WO2017181605A1 - 紫外光敏传感器、其制备方法、紫外光敏器件及紫外光检测方法 - Google Patents

紫外光敏传感器、其制备方法、紫外光敏器件及紫外光检测方法 Download PDF

Info

Publication number
WO2017181605A1
WO2017181605A1 PCT/CN2016/100785 CN2016100785W WO2017181605A1 WO 2017181605 A1 WO2017181605 A1 WO 2017181605A1 CN 2016100785 W CN2016100785 W CN 2016100785W WO 2017181605 A1 WO2017181605 A1 WO 2017181605A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
zinc oxide
module
ultraviolet light
voltage
Prior art date
Application number
PCT/CN2016/100785
Other languages
English (en)
French (fr)
Inventor
刘同军
赵豪
程驰
赵颖
Original Assignee
纳智源科技(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳智源科技(唐山)有限责任公司 filed Critical 纳智源科技(唐山)有限责任公司
Publication of WO2017181605A1 publication Critical patent/WO2017181605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of sensors, in particular to a zinc oxide-based ultraviolet light sensor and a preparation method and application thereof.
  • the zinc oxide material has a forbidden band width of 3.7 eV, and the material resistance is only responsive to ultraviolet light of a wavelength of 180 nm to 365 nm, and does not respond to visible light and infrared light, and is a good wide band gap photosensitive material.
  • the ultraviolet light sensor made of pure zinc oxide material can well avoid the interference of other wavelengths outside the ultraviolet band, thereby effectively avoiding the occurrence of false alarms.
  • the existing ultraviolet light sensor signal acquisition mode is to achieve a stable state by the photosensitive material under the illumination excitation, and the difference of the light intensity of the photosensitive material under different illumination is characterized.
  • the existing ultraviolet photosensor products are mainly GaN-based and cold cathode-tube ultraviolet light sensors.
  • GaN-based devices mainly use GaN as a photosensitive material, and costly GaN as a substrate.
  • GaN cannot form a large-area photosensitive material, and also limits the light-receiving area of such ultraviolet devices.
  • the avalanche photoelectric tube products have the advantages of high sensitivity and high test accuracy, they need to be operated under high voltage (above 220V). At the same time, the avalanche photoelectric tube needs vacuum packaging, is easy to break, has large volume, and has a long service life.
  • Zinc oxide products on silicon substrates have better photoresponse, but because of silicon Being a narrow bandgap material, it responds to visible light and can cause the device to respond incorrectly to light other than the ultraviolet band.
  • Zinc oxide is fabricated on an insulating substrate by sputtering or the like, and its response speed is extremely slow, which cannot meet the requirements of rapid testing.
  • the photo-resistance of the photosensitive material reaches a stable time in the optical state. Very long, it is difficult to quickly determine the stability value.
  • the object of the present invention is to provide a method for preparing an ultraviolet photosensitive sensor, a UV photosensitive sensor prepared by the method, an ultraviolet photosensitive device using the ultraviolet photosensitive sensor, and a UV-based photosensitive device according to the defects of the prior art.
  • the realized ultraviolet light detection method is to provide a method for preparing an ultraviolet photosensitive sensor, a UV photosensitive sensor prepared by the method, an ultraviolet photosensitive device using the ultraviolet photosensitive sensor, and a UV-based photosensitive device according to the defects of the prior art.
  • the invention provides a method for preparing an ultraviolet photosensitive sensor, comprising:
  • fabricating an electrode forming a first electrode and a second electrode on the surface of the ITO conductive glass, the first electrode and the second electrode not contacting each other;
  • the present invention provides an ultraviolet photosensor prepared by the above method, comprising: a zinc oxide photosensitive film, a first electrode and a second electrode; wherein
  • the zinc oxide photosensitive film is used for detecting ultraviolet light
  • the first electrode and the second electrode are not in contact with each other, and are located on the same side of the zinc oxide photosensitive film as an electrical signal output end of the ultraviolet photosensor.
  • the present invention provides an ultraviolet photosensitive device, comprising a photosensitive element module and a signal acquisition module; wherein
  • the photosensitive element module is an ultraviolet photosensitive sensor prepared by the preparation method of the first aspect of the invention or the ultraviolet photosensitive sensor of the second aspect of the invention, for producing a photoresistor under illumination to be tested The resistance value changes and outputs an electrical signal;
  • the signal acquisition module is configured to collect and process a partial pressure of the output of the voltage dividing resistor connected in series with the photoresistor, and determine whether to refresh the display according to the partial pressure difference in the adjacent fixed time period;
  • the photosensitive element module is connected in series with the voltage dividing resistor via an extraction electrode.
  • the present invention provides an ultraviolet light detecting method using the above ultraviolet photosensitive device, comprising:
  • the photoresistor of the photosensitive element module generates a resistance value change and outputs an electrical signal
  • the signal acquisition module collects and processes the partial pressure of the voltage dividing resistor output in series with the photoresistor, and determines whether to refresh the display according to the partial pressure difference in the adjacent fixed time period.
  • the ultraviolet photosensitive sensor of the present invention uses zinc oxide as a photosensitive material, and can effectively avoid interference of light of other wavelength bands other than the ultraviolet light band; compared with the conventional ultraviolet photosensitive sensor, the ultraviolet photosensitive sensor of the present invention can be excellent To avoid the interference of visible light, the ultraviolet photosensitive sensor of the present invention has a good cost advantage over the existing GaN-based ultraviolet photosensitive sensor.
  • the ultraviolet photosensitive device of the invention and the ultraviolet light detecting method based on the device overcome the shortcomings of the data acquisition time caused by the slow and stable oxidation of the zinc oxide photoelectric resistor, can realize stable and rapid value, and stably characterize the ultraviolet light intensity. .
  • FIG. 1 is a process flow diagram of a method for preparing an ultraviolet photosensitive sensor of the present invention
  • FIG. 2 is a schematic view of an interdigital electrode used in the ultraviolet photosensor of the present invention.
  • FIG. 3 is a schematic illustration of the ultraviolet light sensitive device of the present invention.
  • Fig. 4 is a view showing the response effect of the ultraviolet photosensor of the present invention.
  • the present invention provides a method of preparing a UV photosensor. The preparation method will be described below with reference to FIG.
  • a first electrode and a second electrode are formed on the surface of the ITO conductive glass by laser etching, and the first electrode and the second electrode are interdigitated electrode pairs.
