WO2017179900A1 - Graphene fiber and manufacturing method therefor - Google Patents

Graphene fiber and manufacturing method therefor Download PDF

Info

Publication number
WO2017179900A1
WO2017179900A1 PCT/KR2017/003930 KR2017003930W WO2017179900A1 WO 2017179900 A1 WO2017179900 A1 WO 2017179900A1 KR 2017003930 W KR2017003930 W KR 2017003930W WO 2017179900 A1 WO2017179900 A1 WO 2017179900A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
fibers
graphene oxide
fiber
source solution
Prior art date
Application number
PCT/KR2017/003930
Other languages
French (fr)
Korean (ko)
Inventor
한태희
박헌
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160044225A external-priority patent/KR101782725B1/en
Priority claimed from KR1020160044228A external-priority patent/KR101782726B1/en
Priority claimed from KR1020170013852A external-priority patent/KR102660907B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201780023153.XA priority Critical patent/CN109072484B/en
Publication of WO2017179900A1 publication Critical patent/WO2017179900A1/en
Priority to US16/156,367 priority patent/US10995428B2/en
Priority to US17/240,528 priority patent/US11649566B2/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon

Definitions

  • the present invention relates to a graphene fiber and a method for producing the same, and more particularly, a method for preparing a source solution containing graphene oxide having pores formed by adding graphene oxide, an oxidizing agent, and a pH adjusting agent to a solvent;
  • the present invention relates to a method for producing a porous graphene fiber in which the elongation is easily controlled by adjusting the concentration and the spinning speed of the source solution.
  • Graphene is the most excellent material among the existing materials with various characteristics such as strength, thermal conductivity and electron mobility. Accordingly, it is applied to various fields such as display, secondary battery, solar cell, automobile, and lighting, and is recognized as a strategic core material that will lead the growth of related industries, and technology for commercializing graphene is receiving much attention.
  • One technical problem to be solved by the present invention is to provide a graphene fiber excellent in elongation and a manufacturing method thereof.
  • Another technical problem to be solved by the present invention is to provide a graphene fiber excellent in mechanical properties and a method of manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a graphene fiber having a flexible characteristic and a method of manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a graphene fiber excellent in electrical conductivity and a method of manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a graphene fiber having a porous structure and a method of manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a graphene fiber and a method of manufacturing the reduced process cost and process time.
  • Another technical problem to be solved by the present invention is to provide a graphene fiber and a method of manufacturing the same for easy mass production.
  • Another technical problem to be solved by the present invention is to provide a high graphene fiber and a method of manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a graphene fiber of high orientation and a method of manufacturing the same.
  • Another technical problem to be solved by the present invention is to provide a graphene fiber and a method for manufacturing the same that can be a subsequent process.
  • Another technical problem to be solved by the present invention is to provide a graphene fiber excellent in electrical conductivity and a method of manufacturing the same.
  • the technical problem to be solved by the present invention is not limited to the above.
  • the present invention provides a method for producing a graphene fiber.
  • the graphene fiber manufacturing method preparing a source solution containing graphene oxide (graphene oxide), spinning the source solution with a base solution containing a heterogeneous element graphene oxide fiber Preparing, separating, washing, and drying the graphene fibers from the base solution to obtain graphene oxide fibers including the dissimilar elements, and dried graphene oxide fibers including the dissimilar elements.
  • the method for producing the graphene fiber may include increasing the elongation of the graphene fiber as the concentration of graphene oxide in the source solution increases.
  • the manufacturing method of the graphene fiber may include increasing the elongation of the graphene fiber as the spinning speed of the source solution decreases.
  • the graphene fiber manufacturing method in the step of obtaining a graphene oxide fiber comprising the heterogeneous element, drying and winding the graphene oxide fiber comprising the heterogeneous element at the same time It may further include.
  • the manufacturing method of the graphene fiber when the spinning speed of the source solution is larger than the winding speed of the graphene oxide fiber containing the dissimilar elements, the elongation of the graphene fiber includes increasing can do.
  • the manufacturing of the graphene fiber may include reducing the graphene oxide fiber to the graphene fiber through the heat treatment, and the heterogeneous element included in the graphene oxide fiber may be used. And may be doped into the pin fibers.
  • the method for producing the graphene fibers preparing a source solution in which a graphene oxide sheet (graphene oxide sheet) is dispersed, a reducing agent for partially reducing the graphene oxide sheet (partially), And spinning the source solution in a coagulation bath simultaneously comprising a binder for binding the graphene oxide sheets to obtain graphene oxide fibers, and reducing the graphene oxide fibers, It may include the step of producing the graphene fibers.
  • the graphene fiber manufacturing method the graphene oxide sheet is partially reduced by the reducing agent, a partially reduced graphene oxide sheet (partially reduced graphene oxide sheet) is produced
  • pi-pi stacking ( ⁇ - ⁇ stacking) between the partially reduced graphene oxide sheets may include an increase in tensile strength of the graphene oxide fibers.
  • the binder may include divalent or trivalent metal ions.
  • the method for manufacturing the graphene fiber may further comprise the step of producing a copper plated graphene fiber by copper plating the graphene fiber.
  • the step of preparing the copper-plated graphene fibers, the step of etching the graphene fibers, bonding the catalyst metal to the etched graphene fibers, and the solution containing copper Dipping the graphene fiber to which a catalyst metal is bonded, and reducing the copper using the catalyst metal may include plating the graphene fiber with copper.
  • the copper plated graphene fibers may include pores provided between the graphene sheets in which the graphene oxide sheet is reduced, or copper structures provided on the surface of the graphene fibers. have.
  • the step of preparing the graphene fibers, the step of drying the graphene oxide fibers, washing and drying the dried graphene oxide fibers, and the washed and dried graphene oxide Dipping the fibers in a reducing solution to heat treatment may comprise the step of reducing the graphene oxide fibers.
  • the source solution may further include carbon nanotubes
  • the graphene fiber may further include the carbon nanotubes
  • the graphene fiber manufacturing method a graphene oxide, an oxidizing agent, and a pH adjusting agent is added to a solvent, and then reacting to prepare a source solution in which graphene oxide having voids is dispersed
  • a source solution in which graphene oxide having voids is dispersed
  • Preparing a graphene oxide fiber by spinning the source solution with a source solution containing a dissimilar element; separating, washing, and drying the graphene oxide fiber from the source solution;
  • Obtaining pin fibers thermally treating the dried graphene oxide fibers including the heterogeneous elements to produce graphene fibers doped with the heterogeneous elements, and converting the graphene fibers into a first oxidant Reacting with an aqueous solution comprising a, it may include the step of forming the fine pores in the graphene fibers.
  • the graphene fiber manufacturing method may include increasing the porosity of graphene oxide as the content of the oxidant in the source solution increases.
  • the graphene fiber manufacturing method may include increasing the porosity of graphene oxide as the pH of the source solution is higher.
  • the porosity of the fine pore formed in the graphene fiber is to be adjusted according to the content of the first oxidant in the aqueous solution and the temperature and time of the reaction. Can be.
  • the porosity in the graphene oxide in the source solution may be adjusted according to the content of the oxidant in the source solution, the pH of the source solution, and the reaction temperature. have.
  • the manufacturing of the graphene fibers may include reducing the graphene oxide fibers to the graphene fibers through the heat treatment, and simultaneously dissociating the heterogeneous elements included in the graphene oxide fibers. It may include doping (graphed) to the graphene fiber, it may include that the electrical conductivity of the graphene fiber is adjusted according to the content of the heterogeneous element doped in the graphene oxide fiber.
  • a graphene oxide fiber by spinning a source solution containing graphene oxide with a heterogeneous element or a base solution containing a reducing agent and a binder, by heat or acid treatment, excellent mechanical strength and Graphene fibers can be provided that have electrical conductivity and at the same time have high tensile modulus.
  • the concentration of graphene oxide in the source solution used the spinning rate of the source solution spun into the base solution, the winding speed of the graphene oxide fiber comprising the heterogeneous element, and / or
  • the degree of orientation of the graphene fibers may be easily adjusted.
  • the porosity of the graphene fibers may be increased to provide the graphene fibers having excellent elongation. Accordingly, the graphene fibers having high mechanical strength and excellent elongation can be realized, so that the graphene fibers can be provided in various fields including flexible devices.
  • the graphene fiber has a porous structure, the surface area is wide, and can serve as a natural fiber, and can be widely used in conventional membrane applications such as fibrous electronic devices.
  • the graphene fiber electrical conductivity can be easily adjusted.
  • the graphene fiber according to the embodiment of the present invention may be utilized in various fields requiring excellent electrical conductivity characteristics.
  • FIG. 1 is a flowchart illustrating a method for manufacturing graphene fiber according to a first embodiment of the present invention.
  • FIG. 2 is a view for explaining a manufacturing method of the graphene fiber according to the first embodiment of the present invention.
  • FIG 3 is a view for explaining the orientation and elongation of the graphene fiber according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing graphene fibers according to a second embodiment of the present invention.
  • FIG. 5 is a view for explaining the function of the binder included in the coagulation bath used in the method for producing a graphene fiber according to an embodiment of the present invention.
  • 6A and 6B are views for explaining copper plated graphene fibers manufactured according to the method for manufacturing graphene fibers according to the first modification of the second embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method for preparing a source solution for producing graphene fibers according to a third embodiment of the present invention.
  • FIG. 8 is a view for explaining a method for producing a source solution for the production of graphene fibers according to a third embodiment of the present invention.
  • FIG. 9 is an enlarged view of a portion A of FIG. 8 and illustrates a graphene oxide having voids according to a third embodiment of the present invention.
  • FIG. 10 is an enlarged view of B of FIG. 9 and illustrates a detailed structure of graphene oxide having voids according to a third embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method for manufacturing graphene fiber according to a third embodiment of the present invention.
  • FIG. 12 is a photograph showing a process in which a source solution is spun through a spinneret to produce graphene oxide fibers according to a first embodiment of the present invention.
  • FIG. 13 is a photograph illustrating a process in which graphene oxide fibers including heterogeneous elements according to a first embodiment of the present invention are wound by a winding roller.
  • 15 is an image of a graphene fiber having a high degree of orientation according to the first embodiment of the present invention.
  • FIG. 16 is a graph illustrating tensile strength values according to an increase in an external pressure of graphene fibers according to an exemplary embodiment of the present invention.
  • FIG 17 is a photograph of the graphene fibers according to the second embodiment 1, comparative example 1, and comparative example 2 of the present invention.
  • Example 20 is a graph measuring the standard deviation of the thickness of the graphene fibers according to Example 1, Comparative Example 1, and Comparative Example 2 of the present invention.
  • 21 is an AFM image of a graphene oxide sheet used for producing graphene fibers according to the second embodiment 2 to 4 of the present invention.
  • FIG. 22 is a photograph taken after the addition of CoCl 2 , AlCl 3 , and FeCl 3 to the source solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention.
  • FIG. 24 is a graph showing the viscosity of a sauce solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention and a solution to which CoCl 2 , AlCl 3 , and FeCl 3 were added thereto.
  • 25 is a storage modulus of the source solution used in the production of graphene fibers according to the second embodiment 2 to 4 of the present invention and the solution to which CoCl 2 , AlCl 3 , and FeCl 3 were added thereto, respectively.
  • FIG. 26 is a graph showing the degree of gelation of a sauce solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention and a solution in which CoCl 2 , AlCl 3 , and FeCl 3 are added thereto.
  • 29 is a photograph of a graphene oxide fiber according to a second embodiment 2 of the present invention.
  • FIG. 30 is an SEM image of graphene oxide with pores formed in accordance with a third embodiment of the present invention.
  • FIG. 31 is a photograph of a sauce solution according to a third embodiment of the present invention.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Thus, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment.
  • first component in one embodiment may be referred to as a second component in another embodiment.
  • second component in another embodiment.
  • Each embodiment described and illustrated herein also includes its complementary embodiment.
  • the term 'and / or' is used herein to include at least one of the components listed before and after.
  • connection is used herein to mean both indirectly connecting a plurality of components, and directly connecting.
  • FIG. 1 is a flowchart illustrating a method for manufacturing graphene fiber according to a first embodiment of the present invention
  • Figure 2 is a view for explaining a method for manufacturing graphene fiber according to a first embodiment of the present invention
  • 3 is a view for explaining the orientation and elongation of the graphene fiber according to the first embodiment of the present invention.
  • a source solution 10 including graphene oxide may be prepared (S100).
  • the source solution 10 may be prepared by adding graphene oxide to a solvent.
  • the solvent may be water or an organic solvent.
  • the organic solvent may be dimethyl sulfoxide (DMSO), ethylene glycol, ethylene glycol, N-methyl-2-pyrrolidone (NMP), dimethylformamide ( dimethylformamide, DMF).
  • the source solution 10 may be prepared by adding graphene oxide to the organic solvent at a concentration of 2 to 20 mg / mL.
  • a stirring process may be performed on the solvent to which the graphene oxide is added.
  • the solvent to which graphene oxide is added may be stirred for 24 hours.
  • the elongation percentage of graphene fibers may be adjusted according to the concentration of graphene oxide in the source solution 10. Specifically, according to the concentration of the graphene oxide in the source solution 10, the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted. .
  • the concentration of the source solution 10 is increased, the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the concentration of the source solution 10 is increased, the elongation of the graphene fibers may increase.
  • the aqueous solution containing the oxidant is added to the source solution 10, the arrangement of the graphene in the graphene oxide contained in the source solution 10 can be controlled. Accordingly, according to the amount of the oxidant included in the source solution 10 and / or the reaction time of the source solution 10 and the aqueous solution containing the oxidant, the fine pores of the graphene fibers to be described later can be adjusted Can be.
  • the aqueous hydrogen peroxide solution after the aqueous hydrogen peroxide solution is added to the source solution 10, it may be reacted for 10 minutes to 4 hours at room temperature (25 °C).
  • the source solution 10 is radiated into the base solution 20 containing heterogeneous elements, and thus, graphene oxide fiber 30 may be manufactured (S200).
  • the base solution 20 may be prepared by adding a salt containing the heterogeneous element to a solvent.
  • the salt containing a heterogeneous element is a salt containing an element other than carbon (C), nitrogen (N) salt, sulfur (S) salt, fluorine (F) salt, or It may be any one of iodine (I) salts.
  • salts containing the heterogeneous elements are ammonium biborate tetrahydrate, ammonium bromide, ammonium carbamate, ammonium carbonate, ammonium cerium (IV) sulfate dihydrate, ammonium chloride, ammonium chromate, ammonium dichromate, ammonium dihydrogenphosphate, ammonium fluoride, ammonium formate, ammonium heptafluorotantalate (V), ammonium hexabromotellurate (IV), ammonium hexachloroiridate (III), ammonium hexachloroiridate (IV), ammonium hexachloroosmate (IV), ammonium hexachloropalladate (IV), ammonium hexachloroplatinate (IV), ammoniumIII ammonium hexachlororuthenate (IV), ammonium hexachlorotellurate (IV), ammonium hexafluorogermanate
  • the solvent water (methanol), propanol (propanol), ethanol (ethanol), acetone (acetone), dimethyl formamide (dimethyl formamide, DMF), N-methyl- It may be any one of 2-piperidone (n-methyl-2-pyrrolidone, NMP), dimethyl sulfoxide (DMSO), or ethylene glycol.
  • the base solution 20 may further include a coagulant.
  • the graphene oxide fibers 30 prepared by spinning the source solution 10 in the base solution 20 may be solidified by the coagulant included in the base solution 20.
  • the coagulant calcium chloride (CaCl 2 ), potassium hydroxide (KOH), sodium hydroxide (NaOH), sodium chloride (NaCl), copper sulfate (CuSO 4 ), cetyltrimethylammonium bromide (CTAB) Or chitosan.
  • the base solution 20 may be prepared by adding a salt containing the heterogeneous element and 0 to 50 wt% of a coagulant to the solvent.
  • the source solution 10 contained in the first container 100, through the spinneret 120 connected to the first container 100, the second containing the base solution 20 Can be spun into the container 150.
  • the salt containing the hetero element may be diffused into the graphene oxide fiber 30.
  • the elongation of the graphene fibers to be described later may be adjusted according to the speed of the source solution 10 that is radiated into the base solution 20. Specifically, according to the spinning speed of the source solution 10, the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted.
  • the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the spinning speed of the source solution 10 decreases, the elongation of the graphene fibers may increase.
  • the electrical conductivity of the graphene fibers may be controlled.
  • the heterogeneous elements diffused into the graphene oxide fiber 30 may be doped into the graphene fiber in the thermal treatment step of S400 described later. Accordingly, by controlling the type and / or content of the heterogeneous elements contained in the base solution 20 in step S200, the electrical conductivity of the graphene fibers can be easily adjusted.
  • the graphene oxide fibers 30 including the heterogeneous elements may be obtained (S300).
  • the graphene oxide fiber 30 including the dissimilar elements may be separated from the second container 150 containing the base solution 20 by a guide roller 170 and then come out.
  • the graphene oxide fiber 30 including the heterogeneous element separated from the base solution 20 may include the coagulant.
  • the washing solution used in the washing process may be an alcoholic aqueous solution.
  • the moisture contained in the graphene oxide fiber 30 including the heterogeneous element may be naturally dried in the air.
  • the graphene oxide fibers 30 including the heterogeneous elements naturally dried in air may be secondaryly dried.
  • at least a portion of the water remaining in the graphene oxide fiber 30 including the dissimilar element may be removed through the heating process.
  • the type of heater used in the heating step is not particularly limited.
  • the heater may be any one of a heater, a hot plate, or a heating coil.
  • the graphene oxide fiber 30 including the hetero element naturally dried in air is heated to a temperature of 70 to 80 °C by the heater, the graphene oxide fiber comprising the hetero element At least a portion of the water remaining inside 30 may be removed.
  • the graphene oxide fiber 30 including the dissimilar element is dried at the same time through the heating process, and wound up Can be.
  • the graphene oxide fibers 30 including the heterogeneous elements are wound by a winding roller 190 while the drying process is performed. Can be.
  • the elongation of the graphene fiber can be easily adjusted. Specifically, according to the winding speed of the graphene oxide fiber 30 including the dissimilar element, the degree of orientation and porosity of the graphene fiber is adjusted, the elongation of the graphene fiber can be easily adjusted.
  • the spinning speed of the source solution 10 when the spinning speed of the source solution 10 is greater than the winding speed of the graphene oxide fiber 30 including the dissimilar element, the degree of orientation of the graphene fibers is reduced, and the graphene The porosity of the fibers can increase. Accordingly, when the spinning speed of the source solution 10 is greater than the winding speed of the graphene oxide fiber 30 including the dissimilar element, the stretch rate of the graphene fiber may increase.
  • the graphene oxide fiber 30 including the heterogeneous element may be dried through a drying rack.
  • the elongation of the graphene oxide fiber 30 including the heterogeneous element can be easily adjusted.
  • the graphene oxide fiber 30 including the heterogeneous element when the length of the drying rod is shorter than the length of the graphene oxide fiber 30 including the heterogeneous element disposed on the drying rod, the graphene oxide fiber 30 including the heterogeneous element is As it is dried, the shrinkage phenomenon of the graphene oxide fiber 30 including the dissimilar element due to the tension generated in the axial direction of the drying table may occur relatively less. Accordingly, the degree of orientation of the graphene fibers may be reduced, and the porosity of the graphene fibers may be increased. As a result, when the length of the drying table is shorter than the length of the graphene oxide fiber 30 including the dissimilar elements disposed on the drying table, the elongation of the graphene fibers may increase.
  • the dried graphene oxide fiber 30 including the heterogeneous element is heat-treated, and thus, the graphene fiber doped with the heterogeneous element may be manufactured (S400). Specifically, through the heat treatment, the graphene oxide fiber 30 of the graphene oxide fiber 30 including the dissimilar element is reduced to the graphene fiber, and included in the graphene oxide fiber 30 The heterogeneous element may be doped into the graphene fiber.
  • the heterogeneous element, other than carbon (C) may be any one of nitrogen (N), sulfur (S), fluorine (F), or iodine (I).
  • the manufacturing of the graphene fiber may include heat treatment under an inert gas or hydrogen (H 2 ) gas atmosphere.
  • the inert gas may be any one of argon (Ar) gas or nitrogen (N 2 ) gas.
  • the graphene oxide fiber 30 including the hetero element is 100 ° C. to 5000 ° C. for 10 minutes to 10 hours at an elevated temperature rate of 10 to 100 ° C./min under an inert gas or hydrogen gas atmosphere.
  • the graphene fibers doped with the different elements can be produced.
  • the graphene Fine pores may be further formed in the fiber.
  • the post-treatment process is performed on the graphene fibers, and thus the electrical and optical properties of the graphene fibers may be improved due to the micro voids formed in the graphene fibers.
  • the fine pores additionally formed in the graphene fibers can be easily adjusted according to the amount of the oxidant included in the aqueous solution and the temperature and / or time at which the hydrothermal reaction is carried out.
  • the electrical and optical properties of the graphene fibers can be easily adjusted.
  • the oxidant may be hydrogen peroxide (H 2 O 2 ).
  • the fine pores further formed in the graphene fibers, after supporting the graphene fibers in an aqueous solution of 1 to 35% hydrogen peroxide, at a temperature of 300 to 500 °C in a high pressure reactor, 10 It may be formed by performing the hydrothermal reaction for minutes to 4 hours.
  • conventional carbon-based fibers have excellent electrical properties, thermal stability, and tensile strength, and thus are utilized in general industrial fields such as the electronic and aerospace industries.
  • the carbon-based fiber has a low elongation, there is a limit to application to a flexible device, and there is a difficulty in serving as a natural fiber.
  • the carbon-based fibers do not include a microstructure, so the surface area is small, does not exhibit a membrane (membrane) properties, and the electrochemical properties are disadvantageous.
  • preparing a source solution 10 containing graphene oxide spinning the source solution 10 with a base solution 20 containing a heterogeneous element graphene oxide fiber Preparing 30, separating, washing, and drying the graphene oxide fibers 30 from the second solution 20 to obtain graphene oxide fibers 30 including the dissimilar elements, And heat-treating the graphene oxide fiber 30 including the heterogeneous element dried, thereby preparing the graphene fiber doped with the heterogeneous element, having excellent mechanical strength and having a high tensile rate.
  • the concentration of graphene oxide in the source solution 10 to be used, the spinning speed of the source solution 10 spun into the base solution 20, and the graphene oxide including the heterogeneous elements By adjusting the winding speed of the pin fibers 30 and / or the length of the drying zone in which the graphene oxide fibers 30 including the dissimilar elements are disposed, the degree of orientation of the graphene fibers can be easily adjusted.
  • the porosity of the graphene fibers may be increased to provide the graphene fibers having excellent elongation. Accordingly, the graphene fibers having high mechanical strength and excellent elongation can be realized, so that the graphene fibers can be provided in various fields including flexible devices.
  • the graphene fiber has a porous structure, the surface area is wide, and can serve as a natural fiber, and can be widely used in conventional membrane applications such as fibrous electronic devices.
  • the electrical conductivity of the graphene fiber 70 can be easily controlled by adjusting the type and / or content of the heterogeneous element doped in the graphene fiber.
  • the graphene fiber according to the embodiment of the present invention may be utilized in various fields requiring excellent electrical conductivity characteristics.
  • the source solution containing the graphene oxide is spun into a coagulation bath including a reducing agent and a binder instead of the base solution containing a heterogeneous element, thereby providing mechanical strength and a circular shape.
  • a method for producing graphene fibers with excellent degree is disclosed.
  • FIG. 4 is a flowchart illustrating a method for manufacturing graphene fiber according to a second embodiment of the present invention
  • Figure 5 is a binder included in the coagulation bath used in the method for producing graphene fiber according to an embodiment of the present invention
  • a source solution 10 in which a graphene oxide sheet is dispersed may be prepared (S110).
  • the source solution 10 may be prepared by adding the graphene oxide sheet to a solvent.
  • the solvent may be water or an organic solvent.
  • the organic solvent may be dimethyl sulfoxide (DMSO), ethylene glycol, ethylene glycol, N-methyl-2-pyrrolidone (NMP), dimethylformamide ( dimethylformamide, DMF).
  • a stirring process may be performed on the solvent to which the graphene oxide sheet is added.
  • the elongation of the graphene fibers to be described later may be adjusted. Specifically, according to the concentration of the graphene oxide sheet in the source solution 10, the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted.
  • the concentration of the source solution 10 is increased, the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the concentration of the source solution 10 is increased, the elongation of the graphene fibers may increase.
  • the source solution 10 may not include a polymer. Accordingly, it is possible to minimize the degradation of the electrical conductivity of the graphene fiber by the polymer.
  • the source solution 10 including the graphene oxide sheet is spun into a coagulation bath 20 including a reducing agent and a binder to obtain a graphene oxide fiber 30 (S120).
  • the coagulation bath 20 may simultaneously include a reducing agent that partially reduces the graphene oxide sheet and a binder that binds the graphene oxide sheets.
  • the reducing agent may partially reduce the graphene oxide sheet in the graphene oxide fiber 30. ⁇ - ⁇ stacking increases between partially reduced graphene oxide sheets, thereby increasing the mechanical strength (eg, tensile strength) of the graphene oxide fibers 30 in a gel state. can do.
  • the reducing agent may include any one of KOH or NaOH.
  • the binder may include divalent or trivalent metal ions.
  • the binder may include any one of CaCl 2 , NaCl, or CuSO 4 .
  • oxygen may be present on the surface of the graphene oxide fiber 30.
  • divalent or trivalent metal ions contained in the binder connect oxygens on the surface of the graphene oxide fiber 30 to each other, thereby bonding the graphene oxide sheets in the graphene oxide fiber 30.
  • the graphene oxide fiber 30 may be separated from the second container 150 containing the coagulation bath 20 by a guide roller 170 and may be released to the outside. It may be wound by a winding roller 190.
  • the graphene oxide fiber 30 is reduced, the graphene fiber can be produced (S130).
  • the step of preparing the graphene fiber, the step of drying the graphene oxide fiber 30, the step of washing and drying the dried graphene oxide fiber 30, and the washed and dried graphene oxide fiber A method of thermally immersing 30 in a reducing solution may include reducing the graphene oxide fibers 30.
  • the dried graphene oxide fibers 30 may be washed using an alcoholic aqueous solution, and dried at 50 to 80 ° C.
  • the reducing solution may be an aqueous hydrogen iodide solution.
  • the graphene fibers may be washed and dried using an alcoholic aqueous solution.
  • the source solution 10 contained in the first container 100 may contain the coagulation bath 20 through the spinneret 120 connected to the first container 100. It may be radiated to the second container 150.
  • the graphene oxide fibers 30 in the gel state formed by spinning the source solution 10 are subjected to various hydraulic forces in the coagulation bath 20.
  • the mechanical strength of the graphene oxide fiber 30 in a gel state may be low. have.
  • the degree of increase in the mechanical strength of the graphene oxide fiber 30 is low, so that The surface becomes rugged and, accordingly, the circularity of the graphene fibers produced from the graphene oxide fibers 30 can be lowered.
  • the coagulation bath 20 may include the reducing agent and the binder at the same time, and thus, the gel of the gel state spun into the coagulation bath 20 Mechanical strength of the graphene oxide fiber 30 can be improved. Accordingly, the graphene oxide fiber 30 may have a high circularity, and the graphene fiber manufactured from the graphene oxide fiber 30 may also have a high circularity.
  • the reducing agent may partially reduce the graphene oxide sheet in the graphene oxide fiber 30.
  • the reducing agent when the reducing agent completely reduces the graphene oxide sheet, it is easy for the solvent (which was included in the source solution 10) in the graphene oxide fiber 30 to be released to the outside through a drying process.
  • the reducing agent in the coagulation bath 20 may partially reduce the graphene oxide sheet, so that the solvent in the graphene oxide fiber 30 is externally dried through a drying process. Can be easily released.
  • the elongation of the graphene fiber can be easily adjusted.
  • the degree of orientation of the graphene oxide sheet in the graphene oxide fiber 30 is adjusted, the graphene fiber The degree of orientation and porosity of the graphene sheet in the inside is controlled, and thus the elongation of the graphene fibers can be easily adjusted.
  • the graphene oxide fiber 30 may have a high mechanical strength by the coagulation bath 20 simultaneously comprising the reducing agent and the binder, and thus, the oxidation Even if the winding speed and spinning speed of the graphene fibers 30 are adjusted, the graphene oxide fibers 30 may not be cut.
  • the elongation, porosity, and orientation of the graphene sheet can be easily adjusted according to the application.
  • 6A and 6B are views for explaining copper plated graphene fibers manufactured according to the method for manufacturing graphene fibers according to the first modification of the second embodiment of the present invention.
  • the graphene fiber according to the first modified example of the second embodiment of the present invention is further performed by performing a copper plating process on the graphene fiber manufacturing method according to the second embodiment of the present invention described with reference to FIGS. 4 and 5. Can be prepared. Accordingly, unlike the second embodiment of the present invention described above, the graphene fibers according to the first modification of the second embodiment may further include a copper structure formed on the surface or inside of the graphene fibers.
  • the step of preparing the copper plated graphene fibers, the step of etching the graphene fibers, bonding the catalyst metal to the etched graphene fibers, and the catalyst metal in a solution containing copper Dipping the bonded graphene fibers, and reducing the copper using the catalytic metal may comprise the step of plating the graphene fibers with copper.
  • the catalytic metal may be easily bonded to the surface of the graphene fibers etched.
  • the graphene fibers may be etched by supporting in an acidic solution (eg, 30% HCl) or a basic solution (eg, 5-20% NaOH) at 50 ⁇ 90 °C.
  • the catalyst metal is Pd
  • the bonding of the catalyst metal to the graphene fiber is performed by a method of immersing in 0.72M HCl, 0.01M PdCl 2 and 0.04M SnCl 2 solution for 3 to 10 minutes. Can be.
  • Pd ions which are catalyst metals, may be reduced by Sn, thereby binding to the graphene fibers.
  • the step of plating the graphene fibers with copper, the graphene fibers are catalytically bonded to the electroless copper plating bath containing 5g CuSO 4 , 25g Potassium sodium tartrate, 7g NaOH, and 10ml formaldehyde It can be carried out by a method of supporting 1 to 10 minutes.
  • the cross-section of the graphene fibers may include aggregates 14 of the plurality of graphene sheets and pores 16 therebetween.
  • the copper-plated graphene fibers according to the first modification of the second embodiment of the present invention in addition to the aggregate 14 of the plurality of graphene sheets, pores 16 provided between the graphene sheets or the graphene Copper structures 18 formed on the surface of the fibers.
  • the copper structure 18 covers at least a portion of the surface of the graphene fibers and / or at least a portion of the pores 16 in the graphene fibers as a whole. Or partially filled.
  • the graphene fibers according to the first modified example of the second embodiment of the present invention may further include the copper structure 18 having high conductivity, in addition to the aggregate 14 of the graphene sheet. Accordingly, the conductivity of the graphene fiber can be improved.
  • the method for producing a graphene fiber according to the second embodiment of the present invention described with reference to FIGS. 4 and 5 for increasing the surface area of the graphene fiber may be further performed to produce graphene fibers according to the second modification of the second embodiment of the present invention.
  • the graphene fibers are prepared, after the graphene fibers are supported in an oxidized aqueous solution, a hydrothermal reaction may be performed. Accordingly, fine pores may be formed on the surface of the graphene fiber.
  • the surface area of the graphene fiber may be increased by the micropores formed on the surface of the graphene fiber, and thus, the capacitance value of the super capacitor manufactured using the graphene fiber may be improved.
  • the oxidizing aqueous solution may include hydrogen peroxide, DI water, and NH 4 OH, and the hydrothermal reaction may be performed at a process temperature of 150 ° C. for about 30 minutes.
  • Graphene fibers may be prepared using the source solution further comprising carbon nanotubes in addition to the graphene oxide sheet.
  • the spinning process using the source solution is carried out to produce a graphene oxide fiber Can be.
  • the graphene oxide fibers may include the graphene oxide sheet and the carbon nanotubes. Accordingly, since the graphene fibers according to the third modified example of the second embodiment of the present invention, the graphene oxide sheet is reduced graphene sheet, and the carbon nanotube provided between the graphene sheet, There may be provided a method for producing the graphene fiber with improved mechanical and electrical properties.
  • the graphene fibers according to the second embodiment of the present invention and modified examples thereof manufactured by the above-described method may be used in various devices and devices such as wires and capacitors.
  • a method for producing the graphene fibers can be easily controlled to provide.
  • FIG. 7 is a flowchart illustrating a method for preparing a source solution for the production of graphene fibers according to a third embodiment of the present invention
  • Figure 8 is a graph for manufacturing the graphene fiber according to a third embodiment of the present invention
  • 9 is a view for explaining a method of preparing a source solution
  • FIG. 9 is an enlarged view of A of FIG. 8, and is a view for explaining graphene oxide having voids according to a third embodiment of the present invention
  • FIG. 9B is an enlarged view illustrating a detailed structure of graphene oxide having voids according to a third embodiment of the present invention.
  • the graphene oxide 3, the oxidant 5, and the pH adjuster 7 may be prepared (S100).
  • the graphene oxide 3 may be in the form of a sheet.
  • the graphene oxide 3 in the form of a sheet may include fine pores formed by an irregular arrangement between the graphene oxide particles constituting the graphene oxide 3. .
  • the oxidant 5 is a substance that reduces itself and oxidizes the graphene oxide 3, and may form pores 4 in the graphene oxide 3.
  • the oxidant 5 may be hydrogen peroxide (H 2 O 2 ), which is the oxidant 5 having a high oxidizing power.
  • the pH regulator 7 may create a pH environment in which the graphene oxide 3 and the oxidant 5 may react.
  • the pH adjuster (7) LiOH, NaOH, KOH, NH 4 OH, Ca (OH) 2 , Sr (OH) 2 , CsOH, Ba (OH) 2 , Mg (OH) 2 , Cd (OH) 2 , La (OH) 3 , In (OH) 3 , Nd (OH) 3 , Gd (OH) 3 , FeOOH, RbOH, Al (OH) 3 , Ni (OH) 2 , NaF, K 2 Co 3 , or NH 4 ClO.
  • the oxidizing agent (5), and the pH adjusting agent (7) are added to the solvent (8), and reacted to disperse the source solution in which the graphene oxide (3) having the pores (4) is dispersed ( 10) can be manufactured (S200).
  • the oxidant 3 may be hydrogen peroxide (H 2 O 2 ).
  • H 2 O 2 hydrogen peroxide
  • the oxidant 3 may be hydrogen peroxide (H 2 O 2 ).
  • H 2 O 2 hydrogen peroxide
  • the pH adjuster 7 may react with each other to generate HO 2 ⁇ ions and water (H 2 O).
  • HO 2 ⁇ ions may react with hydrogen peroxide (H 2 O 2 ) to produce ⁇ OH radicals. Since the OH radical oxidizes the graphene oxide 3, the voids 4 can be formed in the graphene oxide 3 in the sheet form.
  • the porosity of the graphene oxide 3 may increase.
  • the amount of ⁇ OH radicals that are reaction products of the oxidant 5 and the pH adjuster 7 may increase. Accordingly, the number of the pores 4 in the graphene oxide 3 may be increased, thereby increasing the porosity of the graphene oxide 3 in the form of a sheet.
  • the content of the oxidant 3 in the source solution 10 may be 0.1 to 40wt%. If the content of the oxidant (3) in the source solution (10) is more than 40wt%, the OH radical which oxidizes the graphene oxide (3) to form the pores (4) in the graphene oxide (3) Access to graphene oxide 3 is restricted, so that the reaction efficiency for the reaction forming the voids 4 in graphene oxide 3 can be reduced. In addition, the graphene oxide 3 may be aggregated and precipitated in the source solution 10.
  • the porosity of the graphene oxide 3 may be increased.
  • the type and / or content of the pH adjusting agent added to the source solution 10 the graphene oxide 3, the oxidizing agent 5, and the pH adjusting agent 7 in the solvent 8 react.
  • the pH environment can be controlled.
  • the pH regulator (7) reacts with the oxidant (5) as the basicity of the pH regulator added to the source solution (10) is higher or the content of the pH regulator added to the source solution (10) increases.
  • the amount of hydroxide ions (OH-) provided from) may be increased, thereby increasing the amount of ⁇ OH radicals that are reaction products of the oxidant (5) and the pH adjuster (7). Accordingly, the number of the pores 4 in the graphene oxide 3 may be increased, so that the porosity of the graphene oxide 3 in the form of the sheet may be increased.
  • the pH of the source solution 10 may be 5 to 12. If the pH of the source solution 10 is 13 or more, as described above, the graphene oxide of the OH radical which oxidizes the graphene oxide 3 to form the pores 4 in the graphene oxide 3. Access to the fins 3 is limited, so that the reaction efficiency for the reaction forming the voids 4 in the graphene oxide 3 can be reduced. In addition, the graphene oxide 3 may be aggregated and precipitated in the source solution 10.
  • the higher the reaction temperature the more the reaction mechanism disclosed in [Formula 1] and [Formula 2], which promotes the production of ⁇ OH radicals that form the pores 4 in the graphene oxide 3. Can be.
  • the number of the pores 4 in the graphene oxide 3 may be increased, so that the porosity of the graphene oxide 3 in the form of the sheet may be increased.
  • the reaction temperature may be room temperature (25 ° C.) to 250 ° C.
  • the voids 4 may be formed in the graphene oxide 3 without accompanying a reduction reaction of the graphene oxide 3 in a room temperature environment. Accordingly, the process required for the composition of the high temperature environment can be simplified, the process cost can be reduced, and the graphene oxide 3 having the voids 4 having excellent dispersibility can be provided.
  • graphene oxide dispersed in the source solution 10 is adjusted by adjusting the content of the oxidant 5 in the source solution 10, the pH of the source solution 10, and the reaction temperature.
  • the porosity of (3) can be easily adjusted.
  • the porosity of the graphene oxide 3 is an important factor controlling the electrical, thermal, optical, and mechanical properties of the graphene oxide 3. Accordingly, according to an embodiment of the present invention, without the use of a catalyst or the inflow of external energy, in a simple way to adjust the content of the materials used in the preparation of the source solution 10, and / or temperature conditions, By adjusting the porosity of the pin 3, it is possible to easily control the electrical, thermal, optical, and mechanical properties of the graphene oxide (3).
  • the graphene oxide 3 can maintain high dispersibility in the source solution 10. Due to the high dispersibility of the graphene oxide 3 in the source solution 10, subsequent processes such as functionalization, complexation, and doping with the graphene oxide 3 are possible, and have liquid crystal properties. Can be. Accordingly, by controlling the porosity of the graphene oxide (3) by the method described above, by performing the subsequent process for the graphene oxide (3), it is easy to control the physical properties of the graphene oxide (3), The physical properties of the graphene oxide 3 can be effectively improved.
  • the unreacted material in the source solution 10 may be removed.
  • the unreacted material in the source solution 10 may include the oxidant (5), and the pH regulator (7) that does not participate in the reaction.
  • the graphene oxide 3 having the pores 4 dispersed in the source solution 10 may be obtained in the form of powder.
  • the method for obtaining the graphene oxide 3 in which the pore 4 is formed in the powder form is not particularly limited.
  • any one of dialysis membrane, centrifugation, phase separation, vacuum filter, or lyophilization may be used.
  • a method of preparing graphene fibers according to a third embodiment of the present invention will be described in detail using a source solution prepared by the method described with reference to FIGS. 7 to 10.
  • FIG. 11 is a flowchart illustrating a method for manufacturing graphene fiber according to a third embodiment of the present invention.
  • a source solution 10 in which graphene oxide 3 is dispersed may be prepared (S1000). Preparing the source solution 10 prepared with graphene oxide 3 may be the same as the method of preparing the source solution 10 described with reference to FIGS. 7 to 10.
  • the porosity in the graphene oxide 3 may be adjusted according to the content of the oxidant 5 in the source solution 10, the pH of the source solution 10, and the reaction temperature. have.
  • the higher the pH of the source solution 10 the higher the reaction temperature, the graphene oxide (3) The porosity can be increased.
  • the elongation of the graphene fibers to be described later can be adjusted.
  • the concentration of the graphene oxide (3) in the source solution 10 the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted.
  • the concentration of the source solution 10 is increased, the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the concentration of the source solution 10 increases, the elongation rate of the graphene fibers may increase.
  • the source solution 10 may be spun into the base solution 20 including the dissimilar elements, and thus, the graphene oxide fiber 30 may be manufactured (S2000).
  • the base solution 20 may be prepared by adding a salt containing the heterogeneous element to a solvent.
  • the salt containing a heterogeneous element is a salt containing an element other than carbon (C), nitrogen (N) salt, sulfur (S) salt, fluorine (F) salt, or It may be any one of iodine (I) salts.
  • the base solution 20 may further include a coagulant.
  • the graphene oxide fiber prepared by spinning the source solution 10 in the base solution 20 may be solidified by the coagulant included in the base solution 20.
  • the source solution 10 contained in the first container 100 is connected to the base solution 20 through a spinneret 120 connected to the first container 100. It may be radiated to the second container 150 contained therein. In the process of spinning the source solution 10 into the base solution 20, by the solvent exchange phenomenon, the salt containing the heterogeneous element may be diffused into the graphene oxide fibers.
  • the elongation of the graphene fibers to be described later may be adjusted according to the speed of the source solution 10 that is radiated into the base solution 20. Specifically, according to the spinning speed of the source solution 10, the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted.
  • the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the spinning speed of the source solution 10 decreases, the elongation of the graphene fibers may increase.
  • the electrical conductivity of the graphene fibers can be adjusted.
  • the heterogeneous elements diffused into the graphene oxide fibers may be doped into the graphene fibers in the thermal treatment step of step S4000 described later. Accordingly, by controlling the type and / or content of the heterogeneous elements included in the base solution 20 in step S2000, the electrical conductivity of the graphene fibers can be easily adjusted.
  • the graphene oxide fibers 30 including the dissimilar elements may be obtained (S3000).
  • the graphene oxide fibers may be separated from the second container 150 containing the base solution 20 by the guide rollers 170 and may come out to the outside.
  • the graphene oxide fiber 30 including the heterogeneous element separated from the base solution 20 may include the coagulant.
  • the washing solution used in the washing process may be an alcoholic aqueous solution.
  • the moisture contained in the graphene oxide fiber 30 including the heterogeneous element may be naturally dried in the air.
  • the graphene oxide fibers 30 including the heterogeneous elements naturally dried in air may be secondaryly dried.
  • at least a portion of the water remaining in the graphene oxide fiber 30 including the dissimilar element may be removed through the heating process.
  • the type of heater used in the heating step is not particularly limited.
  • the heater may be any one of a heater, a hot plate, or a heating coil.
  • the graphene oxide fiber 30 including the hetero element naturally dried in air is heated to a temperature of 70 to 80 °C by the heater, the graphene oxide fiber comprising the hetero element At least a portion of the water remaining inside 30 may be removed.
  • the graphene oxide fiber 30 including the dissimilar element is dried at the same time through the heating process, and wound up Can be.
  • the graphene oxide fibers 30 including the heterogeneous elements may be wound by the winding roller 190 while the drying process is performed.
  • the elongation of the graphene fiber can be easily adjusted. Specifically, according to the winding speed of the graphene oxide fiber 30 including the dissimilar element, the degree of orientation and porosity of the graphene fiber is adjusted, the elongation of the graphene fiber can be easily adjusted.
  • the spinning speed of the source solution 10 when the spinning speed of the source solution 10 is greater than the winding speed of the graphene oxide fiber 30 including the dissimilar element, the degree of orientation of the graphene fibers is reduced, and the graphene The porosity of the fibers can increase. Accordingly, when the spinning speed of the source solution 10 is greater than the winding speed of the graphene oxide fiber 30 including the dissimilar element, the stretch rate of the graphene fiber may increase.
  • the graphene oxide fiber 30 including the heterogeneous element may be dried through a drying rack.
  • the elongation of the graphene oxide fiber 30 including the heterogeneous element can be easily adjusted.
  • the graphene oxide fiber 30 including the heterogeneous element when the length of the drying rod is shorter than the length of the graphene oxide fiber 30 including the heterogeneous element disposed on the drying rod, the graphene oxide fiber 30 including the heterogeneous element is As it is dried, the shrinkage phenomenon of the graphene oxide fiber 30 including the dissimilar element due to the tension generated in the axial direction of the drying table may occur relatively less. Accordingly, the degree of orientation of the graphene fibers may be reduced, and the porosity of the graphene fibers may be increased. As a result, when the length of the drying table is shorter than the length of the graphene oxide fiber 30 including the dissimilar elements disposed on the drying table, the elongation of the graphene fibers may increase.
  • the dried graphene oxide fiber 30 including the heterogeneous element is heat-treated, and thus, the graphene fiber doped with the heterogeneous element may be manufactured (S4000). Specifically, through the heat treatment, the graphene oxide fiber of the graphene oxide fiber 30 including the dissimilar element is reduced to the graphene fiber, and the heterogeneous contained in the graphene oxide fiber 30 An element may be doped into the graphene oxide fiber 30.
  • the heterogeneous element, other than carbon (C) may be any one of nitrogen (N), sulfur (S), fluorine (F), or iodine (I).
  • the manufacturing of the graphene fiber may include heat treatment under an inert gas or hydrogen (H 2 ) gas atmosphere.
  • the inert gas may be any one of argon (Ar) gas or nitrogen (N 2 ) gas.
  • the graphene oxide fiber 30 including the hetero element is 100 ° C. to 5000 ° C. for 10 minutes to 10 hours at an elevated temperature rate of 10 to 100 ° C./min under an inert gas or hydrogen gas atmosphere.
  • the graphene fibers doped with the different elements can be produced.
  • the subsequent process is A heat treatment process can be performed. Accordingly, the hetero element may be doped into the graphene oxide fiber. Accordingly, by the subsequent process, the graphene oxide fiber 30 including the dissimilar element is made of the graphene fiber, and the electrical and optical properties of the graphene fiber can be easily controlled.
  • the graphene fibers may react with the aqueous solution containing the first oxidizing agent to form fine pores in the graphene fibers (S5000).
  • the first oxidant is the same as the oxidant 5 described with reference to FIGS. 1 to 4, and the oxidant 5 used in the preparation of the source solution 10 in step S1000. can do.
  • the oxidant may be hydrogen peroxide (H 2 O 2 ).
  • the subsequent process for the graphene fibers after the graphene fibers are supported in an aqueous solution containing the first oxidizing agent, a hydrothermal reaction is performed, thereby adding the fine pores to the graphene fibers It can be formed as.
  • the subsequent process for the graphene fibers may be performed, and due to the micropores additionally formed in the graphene fibers, electrical and optical properties of the graphene fibers may be improved.
  • the fine pores additionally formed in the graphene fibers can be easily adjusted according to the amount of the first oxidant included in the aqueous solution and the temperature and / or time at which the hydrothermal reaction is performed. have.
  • the subsequent process may be possible by the gap 4 formed in the graphene fiber according to the embodiment of the present invention. Accordingly, by the subsequent process of the graphene fiber, the electrical and optical properties of the graphene fiber can be easily adjusted.
  • the fine pores additionally formed on the graphene fibers after supporting the graphene fibers in an aqueous solution of 1 to 35% hydrogen peroxide, at a temperature of 300 to 500 °C in a high pressure reactor, 10 minutes It can be formed by performing the hydrothermal reaction for 4 hours.
  • the graphene formed with conventional pores is manufactured by a dry process or a wet process.
  • a high temperature reaction of 600 ° C. or higher is used under a metal (K, Fe, or Ni) catalyst.
  • K, Fe, or Ni a metal (K, Fe, or Ni) catalyst.
  • a process cost is increased for the removal and recovery of the metal catalyst, and high energy is required to create a high temperature reaction environment.
  • graphene oxide 3 dispersed in the source solution 10 is controlled by adjusting the content of the oxidant 5 in the source solution 10, the pH of the source solution 10, and the reaction temperature.
  • the porosity of can be easily adjusted. Accordingly, the porosity of the graphene oxide 3 can be adjusted in a simple way to adjust the content of the materials used in the preparation of the source solution 10, and / or the temperature conditions, without the use of a catalyst or the introduction of external energy. By adjusting, the electrical, thermal, optical, and mechanical properties of the graphene oxide 3 in the source solution 10 can be easily controlled.
  • the source solution 10 can have high dispersibility within. Due to the high dispersibility of the graphene oxide 3 in the source solution 10, subsequent processes such as functionalization, complexation, and doping with the graphene oxide 3 are possible, and have liquid crystal properties. Can be. Therefore, by adjusting the porosity of the graphene oxide 3 and performing the subsequent process on the graphene oxide 3 by the above-described method, the physical properties of the graphene oxide 3 can be easily controlled. In addition, the physical properties of the graphene oxide 3 can be effectively improved.
  • the concentration of the graphene oxide (3) in the source solution 10 the spinning speed of the source solution 10 to be emitted into the base solution 20, the heterogeneous element
  • the degree of orientation of the graphene fiber is easily adjusted. Can be.
  • the porosity of the graphene fibers may be increased to provide the graphene fibers having excellent elongation. Accordingly, the graphene fibers having high mechanical strength and excellent elongation can be realized, so that the graphene fibers can be provided in various fields including flexible devices.
  • the graphene fiber has a porous structure, the surface area is wide, and can serve as a natural fiber, and can be widely used in conventional membrane applications such as fibrous electronic devices.
  • the electrical conductivity of the graphene fiber can be easily adjusted.
  • the graphene fiber according to the embodiment of the present invention may be utilized in various fields requiring excellent electrical conductivity characteristics.
  • the heat treatment process which is the subsequent process, may be performed on the graphene oxide fiber including the dissimilar element.
  • the graphene oxide fibers are reduced to make the graphene fibers, and at the same time, the hetero elements are doped, so that the electrical and optical properties of the graphene fibers can be easily controlled.
  • the subsequent process may be further performed by the pores formed in the graphene fibers produced. Accordingly, through the subsequent process, the fine pores are additionally formed in the graphene fibers to effectively control the electrical and optical properties of the graphene fibers.
  • Graphene oxide was added to DI water, followed by stirring for 24 hours to prepare a source solution containing graphene oxide.
  • Salts containing heterogeneous elements in an aqueous solution based on alcohol (ammonium chloride, ammonium sulfate, or ammonium phosphate) and coagulants (calcium chloride (CaCl 2 ), potassium hydroxide (KOH), sodium hydroxide) (NaOH), sodium chloride (NaCl), copper sulfate (CuSO 4 ), cetyltrimethylammonium bromide (CTAB), or chitosan) were added to prepare a base solution containing heterogeneous elements.
  • alcohol ammonium chloride, ammonium sulfate, or ammonium phosphate
  • coagulants calcium chloride (CaCl 2 ), potassium hydroxide (KOH), sodium hydroxide) (NaOH), sodium chloride (NaCl), copper sulfate (CuSO 4 ), cetyltri
  • Graphene oxide fibers were prepared by spinning the source solution into the base solution through a spinneret connected to the end of the first vessel containing the source solution. The graphene oxide fibers were separated from the base solution to prepare graphene oxide fibers including heterogeneous elements. After removing the coagulant remaining on the graphene oxide fiber containing the heterogeneous element using an alcoholic aqueous solution, it was dried by applying heat to the graphene oxide fiber containing the hetero element at a temperature of 70 to 80 ° C. through a heater. .
  • the dried graphene oxide fiber including the heterogeneous element is heat-treated under an inert gas atmosphere (100 to 5000 ° C., 10 to 100 ° C./min, 10 min to 10 hrs), and thus the first element of the present invention doped with the hetero element.
  • Graphene fiber according to the embodiment was prepared.
  • FIG. 12 is a photograph showing a process in which a source solution is spun through a spinneret to produce graphene oxide fibers according to a first embodiment of the present invention.
  • the process of producing the graphene oxide fiber was examined.
  • the graphene oxide fibers were prepared while the source solution was spun into the base solution through the spinneret.
  • the process of spinning the source solution into the base solution it is determined that a salt containing the heterogeneous element contained in the base solution is diffused into the graphene oxide fiber by a solvent exchange phenomenon.
  • FIG. 13 is a photograph illustrating a process in which graphene oxide fibers including heterogeneous elements according to a first embodiment of the present invention are wound by a winding roller.
  • the process of winding the graphene oxide fiber comprising the heterogeneous element by the winding roller I looked at it.
  • the graphene oxide fiber including the heterogeneous element separated from the base solution was washed and then dried and wound by the winding roller.
  • the winding speed of the graphene oxide fiber containing the heterogeneous element is smaller than the spinning speed of the source solution, the porosity of the graphene fiber increases as the degree of orientation of the graphene fiber decreases, so that the graphene has excellent elongation. We believe it is possible to provide fin fibers.
  • the graphene fibers in order to lower the degree of orientation of the graphene fiber, to lower the concentration of graphene oxide in the source solution, or to reduce the spinning speed of the source solution, The graphene fibers were prepared by slowing the winding speed of graphene oxide fibers including heterogeneous elements than the spinning speed of the source solution.
  • the graphene oxide fibers including the heterogeneous elements may be increased by increasing the concentration of graphene oxide in the source solution, decreasing the spinning speed of the source solution, or the like.
  • the degree of orientation of the finally produced graphene fiber is low, and the porosity of the graphene fiber increases to increase the graphene fiber. It was confirmed that the pin fibers were produced.
  • 15 is an image of a graphene fiber having a high degree of orientation according to the first embodiment of the present invention.
  • the manufacturing method of the graphene fiber according to the first embodiment to increase the degree of orientation of the graphene fiber, to lower the concentration of graphene oxide in the source solution, to increase the spinning rate of the source solution,
  • the graphene fibers were manufactured by winding the graphene oxide fibers including heterogeneous elements faster than the spinning rate of the source solution.
  • the concentration of graphene oxide in the source solution may be decreased, the spinning speed of the source solution may be increased, or the graphene oxide fibers including the heterogeneous elements may be used.
  • the graphene fibers are manufactured by making the winding speed of the source solution faster than the spinning speed of the source solution, the degree of orientation of the finally produced graphene fibers is high, and the porosity of the graphene fibers is reduced, thereby reducing the elongation. It was confirmed that the pin fibers were produced.
  • the concentration of graphene oxide in the source solution used the spinning rate of the source solution spun into the base solution, and the graphene oxide including the heterogeneous elements
  • the degree of orientation of the graphene fibers can be easily adjusted. Accordingly, it was found that the graphene fiber 70 can be easily manufactured by controlling the elongation rate by an easy method such as concentration and spinning speed according to the electrical and physical properties of the application field.
  • FIG. 16 is a graph illustrating tensile strength values according to an increase in an external pressure of graphene fibers according to an exemplary embodiment of the present invention.
  • the graphene fibers having low and high orientations were prepared.
  • the change in magnitude of the external pressure exerted until the graphene fibers broke was measured.
  • the tensile strength value required to break the graphene fiber with high orientation is about 2%, and the tensile strength value required to break the graphene fiber with low orientation is about 15%. It confirmed that it was%. From this, it was found that the graphene fiber having a low degree of orientation has a better elongation than the graphene fiber having a high degree of orientation. This is because the porosity of the graphene fiber having a low degree of orientation is larger than that of the graphene fiber having a high degree of orientation, so that the graphene fiber having a low degree of orientation is more flexible than the graphene fiber having a high degree of orientation. Judging by the result of having
  • the graphene oxide sheet was dispersed in DI water to prepare a source solution in which the graphene oxide sheet was dispersed, and a coagulation bath including 4.5 wt% CaCl 2 as a binder and 0.5 wt% KOH as a reducing agent was prepared.
  • Graphene oxide fibers were prepared by spinning the source solution into the coagulation bath through a 400 ⁇ m spinneret. The graphene oxide fibers were coagulated in a coagulation bath, then dried and washed with ethanol solution and dried in an oven to remove the remaining coagulation bath.
  • the dried graphene oxide fibers were immersed in an iodinated aqueous solution, reduced at a temperature of 70 to 80 ° C., washed with ethanol, and dried to prepare graphene fibers according to Example 1.
  • Graphene fibers were prepared under the same process conditions as in Example 1, but using a coagulation bath containing 5 wt% of CaCl 2 , graphene fibers according to Comparative Example 1 were prepared.
  • FIG 17 is a photograph taken of the graphene fibers according to the second embodiment 1, comparative example 1, and comparative example 2 of the present invention
  • Figure 18 is a second embodiment 1, comparative example 1, and comparative example of the present invention It is a graph measuring the circularity of graphene fibers according to 2.
  • FIG. 17 (a), (b), and (c) of FIG. 17 are photographs of graphene fibers according to Comparative Example 1, Second Example 1, and Comparative Example 2, respectively.
  • Figure 17 in the case of the graphene fiber according to Example 1 prepared using a coagulation bath containing CaCl 2 and KOH at the same time, using a coagulation bath containing any one of CaCl 2 and KOH Compared with the graphene fibers prepared according to Comparative Example 1 and Comparative Example 2, it can be seen that the cross section is significantly close to the circular.
  • the circularity value has a significantly lower deviation, as well as a circularity value of 0.8 or more.
  • manufacturing graphene fibers using a coagulation bath including a binder and a reducing agent at the same time is an effective method for producing graphene fibers having a plateau shape of 0.8 or more.
  • Figure 19 is a photograph of the surface of the graphene fiber according to the second embodiment 1, Comparative Example 1, and Comparative Example 2 of the present invention
  • Figure 20 is a second embodiment 1, Comparative Example 1, and It is a graph which measured the standard deviation of the thickness of the graphene fiber by the comparative example 2.
  • FIG. 19 are photographs photographing surfaces of graphene fibers according to Comparative Example 1, Second Example 1, and Comparative Example 2, respectively.
  • Figure 19 in the case of the graphene fiber according to the second embodiment 1 prepared using a coagulation bath containing CaCl 2 and KOH at the same time, using a coagulation bath containing any one of CaCl 2 and KOH Compared with the graphene fibers prepared according to Comparative Example 1 and Comparative Example 2, it can be seen that the uniformity of the thickness is significantly high.
  • manufacturing graphene fibers using a coagulation bath containing a binder and a reducing agent at the same time is an effective method for producing graphene fibers having a substantially uniform thickness.
  • the graphene oxide sheet was dispersed in DI water to prepare a source solution in which 1.0 mg / ml of the graphene oxide sheet was dispersed, and a coagulation bath including CoCl 2 as a binder and KOH as a reducing agent was prepared.
  • Graphene oxide fibers were prepared by spinning the source solution into the coagulation bath through a 400 ⁇ m spinneret. The graphene oxide fibers were coagulated in a coagulation bath, then dried and washed with ethanol solution and dried in an oven to remove the remaining coagulation bath.
  • the dried graphene oxide fibers were immersed in an iodide aqueous solution, reduced at a temperature of 70 to 80 ° C., washed with ethanol and dried to prepare graphene fibers according to Example 2.
  • Graphene fibers were prepared under the same process conditions as in Example 2, but the graphene fibers according to Example 3 were prepared using a coagulation bath containing AlCl 3 as a binder and KOH as a reducing agent.
  • Graphene fibers were prepared under the same process conditions as in Example 2, but using a coagulation bath containing FeCl 3 as a binder and KOH as a reducing agent, graphene fibers according to Example 4 were prepared.
  • FIG. 21 is an AFM image of a graphene oxide sheet used to prepare graphene fibers according to Examples 2 to 4 of the present invention
  • FIG. 22 is a graphene fibers according to Examples 2 to 4 of the present invention.
  • the AFM topology and thickness of the graphene oxide sheets used in Examples 2 to 4 were measured.
  • the thickness of the graphene oxide sheet was measured to be about 1.2 nm.
  • the source solution prepared by dispersing the graphene oxide sheet in DI water by mild sonication, CoCl 2 , AlCl 3 , and FeCl 3 were added to the source solution, respectively, and photographed.
  • 23 is a photograph taken for measuring the viscosity after the addition of CoCl 2 , AlCl 3 , and FeCl 3 to the source solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention
  • 24 is a graph measuring the viscosity of a sauce solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention and a solution in which CoCl 2 , AlCl 3 , and FeCl 3 are added thereto, respectively
  • 25 is a storage modulus of the source solution used in the preparation of the graphene fibers according to the second embodiment 2 to 4 of the present invention and the solution to which CoCl 2 , AlCl 3 , and FeCl 3 are added thereto, respectively
  • 26 is a graph showing the degree of gelation of the source solution used in the preparation of the graphene fibers according to the second embodiment 2 to 4 of the present invention and a solution in which CoCl 2 , AlCl 3 , and FeCl 3 were added
  • the graphene oxide fiber is produced by spinning the source solution in which the graphene oxide sheet is dispersed in a coagulation bath having a binder containing divalent or trivalent metal ions such as CoCl 2 , AlCl 3 , and FeCl 3. In this case, it can be seen that the mechanical strength of the graphene oxide fiber is improved.
  • FIG. 27 is a graph of XRD measurement of graphene oxide fibers according to Examples 2 to 4 of the present invention
  • FIG. 28 is a graph illustrating mechanical strength of graphene oxide fibers according to Examples 2 to 4 of the present invention
  • 29 is a graph illustrating a graphene oxide fiber according to a second exemplary embodiment of the present invention.
  • XRDs of the graphene oxide fibers according to Examples 2 to 4 were measured.
  • the source solution was spun into a coagulation bath containing no binders such as CoCl 2 , AlCl 3 , and FeCl 3 to prepare graphene oxide fibers (pristine GO fibers)
  • graphene oxide The d spacing of the graphene oxide sheet in the fiber was measured to be about 8.08 kPa.
  • d spacing was measured to be 8.79 kV, 9.01 kPa, and 9.51 kPa, respectively. That is, it can be seen that the d spacing of the graphene oxide sheet in the graphene oxide fiber increases according to the valent number of the cation.
  • the mechanical strength of the graphene oxide fibers according to Examples 2 to 4 was measured.
  • the source solution was spun onto a coagulation bath containing no binders such as CoCl 2 , AlCl 3 , and FeCl 3 to convert the graphene oxide fibers (pristine GO fiber), the source solution into CoCl 2 , AlCl 3 , and FeCl 3 binders.
  • the mechanical strength of the graphene oxide fibers by spinning in a coagulation bath may be summarized as shown in Table 1 below.
  • the source solution was spun into a coagulation bath containing no binders such as CoCl 2 , AlCl 3 , and FeCl 3 to the extent that strength, stiffness, and elongation at break could not be measured in the case of pristine GO fibers.
  • the mechanical properties were found to be weak.
  • the graphene oxide fibers according to the second example 2 were bent. As shown in FIG. 29, it is confirmed that graphene oxide sheets are bonded by Co ions and have high flexibility.
  • oxidant hydrogen peroxide H 2 O 2
  • pH adjuster LiOH, NaOH, KOH, NH 4 OH, Ca (OH) 2 , Sr (OH) 2 , CsOH, Ba (OH) 2 , Mg (OH) 2 , Cd (OH) 2 , La (OH) 3 , In (OH) 3 , Nd (OH) 3 , Gd (OH) 3 , FeOOH, RbOH, Al (OH) 3 , Ni (OH) 2 , NaF, K 2 Co 3 , or NH 4 ClO) was added to DI water as a solvent, and then reacted at room temperature (25 ° C.) to prepare a source solution.
  • the source solution solution is prepared in the same manner as the method for preparing the source solution according to the third embodiment, wherein the weight of the hydrogen peroxide as the oxidizing agent is 40 wt% or more, and the pH adjusting agent is adjusted so that the pH of the source solution is 13 or more. Excess was added to prepare a sauce solution according to the comparative example.
  • the source solution in which the graphene oxide with pores was dispersed was prepared.
  • Salts containing dissimilar elements in an alcoholic aqueous solution (ammonium chloride, ammonium sulfate, or ammonium phosphate) and coagulants (calcium chloride (CaCl 2 ), potassium hydroxide (KOH), sodium hydroxide) (NaOH), sodium chloride (NaCl), copper sulfate (CuSO 4 ), cetyltrimethylammonium bromide (CTAB), or chitosan) were added to prepare a base solution containing heterogeneous elements.
  • an alcoholic aqueous solution ammonium chloride, ammonium sulfate, or ammonium phosphate
  • coagulants calcium chloride (CaCl 2 ), potassium hydroxide (KOH), sodium hydroxide) (NaOH), sodium chloride (NaCl), copper sulfate (CuSO 4 ), cetyltrimethylammonium bromide (
  • Graphene oxide fibers were prepared by spinning the source solution into the base solution through a spinneret connected to the end of the first vessel containing the source solution. The graphene oxide fibers were separated from the base solution to prepare graphene oxide fibers including heterogeneous elements. After removing the coagulant remaining on the graphene oxide fiber containing the heterogeneous element using an alcoholic aqueous solution, it was dried by applying heat to the graphene oxide fiber containing the hetero element at a temperature of 70 to 80 ° C. through a heater. .
  • the dried graphene oxide fiber including the heterogeneous element is heat-treated (100 to 5000 ° C., 10 to 100 ° C./min, 10 min to 10 hrs) under an inert gas atmosphere, and the third element of the present invention is doped with the hetero element.
  • Graphene fiber according to the embodiment was prepared.
  • FIG. 30 is an SEM image of graphene oxide with pores formed in accordance with a third embodiment of the present invention. Specifically, (a) of FIG. 30 is an SEM image of graphene oxide in which pores dispersed in a source solution according to a third embodiment of the present invention, and FIG. 30 (b) is shown in FIG. 30 (a). SEM image of high magnification for graphene oxide according to a third embodiment of the present invention.
  • the source solution was prepared in the same manner as the method disclosed in the graphene fiber manufacturing method according to the third embodiment. Using an SEM (Scanning Electron Microscope) instrument, a detailed image of the surface of the graphene oxide dispersed in the source solution prepared according to the third embodiment of the present invention was measured.
  • SEM Sccanning Electron Microscope
  • the graphene oxide in the source solution according to the third embodiment of the present invention has a porous structure including pores.
  • pores are formed in the graphene oxide by the ⁇ OH radical generated by the added hydrogen peroxide, the oxidizing agent.
  • FIG. 31 is a photograph of a sauce solution according to a third embodiment of the present invention.
  • the dispersion characteristics of graphene oxide in the source solution according to the third embodiment of the present invention were observed.
  • the graphene oxide in the source solution according to the comparative example of the third embodiment of the present invention was observed.
  • Graphene fiber according to an embodiment of the present invention can be widely used in a variety of devices and devices, such as flexible devices, fibrous electronics, wires, capacitors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

