the echo signal, and performing spectrum conversion on the superimposed signal to obtain a fault frequency difference amplitude spectrum, and transmitting the fault frequency difference amplitude spectrum to the fault analysis device 12, wherein the echo signal is a detection signal
  • the echo signal is a detection signal
  • the M coupling nodes on the main road passing in sequence and the N antenna nodes and K coupling nodes on the branch are reflected signals of the detection signal, and the fault frequency difference amplitude spectrum is used to indicate that the branch is faulty, on the main road Corresponding relationship between the positions of the M coupling nodes and the positions of each of the N antenna nodes and the K coupling nodes on the branch and the amplitude of the echo signal corresponding to the node; the fault analysis device 12 is configured to The fault
  • the coupling node and the N antenna nodes on the branch and the fault nodes in the K coupling nodes, the amplitude of the echo signal corresponding to the fault node on the fault frequency difference amplitude spectrum and the fault node on the standard frequency difference amplitude spectrum The amplitudes of the corresponding echo signals are different, and the standard frequency difference amplitude spectrum is used to indicate that the M coupling nodes on the main road and the N antenna nodes and K coupling nodes on the branch road are not faulty.
  • the standard frequency difference amplitude spectrum in the fault analysis apparatus 12 may be obtained by the apparatus 10 for obtaining the first frequency difference amplitude spectrum, and then sent to the fault analysis apparatus 12, where the standard frequency difference amplitude spectrum may be The above-mentioned frequency difference amplitude spectrum shown in FIG.
  • the standard frequency difference amplitude spectrum may be a frequency difference amplitude spectrum obtained by the apparatus for obtaining a frequency difference amplitude spectrum as shown in any one of FIG. 2 to FIG. 6 in the above embodiment, that is, as described above.
  • the frequency difference amplitude spectrum obtained by the apparatus for obtaining the frequency difference amplitude spectrum shown in any one of FIG. 2 to FIG. 6 is a frequency difference amplitude spectrum obtained after the failure of the DAS and the position of each node is determined.
  • the fault analysis device can mutually verify the fault frequency difference amplitude spectrum and the standard frequency difference amplitude spectrum obtained by the fault analysis device. Determining the amplitude of a node on the frequency spectrum of the fault frequency difference (denoted as G1) is different from the amplitude of the node on the standard frequency difference amplitude spectrum (denoted as Z1), for example, the difference between the two is large (for example, G1 and Z1)
  • the fault analysis device can determine that the node on the standard frequency difference amplitude spectrum is a fault node compared to a sudden increase or a sudden drop. Therefore, the fault location system provided by the embodiment of the invention can locate the faulty node in the DAS, and can accurately locate the fault point in the DAS.
  • FIG. 21 is a spectrum diagram of the frequency spectrum of the fault frequency detected by the first fault detecting device when the antenna node A11 on the branch 1 in the DAS shown in FIG. 1 or FIG. 17 fails.
  • the obstacle analysis device compares the fault frequency difference amplitude spectrum shown in FIG. 21 with the standard frequency difference amplitude spectrum shown in FIG. 19, and finds the antenna node A11 on the standard frequency difference amplitude spectrum shown in FIG.
  • the amplitude of the echo signal reflected by the detection signal is 66.94
  • the amplitude of the echo signal reflected by the corresponding node on the fault frequency spectrum of the fault frequency spectrum shown in FIG. 21 is 80.33, which is a large difference.
  • the fault analysis device can determine that the faulty node is the antenna node A11 on the branch 1 in the DAS.
  • the branch 1 in the DAS shown in FIG. 1 or FIG. 17 is taken as an example, and the abscissas in FIG. 8, FIG. 15A to FIG. 15E, FIG. 19 and FIG.
  • the round-trip distance of the detection signal corresponding to the node (ie, the antenna node or the coupling node) in the branch 1 in the branch 1 ie, the detection signal sent by the device that first obtains the frequency difference amplitude spectrum reaches a node through the node After reflection, it returns to the distance transmitted by the first device that obtains the frequency difference amplitude spectrum.
  • the ordinate indicates the amplitude of the echo signal reflected by the node in the branch 1 after the detection signal is reflected.
  • the round-trip distance of the detection signal indicated by the abscissa shown in FIG. 21 in the branch 1 can also be represented by the transmission delay (for example, the round-trip delay) of the detection signal in the branch 1 for the transmission delay.
  • the transmission delay for example, the round-trip delay
  • the fault frequency difference amplitude spectrum of the branch in the DAS is obtained by the first device that obtains the frequency difference amplitude spectrum spectrum, because the frequency difference amplitude of the fault is
  • the spectrum indicates that when the branch fails, the positions of the M coupling nodes on the main road and each of the N antenna nodes and the K coupling nodes on the branch and the amplitude of the echo signal corresponding to the node Correspondence relationship between the two; and the standard frequency difference amplitude spectrum in the fault analysis device indicates that the branch has no fault, the M coupling nodes on the main road and each of the N antenna nodes and the K coupling nodes on the branch
  • the amplitude of the corresponding echo signal on the difference amplitude spectrum and the amplitude of the echo signal corresponding to each node on the standard frequency difference amplitude spectrum are the same, and will be in the two frequency difference amplitudes. Different amplitudes of echo signals corresponding to the failed node is a node determines FIG.