  • the purpose of the electrode is to enable the ultraviolet photosensor to form a good ohmic contact, thereby effectively loading the working voltage across the ultraviolet photosensor and effectively outputting the current change of the ultraviolet photosensor to the ultraviolet light.
  • the distance between the first electrode and the second electrode affects the optical responsiveness and response speed of the ultraviolet photosensor
  • the pitch of the first electrode and the second electrode is preferably 50 micrometers to 500 micrometers, more preferably 100 micrometers.
  • the extraction electrode may be further formed on the first electrode and the second electrode, specifically, the conductive wire or the conductive wire is welded or pasted on the first electrode and the second electrode. Pin (as shown in Figure 2).
  • the contact resistance of the extraction electrode with the first electrode and the second electrode affects the responsiveness of the device, and preferably, the contact resistance is less than 0.005 ohm.
  • the binder is added to an organic solvent to be sufficiently dissolved to obtain a binder solution, and then zinc oxide nanopowder is added thereto, and uniformly mixed to obtain a zinc oxide suspension.
  • the preparation method of the present invention has no special requirements on the kind of the binder and the organic solvent, and the polymer binder, the transparent resin binder and the volatile organic solvent can be used in the preparation method of the present invention, according to actual production needs. Those skilled in the art will be able to select a suitable binder and organic solvent, and in the following examples, only ethyl cellulose (EC) and anhydrous ethanol are exemplified.
  • EC ethyl cellulose
  • anhydrous ethanol are exemplified.
  • the uniform mixing of the zinc oxide nanopowder with the binder enables effective bonding of the particles in the zinc oxide photosensitive film to enhance the mechanical strength of the film.
  • the concentration of zinc oxide and the amount of binder affect the response time of the UV photosensor.
  • the ratio of the binder to the organic solvent is preferably 0.001 to 1 g of the binder: 1 to 50 ml of the organic solvent, and more preferably 0.005 g of the binder: 4 ml of the organic solvent.
  • Ratio of zinc oxide nanopowder to binder solution The example is preferably 0.1-2.0 g of zinc oxide: 1-50 ml of a binder solution, and more preferably 1.5 g of zinc oxide: 4 ml of a binder solution.
  • the zinc oxide suspension is sprayed onto the surfaces of the first electrode and the second electrode for a spraying time of 5 seconds to 20 seconds to form a zinc oxide photosensitive film.
  • the thickness of the film affects the response speed of the ultraviolet photosensor, and the thickness is preferably from 100 to 1000 ⁇ m, and more preferably from 500 ⁇ m.
  • heat treatment is performed to remove the organic solvent in the film, promote the curing of the binder, and improve the adhesion and stability of the device.
  • the temperature and time of the heat treatment affect the response speed of the ultraviolet photosensor.
  • the temperature of the heat treatment is preferably from 50 ° C to 100 ° C, and more preferably 75 ° C, and the heat treatment time is preferably from 1 minute to 30 minutes, and more preferably from 5 minutes.
  • the transparent polymer material is used for encapsulation to protect the device from dust, moisture and external force damage to the zinc oxide photosensitive film.
  • the present invention provides an ultraviolet photosensor prepared by the above method.
  • the ultraviolet photosensor of the present invention is a substrateless ultraviolet photosensor comprising a zinc oxide photosensitive film and a first electrode and a second electrode.
  • the zinc oxide photosensitive film is used for detecting ultraviolet light; the first electrode and the second electrode are not in contact with each other, and are used as an electrical signal output end of the substrateless ultraviolet photosensitive sensor.
  • the first electrode and the second electrode may be interdigitated electrodes located on the same side surface of the zinc oxide photosensitive film, and the electrodes are kept at a certain distance, for example, 50 ⁇ m to 500 ⁇ m, preferably 100 ⁇ m.
  • an extraction electrode may be disposed on the first electrode and the second electrode, for example, a conductive wire or a conductive pin is adhered to the electrode (see FIG. 2). Shown).
  • the preparation method of the ultraviolet photosensitive sensor of the invention is simple in process, low in cost and suitable for large-scale industrial production.
  • the obtained ultraviolet photosensor is mainly made of a wide band gap zinc oxide material, and is only responsive to ultraviolet light, thereby avoiding the influence of other light than the ultraviolet band on the device.
  • the technical solutions of the first and second aspects of the invention can also be extended to the application of gas sensitive, pressure sensitive sensors.
  • the present invention provides an ultraviolet light sensitive device comprising a light sensitive element module and a signal acquisition module.
  • the photosensitive element module is used to generate a resistance change under illumination by the photosensitive material.
  • the signal acquisition module outputs a partial pressure through a voltage dividing resistor connected in series with the photoresistor, and the change of the intensity of the ultraviolet light is characterized by the change of the partial pressure value.
  • the photosensitive element module is connected to the signal acquisition module through the extraction electrode.
  • the photosensitive element module of the ultraviolet photosensitive device of the invention adopts the ultraviolet photosensitive sensor of the invention, and the photoresistor generates a resistance change and outputs an electrical signal under the illumination to be tested.
  • the signal acquisition module of the ultraviolet photosensitive device of the invention comprises a voltage stabilization module, a voltage division signal acquisition module, a signal processing module and a display module.
  • the voltage stabilizing module (not shown in FIG. 3) is connected to both ends of the voltage dividing resistor for converting the divided voltage of the voltage dividing resistor output into a stable voltage to reduce the test difference caused by the power source fluctuation.
  • the voltage dividing signal acquisition module is connected with the voltage stabilizing module, and the voltage dividing value after the stable processing of the voltage stabilizing module is collected by the chip.
  • the signal processing module is connected to the voltage dividing signal acquisition module, and is used to calculate a partial pressure average value for a fixed period of time (for example, every 1/50 second, a person skilled in the art can also set according to specific needs).
  • the average value of the partial pressure calculated in the time period is subjected to difference calculation and comparison operation.