Provided is a method for manufacturing graphene fiber comprising the steps of: preparing a source solution comprising graphene oxides; spinning the source solution with a base solution comprising heterogeneous elements to produce oxidized graphene fiber; separating, washing and drying the graphene fiber from the base solution to obtain the oxidized graphene fiber comprising the heterogeneous elements; and subjecting the dried oxidized graphene fiber comprising the heterogeneous elements to thermal treatment to produce graphene fiber doped with the heterogeneous elements, wherein the elongation percentage of the graphene fiber is controlled according to the concentration and the spinning speed of the source solution.

Description

그래핀 섬유 및 그 제조 방법Graphene fiber and its manufacturing method
본 발명은 그래핀 섬유 및 그 제조 방법에 관련된 것으로, 보다 상세하게는, 산화그래핀, 산화제, 및 pH 조절제를 용매에 첨가하여 공극이 형성된 산화그래핀을 포함하는 소스 용액을 제조하는 방법과, 소스 용액의 농도 및 방사 속도를 조절하여 신장률의 조절이 용이한 다공 구조의 그래핀 섬유의 제조 방법에 관련된 것이다.The present invention relates to a graphene fiber and a method for producing the same, and more particularly, a method for preparing a source solution containing graphene oxide having pores formed by adding graphene oxide, an oxidizing agent, and a pH adjusting agent to a solvent; The present invention relates to a method for producing a porous graphene fiber in which the elongation is easily controlled by adjusting the concentration and the spinning speed of the source solution.
그래핀은 강도, 열전도율, 전자이동도 등 여러 가지 특징이 현존하는 물질 중 가장 뛰어난 소재이다. 이에 따라, 디스플레이, 이차전지, 태양전지, 자동차, 및 조명 등 다양한 분야에 응용되고, 관련 산업의 성장을 견인할 전략적 핵심소재로 인식되어, 그래핀을 상용화하기 위한 기술이 많은 관심을 받고 있다.Graphene is the most excellent material among the existing materials with various characteristics such as strength, thermal conductivity and electron mobility. Accordingly, it is applied to various fields such as display, secondary battery, solar cell, automobile, and lighting, and is recognized as a strategic core material that will lead the growth of related industries, and technology for commercializing graphene is receiving much attention.
최근에는 그래핀의 유용한 기계적 특성 및 전기적 특성을 다양한 산업 분야에 적용하기 위해, 그래파이트(graphite) 원료로부터 산화그래핀을 얻기 위한 다양한 공정들에 대한 연구가 활발히 진행되고 있다.Recently, in order to apply useful mechanical and electrical properties of graphene to various industrial fields, researches on various processes for obtaining graphene oxide from graphite raw materials have been actively conducted.
예를 들어, 대한민국 특허 공개공보 KR20140045851A (출원번호 KR20120112103A, 주식회사 그래핀올)에는, 산을 사용하여 그래파이트를 산화시켜 산화그래핀을 포함하는 1차 반응 결과물을 형성하는 단계, 상기 1차 반응 결과물로부터 상기 산을 회수하는 단계, 및 상기 회수된 산을 사용하여 그래파이트를 산화시켜 산화그래핀을 포함하는 리사이클 반응 결과물을 형성하는 단계를 통해, 비교적 짧은 시간 내에 산화그래핀 생성물로부터 산의 분리가 용이하고, 산과 같은 유독성 공정 부산물의 폐기율을 감소시킬 수 있는 산화그래핀의 제조 기술이 개시되어 있다.For example, in the Republic of Korea Patent Publication No. KR20140045851A (Application No. KR20120112103A, Grapheneol Co., Ltd.), using an acid to oxidize graphite to form a primary reaction product containing graphene oxide, from the primary reaction product Recovering the acid, and using the recovered acid to oxidize the graphite to form a recycle reaction product comprising graphene oxide, which facilitates separation of the acid from the graphene oxide product in a relatively short time, Disclosed are techniques for producing graphene oxide that can reduce the disposal rate of toxic process by-products such as acids.
현재 그래핀의 다양한 산업 분야로의 상용화를 위해, 간소화된 공정으로 공정 비용 및 공정 시간을 감소시키고, 적용 분야에 따른 그래핀의 물성 조절을 위해 그래핀의 후속 공정이 가능한 그래핀의 제조 기술에 대한 연구가 필요한 실정이다.In order to commercialize graphene into various industrial fields, it is possible to reduce the processing cost and processing time with a simplified process, and to manufacture graphene, which is capable of subsequent processing of graphene to control the properties of graphene according to the application field. There is a need for research.
본 발명이 해결하고자 하는 일 기술적 과제는, 신장률이 우수한 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다. One technical problem to be solved by the present invention is to provide a graphene fiber excellent in elongation and a manufacturing method thereof.
본 발명이 해결하고자 하는 다른 기술적 과제는, 기계적 특성이 우수한 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a graphene fiber excellent in mechanical properties and a method of manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 유연한 특성을 갖는 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a graphene fiber having a flexible characteristic and a method of manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 전기전도성이 우수한 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a graphene fiber excellent in electrical conductivity and a method of manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 다공 구조를 갖는 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a graphene fiber having a porous structure and a method of manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 공정 비용 및 공정 시간이 감소된 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a graphene fiber and a method of manufacturing the reduced process cost and process time.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 대량 생산이 용이한 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a graphene fiber and a method of manufacturing the same for easy mass production.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 원형도가 높은 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present invention is to provide a high graphene fiber and a method of manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 고배향성의 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide a graphene fiber of high orientation and a method of manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 후속 공정이 가능한 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide a graphene fiber and a method for manufacturing the same that can be a subsequent process.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 전기전도성이 우수한 그래핀 섬유 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide a graphene fiber excellent in electrical conductivity and a method of manufacturing the same.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다.The technical problem to be solved by the present invention is not limited to the above.
상술된 기술적 과제를 해결하기 위해, 본 발명은 그래핀 섬유의 제조 방법을 제공한다.In order to solve the above technical problem, the present invention provides a method for producing a graphene fiber.
일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 산화그래핀(graphene oxide)을 포함하는 소스 용액을 준비하는 단계, 이종 원소를 포함하는 베이스 용액으로 상기 소스 용액을 방사하여 산화그래핀 섬유를 제조하는 단계, 상기 베이스 용액으로부터 상기 그래핀 섬유를 분리, 세척, 및 건조하여, 상기 이종 원소를 포함하는 산화그래핀 섬유를 수득하는 단계, 및 건조된 상기 이종 원소를 포함하는 산화그래핀 섬유를 열처리(thermal treatment)하여, 상기 이종 원소가 도핑된 그래핀 섬유를 제조하는 단계를 포함하되, 상기 소스 용액의 농도 및 방사 속도에 따라, 상기 그래핀 섬유의 신장률(elongation percentage)이 조절되는 것을 포함할 수 있다.According to one embodiment, the graphene fiber manufacturing method, preparing a source solution containing graphene oxide (graphene oxide), spinning the source solution with a base solution containing a heterogeneous element graphene oxide fiber Preparing, separating, washing, and drying the graphene fibers from the base solution to obtain graphene oxide fibers including the dissimilar elements, and dried graphene oxide fibers including the dissimilar elements. Thermal treatment to prepare the graphene fibers doped with the dissimilar elements, wherein the elongation percentage of the graphene fibers is controlled according to the concentration and spinning rate of the source solution. It may include.
일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 소스 용액 내 산화그래핀의 농도가 증가함에 따라, 상기 그래핀 섬유의 신장률이 증가하는 것을 포함할 수 있다.According to one embodiment, the method for producing the graphene fiber may include increasing the elongation of the graphene fiber as the concentration of graphene oxide in the source solution increases.
일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 소스 용액의 방사 속도가 감소함에 따라, 상기 그래핀 섬유의 신장률이 증가하는 것을 포함할 수 있다.According to one embodiment, the manufacturing method of the graphene fiber may include increasing the elongation of the graphene fiber as the spinning speed of the source solution decreases.
일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 이종 원소를 포함하는 산화그래핀 섬유를 수득하는 단계에서, 상기 이종 원소를 포함하는 산화그래핀 섬유를 건조하는 동시에, 권취하는 단계를 더 포함할 수 있다.According to one embodiment, the graphene fiber manufacturing method, in the step of obtaining a graphene oxide fiber comprising the heterogeneous element, drying and winding the graphene oxide fiber comprising the heterogeneous element at the same time It may further include.
일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 이종 원소를 포함하는 산화그래핀 섬유의 권취 속도보다 상기 소스 용액의 방사 속도가 큰 경우, 상기 그래핀 섬유의 신장률이 증가하는 것을 포함할 수 있다.According to one embodiment, the manufacturing method of the graphene fiber, when the spinning speed of the source solution is larger than the winding speed of the graphene oxide fiber containing the dissimilar elements, the elongation of the graphene fiber includes increasing can do.
일 실시 예에 따르면, 상기 그래핀 섬유를 제조하는 단계는, 상기 열처리를 통해 상기 산화그래핀 섬유가 상기 그래핀 섬유로 환원되는 동시에, 상기 산화그래핀 섬유에 포함된 상기 이종 원소가 상기 산화그래핀 섬유에 도핑(doping)되는 것을 포함할 수 있다.According to an embodiment, the manufacturing of the graphene fiber may include reducing the graphene oxide fiber to the graphene fiber through the heat treatment, and the heterogeneous element included in the graphene oxide fiber may be used. And may be doped into the pin fibers.
다른 일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 그래핀 산화물 시트(graphene oxide sheet)가 분산된 소스 용액을 준비하는 단계, 상기 그래핀 산화물 시트를 부분적으로(partially) 환원하는 환원제, 및 상기 그래핀 산화물 시트들을 바인딩(binding)하는 바인더(binder)를 동시에 포함하는 응고욕에, 상기 소스 용액을 방사하여, 그래핀 산화물 섬유를 수득하는 단계, 및 상기 그래핀 산화물 섬유를 환원하여, 그래핀 섬유를 제조하는 단계를 포함할 수 있다.According to another embodiment, the method for producing the graphene fibers, preparing a source solution in which a graphene oxide sheet (graphene oxide sheet) is dispersed, a reducing agent for partially reducing the graphene oxide sheet (partially), And spinning the source solution in a coagulation bath simultaneously comprising a binder for binding the graphene oxide sheets to obtain graphene oxide fibers, and reducing the graphene oxide fibers, It may include the step of producing the graphene fibers.
다른 일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 환원제에 의해, 상기 그래핀 산화물 시트가 부분적으로 환원되어, 부분적으로 환원된 그래핀 산화물 시트(partially reduced graphene oxide sheet)가 제조되고, 상기 부분적으로 환원된 그래핀 산화물 시트들 사이의 파이-파이 스택킹(π-π stacking)이 증가하여, 상기 그래핀 산화물 섬유의 인장 강도가 증가하는 것을 포함할 수 있다.According to another embodiment, the graphene fiber manufacturing method, the graphene oxide sheet is partially reduced by the reducing agent, a partially reduced graphene oxide sheet (partially reduced graphene oxide sheet) is produced In addition, pi-pi stacking (π-π stacking) between the partially reduced graphene oxide sheets may include an increase in tensile strength of the graphene oxide fibers.
다른 일 실시 예에 따르면, 상기 바인더는, 2가 또는 3가 금속 이온을 포함할 수 있다.According to another embodiment, the binder may include divalent or trivalent metal ions.
다른 일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 그래핀 섬유를 구리 도금하여, 구리 도금된 그래핀 섬유를 제조하는 단계를 더 포함할 수 있다.According to another embodiment, the method for manufacturing the graphene fiber may further comprise the step of producing a copper plated graphene fiber by copper plating the graphene fiber.
일 실시 예에 따르면, 상기 구리 도금된 그래핀 섬유를 제조하는 단계는, 상기 그래핀 섬유를 식각하는 단계, 식각된 상기 그래핀 섬유에 촉매 금속을 결합시키는 단계, 및 구리를 포함하는 용액에 상기 촉매 금속이 결합된 상기 그래핀 섬유를 담그고, 상기 촉매 금속을 이용하여 구리를 환원하는 방법으로, 상기 그래핀 섬유를 구리로 도금하는 단계를 포함할 수 있다.According to one embodiment, the step of preparing the copper-plated graphene fibers, the step of etching the graphene fibers, bonding the catalyst metal to the etched graphene fibers, and the solution containing copper Dipping the graphene fiber to which a catalyst metal is bonded, and reducing the copper using the catalyst metal, may include plating the graphene fiber with copper.
다른 일 실시 예에 따르면, 상기 구리 도금된 그래핀 섬유는, 상기 그래핀 산화물 시트가 환원된 그래핀 시트들 사이에 제공되는 기공, 또는 상기 그래핀 섬유의 표면에 제공되는 구리 구조체를 포함할 수 있다.According to another embodiment, the copper plated graphene fibers may include pores provided between the graphene sheets in which the graphene oxide sheet is reduced, or copper structures provided on the surface of the graphene fibers. have.
다른 일 실시 예에 따르면, 상기 그래핀 섬유를 제조하는 단계는, 상기 그래핀 산화물 섬유를 건조하는 단계, 건조된 상기 그래핀 산화물 섬유를 세척 및 건조하는 단계, 및 세척 및 건조된 상기 그래핀 산화물 섬유를 환원 용액에 담궈 열처리하는 방법으로, 상기 그래핀 산화물 섬유를 환원시키는 단계를 포함할 수 있다.According to another embodiment, the step of preparing the graphene fibers, the step of drying the graphene oxide fibers, washing and drying the dried graphene oxide fibers, and the washed and dried graphene oxide Dipping the fibers in a reducing solution to heat treatment, may comprise the step of reducing the graphene oxide fibers.
다른 일 실시 예에 따르면, 상기 소스 용액은 탄소나노튜브를 더 포함하고, 상기 그래핀 섬유는, 상기 탄소나노튜브를 더 포함할 수 있다.According to another embodiment, the source solution may further include carbon nanotubes, and the graphene fiber may further include the carbon nanotubes.
또 다른 일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 산화그래핀, 산화제, 및 pH 조절제를 용매에 첨가한 후, 반응시켜 공극을 갖는 산화그래핀이 분산된 소스 용액을 준비하는 단계, 이종 원소를 포함하는 소스 용액으로 상기 소스 용액을 방사하여 산화그래핀 섬유를 제조하는 단계, 상기 소스 용액으로부터 상기 산화그래핀 섬유를 분리, 세척, 및 건조하여, 상기 이종 원소를 포함하는 산화그래핀 섬유를 수득하는 단계, 건조된 상기 이종 원소를 포함하는 산화그래핀 섬유를 열처리(thermal treatment)하여, 상기이종 원소가 도핑된 그래핀 섬유를 제조하는 단계, 및 상기 그래핀 섬유를 제1 산화제를 포함하는 수용액과 반응시켜, 상기 그래핀 섬유 내 미세 공극을 형성하는 단계를 포함할 수 있다.According to another embodiment, the graphene fiber manufacturing method, a graphene oxide, an oxidizing agent, and a pH adjusting agent is added to a solvent, and then reacting to prepare a source solution in which graphene oxide having voids is dispersed Preparing a graphene oxide fiber by spinning the source solution with a source solution containing a dissimilar element; separating, washing, and drying the graphene oxide fiber from the source solution; Obtaining pin fibers, thermally treating the dried graphene oxide fibers including the heterogeneous elements to produce graphene fibers doped with the heterogeneous elements, and converting the graphene fibers into a first oxidant Reacting with an aqueous solution comprising a, it may include the step of forming the fine pores in the graphene fibers.
다른 일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 소스 용액 내 상기 산화제의 함량이 증가할수록, 산화그래핀의 공극률이 증가하는 것을 포함할 수 있다.According to another embodiment, the graphene fiber manufacturing method may include increasing the porosity of graphene oxide as the content of the oxidant in the source solution increases.
다른 일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 소스 용액의 pH가 높을수록, 산화그래핀의 공극률이 증가하는 것을 포함할 수 있다.According to another embodiment, the graphene fiber manufacturing method may include increasing the porosity of graphene oxide as the pH of the source solution is higher.
다른 일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 수용액 내 상기 제1 산화제의 함량과 상기 반응의 온도 및 시간에 따라, 상기 그래핀 섬유 내 형성되는 상기 미세 공극의 공극률이 조절될 수 있다.According to another embodiment, the graphene fiber manufacturing method, the porosity of the fine pore formed in the graphene fiber is to be adjusted according to the content of the first oxidant in the aqueous solution and the temperature and time of the reaction. Can be.
다른 일 실시 예에 따르면, 상기 그래핀 섬유의 제조 방법은, 상기 소스 용액 내 상기 산화제의 함량, 상기 소스 용액의 pH, 및 반응 온도에 따라, 상기 소스 용액 내의 산화그래핀 내 공극률이 조절될 수 있다.According to another embodiment, the graphene fiber manufacturing method, the porosity in the graphene oxide in the source solution may be adjusted according to the content of the oxidant in the source solution, the pH of the source solution, and the reaction temperature. have.
다른 일 실시 예에 따르면, 상기 그래핀 섬유를 제조하는 단계는, 상기 열처리를 통해 상기 산화그래핀 섬유가 상기 그래핀 섬유로 환원되는 동시에, 상기 산화그래핀 섬유에 포함된 상기 이종 원소가 상기 산화그래핀 섬유에 도핑(doping)되는 것을 포함하고, 상기 산화그래핀 섬유에 도핑된 상기 이종 원소의 함량에 따라, 상기 그래핀 섬유의 전기전도도가 조절되는 것을 포함할 수 있다.According to another embodiment, the manufacturing of the graphene fibers may include reducing the graphene oxide fibers to the graphene fibers through the heat treatment, and simultaneously dissociating the heterogeneous elements included in the graphene oxide fibers. It may include doping (graphed) to the graphene fiber, it may include that the electrical conductivity of the graphene fiber is adjusted according to the content of the heterogeneous element doped in the graphene oxide fiber.
본 발명의 실시 예에 따르면, 산화그래핀을 포함하는 소스 용액을 이종 원소나 환원제 및 바인더를 포함하는 베이스 용액으로 방사하여 산화그래핀 섬유를 제조한 후, 열 또는 산 처리함으로써, 우수한 기계적 강도 및 전기 전도도를 갖는 동시에, 높은 인장률을 갖는 그래핀 섬유가 제공될 수 있다.According to an embodiment of the present invention, by producing a graphene oxide fiber by spinning a source solution containing graphene oxide with a heterogeneous element or a base solution containing a reducing agent and a binder, by heat or acid treatment, excellent mechanical strength and Graphene fibers can be provided that have electrical conductivity and at the same time have high tensile modulus.
상기 그래핀 섬유의 제조 시, 사용되는 상기 소스 용액 내 산화그래핀의 농도, 상기 베이스 용액 내로 방사되는 상기 소스 용액의 방사 속도, 상기 이종 원소를 포함하는 산화그래핀 섬유의 권취 속도, 및/또는 상기 이종 원소를 포함하는 산화그래핀 섬유가 배치되는 상기 건조대의 길이를 조절함으로써, 상기 그래핀 섬유의 배향도가 용이하게 조절될 수 있다. In preparing the graphene fibers, the concentration of graphene oxide in the source solution used, the spinning rate of the source solution spun into the base solution, the winding speed of the graphene oxide fiber comprising the heterogeneous element, and / or By adjusting the length of the drying zone in which the graphene oxide fibers including the heterogeneous elements are disposed, the degree of orientation of the graphene fibers may be easily adjusted.
저 배향도를 갖는 상기 그래핀 섬유의 경우, 상기 그래핀 섬유의 기공도가 증가되어 신장률이 우수한 상기 그래핀 섬유가 제공될 수 있다. 이에 따라, 높은 기계적 강도를 갖는 동시에, 우수한 신장률을 갖는 상기 그래핀 섬유가 구현되어, 플렉시블한 디바이스를 포함한 다양한 분야로의 활용이 가능한 상기 그래핀 섬유가 제공될 수 있다.In the case of the graphene fibers having a low degree of orientation, the porosity of the graphene fibers may be increased to provide the graphene fibers having excellent elongation. Accordingly, the graphene fibers having high mechanical strength and excellent elongation can be realized, so that the graphene fibers can be provided in various fields including flexible devices.
또한, 상기 그래핀 섬유는, 다공 구조를 가지므로, 표면적이 넓고, 자연스러운 섬유로써의 역할이 가능하여, 섬유형 전자기기 등의 종래의 멤브레인 응용 분야에 폭 넓게 활용될 수 있다.In addition, since the graphene fiber has a porous structure, the surface area is wide, and can serve as a natural fiber, and can be widely used in conventional membrane applications such as fibrous electronic devices.
또한, 상기 그래핀 섬유에 도핑된 상기 이종 원소의 종류 및/또는 함량을 조절함으로써, 상기 그래핀 섬유 전기 전도도가 용이하게 조절될 수 있다. 이와 같이, 본 발명의 실시 예에 따른 그래핀 섬유는, 우수한 전기 전도도 특성이 요구되는 다양한 분야에 활용될 수 있다.In addition, by controlling the type and / or content of the heterogeneous element doped in the graphene fiber, the graphene fiber electrical conductivity can be easily adjusted. As such, the graphene fiber according to the embodiment of the present invention may be utilized in various fields requiring excellent electrical conductivity characteristics.
도 1은 본 발명의 제1 실시 예에 따른 그래핀 섬유의 제조 방법을 설명하기 위한 순서도이다. 1 is a flowchart illustrating a method for manufacturing graphene fiber according to a first embodiment of the present invention.
도 2는 본 발명의 제1 실시 예에 따른 그래핀 섬유의 제조 방법을 설명하기 위한 도면이다.2 is a view for explaining a manufacturing method of the graphene fiber according to the first embodiment of the present invention.
도 3은 본 발명의 제1 실시 예에 따른 그래핀 섬유의 배향도 및 신장률을 설명하기 위한 도면이다.3 is a view for explaining the orientation and elongation of the graphene fiber according to the first embodiment of the present invention.
도 4는 본 발명의 제2 실시 예에 따른 그래핀 섬유의 제조 방법을 설명하기 위한 순서도이다.4 is a flowchart illustrating a method of manufacturing graphene fibers according to a second embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 그래핀 섬유의 제조 방법에 사용되는 응고욕에 포함된 바인더의 기능을 설명하기 위한 도면이다.5 is a view for explaining the function of the binder included in the coagulation bath used in the method for producing a graphene fiber according to an embodiment of the present invention.
도 6a 및 도 6b는 본 발명의 제2 실시 예의 제1 변형 예에 따른 그래핀 섬유의 제조 방법에 따라 제조된 구리 도금된 그래핀 섬유를 설명하기 위한 도면들이다. 6A and 6B are views for explaining copper plated graphene fibers manufactured according to the method for manufacturing graphene fibers according to the first modification of the second embodiment of the present invention.
도 7은 본 발명의 제3 실시 예에 따른 그래핀 섬유의 제조를 위한 소스 용액의 제조 방법을 설명하기 위한 순서도이다.7 is a flowchart illustrating a method for preparing a source solution for producing graphene fibers according to a third embodiment of the present invention.
도 8은 본 발명의 제3 실시 예에 따른 그래핀 섬유의 제조를 위한 소스 용액의 제조 방법을 설명하기 위한 도면이다.8 is a view for explaining a method for producing a source solution for the production of graphene fibers according to a third embodiment of the present invention.
도 9는 도 8의 A를 확대한 도면으로, 본 발명의 제3 실시 예에 따른 공극이 형성된 산화그래핀을 설명하기 위한 도면이다.FIG. 9 is an enlarged view of a portion A of FIG. 8 and illustrates a graphene oxide having voids according to a third embodiment of the present invention.
도 10는 도 9의 B를 확대한 도면으로, 본 발명의 제3 실시 예에 따른 공극이 형성된 산화그래핀의 상세한 구조를 설명하기 위한 도면이다.FIG. 10 is an enlarged view of B of FIG. 9 and illustrates a detailed structure of graphene oxide having voids according to a third embodiment of the present invention.
도 11은 본 발명의 제3 실시 예에 따른 그래핀 섬유의 제조 방법을 설명하기 위한 순서도이다.11 is a flowchart illustrating a method for manufacturing graphene fiber according to a third embodiment of the present invention.
도 12는 본 발명의 제1 실시 예에 따른 소스 용액이 방사구를 통해 방사되어 산화그래핀 섬유가 제조되는 과정을 나타내는 사진이다.12 is a photograph showing a process in which a source solution is spun through a spinneret to produce graphene oxide fibers according to a first embodiment of the present invention.
도 13은 본 발명의 제1 실시 예에 따른 이종 원소를 포함하는 산화그래핀 섬유가 와인딩 롤러에 의해 권취되는 과정을 나타내는 사진이다.FIG. 13 is a photograph illustrating a process in which graphene oxide fibers including heterogeneous elements according to a first embodiment of the present invention are wound by a winding roller. FIG.
도 14는 본 발명의 제1 실시 예에 따른 저 배향도를 갖는 그래핀 섬유의 이미지이다.14 is an image of a graphene fiber having a low degree of orientation according to the first embodiment of the present invention.
도 15는 본 발명의 제1 실시 예에 따른 고 배향도를 갖는 그래핀 섬유의 이미지이다.15 is an image of a graphene fiber having a high degree of orientation according to the first embodiment of the present invention.
도 16은 본 발명의 실시 예에 따른 그래핀 섬유의 외부 압력(strain) 증가에 따른 인장 강도(tensile strength) 값을 나타내는 그래프이다. FIG. 16 is a graph illustrating tensile strength values according to an increase in an external pressure of graphene fibers according to an exemplary embodiment of the present invention.
도 17은 본 발명의 제2 실시 예 1, 비교 예 1, 및 비교 예 2에 따른 그래핀 섬유를 촬영한 사진이다.17 is a photograph of the graphene fibers according to the second embodiment 1, comparative example 1, and comparative example 2 of the present invention.
도 18은 본 발명의 제2 실시 예 1, 비교 예 1, 및 비교 예 2에 따른 그래핀 섬유의 원형도를 측정한 그래프이다. 18 is a graph measuring the circularity of the graphene fibers according to the second embodiment 1, comparative example 1, and comparative example 2 of the present invention.
도 19는 본 발명의 제2 실시 예 1, 비교 예 1, 및 비교 예 2에 따른 그래핀 섬유의 표면을 촬영한 사진이고.19 is a photograph of the surface of the graphene fibers according to the second embodiment 1, comparative example 1, and comparative example 2 of the present invention.
도 20은 본 발명의 제2 실시 예 1, 비교 예 1, 및 비교 예 2에 따른 그래핀 섬유의 두께의 표준 편차를 측정한 그래프이다.20 is a graph measuring the standard deviation of the thickness of the graphene fibers according to Example 1, Comparative Example 1, and Comparative Example 2 of the present invention.
도 21은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 그래핀 산화물 시트의 AFM 이미지이다.21 is an AFM image of a graphene oxide sheet used for producing graphene fibers according to the second embodiment 2 to 4 of the present invention.
*도 22는 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 후 촬영한 사진이다. * FIG. 22 is a photograph taken after the addition of CoCl 2 , AlCl 3 , and FeCl 3 to the source solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention.
도 23은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 후 점도 측정을 위해 촬영한 사진이다.23 is a photograph taken for measuring the viscosity after the addition of CoCl 2 , AlCl 3 , and FeCl 3 to the source solution used in the production of graphene fibers according to Examples 2 to 4 of the present invention.
도 24는 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 용액의 점도를 측정한 그래프이디.24 is a graph showing the viscosity of a sauce solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention and a solution to which CoCl 2 , AlCl 3 , and FeCl 3 were added thereto.
도 25는 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 용액의 저장 탄성률(storage modulus)을 측정한 그래프이다.25 is a storage modulus of the source solution used in the production of graphene fibers according to the second embodiment 2 to 4 of the present invention and the solution to which CoCl 2 , AlCl 3 , and FeCl 3 were added thereto, respectively. One graph.
도 26은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 용액의 젤화 정도를 나타내는 그래프이다.FIG. 26 is a graph showing the degree of gelation of a sauce solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention and a solution in which CoCl 2 , AlCl 3 , and FeCl 3 are added thereto.
도 27은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 산화물 섬유의 XRD 측정 그래프이다.27 is an XRD measurement graph of graphene oxide fibers according to Examples 2 to 4 of the present invention.
도 28은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 산화물 섬유의 기계적 강도를 측정한 그래프이다.28 is a graph measuring mechanical strength of graphene oxide fibers according to Examples 2 to 4 of the present invention.
도 29는 본 발명의 제2 실시 예 2에 따른 그래핀 산화물 섬유를 촬영한 사진이다. 29 is a photograph of a graphene oxide fiber according to a second embodiment 2 of the present invention.
도 30은 본 발명의 제3 실시 예에 따른 공극이 형성된 산화그래핀의 SEM 이미지이다.30 is an SEM image of graphene oxide with pores formed in accordance with a third embodiment of the present invention.
도 31은 본 발명의 제3 실시 예에 따른 소스 용액의 사진이다.31 is a photograph of a sauce solution according to a third embodiment of the present invention.
도 32는 본 발명의 제3 실시 예에 대한 비교 예에 따른 소스 용액의 사진이다.32 is a photograph of a sauce solution according to a comparative example of a third embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical idea of the present invention is not limited to the exemplary embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete, and that the spirit of the present invention can be sufficiently delivered to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is mentioned to be on another component, it means that it may be formed directly on the other component or a third component may be interposed therebetween. In addition, in the drawings, the thicknesses of films and regions are exaggerated for effective explanation of technical contents.
또한, 본 명세서의 다양한 실시 예들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Thus, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. In addition, the term 'and / or' is used herein to include at least one of the components listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다. In the specification, the singular encompasses the plural unless the context clearly indicates otherwise. In addition, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, element, or combination thereof described in the specification, and one or more other features or numbers, steps, configurations It should not be understood to exclude the possibility of the presence or the addition of elements or combinations thereof. In addition, the term "connection" is used herein to mean both indirectly connecting a plurality of components, and directly connecting.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
이하, 본 발명의 제1 실시 예에 따른 그래핀 섬유의 제조 방법이 설명된다.Hereinafter, a method of manufacturing graphene fiber according to the first embodiment of the present invention will be described.
도 1은 본 발명의 제1 실시 예에 따른 그래핀 섬유의 제조 방법을 설명하기 위한 순서도이고, 도 2는 본 발명의 제1 실시 예에 따른 그래핀 섬유의 제조 방법을 설명하기 위한 도면이고, 도 3은 본 발명의 제1 실시 예에 따른 그래핀 섬유의 배향도 및 신장률을 설명하기 위한 도면이다.1 is a flowchart illustrating a method for manufacturing graphene fiber according to a first embodiment of the present invention, Figure 2 is a view for explaining a method for manufacturing graphene fiber according to a first embodiment of the present invention, 3 is a view for explaining the orientation and elongation of the graphene fiber according to the first embodiment of the present invention.
도 1 및 도 2를 참조하면, 산화그래핀(graphene oxide)을 포함하는 소스 용액(10)이 준비될 수 있다(S100). 상기 소스 용액(10)은, 산화그래핀이 용매에 첨가되어 제조될 수 있다. 일 실시 예에 따르면, 상기 용매는, 물 또는 유기 용매일 수 있다. 예를 들어, 상기 유기 용매는, 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 에틸렌글리콜(ethylene glycol), N-메틸-2-피페리돈(n-methyl-2-pyrrolidone, NMP), 디메틸포름아미드(dimethylformamide, DMF) 중 어느 하나일 수 있다. 1 and 2, a source solution 10 including graphene oxide may be prepared (S100). The source solution 10 may be prepared by adding graphene oxide to a solvent. According to one embodiment, the solvent may be water or an organic solvent. For example, the organic solvent may be dimethyl sulfoxide (DMSO), ethylene glycol, ethylene glycol, N-methyl-2-pyrrolidone (NMP), dimethylformamide ( dimethylformamide, DMF).
일 실시 예에 따르면, 상기 소스 용액(10)은, 산화그래핀이 상기 유기 용매에 2 내지 20mg/mL의 농도로 첨가되어 제조될 수 있다.According to an embodiment, the source solution 10 may be prepared by adding graphene oxide to the organic solvent at a concentration of 2 to 20 mg / mL.
일 실시 예에 따르면, 상기 용매 내 산화그래핀의 분산성(dispersibility)을 향상시키기 위해, 산화그래핀이 첨가된 상기 용매에 대하여 교반 공정이 수행될 수 있다. 일 실시 예에 따르면, 산화그래핀이 첨가된 상기 용매는, 24시간 동안 교반될 수 있다.According to one embodiment, to improve the dispersibility of the graphene oxide in the solvent, a stirring process may be performed on the solvent to which the graphene oxide is added. According to an embodiment, the solvent to which graphene oxide is added may be stirred for 24 hours.
일 실시 예에 따르면, 상기 소스 용액(10) 내 산화그래핀의 농도에 따라, 후술되는 그래핀 섬유(graphene fiber)의 신장률(elongation percentage)이 조절될 수 있다. 구체적으로, 상기 소스 용액(10) 내 산화그래핀의 농도에 따라, 상기 그래핀 섬유의 배향도(the degree of orientation) 및 기공도가 조절되어, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. According to an embodiment, the elongation percentage of graphene fibers, which will be described later, may be adjusted according to the concentration of graphene oxide in the source solution 10. Specifically, according to the concentration of the graphene oxide in the source solution 10, the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted. .
일 실시 예에 따르면, 상기 소스 용액(10)의 농도가 증가함에 따라, 상기 그래핀 섬유의 배향도는 감소되고, 상기 그래핀 섬유의 기공도는 증가할 수 있다. 이에 따라, 상기 상기 소스 용액(10)의 농도가 증가함에 따라, 상기 그래핀 섬유의 신장률은 증가할 수 있다.According to one embodiment, as the concentration of the source solution 10 is increased, the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the concentration of the source solution 10 is increased, the elongation of the graphene fibers may increase.
일 실시 예에 따르면, 상기 소스 용액(10)에 산화제를 포함하는 수용액이 첨가되어, 상기 소스 용액(10) 내에 포함된 상기 산화그래핀 내 그래핀의 배열이 조절될 수 있다. 이에 따라, 상기 소스 용액(10) 내에 포함되는 상기 산화제의 양 및/또는 상기 소스 용액(10)과 상기 산화제를 포함하는 수용액의 반응 시간에 따라, 후술되는 상기 그래핀 섬유의 미세 공극이 조절될 수 있다.According to one embodiment, the aqueous solution containing the oxidant is added to the source solution 10, the arrangement of the graphene in the graphene oxide contained in the source solution 10 can be controlled. Accordingly, according to the amount of the oxidant included in the source solution 10 and / or the reaction time of the source solution 10 and the aqueous solution containing the oxidant, the fine pores of the graphene fibers to be described later can be adjusted Can be.
일 실시 예에 따르면, 상기 소스 용액(10)에 과산화수소 수용액을 첨가한 후, 상온(25℃)에서 10분 내지 4시간 동안 반응시킬 수 있다.According to one embodiment, after the aqueous hydrogen peroxide solution is added to the source solution 10, it may be reacted for 10 minutes to 4 hours at room temperature (25 ℃).