  • the fault location system provided by the embodiment of the present invention can locate the faulty node in the DAS, so as to accurately locate the fault point in the DAS.
  • An embodiment of the present invention provides an antenna system including a fault location system and a DAS.
  • the DAS includes a main path and a plurality of branches.
  • the main path includes M coupling nodes, and each branch includes N antenna nodes and K. Coupled nodes, M, N and K are positive integers.
  • the fault location system may be the fault location system as shown in FIG. 16 or FIG. 20 described above.
  • the DAS can be the DAS shown in Figure 1 above. Specifically, for the description of the fault locating system, refer to the related description of the fault locating system in the embodiment shown in FIG. 16 or FIG. 20, and details are not described herein again. For the description of the DAS, refer to the foregoing FIG. The related description of the DAS in the embodiment is not described here.
  • the antenna system provided by the embodiment of the present invention may be fault location as shown in FIG.
  • FIG. 17 For a description of the antenna system, refer to the related description in the embodiment shown in FIG. 17 for details of the description of the antenna system, and details are not described herein again.
  • the faulty node in the DAS can be located through the fault location system described above, thereby accurately positioning the fault point in the DAS.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • all or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device (which may be a personal computer, a server, Either a network device or the like) or a processor performs all or part of the steps of the methods described in the various embodiments of the present application.
  • the storage medium is a non-transitory medium, and includes various media that can store program codes, such as a flash memory, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本申请提供得到频差幅度谱图的装置、故障定位系统及天线系统,涉及通信领域,能对DAS中发生故障的节点定位,以准确定位DAS中的故障点。该装置包括产生并发送检测信号的信号产生模块;与其连的信号传输模块对DAS中至少一个支路中每个支路,从DAS输入端向该支路发送检测信号,将接收的检测信号和该支路返回的回波信号发给信号处理模块,回波信号为检测信号依次经过的DAS主路和该支路上节点对其反射的信号;信号处理模块将接收的检测信号和回波信号叠加后发送给与其连接的信号分析模块;信号分析模块将接收的叠加后的信号频谱转换为频差幅度谱图,指示主路和支路上每个节点位置与该节点对应的回波信号的幅度的对应关系。

Description

得到频差幅度谱图的装置、故障定位系统及天线系统
本申请要求于2016年04月18日提交中国专利局、申请号为201610243443.2、发明名称为“得到频差幅度谱图的装置、故障定位系统及天线系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种得到频差幅度谱图的装置、故障定位系统及天线系统。
背景技术
随着天线系统的不断发展,分布式天线系统(distributed antenna system,DAS)的应用越来越广泛。
目前,由于无法对DAS进行监控,因此当DAS中某个节点发生故障时,导致可能无法定位到DAS中发生故障的节点。
发明内容
本发明实施例提供一种得到频差幅度谱图的装置、故障定位系统及天线系统,能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
为达到上述目的,本发明实施例采用如下技术方案:
第一方面,本发明实施例提供一种得到频差幅度谱图的装置,该装置应用于DAS,DAS包括一个主路和多个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数,得到频差幅度谱图的装置包括信号产生模块,与信号产生模块连接的信号传输模块,与信号传输模块连接的信号处理模块,以及与信号处理模块连接的信号分析模块。其中,信号产生模块用于产生检测信号,并将检测信号发送给信号传输模块;信号传输模块用于接收信号产生模块发送的检测信号,并将检测信号发送给信号处理模块,且对于多个支路中的至少一个支路中的每个支路,从DAS的信号输入端向该支路发送检测信号,且接收该支路返回的回波信号,以及将回波信号发送给信号处理模块,回波信号为检测信号依次经过的主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点对检测信号反射后的信号;信号处理模块用于接收信号传输模块发送的检测信号和回波信号,并将检测信号和回波信号叠加,以及将叠加后的信号发送给信号分析模块;信号分析模块用于接收信号处理模块发送的叠加后的信号,并将叠加后的信号进行频谱转换得到频差幅度谱图,频差幅度谱图用于指示主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系。
本发明实施例提供的得到频差幅度谱图的装置,通过信号产生模块产生检测信号,并对于多个支路中的至少一个支路中的每个支路,通过信号传输 模块从DAS的信号输入端向该支路发送检测信号,并接收该支路返回的对检测信号反射后的回波信号,以及通过信号处理模块将检测信号和回波信号叠加,并通过信号分析模块将叠加后的信号进行频谱转换得到频差幅度谱图。由于该频差幅度谱图可用于指示主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系,因此当DAS中发生故障时,故障定位系统中的故障分析装置通过分析该得到频差幅度谱图的装置得到的频差幅度谱图,能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
可选的,本发明实施例提供的得到频差幅度谱图的装置中,上述信号传输模块包括功分器、环形器和传输接口;功分器的输入端与信号产生模块的输出端连接,功分器的第一输出端和环形器的第一端连接,功分器的第二输出端与信号处理模块连接,环形器的第二端与传输接口连接,环形器的第三端与信号处理模块连接。其中,功分器用于通过功分器的输入端接收信号产生模块发送的检测信号,并将检测信号通过功分器的第一输出端发送给环形器,将检测信号通过功分器的第二输出端发送给信号处理模块;环形器用于通过环形器的第一端接收功分器发送的检测信号,并将检测信号通过环形器的第二端发送给传输接口,由传输接口发送给该支路,以及通过环形器的第二端接收该支路返回的回波信号,并通过环形器的第三端将回波信号发送给信号处理模块。
可选的,本发明实施例中,上述传输接口可以为电缆;也可以为无线模块,例如无线保真(WIreless-Fidelity,Wi-Fi)模块或射频(radio freqency,RF)模块。
本发明实施例中,通过功分器可以将检测信号分为两路,通过环形器可以保证支路上的N个天线节点和K个耦合节点对检测信号反射后的回波信号能够返回到环形器,从而信号处理模块可以将检测信号和回波信号叠加后发送给信号分析模块进行分析。
进一步地,由于检测信号是入射波信号,回波信号是检测信号依次经过的主路上的M个耦合节点以及支路上的N个天线节点和K个耦合节点对检测信号反射后的信号,因此检测信号和回波信号叠加后的信号可称为驻波信号。
可选的,本发明实施例提供的得到频差幅度谱图的装置中,上述信号处理模块包括混频器和滤波器;混频器的第一输入端与功分器的第二输出端连接,混频器的第二输入端与环形器的第三端连接,混频器的输出端与滤波器的输入端连接,滤波器的输出端与信号分析模块连接。其中,混频器用于将检测信号和回波信号进行叠加,并将叠加后的信号发送给滤波器;滤波器用于接收混频器发送的叠加后的信号,并对叠加后的信号进行滤波,以及将经过滤波的叠加后的信号发送给信号分析模块。
可选的,本发明实施例中,上述滤波器可以为带通滤波器。
本发明实施例中,通过使用混频器对检测信号和回波信号进行混频,可以将检测信号和回波信号叠加,从而得到相应的驻波信号(即叠加后的信号), 由于驻波信号的波节和波腹的位置始终是不变的,因此通过驻波信号得到的频差幅度谱图能够比较准确地指示主路上的M个耦合节点以及支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系,从而当DAS中发生故障时,可以准确地定位到DAS中的故障点。
进一步地,通过使用滤波器对叠加后的信号进行滤波,能够抑制干扰信号对叠加后的信号造成的干扰。
可选的,本发明实施例提供的得到频差幅度谱图的装置中,上述信号分析模块包括模数转换器和频谱变换器;模数转换器的输入端与滤波器的输出端连接,模数转换器的输出端与频谱变换器连接。其中,模数转换器用于将滤波器输出的经过滤波的叠加后的信号转换为数字信号,并将数字信号发送给频谱变换器;频谱变换器用于接收模数转换器发送的数字信号,并将数字信号进行频谱转换得到频差幅度谱图。
本发明实施例中,通过模数转换器将模拟信号转换为数字信号,并将该数字信号进行频谱转换为相应的频差幅度谱图,能够使得该频差幅度谱图精确地指示主路上的M个耦合节点以及支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系。
可选的,本发明实施例提供的得到频差幅度谱图的装置还包括以下三个放大器中的至少一个:连接在混频器的第一输入端与功分器的第二输出端之间的放大器,连接在混频器的第二输入端与环形器的第三端之间的放大器,以及连接在模数转换器的输入端与滤波器的输出端之间的放大器。其中,连接在混频器的第一输入端与功分器的第二输出端之间的放大器用于对功分器的第二输出端输出的检测信号进行放大,并将放大后的检测信号发送给混频器;连接在混频器的第二输入端与环形器的第三端之间的放大器用于对环形器的第三端输出的回波信号进行放大,并将放大后的回波信号发送给混频器;连接在模数转换器的输入端与滤波器的输出端之间的放大器,用于对滤波器输出的经过滤波的叠加后的信号进行放大,并将放大后的信号发送给模数转换器。
本发明实施例中,由于检测信号在传输过程中信号强度可能会减小(即检测信号在传输过程中会衰减),且检测信号经过反射后得到的回波信号的信号强度也比较小,因此通过连接在混频器的第一输入端与功分器的第二输出端之间的放大器对检测信号进行放大可以增大检测信号的信号强度,且通过连接在混频器的第二输入端与环形器的第三端之间的放大器对回波信号进行放大可以增大回波信号的信号强度,从而能够使得得到频差幅度谱图的装置将检测信号和回波信号叠加后的信号的信号强度较大,进而可以保证得到频差幅度谱图的装置通过叠加后的信号得到的频差幅度谱图比较准确。
进一步地,由于上述叠加后的信号经过混频器混频和滤波器滤波后,其信号强度可能比较小,因此通过连接在模数转换器的输入端与滤波器的输出端之间的放大器对经过滤波的叠加后的信号进行放大可以增大经过滤波的叠 加后信号的信号强度,从而可以保证得到频差幅度谱图的装置得到的频差幅度谱图更加准确。
第二方面,本发明实施例提供一种得到频差幅度谱图的装置,该装置应用于DAS,DAS包括一个主路和多个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数,得到频差幅度谱图的装置包括第一信号产生模块,与第一信号产生模块连接的第一信号传输模块,与第一信号传输模块连接的第一信号处理模块,以及与第一信号处理模块连接的第一信号分析模块。其中,第一信号产生模块用于产生检测信号,并将检测信号发送给第一信号传输模块;第一信号传输模块用于接收第一信号产生模块发送的检测信号,并将检测信号发送给第一信号处理模块,且对于多个支路中的至少一个支路中的每个支路,以及对于该支路上的N个天线节点中的每个天线节点,从该天线节点向该支路发送检测信号,且接收该支路返回的第一回波信号,以及将第一回波信号发送给第一信号处理模块,第一回波信号为检测信号依次经过的主路上的M个耦合节点以及该天线节点和该支路上的K个耦合节点对检测信号反射后的信号;第一信号处理模块用于接收第一信号传输模块发送的检测信号和第一回波信号,并将检测信号和第一回波信号叠加,以及将叠加后的信号发送给第一信号分析模块;第一信号分析模块用于接收第一信号处理模块发送的叠加后的信号,并将叠加后的信号进行频谱转换得到第一频差幅度谱图,第一频差幅度谱图用于指示主路上的M个耦合节点以及该天线节点和该支路上的K个耦合节点中的每个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系。