  • the display module is connected to the signal processing module, and is configured to refresh and display the collected partial pressure value when the result of the difference operation and the comparison operation is greater than the set value; when the result of the difference operation and the comparison operation is less than or equal to the set value When it stops, it stops refreshing and displays a constant partial pressure value.
  • the present invention provides an ultraviolet light detecting method using the above ultraviolet photosensor.
  • the method comprises the following steps:
  • the photoresistor of the photosensitive element module In the first step, under the illumination of the light to be measured, the photoresistor of the photosensitive element module generates a resistance value change and outputs an electrical signal.
  • the signal acquisition module collects and processes the partial pressure of the voltage dividing resistor output in series with the photoresistor, and determines whether to refresh the display according to the partial pressure difference in the adjacent fixed time period.
  • the voltage dividing resistor connected in series with the photosensitive element module outputs a voltage divider, and the voltage stabilizing module converts the divided voltage into a stable voltage.
  • the voltage stabilizing module converts the 5V voltage input from the voltage dividing resistor into a stable voltage of 3 ⁇ 0.01V. To reduce test variability caused by power supply fluctuations.
  • the voltage dividing signal acquisition module collects the partial pressure value after stable processing by the voltage regulator module through the chip, and the data acquisition frequency is 500-1000 times/second.
  • the signal processing module performs a difference operation and a comparison operation on the partial pressure values collected by the voltage dividing signal acquisition module at a time, and calculates a partial pressure average value every 1/50 second, and refreshes the display at a time, and when it is less than or equal to the set value, The refresh is stopped and the display module displays the final value until the display module is re-refreshed when it appears again greater than the set value.
  • the display module refreshes the display result; wherein, V n is the average value of the partial pressure at the nth/50th second, and n is positive An integer; M is a set value, and 0.1V ⁇ M ⁇ 0.5V, and a person skilled in the art can select an appropriate set value according to actual needs.
  • the ultraviolet photosensitive device of the invention and the ultraviolet light detecting method based on the device solve the problem that the current data acquisition time is too long due to the slow and stable oxidation of the zinc oxide photoelectric resistor, realize stable and fast value, and can characterize the ultraviolet light intensity.
  • the interdigitated electrode pattern (shown in FIG. 2) is etched on the surface of the ITO conductive glass by laser etching, and the electrodes are spaced apart by 300 micrometers, and the extraction electrodes are respectively adhered to the interdigital electrodes.
  • the zinc oxide suspension prepared in the step (2) was sprayed onto the interdigital electrode prepared in the step (1), and the spraying was stopped when the zinc oxide photosensitive film was 500 ⁇ m.
  • the UV-photosensitive sensor measures the current-time variation of the sensor with an electrochemical workstation (CHI660E, Shanghai Chenhua Instrument), as shown in Figure 4.
  • CHI660E electrochemical workstation
  • Ultraviolet light detection was carried out using the ultraviolet light sensitive device of the present invention.
  • the signal acquisition frequency is 500 times/second, and the average value of the partial pressure is calculated every 1/50 second.
  • the adjacent values are evaluated as difference, and the set value is 0.1V, that is, (V n+1 -V n ) ⁇ 0.1V
  • the display module data stops refreshing, it is displayed as a constant value, and the value of the ultraviolet light at this time is represented by this value; when (V n+1 -V n )>0.1V appears again, the display module refreshes the display.
  • test results are stable. As shown in Table 1, the scores of different times are averaged. The relationship between the average value of the partial pressure and the corresponding ultraviolet light intensity can be used to characterize the intensity of the UV light to be measured.
  • Ultraviolet light detection was carried out using the ultraviolet photosensitive device of Example 1.
  • the signal acquisition frequency is 1000 times/second, and the average value of the partial pressure is calculated every 1/50 second.
  • the adjacent values are evaluated as difference, and the set value is 0.5V, that is, (V n+1 -V n ) ⁇ 0.5V
  • the display module data stops refreshing, it is displayed as a constant value, and the value of the ultraviolet light at this time is represented by this value; when (V n+1 -V n )>0.5V appears again, the display module refreshes the display.
  • the interdigitated electrode pattern was etched on the surface of the ITO conductive glass by laser etching.
  • the distance between the electrodes was 50 micrometers, and the extraction electrodes were respectively adhered to the interdigitated electrodes.
  • the zinc oxide suspension prepared in the step (2) was sprayed onto the interdigital electrode prepared in the step (1), and the spraying was stopped when the zinc oxide photosensitive film was 100 ⁇ m.
  • the film was baked at 50 ° C for 30 minutes to remove the anhydrous ethanol in the film, followed by encapsulation with an acrylic plate and a hot sol to obtain an ultraviolet photosensitive sensor.
  • the interdigitated electrode pattern was etched on the surface of the ITO conductive glass by laser etching.
  • the spacing of the electrodes was 500 micrometers, and the extraction electrodes were respectively adhered to the interdigitated electrodes.
  • the zinc oxide suspension prepared in the step (2) was sprayed onto the interdigital electrode prepared in the step (1), and the spraying was stopped when the zinc oxide photosensitive film was 500 ⁇ m.
  • the ultraviolet photosensitive sensor was obtained by baking at a temperature of 100 ° C for 5 minutes to remove the anhydrous ethanol in the film, followed by encapsulation with an acrylic plate and a hot melt.
  • the interdigitated electrode pattern was etched on the surface of the ITO conductive glass by laser etching.
  • the pitch of the electrodes was 100 micrometers, and the extraction electrodes were respectively adhered to the interdigitated electrodes.
  • binder ethyl cellulose was dissolved in 4 ml of absolute ethanol, stirred until fully dissolved to obtain a binder solution; then 1.5 g of zinc oxide nanopowder was added to the binder solution, and stirred until fully The mixture was uniformly mixed to obtain a zinc oxide suspension.
  • the zinc oxide suspension prepared in the step (2) was sprayed onto the interdigital electrode prepared in the step (1), and the spraying was stopped when the zinc oxide photosensitive film was 500 ⁇ m.
  • the ultraviolet photosensitive sensor was obtained by baking at 75 ° C for 5 minutes to remove the anhydrous ethanol in the film, followed by encapsulation with an acrylic plate and a hot sol.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种紫外光敏传感器的制备方法,包括:制作电极,制备氧化锌悬浮液,制作氧化锌感光薄膜,热处理与封装。由该方法制备的紫外光敏传感器,包括:氧化锌感光薄膜,用于探测紫外光;第一电极和第二电极,二者互不接触,位于氧化锌感光薄膜同一侧,是电信号输出端。一种紫外光敏器件,包括光敏元件模块和信号采集模块。一种紫外光检测方法,包括:在待测光照射下,光敏元件模块的光敏电阻产生阻值变化而输出电信号;信号采集模块采集和处理与光敏电阻串联的分压电阻输出的分压,根据相邻固定时间段内的分压差值,确定是否刷新显示。