이종 원소를 포함하는 베이스 용액(20)으로 상기 소스 용액(10)이 방사되어, 산화그래핀 섬유(graphene oxide fiber, 30)가 제조될 수 있다(S200). 일 실시 예에 따르면, 상기 베이스 용액(20)은, 상기 이종 원소를 포함하는 염(salt)이 용매에 첨가되어 제조될 수 있다. 일 실시 예에 따르면, 상기 이종 원소를 포함하는 염은, 탄소(C) 이외의 원소를 포함하는 염으로, 질소(N)계 염, 황(S)계 염, 불소(F)계 염, 또는 요오드(I)계 염 중 어느 하나일 수 있다. The source solution 10 is radiated into the base solution 20 containing heterogeneous elements, and thus, graphene oxide fiber 30 may be manufactured (S200). According to one embodiment, the base solution 20 may be prepared by adding a salt containing the heterogeneous element to a solvent. According to one embodiment, the salt containing a heterogeneous element is a salt containing an element other than carbon (C), nitrogen (N) salt, sulfur (S) salt, fluorine (F) salt, or It may be any one of iodine (I) salts.
예를 들어, 상기 이종 원소를 포함하는 염은, ammonium biborate tetrahydrate, ammonium bromide, ammonium carbamate, ammonium carbonate, ammonium cerium(IV) sulfate dihydrate, ammonium chloride, ammonium chromate, ammonium dichromate, ammonium dihydrogenphosphate, ammonium fluoride, ammonium formate, ammonium heptafluorotantalate(V), ammonium hexabromotellurate(IV), ammonium hexachloroiridate(III), ammonium hexachloroiridate(IV), ammonium hexachloroosmate(IV), ammonium hexachloropalladate(IV), ammonium hexachloroplatinate(IV), ammonium hexachlororhodate(III), ammonium hexachlororuthenate(IV), ammonium hexachlorotellurate(IV), ammonium hexafluorogermanate(IV), ammonium hexafluorophosphate, ammonium hexafluorophosphate, ammonium hexafluorosilicate, ammonium hexafluorostannate, ammonium hydrogen difluoride, ammonium hydrogenoxalate hydrate, amonium hydrogensulfate, ammonium hypophosphite, ammonium iodide, ammonium metatungstate hydrate, ammonium metatungstate hydrate, ammonium metavanadate, ammonium molybdate, ammonium nitrate, ammonium oxalate monohydrate, ammonium pentaborate octahydrate, ammonium perchlorate, ammonium perrhenate, ammonium perrhenate, ammonium phosphate dibasic, ammonium phosphomolybdate hydrate, ammonium sodium phosphate dibasic tetrahydrate, ammonium sulfate, ammonium tetrachloroaurate(III) hydrate, ammonium tetrachloropalladate(II), ammonium tetrafluoroborate, ammonium tetrathiomolybdate, ammonium tetrathiotungstate, ammonium thiosulfate, ammonium titanyl oxalate monohydrate, ammonium trifluoromethanesulfonate, ammonium (para)tungstate hydrate, ammonium zirconium(IV) carbonate, tetrabutylammonium (meta)periodate, tetrabutylammonium perrhenate, tetraethylammonium tetrafluoroborate, 또는 tetramethylammonium formate) 중 어느 하나일 수 있다. For example, salts containing the heterogeneous elements are ammonium biborate tetrahydrate, ammonium bromide, ammonium carbamate, ammonium carbonate, ammonium cerium (IV) sulfate dihydrate, ammonium chloride, ammonium chromate, ammonium dichromate, ammonium dihydrogenphosphate, ammonium fluoride, ammonium formate, ammonium heptafluorotantalate (V), ammonium hexabromotellurate (IV), ammonium hexachloroiridate (III), ammonium hexachloroiridate (IV), ammonium hexachloroosmate (IV), ammonium hexachloropalladate (IV), ammonium hexachloroplatinate (IV), ammoniumIII ammonium hexachlororuthenate (IV), ammonium hexachlorotellurate (IV), ammonium hexafluorogermanate (IV), ammonium hexafluorophosphate, ammonium hexafluorophosphate, ammonium hexafluorosilicate, ammonium hexafluorostannate, ammonium hydrogen difluoride, ammonium hydrogenoxalate ammonium ammonium ammonium ammonium hydride , ammonium metatungstate hydrate, ammoniu m metavanadate, ammonium molybdate, ammonium nitrate, ammonium oxalate monohydrate, ammonium pentaborate octahydrate, ammonium perchlorate, ammonium perrhenate, ammonium perrhenate, ammonium phosphate dibasic, ammonium phosphomolybdate hydrate, ammonium sodium phosphate dibasic ethane ammonium tetrachloropalladate (II), ammonium tetrafluoroborate, ammonium tetrathiomolybdate, ammonium tetrathiotungstate, ammonium thiosulfate, ammonium titanyl oxalate monohydrate, ammonium trifluoromethanesulfonate, ammonium zirconium (IV) tetramonium (metamonium) tetracarbonate, tetrabutylate tetrafluoroborate, or tetramethylammonium formate).
일 실시 예에 따르면, 상기 용매는, 물(water), 메탄올(methanol), 프로판올(propanol), 에탄올(ethanol), 아세톤(acetone), 디메틸포름알데이드(dimethyl formamide, DMF), N-메틸-2-피페리돈(n-methyl-2-pyrrolidone, NMP), 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 또는 에틸렌글리콜(ethylene glycol) 중 어느 하나일 수 있다.According to one embodiment, the solvent, water (methanol), propanol (propanol), ethanol (ethanol), acetone (acetone), dimethyl formamide (dimethyl formamide, DMF), N-methyl- It may be any one of 2-piperidone (n-methyl-2-pyrrolidone, NMP), dimethyl sulfoxide (DMSO), or ethylene glycol.
일 실시 예에 따르면, 상기 베이스 용액(20)은, 응고제(coagulant)를 더 포함할 수 있다. 상기 베이스 용액(20) 내에 상기 소스 용액(10)이 방사되어 제조된 상기 산화그래핀 섬유(30)는, 상기 베이스 용액(20) 내에 포함된 상기 응고제에 의해 응고될 수 있다. According to one embodiment, the base solution 20 may further include a coagulant. The graphene oxide fibers 30 prepared by spinning the source solution 10 in the base solution 20 may be solidified by the coagulant included in the base solution 20.
일 실시 예에 따르면, 상기 응고제는, 염화칼슘(CaCl2), 수산화칼륨(KOH), 수산화나트륨(NaOH), 염화나트륨(NaCl), 황산구리(CuSO4), 세틸트리메틸암모늄브로미드(Cetyltrimethylammonium bromide, CTAB), 또는 키토산(chitosan) 중 어느 하나일 수 있다. According to one embodiment, the coagulant, calcium chloride (CaCl 2 ), potassium hydroxide (KOH), sodium hydroxide (NaOH), sodium chloride (NaCl), copper sulfate (CuSO 4 ), cetyltrimethylammonium bromide (CTAB) Or chitosan.
일 실시 예에 따르면, 상기 베이스 용액(20)은, 상기 이종 원소를 포함하는 염, 및 0 내지 50wt%의 응고제가 상기 용매에 첨가되어 제조될 수 있다.According to an embodiment, the base solution 20 may be prepared by adding a salt containing the heterogeneous element and 0 to 50 wt% of a coagulant to the solvent.
도 2에서 알 수 있듯이, 제1 용기(100)에 담긴 상기 소스 용액(10)은, 상기 제1 용기(100)에 연결된 방사구(120)를 통해, 상기 베이스 용액(20)이 담긴 제2 용기(150)로 방사될 수 있다. 상기 베이스 용액(20) 내로 상기 소스 용액(10)이 방사되는 과정에서, solvent exchange 현상에 의해, 상기 이종 원소를 포함하는 염은, 상기 산화그래핀 섬유(30) 내로 확산될 수 있다.As can be seen in Figure 2, the source solution 10 contained in the first container 100, through the spinneret 120 connected to the first container 100, the second containing the base solution 20 Can be spun into the container 150. In the process of spinning the source solution 10 into the base solution 20, by the solvent exchange phenomenon, the salt containing the hetero element may be diffused into the graphene oxide fiber 30.
일 실시 예에 따르면, 상기 베이스 용액(20) 내로 방사되는 상기 소스 용액(10)의 속도에 따라, 후술되는 상기 그래핀 섬유의 신장률이 조절될 수 있다. 구체적으로, 상기 소스 용액(10)의 방사 속도에 따라, 상기 그래핀 섬유의 배향도 및 기공도가 조절되어, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다.According to one embodiment, the elongation of the graphene fibers to be described later may be adjusted according to the speed of the source solution 10 that is radiated into the base solution 20. Specifically, according to the spinning speed of the source solution 10, the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted.
일 실시 예에 따르면, 상기 소스 용액(10)의 방사 속도가 감소함에 따라, 상기 그래핀 섬유의 배향도는 감소되고, 상기 그래핀 섬유의 기공도는 증가할 수 있다. 이에 따라, 상기 소스 용액(10)의 방사 속도가 감소함에 따라, 상기 그래핀 섬유의 신장률은 증가할 수 있다.According to one embodiment, as the spinning speed of the source solution 10 is reduced, the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the spinning speed of the source solution 10 decreases, the elongation of the graphene fibers may increase.
또한, 상기 제2 용액에 포함되는 상기 이종 원소의 종류 및/또는 함량에 따라, 상기 그래핀 섬유의 전기 전도도가 조절될 수 있다. 구체적으로, 산화그래핀 섬유(30) 내에 확산된 상기 이종 원소는, 후술되는 S400 단계의 열처리(thermal treatment) 단계에서 상기 그래핀 섬유에 도핑될 수 있다. 이에 따라, S200 단계에서 상기 베이스 용액(20) 내에 포함된 상기 이종 원소의 종류 및/또는 함량을 조절함으로써, 상기 그래핀 섬유의 전기 전도도가 용이하게 조절될 수 있다.In addition, according to the type and / or content of the heterogeneous elements included in the second solution, the electrical conductivity of the graphene fibers may be controlled. Specifically, the heterogeneous elements diffused into the graphene oxide fiber 30 may be doped into the graphene fiber in the thermal treatment step of S400 described later. Accordingly, by controlling the type and / or content of the heterogeneous elements contained in the base solution 20 in step S200, the electrical conductivity of the graphene fibers can be easily adjusted.
상기 베이스 용액(20)으로부터 상기 산화그래핀 섬유(30)가 분리, 세척, 및 건조됨으로써, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 수득될 수 있다(S300). 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 가이드 롤러(guide roller, 170)에 의해 상기 베이스 용액(20)이 담긴 상기 제2 용기(150)로부터 분리되어 외부로 나올 수 있다. 상기 베이스 용액(20)으로부터 분리된 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 상기 응고제를 포함할 수 있다. By separating, washing, and drying the graphene oxide fibers 30 from the base solution 20, the graphene oxide fibers 30 including the heterogeneous elements may be obtained (S300). The graphene oxide fiber 30 including the dissimilar elements may be separated from the second container 150 containing the base solution 20 by a guide roller 170 and then come out. The graphene oxide fiber 30 including the heterogeneous element separated from the base solution 20 may include the coagulant.
이에 따라, 세척 공정에 의해, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)에 잔존하는 상기 응고제의 적어도 일부가 제거될 수 있다. 일 실시 예에 따르면, 상기 세척 공정에 사용되는 세척 용액은, 알코올성 수용액일 수 있다.Accordingly, at least a part of the coagulant remaining in the graphene oxide fiber 30 including the dissimilar element may be removed by the washing process. According to one embodiment, the washing solution used in the washing process may be an alcoholic aqueous solution.
일 실시 예에 따르면, 상기 분리 및 세척 공정을 통해, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)에 포함된 수분이 공기 중에서 자연 건조될 수 있다.According to one embodiment, through the separation and washing process, the moisture contained in the graphene oxide fiber 30 including the heterogeneous element may be naturally dried in the air.
또한, 가열 공정을 통해, 공기 중에서 자연 건조된 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 이차적으로 건조될 수 있다. 다시 말해서, 상기 가열 공정을 통해, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)에 잔존하는 물의 적어도 일부가 제거될 수 있다. In addition, through the heating process, the graphene oxide fibers 30 including the heterogeneous elements naturally dried in air may be secondaryly dried. In other words, at least a portion of the water remaining in the graphene oxide fiber 30 including the dissimilar element may be removed through the heating process.
일 실시 예에 따르면, 상기 가열 공정에 사용되는 가열기의 형태로는, 그 종류를 특별히 한정하지 않는다. 예를 들어, 상기 가열기는, 히터(heater), 핫 플레이트(hot plate), 또는 가열 코일(heating coil) 중 어느 하나일 수 있다. According to one embodiment, the type of heater used in the heating step is not particularly limited. For example, the heater may be any one of a heater, a hot plate, or a heating coil.
일 실시 예에 따르면, 공기 중에서 자연 건조된 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 상기 가열기에 의해 70 내지 80℃의 온도로 가열되어, 상기 이종 원소를 포함하는 산화그래핀 섬유(30) 내부에 잔존하는 물의 적어도 일부가 제거될 수 있다.According to one embodiment, the graphene oxide fiber 30 including the hetero element naturally dried in air is heated to a temperature of 70 to 80 ℃ by the heater, the graphene oxide fiber comprising the hetero element At least a portion of the water remaining inside 30 may be removed.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)를 수득하는 단계에서, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 상기 가열 공정을 통해 건조되는 동시에, 권취될 수 있다. 도 2에서 알 수 있듯이, 상기 세척 공정이 종료된 후, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 상기 건조 공정이 수행되는 동시에, 와인딩 롤러(winding roller, 190)에 의해 권취될 수 있다.According to one embodiment, in the step of obtaining the graphene oxide fiber 30 containing the dissimilar element, the graphene oxide fiber 30 including the dissimilar element is dried at the same time through the heating process, and wound up Can be. As can be seen in Figure 2, after the washing process is finished, the graphene oxide fibers 30 including the heterogeneous elements are wound by a winding roller 190 while the drying process is performed. Can be.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 권취 속도를 조절함에 따라, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. 구체적으로, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 권취 속도에 따라, 상기 그래핀 섬유의 배향도 및 기공도가 조절되어, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. According to one embodiment, by controlling the winding speed of the graphene oxide fiber 30 including the heterogeneous element, the elongation of the graphene fiber can be easily adjusted. Specifically, according to the winding speed of the graphene oxide fiber 30 including the dissimilar element, the degree of orientation and porosity of the graphene fiber is adjusted, the elongation of the graphene fiber can be easily adjusted.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 상기 권취 속도보다 상기 소스 용액(10)의 방사 속도가 큰 경우, 상기 그래핀 섬유의 배향도는 감소되고, 상기 그래핀 섬유의 기공도는 증가할 수 있다. 이에 따라, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 상기 권취 속도보다 상기 소스 용액(10)의 방사 속도가 큰 경우, 상기 그래핀 섬유의 신장률은 증가할 수 있다.According to an embodiment, when the spinning speed of the source solution 10 is greater than the winding speed of the graphene oxide fiber 30 including the dissimilar element, the degree of orientation of the graphene fibers is reduced, and the graphene The porosity of the fibers can increase. Accordingly, when the spinning speed of the source solution 10 is greater than the winding speed of the graphene oxide fiber 30 including the dissimilar element, the stretch rate of the graphene fiber may increase.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 건조대를 통해 건조될 수 있다. 이 경우, 상기 건조대의 길이를 조절함으로써, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 신장률이 용이하게 조절될 수 있다. According to an embodiment, the graphene oxide fiber 30 including the heterogeneous element may be dried through a drying rack. In this case, by adjusting the length of the drying table, the elongation of the graphene oxide fiber 30 including the heterogeneous element can be easily adjusted.
일 실시 예에 따르면, 상기 건조대의 길이가 상기 건조대 상에 배치되는 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 길이보다 짧은 경우, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 건조됨에 따라 상기 건조대의 축 방향으로 발생되는 장력에 의한 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 수축 현상이 상대적으로 적게 발생할 수 있다. 이에 따라, 상기 그래핀 섬유의 배향도는 감소되고, 상기 그래핀 섬유의 기공도는 증가할 수 있다. 결과적으로, 상기 건조대의 길이가 상기 건조대 상에 배치되는 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 길이보다 짧은 경우, 상기 그래핀 섬유의 신장률은 증가할 수 있다.According to one embodiment, when the length of the drying rod is shorter than the length of the graphene oxide fiber 30 including the heterogeneous element disposed on the drying rod, the graphene oxide fiber 30 including the heterogeneous element is As it is dried, the shrinkage phenomenon of the graphene oxide fiber 30 including the dissimilar element due to the tension generated in the axial direction of the drying table may occur relatively less. Accordingly, the degree of orientation of the graphene fibers may be reduced, and the porosity of the graphene fibers may be increased. As a result, when the length of the drying table is shorter than the length of the graphene oxide fiber 30 including the dissimilar elements disposed on the drying table, the elongation of the graphene fibers may increase.
건조된 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 열처리되어, 상기 이종 원소가 도핑(doping)된 그래핀 섬유가 제조될 수 있다(S400). 구체적으로, 상기 열처리를 통해, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 상기 산화그래핀 섬유(30)가 상기 그래핀 섬유로 환원되는 동시에, 상기 산화그래핀 섬유(30)에 포함된 상기 이종 원소가 상기 그래핀 섬유에 도핑될 수 있다.The dried graphene oxide fiber 30 including the heterogeneous element is heat-treated, and thus, the graphene fiber doped with the heterogeneous element may be manufactured (S400). Specifically, through the heat treatment, the graphene oxide fiber 30 of the graphene oxide fiber 30 including the dissimilar element is reduced to the graphene fiber, and included in the graphene oxide fiber 30 The heterogeneous element may be doped into the graphene fiber.
상술된 바와 같이, 상기 그래핀 섬유에 도핑된 상기 이종 원소의 종류 및/또는 함량에 따라, 상기 그래핀 섬유의 전기 전도도가 용이하게 조절될 수 있다. 일 실시 예에 따르면, 상기 이종 원소는, 탄소(C) 이외의 원소로, 질소(N), 황(S), 불소(F), 또는 요오드(I) 중 어느 하나일 수 있다. As described above, according to the type and / or content of the heterogeneous element doped in the graphene fiber, the electrical conductivity of the graphene fiber can be easily adjusted. According to one embodiment, the heterogeneous element, other than carbon (C), may be any one of nitrogen (N), sulfur (S), fluorine (F), or iodine (I).
일 실시 예에 따르면, 상기 그래핀 섬유를 제조하는 단계는, 비활성 가스 또는 수소(H2) 가스 분위기 하에 상기 열처리 되는 것을 포함할 수 있다. 예를 들어, 상기 비활성 가스는, 아르곤(Ar) 가스, 또는 질소(N2) 가스 중 어느 하나일 수 있다.According to an embodiment, the manufacturing of the graphene fiber may include heat treatment under an inert gas or hydrogen (H 2 ) gas atmosphere. For example, the inert gas may be any one of argon (Ar) gas or nitrogen (N 2 ) gas.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 비활성 가스 또는 수소 가스 분위기 하에서, 10~100℃/min의 승온 속도로 10분 내지 10시간 동안 100℃ 내지 5000℃의 온도로 상기 열처리함으로써, 상기 이종 원소가 도핑된 상기 그래핀 섬유가 제조될 수 있다.According to an embodiment, the graphene oxide fiber 30 including the hetero element is 100 ° C. to 5000 ° C. for 10 minutes to 10 hours at an elevated temperature rate of 10 to 100 ° C./min under an inert gas or hydrogen gas atmosphere. By the heat treatment at a temperature of the, the graphene fibers doped with the different elements can be produced.
또한, 일 실시 예에 따르면, S400 단계를 통해 제조된 상기 그래핀 섬유에 대한 후처리 공정으로, 상기 그래핀 섬유를 상기 산화제를 포함하는 수용액에 담지한 후, 수열 반응을 수행함으로써, 상기 그래핀 섬유에 미세 공극이 추가로 형성될 수 있다. 상기 그래핀 섬유에 대한 상기 후처리 공정이 수행되어 상기 그래핀 섬유에 추가로 형성된 상기 미세 공극으로 인해, 상기 그래핀 섬유의 전기적 및 광학적 물성이 향상될 수 있다.In addition, according to one embodiment, in the post-treatment process for the graphene fibers prepared through the step S400, by supporting the graphene fibers in an aqueous solution containing the oxidizing agent, by performing a hydrothermal reaction, the graphene Fine pores may be further formed in the fiber. The post-treatment process is performed on the graphene fibers, and thus the electrical and optical properties of the graphene fibers may be improved due to the micro voids formed in the graphene fibers.
일 실시 예에 따르면, 상기 그래핀 섬유에 추가로 형성되는 상기 미세 공극은, 상기 수용액에 포함된 상기 산화제의 양과 상기 수열 반응이 수행되는 온도 및/또는 시간에 따라 용이하게 조절될 수 있다. 따라서, 상기 그래핀 섬유의 상기 후처리 공정에 의해, 상기 그래핀 섬유의 전기적 및 광학적 물성이 용이하게 조절될 수 있다.According to one embodiment, the fine pores additionally formed in the graphene fibers, can be easily adjusted according to the amount of the oxidant included in the aqueous solution and the temperature and / or time at which the hydrothermal reaction is carried out. Thus, by the post-treatment process of the graphene fibers, the electrical and optical properties of the graphene fibers can be easily adjusted.
일 실시 예에 따르면, 상기 산화제는, 과산화수소(H2O2)일 수 있다.According to one embodiment, the oxidant may be hydrogen peroxide (H 2 O 2 ).
*일 실시 예에 따르면, 상기 그래핀 섬유에 추가로 형성된 상기 미세 공극은, 상기 그래핀 섬유를 1 내지 35%의 과산화수소 수용액에 담지시킨 후, 고압반응조 내에서 300 내지 500℃의 온도로, 10분 내지 4시간 동안 상기 수열 반응이 수행됨으로써 형성될 수 있다.* According to one embodiment, the fine pores further formed in the graphene fibers, after supporting the graphene fibers in an aqueous solution of 1 to 35% hydrogen peroxide, at a temperature of 300 to 500 ℃ in a high pressure reactor, 10 It may be formed by performing the hydrothermal reaction for minutes to 4 hours.
상술된 본 발명의 실시 예와 달리, 종래의 탄소 기반 섬유는 우수한 전기적 특성, 열 안정성, 및 인장 강도를 가지므로, 전자 및 우주 산업 분야 등의 일반적인 산업 분야에 활용된다. 단, 상기 탄소 기반 섬유는, 낮은 신장률을 가지므로 플렉시블한 디바이스로의 적용에 한계가 있으며, 자연스러운 섬유로써의 역할을 하는 데에 어려움이 존재한다. 또한, 상기 탄소 기반 섬유는, 미세 구조를 포함하지 않으므로 표면적이 작고, 멤브레인(membrane) 특성을 나타내지 않으며, 전기 화학적 특성이 취약한 단점이 있다.Unlike the embodiments of the present invention described above, conventional carbon-based fibers have excellent electrical properties, thermal stability, and tensile strength, and thus are utilized in general industrial fields such as the electronic and aerospace industries. However, since the carbon-based fiber has a low elongation, there is a limit to application to a flexible device, and there is a difficulty in serving as a natural fiber. In addition, the carbon-based fibers do not include a microstructure, so the surface area is small, does not exhibit a membrane (membrane) properties, and the electrochemical properties are disadvantageous.
하지만, 본 발명의 실시 예에 따르면, 산화그래핀을 포함하는 소스 용액(10)을 준비하는 단계, 이종 원소를 포함하는 베이스 용액(20)으로 상기 소스 용액(10)을 방사하여 산화그래핀 섬유(30)를 제조하는 단계, 상기 제2 용액(20)으로부터 상기 산화그래핀 섬유(30)를 분리, 세척, 및 건조하여 상기 이종 원소를 포함하는 산화그래핀 섬유(30)를 수득하는 단계, 및 건조된 상기 이종 원소를 포함하는 산화그래핀 섬유(30)를 열처리하여 상기 이종 원소가 도핑된 그래핀 섬유를 제조하는 단계를 통해, 우수한 기계적 강도를 갖는 동시에, 높은 인장률을 갖는 그래핀 섬유가 제공될 수 있다.However, according to an embodiment of the present invention, preparing a source solution 10 containing graphene oxide, spinning the source solution 10 with a base solution 20 containing a heterogeneous element graphene oxide fiber Preparing 30, separating, washing, and drying the graphene oxide fibers 30 from the second solution 20 to obtain graphene oxide fibers 30 including the dissimilar elements, And heat-treating the graphene oxide fiber 30 including the heterogeneous element dried, thereby preparing the graphene fiber doped with the heterogeneous element, having excellent mechanical strength and having a high tensile rate. May be provided.
상기 그래핀 섬유의 제조 시, 사용되는 상기 소스 용액(10) 내 산화그래핀의 농도, 상기 베이스 용액(20) 내로 방사되는 상기 소스 용액(10)의 방사 속도, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 권취 속도, 및/또는 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 배치되는 상기 건조대의 길이를 조절함으로써, 상기 그래핀 섬유의 배향도가 용이하게 조절될 수 있다. In preparing the graphene fibers, the concentration of graphene oxide in the source solution 10 to be used, the spinning speed of the source solution 10 spun into the base solution 20, and the graphene oxide including the heterogeneous elements By adjusting the winding speed of the pin fibers 30 and / or the length of the drying zone in which the graphene oxide fibers 30 including the dissimilar elements are disposed, the degree of orientation of the graphene fibers can be easily adjusted.
저 배향도를 갖는 상기 그래핀 섬유의 경우, 상기 그래핀 섬유의 기공도가 증가되어 신장률이 우수한 상기 그래핀 섬유가 제공될 수 있다. 이에 따라, 높은 기계적 강도를 갖는 동시에, 우수한 신장률을 갖는 상기 그래핀 섬유가 구현되어, 플렉시블한 디바이스를 포함한 다양한 분야로의 활용이 가능한 상기 그래핀 섬유가 제공될 수 있다.In the case of the graphene fibers having a low degree of orientation, the porosity of the graphene fibers may be increased to provide the graphene fibers having excellent elongation. Accordingly, the graphene fibers having high mechanical strength and excellent elongation can be realized, so that the graphene fibers can be provided in various fields including flexible devices.
또한, 상기 그래핀 섬유는, 다공 구조를 가지므로, 표면적이 넓고, 자연스러운 섬유로써의 역할이 가능하여, 섬유형 전자기기 등의 종래의 멤브레인 응용 분야에 폭 넓게 활용될 수 있다.In addition, since the graphene fiber has a porous structure, the surface area is wide, and can serve as a natural fiber, and can be widely used in conventional membrane applications such as fibrous electronic devices.
또한, 상기 그래핀 섬유에 도핑된 상기 이종 원소의 종류 및/또는 함량을 조절함으로써, 상기 그래핀 섬유(70)의 전기 전도도가 용이하게 조절될 수 있다. 이와 같이, 본 발명의 실시 예에 따른 그래핀 섬유는, 우수한 전기 전도도 특성이 요구되는 다양한 분야에 활용될 수 있다.In addition, the electrical conductivity of the graphene fiber 70 can be easily controlled by adjusting the type and / or content of the heterogeneous element doped in the graphene fiber. As such, the graphene fiber according to the embodiment of the present invention may be utilized in various fields requiring excellent electrical conductivity characteristics.
이하, 본 발명의 제2 실시 예에 따른 그래핀 섬유의 제조 방법이 설명된다.Hereinafter, a method of manufacturing graphene fiber according to a second embodiment of the present invention will be described.
본 발명의 제1 실시 예에 따른 그래핀 섬유의 제조 방법과 달리, 그래핀 산화물을 포함하는 소스 용액이 이종 원소를 포함하는 베이스 용액 대신 환원제 및 바인더를 포함하는 응고욕에 방사되어 기계적 강도 및 원형도가 우수한 그래핀 섬유의 제조 방법을 개시한다.Unlike the method for producing graphene fibers according to the first embodiment of the present invention, the source solution containing the graphene oxide is spun into a coagulation bath including a reducing agent and a binder instead of the base solution containing a heterogeneous element, thereby providing mechanical strength and a circular shape. Disclosed is a method for producing graphene fibers with excellent degree.
도 4는 본 발명의 제2 실시 예에 따른 그래핀 섬유의 제조 방법을 설명하기 위한 순서도이고, 도 5는 본 발명의 실시 예에 따른 그래핀 섬유의 제조 방법에 사용되는 응고욕에 포함된 바인더의 기능을 설명하기 위한 도면이다.4 is a flowchart illustrating a method for manufacturing graphene fiber according to a second embodiment of the present invention, Figure 5 is a binder included in the coagulation bath used in the method for producing graphene fiber according to an embodiment of the present invention A diagram for explaining the function of the.
본 발명의 제2 실시 예에 따른 그래핀 섬유를 설명함에 있어서, 앞서 도 1 내지 도 3에 도시된 본 발명의 제1 실시 예에 따른 그래핀 섬유의 제조 방법에 대한 설명에 중복되는 부분에 대해서는 도 1 내지 도 3을 참조하기로 한다.In the description of the graphene fiber according to the second embodiment of the present invention, for the portion overlapping with the description of the method for producing the graphene fiber according to the first embodiment of the present invention shown in FIGS. Reference is made to FIGS. 1 to 3.
도 4 및 도 5를 참조하면, 그래핀 산화물 시트(graphene oxide sheet)가 분산된 소스 용액(10)이 준비될 수 있다(S110). 상기 소스 용액(10)은 상기 그래핀 산화물 시트가 용매에 첨가되어 제조될 수 있다. 일 실시 예에 따르면, 상기 용매는, 물 또는 유기 용매일 수 있다. 예를 들어, 상기 유기 용매는, 디메틸석폭사이드(dimethyl sulfoxide, DMSO), 에틸렌글리콜(ethylene glycol), N-메틸-2-피페리돈(n-methyl-2-pyrrolidone, NMP), 디메틸포름아미드(dimethylformamide, DMF) 중 어느 하나일 수 있다. 4 and 5, a source solution 10 in which a graphene oxide sheet is dispersed may be prepared (S110). The source solution 10 may be prepared by adding the graphene oxide sheet to a solvent. According to one embodiment, the solvent may be water or an organic solvent. For example, the organic solvent may be dimethyl sulfoxide (DMSO), ethylene glycol, ethylene glycol, N-methyl-2-pyrrolidone (NMP), dimethylformamide ( dimethylformamide, DMF).
일 실시 예에 따르면, 상기 용매 내 상기 그래핀 산화물 시트의 분산성(dispersibility)을 향상시키기 위해, 상기 그래핀 산화물 시트가 첨가된 상기 용매에 대하여 교반 공정이 수행될 수 있다. According to an embodiment, in order to improve the dispersibility of the graphene oxide sheet in the solvent, a stirring process may be performed on the solvent to which the graphene oxide sheet is added.
일 실시 예에 따르면, 상기 소스 용액(10) 내 상기 그래핀 산화물 시트의 농도에 따라, 후술되는 그래핀 섬유의 신장률이 조절될 수 있다. 구체적으로, 상기 소스 용액(10) 내 상기 그래핀 산화물 시트의 농도에 따라, 상기 그래핀 섬유의 배향도 및 기공도가 조절되어, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. According to one embodiment, according to the concentration of the graphene oxide sheet in the source solution 10, the elongation of the graphene fibers to be described later may be adjusted. Specifically, according to the concentration of the graphene oxide sheet in the source solution 10, the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted.
보다 구체적으로, 상기 소스 용액(10)의 농도가 증가함에 따라, 상기 그래핀 섬유의 배향도는 감소되고, 상기 그래핀 섬유의 기공도는 증가할 수 있다. 이에 따라, 상기 상기 소스 용액(10)의 농도가 증가함에 따라, 상기 그래핀 섬유의 신장률은 증가할 수 있다.More specifically, as the concentration of the source solution 10 is increased, the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the concentration of the source solution 10 is increased, the elongation of the graphene fibers may increase.
일 실시 예에 따르면, 상기 소스 용액(10)은, 폴리머(polymer)를 포함하지 않을 수 있다. 이에 따라, 상기 폴리머에 의해, 상기 그래핀 섬유의 전기 전도도 특성이 저하되는 것을 최소화할 수 있다.According to an embodiment, the source solution 10 may not include a polymer. Accordingly, it is possible to minimize the degradation of the electrical conductivity of the graphene fiber by the polymer.
상기 그래핀 산화물 시트를 포함하는 상기 소스 용액(10)이 환원제 및 바인더를 포함하는 응고욕(20)에 방사되어 산화그래핀 섬유(30)가 수득될 수 있다(S120). The source solution 10 including the graphene oxide sheet is spun into a coagulation bath 20 including a reducing agent and a binder to obtain a graphene oxide fiber 30 (S120).
상기 응고욕(20)은, 상기 그래핀 산화물 시트를 부분적으로(partially) 환원하는 환원제, 및 상기 그래핀 산화물 시트들을 바인딩(binding)하는 바인더(binder)를 동시에 포함할 수 있다. The coagulation bath 20 may simultaneously include a reducing agent that partially reduces the graphene oxide sheet and a binder that binds the graphene oxide sheets.
상기 환원제는, 상기 산화그래핀 섬유(30) 내의 상기 그래핀 산화물 시트를 부분적으로 환원할 수 있다. 부분적으로 환원된 그래핀 산화물 시트들 사이에 파이-파이 스택킹(π-π stacking)이 증가하여, 젤 상태의 상기 그래핀 산화물 섬유(30)의 기계적 강도(예를 들어, 인장 강도)가 증가할 수 있다. 예를 들어, 상기 환원제는, KOH 또는 NaOH 중에서 어느 하나를 포함할 수 있다. The reducing agent may partially reduce the graphene oxide sheet in the graphene oxide fiber 30. Π-π stacking increases between partially reduced graphene oxide sheets, thereby increasing the mechanical strength (eg, tensile strength) of the graphene oxide fibers 30 in a gel state. can do. For example, the reducing agent may include any one of KOH or NaOH.
상기 바인더는, 2가 또는 3가 금속 이온을 포함할 수 있다. 예를 들어, 상기 바인더는, CaCl2, NaCl, 또는 CuSO4 중에서 어느 하나를 포함할 수 있다. 도 5에 도시된 바와 같이, 상기 산화그래핀 섬유(30)의 표면에 oxygen이 존재할 수 있다. 이 경우, 상기 바인더에 포함된 2가 또는 3가 금속 이온(cation)은 산화그래핀 섬유(30) 표면의 oxygen들을 서로 연결시켜, 상기 산화그래핀 섬유(30) 내 상기 그래핀 산화물 시트들의 결합을 강화시킬 수 있다. 이에 따라, 젤 상태의 상기 산화그래핀 섬유(30)의 기계적 강도가 증가할 수 있다. The binder may include divalent or trivalent metal ions. For example, the binder may include any one of CaCl 2 , NaCl, or CuSO 4 . As shown in FIG. 5, oxygen may be present on the surface of the graphene oxide fiber 30. In this case, divalent or trivalent metal ions contained in the binder connect oxygens on the surface of the graphene oxide fiber 30 to each other, thereby bonding the graphene oxide sheets in the graphene oxide fiber 30. Can be strengthened. Accordingly, the mechanical strength of the graphene oxide fiber 30 in the gel state may increase.
도 2에 도시된 바와 같이, 상기 산화그래핀 섬유(30)는, 가이드 롤러(170)에 의해 상기 응고욕(20)이 담긴 상기 제2 용기(150)로부터 분리되어 외부로 나올 수 있고, 상기 와인딩 롤러(190)에 의해 권취될 수 있다. As shown in FIG. 2, the graphene oxide fiber 30 may be separated from the second container 150 containing the coagulation bath 20 by a guide roller 170 and may be released to the outside. It may be wound by a winding roller 190.
상기 산화그래핀 섬유(30)가 환원되어, 상기 그래핀 섬유가 제조될 수 있다(S130). 상기 그래핀 섬유를 제조하는 단계는, 상기 산화그래핀 섬유(30)를 건조하는 단계, 건조된 상기 산화그래핀 섬유(30)를 세척 및 건조하는 단계, 및 세척 및 건조된 상기 산화그래핀 섬유(30)를 환원 용액에 담궈 열처리하는 방법으로, 상기 산화그래핀 섬유(30)를 환원시키는 단계를 포함할 수 있다. 예를 들어, 건조된 상기 산화그래핀 섬유(30)는 알코올성 수용액을 이용하여 세척되고, 50~80℃에서 건조될 수 잇다. 또한, 예를 들어, 상기 환원 용액은 아이오딘화 수소 수용액일 수 있다. The graphene oxide fiber 30 is reduced, the graphene fiber can be produced (S130). The step of preparing the graphene fiber, the step of drying the graphene oxide fiber 30, the step of washing and drying the dried graphene oxide fiber 30, and the washed and dried graphene oxide fiber A method of thermally immersing 30 in a reducing solution may include reducing the graphene oxide fibers 30. For example, the dried graphene oxide fibers 30 may be washed using an alcoholic aqueous solution, and dried at 50 to 80 ° C. Also, for example, the reducing solution may be an aqueous hydrogen iodide solution.
일 실시 예에 따르면, 상기 환원 용액에 의해 환원 공정이 진행된 후, 상기 그래핀 섬유는 알코올성 수용액을 이용하여 세척 및 건조될 수 있다. According to an embodiment, after the reduction process is performed by the reducing solution, the graphene fibers may be washed and dried using an alcoholic aqueous solution.
도 2에 도시된 바와 같이, 상기 제1 용기(100)에 담긴 상기 소스 용액(10)은, 상기 제1 용기(100)에 연결된 방사구(120)를 통해, 상기 응고욕(20)이 담긴 상기 제2 용기(150)로 방사될 수 있다. 상기 소스 용액(10)이 방사되어 형성된 젤 상태의 상기 산화그래핀 섬유(30)는 상기 응고욕(20) 내에서 수력학적으로 다양한 힘을 받게 된다. As shown in FIG. 2, the source solution 10 contained in the first container 100 may contain the coagulation bath 20 through the spinneret 120 connected to the first container 100. It may be radiated to the second container 150. The graphene oxide fibers 30 in the gel state formed by spinning the source solution 10 are subjected to various hydraulic forces in the coagulation bath 20.