本发明实施例提供的得到频差幅度谱图的装置,通过第一信号产生模块产生检测信号,并对于多个支路中的至少一个支路中的每个支路,且对于该支路上的N个天线节点中的每个天线节点,通过第一信号传输模块从该天线节点向该支路发送检测信号,且接收该支路返回的对检测信号反射后的第一回波信号,以及通过第一信号处理模块将检测信号和第一回波信号叠加,并通过第一信号分析模块将叠加后的信号进行频谱转换得到第一频差幅度谱图。由于该第一频差幅度谱图可用于指示主路上的M个耦合节点以及该天线节点和该支路上的K个耦合节点中的每个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系,因此当DAS中发生故障时,故障定位系统中的故障分析装置通过分析该得到频差幅度谱图的装置得到的第一频差幅度谱图,能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
可选的,本发明实施例提供的得到频差幅度谱图的装置中,上述第一信号传输模块包括第一功分器、第一环形器和第一传输接口;第一功分器的输入端与第一信号产生模块的输出端连接,第一功分器的第一输出端和第一环形器的第一端连接,第一功分器的第二输出端与第一信号处理模块连接,第一环形器的第二端与第一传输接口连接,第一环形器的第三端与第一信号处理模块连接。其中,第一功分器用于通过第一功分器的输入端接收第一信号 产生模块发送的检测信号,并将检测信号通过第一功分器的第一输出端发送给第一环形器,将检测信号通过第一功分器的第二输出端发送给第一信号处理模块;第一环形器用于通过第一环形器的第一端接收第一功分器发送的述检测信号,并将检测信号通过第一环形器的第二端发送给第一传输接口,由第一传输接口发送给该支路,以及通过第一环形器的第二端接收该支路返回的第一回波信号,并通过第一环形器的第三端将第一回波信号发送给第一信号处理模块。
可选的,本发明实施例中,上述第一传输接口可以为电缆;也可以为无线模块,例如Wi-Fi模块或RF模块。
本发明实施例中,通过第一功分器可以将检测信号分为两路,通过第一环形器可以保证发送检测信号处的天线节点和支路上的K个耦合节点对检测信号反射后的第一回波信号能够返回到第一环形器,从而第一信号处理模块可以将检测信号和第一回波信号叠加后发送给第一信号分析模块进行分析。
进一步地,由于检测信号是入射波信号,第一回波信号是检测信号依次经过的主路上的M个耦合节点以及发送检测信号处的天线节点和支路上的K个耦合节点对检测信号反射后的信号,因此检测信号和第一回波信号叠加后的信号可称为第一驻波信号。
可选的,本发明实施例提供的得到频差幅度谱图的装置中,上述第一信号处理模块包括第一混频器和第一滤波器;第一混频器的第一输入端与第一功分器的第二输出端连接,第一混频器的第二输入端与第一环形器的第三端连接,第一混频器的输出端与第一滤波器的输入端连接,第一滤波器的输出端与第一信号分析模块连接。其中,第一混频器用于将检测信号和第一回波信号进行叠加,并将叠加后的信号发送给第一滤波器;第一滤波器用于接收第一混频器发送的叠加后的信号,并对叠加后的信号进行滤波,以及将经过滤波的叠加后的信号发送给第一信号分析模块。
可选的,本发明实施例中,上述第一滤波器可以为带通滤波器。
本发明实施例中,通过使用第一混频器对检测信号和第一回波信号进行混频,可以将检测信号和第一回波信号叠加,从而得到相应的第一驻波信号(即叠加后的信号),由于第一驻波信号的波节和波腹的位置始终是不变的,因此通过第一驻波信号得到的第一频差幅度谱图能够比较准确地指示主路上的M个耦合节点以及发送检测信号处的天线节点和支路上的K个耦合节点中的每个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系,从而当DAS中发生故障时,可以准确地定位到DAS中的故障点。
进一步地,通过使用第一滤波器对叠加后的信号进行滤波,能够抑制干扰信号对叠加后的信号造成的干扰。
可选的,本发明实施例提供的得到频差幅度谱图的装置中,上述第一信号分析模块包括第一模数转换器和第一频谱变换器;第一模数转换器的输入端与第一滤波器的输出端连接,第一模数转换器的输出端与第一频谱变换器连接。其中,第一模数转换器用于将第一滤波器输出的经过滤波的叠加后的 信号转换为数字信号,并将数字信号发送给第一频谱变换器;第一频谱变换器用于接收第一模数转换器发送的数字信号,并将数字信号进行频谱转换得到第一频差幅度谱图。
本发明实施例中,通过第一模数转换器将模拟信号转换为数字信号,并将该数字信号进行频谱转换为相应的第一频差幅度谱图,能够使得该第一频差幅度谱图精确地指示主路上的M个耦合节点以及发送检测信号处的天线节点和支路上的K个耦合节点中的每个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系。
可选的,本发明实施例提供的得到频差幅度谱图的装置还包括以下三个放大器中的至少一个:连接在第一混频器的第一输入端与第一功分器的第二输出端之间的第一放大器,连接在第一混频器的第二输入端与第一环形器的第三端之间的第二放大器,以及连接在第一模数转换器的输入端与第一滤波器的输出端之间的第三放大器。其中,第一放大器用于对第一功分器的第二输出端输出的检测信号进行放大,并将放大后的检测信号发送给第一混频器;第二放大器用于对第一环形器的第三端输出的第一回波信号进行放大,并将放大后的第一回波信号发送给第一混频器;第三放大器用于对第一滤波器输出的经过滤波的叠加后的信号进行放大,并将放大后的信号发送给第一模数转换器。
本发明实施例中,由于检测信号在传输过程中信号强度可能会减小(即检测信号在传输过程中会衰减),且检测信号经过反射后得到的第一回波信号的信号强度也比较小,因此通过第一放大器对检测信号进行放大可以增大检测信号的信号强度,且通过第二放大器对第一回波信号进行放大可以增大第一回波信号的信号强度,从而能够使得得到频差幅度谱图的装置将检测信号和第一回波信号叠加后的信号的信号强度较大,进而可以保证得到频差幅度谱图的装置通过叠加后的信号得到的第一频差幅度谱图比较准确。
进一步地,由于上述叠加后的信号经过第一混频器混频和第一滤波器滤波后,其信号强度可能比较小,因此通过第三放大器对经过滤波的叠加后的信号进行放大可以增大经过滤波的叠加后信号的信号强度,从而可以保证得到频差幅度谱图的装置得到的第一频差幅度谱图更加准确。
在上述第一方面和第二方面中,检测信号为线性调频连续波信号。
本发明实施例采用线性调频连续波信号作为检测信号,可以保证检测信号和检测信号依次经过的各个节点对检测信号反射后的回波信号(或者为第一回波信号)之间存在一个频差,即将检测信号和回波信号叠加后的信号的频率为该频差,从而通过对该叠加后的信号进行分析和计算,就可以准确地得出这些节点到测试点的距离,如此可以保证得到的频差幅度谱图(或者第一频差幅度谱图)比较准确。
第三方面,本发明实施例提供一种故障定位系统,该故障定位系统应用于DAS,DAS包括一个主路和多个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数,故障定位系统 包括第一得到频差幅度谱图的装置、第二得到频差幅度谱图的装置,以及与第一得到频差幅度谱图的装置和第二得到频差幅度谱图的装置均连接的故障分析装置。其中,第一得到频差幅度谱图的装置为上述第一方面及其各种可选方式中的任意一项所述的得到频差幅度谱图的装置;第二得到频差幅度谱图的装置为上述第二方面及其各种可选方式中的任意一项所述的得到频差幅度谱图的装置;故障分析装置用于对于多个支路中的至少一个支路中的每个支路,且对于第二得到频差幅度谱图的装置发送的与该支路上的N个天线节点对应的N个第一频差幅度谱图中的至少一个第一频差幅度谱图,将至少一个第一频差幅度谱图分别与第一得到频差幅度谱图的装置发送的频差幅度谱图相互印证,在该频差幅度谱图上确定每个第一频差幅度谱图中显示的天线节点的位置,以及至少一个该天线节点附近的耦合节点的位置,以在该频差幅度谱图上确定主路上的M个耦合节点中的至少一个耦合节点的位置,以及该支路上的至少一个天线节点和至少一个耦合节点的位置。
本发明实施例提供的故障定位系统,通过第一得到频差幅度谱图的装置得到频差幅度谱图,并通过第二得到频差幅度谱图的装置得到N个第一频差幅度谱图,以及通过故障分析装置将N个第一频差幅度谱图中的至少一个第一频差幅度谱图分别与该频差幅度谱图相互印证,在该频差幅度谱图上确定主路上的M个耦合节点中的至少一个耦合节点的位置,以及该支路上的至少一个天线节点和至少一个耦合节点的位置,从而可以在该频差幅度谱图上确定主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点的位置。当DAS中发生故障时,故障定位系统通过分析确定各个节点位置后的该频差幅度谱图,能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
第四方面,本发明实施例提供一种故障定位系统,该故障定位系统应用于DAS,DAS包括一个主路和多个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数,故障定位系统包括第一得到频差幅度谱图的装置以及与第一得到频差幅度谱图的装置连接的故障分析装置。其中,第一得到频差幅度谱图的装置为上述第一方面及其各种可选方式中的任意一项所述的得到频差幅度谱图的装置;第一得到频差幅度谱图的装置用于当DAS发生故障时,对于多个支路中的至少一个支路中的每个支路,从DAS的信号输入端向该支路发送检测信号,并接收该支路返回的回波信号,以及将检测信号和回波信号叠加,并将叠加后的信号进行频谱转换得到故障频差幅度谱图,以及将故障频差幅度谱图发送给故障分析装置,回波信号为检测信号依次经过的主路上的M个耦合节点以及支路上的N个天线节点和K个耦合节点对检测信号反射后的信号,故障频差幅度谱图用于指示该支路发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系;故障分析装置用于接收第一得到频差幅度谱图的装置发送的故障频差幅度谱图,并将故障频差幅度谱图与故障分析装置中的标准频差 幅度谱图相互印证,确定主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的故障节点,故障节点在故障频差幅度谱图上对应的回波信号的幅度与故障节点在标准频差幅度谱图上对应的回波信号的幅度不同,标准频差幅度谱图用于指示该支路没有发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系。
可选的,上述故障分析装置中的标准频差幅度谱图可以为上述第一得到频差幅度谱图的装置得到后发送给故障分析装置的。本发明实施例中,该标准频差幅度谱图可以为上述第一方面及其各种可选方式中的任意一项所述的频差幅度谱图,即上述第一方面及其各种可选方式中的任意一项所述的频差幅度谱图为DAS中没有发生故障时,第一得到频差幅度谱图的装置得到的频差幅度谱图。
本发明实施例提供的故障定位系统,当DAS中发生故障时,通过第一得到频差幅度谱图的装置得到DAS中发生故障的支路的故障频差幅度谱图,由于该故障频差幅度谱图指示该支路发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系;且故障分析装置中的标准频差幅度谱图指示该支路没有发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系,因此通过故障分析装置将故障频差幅度谱图与标准频差幅度谱图相互印证,可以判断各个节点在故障频差幅度谱图上对应的回波信号的幅度和各个节点在标准频差幅度谱图上对应的回波信号的幅度是否相同,并将在两个频差幅度谱图上对应的回波信号的幅度不同的节点确定为故障节点。如此,本发明实施例提供的故障定位系统能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
第五方面,本发明实施例提供一种天线系统,该天线系统包括如上述第三方面或第四方面所述的故障定位系统,以及DAS,DAS包括一个主路和多个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数。
本发明实施例提供的天线系统,当天线系统的DAS中发生故障时,可以通过上述第三方面或第四方面所述的故障定位系统对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
附图说明
图1为本发明实施例提供的一种DAS的架构示意图;
图2为本发明实施例提供的一种得到频差幅度谱图的装置的结构示意图一;
图3为本发明实施例提供的一种得到频差幅度谱图的装置的结构示意图二;
图4为本发明实施例提供的一种得到频差幅度谱图的装置的结构示意图 三;
图5为本发明实施例提供的一种得到频差幅度谱图的装置的结构示意图四;
图6为本发明实施例提供的一种得到频差幅度谱图的装置的结构示意图五;
图7为本发明实施例提供的DAS中的节点的相对位置示意图一;
图8为本发明实施例提供的频差幅度谱图的仿真图一;
图9为本发明实施例提供的另一种得到频差幅度谱图的装置的结构示意图一;
图10为本发明实施例提供的另一种得到频差幅度谱图的装置的结构示意图二;
图11为本发明实施例提供的另一种得到频差幅度谱图的装置的结构示意图三;
图12为本发明实施例提供的另一种得到频差幅度谱图的装置的结构示意图四;
图13为本发明实施例提供的另一种得到频差幅度谱图的装置的结构示意图五;
图14A为本发明实施例提供的DAS中的节点的相对位置示意图二;
图14B为本发明实施例提供的DAS中的节点的相对位置示意图三;
图14C为本发明实施例提供的DAS中的节点的相对位置示意图四;
图14D为本发明实施例提供的DAS中的节点的相对位置示意图五;
图14E为本发明实施例提供的DAS中的节点的相对位置示意图六;
图15A为本发明实施例提供的第一频差幅度谱图的仿真图一;