Description

紫外光敏传感器、其制备方法、紫外光敏器件及紫外光检测方法
相关申请的交叉参考
本申请要求于2016年4月21日提交中国专利局、申请号为201610249800.6、名称为“紫外光敏传感器、其制备方法、紫外光敏器件及紫外光检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及传感器领域,尤其涉及基于氧化锌的紫外光传感器及其制备方法与应用。
背景技术
氧化锌材料具有3.7eV的禁带宽度,材料电阻只对180nm-365nm波长的紫外光具有响应,对可见光及红外光没有响应,是很好的宽禁带光敏材料。用纯氧化锌材料制作的紫外光传感器能够很好的避免紫外波段以外的其它波段光线的干扰,从而有效避免误报警的出现。
现有的紫外光传感器信号采集方式,是通过光敏材料在光照激发下达到稳定态,以不同光照下光敏材料电阻的差异性表征光强度的不同。
在这种信号采集方式的基础上,现有的紫外光敏器件产品,以GaN类和冷阴极管类紫外光传感器为主。GaN类器件主要以GaN为光敏材料,以成本高昂的GaN作为衬底,同时由于工艺技术的问题,GaN无法形成大面积的光敏材料,也限制了该类紫外器件的受光面积。雪崩型光电管类产品虽然具有灵敏度高,测试精度高等优点,但是需要在高电压(220V以上)下才能进行工作,同时,雪崩型光电管具有需要真空封装,易破损,体积大,使用寿命不长,成本高等缺点,不适用于便携式装备和普通对测试精度要求不高的环境。硅类衬底上的氧化锌产品,具有较好的光响应,但是因为硅本 身是窄禁带材料,对可见光具有响应,会造成器件对紫外波段以外的其他光的误响应。而氧化锌通过溅射等工艺制作在绝缘衬底上,其响应速度极慢,无法满足快速测试的需求。
另外,无论是制作在Si衬底上还是制作在其它绝缘类衬底上的氧化锌紫外传感器,因为氧化锌材料本身的紫外响应特点,导致在光态下,光敏材料光态电阻达到稳定的时间很长,很难快速确定稳定值。
发明内容
本发明的发明目的是针对现有技术的缺陷,提供一种紫外光敏传感器的制备方法,由该方法制备得到的紫外光敏传感器,应用该紫外光敏传感器的紫外光敏器件,以及基于该紫外光敏器件所实现的紫外光检测方法。
第一方面,本发明提供了一种紫外光敏传感器的制备方法,包括:
(1)制作电极:在ITO导电玻璃表面制作第一电极和第二电极,第一电极和第二电极互不接触;
(2)制备氧化锌悬浮液:将粘结剂加入到有机溶剂中充分溶解得到粘结剂溶液,然后向其中加入氧化锌纳米粉体,混合均匀得到氧化锌悬浮液;
(3)制作氧化锌感光薄膜:将步骤(2)制备的氧化锌悬浮液喷涂至步骤(1)制作的第一电极和第二电极表面以形成氧化锌感光薄膜;
(4)热处理与封装。
第二方面,本发明提供了采用上述方法制备的紫外光敏传感器,包括:氧化锌感光薄膜,第一电极和第二电极;其中,
所述氧化锌感光薄膜用于探测紫外光;
所述第一电极和所述第二电极互不接触,位于所述氧化锌感光薄膜的同一侧,作为所述紫外光敏传感器的电信号输出端。
第三方面,本发明提供了一种紫外光敏器件,包括光敏元件模块和信号采集模块;其中,
所述光敏元件模块是本发明第一方面的制备方法制备得到的紫外光敏传感器或本发明第二方面的紫外光敏传感器,用于在待测光照下光敏电阻产 生阻值变化并输出电信号;
所述信号采集模块用于采集和处理与所述光敏电阻串联的分压电阻输出的分压,根据相邻固定时间段内的分压差值,确定是否刷新显示;
所述光敏元件模块通过引出电极与所述分压电阻串联连接。
第四方面,本发明提供了一种应用上述紫外光敏器件的紫外光检测方法,包括:
(1)在待测光照射下,光敏元件模块的光敏电阻产生阻值变化而输出电信号;
(2)信号采集模块采集和处理与所述光敏电阻串联的分压电阻输出的分压,根据相邻固定时间段内的分压差值,确定是否刷新显示。
相对于现有技术,本发明的技术方案具有如下优点:
(1)采用氧化锌粉体为原料,在有机溶剂中制备氧化锌悬浮液,通过将该悬浮液喷涂于电极表面来制作感光薄膜,使得本发明的制备方法工艺简单、成本低廉、适合大规模工业化生产。
(2)本发明的紫外光敏传感器以氧化锌为光敏材料,可以有效避免紫外光波段以外的其它波段光对传感器的干扰;相对于传统的紫外光敏传感器,本发明的紫外光敏传感器能够很好的避免可见光的干扰,相对于现有GaN类紫外光敏传感器,本发明的紫外光敏传感器具有很好的成本优势。
(3)本发明的紫外光敏器件以及基于该器件的紫外光检测方法,克服了氧化锌光电电阻稳定缓慢导致的数据采集时间过长的缺点,可实现稳定快速取值,和稳定表征紫外光强度。
附图说明
图1是本发明的紫外光敏传感器制备方法的工艺流程图;
图2是本发明的紫外光敏传感器采用的叉指电极的示意图;
图3是本发明的紫外光敏器件的示意图;
图4是本发明的紫外光敏传感器的响应效果图。
具体实施方式
为充分了解本发明之目的、特征及功效,借由下述具体的实施方式,对本发明做详细说明,但本发明并不仅仅限于此。
第一方面,本发明提供了一种紫外光敏传感器的制备方法。下面结合图1对制备方法进行说明。
(1)制作电极
以激光刻蚀的方式在ITO导电玻璃表面制作第一电极和第二电极,第一电极和第二电极为叉指电极对。