상술된 본 발명의 실시 예와 달리, 상기 응고욕(20)이 상기 환원제 또는 상기 바인더 중에서 적어도 어느 하나를 포함하지 않지 않는 경우, 젤 상태의 상기 산화그래핀 섬유(30)의 기계적 강도가 낮을 수 있다. 다시 말하면, 상기 응고욕(20)이 상기 환원제 또는 상기 바인더 중에서 어느 하나만을 포함하는 경우, 상기 산화그래핀 섬유(30)의 기계적 강도가 증가되는 정도가 낮아, 상기 산화그래핀 섬유(30)의 표면은 울퉁불통해지고, 이에 따라, 상기 산화그래핀 섬유(30)로부터 제조되는 상기 그래핀 섬유의 원형도가 낮아질 수 있다.Unlike the above-described embodiment of the present invention, when the coagulation bath 20 does not include at least one of the reducing agent or the binder, the mechanical strength of the graphene oxide fiber 30 in a gel state may be low. have. In other words, when the coagulation bath 20 includes only one of the reducing agent or the binder, the degree of increase in the mechanical strength of the graphene oxide fiber 30 is low, so that The surface becomes rugged and, accordingly, the circularity of the graphene fibers produced from the graphene oxide fibers 30 can be lowered.
하지만, 상술된 바와 같이, 본 발명의 실시 예에 따르면, 상기 응고욕(20)은 상기 환원제 및 상기 바인더를 동시에 포함할 수 있고, 이에 따라, 상기 응고욕(20) 내로 방사된 젤 상태의 상기 산화그래핀 섬유(30)의 기계적 강도가 향상될 수 있다. 이에 따라, 상기 산화그래핀 섬유(30)는 높은 원형도를 가질 수 있고, 상기 산화그래핀 섬유(30)로부터 제조되는 상기 그래핀 섬유 또한 높은 원형도를 가질 수 있다. However, as described above, according to an embodiment of the present invention, the coagulation bath 20 may include the reducing agent and the binder at the same time, and thus, the gel of the gel state spun into the coagulation bath 20 Mechanical strength of the graphene oxide fiber 30 can be improved. Accordingly, the graphene oxide fiber 30 may have a high circularity, and the graphene fiber manufactured from the graphene oxide fiber 30 may also have a high circularity.
또한, 상기 환원제는, 상술된 바와 같이, 상기 산화그래핀 섬유(30) 내의 상기 그래핀 산화물 시트를 부분적으로 환원시킬 수 있다. 이와 달리, 상기 환원제가 상기 그래핀 산화물 시트를 완전히 환원시키는 경우, 상기 산화그래핀 섬유(30) 내의 상기 용매(상기 소스 용액(10)에 포함되었던)가 건조 공정을 통해 외부로 방출되는 것이 용이하지 않다. 하지만, 상술된 바와 같이, 상기 응고욕(20) 내의 상기 환원제는 상기 그래핀 산화물 시트를 부분적으로 환원시킬 수 있고, 이에 따라, 상기 산화그래핀 섬유(30) 내의 상기 용매가 건조 과정을 통해 외부로 용이하게 방출될 수 있다.In addition, the reducing agent, as described above, may partially reduce the graphene oxide sheet in the graphene oxide fiber 30. On the contrary, when the reducing agent completely reduces the graphene oxide sheet, it is easy for the solvent (which was included in the source solution 10) in the graphene oxide fiber 30 to be released to the outside through a drying process. Not. However, as described above, the reducing agent in the coagulation bath 20 may partially reduce the graphene oxide sheet, so that the solvent in the graphene oxide fiber 30 is externally dried through a drying process. Can be easily released.
일 실시 예에 따르면, 상기 산화그래핀 섬유(30)의 권취 속도를 조절함에 따라, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. 도 1 내지 도 3을 참조하여 설명된 바와 같이, 상기 산화그래핀 섬유(30)의 권취 속도에 따라, 상기 산화그래핀 섬유(30) 내의 그래핀 산화물 시트의 배향도가 조절되어, 상기 그래핀 섬유 내의 그래핀 시트의 배향도 및 기공도가 조절되고, 이에 따라 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. According to one embodiment, by adjusting the winding speed of the graphene oxide fiber 30, the elongation of the graphene fiber can be easily adjusted. As described with reference to Figures 1 to 3, according to the winding speed of the graphene oxide fiber 30, the degree of orientation of the graphene oxide sheet in the graphene oxide fiber 30 is adjusted, the graphene fiber The degree of orientation and porosity of the graphene sheet in the inside is controlled, and thus the elongation of the graphene fibers can be easily adjusted.
다시 말하면, 본 발명의 실시 예에 따르면, 상기 산화그래핀 섬유(30)는 상기 환원제 및 상기 바인더를 동시에 포함하는 상기 응고욕(20)에 의해 높은 기계적 강도를 가질 수 있고, 이에 따라, 상기 산화그래핀 섬유(30)의 권취 속도 및 방사 속도를 조절하더라도, 상기 산화그래핀 섬유(30)가 절단되지 않을 수 있다. 결론적으로, 상기 산화그래핀 섬유(30)의 권취 속도 및 방사 속도를 용이하게 조절하여, 상기 그래핀 시트의 신장률, 기공도, 및 배향도가 application에 따라서 용이하게 조절될 수 있다. In other words, according to an embodiment of the present invention, the graphene oxide fiber 30 may have a high mechanical strength by the coagulation bath 20 simultaneously comprising the reducing agent and the binder, and thus, the oxidation Even if the winding speed and spinning speed of the graphene fibers 30 are adjusted, the graphene oxide fibers 30 may not be cut. In conclusion, by easily adjusting the winding speed and spinning speed of the graphene oxide fiber 30, the elongation, porosity, and orientation of the graphene sheet can be easily adjusted according to the application.
이하, 본 발명의 제2 실시 예의 변형 예들에 따른 그래핀 섬유의 제조 방법들이 설명된다.Hereinafter, methods of manufacturing graphene fibers according to modified examples of the second embodiment of the present invention will be described.
도 6a 및 도 6b는 본 발명의 제2 실시 예의 제1 변형 예에 따른 그래핀 섬유의 제조 방법에 따라 제조된 구리 도금된 그래핀 섬유를 설명하기 위한 도면들이다. 6A and 6B are views for explaining copper plated graphene fibers manufactured according to the method for manufacturing graphene fibers according to the first modification of the second embodiment of the present invention.
도 4 및 도 5를 참조하여 설명된 본 발명의 제2 실시 예에 따른 그래핀 섬유의 제조 방법에 구리 도금 공정이 추가적으로 수행되어 본 발명의 제2 실시 예의 제1 변형 예에 따른 그래핀 섬유가 제조될 수 있다. 이에 따라, 상술된 본 발명의 제2 실시 예와 달리, 제2 실시 예의 제1 변형 예에 따른 그래핀 섬유는, 그래핀 섬유의 표면 또는 내부에 형성된 구리 구조체를 더 포함할 수 있다.The graphene fiber according to the first modified example of the second embodiment of the present invention is further performed by performing a copper plating process on the graphene fiber manufacturing method according to the second embodiment of the present invention described with reference to FIGS. 4 and 5. Can be prepared. Accordingly, unlike the second embodiment of the present invention described above, the graphene fibers according to the first modification of the second embodiment may further include a copper structure formed on the surface or inside of the graphene fibers.
구체적으로, 상기 구리 도금된 그래핀 섬유를 제조하는 단계는, 상기 그래핀 섬유를 식각하는 단계, 식각된 상기 그래핀 섬유에 촉매 금속을 결합시키는 단계, 및 구리를 포함하는 용액에 상기 촉매 금속이 결합된 상기 그래핀 섬유를 담그고, 상기 촉매 금속을 이용하여 구리를 환원하는 방법으로, 상기 그래핀 섬유를 구리로 도금하는 단계를 포함할 수 있다. 상기 촉매 금속은 식각된 상기 그래핀 섬유의 표면에 용이하게 결합될 수 있다. Specifically, the step of preparing the copper plated graphene fibers, the step of etching the graphene fibers, bonding the catalyst metal to the etched graphene fibers, and the catalyst metal in a solution containing copper Dipping the bonded graphene fibers, and reducing the copper using the catalytic metal, may comprise the step of plating the graphene fibers with copper. The catalytic metal may be easily bonded to the surface of the graphene fibers etched.
일 실시 예에 따르면, 상기 그래핀 섬유는 50~90℃의 산성 용액(예를 들어, 30% HCl) 또는 염기성 용액(예를 들어, 5~20% NaOH)에 담지하는 방법으로 식각될 수 있다. 예를 들어, 상기 촉매 금속은 Pd이고, 상기 촉매 금속을 상기 그래핀 섬유에 결합시키는 단계는, 0.72M HCl, 0.01M PdCl2 및 0.04M SnCl2 용액에 3~10분 동안 담지하는 방법으로 수행될 수 있다. 이 경우, Sn에 의해 촉매 금속인 Pd 이온이 환원되어, 상기 그래핀 섬유에 결합될 수 있다. 일 실시 예에 따르면, 상기 그래핀 섬유를 구리로 도금하는 단계는, 5g CuSO4, 25g Potassium sodium tartrate, 7g NaOH, 및 10ml formaldehyde을 포함하는 무전해 구리 도금욕에 상기 촉매 결합된 상기 그래핀 섬유를 1~10분 담지하는 방법으로 수행될 수 있다. According to one embodiment, the graphene fibers may be etched by supporting in an acidic solution (eg, 30% HCl) or a basic solution (eg, 5-20% NaOH) at 50 ~ 90 ℃. . For example, the catalyst metal is Pd, and the bonding of the catalyst metal to the graphene fiber is performed by a method of immersing in 0.72M HCl, 0.01M PdCl 2 and 0.04M SnCl 2 solution for 3 to 10 minutes. Can be. In this case, Pd ions, which are catalyst metals, may be reduced by Sn, thereby binding to the graphene fibers. According to one embodiment, the step of plating the graphene fibers with copper, the graphene fibers are catalytically bonded to the electroless copper plating bath containing 5g CuSO 4 , 25g Potassium sodium tartrate, 7g NaOH, and 10ml formaldehyde It can be carried out by a method of supporting 1 to 10 minutes.
도 6a에 도시된 바와 같이, 상기 그래핀 섬유의 단면은, 복수의 그래핀 시트의 응집체(14) 및 그들 사이의 기공(16)을 포함할 수 있다. 본 발명의 제2 실시 예의 제1 변형 예에 따른 구리 도금된 그래핀 섬유는, 복수의 상기 그래핀 시트의 응집체(14) 외에, 상기 그래핀 시트 사이에 제공되는 기공(16) 또는 상기 그래핀 섬유의 표면에 형성된 구리 구조체(18)를 포함할 수 있다. 다시 말하면, 도 6b에 도시된 바와 같이, 상기 구리 구조체(18)는, 상기 그래핀 섬유의 표면의 적어도 일부를 덮거나, 및/또는 상기 그래핀 섬유 내의 상기 기공(16) 중에서 적어도 일부를 전체적으로 또는 부분적으로 채울 수 있다. As shown in FIG. 6A, the cross-section of the graphene fibers may include aggregates 14 of the plurality of graphene sheets and pores 16 therebetween. The copper-plated graphene fibers according to the first modification of the second embodiment of the present invention, in addition to the aggregate 14 of the plurality of graphene sheets, pores 16 provided between the graphene sheets or the graphene Copper structures 18 formed on the surface of the fibers. In other words, as shown in FIG. 6B, the copper structure 18 covers at least a portion of the surface of the graphene fibers and / or at least a portion of the pores 16 in the graphene fibers as a whole. Or partially filled.
상술된 바와 같이, 본 발명의 제2 실시 예의 제1 변형 예에 따른 그래핀 섬유는 상기 그래핀 시트의 응집체(14) 외에, 전도성이 높은 상기 구리 구조체(18)를 더 포함할 수 있다. 이에 따라, 상기 그래핀 섬유의 전도성이 향상될 수 있다. As described above, the graphene fibers according to the first modified example of the second embodiment of the present invention may further include the copper structure 18 having high conductivity, in addition to the aggregate 14 of the graphene sheet. Accordingly, the conductivity of the graphene fiber can be improved.
본 발명의 제2 실시 예의 제2 변형 예에 따르면, 도 4 및 도 5를 참조하여 설명된 본 발명의 제2 실시 예에 따른 그래핀 섬유의 제조 방법에 상기 그래핀 섬유의 표면적을 증가시키기 위한 후처리 공정이 추가적으로 수행되어 본 발명의 제2 실시 예의 제2 변형 예에 따른 그래핀 섬유가 제조될 수 있다.According to a second modified example of the second embodiment of the present invention, the method for producing a graphene fiber according to the second embodiment of the present invention described with reference to FIGS. 4 and 5 for increasing the surface area of the graphene fiber The post-treatment process may be further performed to produce graphene fibers according to the second modification of the second embodiment of the present invention.
보다 구체적으로, 상기 그래핀 섬유가 제조된 후, 상기 그래핀 섬유가 산화 수용액에 담지된 후, 수열 반응이 수행될 수 있다. 이에 따라, 상기 그래핀 섬유의 표면에 미세 기공들이 형성될 수 있다. 상기 그래핀 섬유의 표면에 형성된 상기 미세 기공들에 의해 상기 그래핀 섬유의 표면적이 증가될 수 있고, 이에 따라, 상기 그래핀 섬유를 이용하여 제조된 슈퍼 커패시터의 커패시턴스 값이 향상될 수 있다. More specifically, after the graphene fibers are prepared, after the graphene fibers are supported in an oxidized aqueous solution, a hydrothermal reaction may be performed. Accordingly, fine pores may be formed on the surface of the graphene fiber. The surface area of the graphene fiber may be increased by the micropores formed on the surface of the graphene fiber, and thus, the capacitance value of the super capacitor manufactured using the graphene fiber may be improved.
예를 들어, 상기 산화 수용액은, 과산화수소, DI water, 및 NH4OH를 포함할 수 있고, 상기 수열 반응은 150℃의 공정 온도에서 약 30분 동안 수행될 수 있다. For example, the oxidizing aqueous solution may include hydrogen peroxide, DI water, and NH 4 OH, and the hydrothermal reaction may be performed at a process temperature of 150 ° C. for about 30 minutes.
또한, 본 발명의 제2 실시 예의 제3 변형 예에 따르면, 도 4 및 도 5를 참조하여 설명된 본 발명의 제2 실시 예에 따른 그래핀 섬유의 제조 방법에 따라 그래핀 섬유를 제조하되, 상기 그래핀 산화물 시트 외에 탄소나노튜브를 더 포함하는 상기 소스 용액을 이용하여 그래핀 섬유가 제조될 수 있다. In addition, according to a third modified example of the second embodiment of the present invention, according to the graphene fiber manufacturing method according to the second embodiment of the present invention described with reference to Figures 4 and 5, Graphene fibers may be prepared using the source solution further comprising carbon nanotubes in addition to the graphene oxide sheet.
다시 말해서, 상기 소스 용액에 그래핀 산화물 시트 및 탄소나노튜브를 분산시킨 후, 도 4 및 도 5를 참조하여 설명된 방법으로, 상기 소스 용액을 이용한 방사 공정이 수행되어, 산화그래핀 섬유가 제조될 수 있다. 이 경우, 상기 산화그래핀 섬유는, 상기 그래핀 산화물 시트 및 상기 탄소나노튜브를 포함할 수 있다. 이에 따라, 본 발명의 제2 실시 예의 제3 변형 예에 따른 그래핀 섬유는, 상기 그래핀 산화물 시트가 환원된 그래핀 시트, 및 상기 그래핀 시트 사이에 제공되는 상기 탄소나노튜브를 포함하므로, 기계적 및 전기적 특성이 향상된 상기 그래핀 섬유의 제조 방법이 제공될 수 있다. In other words, after dispersing the graphene oxide sheet and the carbon nanotubes in the source solution, by the method described with reference to Figures 4 and 5, the spinning process using the source solution is carried out to produce a graphene oxide fiber Can be. In this case, the graphene oxide fibers may include the graphene oxide sheet and the carbon nanotubes. Accordingly, since the graphene fibers according to the third modified example of the second embodiment of the present invention, the graphene oxide sheet is reduced graphene sheet, and the carbon nanotube provided between the graphene sheet, There may be provided a method for producing the graphene fiber with improved mechanical and electrical properties.
상술된 방법으로 제조된 본 발명의 제2 실시 예 및 그 변형 예들에 따른 그래핀 섬유는, 전선, 커패시터 등 다양한 소자 및 장치에 사용될 수 있다.The graphene fibers according to the second embodiment of the present invention and modified examples thereof manufactured by the above-described method may be used in various devices and devices such as wires and capacitors.
이하, 본 발명의 제3 실시 예에 따른 그래핀 섬유의 제조 방법이 설명된다.Hereinafter, a method for producing graphene fiber according to a third embodiment of the present invention will be described.
본 발명의 제1 및 제2 실시 예에 따른 그래핀 섬유의 제조 방법과 달리, 그래핀 산화물을 포함하는 소스 용액에 산화제 및 pH 조절제를 첨가시켜, 신장률 제어가 용이한 그래핀 섬유의 제조 방법을 제공한다.Unlike the manufacturing method of the graphene fibers according to the first and second embodiments of the present invention, by adding an oxidizing agent and a pH adjuster to the source solution containing the graphene oxide, a method for producing the graphene fibers can be easily controlled to provide.
먼저, 도 7 내지 도 10을 참조하여, 본 발명의 제3 실시 예에 따른 그래핀 섬유의 제조를 위한 소스 용액의 제조 방법을 상세하게 개시한다.First, referring to FIGS. 7 to 10, a method of preparing a sauce solution for producing graphene fibers according to a third embodiment of the present invention will be described in detail.
도 7은 본 발명의 제3 실시 예에 따른 그래핀 섬유의 제조를 위한 소스 용액의 제조 방법을 설명하기 위한 순서도이고, 도 8은 본 발명의 제3 실시 예에 따른 그래핀 섬유의 제조를 위한 소스 용액의 제조 방법을 설명하기 위한 도면이고, 도 9는 도 8의 A를 확대한 도면으로, 본 발명의 제3 실시 예에 따른 공극이 형성된 산화그래핀을 설명하기 위한 도면이고, 도 10는 도 9의 B를 확대한 도면으로, 본 발명의 제3 실시 예에 따른 공극이 형성된 산화그래핀의 상세한 구조를 설명하기 위한 도면이다.7 is a flowchart illustrating a method for preparing a source solution for the production of graphene fibers according to a third embodiment of the present invention, Figure 8 is a graph for manufacturing the graphene fiber according to a third embodiment of the present invention 9 is a view for explaining a method of preparing a source solution, FIG. 9 is an enlarged view of A of FIG. 8, and is a view for explaining graphene oxide having voids according to a third embodiment of the present invention, and FIG. 9B is an enlarged view illustrating a detailed structure of graphene oxide having voids according to a third embodiment of the present invention.
도 7 내지 도 10을 참조하면, 산화그래핀(3), 산화제(5), 및 pH 조절제(7)가 준비될 수 있다(S100).7 to 10, the graphene oxide 3, the oxidant 5, and the pH adjuster 7 may be prepared (S100).
일 실시 예에 따르면, 산화그래핀(3)은, 시트(sheet) 형태일 수 있다. 또한, 일 실시 예에 따르면, 상기 시트 형태의 산화그래핀(3)은, 산화그래핀(3)을 구성하는 산화그래핀(3) 입자간의 불규칙적인 배열에 의해 형성된 미세 공극을 포함할 수 있다.According to an embodiment, the graphene oxide 3 may be in the form of a sheet. In addition, according to an embodiment, the graphene oxide 3 in the form of a sheet may include fine pores formed by an irregular arrangement between the graphene oxide particles constituting the graphene oxide 3. .
상기 산화제(5)는, 자신을 환원시키는 동시에 산화그래핀(3)을 산화시키는 물질로, 산화그래핀(3) 내 공극(pore, 4)을 형성시킬 수 있다. 일 실시 예에 따르면, 상기 산화제(5)는, 산화력이 큰 상기 산화제(5)인, 과산화수소(H2O2)일 수 있다. The oxidant 5 is a substance that reduces itself and oxidizes the graphene oxide 3, and may form pores 4 in the graphene oxide 3. According to an embodiment, the oxidant 5 may be hydrogen peroxide (H 2 O 2 ), which is the oxidant 5 having a high oxidizing power.
상기 pH 조절제(7)는, 산화그래핀(3) 및 상기 산화제(5)가 반응할 수 있는 pH 환경을 조성할 수 있다. 일 실시 예에 따르면, 상기 pH 조절제(7)는, LiOH, NaOH, KOH, NH4OH, Ca(OH)2, Sr(OH)2, CsOH, Ba(OH)2, Mg(OH)2, Cd(OH)2, La(OH)3, In(OH)3, Nd(OH)3, Gd(OH)3, FeOOH, RbOH, Al(OH)3, Ni(OH)2, NaF, K2Co3, 또는 NH4ClO 중 어느 하나일 수 있다.The pH regulator 7 may create a pH environment in which the graphene oxide 3 and the oxidant 5 may react. According to one embodiment, the pH adjuster (7), LiOH, NaOH, KOH, NH 4 OH, Ca (OH) 2 , Sr (OH) 2 , CsOH, Ba (OH) 2 , Mg (OH) 2 , Cd (OH) 2 , La (OH) 3 , In (OH) 3 , Nd (OH) 3 , Gd (OH) 3 , FeOOH, RbOH, Al (OH) 3 , Ni (OH) 2 , NaF, K 2 Co 3 , or NH 4 ClO.
산화그래핀(3), 상기 산화제(5), 및 pH 조절제(7)가 용매(8)에 첨가된 후, 반응하여 상기 공극(4)을 갖는 산화그래핀(3)이 분산된 소스 용액(10)이 제조될 수 있다(S200). After the graphene oxide (3), the oxidizing agent (5), and the pH adjusting agent (7) are added to the solvent (8), and reacted to disperse the source solution in which the graphene oxide (3) having the pores (4) is dispersed ( 10) can be manufactured (S200).
상술된 바와 같이, 일 실시 예에 따르면, 상기 산화제(3)는, 과산화수소(H2O2)일 수 있다. 아래 [식 1] 및 [식 2]에 개시된 바와 같이, 상기 용매(8)에 산화그래핀(3), 상기 산화제(5)인 과산화수소(H2O2), 및 상기 pH 조절제(7)가 첨가되는 경우, 과산화수소(H2O2)와 상기 pH 조절제(7)에 의해 제공된 수산화이온(OH-)이 서로 반응하여, HO2 - 이온 및 물(H2O)이 생성될 수 있다. 또한, HO2 - 이온은 과산화수소(H2O2)와 반응하여 ·OH 라디칼을 생성할 수 있다. ·OH 라디칼은, 산화그래핀(3)을 산화시키므로, 상기 시트 형태의 산화그래핀(3) 내에 상기 공극(4)을 형성시킬 수 있다.As described above, according to an embodiment, the oxidant 3 may be hydrogen peroxide (H 2 O 2 ). As disclosed in the following [Formula 1] and [Formula 2], in the solvent 8, graphene oxide (3), hydrogen peroxide (H 2 O 2 ), which is the oxidant (5), and the pH regulator (7) When added, hydrogen peroxide (H 2 O 2 ) and hydroxide ions (OH ) provided by the pH adjuster 7 may react with each other to generate HO 2 ions and water (H 2 O). In addition, HO 2 ions may react with hydrogen peroxide (H 2 O 2 ) to produce · OH radicals. Since the OH radical oxidizes the graphene oxide 3, the voids 4 can be formed in the graphene oxide 3 in the sheet form.
[식 1][Equation 1]
H2O2 + OH- → HO2 - + H2O H 2 O 2 + OH - → HO 2 - + H 2 O
[식 2][Equation 2]
H2O2 + HO2 - → ·OH + ·O2 - H 2 O 2 + HO 2 - → · OH + · O 2 -
일 실시 예에 따르면, 상기 소스 용액(10) 내 상기 산화제(5)의 함량이 증가할수록, 산화그래핀(3)의 상기 공극률(porosity)이 증가할 수 있다. 상기 소스 용액(10) 내 상기 산화제(5)의 함량이 증가할수록, 상기 산화제(5) 및 상기 pH 조절제(7)의 반응 생성물인 ·OH 라디칼의 양이 증가될 수 있다. 이에 따라, 상기 산화그래핀(3) 내 상기 공극(4)의 수가 증가되어, 상기 시트 형태의 산화그래핀(3)의 상기 공극률이 증가될 수 있다.According to an embodiment, as the content of the oxidant 5 in the source solution 10 increases, the porosity of the graphene oxide 3 may increase. As the content of the oxidant 5 in the source solution 10 increases, the amount of · OH radicals that are reaction products of the oxidant 5 and the pH adjuster 7 may increase. Accordingly, the number of the pores 4 in the graphene oxide 3 may be increased, thereby increasing the porosity of the graphene oxide 3 in the form of a sheet.
일 실시 예에 따르면, 상기 소스 용액(10) 내 상기 산화제(3)의 함량은, 0.1 내지 40wt%일 수 있다. 만약, 상기 소스 용액(10) 내 상기 산화제(3)의 함량이 40wt% 이상인 경우, 산화그래핀(3)을 산화시켜 산화그래핀(3) 내 상기 공극(4)을 형성시키는 ·OH 라디칼의 산화그래핀(3)에 대한 접근이 제한되어, 산화그래핀(3) 내 상기 공극(4)을 형성시키는 반응에 대한 반응 효율이 감소될 수 있다. 또한, 산화그래핀(3)은 응집되어, 상기 소스 용액(10) 내에 침전될 수 있다.According to one embodiment, the content of the oxidant 3 in the source solution 10 may be 0.1 to 40wt%. If the content of the oxidant (3) in the source solution (10) is more than 40wt%, the OH radical which oxidizes the graphene oxide (3) to form the pores (4) in the graphene oxide (3) Access to graphene oxide 3 is restricted, so that the reaction efficiency for the reaction forming the voids 4 in graphene oxide 3 can be reduced. In addition, the graphene oxide 3 may be aggregated and precipitated in the source solution 10.
일 실시 예에 따르면, 상기 소스 용액(10)의 pH가 높을수록, 산화그래핀(3)의 상기 공극률이 증가될 수 있다. 상기 소스 용액(10)에 첨가되는 상기 pH 조절제의 종류 및/또는 함량에 따라, 상기 용매(8) 내 산화그래핀(3), 상기 산화제(5), 및 상기 pH 조절제(7)이 반응하는 pH 환경이 조절될 수 있다. 상기 소스 용액(10)에 첨가되는 상기 pH 조절제의 염기성도가 높거나, 상기 소스 용액(10)에 첨가되는 상기 pH 조절제의 함량이 증가할수록, 상기 산화제(5)와 반응하는 상기 pH 조절제(7)로부터 제공되는 수산화이온(OH-)의 양이 증가되어, 상기 산화제(5) 및 상기 pH 조절제(7)의 반응 생성물인 ·OH 라디칼의 양이 증가될 수 있다. 이에 따라, 산화그래핀(3) 내 상기 공극(4)의 수가 증가되어, 상기 시트 형태의 산화그래핀(3)의 상기 공극률이 증가될 수 있다.According to one embodiment, as the pH of the source solution 10 is higher, the porosity of the graphene oxide 3 may be increased. According to the type and / or content of the pH adjusting agent added to the source solution 10, the graphene oxide 3, the oxidizing agent 5, and the pH adjusting agent 7 in the solvent 8 react. The pH environment can be controlled. The pH regulator (7) reacts with the oxidant (5) as the basicity of the pH regulator added to the source solution (10) is higher or the content of the pH regulator added to the source solution (10) increases. The amount of hydroxide ions (OH-) provided from) may be increased, thereby increasing the amount of · OH radicals that are reaction products of the oxidant (5) and the pH adjuster (7). Accordingly, the number of the pores 4 in the graphene oxide 3 may be increased, so that the porosity of the graphene oxide 3 in the form of the sheet may be increased.
일 실시 예에 따르면, 상기 소스 용액(10)의 pH는, 5 내지 12일 수 있다. 만약, 상기 소스 용액(10)의 pH가 13 이상인 경우, 상술된 바와 같이, 산화그래핀(3)을 산화시켜 산화그래핀(3) 내 상기 공극(4)을 형성시키는 ·OH 라디칼의 산화그래핀(3)에 대한 접근이 제한되어, 산화그래핀(3) 내 상기 공극(4)을 형성시키는 반응에 대한 반응 효율이 감소될 수 있다. 또한, 산화그래핀(3)은 응집되어, 상기 소스 용액(10) 내에 침전될 수 있다.According to one embodiment, the pH of the source solution 10 may be 5 to 12. If the pH of the source solution 10 is 13 or more, as described above, the graphene oxide of the OH radical which oxidizes the graphene oxide 3 to form the pores 4 in the graphene oxide 3. Access to the fins 3 is limited, so that the reaction efficiency for the reaction forming the voids 4 in the graphene oxide 3 can be reduced. In addition, the graphene oxide 3 may be aggregated and precipitated in the source solution 10.
일 실시 예에 따르면, 상기 용매(8) 내 산화그래핀(3), 상기 산화제(5), 및 상기 pH 조절제(7)의 반응 온도가 높을수록, 산화그래핀(3)의 상기 공극률이 증가될 수 있다. 다시 말해서, 상기 반응 온도가 높을수록, 상기 [식 1] 및 [식 2]에 개시된 반응 메커니즘에 따라, 산화그래핀(3)에 상기 공극(4)을 형성시키는 ·OH 라디칼의 생성이 촉진될 수 있다. 이에 따라, 산화그래핀(3) 내 상기 공극(4)의 수가 증가되어, 상기 시트 형태의 산화그래핀(3)의 상기 공극률이 증가될 수 있다.According to one embodiment, the higher the reaction temperature of the graphene oxide (3), the oxidizing agent (5), and the pH adjuster (7) in the solvent (8), the higher the porosity of the graphene oxide (3) Can be. In other words, the higher the reaction temperature, the more the reaction mechanism disclosed in [Formula 1] and [Formula 2], which promotes the production of · OH radicals that form the pores 4 in the graphene oxide 3. Can be. Accordingly, the number of the pores 4 in the graphene oxide 3 may be increased, so that the porosity of the graphene oxide 3 in the form of the sheet may be increased.
일 실시 예에 따르면, 상기 반응 온도는, 상온(25℃) 내지 250℃일 수 있다. 상온 환경에서 산화그래핀(3)의 환원 반응을 수반하지 않고, 산화그래핀(3) 내에 상기 공극(4)이 형성될 수 있다. 이에 따라, 고온 환경 조성에 요구되는 공정을 간소화할 수 있어, 공정 비용을 줄일 수 있고, 분산성이 우수한 상기 공극(4)이 형성된 산화그래핀(3)이 제공될 수 있다.According to an embodiment, the reaction temperature may be room temperature (25 ° C.) to 250 ° C. The voids 4 may be formed in the graphene oxide 3 without accompanying a reduction reaction of the graphene oxide 3 in a room temperature environment. Accordingly, the process required for the composition of the high temperature environment can be simplified, the process cost can be reduced, and the graphene oxide 3 having the voids 4 having excellent dispersibility can be provided.
상술된 바와 같이, 상기 소스 용액(10) 내 상기 산화제(5)의 함량, 상기 소스 용액(10)의 pH, 및 상기 반응 온도를 조절함에 따라, 상기 소스 용액(10)에 분산된 산화그래핀(3)의 상기 공극률이 용이하게 조절될 수 있다. 산화그래핀(3)의 상기 공극률은, 산화그래핀(3)의 전기적, 열적, 광학적, 및 기계적 물성을 제어하는 중요한 요소이다. 이에 따라, 본 발명의 실시 예에 따르면, 촉매의 사용, 또는 외부 에너지의 유입 없이, 상기 소스 용액(10) 제조 시 사용되는 물질들의 함량, 및/또는 온도 조건을 조절하는 간단한 방법으로, 산화그래핀(3)의 상기 공극률을 조절하여, 산화그래핀(3)의 전기적, 열적, 광학적, 및 기계적 물성을 용이하게 제어할 수 있다. As described above, graphene oxide dispersed in the source solution 10 is adjusted by adjusting the content of the oxidant 5 in the source solution 10, the pH of the source solution 10, and the reaction temperature. The porosity of (3) can be easily adjusted. The porosity of the graphene oxide 3 is an important factor controlling the electrical, thermal, optical, and mechanical properties of the graphene oxide 3. Accordingly, according to an embodiment of the present invention, without the use of a catalyst or the inflow of external energy, in a simple way to adjust the content of the materials used in the preparation of the source solution 10, and / or temperature conditions, By adjusting the porosity of the pin 3, it is possible to easily control the electrical, thermal, optical, and mechanical properties of the graphene oxide (3).
또한, 상기 소스 용액(10)을 제조하는 단계에서, 산화그래핀(3)의 환원 반응을 수반하지 않고, 산화그래핀(3)에 상기 공극(4)이 형성되므로, 상기 공극(4)이 형성되지 않은 산화그래핀(3)과 마찬가지로, 산화그래핀(3)은 상기 소스 용액(10) 내에서 높은 분산성을 유지할 수 있다. 상기 소스 용액(10) 내 산화그래핀(3)의 높은 분산성으로 인해, 산화그래핀(3)에 대한 작용기화, 복합화, 및 도핑(doping) 등의 후속 공정이 가능하고, 액정 특성을 가질 수 있다. 이에 따라, 상술된 방법으로, 산화그래핀(3)의 상기 공극률을 조절하고, 산화그래핀(3)에 대하여 상기 후속 공정을 수행함으로써, 산화그래핀(3)의 물성을 용이하게 제어하고, 산화그래핀(3)의 물성을 효과적으로 향상시킬 수 있다.In addition, in the step of preparing the source solution 10, since the pores 4 are formed in the graphene oxide 3 without accompanying the reduction reaction of the graphene oxide 3, the pores 4 are Like the graphene oxide 3 not formed, the graphene oxide 3 can maintain high dispersibility in the source solution 10. Due to the high dispersibility of the graphene oxide 3 in the source solution 10, subsequent processes such as functionalization, complexation, and doping with the graphene oxide 3 are possible, and have liquid crystal properties. Can be. Accordingly, by controlling the porosity of the graphene oxide (3) by the method described above, by performing the subsequent process for the graphene oxide (3), it is easy to control the physical properties of the graphene oxide (3), The physical properties of the graphene oxide 3 can be effectively improved.
일 실시 예에 따르면, 상기 공극(4)을 갖는 상기 소스 용액(10)을 제조하는 단계 후, 상기 소스 용액(10) 내의 미 반응 물질이 제거될 수 있다. 일 실시 예에 따르면, 상기 소스 용액(10) 내 상기 미 반응 물질은, 상기 반응에 참여하지 않은 상기 산화제(5), 및 상기 pH 조절제(7)를 포함할 수 있다. According to one embodiment, after preparing the source solution 10 having the voids 4, the unreacted material in the source solution 10 may be removed. According to one embodiment, the unreacted material in the source solution 10 may include the oxidant (5), and the pH regulator (7) that does not participate in the reaction.
일 실시 예에 따르면, 상기 소스 용액(10) 내 분산된 상기 공극(4)이 형성된 산화그래핀(3)은, 파우더(powder) 형태로 수득될 수 있다. 일 실시 예를 따르면, 상기 파우더 형태의 상기 공극(4)이 형성된 산화그래핀(3)을 수득하는 방법은, 특별히 한정하지 않는다. 예를 들어, 상기 파우더 형태의 상기 공극(4)이 형성된 산화그래핀(3)을 수득하기 위해, 투석막, 원심분리, 상분리, 진공필터, 또는 동결건조 중 어느 하나가 사용될 수 있다.According to an embodiment, the graphene oxide 3 having the pores 4 dispersed in the source solution 10 may be obtained in the form of powder. According to one embodiment, the method for obtaining the graphene oxide 3 in which the pore 4 is formed in the powder form is not particularly limited. For example, in order to obtain graphene oxide 3 having the pore 4 in the form of powder, any one of dialysis membrane, centrifugation, phase separation, vacuum filter, or lyophilization may be used.
도 7 내지 도 10을 참조하여 설명된 방법으로 제조된 소스 용액을 이용하여, 본 발명의 제3 실시 예에 따른 그래핀 섬유의 제조 방법을 상세하게 개시한다.A method of preparing graphene fibers according to a third embodiment of the present invention will be described in detail using a source solution prepared by the method described with reference to FIGS. 7 to 10.
도 11은 본 발명의 제3 실시 예에 따른 그래핀 섬유의 제조 방법을 설명하기 위한 순서도이다.11 is a flowchart illustrating a method for manufacturing graphene fiber according to a third embodiment of the present invention.
본 발명의 제3 실시 예에 따른 그래핀 섬유를 설명함에 있어서, 앞서 도 1 내지 도 10에 도시된 본 발명의 제1 및 제2 실시 예에 따른 그래핀 섬유의 제조 방법에 대한 설명에 중복되는 부분에 대해서는 도 1 내지 도 10을 참조하기로 한다.In describing the graphene fibers according to the third embodiment of the present invention, the description of the manufacturing method of the graphene fibers according to the first and second embodiments of the present invention shown in FIGS. For the part, reference is made to FIGS. 1 to 10.
도 11을 참조하면, 산화그래핀(3)이 분산된 소스 용액(10)이 준비될 수 있다(S1000). 산화그래핀(3)이 준비된 상기 소스 용액(10)을 준비하는 단계는, 도 7 내지 도 10을 참조하여 설명된 상기 소스 용액(10)의 제조 방법과 동일할 수 있다.Referring to FIG. 11, a source solution 10 in which graphene oxide 3 is dispersed may be prepared (S1000). Preparing the source solution 10 prepared with graphene oxide 3 may be the same as the method of preparing the source solution 10 described with reference to FIGS. 7 to 10.
일 실시 예에 따르면, 상기 소스 용액(10) 내 상기 산화제(5)의 함량, 상기 소스 용액(10)의 pH, 및 상기 반응 온도에 따라, 산화그래핀(3) 내 상기 공극률이 조절될 수 있다.According to an embodiment, the porosity in the graphene oxide 3 may be adjusted according to the content of the oxidant 5 in the source solution 10, the pH of the source solution 10, and the reaction temperature. have.
일 실시 예에 따르면, 상기 소스 용액(10) 내 상기 산화제(5)의 함량이 증가할수록, 상기 소스 용액(10)의 pH가 높을수록, 상기 반응 온도가 높을수록, 산화그래핀(3)의 상기 공극률이 증가될 수 있다.According to one embodiment, as the content of the oxidant (5) in the source solution 10 increases, the higher the pH of the source solution 10, the higher the reaction temperature, the graphene oxide (3) The porosity can be increased.
또한, 일 실시 예에 따르면, 상기 소스 용액(10) 내 산화그래핀(3)의 농도에 따라, 후술되는 그래핀 섬유의 신장률이 조절될 수 있다. 구체적으로, 상기 소스 용액(10) 내 산화그래핀(3)의 농도에 따라, 상기 그래핀 섬유의 배향도 및 공극률이 조절되어, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. In addition, according to one embodiment, according to the concentration of the graphene oxide (3) in the source solution 10, the elongation of the graphene fibers to be described later can be adjusted. Specifically, according to the concentration of the graphene oxide (3) in the source solution 10, the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted.
일 실시 예에 따르면, 상기 소스 용액(10)의 농도가 증가함에 따라, 상기 그래핀 섬유의 배향도는 감소되고, 상기 그래핀 섬유의 공극률은 증가할 수 있다. 이에 따라, 상기 소스 용액(10)의 농도가 증가함에 따라, 상기 그래핀 섬유의 신장률은 증가할 수 있다.According to one embodiment, as the concentration of the source solution 10 is increased, the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the concentration of the source solution 10 increases, the elongation rate of the graphene fibers may increase.
상기 이종 원소를 포함하는 베이스 용액(20)으로 상기 소스 용액(10)이 방사되어, 산화그래핀 섬유(30)가 제조될 수 있다(S2000). 일 실시 예에 따르면, 상기 베이스 용액(20)은, 상기 이종 원소를 포함하는 염(salt)이 용매에 첨가되어 제조될 수 있다. 일 실시 예에 따르면, 상기 이종 원소를 포함하는 염은, 탄소(C) 이외의 원소를 포함하는 염으로, 질소(N)계 염, 황(S)계 염, 불소(F)계 염, 또는 요오드(I)계 염 중 어느 하나일 수 있다. The source solution 10 may be spun into the base solution 20 including the dissimilar elements, and thus, the graphene oxide fiber 30 may be manufactured (S2000). According to one embodiment, the base solution 20 may be prepared by adding a salt containing the heterogeneous element to a solvent. According to one embodiment, the salt containing a heterogeneous element is a salt containing an element other than carbon (C), nitrogen (N) salt, sulfur (S) salt, fluorine (F) salt, or It may be any one of iodine (I) salts.
일 실시 예에 따르면, 상기 베이스 용액(20)은, 응고제(coagulant)를 더 포함할 수 있다. 상기 베이스 용액(20) 내에 상기 소스 용액(10)이 방사되어 제조된 상기 산화그래핀 섬유는, 상기 베이스 용액(20) 내에 포함된 상기 응고제에 의해 응고될 수 있다.According to one embodiment, the base solution 20 may further include a coagulant. The graphene oxide fiber prepared by spinning the source solution 10 in the base solution 20 may be solidified by the coagulant included in the base solution 20.
도 2를 참조하여 설명된 바와 같이, 제1 용기(100)에 담긴 상기 소스 용액(10)은, 상기 제1 용기(100)에 연결된 방사구(120)를 통해, 상기 베이스 용액(20)이 담긴 제2 용기(150)로 방사될 수 있다. 상기 베이스 용액(20) 내로 상기 소스 용액(10)이 방사되는 과정에서, solvent exchange 현상에 의해, 상기 이종 원소를 포함하는 염은, 상기 산화그래핀 섬유 내로 확산될 수 있다.As described with reference to FIG. 2, the source solution 10 contained in the first container 100 is connected to the base solution 20 through a spinneret 120 connected to the first container 100. It may be radiated to the second container 150 contained therein. In the process of spinning the source solution 10 into the base solution 20, by the solvent exchange phenomenon, the salt containing the heterogeneous element may be diffused into the graphene oxide fibers.