图15B为本发明实施例提供的第一频差幅度谱图的仿真图二;
图15C为本发明实施例提供的第一频差幅度谱图的仿真图三;
图15D为本发明实施例提供的第一频差幅度谱图的仿真图四;
图15E为本发明实施例提供的第一频差幅度谱图的仿真图五;
图16为本发明实施例提供的一种故障定位系统的架构示意图;
图17为本发明实施例提供的故障定位系统应用于DAS中的架构示意图;
图18为本发明实施例提供的DAS中的节点的相对位置示意图二;
图19为本发明实施例提供的频差幅度谱图的仿真图二;
图20为本发明实施例提供的另一种故障定位系统的架构示意图;
图21为本发明实施例提供的故障频差幅度谱图的仿真图。
具体实施方式
目前,由于无法对DAS进行监控,因此当DAS中某个节点发生故障时,可能导致无法定位到DAS中发生故障的节点。
为了解决上述问题,本发明实施例提供一种得到频差幅度谱图的装置、故障定位系统及天线系统。该天线系统包括故障定位系统和DAS。故障定位系统包括第一得到频差幅度谱图的装置、第二得到频差幅度谱图的装置和故 障分析装置。DAS包括一个主路和多个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数(即M、N和K均为大于或等于1的整数)。
对于多个支路中的至少一个支路中的每个支路,当DAS中没有发生故障时,由第一得到频差幅度谱图的装置得到频差幅度谱图,该频差幅度谱图用于指示DAS中主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系;并且对于该支路上的N个天线节点中的每个天线节点,由第二得到频差幅度谱图的装置得到与该天线节点对应的第一频差幅度谱图,该第一频差幅度谱图用于指示主路上的M个耦合节点以及该天线节点和该支路上的K个耦合节点中的每个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系,从而第二得到频差幅度谱图的装置可以得到与该支路上的N个天线节点对应的N个第一频差幅度谱图;然后再由故障分析装置将N个第一频差幅度谱图中的至少一个第一频差幅度谱图分别与第一得到频差幅度谱图的装置得到的频差幅度谱图相互印证,在该频差幅度谱图上确定每个第一频差幅度谱图中显示的天线节点的位置,以及这些天线节点附近的耦合节点的位置,以在该频差幅度谱图上确定主路上的M个耦合节点中的至少一个耦合节点的位置,以及该支路上的至少一个天线节点和至少一个耦合节点的位置。
对于多个支路中的至少一个支路中的每个支路,当DAS中发生故障时,由第一得到频差幅度谱图的装置得到故障频差幅度谱图,故障频差幅度谱图用于指示该支路发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系;再由故障分析装置将故障频差幅度谱图与故障分析装置中的标准频差幅度谱图(即上述确定了各个节点位置的频差幅度谱图)相互印证,确定主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的故障节点,其中,故障节点在故障频差幅度谱图上对应的回波信号的幅度与故障节点在标准频差幅度谱图上对应的回波信号的幅度不同,标准频差幅度谱图用于指示该支路没有发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系。
通过上述过程,本发明实施例提供的得到频差幅度谱图的装置可以得到相应的频差幅度谱图,故障定位系统中的故障分析装置可以根据这些频差幅度谱图最终确定出DAS中发生故障的节点。即本发明实施例提供的得到频差幅度谱图的装置、故障定位系统及天线系统能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
下面分别结合附图对本发明实施例提供的得到频差幅度谱图的装置、故障定位系统及天线系统进行详细地说明。
为了更好地说明本发明实施例提供的得到频差幅度谱图的装置、故障定位系统及天线系统,下面首先介绍一下DAS的架构。
如图1所示,为本发明实施例提供的一种可能的DAS的架构示意图。在图1中,DAS包括一个主路和两个支路,两个支路分别称为支路1和支路2。其中,主路上包括一个耦合节点(即M=1);支路1和支路2上分别包括5个天线节点(N=5)和4和耦合节点(K=4)。在图1中,主路上的耦合节点表示为C00;支路1上的5个天线节点分别表示为A11、A12、A13、A14和A15,支路1上的4个耦合节点分别表示为C11、C12、C13和C14;支路2上的5个天线节点分别表示为A21、A22、A23、A24和A25,支路2上的4个耦合节点分别表示为C21、C22、C23和C24。在图1中,任意两个相邻的耦合节点,或者任意两个相邻的天线节点和耦合节点之间均通过电缆连接,例如,如图1中的C00和C11之间通过电缆(图1中用C00和C11之间的连接线表示)连接,C11和A11之间也通过电缆连接。
进一步地,在图1中,DAS还包括一个信号输入端,该信号输入端可以为一个信号源,例如可以为各个运营商的信号发射塔等。该信号源与主路上的耦合节点,例如C00之间通过电缆连接。
本发明实施例中,DAS中的耦合节点(包括主路上的耦合节点和每个支路上的耦合节点)可以为耦合器,也可以为功分器,还可以为合路器等其他能够实现耦合作用的节点或器件。具体的,DAS中的主路上的耦合节点通常为耦合器或合路器;DAS中的支路上的耦合节点通常为耦合器或功分器,具体的可以根据实际DAS的设计需求确定,本发明实施例不作具体限定。
本发明实施例提供一种得到频差幅度谱图的装置,该得到频差幅度谱图的装置应用于DAS,DAS包括一个主路和至少一个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数。该DAS可以为上述如图1所示的DAS。具体的,对于DAS的描述可参见上述如图1所示的实施例中对DAS的相关描述,此处不再赘述。
如图2所示,本发明实施例中,该得到频差幅度谱图的装置包括信号产生模块20,与信号产生模块20连接的信号传输模块22,与信号传输模块22连接的信号处理模块21,以及与信号处理模块21连接的信号分析模块23。
其中,信号产生模块20,用于产生检测信号,并将检测信号发送给信号传输模块22;信号传输模块22,用于接收信号产生模块20发送的检测信号,并将检测信号发送给信号处理模块21,且对于DAS的多个支路中的至少一个支路中的每个支路,从DAS的信号输入端向该支路发送检测信号,且接收该支路返回的回波信号,以及将该回波信号发送给信号处理模块21,该回波信号为检测信号依次经过的主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点对检测信号反射后的信号;信号处理模块21,用于接收信号传输模块22发送的检测信号和回波信号,并将该检测信号和该回波信号叠加,以及将叠加后的信号发送给信号分析模块23;信号分析模块23,用于接收信号处理模块21发送的叠加后的信号,并将叠加后的信号进行频谱转换得到频差幅度谱图,该频差幅度谱图用于指示主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的 回波信号的幅度之间的对应关系。
本发明实施例提供的得到频差幅度谱图的装置,通过信号产生模块产生检测信号,并对于多个支路中的至少一个支路中的每个支路,通过信号传输模块从DAS的信号输入端向该支路发送检测信号,并接收该支路返回的对检测信号反射后的回波信号,以及通过信号处理模块将检测信号和回波信号叠加,并通过信号分析模块将叠加后的信号进行频谱转换得到频差幅度谱图。由于该频差幅度谱图可用于指示主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系,因此当DAS中发生故障时,故障定位系统中的故障分析装置通过分析该得到频差幅度谱图的装置得到的频差幅度谱图,能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
示例性的,上述回波信号是检测信号依次经过的如图1所示的主路上的C00,以及支路1上的A11、C11、A12、C12、A13、C13、A14、C14和A15对检测信号反射后的信号。
本发明实施例中,信号产生模块可以为信号源。
可选的,结合图2,如图3所示,本发明实施例提供的得到频差幅度谱图的装置中,信号传输模块22包括功分器220、环形器221和传输接口222;功分器220的输入端2200与信号产生模块20的输出端200连接,功分器220的第一输出端2201和环形器221的第一端2210连接,功分器220的第二输出端2202与信号处理模块21连接,环形器221的第二端2211与传输接口222连接,环形器221的第三端2212与信号处理模块21连接。
其中,功分器220,用于通过功分器220的输入端2200接收信号产生模块20发送的检测信号,并将该检测信号通过功分器220的第一输出端2201发送给环形器221,将该检测信号通过功分器220的第二输出端2202发送给信号处理模块21;环形器221,用于通过环形器221的第一端2210接收功分器220发送的检测信号,并将该检测信号通过环形器221的第二端2211发送给传输接口222,由传输接口222发送给该支路,以及通过环形器221的第二端2211接收该支路返回的回波信号,并通过环形器221的第三端2212将该回波信号发送给信号处理模块21。
本发明实施例中,传输接口可以为电缆,也可以为无线模块。该无线模块可以为Wi-Fi模块,也可以为RF模块,还可以为其他能够实现信号传输的无线模块,本发明实施例不作具体限定。
本发明实施例中,通过功分器可以将检测信号分为两路,通过环形器可以保证支路上的N个天线节点和K个耦合节点对检测信号反射后的回波信号能够返回到环形器,从而信号处理模块可以将检测信号和回波信号叠加后发送给信号分析模块进行分析。
进一步地,本发明实施例中,由于检测信号是入射波信号,回波信号是检测信号依次经过的主路上的M个耦合节点以及支路上的N个天线节点和K个耦合节点对检测信号反射后的信号,因此检测信号和回波信号叠加后的信 号可称为驻波信号。
可选的,结合图3,如图4所示,本发明实施例提供的得到频差幅度谱图的装置中,信号处理模块21包括混频器210和滤波器211;混频器210的第一输入端2100与功分器220的第二输出端2202连接,混频器210的第二输入端2101与环形器221的第三端2212连接,混频器210的输出端2102与滤波器211的输入端2110连接,滤波器211的输出端2111与信号分析模块23连接。
其中,混频器210,用于将检测信号和回波信号进行叠加,并将叠加后的信号发送给滤波器211;滤波器211,用于接收混频器210发送的叠加后的信号,并对叠加后的信号进行滤波,以及将经过滤波的叠加后的信号发送给信号分析模块23。
本发明实施例中,滤波器可以为带通滤波器。
本发明实施例中,通过使用混频器对检测信号和回波信号进行混频,可以将检测信号和回波信号叠加,从而得到相应的驻波信号(即叠加后的信号),由于驻波信号的波节和波腹的位置始终是不变的,因此通过驻波信号得到的频差幅度谱图能够比较准确地指示主路上的M个耦合节点以及支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系,从而当DAS中发生故障时,可以准确地定位到DAS中的故障点。
进一步地,通过使用滤波器对叠加后的信号进行滤波,能够抑制干扰信号对叠加后的信号造成的干扰。
可选的,结合图4,如图5所示,本发明实施例提供的得到频差幅度谱图的装置中,信号分析模块23包括模数转换器230和频谱变换器231;模数转换器230的输入端2300与滤波器211的输出端2111连接,模数转换器230的输出端2301与频谱变换器231连接。
其中,模数转换器230,用于将滤波器211输出的经过滤波的叠加后的信号转换为数字信号,并将该数字信号发送给频谱变换器231;频谱变换器231,用于接收模数转换器230发送的数字信号,并将该数字信号进行频谱转换得到频差幅度谱图。
本发明实施例中,通过模数转换器将模拟信号转换为数字信号,并将该数字信号进行频谱转换为相应的频差幅度谱图,能够使得该频差幅度谱图精确地指示主路上的M个耦合节点以及支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系。
可选的,结合图5,如图6所示,本发明实施例提供的得到频差幅度谱图的装置还可以包括以下三个放大器中的至少一个:连接在混频器210的第一输入端2100与功分器220的第二输出端2202之间的放大器24,连接在混频器210的第二输入端2101与环形器221的第三端2212之间的放大器25,以及连接在模数转换器230的输入端2300与滤波器211的输出端2111之间的放大器26。
其中,连接在混频器210的第一输入端2100与功分器220的第二输出端2202之间的放大器24,用于对功分器220的第二输出端2202输出的检测信号进行放大,并将放大后的检测信号发送给混频器210;连接在混频器210的第二输入端2101与环形器221的第三端2212之间的放大器25,用于对环形器221的第三端2212输出的回波信号进行放大,并将放大后的回波信号发送给混频器210;连接在模数转换器230的输入端2300与滤波器211的输出端2111之间的放大器26,用于对滤波器211输出的经过滤波的叠加后的信号进行放大,并将放大后的信号发送给模数转换器230。
本发明实施例中,由于检测信号在传输过程中信号强度可能会减小(即检测信号在传输过程中会衰减),且检测信号经过反射后得到的回波信号的信号强度也比较小,因此通过连接在混频器的第一输入端与功分器的第二输出端之间的放大器对检测信号进行放大可以增大检测信号的信号强度,且通过连接在混频器的第二输入端与环形器的第三端之间的放大器对回波信号进行放大可以增大回波信号的信号强度,从而能够使得得到频差幅度谱图的装置将检测信号和回波信号叠加后的信号的信号强度较大,进而可以保证得到频差幅度谱图的装置通过叠加后的信号得到的频差幅度谱图比较准确。
进一步地,由于上述叠加后的信号经过混频器混频和滤波器滤波后,其信号强度可能比较小,因此通过连接在模数转换器的输入端与滤波器的输出端之间的放大器对经过滤波的叠加后的信号进行放大可以增大经过滤波的叠加后信号的信号强度,从而可以保证得到频差幅度谱图的装置得到的频差幅度谱图更加准确。
可选的,本发明实施例中,上述检测信号可以为线性调频连续波信号。