制作电极的目的是为了能使紫外光敏传感器形成良好的欧姆接触,从而有效的在紫外光敏传感器两端加载工作电压,并有效输出紫外光敏传感器对紫外光的电流变化。其中,第一电极和第二电极之间的距离会影响紫外光敏传感器的光响应度和响应速度,第一电极和第二电极的间距优选是50微米至500微米,更优选是100微米。
优选地,为了便于紫外光敏传感器两极与外部电路连接,还可以进一步在第一电极和第二电极上制作引出电极,具体地,在第一电极和第二电极上焊接或粘贴引出导电线或导电管脚(如图2所示)。其中,引出电极与第一电极和第二电极的接触电阻会影响器件的响应度,优选地,接触电阻是小于0.005欧姆。
(2)制备氧化锌悬浮液
将粘结剂加入到有机溶剂中充分溶解得到粘结剂溶液,然后向其中加入氧化锌纳米粉体,混合均匀得到氧化锌悬浮液。本发明的制备方法对粘结剂和有机溶剂的种类没有特殊的要求,高分子粘结剂和透明树脂类粘结剂以及挥发性有机溶剂均可用于本发明的制备方法,根据实际生产的需要,本领域技术人员能够选择合适的粘结剂和有机溶剂,在下面的实施例中仅以乙基纤维素(EC)和无水乙醇为例进行说明。氧化锌纳米粉体与粘结剂混合均匀能够实现氧化锌感光薄膜中颗粒的有效粘结从而增强薄膜的机械强度。
氧化锌的浓度、粘结剂的含量会影响紫外光敏传感器的响应时间。粘结剂与有机溶剂的比例优选是0.001-1克粘结剂:1-50毫升有机溶剂,且更优选是0.005克粘结剂:4毫升有机溶剂。氧化锌纳米粉体与粘结剂溶液的比 例优选是0.1-2.0克氧化锌:1-50毫升粘结剂溶液,且更优选是1.5克氧化锌:4毫升粘结剂溶液。
(3)制作氧化锌感光薄膜
将氧化锌悬浮液喷涂至第一电极和第二电极表面,喷涂时间为5秒-20秒,形成氧化锌感光薄膜。薄膜的厚度会影响紫外光敏传感器的响应速度,厚度优选是100-1000微米,且更优选是500微米。
(4)热处理与封装
喷涂氧化锌悬浮液之后,进行热处理,以除去薄膜内的有机溶剂、促进粘结剂固化并提高器件的粘结性和稳定性。热处理的温度和时间会影响紫外光敏传感器的响应速度,热处理的温度优选是50℃-100℃,且更优选是75℃,热处理的时间优选是1分钟-30分钟,且更优选是5分钟。
热处理之后,采用透明高分子材料进行封装,以对器件起到保护作用,防止灰尘、水气以及外力对氧化锌感光薄膜的破坏。
第二方面,本发明提供了一种紫外光敏传感器,采用上述方法制备得到。
本发明的紫外光敏传感器为无基底紫外光敏传感器,其包括氧化锌感光薄膜以及第一电极和第二电极。其中,氧化锌感光薄膜用于探测紫外光;第一电极和第二电极互不接触,作为无基底紫外光敏传感器的电信号输出端。
第一电极和第二电极可以是叉指电极,位于氧化锌感光薄膜的同一侧表面,两电极之间保持一定的距离,例如,50微米至500微米,优选100微米。
进一步地,为了更加容易地使紫外光敏传感器与外部电路进行连接,还可以在第一电极和第二电极上设置引出电极,例如,在电极上粘附引出导电线或导电管脚(如图2所示)。
本发明的紫外光敏传感器的制备方法工艺简单、成本低廉、适合大规模工业化生产。得到的紫外光敏传感器以宽禁带的氧化锌材料为主,仅对紫外波段光有响应,避免了紫外波段以外的其它光对器件的影响。本发明第一方面和第二方面的技术方案也可以扩展到气敏、压敏传感器的应用。
第三方面,本发明提供了一种紫外光敏器件,包括光敏元件模块和信号采集模块。其中,光敏元件模块用于通过光敏材料在光照下产生阻值变化。 信号采集模块通过与光敏电阻串联的分压电阻输出分压,以该分压值的变化表征紫外光强度的变化。光敏元件模块通过引出电极与信号采集模块连接。下面结合图3对本发明的紫外光敏器件进行说明。
本发明紫外光敏器件的光敏元件模块采用本发明的紫外光敏传感器,在待测光照下光敏电阻产生阻值变化并输出电信号。
本发明紫外光敏器件的信号采集模块依次包括稳压模块、分压信号采集模块、信号处理模块和显示模块。其中,稳压模块(图3中未示出)与分压电阻的两端连接,用于将分压电阻输出的分压转换为稳定电压,以减小电源波动造成的测试差异性。分压信号采集模块与稳压模块连接,通过芯片时时采集稳压模块稳定处理后的分压值。信号处理模块与分压信号采集模块相连,用于每隔固定时间段(例如每1/50秒,本领域技术人员也可以根据具体需要来设定)计算一次分压平均值,对相邻固定时间段内计算得到的分压平均值进行差值运算和对比运算。显示模块与信号处理模块相连,用于当差值运算和对比运算的结果大于设定值时,实时刷新显示所采集的分压值;当差值运算和对比运算的结果小于或等于设定值时,停止刷新,显示恒定分压值。
第四方面,本发明提供了应用上述紫外光敏器件所进行的紫外光检测方法。该方法包括如下步骤:
第一步,在待测光照射下,光敏元件模块的光敏电阻产生阻值变化而输出电信号。
第二步,信号采集模块采集和处理与所述光敏电阻串联的分压电阻输出的分压,根据相邻固定时间段内的分压差值,确定是否刷新显示。
具体地,与光敏元件模块串联的分压电阻输出分压,稳压模块将该分压转换为稳定电压,通常,稳压模块将分压电阻输入的5V电压转换为3±0.01V稳定电压,以减小电源波动造成的测试差异性。分压信号采集模块通过芯片时时采集经稳压模块稳定处理后的分压值,数据采集频率是500-1000次/秒。随后,信号处理模块对分压信号采集模块时时采集的分压值进行差值运算和对比运算,每1/50秒计算分压平均值,时时刷新显示,并在小于或等于设定值时,停止刷新,显示模块显示最终数值,直至再次出现大于设定值时, 显示模块重新刷新显示。具体地,当差值与设定值满足(Vn+1-Vn)>M时,显示模块刷新显示结果;其中,Vn是第n/50秒时的分压平均值,n为正整数;M是设定值,且0.1V≤M≤0.5V,本领域技术人员可以根据实际需要选择合适的设定值。