일 실시 예에 따르면, 상기 베이스 용액(20) 내로 방사되는 상기 소스 용액(10)의 속도에 따라, 후술되는 상기 그래핀 섬유의 신장률이 조절될 수 있다. 구체적으로, 상기 소스 용액(10)의 방사 속도에 따라, 상기 그래핀 섬유의 배향도 및 공극률이 조절되어, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. According to one embodiment, the elongation of the graphene fibers to be described later may be adjusted according to the speed of the source solution 10 that is radiated into the base solution 20. Specifically, according to the spinning speed of the source solution 10, the degree of orientation and porosity of the graphene fibers are adjusted, the elongation of the graphene fibers can be easily adjusted.
일 실시 예에 따르면, 상기 소스 용액(10)의 방사 속도가 감소함에 따라, 상기 그래핀 섬유의 배향도는 감소되고, 상기 그래핀 섬유의 공극률은 증가할 수 있다. 이에 따라, 상기 소스 용액(10)의 방사 속도가 감소함에 따라, 상기 그래핀 섬유의 신장률은 증가할 수 있다.According to one embodiment, as the spinning speed of the source solution 10 decreases, the degree of orientation of the graphene fibers is reduced, the porosity of the graphene fibers may be increased. Accordingly, as the spinning speed of the source solution 10 decreases, the elongation of the graphene fibers may increase.
또한, 상기 베이스 용액(20)에 포함되는 상기 이종 원소의 종류 및/또는 함량에 따라, 상기 그래핀 섬유의 전기 전도도가 조절될 수 있다. 구체적으로, 산화그래핀 섬유 내에 확산된 상기 이종 원소는, 후술되는 S4000 단계의 열처리(thermal treatment) 단계에서 상기 그래핀 섬유에 도핑될 수 있다. 이에 따라, S2000 단계에서 상기 베이스 용액(20) 내에 포함된 상기 이종 원소의 종류 및/또는 함량을 조절함으로써, 상기 그래핀 섬유의 전기 전도도가 용이하게 조절될 수 있다.In addition, according to the type and / or content of the heterogeneous elements included in the base solution 20, the electrical conductivity of the graphene fibers can be adjusted. Specifically, the heterogeneous elements diffused into the graphene oxide fibers may be doped into the graphene fibers in the thermal treatment step of step S4000 described later. Accordingly, by controlling the type and / or content of the heterogeneous elements included in the base solution 20 in step S2000, the electrical conductivity of the graphene fibers can be easily adjusted.
상기 베이스 용액(20)으로부터 상기 산화그래핀 섬유가 분리, 세척, 및 건조됨으로써, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 수득될 수 있다(S3000). 상기 산화그래핀 섬유는, 가이드 롤러(170)에 의해 상기 베이스 용액(20)이 담긴 상기 제2 용기(150)로부터 분리되어 외부로 나올 수 있다. 상기 베이스 용액(20)으로부터 분리된 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 상기 응고제를 포함할 수 있다. By separating, washing, and drying the graphene oxide fibers from the base solution 20, the graphene oxide fibers 30 including the dissimilar elements may be obtained (S3000). The graphene oxide fibers may be separated from the second container 150 containing the base solution 20 by the guide rollers 170 and may come out to the outside. The graphene oxide fiber 30 including the heterogeneous element separated from the base solution 20 may include the coagulant.
이에 따라, 세척 공정에 의해, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)에 잔존하는 상기 응고제의 적어도 일부가 제거될 수 있다. 일 실시 예에 따르면, 상기 세척 공정에 사용되는 세척 용액은, 알코올성 수용액일 수 있다.Accordingly, at least a part of the coagulant remaining in the graphene oxide fiber 30 including the dissimilar element may be removed by the washing process. According to one embodiment, the washing solution used in the washing process may be an alcoholic aqueous solution.
일 실시 예에 따르면, 상기 분리 및 세척 공정을 통해, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)에 포함된 수분이 공기 중에서 자연 건조될 수 있다.According to one embodiment, through the separation and washing process, the moisture contained in the graphene oxide fiber 30 including the heterogeneous element may be naturally dried in the air.
또한, 가열 공정을 통해, 공기 중에서 자연 건조된 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 이차적으로 건조될 수 있다. 다시 말해서, 상기 가열 공정을 통해, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)에 잔존하는 물의 적어도 일부가 제거될 수 있다. In addition, through the heating process, the graphene oxide fibers 30 including the heterogeneous elements naturally dried in air may be secondaryly dried. In other words, at least a portion of the water remaining in the graphene oxide fiber 30 including the dissimilar element may be removed through the heating process.
일 실시 예에 따르면, 상기 가열 공정에 사용되는 가열기의 형태로는, 그 종류를 특별히 한정하지 않는다. 예를 들어, 상기 가열기는, 히터(heater), 핫 플레이트(hot plate), 또는 가열 코일(heating coil) 중 어느 하나일 수 있다. According to one embodiment, the type of heater used in the heating step is not particularly limited. For example, the heater may be any one of a heater, a hot plate, or a heating coil.
일 실시 예에 따르면, 공기 중에서 자연 건조된 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 상기 가열기에 의해 70 내지 80℃의 온도로 가열되어, 상기 이종 원소를 포함하는 산화그래핀 섬유(30) 내부에 잔존하는 물의 적어도 일부가 제거될 수 있다.According to one embodiment, the graphene oxide fiber 30 including the hetero element naturally dried in air is heated to a temperature of 70 to 80 ℃ by the heater, the graphene oxide fiber comprising the hetero element At least a portion of the water remaining inside 30 may be removed.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)를 수득하는 단계에서, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 상기 가열 공정을 통해 건조되는 동시에, 권취될 수 있다. 도 2에서 알 수 있듯이, 상기 세척 공정이 종료된 후, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 상기 건조 공정이 수행되는 동시에, 와인딩 롤러(190)에 의해 권취될 수 있다.According to one embodiment, in the step of obtaining the graphene oxide fiber 30 containing the dissimilar element, the graphene oxide fiber 30 including the dissimilar element is dried at the same time through the heating process, and wound up Can be. As can be seen in FIG. 2, after the washing process is finished, the graphene oxide fibers 30 including the heterogeneous elements may be wound by the winding roller 190 while the drying process is performed.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 권취 속도를 조절함에 따라, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. 구체적으로, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 권취 속도에 따라, 상기 그래핀 섬유의 배향도 및 공극률이 조절되어, 상기 그래핀 섬유의 신장률이 용이하게 조절될 수 있다. According to one embodiment, by controlling the winding speed of the graphene oxide fiber 30 including the heterogeneous element, the elongation of the graphene fiber can be easily adjusted. Specifically, according to the winding speed of the graphene oxide fiber 30 including the dissimilar element, the degree of orientation and porosity of the graphene fiber is adjusted, the elongation of the graphene fiber can be easily adjusted.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 상기 권취 속도보다 상기 소스 용액(10)의 방사 속도가 큰 경우, 상기 그래핀 섬유의 배향도는 감소되고, 상기 그래핀 섬유의 공극률은 증가할 수 있다. 이에 따라, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 상기 권취 속도보다 상기 소스 용액(10)의 방사 속도가 큰 경우, 상기 그래핀 섬유의 신장률은 증가할 수 있다.According to an embodiment, when the spinning speed of the source solution 10 is greater than the winding speed of the graphene oxide fiber 30 including the dissimilar element, the degree of orientation of the graphene fibers is reduced, and the graphene The porosity of the fibers can increase. Accordingly, when the spinning speed of the source solution 10 is greater than the winding speed of the graphene oxide fiber 30 including the dissimilar element, the stretch rate of the graphene fiber may increase.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 건조대를 통해 건조될 수 있다. 이 경우, 상기 건조대의 길이를 조절함으로써, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 신장률이 용이하게 조절될 수 있다. According to an embodiment, the graphene oxide fiber 30 including the heterogeneous element may be dried through a drying rack. In this case, by adjusting the length of the drying table, the elongation of the graphene oxide fiber 30 including the heterogeneous element can be easily adjusted.
일 실시 예에 따르면, 상기 건조대의 길이가 상기 건조대 상에 배치되는 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 길이보다 짧은 경우, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 건조됨에 따라 상기 건조대의 축 방향으로 발생되는 장력에 의한 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 수축 현상이 상대적으로 적게 발생할 수 있다. 이에 따라, 상기 그래핀 섬유의 배향도는 감소되고, 상기 그래핀 섬유의 공극률은 증가할 수 있다. 결과적으로, 상기 건조대의 길이가 상기 건조대 상에 배치되는 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 길이보다 짧은 경우, 상기 그래핀 섬유의 신장률은 증가할 수 있다.According to one embodiment, when the length of the drying rod is shorter than the length of the graphene oxide fiber 30 including the heterogeneous element disposed on the drying rod, the graphene oxide fiber 30 including the heterogeneous element is As it is dried, the shrinkage phenomenon of the graphene oxide fiber 30 including the dissimilar element due to the tension generated in the axial direction of the drying table may occur relatively less. Accordingly, the degree of orientation of the graphene fibers may be reduced, and the porosity of the graphene fibers may be increased. As a result, when the length of the drying table is shorter than the length of the graphene oxide fiber 30 including the dissimilar elements disposed on the drying table, the elongation of the graphene fibers may increase.
건조된 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 열처리되어, 상기 이종 원소가 도핑(doping)된 그래핀 섬유가 제조될 수 있다(S4000). 구체적으로, 상기 열처리를 통해, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 상기 산화그래핀 섬유가 상기 그래핀 섬유로 환원되는 동시에, 상기 산화그래핀 섬유(30)에 포함된 상기 이종 원소가 상기 산화그래핀 섬유(30)에 도핑될 수 있다.The dried graphene oxide fiber 30 including the heterogeneous element is heat-treated, and thus, the graphene fiber doped with the heterogeneous element may be manufactured (S4000). Specifically, through the heat treatment, the graphene oxide fiber of the graphene oxide fiber 30 including the dissimilar element is reduced to the graphene fiber, and the heterogeneous contained in the graphene oxide fiber 30 An element may be doped into the graphene oxide fiber 30.
상술된 바와 같이, 상기 산화그래핀 섬유(30)에 도핑된 상기 이종 원소의 종류 및/또는 함량에 따라, 상기 그래핀 섬유의 전기 전도도가 용이하게 조절될 수 있다. 일 실시 예에 따르면, 상기 이종 원소는, 탄소(C) 이외의 원소로, 질소(N), 황(S), 불소(F), 또는 요오드(I) 중 어느 하나일 수 있다. As described above, according to the type and / or content of the heterogeneous element doped in the graphene oxide fiber 30, the electrical conductivity of the graphene fiber can be easily adjusted. According to one embodiment, the heterogeneous element, other than carbon (C), may be any one of nitrogen (N), sulfur (S), fluorine (F), or iodine (I).
일 실시 예에 따르면, 상기 그래핀 섬유를 제조하는 단계는, 비활성 가스 또는 수소(H2) 가스 분위기 하에 상기 열처리 되는 것을 포함할 수 있다. 예를 들어, 상기 비활성 가스는, 아르곤(Ar) 가스, 또는 질소(N2) 가스 중 어느 하나일 수 있다.According to an embodiment, the manufacturing of the graphene fiber may include heat treatment under an inert gas or hydrogen (H 2 ) gas atmosphere. For example, the inert gas may be any one of argon (Ar) gas or nitrogen (N 2 ) gas.
일 실시 예에 따르면, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)는, 비활성 가스 또는 수소 가스 분위기 하에서, 10~100℃/min의 승온 속도로 10분 내지 10시간 동안 100℃ 내지 5000℃의 온도로 상기 열처리함으로써, 상기 이종 원소가 도핑된 상기 그래핀 섬유가 제조될 수 있다.According to an embodiment, the graphene oxide fiber 30 including the hetero element is 100 ° C. to 5000 ° C. for 10 minutes to 10 hours at an elevated temperature rate of 10 to 100 ° C./min under an inert gas or hydrogen gas atmosphere. By the heat treatment at a temperature of the, the graphene fibers doped with the different elements can be produced.
또한, 도 7 내지 도 11을 참조하여 설명된 바와 같이, 본 발명의 실시 예에 따른 상기 이종 원소를 포함하는 산화그래핀 섬유(30)에 형성된 상기 공극(4)으로 인해, 상기 후속 공정인 상기 열처리 공정이 수행될 수 있다. 이에 따라, 상기 산화그래핀 섬유에 상기 이종 원소가 도핑될 수 있다. 이에 따라, 상기 후속 공정에 의해, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 상기 그래핀 섬유로 제조되는 동시에, 상기 그래핀 섬유의 전기적 및 광학적 물성이 용이하게 조절될 수 있다.In addition, as described with reference to Figures 7 to 11, due to the voids (4) formed in the graphene oxide fibers 30 containing the heterogeneous element according to an embodiment of the present invention, the subsequent process is A heat treatment process can be performed. Accordingly, the hetero element may be doped into the graphene oxide fiber. Accordingly, by the subsequent process, the graphene oxide fiber 30 including the dissimilar element is made of the graphene fiber, and the electrical and optical properties of the graphene fiber can be easily controlled.
상기 그래핀 섬유가 제1 산화제를 포함하는 수용액과 반응하여, 상기 그래핀 섬유 내에 미세 공극이 형성될 수 있다(S5000). 일 실시 예에 따르면, 상기 제1 산화제는, 도 1 내지 도 4를 참조하여 설명된 상기 산화제(5), 및 S1000 단계에서 상기 소스 용액(10)의 제조 시 사용되는 상기 산화제(5)와 동일할 수 있다. 일 실시 예에 따르면, 상기 산화제는, 과산화수소(H2O2)일 수 있다.The graphene fibers may react with the aqueous solution containing the first oxidizing agent to form fine pores in the graphene fibers (S5000). According to an embodiment, the first oxidant is the same as the oxidant 5 described with reference to FIGS. 1 to 4, and the oxidant 5 used in the preparation of the source solution 10 in step S1000. can do. According to one embodiment, the oxidant may be hydrogen peroxide (H 2 O 2 ).
일 실시 예에 따르면, 상기 그래핀 섬유에 대한 후속 공정으로, 상기 그래핀 섬유가 상기 제1 산화제를 포함하는 수용액에 담지된 후, 수열 반응이 수행됨으로써, 상기 그래핀 섬유에 상기 미세 공극이 추가로 형성될 수 있다. 상기 그래핀 섬유에 대한 상기 후속 공정이 수행되어 상기 그래핀 섬유에 추가로 형성된 상기 미세 공극으로 인해, 상기 그래핀 섬유의 전기적 및 광학적 물성이 향상될 수 있다.According to one embodiment, in the subsequent process for the graphene fibers, after the graphene fibers are supported in an aqueous solution containing the first oxidizing agent, a hydrothermal reaction is performed, thereby adding the fine pores to the graphene fibers It can be formed as. The subsequent process for the graphene fibers may be performed, and due to the micropores additionally formed in the graphene fibers, electrical and optical properties of the graphene fibers may be improved.
일 실시 예에 따르면, 상기 그래핀 섬유에 추가로 형성되는 상기 미세 공극은, 상기 수용액에 포함된 상기 제1 산화제의 양과 상기 수열 반응이 수행되는 온도 및 및/또는 시간에 따라 용이하게 조절될 수 있다. According to one embodiment, the fine pores additionally formed in the graphene fibers, can be easily adjusted according to the amount of the first oxidant included in the aqueous solution and the temperature and / or time at which the hydrothermal reaction is performed. have.
이와 같이, 본 발명의 실시 예에 따른 상기 그래핀 섬유에 형성된 상기 공극(4)에 의해, 상기 후속 공정이 가능할 수 있다. 이에 따라, 상기 그래핀 섬유의 상기 후속 공정에 의해, 상기 그래핀 섬유의 전기적 및 광학적 물성이 용이하게 조절될 수 있다.As such, the subsequent process may be possible by the gap 4 formed in the graphene fiber according to the embodiment of the present invention. Accordingly, by the subsequent process of the graphene fiber, the electrical and optical properties of the graphene fiber can be easily adjusted.
일 실시 예에 따르면, 상기 그래핀 섬유에 추가로 형성된 상기 미세 공극은, 상기 그래핀 섬유를 1 내지 35%의 과산화수소 수용액에 담지시킨 후, 고압반응조 내에서 300 내지 500℃의 온도로, 10분 내지 4시간 동안 상기 수열 반응을 수행시킴으로써 형성될 수 있다.According to one embodiment, the fine pores additionally formed on the graphene fibers, after supporting the graphene fibers in an aqueous solution of 1 to 35% hydrogen peroxide, at a temperature of 300 to 500 ℃ in a high pressure reactor, 10 minutes It can be formed by performing the hydrothermal reaction for 4 hours.
상술된 본 발명의 실시 예와 달리, 종래의 공극이 형성된 그래핀은, 건식 공정, 또는 습식 공정에 의해 제조된다. 먼저, 상기 건식 공정을 통해 상기 공극이 형성된 그래핀을 제조하는 경우, 금속(K, Fe, 또는 Ni 등) 촉매 하에 600℃ 이상의 고온 반응을 이용한다. 이 경우, 상기 금속 촉매와 산화그래핀의 접점에만 공극이 형성되는 불균질 반응이 일어나는 문제점이 있다. 또한, 상기 반응 종료 후, 상기 금속 촉매의 제거 및 회수를 위해 공정 비용이 증가하고, 고온의 반응 환경을 조성하기 위해 높은 에너지가 요구되는 단점이 있다.Unlike the above-described embodiment of the present invention, the graphene formed with conventional pores is manufactured by a dry process or a wet process. First, when preparing the graphene with the pores formed through the dry process, a high temperature reaction of 600 ° C. or higher is used under a metal (K, Fe, or Ni) catalyst. In this case, there is a problem that a heterogeneous reaction in which pores are formed only at the contact point of the metal catalyst and graphene oxide occurs. In addition, after completion of the reaction, a process cost is increased for the removal and recovery of the metal catalyst, and high energy is required to create a high temperature reaction environment.
또한, 상기 습식 공정을 통해 상기 공극이 형성된 그래핀을 제조하는 경우, 강산과 열 및/또는 UV 등의 외부 에너지의 유입이 요구되므로, 공정이 복잡해지고, 공정 비용이 증가하는 문제점이 있다.In addition, when manufacturing the graphene formed the voids through the wet process, since the inflow of external energy such as strong acid and heat and / or UV is required, there is a problem that the process is complicated, the process cost increases.
뿐만 아니라, 상기 건식 공정 및 상기 습식 공정을 이용하여 상기 공극이 형성된 그래핀을 제조하는 경우, 공정 중에 가해지는 상당량의 에너지로 인해 산화그래핀의 전부 또는 일부가 환원되어, 상기 공극이 형성된 그래핀이 수득될 수 있다. 산화그래핀의 일부가 환원되어 제조된 상기 공극이 형성된 산화그래핀의 경우, 분산성이 낮아 응집되는 경향이 있어, 후속 공정을 통해 산화그래핀의 물성을 제어하는 데에 어려움이 있다.In addition, when manufacturing the graphene with the voids using the dry process and the wet process, all or part of the graphene oxide is reduced due to the considerable amount of energy applied during the process, the graphene with the voids formed Can be obtained. In the case of the graphene oxide formed with a portion of the graphene oxide is reduced, the dispersibility is low tends to aggregate, there is a difficulty in controlling the physical properties of the graphene oxide through a subsequent process.
하지만, 본 발명의 실시 예에 따르면, 산화그래핀(3), 산화제(5), 및 pH 조절제(7)를 용매(10)에 첨가한 후, 반응시켜 공극(4)을 갖는 산화그래핀(3)이 분산된 소스 용액(10)이 제공될 수 있다.However, according to an embodiment of the present invention, after adding the graphene oxide (3), oxidizing agent (5), and pH adjusting agent (7) to the solvent (10), and reacted to the graphene oxide having a void (4) ( A source solution 10 in which 3) is dispersed can be provided.
먼저, 상기 소스 용액(10) 내 상기 산화제(5)의 함량, 상기 소스 용액(10)의 pH, 및 상기 반응 온도를 조절함에 따라, 상기 소스 용액(10)에 분산된 산화그래핀(3)의 상기 공극률이 용이하게 조절될 수 있다. 이에 따라, 촉매의 사용, 또는 외부 에너지의 유입 없이, 상기 소스 용액(10) 제조 시 사용되는 물질들의 함량, 및/또는 온도 조건을 조절하는 간단한 방법으로, 산화그래핀(3)의 상기 공극률을 조절함으로써, 상기 소스 용액(10) 내 산화그래핀(3)의 전기적, 열적, 광학적, 및 기계적 물성을 용이하게 제어할 수 있다.First, graphene oxide 3 dispersed in the source solution 10 is controlled by adjusting the content of the oxidant 5 in the source solution 10, the pH of the source solution 10, and the reaction temperature. The porosity of can be easily adjusted. Accordingly, the porosity of the graphene oxide 3 can be adjusted in a simple way to adjust the content of the materials used in the preparation of the source solution 10, and / or the temperature conditions, without the use of a catalyst or the introduction of external energy. By adjusting, the electrical, thermal, optical, and mechanical properties of the graphene oxide 3 in the source solution 10 can be easily controlled.
또한, 상술된 바와 같이, 촉매 및 강산의 사용이 배제되고, 외부 에너지 유입에 대한 요구가 없는 ambient condition에서 진행되는 단순 용액 공정을 이용하므로, 상기 촉매 및 강산의 제거 및 회수에 필요한 비용이 감소되고, processing window가 넓어 상기 공극(4)이 형성된 산화그래핀(3)의 대량 생산이 가능하다.In addition, as described above, the use of a simple solution process, which eliminates the use of catalysts and strong acids and proceeds in ambient conditions without the need for external energy inflow, reduces the cost of removing and recovering the catalysts and strong acids. As a result, the processing window is wide, and mass production of the graphene oxide 3 having the pores 4 is possible.
뿐만 아니라, 환원 반응을 수반하지 않고, 산화그래핀(3)에 상기 공극(4)이 형성되므로, 상기 공극(4)이 형성되지 않은 산화그래핀(3)과 마찬가지로, 상기 소스 용액(10) 내에서 높은 분산성을 가질 수 있다. 상기 소스 용액(10) 내 산화그래핀(3)의 높은 분산성으로 인해, 산화그래핀(3)에 대한 작용기화, 복합화, 및 도핑(doping) 등의 후속 공정이 가능하고, 액정 특성을 가질 수 있다. 따라서, 상술된 방법으로, 산화그래핀(3)의 상기 공극률을 조절하고, 산화그래핀(3)에 대하여 상기 후속 공정을 수행함으로써, 산화그래핀(3)의 물성을 용이하게 제어할 수 있을 뿐만 아니라, 산화그래핀(3)의 물성을 효과적으로 향상시킬 수 있다.In addition, since the pores 4 are formed in the graphene oxide 3 without accompanying a reduction reaction, similar to the graphene oxide 3 in which the pores 4 are not formed, the source solution 10 It can have high dispersibility within. Due to the high dispersibility of the graphene oxide 3 in the source solution 10, subsequent processes such as functionalization, complexation, and doping with the graphene oxide 3 are possible, and have liquid crystal properties. Can be. Therefore, by adjusting the porosity of the graphene oxide 3 and performing the subsequent process on the graphene oxide 3 by the above-described method, the physical properties of the graphene oxide 3 can be easily controlled. In addition, the physical properties of the graphene oxide 3 can be effectively improved.
또한, 상기 그래핀 섬유 제조 시, 사용되는 상기 소스 용액(10) 내 산화그래핀(3)의 농도, 상기 베이스 용액(20) 내로 방사되는 상기 소스 용액(10)의 방사 속도, 상기 이종 원소를 포함하는 산화그래핀 섬유(30)의 권취 속도, 및/또는 상기 이종 원소를 포함하는 산화그래핀 섬유(30)가 배치되는 상기 건조대의 길이를 조절함으로써, 상기 그래핀 섬유의 배향도가 용이하게 조절될 수 있다. In addition, when manufacturing the graphene fiber, the concentration of the graphene oxide (3) in the source solution 10, the spinning speed of the source solution 10 to be emitted into the base solution 20, the heterogeneous element By adjusting the winding speed of the graphene oxide fiber 30 to be included, and / or the length of the drying table on which the graphene oxide fiber 30 including the heterogeneous element is disposed, the degree of orientation of the graphene fiber is easily adjusted. Can be.
저 배향도를 갖는 상기 그래핀 섬유의 경우, 상기 그래핀 섬유의 공극률이 증가되어 신장률이 우수한 상기 그래핀 섬유가 제공될 수 있다. 이에 따라, 높은 기계적 강도를 갖는 동시에, 우수한 신장률을 갖는 상기 그래핀 섬유가 구현되어, 플렉시블한 디바이스를 포함한 다양한 분야로의 활용이 가능한 상기 그래핀 섬유가 제공될 수 있다.In the case of the graphene fibers having a low degree of orientation, the porosity of the graphene fibers may be increased to provide the graphene fibers having excellent elongation. Accordingly, the graphene fibers having high mechanical strength and excellent elongation can be realized, so that the graphene fibers can be provided in various fields including flexible devices.
또한, 상기 그래핀 섬유는, 다공 구조를 가지므로, 표면적이 넓고, 자연스러운 섬유로써의 역할이 가능하여, 섬유형 전자기기 등의 종래의 멤브레인 응용 분야에 폭 넓게 활용될 수 있다.In addition, since the graphene fiber has a porous structure, the surface area is wide, and can serve as a natural fiber, and can be widely used in conventional membrane applications such as fibrous electronic devices.
뿐만 아니라, 상기 그래핀 섬유에 도핑된 상기 이종 원소의 종류 및/또는 함량을 조절함으로써, 상기 그래핀 섬유의 전기 전도도가 용이하게 조절될 수 있다. 이와 같이, 본 발명의 실시 예에 따른 그래핀 섬유는, 우수한 전기 전도도 특성이 요구되는 다양한 분야에 활용될 수 있다.In addition, by controlling the type and / or content of the heterogeneous element doped in the graphene fiber, the electrical conductivity of the graphene fiber can be easily adjusted. As such, the graphene fiber according to the embodiment of the present invention may be utilized in various fields requiring excellent electrical conductivity characteristics.
또한, 본 발명의 실시 예에 따른 상기 이종 원소를 포함하는 산화그래핀 섬유에 형성된 상기 공극으로 인해, 상기 이종 원소를 포함하는 산화그래핀 섬유에 대하여 상기 후속 공정인 상기 열처리 공정이 수행될 수 있다. 이에 따라, 상기 산화그래핀 섬유가 환원되어 상기 그래핀 섬유로 제조되는 동시에, 상기 이종 원소가 도핑되어, 상기 그래핀 섬유의 전기적 및 광학적 물성이 용이하게 조절될 수 있다. In addition, due to the voids formed in the graphene oxide fiber including the dissimilar element according to the embodiment of the present invention, the heat treatment process, which is the subsequent process, may be performed on the graphene oxide fiber including the dissimilar element. . Accordingly, the graphene oxide fibers are reduced to make the graphene fibers, and at the same time, the hetero elements are doped, so that the electrical and optical properties of the graphene fibers can be easily controlled.
뿐만 아니라, 제조된 상기 그래핀 섬유에 형성된 상기 공극에 의해, 상기 후속 공정이 추가로 수행될 수 있다. 이에 따라, 상기 후속 공정에 통해, 상기 그래핀 섬유에 상기 미세 공극이 추가로 형성되어 상기 그래핀 섬유의 전기적 및 광학적 물성을 효과적으로 제어할 수 있다.In addition, the subsequent process may be further performed by the pores formed in the graphene fibers produced. Accordingly, through the subsequent process, the fine pores are additionally formed in the graphene fibers to effectively control the electrical and optical properties of the graphene fibers.
이하, 본 발명의 실시 예들에 따라 제조된 그래핀 섬유의 특성 평가가 설명된다.Hereinafter, the evaluation of the characteristics of the graphene fibers produced according to the embodiments of the present invention will be described.
먼저, 본 발명의 제1 실시 예에 따라 제조된 그래핀 섬유의 특성 평가가 설명된다.First, the evaluation of the characteristics of the graphene fibers produced according to the first embodiment of the present invention will be described.
제1 실시 예에 따른 그래핀 섬유의 제조 방법Graphene fiber manufacturing method according to the first embodiment
산화그래핀을 DI water에 첨가한 후, 24시간 동안 교반하여 산화그래핀을 포함하는 소스 용액을 제조하였다. 알코올계 수용액에 이종 원소를 포함하는 염(암모늄클로라이드(ammonium chloride), 암모늄설페이트(ammonium sulfate), 또는 암모늄포스페이트(ammonium phosphate)) 및 응고제(염화칼슘(CaCl2), 수산화칼륨(KOH), 수산화나트륨(NaOH), 염화나트륨(NaCl), 황산구리(CuSO4), 세틸트리메틸암모늄브로미드(Cetyltrimethylammonium bromide, CTAB), 또는 키토산(chitosan))를 첨가하여 이종 원소를 포함한느 베이스 용액을 제조하였다. 상기 소스 용액을 상기 소스 용액이 담긴 제1 용기의 말단에 연결된 방사구를 통해 상기 베이스 용액으로 방사하여 산화그래핀 섬유를 제조하였다. 상기 산화그래핀 섬유를 상기 베이스 용액으로부터 분리하여 이종 원소를 포함하는 산화그래핀 섬유를 제조하였다. 알코올성 수용액을 이용하여 상기 이종 원소를 포함하는 산화그래핀 섬유에 잔존하는 상기 응고제를 제거한 후, 가열기를 통해 70 내지 80℃의 온도로 상기 이종 원소를 포함하는 산화그래핀 섬유에 열을 가하여 건조시켰다. 이후, 건조된 상기 이종 원소를 포함하는 산화그래핀 섬유를 비활성 기체 분위기 하에 열처리(100~5000℃, 10~100℃/min, 10min~10hrs)하여, 상기 이종 원소가 도핑된 본 발명의 제1 실시 예에 따른 그래핀 섬유를 제조하였다.Graphene oxide was added to DI water, followed by stirring for 24 hours to prepare a source solution containing graphene oxide. Salts containing heterogeneous elements in an aqueous solution based on alcohol (ammonium chloride, ammonium sulfate, or ammonium phosphate) and coagulants (calcium chloride (CaCl 2 ), potassium hydroxide (KOH), sodium hydroxide) (NaOH), sodium chloride (NaCl), copper sulfate (CuSO 4 ), cetyltrimethylammonium bromide (CTAB), or chitosan) were added to prepare a base solution containing heterogeneous elements. Graphene oxide fibers were prepared by spinning the source solution into the base solution through a spinneret connected to the end of the first vessel containing the source solution. The graphene oxide fibers were separated from the base solution to prepare graphene oxide fibers including heterogeneous elements. After removing the coagulant remaining on the graphene oxide fiber containing the heterogeneous element using an alcoholic aqueous solution, it was dried by applying heat to the graphene oxide fiber containing the hetero element at a temperature of 70 to 80 ° C. through a heater. . Thereafter, the dried graphene oxide fiber including the heterogeneous element is heat-treated under an inert gas atmosphere (100 to 5000 ° C., 10 to 100 ° C./min, 10 min to 10 hrs), and thus the first element of the present invention doped with the hetero element. Graphene fiber according to the embodiment was prepared.
도 12는 본 발명의 제1 실시 예에 따른 소스 용액이 방사구를 통해 방사되어 산화그래핀 섬유가 제조되는 과정을 나타내는 사진이다.12 is a photograph showing a process in which a source solution is spun through a spinneret to produce graphene oxide fibers according to a first embodiment of the present invention.
*제1 실시 예에 따른 그래핀 섬유의 제조 방법에 따라, 상기 소스 용액을 제조한 후, 상기 소스 용액을 상기 소스 용액이 담긴 제1 용기의 상기 말단에 연결된 상기 방사구를 통해 상기 베이스 용액으로 방사하여, 상기 산화그래핀 섬유가 제조되는 과정을 살펴보았다.According to the method for producing graphene fibers according to the first embodiment, after preparing the source solution, the source solution to the base solution through the spinneret connected to the end of the first container containing the source solution Spinning, the process of producing the graphene oxide fiber was examined.
도 12를 참조하면, 상기 소스 용액이 상기 방사구를 통해 상기 베이스 용액 내로 방사되면서, 상기 산화그래핀 섬유가 제조되는 것을 확인하였다. 상기 소스 용액이 상기 베이스 용액 내로 방사되는 과정에서, solvent exchange 현상에 의해 상기 베이스 용액 내에 포함된 상기 이종 원소를 포함하는 염이 상기 산화그래핀 섬유 내로 확산되어 들어갈 것으로 판단된다.Referring to FIG. 12, it was confirmed that the graphene oxide fibers were prepared while the source solution was spun into the base solution through the spinneret. In the process of spinning the source solution into the base solution, it is determined that a salt containing the heterogeneous element contained in the base solution is diffused into the graphene oxide fiber by a solvent exchange phenomenon.
도 13은 본 발명의 제1 실시 예에 따른 이종 원소를 포함하는 산화그래핀 섬유가 와인딩 롤러에 의해 권취되는 과정을 나타내는 사진이다.FIG. 13 is a photograph illustrating a process in which graphene oxide fibers including heterogeneous elements according to a first embodiment of the present invention are wound by a winding roller. FIG.
제1 실시 예에 따른 그래핀 섬유의 제조 방법에 따라, 상기 이종 원소를 포함하는 산화그래핀 섬유가 제조된 후, 상기 이종 원소를 포함하는 산화그래핀 섬유가 상기 와인딩 롤러에 의해 권취되는 과정을 살펴보았다.According to the graphene fiber manufacturing method according to the first embodiment, after the graphene oxide fiber comprising the heterogeneous element is manufactured, the process of winding the graphene oxide fiber comprising the heterogeneous element by the winding roller I looked at it.
도 13을 참조하면, 상기 베이스 용액으로부터 분리된 상기 이종 원소를 포함하는 산화그래핀 섬유가 세척된 후, 건조되는 동시에 상기 와인딩 롤러에 의해 권취되는 것을 확인하였다. 상기 이종 원소를 포함하는 산화그래핀 섬유의 권취 속도가 상기 소스 용액의 방사 속도보다 작을 경우, 상기 그래핀 섬유의 배향도가 낮아짐에 따라 상기 그래핀 섬유의 기공도는 높아지므로, 신장률이 우수한 상기 그래핀 섬유의 제공이 가능할 것으로 판단된다.Referring to FIG. 13, it was confirmed that the graphene oxide fiber including the heterogeneous element separated from the base solution was washed and then dried and wound by the winding roller. When the winding speed of the graphene oxide fiber containing the heterogeneous element is smaller than the spinning speed of the source solution, the porosity of the graphene fiber increases as the degree of orientation of the graphene fiber decreases, so that the graphene has excellent elongation. We believe it is possible to provide fin fibers.
도 14는 본 발명의 제1 실시 예에 따른 저 배향도를 갖는 그래핀 섬유의 이미지이다.14 is an image of a graphene fiber having a low degree of orientation according to the first embodiment of the present invention.
제1 실시 예에 따른 그래핀 섬유의 제조 방법에 따라, 상기 그래핀 섬유의 배향도를 낮추기 위해, 상기 소스 용액 내 산화그래핀의 농도를 낮추거나, 상기 소스 용액의 방사 속도를 감소시키거나, 상기 이종 원소를 포함하는 산화그래핀 섬유의 권취 속도를 상기 소스 용액의 방사 속도보다 느리게 하여 상기 그래핀 섬유를 제조하였다.According to the manufacturing method of the graphene fiber according to the first embodiment, in order to lower the degree of orientation of the graphene fiber, to lower the concentration of graphene oxide in the source solution, or to reduce the spinning speed of the source solution, The graphene fibers were prepared by slowing the winding speed of graphene oxide fibers including heterogeneous elements than the spinning speed of the source solution.
도 14를 참조하면, 상기 그래핀 섬유의 배향도를 낮추기 위해, 상기 소스 용액 내 산화그래핀의 농도를 높이거나, 상기 소스 용액의 방사 속도를 감소시키거나, 상기 이종 원소를 포함하는 산화그래핀 섬유의 권취 속도를 상기 소스 용액의 방사 속도보다 느리게 하여 상기 그래핀 섬유를 제조하는 경우, 최종적으로 제조된 상기 그래핀 섬유의 배향도가 낮아, 상기 그래핀 섬유의 기공도가 증가하여 신장률이 우수한 상기 그래핀 섬유가 제조되는 것을 확인하였다.Referring to FIG. 14, in order to reduce the orientation of the graphene fibers, the graphene oxide fibers including the heterogeneous elements may be increased by increasing the concentration of graphene oxide in the source solution, decreasing the spinning speed of the source solution, or the like. When the graphene fiber is manufactured by slowing the winding speed of the source solution, the degree of orientation of the finally produced graphene fiber is low, and the porosity of the graphene fiber increases to increase the graphene fiber. It was confirmed that the pin fibers were produced.
도 15는 본 발명의 제1 실시 예에 따른 고 배향도를 갖는 그래핀 섬유의 이미지이다.15 is an image of a graphene fiber having a high degree of orientation according to the first embodiment of the present invention.
제1 실시 예에 따른 그래핀 섬유의 제조 방법에 따라, 상기 그래핀 섬유의 배향도를 높이기 위해, 상기 소스 용액 내 산화그래핀의 농도를 낮추거나, 상기 소스 용액의 방사 속도를 증가시키거나, 상기 이종 원소를 포함하는 산화그래핀 섬유의 권취 속도를 상기 소스 용액의 방사 속도보다 빠르게 하여 상기 그래핀 섬유를 제조하였다.According to the manufacturing method of the graphene fiber according to the first embodiment, to increase the degree of orientation of the graphene fiber, to lower the concentration of graphene oxide in the source solution, to increase the spinning rate of the source solution, The graphene fibers were manufactured by winding the graphene oxide fibers including heterogeneous elements faster than the spinning rate of the source solution.
도 15를 참조하면, 상기 그래핀 섬유의 배향도를 높이기 위해, 상기 소스 용액 내 산화그래핀의 농도를 낮추거나, 상기 소스 용액의 방사 속도를 증가시키거나, 상기 이종 원소를 포함하는 산화그래핀 섬유의 권취 속도를 상기 소스 용액의 방사 속도보다 빠르게 하여 상기 그래핀 섬유를 제조하는 경우, 최종적으로 제조된 상기 그래핀 섬유의 배향도가 높아, 상기 그래핀 섬유의 기공도가 감소하여 신장률이 낮은 상기 그래핀 섬유가 제조되는 것을 확인하였다. Referring to FIG. 15, in order to increase the degree of orientation of the graphene fibers, the concentration of graphene oxide in the source solution may be decreased, the spinning speed of the source solution may be increased, or the graphene oxide fibers including the heterogeneous elements may be used. When the graphene fibers are manufactured by making the winding speed of the source solution faster than the spinning speed of the source solution, the degree of orientation of the finally produced graphene fibers is high, and the porosity of the graphene fibers is reduced, thereby reducing the elongation. It was confirmed that the pin fibers were produced.