由于线性调频连续波信号的频率是随着时间线性变化的,因此假设本发明实施例提供的得到频差幅度谱图的装置发出的检测信号的频率为f1,当该检测信号通过某个节点(可以为DAS中主路上的耦合节点,或者为DAS中支路上的天线节点或耦合节点)反射并返回到该得到频差幅度谱图的装置时,如果此时反射后的回波信号经历的时间为t,那么该得到频差幅度谱图的装置产生并发出的检测信号的频率已经变化为f1+k*t(k为频率变化系数),当该得到频差幅度谱图的装置将该回波信号和该检测信号进行混频叠加得到叠加后的信号(即为驻波信号)后,该叠加后的信号的频率为k*t,然后该得到频差幅度谱图的装置通过对该叠加后的信号进行分析和计算,就可以准确地得出该节点(即对检测信号进行反射的节点)到测试点的距离。
为了更好地理解本发明实施例的具体实现方式,下面再对得到频差幅度谱图的装置得到DAS中的各个节点的位置的原理进行示例性的说明。
示例性的,以如图1所示的DAS中的支路1为例,如图7所示,得到频差幅度谱图的装置采用上述得到对检测信号进行反射的每个节点到测试点的距离的原理,从DAS的信号输入端向支路1发送检测信号后,可以得到DAS中主路上的耦合节点,以及支路1上的每个天线节点和每个耦合节点到测试点的距离,即可以得出DAS中主路上的耦合节点,以及支路1上的每个天线 节点和每个耦合节点之间的相对位置。其中,图7为DAS中主路上的耦合节点,以及支路1上的每个天线节点和每个耦合节点之间的相对位置示意图,图7中的每个竖线分别表示一个对检测信号进行反射的节点,该竖线在横坐标上的位置代表该节点在DAS中与其他节点之间的相对位置,该竖线的纵坐标代表该节点对检测信号反射后的回波信号的幅度。
为了更加清楚地理解本发明实施例提供的得到频差幅度谱图的装置得到DAS中的各个节点的位置的原理,下面以图1所示的DAS中的支路1为例,对得到频差幅度谱图的装置得到的频差幅度谱图的仿真结果进行示例性的说明。
假设图1中,任意一个天线节点或耦合节点与位于其之前的耦合节点之间的电缆长度分别为:
DAS中的主路上:C00与位于其之前的合路器之间的电缆长度为200;
DAS中的支路1上的耦合节点部分:C11与位于其之前的C00之间的电缆长度为250;C12与位于其之前的C11之间的电缆长度为510;C13与位于其之前的C12之间的电缆长度为420;C14与位于其之前的C13之间的电缆长度为600。
DAS中的支路1上的天线节点部分:A11与位于其之前的C11之间的电缆长度为250;A12与位于其之前的C12之间的电缆长度为2000;A13与位于其之前的C13之间的电缆长度为1500;A14与位于其之前的C14之间的电缆长度为2200;A15与位于其之前的C14之间的电缆长度为210。
需要说明的是,本发明实施例中,上述描述的各个节点之间的电缆长度均是以信号(检测信号或回波信号)在各个节点之间的电缆中的传输时延表示的,即上述的200、250、510、420、600、250、2000、1500、2200和210均是指信号在相应节点之间的电缆中的传输时延,其中,这些传输时延的单位为纳秒。而各个节点之间的实际电缆长度具体可以通过下述公式计算:
实际电缆长度=信号在电缆中的传输速度*传输时延
通过上述公式,分别根据信号在各个节点之间的电缆中的传输速度和信号在相应节点之间的电缆中的传输时延,可以计算出相应节点之间的实际电缆长度。
示例性的,假设信号在A11与位于其之前的C11之间的电缆中的传输速度为X米/秒,信号在A11与C11之间的电缆中的传输时延为250纳秒,则A11与C11之间的实际电缆长度=X米/秒*250纳秒。
基于上述任意一个天线节点或耦合节点与位于其之前的耦合节点之间的电缆长度,如图8所示,为得到频差幅度谱图的装置从DAS的信号输入端向支路1和支路2发送检测信号后得到的与支路1和支路2对应的频差幅度谱图的仿真图(可以理解为DAS中无故障节点时DAS中的各个节点对应的频差幅度谱图)。如图8所示的频差幅度谱图用于指示DAS中主路上的耦合节点、支路1上的所有天线节点和所有耦合节点,以及支路2上的所有天线节点和所有耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之 间的对应关系。其中,图8是得到频差幅度谱图的装置得到的DAS中支路1和支路2的频差幅度谱图,由于本发明实施例以支路1为例进行示例性的说明,因此对于图8中示出的支路2的频差幅度谱图(其与支路1的频差幅度谱图类似)不再详述。
需要说明的是,本发明实施例中,上述如图7所示的DAS中主路上的耦合节点,以及支路1上的每个天线节点和每个耦合节点之间的相对位置示意图与上述如图8所示的仿真得到的频差幅度谱图类似,上述如图7所示的相对位置示意图仅是为了更加清楚地描述本发明实施例提供的得到频差幅度谱图的原理而对仿真得到的频差幅度谱图进行的简化,即为理论上的示意图,实际得到频差幅度谱图的装置得到的频差幅度谱图均是如图8所示的频差幅度谱图。
可选的,本发明的上述实施例仅以DAS中的一个支路为例,即以如图1所示的DAS中的支路1为例进行示例性的说明,对于DAS中的其他支路(例如如图1所示的支路2),得到频差幅度谱图的装置得到频差幅度谱图的方法均与上述得到DAS中的支路1的频差幅度谱图的方法相同,具体可参见上述如图7和图8所示的实施例中的相关描述,此处不再赘述。
本发明实施例提供另一种得到频差幅度谱图的装置,该得到频差幅度谱图的装置应用于DAS,DAS包括一个主路和至少一个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数。该DAS可以为上述如图1所示的DAS。具体的,对于DAS的描述可参见上述如图1所示的实施例中对DAS的相关描述,此处不再赘述。
如图9所示,本发明实施例提供的得到频差幅度谱图的装置包括第一信号产生模块30,与第一信号产生模块30连接的第一信号传输模块32,与第一信号传输模块32连接的第一信号处理模块31,以及与第一信号处理模块31连接的第一信号分析模块33。
其中,第一信号产生模块30,用于产生检测信号,并将检测信号发送给第一信号传输模块32;第一信号传输模块32,用于接收第一信号产生模,30发送的检测信号,并将检测信号发送给第一信号处理模块31,且对于多个支路中的至少一个支路中的每个支路,以及对于该支路上的N个天线节点中的每个天线节点,从该天线节点向该支路发送检测信号,且接收该支路返回的第一回波信号,以及将第一回波信号发送给第一信号处理模块31,第一回波信号为检测信号依次经过的主路上的M个耦合节点以及该天线节点和该支路上的K个耦合节点对检测信号反射后的信号;第一信号处理模块31,用于接收第一信号传输模块32发送的检测信号和第一回波信号,并将检测信号和第一回波信号叠加,以及将叠加后的信号发送给第一信号分析模块33;第一信号分析模块33,用于接收第一信号处理模块31发送的叠加后的信号,并将叠加后的信号进行频谱转换得到第一频差幅度谱图,第一频差幅度谱图用于指示主路上的M个耦合节点以及该天线节点和该支路上的K个耦合节点中的每 个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系。
本发明实施例提供的得到频差幅度谱图的装置,通过第一信号产生模块产生检测信号,并对于多个支路中的至少一个支路中的每个支路,且对于该支路上的N个天线节点中的每个天线节点,通过第一信号传输模块从该天线节点向该支路发送检测信号,且接收该支路返回的对检测信号反射后的第一回波信号,以及通过第一信号处理模块将检测信号和第一回波信号叠加,并通过第一信号分析模块将叠加后的信号进行频谱转换得到第一频差幅度谱图。由于该第一频差幅度谱图可用于指示主路上的M个耦合节点以及该天线节点和该支路上的K个耦合节点中的每个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系,因此当DAS中发生故障时,故障定位系统中的故障分析装置通过分析该得到频差幅度谱图的装置得到的第一频差幅度谱图,能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
示例性的,上述第一回波信号是检测信号依次经过的如图1所示的主路上的C00,以及支路1上的C11、C12、C13、C14和A15对检测信号反射后的信号。
可选的,结合图9,如图10所示,本发明实施例提供的得到频差幅度谱图的装置中,第一信号传输模块32包括第一功分器320、第一环形器321和第一传输接口322;第一功分器320的输入端3200与第一信号产生模块30的输出端300连接,第一功分器320的第一输出端3201和第一环形器321的第一端3210连接,第一功分器320的第二输出端3202与第一信号处理模块31连接,第一环形器321的第二端3211与第一传输接口322连接,第一环形器321的第三端3212与第一信号处理模块31连接。
其中,第一功分器320,用于通过第一功分器320的输入端3200接收第一信号产生模块30发送的检测信号,并将检测信号通过第一功分器320的第一输出端3201发送给第一环形器321,将检测信号通过第一功分器320的第二输出端3202发送给第一信号处理模块31;第一环形器321,用于通过第一环形器321的第一端3210接收第一功分器320发送的述检测信号,并将检测信号通过第一环形器321的第二端3211发送给第一传输接口322,由第一传输接口322发送给该支路,以及通过第一环形器321的第二端3211接收该支路返回的第一回波信号,并通过第一环形器321的第三端3212将第一回波信号发送给第一信号处理模块31。
可选的,本发明实施例中,上述第一传输接口可以为电缆;也可以为无线模块,例如Wi-Fi模块或RF模块。
本发明实施例中,通过第一功分器可以将检测信号分为两路,通过第一环形器可以保证发送检测信号处的天线节点和支路上的K个耦合节点对检测信号反射后的第一回波信号能够返回到第一环形器,从而第一信号处理模块可以将检测信号和第一回波信号叠加后发送给第一信号分析模块进行分析。
进一步地,由于检测信号是入射波信号,第一回波信号是检测信号依次 经过的主路上的M个耦合节点以及发送检测信号处的天线节点和支路上的K个耦合节点对检测信号反射后的信号,因此检测信号和第一回波信号叠加后的信号可称为第一驻波信号。
可选的,结合图10,如图11所示,本发明实施例提供的得到频差幅度谱图的装置中,第一信号处理模块31包括第一混频器310和第一滤波器311;第一混频器310的第一输入端3100与第一功分器320的第二输出端3202连接,第一混频器310的第二输入端3101与第一环形器321的第三端3212连接,第一混频器310的输出端3102与第一滤波器311的输入端3110连接,第一滤波器311的输出端3111与第一信号分析模块33连接。
其中,第一混频器310,用于将检测信号和第一回波信号进行叠加,并将叠加后的信号发送给第一滤波器311;第一滤波器311,用于接收第一混频器310发送的叠加后的信号,并对叠加后的信号进行滤波,以及将经过滤波的叠加后的信号发送给第一信号分析模块33。
可选的,本发明实施例中,上述第一滤波器可以为带通滤波器。
本发明实施例中,通过使用第一混频器对检测信号和第一回波信号进行混频,可以将检测信号和第一回波信号叠加,从而得到相应的第一驻波信号(即叠加后的信号),由于第一驻波信号的波节和波腹的位置始终是不变的,因此通过第一驻波信号得到的第一频差幅度谱图能够比较准确地指示主路上的M个耦合节点以及发送检测信号处的天线节点和支路上的K个耦合节点中的每个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系,从而当DAS中发生故障时,可以准确地定位到DAS中的故障点。
进一步地,通过使用第一滤波器对叠加后的信号进行滤波,能够抑制干扰信号对叠加后的信号造成的干扰。
可选的,结合图11,如图12所示,本发明实施例提供的得到频差幅度谱图的装置中,第一信号分析模块33包括第一模数转换器330和第一频谱变换器331;第一模数转换器330的输入端3300与第一滤波器311的输出端3111连接,第一模数转换器330的输出端3301与第一频谱变换器331连接。
其中,第一模数转换器330,用于将第一滤波器311输出的经过滤波的叠加后的信号转换为数字信号,并将数字信号发送给第一频谱变换器331;第一频谱变换器331,用于接收第一模数转换器330发送的数字信号,并将数字信号进行频谱转换得到第一频差幅度谱图。
本发明实施例中,通过第一模数转换器将模拟信号转换为数字信号,并将该数字信号进行频谱转换为相应的第一频差幅度谱图,能够使得该第一频差幅度谱图精确地指示主路上的M个耦合节点以及发送检测信号处的天线节点和支路上的K个耦合节点中的每个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系。
可选的,结合图12,如图13所示,本发明实施例提供的得到频差幅度谱图的装置还包括以下三个放大器中的至少一个:连接在第一混频器310的第一输入端3100与第一功分器320的第二输出端3202之间的第一放大器34, 连接在第一混频器310的第二输入端3101与第一环形器321的第三端3212之间的第二放大器35,以及连接在第一模数转换器330的输入端3300与第一滤波器311的输出端3111之间的第三放大器36。
其中,第一放大器34,用于对第一功分器320的第二输出端3202输出的检测信号进行放大,并将放大后的检测信号发送给第一混频器310;第二放大器35,用于对第一环形器321的第三端3212输出的第一回波信号进行放大,并将放大后的第一回波信号发送给第一混频器310;第三放大器36,用于对第一滤波器311输出的经过滤波的叠加后的信号进行放大,并将放大后的信号发送给第一模数转换器330。
本发明实施例中,由于检测信号在传输过程中信号强度可能会减小(即检测信号在传输过程中会衰减),且检测信号经过反射后得到的第一回波信号的信号强度也比较小,因此通过第一放大器对检测信号进行放大可以增大检测信号的信号强度,且通过第二放大器对第一回波信号进行放大可以增大第一回波信号的信号强度,从而能够使得得到频差幅度谱图的装置将检测信号和第一回波信号叠加后的信号的信号强度较大,进而可以保证得到频差幅度谱图的装置通过叠加后的信号得到的第一频差幅度谱图比较准确。
进一步地,由于上述叠加后的信号经过第一混频器混频和第一滤波器滤波后,其信号强度可能比较小,因此通过第三放大器对经过滤波的叠加后的信号进行放大可以增大经过滤波的叠加后信号的信号强度,从而可以保证得到频差幅度谱图的装置得到的第一频差幅度谱图更加准确。
可选的,本发明实施例中,上述检测信号可以为线性调频连续波信号。
对于线性调频连续波信号的描述可以参见上述实施例中对线性调频连续波信号的具体描述,此处不再赘述。