本发明的紫外光敏器件以及基于该器件的紫外光检测方法,解决了目前氧化锌光电电阻稳定缓慢导致的数据采集时间过长的问题,实现了稳定快速取值,并且能够表征紫外光强度。
下面通过具体的实施例来阐述本发明技术方案的实施,本领域技术人员应当理解的是,这不应被理解为对本发明权利要求范围的限制。实施例中所使用的各种制剂、物质,均为常规市购得到。
实施例1
本实施例的紫外光敏传感器的制备方法如下:
(1)制作电极
以激光刻蚀的方式在ITO导电玻璃表面刻蚀出叉指电极图形(如图2所示),电极的间距300微米,在叉指电极上分别粘附引出电极。
(2)制备氧化锌悬浮液
将粘结剂乙基纤维素0.5克溶解在50毫升无水乙醇中,搅拌至充分溶解得到粘结剂溶液;随后再将2克氧化锌纳米粉体加入到该粘结剂溶液,搅拌至充分混合均匀得到氧化锌悬浮液。
(3)制作氧化锌感光薄膜
将步骤(2)制备的氧化锌悬浮液喷涂至步骤(1)制作的叉指电极上,当氧化锌感光薄膜为500微米时停止喷涂。
(4)热处理与封装
在80℃温度下烘15分钟,以使除去薄膜内的无水乙醇,随后用亚力克板和热溶胶进行封装,得到紫外光敏传感器。
紫外光敏传感器以电化学工作站(CHI660E,上海辰华仪器)来量测传感器的电流--时间变化,如图4所示。
以本发明的紫外光敏器件进行紫外光检测。信号采集频率是500次/秒, 每1/50秒计算分压平均值,按时间顺序,相邻值求差,设定值为0.1V,即(Vn+1-Vn)<0.1V时,显示模块数据停止刷新,显示为恒定值,并以此值表征此时的紫外光强度;当再次出现(Vn+1-Vn)>0.1V时,显示模块重新刷新显示。
测试结果稳定,如表1所示,不同次数测得分压值求平均值,通过分压数值平均值与对应紫外光强度关系,可表征待测紫外光强度。
表1
Figure PCTCN2016100785-appb-000001
实施例2
采用实施例1中的紫外光敏器件进行紫外光检测。信号采集频率是1000次/秒,每1/50秒计算分压平均值,按时间顺序,相邻值求差,设定值为0.5V,即(Vn+1-Vn)<0.5V时,显示模块数据停止刷新,显示为恒定值,并以此值表征此时的紫外光强度;当再次出现(Vn+1-Vn)>0.5V时,显示模块重新刷新显示。
测试结果稳定,如表2所示。
表2
Figure PCTCN2016100785-appb-000002
Figure PCTCN2016100785-appb-000003
实施例3
本实施例的紫外光敏传感器的制备方法如下:
(1)制作电极
以激光刻蚀的方式在ITO导电玻璃表面刻蚀出叉指电极图形,电极的间距50微米,在叉指电极上分别粘附引出电极。
(2)制备氧化锌悬浮液
将粘结剂乙基纤维素0.001克溶解在1毫升无水乙醇中,搅拌至充分溶解得到粘结剂溶液;随后再将0.1克氧化锌纳米粉体加入到该粘结剂溶液,搅拌至充分混合均匀得到氧化锌悬浮液。
(3)制作氧化锌感光薄膜
将步骤(2)制备的氧化锌悬浮液喷涂至步骤(1)制作的叉指电极上,当氧化锌感光薄膜为100微米时停止喷涂。
(4)热处理与封装
在50℃温度下烘30分钟,以使除去薄膜内的无水乙醇,随后用亚力克板和热溶胶进行封装,得到紫外光敏传感器。
采用实施例1中的方法进行紫外光检测,测试结果稳定。
实施例4
本实施例的紫外光敏传感器的制备方法如下:
(1)制作电极
以激光刻蚀的方式在ITO导电玻璃表面刻蚀出叉指电极图形,电极的间距500微米,在叉指电极上分别粘附引出电极。
(2)制备氧化锌悬浮液
将粘结剂乙基纤维素1克溶解在50毫升无水乙醇中,搅拌至充分溶解得到粘结剂溶液;随后再将2.0克氧化锌纳米粉体加入到该粘结剂溶液,搅拌至充分混合均匀得到氧化锌悬浮液。
(3)制作氧化锌感光薄膜
将步骤(2)制备的氧化锌悬浮液喷涂至步骤(1)制作的叉指电极上,当氧化锌感光薄膜为500微米时停止喷涂。
(4)热处理与封装
在100℃温度下烘5分钟,以使除去薄膜内的无水乙醇,随后用亚力克板和热溶胶进行封装,得到紫外光敏传感器。
采用实施例1中的方法进行紫外光检测,测试结果稳定。
实施例5
本实施例的紫外光敏传感器的制备方法如下:
(1)制作电极
以激光刻蚀的方式在ITO导电玻璃表面刻蚀出叉指电极图形,电极的间距100微米,在叉指电极上分别粘附引出电极。
(2)制备氧化锌悬浮液
将粘结剂乙基纤维素0.005克溶解在4毫升无水乙醇中,搅拌至充分溶解得到粘结剂溶液;随后再将1.5克氧化锌纳米粉体加入到该粘结剂溶液,搅拌至充分混合均匀得到氧化锌悬浮液。
(3)制作氧化锌感光薄膜
将步骤(2)制备的氧化锌悬浮液喷涂至步骤(1)制作的叉指电极上,当氧化锌感光薄膜为500微米时停止喷涂。
(4)热处理与封装
在75℃温度下烘5分钟,以使除去薄膜内的无水乙醇,随后用亚力克板和热溶胶进行封装,得到紫外光敏传感器。
采用实施例1中的方法进行紫外光检测,测试结果稳定。
最后,需要注意的是:以上列举的仅是本发明的具体实施例子,当然本领域的技术人员可以对本发明进行改动和变型,倘若这些修改和变型属于本发明权利要求及其等同技术的范围之内,均应认为是本发明的保护范围。