도 14 및 도 15의 결과로부터, 상기 그래핀 섬유의 제조 시, 사용되는 상기 소스 용액 내 산화그래핀의 농도, 상기 베이스 용액 내로 방사되는 상기 소스 용액의 방사 속도, 상기 이종 원소를 포함하는 산화그래핀 섬유의 권취 속도, 및/또는 상기 이종 원소를 포함하는 산화그래핀 섬유가 배치되는 상기 건조대의 길이를 조절함으로써, 상기 그래핀 섬유의 배향도가 용이하게 조절할 수 있다. 이에 따라, 응용 분야의 전기적 및 물리적 특성에 따라, 농도, 방사 속도 등의 손쉬운 방법으로, 신장률의 조절이 용이한 상기 그래핀 섬유(70)의 제조가 가능한 것을 알 수 있었다.From the results of FIGS. 14 and 15, in the preparation of the graphene fibers, the concentration of graphene oxide in the source solution used, the spinning rate of the source solution spun into the base solution, and the graphene oxide including the heterogeneous elements By adjusting the winding speed of the pin fibers and / or the length of the drying stand on which the graphene oxide fibers including the dissimilar elements are disposed, the degree of orientation of the graphene fibers can be easily adjusted. Accordingly, it was found that the graphene fiber 70 can be easily manufactured by controlling the elongation rate by an easy method such as concentration and spinning speed according to the electrical and physical properties of the application field.
도 16은 본 발명의 실시 예에 따른 그래핀 섬유의 외부 압력(strain) 증가에 따른 인장 강도(tensile strength) 값을 나타내는 그래프이다. FIG. 16 is a graph illustrating tensile strength values according to an increase in an external pressure of graphene fibers according to an exemplary embodiment of the present invention.
도 16을 참조하여 설명된 동일한 방법으로, 저 배향도 및 고 배향도를 갖는 상기 그래핀 섬유를 제조하였다. 저 배향도 및 고 배향도를 갖는 상기 그래핀 섬유에 대하여, 상기 그래핀 섬유가 파괴될 때까지 가해지는 외부 압력의 크기 변화를 측정하였다.In the same manner described with reference to FIG. 16, the graphene fibers having low and high orientations were prepared. For the graphene fibers with low and high orientations, the change in magnitude of the external pressure exerted until the graphene fibers broke was measured.
도 16을 참조하면, 고 배향도 갖는 상기 그래핀 섬유가 파괴되는 데에 요구되는 인장 강도 값은 약 2%이고, 저 배향도를 갖는 상기 그래핀 섬유가 파괴되는 데에 요구되는 인장 강도 값은 약 15%인 것을 확인하였다. 이로부터, 저 배향도를 갖는 상기 그래핀 섬유가 고 배향도를 갖는 상기 그래핀 섬유보다 우수한 신장률을 갖는 것을 알 수 있었다. 이는, 저 배향도를 갖는 상기 그래핀 섬유의 기공도가 고 배향도를 갖는 상기 그래핀 섬유의 기공도보다 크기 때문에, 저 배향도를 갖는 상기 그래핀 섬유가 고 배향도를 갖는 상기 그래핀 섬유보다 더 유연한 특성을 가지는 데에서 나온 결과로 판단된다.Referring to FIG. 16, the tensile strength value required to break the graphene fiber with high orientation is about 2%, and the tensile strength value required to break the graphene fiber with low orientation is about 15%. It confirmed that it was%. From this, it was found that the graphene fiber having a low degree of orientation has a better elongation than the graphene fiber having a high degree of orientation. This is because the porosity of the graphene fiber having a low degree of orientation is larger than that of the graphene fiber having a high degree of orientation, so that the graphene fiber having a low degree of orientation is more flexible than the graphene fiber having a high degree of orientation. Judging by the result of having
다음으로, 본 발명의 제2 실시 예에 따라 제조된 그래핀 섬유의 제조된 그래핀 섬유의 특성 평가가 설명된다.Next, the evaluation of the characteristics of the graphene fibers produced of the graphene fibers prepared according to the second embodiment of the present invention will be described.
제2 실시 예 1에 따른 그래핀 섬유 제조Graphene fiber production according to the second embodiment 1
그래핀 산화물 시트를 DI water에 분산하여, 상기 그래핀 산화물 시트가 분산된 소스 용액을 준비하고, 바인더로 4.5wt%의 CaCl2 및 환원제로 0.5wt%의 KOH를 포함하는 응고욕을 준비하였다. 400μm의 방사구를 통해 상기 응고욕으로, 상기 소스 용액을 방사하여 그래핀 산화물 섬유를 제조하였다. 상기 그래핀 산화물 섬유를 응고욕에서 응고시킨 후, 건조하고, 잔존하는 응고욕을 제거하기 위해, 에탄올 용액을 이용하여 세척하고, 오븐에서 건조하였다.The graphene oxide sheet was dispersed in DI water to prepare a source solution in which the graphene oxide sheet was dispersed, and a coagulation bath including 4.5 wt% CaCl 2 as a binder and 0.5 wt% KOH as a reducing agent was prepared. Graphene oxide fibers were prepared by spinning the source solution into the coagulation bath through a 400 μm spinneret. The graphene oxide fibers were coagulated in a coagulation bath, then dried and washed with ethanol solution and dried in an oven to remove the remaining coagulation bath.
이후, 건조된 그래핀 산화물 섬유를 아이오딘화 수용액에 담근후 70~80℃의 온도에서 환원시키고, 에탄올로 세척하고 건조하여, 실시 예 1에 따른 그래핀 섬유를 제조하였다. Subsequently, the dried graphene oxide fibers were immersed in an iodinated aqueous solution, reduced at a temperature of 70 to 80 ° C., washed with ethanol, and dried to prepare graphene fibers according to Example 1.
비교 예 1에 따른 그래핀 섬유 제조Graphene fiber preparation according to Comparative Example 1
제2 실시 예 1과 동일한 공정 조건으로 그래핀 섬유를 제조하되, 5wt%의 CaCl2를 포함하는 응고욕을 이용하여, 비교 예 1에 따른 그래핀 섬유를 제조하였다. Graphene fibers were prepared under the same process conditions as in Example 1, but using a coagulation bath containing 5 wt% of CaCl 2 , graphene fibers according to Comparative Example 1 were prepared.
비교 예 2에 따른 그래핀 섬유 제조Graphene fiber preparation according to Comparative Example 2
*제2 실시 예 1과 동일한 공정 조건으로 그래핀 섬유를 제조하되, 5wt%의 KOH를 포함하는 응고욕을 이용하여, 비교 예 2에 따른 그래핀 섬유를 제조하였다. * Graphene fibers were prepared under the same process conditions as in Example 1, but using a coagulation bath containing 5 wt% of KOH, graphene fibers according to Comparative Example 2 were prepared.
도 17은 본 발명의 제2 실시 예 1, 비교 예 1, 및 비교 예 2에 따른 그래핀 섬유를 촬영한 사진이고, 도 18은 본 발명의 제2 실시 예 1, 비교 예 1, 및 비교 예 2에 따른 그래핀 섬유의 원형도를 측정한 그래프이다. 17 is a photograph taken of the graphene fibers according to the second embodiment 1, comparative example 1, and comparative example 2 of the present invention, Figure 18 is a second embodiment 1, comparative example 1, and comparative example of the present invention It is a graph measuring the circularity of graphene fibers according to 2.
도 17을 참조하면, 도 17의 (a), (b), 및 (c)는 각각 비교 예 1, 제2 실시 예 1, 및 비교 예 2에 따른 그래핀 섬유를 촬영한 사진이다. 도 17에서 알 수 있듯이, CaCl2 및 KOH를 동시에 포함하는 응고욕을 이용하여 제조된 제2 실시 예 1에 따른 그래핀 섬유의 경우, CaCl2 및 KOH 중에서 어느 하나를 포함하는 응고욕을 이용하여 제조된 비교 예 1 및 비교 예 2에 따른 그래핀 섬유와 비교하여, 단면이 원형에 현저하게 가까운 것을 확인할 수 있다. Referring to FIG. 17, (a), (b), and (c) of FIG. 17 are photographs of graphene fibers according to Comparative Example 1, Second Example 1, and Comparative Example 2, respectively. As can be seen in Figure 17, in the case of the graphene fiber according to Example 1 prepared using a coagulation bath containing CaCl 2 and KOH at the same time, using a coagulation bath containing any one of CaCl 2 and KOH Compared with the graphene fibers prepared according to Comparative Example 1 and Comparative Example 2, it can be seen that the cross section is significantly close to the circular.
또한, 도 18을 참조하면, CaCl2 및 KOH 중에서 어느 하나를 포함하는 응고욕을 이용하여 제조된 비교 예 1 및 비교 예 2에 따른 그래핀 섬유의 원형도 값을 아래의 [수학식 1에 따라서 계산하였다. In addition, referring to Figure 18, the circularity value of the graphene fibers according to Comparative Example 1 and Comparative Example 2 prepared using a coagulation bath containing any one of CaCl 2 and KOH according to [Equation 1 below] Calculated.
[수학식 1][Equation 1]
원형도 = 4πA/(P2)(A: 단면적, P: 단면둘레)Roundness = 4πA / (P 2 ) (A: cross section, P: circumference)
CaCl2 및 KOH 중에서 어느 하나를 포함하는 응고욕을 이용하여 제조된 비교 예 1 및 비교 예 2에 따른 그래핀 섬유의 경우, 원형도 값이 편차가 큰 것은 물론, CaCl2 및 KOH를 동시에 포함하는 응고욕을 이용하여 제조된 제2 실시 예 1에 따른 그래핀 섬유와 비교하여, 원형도 값이 현저하게 낮은 것을 알 수 있다.In the case of the graphene fibers prepared according to Comparative Example 1 and Comparative Example 2 prepared using a coagulation bath containing any one of CaCl 2 and KOH, the circularity value is large, as well as containing both CaCl 2 and KOH simultaneously Compared with the graphene fibers according to Example 1 prepared using the coagulation bath, it can be seen that the circularity value is significantly lower.
또한, 제2 실시 예 1에 따른 그래핀 섬유의 경우, 원형도 값이 편차가 현저하게 낮은 것은 물론, 0.8 이상의 원형도 값을 갖는 것을 확인할 수 있다. 다시 말하면, 바인더 및 환원제를 동시에 포함하는 응고욕을 이용하여 그래핀 섬유를 제조하는 것이 0.8 이상의 고원형도를 갖는 그래핀 섬유를 제조하는 효과적인 방법인 것을 확인할 수 있다. In addition, in the case of the graphene fiber according to the first embodiment, it can be confirmed that the circularity value has a significantly lower deviation, as well as a circularity value of 0.8 or more. In other words, it can be confirmed that manufacturing graphene fibers using a coagulation bath including a binder and a reducing agent at the same time is an effective method for producing graphene fibers having a plateau shape of 0.8 or more.
도 19는 본 발명의 제2 실시 예 1, 비교 예 1, 및 비교 예 2에 따른 그래핀 섬유의 표면을 촬영한 사진이고, 도 20은 본 발명의 제2 실시 예 1, 비교 예 1, 및 비교 예 2에 따른 그래핀 섬유의 두께의 표준 편차를 측정한 그래프이다. 19 is a photograph of the surface of the graphene fiber according to the second embodiment 1, Comparative Example 1, and Comparative Example 2 of the present invention, Figure 20 is a second embodiment 1, Comparative Example 1, and It is a graph which measured the standard deviation of the thickness of the graphene fiber by the comparative example 2.
도 19를 참조하면, 도 19의 (a), (b), 및 (c)는 각각 비교 예 1, 제2 실시 예 1, 및 비교 예 2에 따른 그래핀 섬유의 표면을 촬영한 사진이다. 도 19에서 알 수 있듯이, CaCl2 및 KOH를 동시에 포함하는 응고욕을 이용하여 제조된 제2 실시 예 1에 따른 그래핀 섬유의 경우, CaCl2 및 KOH 중에서 어느 하나를 포함하는 응고욕을 이용하여 제조된 비교 예 1 및 비교 예 2에 따른 그래핀 섬유와 비교하여, 두께의 균일성이 현저하게 높은 것을 확인할 수 있다. 19, (a), (b), and (c) of FIG. 19 are photographs photographing surfaces of graphene fibers according to Comparative Example 1, Second Example 1, and Comparative Example 2, respectively. As can be seen in Figure 19, in the case of the graphene fiber according to the second embodiment 1 prepared using a coagulation bath containing CaCl 2 and KOH at the same time, using a coagulation bath containing any one of CaCl 2 and KOH Compared with the graphene fibers prepared according to Comparative Example 1 and Comparative Example 2, it can be seen that the uniformity of the thickness is significantly high.
또한, 도 20을 참조하면, CaCl2 및 KOH 중에서 어느 하나를 포함하는 응고욕을 이용하여 제조된 비교 예 1 및 비교 예 2에 따른 그래핀 섬유의 경우, CaCl2 및 KOH를 동시에 포함하는 응고욕을 이용하여 제조된 제2 실시 예 1에 따른 그래핀 섬유와 비교하여, 두께의 표준 편차 값이 현저하게 높은 것을 알 수 있다. Also, Referring to Figure 20, in the case of CaCl 2 and a fiber graphene in accordance with the Comparative Examples 1 and 2 prepared using a coagulation bath containing any one of KOH, CaCl 2, and a coagulation bath containing KOH at the same time It can be seen that the standard deviation value of the thickness is remarkably high as compared with the graphene fiber according to the second embodiment 1 manufactured by using.
다시 말하면, 바인더 및 환원제를 동시에 포함하는 응고욕을 이용하여 그래핀 섬유를 제조하는 것이, 두께가 실질적으로 균일한 그래핀 섬유를 제조하는 효과적인 방법인 것을 확인할 수 있다. In other words, it can be seen that manufacturing graphene fibers using a coagulation bath containing a binder and a reducing agent at the same time is an effective method for producing graphene fibers having a substantially uniform thickness.
제2 실시 예 2에 따른 그래핀 섬유 제조Graphene fiber production according to the second embodiment 2
그래핀 산화물 시트를 DI water에 분산하여, 상기 그래핀 산화물 시트 1.0mg/ml 가 분산된 소스 용액을 준비하고, 바인더로 CoCl2 및 환원제로 KOH를 포함하는 응고욕을 준비하였다. 400μm의 방사구를 통해 상기 응고욕으로, 상기 소스 용액을 방사하여 그래핀 산화물 섬유를 제조하였다. 상기 그래핀 산화물 섬유를 응고욕에서 응고시킨 후, 건조하고, 잔존하는 응고욕을 제거하기 위해, 에탄올 용액을 이용하여 세척하고, 오븐에서 건조하였다.The graphene oxide sheet was dispersed in DI water to prepare a source solution in which 1.0 mg / ml of the graphene oxide sheet was dispersed, and a coagulation bath including CoCl 2 as a binder and KOH as a reducing agent was prepared. Graphene oxide fibers were prepared by spinning the source solution into the coagulation bath through a 400 μm spinneret. The graphene oxide fibers were coagulated in a coagulation bath, then dried and washed with ethanol solution and dried in an oven to remove the remaining coagulation bath.
이후, 건조된 그래핀 산화물 섬유를 아이오딘화 수용액에 담근후 70~80℃의 온도에서 환원시키고, 에탄올로 세척하고 건조하여, 실시 예 2에 따른 그래핀 섬유를 제조하였다. Subsequently, the dried graphene oxide fibers were immersed in an iodide aqueous solution, reduced at a temperature of 70 to 80 ° C., washed with ethanol and dried to prepare graphene fibers according to Example 2.
제2 실시 예 3에 따른 그래핀 섬유 제조Graphene fiber production according to the second embodiment 3
제2 실시 예 2와 동일한 공정 조건으로 그래핀 섬유를 제조하되, 바인더로 AlCl3 및 환원제로 KOH 포함하는 응고욕을 이용하여, 제2 실시 예 3에 따른 그래핀 섬유를 제조하였다. Graphene fibers were prepared under the same process conditions as in Example 2, but the graphene fibers according to Example 3 were prepared using a coagulation bath containing AlCl 3 as a binder and KOH as a reducing agent.
제2 실시 예 4에 따른 그래핀 섬유 제조Graphene fiber production according to the second embodiment 4
제2 실시 예 2와 동일한 공정 조건으로 그래핀 섬유를 제조하되, 바인더로 FeCl3 및 환원제로 KOH 포함하는 응고욕을 이용하여, 제2 실시 예 4에 따른 그래핀 섬유를 제조하였다.Graphene fibers were prepared under the same process conditions as in Example 2, but using a coagulation bath containing FeCl 3 as a binder and KOH as a reducing agent, graphene fibers according to Example 4 were prepared.
도 21은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 그래핀 산화물 시트의 AFM 이미지이고, 도 22는 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 후 촬영한 사진이다. FIG. 21 is an AFM image of a graphene oxide sheet used to prepare graphene fibers according to Examples 2 to 4 of the present invention, and FIG. 22 is a graphene fibers according to Examples 2 to 4 of the present invention. The source solution used in the preparation and the photograph taken after the addition of CoCl 2 , AlCl 3 , and FeCl 3 , respectively.
도 21 및 도 22를 참조하면, 제2 실시 예 2 내지 4에 사용된 그래핀 산화물 시트의 AFM topology 및 두께를 측정하였다. 그래핀 산화물 시트의 두께는 약 1.2nm인 것으로 측정되었다. Referring to FIGS. 21 and 22, the AFM topology and thickness of the graphene oxide sheets used in Examples 2 to 4 were measured. The thickness of the graphene oxide sheet was measured to be about 1.2 nm.
또한, mild sonication으로 DI water에 그래핀 산화물 시트를 분산하여 제조된 소스 용액, 상기 소스 용액에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가하고 사진을 촬영하였다. In addition, the source solution prepared by dispersing the graphene oxide sheet in DI water by mild sonication, CoCl 2 , AlCl 3 , and FeCl 3 were added to the source solution, respectively, and photographed.
도 23은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 후 점도 측정을 위해 촬영한 사진이고, 도 24는 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 용액의 점도를 측정한 그래프이고, 도 25는 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 용액의 저장 탄성률(storage modulus)을 측정한 그래프이고, 도 26은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 섬유의 제조에 사용된 소스 용액 및 이에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 용액의 젤화 정도를 나타내는 그래프이다. 23 is a photograph taken for measuring the viscosity after the addition of CoCl 2 , AlCl 3 , and FeCl 3 to the source solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention, 24 is a graph measuring the viscosity of a sauce solution used in the preparation of graphene fibers according to Examples 2 to 4 of the present invention and a solution in which CoCl 2 , AlCl 3 , and FeCl 3 are added thereto, respectively, 25 is a storage modulus of the source solution used in the preparation of the graphene fibers according to the second embodiment 2 to 4 of the present invention and the solution to which CoCl 2 , AlCl 3 , and FeCl 3 are added thereto, respectively, 26 is a graph showing the degree of gelation of the source solution used in the preparation of the graphene fibers according to the second embodiment 2 to 4 of the present invention and a solution in which CoCl 2 , AlCl 3 , and FeCl 3 were added thereto, respectively. to be.
도 23을 참조하면, 제2실시 예 2 내지 실시 예 4에 사용된 소스 용액을 뒤집은 경우, 낮은 점도로 인해 대부분의 소스 용액이 아래로 흐르는 것을 확인할 수 있다. 또한, 상기 소스 용액에 1가 금속을 포함하는 LiCl을 첨가한 경우에도, 낮은 점도로 인해 대부분의 소스 용액이 아래로 흐르는 것을 확인할 수 있다. Referring to FIG. 23, when the source solution used in Examples 2 to 4 is turned over, it can be seen that most of the source solution flows down due to the low viscosity. In addition, even when LiCl containing a monovalent metal is added to the source solution, it can be seen that most of the source solution flows down due to the low viscosity.
반면, 상기 소스 용액에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 용액의 경우, 점도가 증가하여, 용기를 뒤집더라도, 상기 용액이 CoCl2, AlCl3, 및 FeCl3에 의해 젤화되어, 다량의 용액이 용기 상단에 잔존하는 것을 확인할 수 있다. On the other hand, in the case of a solution in which CoCl 2 , AlCl 3 , and FeCl 3 are added to the source solution, respectively, the viscosity increases, and even if the container is turned over, the solution is gelled by CoCl 2 , AlCl 3 , and FeCl 3 , It can be seen that a large amount of solution remains at the top of the vessel.
또한, 도 24 내지 도 26을 참조하면, 상기 소스 용액에 CoCl2, AlCl3, 및 FeCl3를 각각 첨가한 용액의 경우, 점도가 현저하게 상승하고, 저장 탄성률이 현저하게 상승하는 것을 확인할 수 있다. 또한, 2가 금속을 포함하는 CoCl2를 첨가한 것과 비교하여, 3가 금속을 포함하는 AlCl3 및 FeCl3를 첨가한 경우, 점도 및 저장 탄성률이 현저하게 높은 것을 확인할 수 있다. In addition, referring to FIGS. 24 to 26, in the case of the solution in which CoCl 2 , AlCl 3 , and FeCl 3 are added to the source solution, respectively, it can be seen that the viscosity is significantly increased and the storage modulus is significantly increased. . In addition, when AlCl 3 and FeCl 3 containing a trivalent metal were added, it was confirmed that the viscosity and storage modulus were remarkably high, compared to the addition of CoCl 2 containing a divalent metal.
다시 말하면, 그래핀 산화물 시트가 분산된 상기 소스 용액에 CoCl2, AlCl3, 및 FeCl3와 같은 2가 또는 3가 금속 이온을 포함하는 바인더를 첨가하는 경우, 도 4를 참조하여 설명된 바와 같이, 그래핀 산화물 시트의 Oxygen과 2가 또는 3가 금속 이온이 결합되어, 그래핀 산화물 시트 사이의 결합이 강화되는 것을 확인할 수 있다. 즉, 도 26에 도시된 바와 같이, 상기 소스 용액의 젤화가 진행되는 것을 확인할 수 있다. In other words, when a binder containing divalent or trivalent metal ions such as CoCl 2 , AlCl 3 , and FeCl 3 is added to the source solution in which the graphene oxide sheet is dispersed, as described with reference to FIG. 4. , Oxygen of the graphene oxide sheet and divalent or trivalent metal ions are bonded, it can be seen that the bond between the graphene oxide sheet is strengthened. That is, as shown in Figure 26, it can be seen that the gelation of the source solution is in progress.
따라서, 그래핀 산화물 시트가 분산된 상기 소스 용액을, CoCl2, AlCl3, 및 FeCl3와 같은 2가 또는 3가 금속 이온을 포함하는 바인더를 갖는 응고욕에 방사하여, 그래핀 산화물 섬유를 제조하는 경우, 상기 그래핀 산화물 섬유의 기계적 강도가 향상되는 것을 확인할 수 있다. Thus, the graphene oxide fiber is produced by spinning the source solution in which the graphene oxide sheet is dispersed in a coagulation bath having a binder containing divalent or trivalent metal ions such as CoCl 2 , AlCl 3 , and FeCl 3. In this case, it can be seen that the mechanical strength of the graphene oxide fiber is improved.
도 27은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 산화물 섬유의 XRD 측정 그래프이고, 도 28은 본 발명의 제2 실시 예 2 내지 4에 따른 그래핀 산화물 섬유의 기계적 강도를 측정한 그래프이고, 도 29는 본 발명의 제2 실시 예 2에 따른 그래핀 산화물 섬유를 촬영한 사진이다. FIG. 27 is a graph of XRD measurement of graphene oxide fibers according to Examples 2 to 4 of the present invention, and FIG. 28 is a graph illustrating mechanical strength of graphene oxide fibers according to Examples 2 to 4 of the present invention. 29 is a graph illustrating a graphene oxide fiber according to a second exemplary embodiment of the present invention.
도 27을 참조하면, 제2 실시 예 2 내지 4에 따른 그래핀 산화물 섬유의 XRD를 측정하였다. 도 27에 도시된 바와 같이, 상기 소스 용액을 CoCl2, AlCl3, 및 FeCl3와 같은 바인더를 포함하지 않는 응고욕에 방사하여 그래핀 산화물 섬유(pristine GO fiber)를 제조한 경우, 그래핀 산화물 섬유 내이 그래핀 산화물 시트의 d spacing이 약 8.08 Å으로 측정되었다. 또한, 상기 소스 용액을 CoCl2, AlCl3, 및 FeCl3 바인더를 포함하는 응고욕에 방사하여 그래핀 산화물 섬유를 제조한 경우, d spacing이 각각 8.79Å, 9.01Å, 9.51Å으로 측정되었다. 즉, 양이온의 valent number에 따라서 그래핀 산화물 섬유 내의 그래핀 산화물 시트의 d spacing이 증가하는 것을 확인할 수 있다. Referring to FIG. 27, XRDs of the graphene oxide fibers according to Examples 2 to 4 were measured. As shown in FIG. 27, when the source solution was spun into a coagulation bath containing no binders such as CoCl 2 , AlCl 3 , and FeCl 3 to prepare graphene oxide fibers (pristine GO fibers), graphene oxide The d spacing of the graphene oxide sheet in the fiber was measured to be about 8.08 kPa. In addition, when the graphene oxide fibers were prepared by spinning the source solution in a coagulation bath including CoCl 2 , AlCl 3 , and FeCl 3 binder, d spacing was measured to be 8.79 kV, 9.01 kPa, and 9.51 kPa, respectively. That is, it can be seen that the d spacing of the graphene oxide sheet in the graphene oxide fiber increases according to the valent number of the cation.
또한, 도 28을 참조하면, 제2 실시 예 2 내지 4에 따른 그래핀 산화물 섬유의 기계적 강도를 측정하였다. 상기 소스 용액을 CoCl2, AlCl3, 및 FeCl3와 같은 바인더를 포함하지 않는 응고욕에 방사하여 그래핀 산화물 섬유(pristine GO fiber), 상기 소스 용액을 CoCl2, AlCl3, 및 FeCl3 바인더를 포함하는 응고욕에 방사하여 그래핀 산화물 섬유들의 기계적 강도는 아래의 [표 1]가 같이 정리될 수 있다. In addition, referring to FIG. 28, the mechanical strength of the graphene oxide fibers according to Examples 2 to 4 was measured. The source solution was spun onto a coagulation bath containing no binders such as CoCl 2 , AlCl 3 , and FeCl 3 to convert the graphene oxide fibers (pristine GO fiber), the source solution into CoCl 2 , AlCl 3 , and FeCl 3 binders. The mechanical strength of the graphene oxide fibers by spinning in a coagulation bath may be summarized as shown in Table 1 below.
구분division Strength(MPa)Strength (MPa) Stiffness(GPa)Stiffness (GPa) Elongation at break (%)Elongation at break (%)
pristine GO fiberpristine GO fiber -- -- --
제2 실시 예 2 Second Embodiment 2 407.24407.24 75.475.4 0.650.65
제2 실시 예 3 Second Embodiment 3 464.16464.16 88.188.1 0.620.62
제2 실시 예 4 Second Embodiment 4 510.53510.53 107.0107.0 0.580.58
상기 소스 용액을 CoCl2, AlCl3, 및 FeCl3와 같은 바인더를 포함하지 않는 응고욕에 방사하여 그래핀 산화물 섬유(pristine GO fiber)의 경우, Strength, Stiffness, 및 Elongation at break를 측정하지 못할 정도로 기계적 특성이 약한 것으로 확인되었다. The source solution was spun into a coagulation bath containing no binders such as CoCl 2 , AlCl 3 , and FeCl 3 to the extent that strength, stiffness, and elongation at break could not be measured in the case of pristine GO fibers. The mechanical properties were found to be weak.
반면, 제2 실시 예 2 내지 제2 실시 예 4에 따른 그래핀 산화물 섬유의 경우, 높은 기계적 강도를 가지며, 또한, 바인더로 사용된 금속 이온의 이온가가 증가함에 따라서, Strength 및 Stiffness 값이 증가하고, Elongation at break 값이 감소하는 것을 확인할 수 있다. On the other hand, in the case of the graphene oxide fibers according to the second embodiment 2 to 4 has a high mechanical strength, and also as the ionic value of the metal ions used as the binder increases, the strength and stiffness value increases As a result, the Elongation at break value decreases.
다시 말하면, CoCl2, AlCl3, 및 FeCl3와 같은 바인더를 포함하지 않는 응고욕을 이용하여, 방사된 그래핀 산화물 섬유의 기계적 특성을 향상시킬 수 있음을 확인할 수 있다. In other words, it can be seen that by using a coagulation bath containing no binder such as CoCl 2 , AlCl 3 , and FeCl 3 , the mechanical properties of the spun graphene oxide fibers can be improved.
도 29를 참조하면, 제2 실시 예 2에 따른 그래핀 산화물 섬유를 구부려 보았다. 도 29에 도시된 바와 같이, Co 이온에 의해 그래핀 산화물 시트들이 결합되어, 높은 유연성을 갖는 것을 확인할 수 있다.Referring to FIG. 29, the graphene oxide fibers according to the second example 2 were bent. As shown in FIG. 29, it is confirmed that graphene oxide sheets are bonded by Co ions and have high flexibility.
마지막으로, 본 발명의 제3 실시 예에 따라 제조된 그래핀 섬유의 특성 평가가 설명된다.Finally, characteristic evaluation of the graphene fibers produced according to the third embodiment of the present invention is described.
제3 실시 예에 따른 소스 용액의 제조 방법Method for producing a sauce solution according to the third embodiment
0.01 내지 10wt%의 산화그래핀, 0.1 내지 40wt%의 산화제인 과산화수소(H2O2) 수용액, 및 pH 조절제(LiOH, NaOH, KOH, NH4OH, Ca(OH)2, Sr(OH)2, CsOH, Ba(OH)2, Mg(OH)2, Cd(OH)2, La(OH)3, In(OH)3, Nd(OH)3, Gd(OH)3, FeOOH, RbOH, Al(OH)3, Ni(OH)2, NaF, K2Co3, 또는 NH4ClO)를 용매인 DI water에 첨가한 후, 상온(25℃)에서 반응시켜 소스 용액을 제조하였다.0.01 to 10 wt% graphene oxide, 0.1 to 40 wt% oxidant hydrogen peroxide (H 2 O 2 ) aqueous solution, and pH adjuster (LiOH, NaOH, KOH, NH 4 OH, Ca (OH) 2 , Sr (OH) 2 , CsOH, Ba (OH) 2 , Mg (OH) 2 , Cd (OH) 2 , La (OH) 3 , In (OH) 3 , Nd (OH) 3 , Gd (OH) 3 , FeOOH, RbOH, Al (OH) 3 , Ni (OH) 2 , NaF, K 2 Co 3 , or NH 4 ClO) was added to DI water as a solvent, and then reacted at room temperature (25 ° C.) to prepare a source solution.
제3 실시 예에 대한 비교 예에 따른 소스 용액의 제조 방법Method for producing a sauce solution according to a comparative example of the third embodiment
제3 실시 예에 따른 소스 용액의 제조 방법과 동일한 방법으로 상기 소스 용액 용액을 제조하되, 상기 산화제인 과산화수소의 중량을 40wt% 이상으로 하고, 상기 소스 용액의 pH가 13 이상이 되도록 상기 pH 조절제를 과량으로 첨가하여 비교 예에 따른 소스 용액을 제조하였다.The source solution solution is prepared in the same manner as the method for preparing the source solution according to the third embodiment, wherein the weight of the hydrogen peroxide as the oxidizing agent is 40 wt% or more, and the pH adjusting agent is adjusted so that the pH of the source solution is 13 or more. Excess was added to prepare a sauce solution according to the comparative example.
제3 실시 예에 따른 그래핀 섬유의 제조 방법Graphene fiber manufacturing method according to the third embodiment
제3 실시 예에 따른 소스 용액의 제조 방법에 따라 공극이 형성된 산화그래핀이 분산된 상기 소스 용액을 제조하였다. 알코올계 수용액에 이종 원소를 포함하는 염(암모늄클로라이드(ammonium chloride), 암모늄설페이트(ammonium sulfate), 또는 암모늄포스페이트(ammonium phosphate)) 및 응고제(염화칼슘(CaCl2), 수산화칼륨(KOH), 수산화나트륨(NaOH), 염화나트륨(NaCl), 황산구리(CuSO4), 세틸트리메틸암모늄브로미드(Cetyltrimethylammonium bromide, CTAB), 또는 키토산(chitosan))를 첨가하여 이종 원소를 포함한는 베이스 용액을 제조하였다. 상기 소스 용액을 상기 소스 용액이 담긴 제1 용기의 말단에 연결된 방사구를 통해 상기 베이스 용액으로 방사하여 산화그래핀 섬유를 제조하였다. 상기 산화그래핀 섬유를 상기 베이스 용액으로부터 분리하여 이종 원소를 포함하는 산화그래핀 섬유를 제조하였다. 알코올성 수용액을 이용하여 상기 이종 원소를 포함하는 산화그래핀 섬유에 잔존하는 상기 응고제를 제거한 후, 가열기를 통해 70 내지 80℃의 온도로 상기 이종 원소를 포함하는 산화그래핀 섬유에 열을 가하여 건조시켰다. 이후, 건조된 상기 이종 원소를 포함하는 산화그래핀 섬유를 비활성 기체 분위기 하에 열처리(100~5000℃, 10~100℃/min, 10min~10hrs)하여, 상기 이종 원소가 도핑된 본 발명의 제3 실시 예에 따른 그래핀 섬유를 제조하였다.According to the method of preparing the source solution according to the third embodiment, the source solution in which the graphene oxide with pores was dispersed was prepared. Salts containing dissimilar elements in an alcoholic aqueous solution (ammonium chloride, ammonium sulfate, or ammonium phosphate) and coagulants (calcium chloride (CaCl 2 ), potassium hydroxide (KOH), sodium hydroxide) (NaOH), sodium chloride (NaCl), copper sulfate (CuSO 4 ), cetyltrimethylammonium bromide (CTAB), or chitosan) were added to prepare a base solution containing heterogeneous elements. Graphene oxide fibers were prepared by spinning the source solution into the base solution through a spinneret connected to the end of the first vessel containing the source solution. The graphene oxide fibers were separated from the base solution to prepare graphene oxide fibers including heterogeneous elements. After removing the coagulant remaining on the graphene oxide fiber containing the heterogeneous element using an alcoholic aqueous solution, it was dried by applying heat to the graphene oxide fiber containing the hetero element at a temperature of 70 to 80 ° C. through a heater. . Thereafter, the dried graphene oxide fiber including the heterogeneous element is heat-treated (100 to 5000 ° C., 10 to 100 ° C./min, 10 min to 10 hrs) under an inert gas atmosphere, and the third element of the present invention is doped with the hetero element. Graphene fiber according to the embodiment was prepared.
도 30은 본 발명의 제3 실시 예에 따른 공극이 형성된 산화그래핀의 SEM 이미지이다. 구체적으로, 도 30의 (a)는 본 발명의 제3 실시 예에 따른 소스 용액 내 분산된 공극이 형성된 산화그래핀의 SEM 이미지이고, 도 30의 (b)는 도 30의 (a)에 개시된 본 발명의 제3 실시 예에 따른 산화그래핀에 대한 고배율의 SEM 이미지이다.30 is an SEM image of graphene oxide with pores formed in accordance with a third embodiment of the present invention. Specifically, (a) of FIG. 30 is an SEM image of graphene oxide in which pores dispersed in a source solution according to a third embodiment of the present invention, and FIG. 30 (b) is shown in FIG. 30 (a). SEM image of high magnification for graphene oxide according to a third embodiment of the present invention.
제3 실시 예에 따른 그래핀 섬유의 제조 방법에 개시된 방법과 동일한 방법으로, 상기 소스 용액을 제조하였다. SEM(Scanning Electron Microscope) 기기를 이용하여, 본 발명의 제3 실시 예에 따라 제조된 상기 소스 용액 내 분산된 산화그래핀의 표면에 대한 상세 이미지를 측정하였다.The source solution was prepared in the same manner as the method disclosed in the graphene fiber manufacturing method according to the third embodiment. Using an SEM (Scanning Electron Microscope) instrument, a detailed image of the surface of the graphene oxide dispersed in the source solution prepared according to the third embodiment of the present invention was measured.
도 30의 (a) 및 (b)를 참조하면, 본 발명의 제3 실시 예에 따른 상기 소스 용액 내 산화그래핀은 공극을 포함하는 다공 구조인 것을 확인하였다. 이는, 상기 소스 용액의 제조 시, 첨가된 상기 산화제인 과산화수소에 의해 생성된 ·OH 라디칼에 의해 산화그래핀에 공극이 형성된 것으로 판단된다.Referring to (a) and (b) of FIG. 30, it was confirmed that the graphene oxide in the source solution according to the third embodiment of the present invention has a porous structure including pores. In the preparation of the source solution, it is determined that pores are formed in the graphene oxide by the · OH radical generated by the added hydrogen peroxide, the oxidizing agent.
도 31은 본 발명의 제3 실시 예에 따른 소스 용액의 사진이다.31 is a photograph of a sauce solution according to a third embodiment of the present invention.
제3 실시 예에 따른 소스 용액의 제조 방법에 따라 상기 소스 용액을 제조한 후, 본 발명의 제3 실시 예에 따른 소스 용액 내 산화그래핀의 분산 특성을 관찰하였다.After the source solution was prepared according to the method for preparing the source solution according to the third embodiment, the dispersion characteristics of graphene oxide in the source solution according to the third embodiment of the present invention were observed.
도 31을 참조하면, 상기 소스 용액 내 산화그래핀이 응집되지 않고, 안정적으로 분산되어 있는 것을 확인하였다. 이는, 본 발명의 제3 실시 예에 따라, 상기 소스 용액의 제조 시, 적절한 양의 상기 산화제 및 상기 pH 조절제가 사용되어, 산화그래핀, 상기 산화제, 및 상기 pH 조절제 간의 반응이 균일하게 일어나 나타난 결과로 판단된다.Referring to FIG. 31, it was confirmed that graphene oxide in the source solution did not aggregate and was stably dispersed. According to a third embodiment of the present invention, when the source solution is prepared, an appropriate amount of the oxidizing agent and the pH adjusting agent are used, so that the reaction between the graphene oxide, the oxidizing agent, and the pH adjusting agent occurs uniformly. Judging by the result.
도 32는 본 발명의 제3 실시 예에 대한 비교 예에 따른 소스 용액의 사진이다.32 is a photograph of a sauce solution according to a comparative example of a third embodiment of the present invention.
비교 예에 따른 소스 용액의 제조 방법에 따라, 과량의 상기 산화제 및 상기 pH 조절제를 사용하여 상기 소스 용액을 제조한 후, 본 발명의 제3 실시 예에 대한 비교 예에 따른 소스 용액 내 산화그래핀의 분산 특성을 관찰하였다.According to the preparation method of the source solution according to the comparative example, after preparing the source solution using the excess of the oxidizing agent and the pH adjusting agent, the graphene oxide in the source solution according to the comparative example of the third embodiment of the present invention The dispersion characteristic of was observed.
도 32를 참조하면, 상기 소스 용액 내 산화그래핀이 응집되어 침전이 발생하는 것을 확인하였다. 이는, 본 발명의 제3 실시 예와 달리, 상기 소스 용액의 제조 시, 과량의 상기 산화제(>40wt%) 및 상기 pH 조절제(>pH 13)가 사용되어, 산화그래핀이 응집된 것으로 판단된다. 이에 따라, 응집된 산화그래핀에 상기 산화제인 과산화수소에 의해 생성된 ·OH 라디칼의 접근이 제한되어, 산화그래핀, 상기 산화제, 및 상기 pH 조절제 간의 반응이 균일하게 일어나지 않는 것을 알 수 있었다.Referring to FIG. 32, it was confirmed that graphene oxide in the source solution was aggregated to cause precipitation. Unlike the third embodiment of the present invention, when the source solution is prepared, an excessive amount of the oxidizing agent (> 40wt%) and the pH adjusting agent (> pH 13) is used, and it is determined that graphene oxide is aggregated. . Accordingly, it was found that the access of the OH radicals generated by the hydrogen peroxide as the oxidant to the aggregated graphene oxide was restricted, so that the reaction between the graphene oxide, the oxidant, and the pH regulator did not occur uniformly.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As mentioned above, although this invention was demonstrated in detail using the preferable embodiment, the scope of the present invention is not limited to a specific embodiment, Comprising: It should be interpreted by the attached Claim. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.
본 발명의 실시 예에 따른 그래핀 섬유는, 플렉시블한 디바이스, 섬유형 전자기기, 전선, 커패시터 등 다양한 소자 및 장치에 폭 넓게 활용될 수 있다.Graphene fiber according to an embodiment of the present invention can be widely used in a variety of devices and devices, such as flexible devices, fibrous electronics, wires, capacitors.