为了更好地理解本发明实施例的具体实现方式,下面再对得到频差幅度谱图的装置得到DAS中的各个节点的位置的原理进行示例性的说明。
示例性的,如图14A所示,得到频差幅度谱图的装置采用上述得到对检测信号进行反射的每个节点到测试点的距离的原理,从DAS中支路1上的天线节点A15向支路1发送检测信号后,可以得到与DAS中支路1上的天线节点A15对应的一个相对位置示意图。该相对位置示意图表示DAS中主路上的耦合节点,以及支路1上的天线节点A15和支路1上的每个耦合节点到测试点的距离,即该相对位置示意图表示DAS中主路上的耦合节点,以及支路1上的天线节点A15和支路1上的每个耦合节点之间的相对位置。其中,图14A中的每个竖线分别表示一个对检测信号进行反射的节点,该竖线在横坐标上的位置代表该节点在DAS中与其他节点之间的相对位置,该竖线的纵坐标代表该节点对检测信号反射后的回波信号的幅度。
进一步地,得到频差幅度谱图的装置继续采用上述得到对检测信号进行反射的每个节点到测试点的距离的方法,分别从DAS中支路1上的天线节点A14、A13、A12和A11向支路1发送检测信号后,可以得到与支路1上的每个天线节点分别对应的一个相对位置示意图。例如,如图14B、图14C、图 14D和图14E分别为与天线节点A14、A13、A12和A11对应的相对位置示意图。
为了更加清楚地理解本发明实施例提供的得到频差幅度谱图的装置得到DAS中的各个节点的位置的原理,下面以图1所示的DAS中的支路1为例,对得到频差幅度谱图的装置得到的频差幅度谱图的仿真结果进行示例性的说明。
对于图1中任意一个天线节点或耦合节点与位于其之前的耦合节点之间的电缆长度的描述具体可参见上述实施例中对图1中各个节点之间的电缆长度的相关描述,此处不再赘述。
基于上述任意一个天线节点或耦合节点与位于其之前的耦合节点之间的电缆长度,如图15A所示,为得到频差幅度谱图的装置从支路1上的天线节点A11向支路1发送检测信号后得到的与天线节点A11对应的第一频差幅度谱图的仿真图(可以理解为DAS中无故障节点时DAS中天线节点A11对应的第一频差幅度谱图)。
如图15B所示,为得到频差幅度谱图的装置从支路1上的天线节点A12向支路1发送检测信号后得到的与天线节点A12对应的第一频差幅度谱图的仿真图(可以理解为DAS中无故障节点时DAS中天线节点A12对应的第一频差幅度谱图)。
如图15C所示,为得到频差幅度谱图的装置从支路1上的天线节点A13向支路1发送检测信号后得到的与天线节点A13对应的第一频差幅度谱图的仿真图(可以理解为DAS中无故障节点时DAS中天线节点A13对应的第一频差幅度谱图)。
如图15D所示,为得到频差幅度谱图的装置从支路1上的天线节点A14向支路1发送检测信号后得到的与天线节点A14对应的第一频差幅度谱图的仿真图(可以理解为DAS中无故障节点时DAS中天线节点A14对应的第一频差幅度谱图)。
如图15E所示,为得到频差幅度谱图的装置从支路1上的天线节点A15向支路1发送检测信号后得到的与天线节点A15对应的第一频差幅度谱图的仿真图(可以理解为DAS中无故障节点时DAS中天线节点A15对应的第一频差幅度谱图)。
如此,本实施例中的得到频差幅度谱图的装置可以得到与支路1上的每个天线节点对应的第一频差幅度谱图。如图15A-15E所示的第一频差幅度谱图用于指示DAS中主路上的耦合节点、支路1上发送检测信号处的天线节点(例如A11、A12、A13、A14和A15)以及支路1上的所有耦合节点中的每个节点的位置与和该节点对应的第一回波信号的幅度之间的对应关系。
需要说明的是,本发明实施例中,上述如图14A至14E所示的与每个天线节点对应的相对位置示意图与上述如图15A至15E所示的仿真得到的第一频差幅度谱图类似,上述如图14A至14E所示的与每个天线节点对应的相对位置示意图仅是为了更加清楚地描述本发明实施例提供的得到频差幅度谱图 的原理而对仿真得到的第一频差幅度谱图进行的简化,即为理论上的示意图,实际得到频差幅度谱图的装置得到的频差幅度谱图均是如图15A至15E所示的第一频差幅度谱图。
可选的,本发明的上述实施例仅以DAS中的一个支路为例,即以如图1所示的DAS中的支路1为例进行示例性的说明,对于DAS中的其他支路(例如如图1所示的支路2),得到频差幅度谱图的装置得到第一频差幅度谱图的方法均与上述得到DAS中的支路1中各个天线节点的第一频差幅度谱图的方法相同,具体可参见上述如图14A-14E和图15A-15E所示的实施例中的相关描述,此处不再赘述。
本发明实施例提供一种故障定位系统,该故障定位系统可以应用于DAS,DAS包括一个主路和多个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数。该DAS可以为上述如图1所示的DAS。具体的,对于DAS的描述可参见上述如图1所示的实施例中对DAS的相关描述,此处不再赘述。
如图16所示,该故障定位系统可以包括第一得到频差幅度谱图的装置10、第二得到频差幅度谱图的装置11,以及与第一得到频差幅度谱图的装置10和第二得到频差幅度谱图的装置11均连接的故障分析装置12。
其中,第一得到频差幅度谱图的装置10可以为上述实施例中如图2至图6任意之一所示的得到频差幅度谱图的装置;第二得到频差幅度谱图的装置11可以为上述实施例中如图9至图13任意之一所示的得到频差幅度谱图的装置;故障分析装置12,用于对于DAS中的多个支路中的至少一个支路中的每个支路,且对于第二得到频差幅度谱图的装置发送的与该支路上的N个天线节点对应的N个第一频差幅度谱图中的至少一个第一频差幅度谱图,将至少一个第一频差幅度谱图分别与第一得到频差幅度谱图的装置发送的频差幅度谱图相互印证,在该频差幅度谱图上确定每个第一频差幅度谱图中显示的天线节点的位置,以及至少一个该天线节点附近的耦合节点的位置,以在该频差幅度谱图上确定主路上的M个耦合节点中的至少一个耦合节点的位置,以及该支路上的至少一个天线节点和至少一个耦合节点的位置。
本发明实施例提供的故障定位系统,通过第一得到频差幅度谱图的装置得到频差幅度谱图,并通过第二得到频差幅度谱图的装置得到N个第一频差幅度谱图,以及通过故障分析装置将N个第一频差幅度谱图中的至少一个第一频差幅度谱图分别与该频差幅度谱图相互印证,在该频差幅度谱图上确定主路上的M个耦合节点中的至少一个耦合节点的位置,以及该支路上的至少一个天线节点和至少一个耦合节点的位置,从而可以在该频差幅度谱图上确定主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点的位置。当DAS中发生故障时,故障定位系统通过分析确定各个节点位置后的该频差幅度谱图,能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
本发明实施例中,对第一得到频差幅度谱图的装置10的描述具体可以参 见上述如图2至图6任意之一所示的实施例中对得到频差幅度谱图的装置的相关描述,此处不再赘述。对第二得到频差幅度谱图的装置11的描述具体可以参见上述如图9至图13任意之一所示的实施例中对得到频差幅度谱图的装置的相关描述,此处不再赘述。
本发明实施例中,第一得到频差幅度谱图的装置10可以设置在DAS的信号输入端,例如第一得到频差幅度谱图的装置10可以设置在如图1所示的信号输入端与C00之间,第一得到频差幅度谱图的装置10和信号输入端通过一个合路器与C00连接。第二得到频差幅度谱图的装置11可以独立于DAS,即第二得到频差幅度谱图的装置11可以为一个独立的或者可移动的检测设备。故障分析装置12可以为一个独立的主机,其可以通过在该主机上运行相应的计算机程序或计算机指令实现;当然,该故障分析装置12还可以与第一得到频差幅度谱图的装置10集成在一个主机或检测设备中实现。具体的,第一得到频差幅度谱图的装置10、第二得到频差幅度谱图的装置11和故障分析装置12的具体实现可以根据实际使用需求进行确定,本发明实施例不作具体限定。
如图17所示,为本发明实施例提供的故障定位系统应用于DAS中时的一种架构示意图。图17仅以第一得到频差幅度谱图的装置10设置在DAS中的信号输入端与C00之间,第二得到频差幅度谱图的装置11为一个可移动的检测设备,以及故障分析装置12为一个独立的主机为例进行示例性的说明。在图17中,第二得到频差幅度谱图的装置11与支路1、支路2和故障分析装置12之间均为无线连接;第一得到频差幅度谱图的装置10与故障分析装置12之间可以为有线连接(例如通过电缆连接),也可以为无线连接,具体的可以根据实际使用需求确定,本发明实施例不作具体限定。
基于如图17所示的架构示意图,第一得到频差幅度谱图的装置10、第二得到频差幅度谱图的装置11和故障分析装置12对DAS中的每个支路进行故障定位的过程具体可以包括:
以DAS中的一个支路为例,第一得到频差幅度谱图的装置10将其得到的该支路的频差幅度谱图发送给故障分析装置12。第二得到频差幅度谱图的装置11将其得到的与该支路上的N个天线节点对应的N个第一频差幅度谱图发送给故障分析装置12。故障分析装置12将N个第一频差幅度谱图中的至少一个第一频差幅度谱图分别与第一得到频差幅度谱图的装置发送的频差幅度谱图相互印证,在该频差幅度谱图上确定每个第一频差幅度谱图中显示的天线节点的位置,以及至少一个该天线节点附近的耦合节点的位置,以在该频差幅度谱图上确定主路上的M个耦合节点中的至少一个耦合节点的位置,以及该支路上的至少一个天线节点和至少一个耦合节点的位置。从而,当DAS中发生故障时,故障定位系统通过分析确定各个节点位置后的该频差幅度谱图,能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
需要说明的是,图17中以DAS包括两个支路,DAS中的主路包括1个耦合节点,每个支路包括5个天线节点和4个耦合节点为例进行示例性的说 明,对于DAS中包括更多支路,或者DAS中的主路包括更多耦合节点,以及每个支路包括更多天线节点和耦合节点的情况与图17类似,本发明实施例不再一一列举。其中,对于如图17所示的DAS的描述具体可参见上述对如图1所示的DAS的相关描述,此处不再赘述。
进一步地,本发明实施例中,第一得到频差幅度谱图的装置得到上述如图7所示的相对位置,以及第二得到频差幅度谱图的装置得到上述如图14A至图14E所示的相对位置之后,第一得到频差幅度谱图的装置和第二得到频差幅度谱图的装置可以将这些相对位置发送给故障分析装置,然后故障分析装置通过相互印证DAS的工程施工图和上述如图7和图14A至14E所示的相对位置,确定出如图7所示的DAS中的各个节点,即确定出图7中哪个竖线表示哪个节点。例如,如图18所示,可以确定出图7中从左至右依次为C00、C11、A11、C12、A12、C13、A13、C14、A14和A15。如此,故障分析装置可以确定出DAS中主路上的耦合节点以及每个支路上的天线节点和耦合节点在DAS中的物理位置,以及这些节点之间的相对位置,从而故障分析装置能够确定出这些节点中任意两个节点之间的电缆(也称馈线)长度,进而故障分析装置还可以根据这些节点在DAS中的物理位置和任意两个节点之间的电缆长度,描绘出DAS的拓扑结构。
本领域技术人员可以理解,故障分析装置描绘出的DAS的拓扑结构为DAS的真实拓扑结构,其与DAS的工程施工图之间可能存在一定的差异,结合该DAS的真实拓扑结构,故障分析装置可以准确地确定出DAS中每个支路上的故障节点,从而提高故障定位的准确性。
进一步地,本发明实施例中,第一得到频差幅度谱图的装置得到上述如图8所示的频差幅度谱图,以及第二得到频差幅度谱图的装置得到上述如图15A至图15E所示的第一频差幅度谱图之后,第一得到频差幅度谱图的装置和第二得到频差幅度谱图的装置可以将这些频差幅度谱图发送给故障分析装置,由故障分析装置相互印证这些频差幅度谱图,在如图8所示的频差幅度谱图上确定出主路上的耦合节点C00、支路1上的天线节点A11、A12、A13、A14和A15,以及支路1上的耦合节点C11、C12、C13和C14的位置,即如图19所示。如此,当支路1中的某个天线节点发生故障时,故障分析装置通过分析确定各个节点位置后的该频差幅度谱图,能够确定出支路1上发生故障的天线节点。
可选的,本发明的上述实施例仅以DAS中的一个支路为例,即以DAS中的支路1为例对本发明实施例提供的故障定位系统对支路1进行故障点定位的方法和原理进行详细的说明,对于故障定位系统对DAS中的其他支路(例如如图1或3所示的支路2)进行故障点定位的方法及原理均与上述故障定位系统对支路1进行故障点定位的方法和原理相同,具体可参见上述实施例中的故障定位系统对支路1进行故障点定位的方法和原理的相关描述,此处不再赘述。
本发明实施例提供一种故障定位系统,该故障定位系统应用于DAS,DAS 包括一个主路和多个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数。具体的,对于DAS的描述可参见上述如图1所示的实施例中对DAS的相关描述,此处不再赘述。
如图20所示,该故障定位系统包括第一得到频差幅度谱图的装置10以及与第一得到频差幅度谱图的装置10连接的故障分析装置12。其中,第一得到频差幅度谱图的装置可以为上述实施例中如图2至图6任意之一所示的得到频差幅度谱图的装置;第一得到频差幅度谱图的装置10,用于当DAS发生故障时,对于多个支路中的至少一个支路中的每个支路,从DAS的信号输入端向该支路发送检测信号,并接收该支路返回的回波信号,以及将检测信号和回波信号叠加,并将叠加后的信号进行频谱转换得到故障频差幅度谱图,以及将故障频差幅度谱图发送给故障分析装置12,回波信号为检测信号依次经过的主路上的M个耦合节点以及支路上的N个天线节点和K个耦合节点对检测信号反射后的信号,故障频差幅度谱图用于指示该支路发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系;故障分析装置12,用于接收第一得到频差幅度谱图的装置10发送的故障频差幅度谱图,并将故障频差幅度谱图与故障分析装置12中的标准频差幅度谱图相互印证,确定主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的故障节点,故障节点在故障频差幅度谱图上对应的回波信号的幅度与故障节点在标准频差幅度谱图上对应的回波信号的幅度不同,标准频差幅度谱图用于指示该支路没有发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系。
可选的,上述故障分析装置12中的标准频差幅度谱图可以为上述第一得到频差幅度谱图的装置10得到后发送给故障分析装置12的,该标准频差幅度谱图可以为上述如图19所示的频差幅度谱图。本发明实施例中,该标准频差幅度谱图可以为上述实施例中如图2至图6任意之一所示的得到频差幅度谱图的装置得到的频差幅度谱图,即上述如图2至图6任意之一所示的得到频差幅度谱图的装置得到的频差幅度谱图为DAS中没有发生故障且确定了各个节点的位置后得到的频差幅度谱图。