Claims (17)

  1. 一种紫外光敏传感器的制备方法,其特征在于,包括:
    (1)制作电极:在ITO导电玻璃表面制作第一电极和第二电极,第一电极和第二电极互不接触;
    (2)制备氧化锌悬浮液:将粘结剂加入到有机溶剂中充分溶解得到粘结剂溶液,然后向其中加入氧化锌纳米粉体,混合均匀得到氧化锌悬浮液;
    (3)制作氧化锌感光薄膜:将步骤(2)制备的氧化锌悬浮液喷涂至步骤(1)制作的第一电极和第二电极表面以形成氧化锌感光薄膜;
    (4)热处理与封装。
  2. 根据权利要求1所述的制备方法,其特征在于,先分别在所述第一电极和所述第二电极上制作引出电极,然后再将所述氧化锌悬浮液喷涂至所述第一电极和所述第二电极表面。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述第一电极和所述第二电极是叉指电极。
  4. 根据权利要求1或2所述的制备方法,其特征在于,所述第一电极和所述第二电极的间距是50微米至500微米,优选100微米。
  5. 根据权利要求1或2所述的制备方法,其特征在于,步骤(2)中,所述粘结剂与所述有机溶剂的比例是0.001-1克粘结剂:1-50毫升有机溶剂,优选是0.005克粘结剂:4毫升有机溶剂。
  6. 根据权利要求1或2所述的制备方法,其特征在于,步骤(2)中,所述氧化锌纳米粉体与所述粘结剂溶液的比例是0.1-2.0克氧化锌:1-50毫升粘结剂溶液,优选1.5克氧化锌:4毫升粘结剂溶液。
  7. 根据权利要求1或2所述的制备方法,其特征在于,步骤(3)制作的氧化锌感光薄膜的厚度是100微米-1000微米,优选500微米。
  8. 根据权利要求1或2所述的制备方法,其特征在于,步骤(4)中,所述热处理的时间是1分钟-30分钟,优选5分钟;所述热处理的温度是50℃-100℃,优选75℃。
  9. 采用权利要求1-8任一项所述的制备方法制备得到的紫外光敏传感 器,其特征在于,包括:氧化锌感光薄膜,第一电极和第二电极;其中,
    所述氧化锌感光薄膜用于探测紫外光;
    所述第一电极和所述第二电极互不接触,位于所述氧化锌感光薄膜的同一侧,作为所述紫外光敏传感器的电信号输出端。
  10. 一种紫外光敏器件,其特征在于,包括光敏元件模块和信号采集模块;其中,
    所述光敏元件模块是权利要求1-8任一项所述的制备方法制备得到的紫外光敏传感器或权利要求9所述的紫外光敏传感器,用于在待测光照下光敏电阻产生阻值变化并输出电信号;
    所述信号采集模块用于采集和处理与所述光敏电阻串联的分压电阻输出的分压,根据相邻固定时间段内的分压差值,确定是否刷新显示;
    所述光敏元件模块通过引出电极与所述分压电阻串联连接。
  11. 根据权利要求10所述的紫外光敏器件,其特征在于,所述信号采集模块依次包括稳压模块、分压信号采集模块、信号处理模块和显示模块;其中,
    所述稳压模块与所述分压电阻的两端相连,用于将所述分压电阻输出的分压转换为稳定电压;
    所述分压信号采集模块与所述稳压模块相连,用于采集经所述稳压模块稳定处理后的分压值;
    所述信号处理模块与所述分压信号采集模块相连,用于每隔固定时间段计算一次分压平均值,对相邻固定时间段内计算得到的分压平均值进行差值运算和对比运算;
    所述显示模块与所述信号处理模块相连,用于当差值运算和对比运算的结果大于设定值时,实时刷新显示所采集的分压值;当差值运算和对比运算的结果小于或等于设定值时,停止刷新,显示恒定分压值。
  12. 根据权利要求11所述的紫外光敏器件,其特征在于,所述稳压模块用于将所述分压电阻输出的5V电压转换为2.99-3.01V范围内的稳定电压。
  13. 根据权利要求11或12所述的紫外光敏器件,其特征在于,所述分 压信号采集模块的信号采集频率是500-1000次/秒。
  14. 一种应用权利要求10-13任一项所述的紫外光敏器件的紫外光检测方法,其特征在于,包括:
    (1)在待测光照射下,光敏元件模块的光敏电阻产生阻值变化而输出电信号;
    (2)信号采集模块采集和处理与所述光敏电阻串联的分压电阻输出的分压,根据相邻固定时间段内的分压差值,确定是否刷新显示。
  15. 根据权利要求14所述的紫外光检测方法,其特征在于,步骤(2)包括:
    与光敏元件模块串联的分压电阻输出分压,稳压模块将该分压转换为稳定电压;
    分压信号采集模块采集经所述稳压模块稳定处理后的分压值;
    信号处理模块每隔固定时间段计算一次分压平均值,对相邻固定时间段内计算得到的分压平均值进行差值运算和对比运算;
    当差值运算和对比运算的结果大于设定值时,显示模块实时刷新显示所采集的分压值;当差值运算和对比运算的结果小于或等于设定值时,显示模块停止刷新,显示恒定分压值。
  16. 根据权利要求15所述的紫外光检测方法,其特征在于,信号处理模块每隔1/50秒计算一次分压平均值。
  17. 根据权利要求15或16所述的紫外光检测方法,其特征在于,当差值运算和对比运算的结果与设定值满足(Vn+1-Vn)>M时,显示模块实时刷新显示所采集的分压值;
    其中,Vn+1和Vn是相邻固定时间段内计算得到的分压平均值,n为正整数;M是设定值,且0.1V≤M≤0.5V。
PCT/CN2016/100785 2016-04-21 2016-09-29 紫外光敏传感器、其制备方法、紫外光敏器件及紫外光检测方法 WO2017181605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610249800.6 2016-04-21
CN201610249800.6A CN107305913B (zh) 2016-04-21 2016-04-21 紫外光敏传感器、其制备方法、紫外光敏器件及紫外光检测方法

Publications (1)

Publication Number Publication Date
WO2017181605A1 true WO2017181605A1 (zh) 2017-10-26

Family

ID=60115535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100785 WO2017181605A1 (zh) 2016-04-21 2016-09-29 紫外光敏传感器、其制备方法、紫外光敏器件及紫外光检测方法

Country Status (2)

Country Link
CN (1) CN107305913B (zh)
WO (1) WO2017181605A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630181B (zh) * 2020-12-15 2024-03-22 浙江科技学院 一种紫外光激发的纳米纤维素柔性气敏传感器的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257065A (zh) * 2008-03-25 2008-09-03 浙江大学 用于紫外探测的纳米晶薄膜器件的制备方法
CN104779314A (zh) * 2014-06-27 2015-07-15 纳米新能源(唐山)有限责任公司 基于氧化锌的紫外光敏传感器及其制备方法
CN105097981A (zh) * 2015-07-01 2015-11-25 纳智源科技(唐山)有限责任公司 紫外光敏器件、制备方法及应用其检测紫外光的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294527A (ja) * 2002-04-04 2003-10-15 Isao Tatsuno フィルム状の光センサーとそれを用いた光センサー回路
CN100428500C (zh) * 2006-01-13 2008-10-22 清华大学 基于一维半导体纳米结构的光电传感器及其制作方法
CN204809241U (zh) * 2015-04-09 2015-11-25 纳米新能源(唐山)有限责任公司 无基底紫外光敏传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257065A (zh) * 2008-03-25 2008-09-03 浙江大学 用于紫外探测的纳米晶薄膜器件的制备方法
CN104779314A (zh) * 2014-06-27 2015-07-15 纳米新能源(唐山)有限责任公司 基于氧化锌的紫外光敏传感器及其制备方法
CN105097981A (zh) * 2015-07-01 2015-11-25 纳智源科技(唐山)有限责任公司 紫外光敏器件、制备方法及应用其检测紫外光的方法

Also Published As

Publication number Publication date
CN107305913B (zh) 2019-09-10
CN107305913A (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
CN102749157B (zh) 一种柔性多参数传感器及其制造方法
CN103247667B (zh) Oled面板及其制作方法与封装效果的检测方法
CN106895924B (zh) 一种柔性温度压力传感器
CN103364444B (zh) 利用基于纳米压电半导体材料的纳米发电机进行气体探测的方法
US20210066396A1 (en) Self-powered organometallic halide perovskite photodetector with high detectivity
CN106770498A (zh) 基于静电纺丝技术制备的铑掺杂二氧化锡纳米纤维敏感材料的丙酮传感器、制备方法及应用
Wang et al. Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices
WO2017181605A1 (zh) 紫外光敏传感器、其制备方法、紫外光敏器件及紫外光检测方法
CN209992108U (zh) 一种测量真空度的装置
CN105097981B (zh) 紫外光敏器件、制备方法及应用其检测紫外光的方法
CN107393253A (zh) 基于异质结薄膜的远程电气火灾监测系统及其制备方法
CN105136884A (zh) 基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器
CN108459055A (zh) 聚吡咯表面修饰硅纳米线气敏元件及其应用
CN208060387U (zh) 一种多功能甲醛气体实时监测装置
CN2864630Y (zh) 一种用于紫外探测的传感器
CN205537876U (zh) 一种巨压阻双谐振质量传感器
CN104143586A (zh) 基于合金半导体纳米结构集成基片的光电探测器的制作
CN203011528U (zh) 新型高敏紫外光强探测器及紫外光强测控系统
CN104950028A (zh) 一种锆基安培型三电极片式no气敏传感器及其制备方法
CN205246696U (zh) 一种液体加速度测量装置
CN106159093B (zh) 柔性光传感器及其制备方法
CN204857759U (zh) 紫外光敏器件
CN105390615B (zh) 一种紫外光传感器
CN204085692U (zh) 可连接移动终端的紫外光检测元件及紫外光检测设备
CN106908486B (zh) 一种湿度探测器及其制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899190

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899190

Country of ref document: EP

Kind code of ref document: A1