Claims (20)

  1. 산화그래핀(graphene oxide)을 포함하는 소스 용액을 준비하는 단계;Preparing a source solution containing graphene oxide;
    이종 원소를 포함하는 베이스 용액으로 상기 소스 용액을 방사하여 산화그래핀 섬유를 제조하는 단계;Spinning the source solution with a base solution containing heterogeneous elements to produce graphene oxide fibers;
    상기 베이스 용액으로부터 상기 그래핀 섬유를 분리, 세척, 및 건조하여, 상기 이종 원소를 포함하는 산화그래핀 섬유를 수득하는 단계; 및Separating, washing, and drying the graphene fibers from the base solution to obtain graphene oxide fibers including the heterogeneous elements; And
    건조된 상기 이종 원소를 포함하는 산화그래핀 섬유를 열처리(thermal treatment)하여, 상기 이종 원소가 도핑된 그래핀 섬유를 제조하는 단계를 포함하되,Comprising the step of thermally treating the graphene oxide fibers comprising the heterogeneous element (dry), the graphene fibers doped with the hetero element,
    상기 소스 용액의 농도 및 방사 속도에 따라, 상기 그래핀 섬유의 신장률(elongation percentage)이 조절되는 것을 포함하는 그래핀 섬유의 제조 방법.The elongation percentage of the graphene fiber is adjusted according to the concentration and spinning rate of the source solution.
  2. 제1 항에 있어서,According to claim 1,
    상기 소스 용액 내 산화그래핀의 농도가 증가함에 따라, 상기 그래핀 섬유의 신장률이 증가하는 것을 포함하는 그래핀 섬유의 제조 방법.As the concentration of graphene oxide in the source solution increases, the method for producing graphene fibers comprising the elongation of the graphene fibers increases.
  3. 제1 항에 있어서,According to claim 1,
    상기 소스 용액의 방사 속도가 감소함에 따라, 상기 그래핀 섬유의 신장률이 증가하는 것을 포함하는 그래핀 섬유의 제조 방법.As the spinning speed of the source solution is reduced, the method for producing graphene fibers comprising the elongation of the graphene fibers increases.
  4. 제1 항에 있어서,According to claim 1,
    상기 이종 원소를 포함하는 산화그래핀 섬유를 수득하는 단계에서, 상기 이종 원소를 포함하는 산화그래핀 섬유를 건조하는 동시에, 권취하는 단계를 더 포함하는 그래핀 섬유의 제조 방법.In the step of obtaining the graphene oxide fiber comprising the dissimilar element, drying the graphene oxide fiber comprising the dissimilar element, at the same time, the method of producing a graphene fiber further comprising the step of winding up.
  5. 제4 항에 있어서,The method of claim 4, wherein
    상기 이종 원소를 포함하는 산화그래핀 섬유의 권취 속도보다 상기 소스 용액의 방사 속도가 큰 경우, 상기 그래핀 섬유의 신장률이 증가하는 것을 포함하는 그래핀 섬유의 제조 방법.When the spinning speed of the source solution is greater than the winding speed of the graphene oxide fiber containing the heterogeneous element, the graphene fiber manufacturing method comprising the increase in the elongation of the graphene fiber.
  6. 제1 항에 있어서,According to claim 1,
    상기 그래핀 섬유를 제조하는 단계는,Preparing the graphene fibers,
    상기 열처리를 통해 상기 산화그래핀 섬유가 상기 그래핀 섬유로 환원되는 동시에, 상기 산화그래핀 섬유에 포함된 상기 이종 원소가 상기 산화그래핀 섬유에 도핑(doping)되는 것을 포함하는 그래핀 섬유의 제조 방법.The graphene oxide fiber is reduced to the graphene fiber through the heat treatment, and at the same time, the dissimilar elements included in the graphene oxide fiber are doped in the graphene oxide fiber. Way.
  7. 그래핀 산화물 시트(graphene oxide sheet)가 분산된 소스 용액을 준비하는 단계; Preparing a source solution in which a graphene oxide sheet is dispersed;
    상기 그래핀 산화물 시트를 부분적으로(partially) 환원하는 환원제, 및 상기 그래핀 산화물 시트들을 바인딩(binding)하는 바인더(binder)를 동시에 포함하는 응고욕에, 상기 소스 용액을 방사하여, 그래핀 산화물 섬유를 수득하는 단계; 및Spinning the source solution into a coagulation bath comprising a reducing agent that partially reduces the graphene oxide sheet and a binder that binds the graphene oxide sheets, thereby spinning graphene oxide fibers Obtaining; And
    상기 그래핀 산화물 섬유를 환원하여, 그래핀 섬유를 제조하는 단계를 포함하는 그래핀 섬유의 제조 방법.Reducing the graphene oxide fibers, a graphene fiber manufacturing method comprising the step of producing a graphene fiber.
  8. 제7 항에 있어서, The method of claim 7, wherein
    상기 환원제에 의해, 상기 그래핀 산화물 시트가 부분적으로 환원되어, 부분적으로 환원된 그래핀 산화물 시트(partially reduced graphene oxide sheet)가 제조되고, By the reducing agent, the graphene oxide sheet is partially reduced, thereby producing a partially reduced graphene oxide sheet,
    상기 부분적으로 환원된 그래핀 산화물 시트들 사이의 파이-파이 스택킹(π- π stacking)이 증가하여, 상기 그래핀 산화물 섬유의 인장 강도가 증가하는 것을 포함하는 그래핀 섬유의 제조 방법. And pi-pie stacking between the partially reduced graphene oxide sheets, thereby increasing the tensile strength of the graphene oxide fibers.
  9. 제7 항에 있어서, The method of claim 7, wherein
    상기 바인더는, 2가 또는 3가 금속 이온을 포함하는 그래핀 섬유의 제조 방법. The binder is a method for producing graphene fibers containing divalent or trivalent metal ions.
  10. 제7 항에 있어서, The method of claim 7, wherein
    상기 그래핀 섬유를 구리 도금하여, 구리 도금된 그래핀 섬유를 제조하는 단계를 더 포함하는 그래핀 섬유의 제조 방법.Copper-plating the graphene fibers, a method for producing graphene fibers further comprising the step of producing a copper-plated graphene fibers.
  11. 제10 항에 있어서, The method of claim 10,
    상기 구리 도금된 그래핀 섬유를 제조하는 단계는, Preparing the copper plated graphene fiber,
    상기 그래핀 섬유를 식각하는 단계;Etching the graphene fibers;
    식각된 상기 그래핀 섬유에 촉매 금속을 결합시키는 단계; 및Bonding a catalytic metal to the etched graphene fibers; And
    구리를 포함하는 용액에 상기 촉매 금속이 결합된 상기 그래핀 섬유를 담그고, 상기 촉매 금속을 이용하여 구리를 환원하는 방법으로, 상기 그래핀 섬유를 구리로 도금하는 단계를 포함하는 그래핀 섬유의 제조 방법.Preparation of graphene fibers comprising the step of immersing the graphene fibers bonded to the catalyst metal in a solution containing copper, and reducing the copper using the catalyst metal, plating the graphene fibers with copper. Way.
  12. 제10 항에 있어서, The method of claim 10,
    상기 구리 도금된 그래핀 섬유는, The copper plated graphene fiber,
    상기 그래핀 산화물 시트가 환원된 그래핀 시트들 사이에 제공되는 기공, 또는 상기 그래핀 섬유의 표면에 제공되는 구리 구조체를 포함하는 그래핀 섬유의 제조 방법. The graphene oxide sheet is a method for producing graphene fibers comprising pores provided between the reduced graphene sheets, or a copper structure provided on the surface of the graphene fibers.
  13. 제7 항에 있어서, The method of claim 7, wherein
    상기 그래핀 섬유를 제조하는 단계는, Preparing the graphene fibers,
    상기 그래핀 산화물 섬유를 건조하는 단계;Drying the graphene oxide fibers;
    건조된 상기 그래핀 산화물 섬유를 세척 및 건조하는 단계; 및 Washing and drying the dried graphene oxide fibers; And
    세척 및 건조된 상기 그래핀 산화물 섬유를 환원 용액에 담궈 열처리하는 방법으로, 상기 그래핀 산화물 섬유를 환원시키는 단계를 포함하는 그래핀 섬유의 제조 방법. The method of manufacturing a graphene fiber comprising the step of reducing the graphene oxide fibers by a method of heat-treating the washed and dried graphene oxide fibers in a reducing solution.
  14. 제7 항에 있어서, The method of claim 7, wherein
    상기 소스 용액은 탄소나노튜브를 더 포함하고, The source solution further comprises carbon nanotubes,
    상기 그래핀 섬유는, 상기 탄소나노튜브를 더 포함하는 그래핀 섬유의 제조 방법. The graphene fiber, the graphene fiber manufacturing method further comprising the carbon nanotubes.
  15. 산화그래핀, 산화제, 및 pH 조절제를 용매에 첨가한 후, 반응시켜 공극을 갖는 산화그래핀이 분산된 소스 용액을 준비하는 단계;Adding graphene oxide, an oxidizing agent, and a pH adjusting agent to a solvent, and then reacting to prepare a source solution in which graphene oxide having pores is dispersed;
    이종 원소를 포함하는 소스 용액으로 상기 소스 용액을 방사하여 산화그래핀 섬유를 제조하는 단계;Spinning the source solution with a source solution containing heterogeneous elements to produce graphene oxide fibers;
    상기 소스 용액으로부터 상기 산화그래핀 섬유를 분리, 세척, 및 건조하여, 상기 이종 원소를 포함하는 산화그래핀 섬유를 수득하는 단계;Separating, washing, and drying the graphene oxide fibers from the source solution to obtain graphene oxide fibers including the dissimilar elements;
    건조된 상기 이종 원소를 포함하는 산화그래핀 섬유를 열처리(thermal treatment)하여, 상기이종 원소가 도핑된 그래핀 섬유를 제조하는 단계; 및Thermally treating the dried graphene oxide fiber including the dissimilar element to produce graphene fibers doped with the dissimilar element; And
    상기 그래핀 섬유를 제1 산화제를 포함하는 수용액과 반응시켜, 상기 그래핀 섬유 내 미세 공극을 형성하는 단계를 포함하는 그래핀 섬유의 제조 방법.Reacting the graphene fibers with an aqueous solution containing a first oxidizing agent, to form a fine void in the graphene fibers manufacturing method of graphene fibers.
  16. 제15 항에 있어서,The method of claim 15,
    상기 소스 용액 내 상기 산화제의 함량이 증가할수록, 산화그래핀의 공극률이 증가하는 것을 포함하는 산화그래핀 소스 용액의 제조 방법.And increasing the porosity of graphene oxide as the content of the oxidant in the source solution increases.
  17. 제15 항에 있어서,The method of claim 15,
    상기 소스 용액의 pH가 높을수록, 산화그래핀의 공극률이 증가하는 것을 포함하는 산화그래핀 소스 용액의 제조 방법.The higher the pH of the source solution, the method of producing a graphene oxide source solution comprising increasing the porosity of graphene oxide.
  18. 제15 항에 있어서,The method of claim 15,
    상기 수용액 내 상기 제1 산화제의 함량과 상기 반응의 온도 및 시간에 따라, 상기 그래핀 섬유 내 형성되는 상기 미세 공극의 공극률이 조절되는 그래핀 섬유의 제조 방법.According to the content of the first oxidizing agent in the aqueous solution and the temperature and time of the reaction, the porosity of the fine pores formed in the graphene fibers is controlled graphene fiber manufacturing method.
  19. 제15 항에 있어서,The method of claim 15,
    상기 소스 용액 내 상기 산화제의 함량, 상기 소스 용액의 pH, 및 반응 온도에 따라, 상기 소스 용액 내의 산화그래핀 내 공극률이 조절되는 것을 포함하는 그래핀 섬유의 제조 방법.The porosity in the graphene oxide in the source solution is adjusted according to the content of the oxidant in the source solution, the pH of the source solution, and the reaction temperature.
  20. 제15 항에 있어서,The method of claim 15,
    상기 그래핀 섬유를 제조하는 단계는, Preparing the graphene fibers,
    상기 열처리를 통해 상기 산화그래핀 섬유가 상기 그래핀 섬유로 환원되는 동시에, 상기 산화그래핀 섬유에 포함된 상기 이종 원소가 상기 산화그래핀 섬유에 도핑(doping)되는 것을 포함하고,At the same time as the graphene oxide fiber is reduced to the graphene fiber through the heat treatment, the heterogeneous element included in the graphene oxide fiber is doped (dope) to the graphene oxide fiber,
    상기 산화그래핀 섬유에 도핑된 상기 이종 원소의 함량에 따라, 상기 그래핀 섬유의 전기전도도가 조절되는 것을 포함하는 그래핀 섬유의 제조 방법.According to the content of the dissimilar element doped in the graphene oxide fiber, the graphene fiber manufacturing method comprising the electrical conductivity of the graphene fiber is adjusted.
PCT/KR2017/003930 2016-04-11 2017-04-11 Graphene fiber and manufacturing method therefor WO2017179900A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780023153.XA CN109072484B (en) 2016-04-11 2017-04-11 Graphene fiber and preparation method thereof
US16/156,367 US10995428B2 (en) 2016-04-11 2018-10-10 Graphene fiber and method of manufacturing the same
US17/240,528 US11649566B2 (en) 2016-04-11 2021-04-26 Graphene fiber and method of manufacturing the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020160044225A KR101782725B1 (en) 2016-04-11 2016-04-11 Graphene fiber, and method for manufacturing same
KR10-2016-0044228 2016-04-11
KR1020160044228A KR101782726B1 (en) 2016-04-11 2016-04-11 Method of manufacturing graphene oxide spinning solution, and method for manufacturing graphene fiber using same
KR10-2016-0044225 2016-04-11
KR10-2016-0105541 2016-08-19
KR20160105541 2016-08-19
KR10-2017-0013852 2017-01-31
KR1020170013852A KR102660907B1 (en) 2016-08-19 2017-01-31 Graphene fiber composite and method of fabricating of the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/156,367 Continuation US10995428B2 (en) 2016-04-11 2018-10-10 Graphene fiber and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017179900A1 true WO2017179900A1 (en) 2017-10-19

Family

ID=60041700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003930 WO2017179900A1 (en) 2016-04-11 2017-04-11 Graphene fiber and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017179900A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101927643B1 (en) * 2017-11-22 2018-12-10 한국과학기술원 Graphene-composite fiber and fabrication method of the same
CN111235694A (en) * 2020-03-23 2020-06-05 旷达纤维科技有限公司 Graphene composite negative ion polyester fiber
WO2021004692A1 (en) * 2019-07-10 2021-01-14 Robert Bosch Gmbh Method for producing graphene fibres
CN113215857A (en) * 2021-04-13 2021-08-06 中国科学院电工研究所 Heteroatom-doped graphene nanofiber non-woven fabric and preparation method thereof
CN113802215A (en) * 2021-10-22 2021-12-17 方大炭素新材料科技股份有限公司 Bacterial cellulose composite fiber and preparation method thereof
CN117398530A (en) * 2023-11-15 2024-01-16 上海科进医疗科技有限公司 Graphene medical water-soluble lubricant and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110078254A (en) * 2009-12-31 2011-07-07 주식회사 효성 Method of preparation for copper plated carbon fiber
KR20120107026A (en) * 2011-03-15 2012-09-28 한양대학교 산학협력단 Graphene fiber and method for preparing the same
KR20120111661A (en) * 2011-04-01 2012-10-10 삼성전자주식회사 Strechable conductive nano fiber, strechable fiber electrode using the same and method for producing the same
KR101328876B1 (en) * 2005-11-22 2013-11-14 인비스타 테크놀러지스 에스.에이.알.엘. Spandex from high molecular weight poly(tetramethylene-co-ethyleneether)glycols
US20150093572A1 (en) * 2013-04-10 2015-04-02 Huawei Technologies Co., Ltd. Graphene fiber and prepartion method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328876B1 (en) * 2005-11-22 2013-11-14 인비스타 테크놀러지스 에스.에이.알.엘. Spandex from high molecular weight poly(tetramethylene-co-ethyleneether)glycols
KR20110078254A (en) * 2009-12-31 2011-07-07 주식회사 효성 Method of preparation for copper plated carbon fiber
KR20120107026A (en) * 2011-03-15 2012-09-28 한양대학교 산학협력단 Graphene fiber and method for preparing the same
KR20120111661A (en) * 2011-04-01 2012-10-10 삼성전자주식회사 Strechable conductive nano fiber, strechable fiber electrode using the same and method for producing the same
US20150093572A1 (en) * 2013-04-10 2015-04-02 Huawei Technologies Co., Ltd. Graphene fiber and prepartion method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101927643B1 (en) * 2017-11-22 2018-12-10 한국과학기술원 Graphene-composite fiber and fabrication method of the same
WO2021004692A1 (en) * 2019-07-10 2021-01-14 Robert Bosch Gmbh Method for producing graphene fibres
US11939703B2 (en) 2019-07-10 2024-03-26 Robert Bosch Gmbh Method for producing graphene fibres
CN111235694A (en) * 2020-03-23 2020-06-05 旷达纤维科技有限公司 Graphene composite negative ion polyester fiber
CN113215857A (en) * 2021-04-13 2021-08-06 中国科学院电工研究所 Heteroatom-doped graphene nanofiber non-woven fabric and preparation method thereof
CN113802215A (en) * 2021-10-22 2021-12-17 方大炭素新材料科技股份有限公司 Bacterial cellulose composite fiber and preparation method thereof
CN117398530A (en) * 2023-11-15 2024-01-16 上海科进医疗科技有限公司 Graphene medical water-soluble lubricant and preparation method thereof
CN117398530B (en) * 2023-11-15 2024-03-26 上海科进医疗科技有限公司 Graphene medical water-soluble lubricant and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2017179900A1 (en) Graphene fiber and manufacturing method therefor
WO2020022822A1 (en) Carbon nanotube, method for preparing same, and cathode for primary battery comprising same
WO2018110776A1 (en) Method for manufacturing crumpled graphene composite, composite manufactured thereby, and supercapacitor including composite
WO2021149996A1 (en) Silicon-silicon composite oxide-carbon composite, method for preparing same, and negative electrode active material comprising same
WO2012088683A1 (en) Porous graphene material and preparation method and uses as electrode material thereof
WO2016032299A1 (en) Polyimide preparation method using monomer salt
WO2021141376A1 (en) Pre-dispersing agent composition, and electrode and secondary battery comprising same
WO2020022676A1 (en) Preparation method for nanofiber composite comprising high-conductivity valve metal oxide and nanofiber composite prepared thereby
WO2017074124A1 (en) Conductive material dispersed liquid and lithium secondary battery manufactured using same
WO2018066974A1 (en) Electrode fiber and method for producing same
WO2021075874A1 (en) Positive electrode active material and method for preparing same
WO2023182826A1 (en) Silicon-carbon composite, preparation method therefor, and anode active material and lithium secondary battery comprising same
WO2018034549A1 (en) Catalyst composition for preparing polyketone compound, palladium mixed catalyst system, method for preparing polyketone compound using same, and polyketone polymer
WO2023096443A1 (en) Silicon-carbon composite, method for preparing same, and negative electrode active material for lithium secondary battery comprising same
WO2017099358A1 (en) Conductive dispersion and lithium secondary battery manufactured using same
WO2019125052A1 (en) Aerogel composition and preparation method therefor
WO2022005064A1 (en) Intermediate for preparation of porous silicon oxycarbide, preparation method therefor, and lithium secondary battery comprising porous silicon oxycarbide prepared therefrom as anode active material
WO2017150893A1 (en) Cathode active material for lithium secondary battery and preparation method therefor
WO2015111801A1 (en) Polyaniline nanopaste and preparation method therefor
WO2022203409A1 (en) Electrode structure for anode, manufacturing method therefor, and secondary battery comprising same
WO2024025104A1 (en) Cathod material for lithium-sulfur battery and lithium-sulfur battery including the same
WO2021167431A1 (en) Composite fiber, solid electrolyte comprising same, and metal air battery comprising same
WO2018169366A1 (en) Bundle-type carbon nanotube and production method therefor
WO2022203410A1 (en) Aluminum-air secondary battery and manufacturing method therefor
WO2022010266A1 (en) Electromagnetic shielding material and manufacturing method therefor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782655

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782655

Country of ref document: EP

Kind code of ref document: A1