示例性的,当如图1或图17所示的DAS中的支路1上发生故障时,故障分析装置可以将其得到的故障频差幅度谱图和标准频差幅度谱图相互印证,如果确定故障频差幅度谱图上某个节点的幅度(记为G1)与标准频差幅度谱图上该节点的幅度(记为Z1)不同,例如两者相比变化较大(例如G1与Z1相比骤增或者骤降),则故障分析装置可以确定标准频差幅度谱图上的该节点为故障节点。从而,采用本发明实施例提供的故障定位系统,能够对DAS中发生故障的节点进行定位,进而能够准确地定位到DAS中的故障点。
示例性的,假设图21为如图1或图17所示的DAS中的支路1上的天线节点A11发生故障时,第一故障检测装置检测得到的故障频差幅度谱图,故 障分析装置将如图21所示的故障频差幅度谱图与如图19所示的标准频差幅度谱图进行对比,发现如图19所示的标准频差幅度谱图上的天线节点A11对检测信号反射后的回波信号的幅度为66.94,而如图21所示的故障频差幅度谱图上对应节点对检测信号反射后的回波信号的幅度为80.33,两者相差较大,且如图19所示的标准频差幅度谱图和如图21所示的故障频差幅度谱图上的其他节点对检测信号反射后的回波信号的幅度均基本相同(即相同或者相差较小),从而故障分析装置可以确定故障节点为DAS中的支路1上的天线节点A11。
需要说明的是,本发明实施例中,以如图1或图17所示的DAS中的支路1为例,图8、图15A至图15E、图19和图21中的横坐标表示与支路1中的节点(即天线节点或耦合节点)对应的检测信号在支路1中的往返距离(即第一得到频差幅度谱图的装置发出的检测信号到达某个节点,经该节点反射后再回到第一得到频差幅度谱图的装置所传输的距离),纵坐标表示支路1中的节点对检测信号反射后的回波信号的幅度。
其中,上述如图21所示的横坐标表示的检测信号在支路1中的往返距离也可以用检测信号在支路1中的传输时延(例如往返时延)表示,对于采用传输时延表示往返距离的描述具体可参见上述实施例中对采用传输时延表示电缆长度的相关描述,此处不再赘述。
本发明实施例提供的故障定位系统,当DAS中发生故障时,通过第一得到频差幅度谱图的装置得到DAS中发生故障的支路的故障频差幅度谱图,由于该故障频差幅度谱图指示该支路发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系;且故障分析装置中的标准频差幅度谱图指示该支路没有发生故障时,主路上的M个耦合节点以及该支路上的N个天线节点和K个耦合节点中的每个节点的位置与和该节点对应的回波信号的幅度之间的对应关系,因此通过故障分析装置将故障频差幅度谱图与标准频差幅度谱图相互印证,可以判断各个节点在故障频差幅度谱图上对应的回波信号的幅度和各个节点在标准频差幅度谱图上对应的回波信号的幅度是否相同,并将在两个频差幅度谱图上对应的回波信号的幅度不同的节点确定为故障节点。如此,本发明实施例提供的故障定位系统能够对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
本发明实施例提供一种天线系统,该天线系统包括故障定位系统和DAS,DAS包括一个主路和多个支路,主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数。该故障定位系统可以为上述如图16或图20所示的故障定位系统。DAS可以为上述如图1所示的DAS。具体的,对于故障定位系统的描述可以参见上述如图16或图20所示的实施例中对故障定位系统的相关描述,此处不再赘述;对于DAS的描述可参见上述如图1所示的实施例中对DAS的相关描述,此处不再赘述。
示例性的,本发明实施例提供的天线系统可以为如图17所示的故障定位 系统应用于DAS中时的一种架构示意图,具体的,对于天线系统的描述可以参见上述如图17所示的实施例中的相关描述,此处不再赘述。
本发明实施例提供的天线系统,当天线系统的DAS中发生故障时,可以通过上述的故障定位系统对DAS中发生故障的节点进行定位,从而准确地定位到DAS中的故障点。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。所述存储介质是非短暂性(non-transitory)介质,包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (15)

  1. 一种得到频差幅度谱图的装置,其特征在于,应用于分布式天线系统DAS,所述DAS包括一个主路和多个支路,所述主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数,所述得到频差幅度谱图的装置包括信号产生模块,与所述信号产生模块连接的信号传输模块,与所述信号传输模块连接的信号处理模块,以及与所述信号处理模块连接的信号分析模块;
    所述信号产生模块,用于产生检测信号,并将所述检测信号发送给所述信号传输模块;
    所述信号传输模块,用于接收所述信号产生模块发送的所述检测信号,并将所述检测信号发送给所述信号处理模块,且对于所述多个支路中的至少一个支路中的每个支路,从所述DAS的信号输入端向所述支路发送所述检测信号,且接收所述支路返回的回波信号,以及将所述回波信号发送给所述信号处理模块,所述回波信号为所述检测信号依次经过的所述主路上的M个耦合节点以及所述支路上的N个天线节点和K个耦合节点对所述检测信号反射后的信号;
    所述信号处理模块,用于接收所述信号传输模块发送的所述检测信号和所述回波信号,并将所述检测信号和所述回波信号叠加,以及将叠加后的信号发送给所述信号分析模块;
    所述信号分析模块,用于接收所述信号处理模块发送的所述叠加后的信号,并将所述叠加后的信号进行频谱转换得到频差幅度谱图,所述频差幅度谱图用于指示所述主路上的M个耦合节点以及所述支路上的N个天线节点和K个耦合节点中的每个节点的位置与和所述节点对应的回波信号的幅度之间的对应关系。
  2. 根据权利要求1所述的装置,其特征在于,所述信号传输模块包括功分器、环形器和传输接口;
    所述功分器的输入端与所述信号产生模块的输出端连接,所述功分器的第一输出端和所述环形器的第一端连接,所述功分器的第二输出端与所述信号处理模块连接,所述环形器的第二端与所述传输接口连接,所述环形器的第三端与所述信号处理模块连接;
    所述功分器,用于通过所述功分器的输入端接收所述信号产生模块发送的所述检测信号,并将所述检测信号通过所述功分器的第一输出端发送给所述环形器,将所述检测信号通过所述功分器的第二输出端发送给所述信号处理模块;
    所述环形器,用于通过所述环形器的第一端接收所述功分器发送的所述检测信号,并将所述检测信号通过所述环形器的第二端发送给所述传输接口,由所述传输接口发送给所述支路,以及通过所述环形器的第二端接收所述支路返回的所述回波信号,并通过所述环形器的第三端将所述回波信号发送给所述信号处理模块。
  3. 根据权利要求2所述的装置,其特征在于,所述信号处理模块包括混频器和滤波器;
    所述混频器的第一输入端与所述功分器的第二输出端连接,所述混频器的第二输入端与所述环形器的第三端连接,所述混频器的输出端与所述滤波器的输入端连接,所述滤波器的输出端与所述信号分析模块连接;
    所述混频器,用于将所述检测信号和所述回波信号进行叠加,并将所述叠加后的信号发送给所述滤波器;
    所述滤波器,用于接收所述混频器发送的所述叠加后的信号,并对所述叠加后的信号进行滤波,以及将经过滤波的所述叠加后的信号发送给所述信号分析模块。
  4. 根据权利要求3所述的装置,其特征在于,所述信号分析模块包括模数转换器和频谱变换器;
    所述模数转换器的输入端与所述滤波器的输出端连接,所述模数转换器的输出端与所述频谱变换器连接;
    所述模数转换器,用于将所述滤波器输出的所述经过滤波的所述叠加后的信号转换为数字信号,并将所述数字信号发送给所述频谱变换器;
    所述频谱变换器,用于接收所述模数转换器发送的所述数字信号,并将所述数字信号进行频谱转换得到所述频差幅度谱图。
  5. 根据权利要求4所述的装置,其特征在于,所述装置还包括以下三个放大器中的至少一个:
    连接在所述混频器的第一输入端与所述功分器的第二输出端之间的放大器,连接在所述混频器的第二输入端与所述环形器的第三端之间的放大器,以及连接在所述模数转换器的输入端与所述滤波器的输出端之间的放大器;
    所述连接在所述混频器的第一输入端与所述功分器的第二输出端之间的放大器,用于对所述功分器的第二输出端输出的所述检测信号进行放大,并将放大后的所述检测信号发送给所述混频器;
    所述连接在所述混频器的第二输入端与所述环形器的第三端之间的放大器,用于对所述环形器的第三端输出的所述回波信号进行放大,并将放大后的所述回波信号发送给所述混频器;
    所述连接在所述模数转换器的输入端与所述滤波器的输出端之间的放大器,用于对所述滤波器输出的所述经过滤波的所述叠加后的信号进行放大,并将放大后的信号发送给所述模数转换器。
  6. 根据权利要求1至5任意一项所述的装置,其特征在于,
    所述检测信号为线性调频连续波信号。
  7. 一种得到频差幅度谱图的装置,其特征在于,应用于分布式天线系统DAS,所述DAS包括一个主路和多个支路,所述主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数,所述装置包括第一信号产生模块,与所述第一信号产生模块连接的第一信号传输模块,与所述第一信号传输模块连接的第一信号处理模块,以及与所述第一信号处理模块连接的第一信号分析模块;
    所述第一信号产生模块,用于产生检测信号,并将所述检测信号发送给所 述第一信号传输模块;
    所述第一信号传输模块,用于接收所述第一信号产生模块发送的所述检测信号,并将所述检测信号发送给所述第一信号处理模块,且对于所述多个支路中的至少一个支路中的每个支路,以及对于所述支路上的N个天线节点中的每个天线节点,从所述天线节点向所述支路发送所述检测信号,且接收所述支路返回的第一回波信号,以及将所述第一回波信号发送给所述第一信号处理模块,所述第一回波信号为所述检测信号依次经过的所述主路上的M个耦合节点以及所述天线节点和所述支路上的K个耦合节点对所述检测信号反射后的信号;
    所述第一信号处理模块,用于接收所述第一信号传输模块发送的所述检测信号和所述第一回波信号,并将所述检测信号和所述第一回波信号叠加,以及将叠加后的信号发送给所述第一信号分析模块;
    所述第一信号分析模块,用于接收所述第一信号处理模块发送的所述叠加后的信号,并将所述叠加后的信号进行频谱转换得到第一频差幅度谱图,所述第一频差幅度谱图用于指示所述主路上的M个耦合节点以及所述天线节点和所述支路上的K个耦合节点中的每个节点的位置与和所述节点对应的第一回波信号的幅度之间的对应关系。
  8. 根据权利要求7所述的装置,其特征在于,所述第一信号传输模块包括第一功分器、第一环形器和第一传输接口;
    所述第一功分器的输入端与所述第一信号产生模块的输出端连接,所述第一功分器的第一输出端和所述第一环形器的第一端连接,所述第一功分器的第二输出端与所述第一信号处理模块连接,所述第一环形器的第二端与所述第一传输接口连接,所述第一环形器的第三端与所述第一信号处理模块连接;
    所述第一功分器,用于通过所述第一功分器的输入端接收所述第一信号产生模块发送的所述检测信号,并将所述检测信号通过所述第一功分器的第一输出端发送给所述第一环形器,将所述检测信号通过所述第一功分器的第二输出端发送给所述第一信号处理模块;
    所述第一环形器,用于通过所述第一环形器的第一端接收所述第一功分器发送的所述检测信号,并将所述检测信号通过所述第一环形器的第二端发送给所述第一传输接口,由所述第一传输接口发送给所述支路,以及通过所述第一环形器的第二端接收所述支路返回的所述第一回波信号,并通过所述第一环形器的第三端将所述第一回波信号发送给所述第一信号处理模块。
  9. 根据权利要求8所述的装置,其特征在于,所述第一信号处理模块包括第一混频器和第一滤波器;
    所述第一混频器的第一输入端与所述第一功分器的第二输出端连接,所述第一混频器的第二输入端与所述第一环形器的第三端连接,所述第一混频器的输出端与所述第一滤波器的输入端连接,所述第一滤波器的输出端与所述第一信号分析模块连接;
    所述第一混频器,用于将所述检测信号和所述第一回波信号进行叠加,并将所述叠加后的信号发送给所述第一滤波器;
    所述第一滤波器,用于接收所述第一混频器发送的所述叠加后的信号,并对所述叠加后的信号进行滤波,以及将经过滤波的所述叠加后的信号发送给所述第一信号分析模块。
  10. 根据权利要求9所述的装置,其特征在于,所述第一信号分析模块包括第一模数转换器和第一频谱变换器;
    所述第一模数转换器的输入端与所述第一滤波器的输出端连接,所述第一模数转换器的输出端与所述第一频谱变换器连接;
    所述第一模数转换器,用于将所述第一滤波器输出的所述经过滤波的所述叠加后的信号转换为数字信号,并将所述数字信号发送给所述第一频谱变换器;
    所述第一频谱变换器,用于接收所述第一模数转换器发送的所述数字信号,并将所述数字信号进行频谱转换得到所述第一频差幅度谱图。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括以下三个放大器中的至少一个:
    连接在所述第一混频器的第一输入端与所述第一功分器的第二输出端之间的第一放大器,连接在所述第一混频器的第二输入端与所述第一环形器的第三端之间的第二放大器,以及连接在所述第一模数转换器的输入端与所述第一滤波器的输出端之间的第三放大器;
    所述第一放大器,用于对所述第一功分器的第二输出端输出的所述检测信号进行放大,并将放大后的所述检测信号发送给所述第一混频器;
    所述第二放大器,用于对所述第一环形器的第三端输出的所述第一回波信号进行放大,并将放大后的所述第一回波信号发送给所述第一混频器;
    所述第三放大器,用于对所述第一滤波器输出的所述经过滤波的所述叠加后的信号进行放大,并将放大后的信号发送给所述第一模数转换器。
  12. 根据权利要求7至11任意一项所述的装置,其特征在于,
    所述检测信号为线性调频连续波信号。
  13. 一种故障定位系统,其特征在于,应用于分布式天线系统DAS,所述DAS包括一个主路和多个支路,所述主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数,所述故障定位系统包括第一得到频差幅度谱图的装置、第二得到频差幅度谱图的装置,以及与所述第一得到频差幅度谱图的装置和所述第二得到频差幅度谱图的装置均连接的故障分析装置,所述第一得到频差幅度谱图的装置为如权利要求1至6任意一项所述的得到频差幅度谱图的装置,所述第二得到频差幅度谱图的装置为如权利要求7至12任意一项所述的得到频差幅度谱图的装置;
    所述故障分析装置,用于对于所述多个支路中的至少一个支路中的每个支路,且对于所述第二得到频差幅度谱图的装置发送的与所述支路上的N个天线节点对应的N个第一频差幅度谱图中的至少一个第一频差幅度谱图,将所述至少一个第一频差幅度谱图分别与所述第一得到频差幅度谱图的装置发送的频差幅度谱图相互印证,在所述频差幅度谱图上确定每个第一频差幅度谱图中显示的天线节点的位置,以及至少一个所述天线节点附近的耦合节点的位置,以 在所述频差幅度谱图上确定所述主路上的M个耦合节点中的至少一个耦合节点的位置,以及所述支路上的至少一个天线节点和至少一个耦合节点的位置。
  14. 一种故障定位系统,其特征在于,应用于分布式天线系统DAS,所述DAS包括一个主路和多个支路,所述主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数,所述故障定位系统包括第一得到频差幅度谱图的装置以及与所述第一得到频差幅度谱图的装置连接的故障分析装置,所述第一得到频差幅度谱图的装置为如权利要求1至6任意一项所述的得到频差幅度谱图的装置;
    所述第一得到频差幅度谱图的装置,用于当所述DAS发生故障时,对于所述多个支路中的至少一个支路中的每个支路,从所述DAS的信号输入端向所述支路发送检测信号,并接收所述支路返回的回波信号,以及将所述检测信号和所述回波信号叠加,并将叠加后的信号进行频谱转换得到故障频差幅度谱图,以及将所述故障频差幅度谱图发送给所述故障分析装置,所述回波信号为所述检测信号依次经过的所述主路上的M个耦合节点以及所述支路上的N个天线节点和K个耦合节点对所述检测信号反射后的信号,所述故障频差幅度谱图用于指示所述支路发生故障时,所述主路上的M个耦合节点以及所述支路上的N个天线节点和K个耦合节点中的每个节点的位置与和所述节点对应的回波信号的幅度之间的对应关系;
    所述故障分析装置,用于接收所述第一得到频差幅度谱图的装置发送的所述故障频差幅度谱图,并将所述故障频差幅度谱图与所述故障分析装置中的标准频差幅度谱图相互印证,确定所述主路上的M个耦合节点以及所述支路上的N个天线节点和K个耦合节点中的故障节点,所述故障节点在所述故障频差幅度谱图上对应的回波信号的幅度与所述故障节点在所述标准频差幅度谱图上对应的回波信号的幅度不同,所述标准频差幅度谱图用于指示所述支路没有发生故障时,所述主路上的M个耦合节点以及所述支路上的N个天线节点和K个耦合节点中的每个节点的位置与和所述节点对应的回波信号的幅度之间的对应关系。
  15. 一种天线系统,其特征在于,包括如权利要求13或14所述的故障定位系统,以及分布式天线系统DAS,所述DAS包括一个主路和多个支路,所述主路包括M个耦合节点,每个支路包括N个天线节点和K个耦合节点,M、N和K均为正整数。
PCT/CN2017/077944 2016-04-18 2017-03-23 得到频差幅度谱图的装置、故障定位系统及天线系统 WO2017181812A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17785297.7A EP3355605B1 (en) 2016-04-18 2017-03-23 Apparatus for obtaining frequency difference amplitude spectrogram, fault location system and antenna system
US16/000,555 US10470065B2 (en) 2016-04-18 2018-06-05 Apparatus for obtaining frequency difference and amplitude spectrum graph, fault location system, and antenna system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610243443.2A CN107318122B (zh) 2016-04-18 2016-04-18 得到频差幅度谱图的装置、故障定位系统及天线系统
CN201610243443.2 2016-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/000,555 Continuation US10470065B2 (en) 2016-04-18 2018-06-05 Apparatus for obtaining frequency difference and amplitude spectrum graph, fault location system, and antenna system

Publications (1)

Publication Number Publication Date
WO2017181812A1 true WO2017181812A1 (zh) 2017-10-26

Family

ID=60116579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077944 WO2017181812A1 (zh) 2016-04-18 2017-03-23 得到频差幅度谱图的装置、故障定位系统及天线系统

Country Status (4)

Country Link
US (1) US10470065B2 (zh)
EP (1) EP3355605B1 (zh)
CN (1) CN107318122B (zh)
WO (1) WO2017181812A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109677447A (zh) * 2018-12-24 2019-04-26 卡斯柯信号有限公司 一种基于二乘二取二架构的多制式轨道信号采集系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10225024B2 (en) * 2016-06-28 2019-03-05 R & D Microwaves, LLC Antenna
CN109728870B (zh) * 2018-12-13 2019-12-24 西安电子科技大学 一种窄带干扰频域抑制方法
CN111175696A (zh) * 2020-04-10 2020-05-19 杭州优智联科技有限公司 基于调频连续波的单基站超宽带aoa定位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399846A (zh) * 1999-09-10 2003-02-26 阿茨达科姆公司 用于校准智能天线阵列的方法与装置
CN102325339A (zh) * 2011-07-22 2012-01-18 京信通信系统(中国)有限公司 驻波检测方法、装置及射频拉远单元
CN104836628A (zh) * 2014-02-12 2015-08-12 中国移动通信集团广东有限公司 一种基于天线波瓣图的小区天线性能分析方法及装置
WO2016048370A1 (en) * 2014-09-26 2016-03-31 Adc Telecommunications, Inc. Systems and methods for location determination

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814957B (zh) * 2010-03-09 2013-01-16 庞文凤 WiFi光纤无线电中央控制系统
CN103384385A (zh) * 2013-07-17 2013-11-06 三维通信股份有限公司 一种用于分布式天线系统的天馈故障自动检测系统
CN103427921B (zh) * 2013-08-13 2015-04-15 华为技术有限公司 天馈系统的故障检测方法及装置
WO2016009327A1 (en) * 2014-07-16 2016-01-21 Delphius Commercial And Industrial Technologies (Pty) Ltd. A distributed antenna system (das) having a self-monitoring function and a method of monitoring a distributed antenna system
US9615269B2 (en) * 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9973299B2 (en) * 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9653770B2 (en) * 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399846A (zh) * 1999-09-10 2003-02-26 阿茨达科姆公司 用于校准智能天线阵列的方法与装置
CN102325339A (zh) * 2011-07-22 2012-01-18 京信通信系统(中国)有限公司 驻波检测方法、装置及射频拉远单元
CN104836628A (zh) * 2014-02-12 2015-08-12 中国移动通信集团广东有限公司 一种基于天线波瓣图的小区天线性能分析方法及装置
WO2016048370A1 (en) * 2014-09-26 2016-03-31 Adc Telecommunications, Inc. Systems and methods for location determination

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109677447A (zh) * 2018-12-24 2019-04-26 卡斯柯信号有限公司 一种基于二乘二取二架构的多制式轨道信号采集系统
CN109677447B (zh) * 2018-12-24 2024-03-29 卡斯柯信号有限公司 一种基于二乘二取二架构的多制式轨道信号采集系统

Also Published As

Publication number Publication date
US20180288639A1 (en) 2018-10-04
EP3355605A4 (en) 2018-08-01
EP3355605B1 (en) 2021-06-30
CN107318122A (zh) 2017-11-03
US10470065B2 (en) 2019-11-05
EP3355605A1 (en) 2018-08-01
CN107318122B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2017181812A1 (zh) 得到频差幅度谱图的装置、故障定位系统及天线系统
US11940549B2 (en) Positioning method and device
CN103592565B (zh) 一种线缆故障位置检测方法及装置
US10819446B2 (en) Radar transmitting power and channel performance monitoring apparatus
JP2020042013A (ja) レーザレーダシステムに基づく距離測定方法、レーザレーダシステムに基づく距離測定装置及びコンピュータ読み取り可能な記憶媒体
KR101974002B1 (ko) 이동단말의 연속적인 고정밀 측위 방법
JP2017520750A (ja) ケーブル故障診断方法及びシステム
CN107959515B (zh) 多天线噪声功率的测量方法和装置
CN106291106A (zh) 多通道幅相测试系统
TW201605184A (zh) 超緊密波長計
US20150318879A1 (en) Method for locating defective points in a high frequency (hf) signal transmission path
CN105093173A (zh) 位置获取方法和装置
CN112098942A (zh) 一种智能设备的定位方法和智能设备
CN102480329A (zh) 一种基站测试方法及设备
JP2019060732A (ja) レーダ装置および位相補償方法
CN102123422B (zh) 通信通道的故障检测方法和设备
US10581520B2 (en) Apparatus and method for compensating optical transmission delay
CN111224723B (zh) 射频前端模块的校准方法、系统、电子设备及存储介质
US11490470B2 (en) Radio frequency detection device and detection method, and microwave oven
JP6294897B2 (ja) 被試験デバイス(dut)との無線周波(rf)信号接続を確認するシステム及び方法
CN112152689A (zh) 波束发送控制方法、装置及发送端
WO2019169525A1 (zh) 一种光性能监测装置及方法
EP4380077A1 (en) Uwb antenna and ble antenna performance test system
KR102338419B1 (ko) 타일형 반도체 송수신모듈 테스트 자동화 장치 및 방법
KR102682724B1 (ko) Uwb 안테나 및 ble 안테나 성능 시험 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017785297

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE