WO2016032299A1 - Polyimide preparation method using monomer salt - Google Patents

Polyimide preparation method using monomer salt Download PDF

Info

Publication number
WO2016032299A1
WO2016032299A1 PCT/KR2015/009102 KR2015009102W WO2016032299A1 WO 2016032299 A1 WO2016032299 A1 WO 2016032299A1 KR 2015009102 W KR2015009102 W KR 2015009102W WO 2016032299 A1 WO2016032299 A1 WO 2016032299A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
monomer
prepare
group
dianhydride
Prior art date
Application number
PCT/KR2015/009102
Other languages
French (fr)
Korean (ko)
Inventor
정찬문
유환철
이재희
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140114159A external-priority patent/KR101548877B1/en
Priority claimed from KR1020140123904A external-priority patent/KR20160033009A/en
Priority claimed from KR1020150050470A external-priority patent/KR101728830B1/en
Priority claimed from KR1020150114105A external-priority patent/KR101755245B1/en
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Publication of WO2016032299A1 publication Critical patent/WO2016032299A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for producing polyimide using a monomer salt.
  • High heat-resistant polymer materials such as polyimide are essential materials for miniaturization, high performance, and high reliability of products according to the development of advanced technology.
  • film molded products, fibers, paints, adhesives and composites, aerospace, aviation, electricity It is used in a wide range of industries such as electronics, automotive and precision equipment.
  • Polyimide (PI) of the high heat resistant polymer material has excellent mechanical strength, chemical resistance, weather resistance, and heat resistance based on the chemical stability of the imide ring.
  • PI polyimide
  • the polyimide composite material produced by this method may show higher mechanical and thermal properties, and also high transmittance or high dielectric constant depending on the dispersing material.
  • the polyimide composite thus prepared can be used in new fields such as organic thin film transistors, which were not used at low dielectric constants in addition to those in which polyimide was used.
  • the synthesis step is greatly reduced, the reaction proceeds under mild conditions during the preparation of the monomer salt, and a method for preparing a polyimide, polyimide copolymer or polyimide composite using the prepared monomer salt, and It is intended to provide a polyimide, polyimide copolymer or polyimide composite.
  • a polyimide having a number average molecular weight of 5,000 to 1,000,000 is provided as a polyimide prepared according to the above method.
  • a polyimide having a number average molecular weight of 50,000 to 2,000,000 as a polyimide in the form of a composite prepared according to the above method is provided.
  • film processing including melt processing, hollow processing, calender processing and sintering method
  • Molded article processing including casting, lamination, compression molding, injection molding, blow molding, rotational molding, thermoforming and slush molding
  • it provides a method for producing a polyimide molded article further comprising the step of processing by one or more processing methods selected from the group consisting of fiber spinning, including wet spinning, dry spinning and melt spinning.
  • a polyimide molded article manufactured according to the above method, a polyimide film, a high heat resistance engineering plastic, an adhesive, a tape, a fiber, a liquid crystal alignment film, an interlayer insulator, a coating film resin, a printed circuit board, and a flexible display
  • a polyimide molded article for use in one or more applications selected from the group consisting of substrates.
  • the production of polyimide, polyimide copolymer or polyimide composite proceeds under mild conditions, the manufacturing process is simple and economical, and it is environmentally friendly because no organic solvent is used.
  • the polyimide, polyimide copolymer or polyimide composite prepared according to the present invention has higher molecular weight, better mechanical properties and higher thermal properties than the polyimide prepared according to the conventional method.
  • Figure 1 shows the FT-IR spectrum of the polyimide prepared according to Example 1-1 of the present invention.
  • Figure 2 shows the FT-IR spectrum of the polyimide prepared according to Examples 1-2 of the present invention.
  • Figure 3 shows the FT-IR spectrum of the polyimide prepared according to Examples 1-3 of the present invention.
  • Figure 4 shows the FT-IR spectrum of the polyimide prepared according to Examples 1-4 of the present invention.
  • Figure 5 shows the FT-IR spectrum of the material prepared according to Comparative Example 1-1 of the present invention.
  • Figure 6 shows the FT-IR spectrum of the material prepared according to Comparative Example 1-2 of the present invention.
  • Figure 7 shows the FT-IR spectrum of the polyimide according to Comparative Examples 1-3 of the present invention.
  • Figure 9 shows the FT-IR spectrum of the monomer salt according to Example 2-1 of the present invention.
  • Figure 13 shows a photograph of a polyimide composite film obtained by heating a composition of polyamic acid and graphene oxide according to Comparative Example 2-3 of the present invention.
  • Figure 14 shows a photograph of a polyimide composite film obtained by heating the composition of polyamic acid and graphene oxide according to Comparative Example 2-4 of the present invention.
  • Figure 15 shows a photo of the polyimide composite film obtained by heating the composition of the monomer salt and graphene oxide according to Example 2-3 of the present invention.
  • Figure 16 shows a photo of the polyimide composite film obtained by heating the composition of the graphene oxide dispersed in the monomer salt and water according to Example 2-4 of the present invention.
  • Figure 21 shows the FT-IR spectrum of the polyimide composite according to Examples 3-6 of the present invention.
  • Example 22 shows the FT-IR spectrum of the polyimide copolymer according to Example 4-1 of the present invention.
  • Figure 23 shows the FT-IR spectrum of the polyimide copolymer according to Example 4-2 of the present invention.
  • 26 shows the FT-IR spectrum of the polyimide copolymer according to Example 4-5 of the present invention.
  • the present invention relates to a process for preparing monomer salts from monomers and for preparing polyimides using the monomer salts prepared above.
  • the production of polyimide, polyimide copolymer or polyimide composite proceeds under mild conditions, the manufacturing process is simple and economical, and it is environmentally friendly because no organic solvent is used.
  • the polyimide, polyimide copolymer or polyimide composite prepared according to the present invention has higher molecular weight, excellent mechanical properties and higher thermal properties than the polyimide prepared according to the conventional method.
  • Polyimide manufacturing method comprises the steps of: a) preparing a monomer salt mixture by putting a dianhydride monomer and a diamine monomer in water; b) recovering the monomer salt by filtration and drying the monomer salt mixture or by evaporating water; And c) heating the monomer salt to produce a polyimide.
  • a dianhydride monomer and a diamine monomer are added to water to prepare a monomer salt mixture (step a).
  • the dianhydride may be one or more dianhydrides, the dianhydride may be aromatic or aliphatic.
  • the dianhydride when used in two or more types, a polyimide in the form of a copolymer may be prepared.
  • the dianhydride may include a compound of Formula 1 below.
  • R 1 is the chemical structure of
  • the diamine may be one or more diamines, the diamine may be aromatic or aliphatic.
  • the diamine when used in two or more types, a polyimide in the form of a copolymer may be prepared.
  • the diamine may include a compound of Formula 2 below.
  • x is an integer satisfying 1 ⁇ x ⁇ 50
  • n is a natural number in the range of 1 to 20
  • W, X, Y are each an alkyl group or an aryl group having 1 to 30 carbon atoms
  • Z is an ester group , Amide group, imide group and ether group.
  • the molar ratio of the diamine to dianhydride in step a) may be 0.5 to 2 equivalents.
  • the molar ratio may be specifically 0.8 to 1.5 equivalents.
  • the molecular weight of the finally formed polyimide becomes very small, and thus there may be a problem that the physical and chemical properties of the polyimide are very low.
  • step a) may be carried out in a variety of ways, for example, by dispersing each monomer in water, and then putting it in the reaction vessel, as another method, the water in the reaction vessel It may also be carried out by the method of adding the first monomer and then adding each monomer. In addition, each monomer may be first added to the reaction vessel and then water may be added thereto, or a combination of the above methods may be performed.
  • the monomer salt mixture of step a) when the monomer salt mixture of step a) is prepared, it may comprise the step of adding a dispersing material.
  • the dispersion material used may be at least one material selected from the group consisting of organic materials and inorganic materials.
  • the organic material or inorganic material may be processed by one or more methods selected from chemical methods that react with chemicals and physical methods including immersion in water to disperse or pulverize.
  • the organic material may be at least one material selected from the group consisting of polyether ether ketone and polypropylene sulfide.
  • the inorganic material may be at least one material selected from the group consisting of graphite, zinc oxide, silicate, kaolinite, smectite, graphene oxide, zirconium dioxide and carbon nanotubes.
  • the dispersion material may be one or two or more materials selected from the group consisting of particulate matter, plate-like material, fibrous material. If the dispersion is particulate, it can give additional benefits such as thermal stability, increased density, stiffness or texture in the composition and final product, and in the case of a plate, the dispersion spreads well and By reducing thermal expansion, reducing gas permeability, and treating the surface of the dispersing material with various functional groups, it is possible to give such properties as adhesion.In the case of fibrous materials, it is possible to reduce the coefficient of thermal expansion or improve mechanical strength such as elastic modulus and bending strength. It can give the advantage of.
  • the dispersion material when the dispersion material is further added, the dispersion material may be included in 1 to 90wt% of the total weight of the mixture in the monomer salt mixture and may be included in detail from 1 to 50wt%.
  • the content of the dispersion material is less than 1wt% of the total weight of the mixture, it is difficult to express the inherent characteristics of the dispersion material in the polyimide of the composite form to be produced, and when it is more than 90wt%, the mechanical properties of the polyimide of the composite form to be produced are greatly increased. May decrease.
  • the monomer salt mixture when preparing the monomer salt mixture, it may further include one or more additives selected from the group consisting of dispersants and thickeners.
  • the dispersant may be one or more dispersants selected from the group consisting of surfactants of cations, anions and nonions.
  • the thickener is hydroxypropyl cellulose, hydroxypropylmethyl cellulose, hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, sodium polyacrylate, polyvinyl alcohol and polyvinylpyrrolidone It may be one or more thickeners selected from the group consisting of.
  • the amount of the additive may be 0.1 to 10 wt% based on the total weight of the monomer and the dispersion material in the monomer salt mixture. If the content of the additive is less than 0.1wt%, the effect of the additive may be insignificant, and if it is more than 10wt%, the mechanical properties of the resulting polyimide may be greatly reduced.
  • the dispersion may be performed by one or more methods selected from the group consisting of stirrer dispersion, homogenizer dispersion, ultrahigh pressure dispersion, and ultrasonic dispersion, and may also undergo agitation process.
  • step a) may be carried out in the temperature range of 5 to 55 °C °C, in detail may be carried out in the temperature range of 10 to 35 °C. If the step a) is carried out below 5 ° C, the stirring and dispersion process may not proceed smoothly, and when carried out above 55 ° C, a separate heat source supply device or a cooling condensation device may be required.
  • step a) may be performed for 1 hour to 5 days, in detail it may be performed for 3 hours to 1 day. If the step a) is performed for less than 1 hour, the added dispersing material may not be uniformly dispersed, and if the process is performed for more than 5 days, the cost may be excessively increased according to the process.
  • the monomer salt mixture is filtered and dried, or water is evaporated to recover the monomer salts of dianhydride and diamine (step b).
  • the dispersion material is added in step a) may be present in the form of a mixture of the dispersion material and the monomer salt.
  • filtering the mixture may yield a solid, and the obtained solid may be dried to prepare a salt.
  • a salt may be further obtained by evaporating the filtrate obtained in the said filtration process.
  • salts may be prepared by evaporating the water in the mixture.
  • the water vapor generated by the evaporation may be cooled and condensed to recover the water and reuse.
  • the filtration is carried out by one or two or more combinations selected from the group consisting of gravity filtration, vacuum filtration, pressure filtration, compression filtration, centrifugal filtration, microfiltration, ultrafiltration and reverse osmosis method. It may be.
  • the drying is one selected from the group consisting of natural drying, pressure drying, hot air drying, spray drying, film drying, vacuum drying, freeze drying, spray freeze drying, electromagnetic wave drying and flash drying method or It may be performed by a combination of two or more.
  • the evaporation is to be carried out by one or two or more combinations selected from the group consisting of natural evaporation, membrane evaporation, thermal evaporation, pervaporation, vacuum evaporation, co-vacuum evaporation and rotary concentrated evaporation method.
  • natural evaporation membrane evaporation
  • thermal evaporation pervaporation
  • vacuum evaporation vacuum evaporation
  • co-vacuum evaporation co-vacuum evaporation
  • rotary concentrated evaporation method can be.
  • the drying or evaporation may be performed under conditions of 1 atm or less.
  • the drying or evaporation may be carried out in a temperature range of -60 to 200 °C.
  • the drying or evaporation is carried out at a temperature of less than -60 °C may not occur smoothly drying or evaporation, there may be a problem that discoloration occurs when carried out at a temperature of more than 200 °C.
  • step c when the monomer salt obtained through the above process is heated, imidization proceeds to prepare a polyimide (step c).
  • step c) may be carried out in a temperature range of 150 to 450 °C. Specifically, it may be performed within a temperature range of 180 to 400 ° C. If the step c) is carried out at a temperature of less than 150 °C imidization may not proceed, when carried out at a temperature of more than 450 °C may cause thermal decomposition of the monomer or polymer itself.
  • the step c) may be performed for 10 minutes to 3 days, in detail may be performed for 30 minutes to 2 days, more specifically 1 hour to 1 day Can be. If step c) is performed in less than 10 minutes, imidization may not be performed, and if it is performed for more than 3 days, thermal decomposition of the polymer itself may occur.
  • the heating in step c) may be performed by one or more combinations selected from the group consisting of heat treatment, hot air treatment, corona treatment, high frequency treatment, ultraviolet treatment, infrared treatment, and laser treatment.
  • step c) may be carried out at atmospheric pressure, pressure, reduced pressure or vacuum conditions, for example, the pressure or reduced pressure conditions may be to pressurized or reduced pressure to more than 0 to 1000 bar conditions.
  • the reaction pressure is more than 1000 bar, damage to the reaction vessel may be caused.
  • step c) may be performed in an atmosphere or inert gas atmosphere.
  • the inert gas may be one or a combination of two or more selected from the group consisting of nitrogen, argon, helium, neon, krypton and xenon.
  • step c) when step c) is carried out under pressurized conditions, one or more combinations selected from the group consisting of a method of forming a water vapor pressure inside the pressure vessel, injecting an inert gas into the pressure vessel, or compressing the pressure vessel It may be to be performed by.
  • the inert gas may be one or a combination of two or more selected from the group consisting of nitrogen, argon, helium, neon, cropton and xenon.
  • the polyimide or polyimide copolymer prepared through the series of processes may be a fully aromatic, partially aliphatic or fully aliphatic polyimide, and the number average molecular weight of the polyimide is 5,000 to 1,000,000.
  • the polyimide of the composite form prepared through the series of processes has a form in which the dispersing material (organic or inorganic) is uniformly dispersed in the polyimide, the polyimide is fully aromatic, partially aliphatic ( It may be a partially aliphatic or fully aliphatic polyimide, and the molecular weight of the polyimide in the complex form may be 50,000 to 2,000,000.
  • the molecular weight of the polyimide, polyimide copolymer or polyimide composite is significantly higher than the polyimide prepared according to the conventional polyimide production method, and thus has excellent mechanical and high thermal properties.
  • the polyimide in the form of a composite prepared according to one embodiment of the present invention may have a Young's modulus of 2.0 to 8.0 GPa, more specifically 6.2 to 8.0 GPa.
  • the tensile strength of the polyimide of the composite form prepared according to an embodiment of the present invention may be 100 to 300MPa, more specifically may have a range of 182 to 210MPa. This is a marked improvement over the mechanical strength of polyimides prepared according to conventional methods.
  • the polyimide, polyimide copolymer or polyimide composite prepared according to the present invention may be used in space, aviation, electrical / electronics, semiconductors, transparent / flexible displays, liquid crystal alignment films, automobiles, precision instruments, packaging, medical materials, separators, It is highly useful in a wide range of industries such as fuel cells and secondary batteries.
  • the monomer salts prepared from the dianhydride monomer and the diamine monomer may be mixed with the dispersion material and then ground to prepare a composition in powder form, and then heated to imidize to prepare a polyimide composite.
  • the monomer salt used here is as described above, the dispersion material is also as described above.
  • the grinding process may be carried out using a heavy mill capable of grinding the raw material of 6 to 50 mm in size 3 to 10 mm or a fine grinding machine capable of grinding the raw material of 3 to 10 mm or less to 150 ⁇ m
  • a heavy mill capable of grinding the raw material of 6 to 50 mm in size 3 to 10 mm or a fine grinding machine capable of grinding the raw material of 3 to 10 mm or less to 150 ⁇ m
  • Roll crushers, edge runners, hammer crushers and disc crushers can be used as heavy mills
  • ball mills, jet mills, port mills, turbo mills, supermicron mills, roller mills, raymond mills and tube mills can be used as grinding mills.
  • the grinding process may be performed by a grinder.
  • the powder particle size included in the composition through the grinding process may have a range of 100nm to 10mm.
  • the fine powder particles may be included in the composition through the grinding process, and the size of the fine powder particles may be in the range of 100 nm to 150 ⁇ m.
  • a monomer salt prepared from the dianhydride monomer and the diamine monomer two or more different kinds of monomer salts are mixed and pulverized to prepare a powder, followed by heating and imidization to prepare a polyimide copolymer. You may.
  • the monomer salt used here is as described above, the dispersion material is also as described above.
  • the grinding process is also the same as described above.
  • the molding proceeds simultaneously with the imidization, thereby producing a polyimide molded article.
  • the monomer salt is heated in a molding apparatus to advance the imide reaction, and at the same time, film processing including melt processing, hollow processing, calender processing, and sintering method; Molded article processing including casting, lamination, compression molding, injection molding, blow molding, rotational molding, thermoforming and slush molding; And fiber processing including wet spinning, dry spinning and melt spinning; by processing by one or more processing methods selected from the group consisting of, a polyimide molded article can be produced immediately.
  • the manufactured polyimide molded article corresponds to a polyimide copolymer molded article when two or more dianhydrides or two or more diamines are used in step a), and when the dispersion material is further added in step a), Corresponds to the mid composite molded article.
  • the polyimide molded article manufactured according to the above method is one selected from the group consisting of polyimide film, high heat resistant engineering plastic, adhesive, tape, fiber, liquid crystal alignment film, interlayer insulator, coating film resin, printed circuit board, and flexible display substrate. It can be used for the above uses.
  • the monomer salt was heated at 350 ° C. for 6 hours using an electric furnace to synthesize a wholly aromatic polyimide.
  • the synthesized polymer 1786cm - 1 and 1719cm -1 C O absorption band of the already deugi, already CN absorption band at 1380cm -1 in the deugi was observed (Fig. 1).
  • the monomer salt was heated at 350 ° C. for 6 hours using an electric furnace to synthesize a partial aliphatic polyimide.
  • the monomer salt was heated at 300 ° C. for 8 hours using an electric furnace to synthesize a partial aliphatic polyimide.
  • the synthesized polymer 1774cm - 1 and 1710cm -1 C O absorption band of the already deugi, already CN absorption band at 1381cm -1 in the deugi was observed (Fig. 3).
  • the monomer salt was heated at 300 ° C. for 8 hours using an electric furnace to synthesize all aliphatic polyimide.
  • the C O absorption band, already CN absorption band at 1374cm -1 for deugi observed at 1 and 1714cm -1 (Fig. 4).
  • the monomer salt was heated at 80 ° C. for 24 hours using an electric furnace, but it was not possible to synthesize all aliphatic polyimide.
  • the infrared absorption spectrum of the synthesized polymer no C ⁇ O absorption band of the imide group at 1785 cm ⁇ 1 , which can be seen in the typical polyimide, was observed (FIG. 5).
  • the monomer salt was heated at 180 ° C. for 1 minute using an electric furnace, but it was not possible to synthesize all aliphatic polyimide.
  • the infrared absorption spectrum of the synthesized polymer no C ⁇ O absorption band of the imide group at 1785 cm ⁇ 1 , which can be seen in the typical polyimide, was observed (FIG. 6).
  • Pyromellitic dianhydride (10.906 g), 4,4'-oxydianiline (10.012 g), and graphene oxide (5.00 g) were added to the water at 5 wt% based on the total weight of the composition, followed by 24 hours at 25 ° C.
  • the monomer salt composition was prepared by dispersing with a stirrer.
  • composition was spun onto a glass plate and then heated to a temperature of about 7 hours at atmospheric pressure using a heater until the final temperature reached 250 ° C., and then maintained for 1 hour to prepare a polyimide composite film (FIGS. 9 and FIG. 10).
  • a pyromellitic dianhydride (10.906 g), hexamethylene diamine (5.810 g) and mica (mica) (5.00 g) were added and then dispersed in a stirrer at 25 ° C. for 24 hours to prepare a monomer salt composition.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
  • composition was spun on a glass plate and heated to a temperature slowly until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare a polyimide composite film (FIG. 15).
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride 11.208g
  • hexamethylene diamine 5.810g
  • graphene oxide mixture 5.00g
  • the monomer salt composition was prepared by dispersing at 25 ° C. for 24 hours with a stirrer.
  • the composition was spun on a glass plate and heated to a temperature gradually until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare the polyimide composite film (FIG. 11, 12 and 16)
  • 1,2,3,4-cyclobutanetetracarboxylic dianhydride 9.805g
  • 4,4'-methylenebis (2-methylcyclohexylamine) 11.920g
  • mica mica
  • the monomer salt composition was prepared by dispersing with a stirrer at 25 ° C. for 24 hours.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
  • 1,2,3,4-cyclopentanetetracarboxylic dianhydride (10.507g), 4,4'-methylenebis (cyclohexylamine) (10.518g) and carbon nanotubes (5.00g) were added.
  • the monomer salt composition was prepared by dispersing with a stirrer at ⁇ ⁇ for 24 hours.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, pyromellitic dianhydride (6.543 g) and 4,4'-oxydianiline (6.072 g). After reacting at 25 °C for 18 hours to synthesize a 10wt% polyamic acid solution.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, pyromellitic dianhydride (7.634 g) and hexamethylene diamine (4.067 g) were added. After reacting for 18 hours, a 10 wt% polyamic acid solution was synthesized.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, and 4,4'-oxydiphthalic dianhydride (9.306g) and hexamethylene diamine (3.486g) were added. After the reaction was carried out at 25 °C 18 hours to synthesize a 10wt% polyamic acid solution.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film (FIG. 13).
  • N, N-dimethylacetamide was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 1,2,4,5-cyclocyclotetracarboxylic dianhydride (7.845 g) and hexamethylene diamine ( 4.067 g) was reacted at 25 ° C. for 18 hours to synthesize a 10 wt% polyamic acid solution.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film (FIG. 14).
  • the monomer salt preparation process was performed in a range of 12 to 24 hours at a temperature range of 20 to 30 ° C. using water, and the monomer salt was 180 to 350. It was confirmed that the polyimide obtained by heat treatment for 6 to 24 hours in the temperature range of °C having a high molecular weight.
  • Comparative Example 1-1 and Comparative Example 1-2 the prepared monomer salt was heat-treated at a temperature of less than 160 °C, or less than 5 minutes, it was confirmed that the polyimide can not be obtained by the above method. .
  • a polyimide was obtained by performing a conventional method of preparing a polyimide by synthesizing a polyamic acid precursor using an organic solvent, but the obtained polyimide was obtained in Example 1-. It was confirmed that the molecular weight of the low level compared to the polyimide obtained in 1 to 1-4.
  • the polyimide composite film prepared in Comparative Examples 2-1 to 2-3 can be confirmed that the dispersion material is not dispersed well in the organic solvent when the conventional polyimide composite film is prepared, which is agglomerated, as shown in FIGS. 13 and 14.
  • the dispersion material is not dispersed well in the organic solvent when the conventional polyimide composite film is prepared, which is agglomerated, as shown in FIGS. 13 and 14.
  • mechanical properties could not be confirmed due to cracks in the film.
  • the prepared polyimide composite film was not well dispersed in the dispersion material was confirmed that the mechanical properties and thermal properties are low.
  • the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
  • the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
  • the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a aliphatic polyimide composite.
  • the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a aliphatic polyimide composite.
  • the fine powder composition was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare an aliphatic polyimide composite.
  • the fine powder composition was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare an aliphatic polyimide composite.
  • the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 3.10 g of 4,4'-oxydiphthalic anhydride and 2.00 g of 4,4'-oxy were added. After adding dianiline and reacting at 25 ° C. for 24 hours, a 10 wt% polyamic acid solution was synthesized.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, followed by 2.18 g of pyromellitic dianhydride and 2.00 g of 4,4'-oxydianiline. The reaction was carried out at 24 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclohexanetetracarboxylic dianhydride and 2.10 g of 4, 4'-methylenebis (cyclohexylamine) was added thereto and reacted at 25 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclohexanetetracarboxylic dianhydride and 1.16 g of hexamethylene After diamine was added and reacted at 25 ° C. for 24 hours, a 10 wt% polyamic acid solution was synthesized.
  • composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
  • a solid obtained by reprecipitating the polyamic acid synthesized in Comparative Example 3 to clean distilled water was dried to prepare a polyamic acid solid.
  • the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
  • the solid obtained by reprecipitating the polyamic acid synthesized in Comparative Example 4 in clean distilled water was dried to prepare a polyamic acid solid.
  • the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
  • a solid obtained by reprecipitating the polyamic acid synthesized in Comparative Example 5 to clean distilled water was dried to prepare a polyamic acid solid.
  • the fine powder composition was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare an aliphatic polyimide composite.
  • a solid obtained by reprecipitation of the polyamic acid synthesized in Comparative Example 6 in clean distilled water was dried to prepare a polyamic acid solid.
  • the fine powder composition was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare an aliphatic polyimide composite.
  • the polyimide composite was obtained by mixing, grinding and heating the dispersion material in the monomer salt according to Examples 3-1 to 3-6.
  • the polyimide composite was confirmed to have improved mechanical and thermal properties compared to the polyimide composite prepared by a general polyimide composite manufacturing method.
  • Polyimide composite prepared by adding a dispersion and a solvent to the polyamic acid synthesized in Comparative Examples 3-3 to 3-6 was able to confirm the improved results compared to the mechanical and thermal properties of the general polyimide Example 3
  • the results were lower than those of the polyimide composites synthesized in 1 to 3-6, and the polyimide composites prepared by adding the dispersion to the solid polyamic acid synthesized in Comparative Examples 3-7 to 3-10 did not disperse the dispersion well.
  • the polyimide and the dispersion were separated from each other, and the mechanical and thermal properties were greatly reduced.
  • the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic and partially aliphatic polyimide copolymer.
  • the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
  • monomer salt A 2.18 g of pyromellitic dianhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, monomer salt B was prepared at room temperature by adding 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride, 1.16 g of hexamethylene diamine and distilled water to a 100 ml round bottom flask.
  • the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
  • the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic and partially aliphatic polyimide copolymer.
  • the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
  • monomer salt A 3.10 g of 4,4'-oxydiphthalic anhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, monomer salt B was prepared at room temperature by adding 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride, 1.16 g of hexamethylene diamine and distilled water to a 100 ml round bottom flask.
  • the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
  • monomer salt A 3.10 g of 4,4'-oxydiphthalic anhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, monomer salt B was prepared at room temperature by adding 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride, 1.16 g of hexamethylene diamine and distilled water to a 100 ml round bottom flask.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, followed by 2.18 g of pyromellitic dianhydride and 2.00 g of 4,4'-oxydianiline. The reaction was carried out at 24 ° C. for 24 hours to synthesize 10 wt% polyamic acid solution A.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclohexanetetracarboxylic dianhydride and 1.16 g of hexa were added.
  • Methylene diamine was added and reacted at 25 ° C. for 24 hours to synthesize 10 wt% polyamic acid solution B.
  • the polyamic acid solution was rotated on a glass plate, and the temperature was gradually raised until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater, and then maintained for 1 hour to form a wholly aromatic and all-aliphatic polyimide copolymer. Prepared.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 3.10 g of 4,4'-oxydiphthalic anhydride and 2.00 g of 4,4'-oxy were added. After adding dianiline and reacting at 25 ° C. for 24 hours, 10 wt% polyamic acid solution A was synthesized. In addition, N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclohexanetetracarboxylic dianhydride and 2.10 g of 4 were added. After adding 4'-methylenebis (cyclohexylamine) and reacting at 25 ° C. for 24 hours, 10 wt% polyamic acid solution B was synthesized.
  • the polyamic acid solution was rotated on a glass plate, and the temperature was gradually raised until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater, and then maintained for 1 hour to form a wholly aromatic and all-aliphatic polyimide copolymer. Prepared.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, followed by 2.18 g of pyromellitic dianhydride and 2.00 g of 4,4'-oxydianiline. The reaction was carried out at 24 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution. The polyamic acid solution was reprecipitated in clean distilled water and dried to prepare polyamic acid A.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 2.10 g of 4,4'-methylenebis (cyclohexylamine) was added thereto, and reacted at 25 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution.
  • the polyamic acid solution was reprecipitated in clean distilled water and dried to prepare polyamic acid B.
  • the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 3.10 g of 4,4'-oxydiphthalic anhydride and 2.00 g of 4,4'-oxy were added. After adding dianiline and reacting at 25 ° C. for 24 hours, a 10 wt% polyamic acid solution was synthesized. The polyamic acid solution was reprecipitated in clean distilled water and dried to prepare polyamic acid A.
  • N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 2.10 g of 4,4'-methylenebis (cyclohexylamine) was added thereto, and reacted at 25 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution.
  • the polyamic acid solution was reprecipitated in clean distilled water and dried to prepare polyamic acid B.
  • the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
  • a polyimide copolymer was obtained by mixing, pulverizing and heating the prepared two monomer salts.
  • the polyimide copolymer was confirmed to have improved thermal properties and molecular weight as compared to the polyimide copolymer prepared by the general polyimide copolymer production method.
  • the synthesis step is greatly reduced, the reaction proceeds under mild conditions during the preparation of the monomer salt, and a method for preparing a polyimide, polyimide copolymer or polyimide composite using the prepared monomer salt, and Polyimide, polyimide copolymers or polyimide composites are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention relates to a polyimide preparation method and a polyimide prepared thereby, the method comprising the steps of: a) preparing a monomer salt mixture by putting a dianhydride monomer and a diamine monomer into water; b) recovering a monomer salt by filtering and drying the monomer salt mixture or evaporating water; and c) preparing a polyimide by heating the monomer salt. According to the present invention, preparation of a polyimide, a polyimide copolymer or a polyimide composite is carried out under moderate conditions, the preparation process is simple and economical and is environmental friendly by not using organic solvents, and the polyimide has a high molecular weight, excellent mechanical properties and high thermal characteristics compared with a polyimide prepared by a conventional method.

Description

단량체 염을 이용한 폴리이미드 제조방법Method for producing polyimide using monomer salt
본 발명은 단량체 염을 이용한 폴리이미드 제조방법에 관한 것이다. The present invention relates to a method for producing polyimide using a monomer salt.
폴리이미드 등의 고내열성 고분자 재료는 첨단 기술의 발달에 따른 제품의 소형경박화, 고성능화, 고신뢰화를 위한 필수적인 소재로서 필름, 성형품, 섬유, 도료, 접착제 및 복합재 등의 형태로 우주, 항공, 전기/전자, 자동차 및 정밀기기 등 광범위한 산업분야에 이용되고 있다. High heat-resistant polymer materials such as polyimide are essential materials for miniaturization, high performance, and high reliability of products according to the development of advanced technology. In the form of film, molded products, fibers, paints, adhesives and composites, aerospace, aviation, electricity It is used in a wide range of industries such as electronics, automotive and precision equipment.
상기 고내열성 고분자 재료 중 폴리이미드(polyimide, PI)는 이미드 고리의 화학적 안정성을 기초로 하여 우수한 기계적 강도, 내화학성, 내후성, 내열성을 가진다. 뿐만 아니라 합성이 용이하고, 박막형 필름으로도 만들 수 있으며, 경화를 위한 가교기가 필요 없는 장점을 가지고 있고, 뛰어난 전기적 특성으로 인해 미소전자 분야, 광학 분야 등에 이르기까지 고기능성 고분자 재료로 각광받고 있다. Polyimide (PI) of the high heat resistant polymer material has excellent mechanical strength, chemical resistance, weather resistance, and heat resistance based on the chemical stability of the imide ring. In addition, it is easy to synthesize, can be made into a thin film, has the advantage of not needing a cross-linking group for curing, and due to its excellent electrical properties, it has been spotlighted as a high functional polymer material from microelectronics to optical.
한편, 첨단 산업의 성장으로 인해 폴리이미드 또한 재료 자체의 성능을 끌어 올리거나 기존에 사용되었던 고분자 재료를 대체하기 위한 연구들이 다수 진행되었다. 이러한 연구들은 폴리이미드 자체에 유기물질, 또는 무기물질이나 이들을 개질하여 제조된 물질을 고분자에 분산시켜 위의 특징들을 얻고자 하였다. 이러한 방법을 통해 제조된 폴리이미드 복합체 재료는 분산 물질에 따라 더 높은 기계적, 열적 성질을 보여주기도 하고 높은 투과도 또는 높은 유전율을 보여주기도 한다. 이렇게 제조된 폴리이미드 복합체는 기존의 폴리이미드가 사용되었던 분야 이외에도 낮은 유전율로 사용되지 못했던 유기박막트랜지스터등과 같은 새로운 분야에 사용이 가능해졌다.Meanwhile, due to the growth of the high-tech industry, many studies have been conducted to increase the performance of the polyimide material itself or to replace the previously used polymer material. These studies attempted to obtain the above characteristics by dispersing organic or inorganic materials in polyimide itself or materials prepared by modifying them in polymers. The polyimide composite material produced by this method may show higher mechanical and thermal properties, and also high transmittance or high dielectric constant depending on the dispersing material. The polyimide composite thus prepared can be used in new fields such as organic thin film transistors, which were not used at low dielectric constants in addition to those in which polyimide was used.
본 발명은 합성 단계가 대폭 감소하고, 단량체 염 제조 시 온화한 조건에서 반응이 진행되며, 상기 제조된 단량체 염을 이용하여 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체를 제조하는 방법 및 이를 통하여 제조된 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체를 제공하고자 한다. In the present invention, the synthesis step is greatly reduced, the reaction proceeds under mild conditions during the preparation of the monomer salt, and a method for preparing a polyimide, polyimide copolymer or polyimide composite using the prepared monomer salt, and It is intended to provide a polyimide, polyimide copolymer or polyimide composite.
상기와 같은 과제를 달성하기 위한 본 발명의 일실시예에서는, a) 다이안하이드라이드(dianhydride) 단량체 및 다이아민(diamine) 단량체를 물에 넣어 단량체 염 혼합물을 제조하는 단계; b) 상기 단량체 염 혼합물을 여과 및 건조하거나 또는 물을 증발시켜 단량체 염을 회수하는 단계; 및 c) 상기 단량체 염을 가열하여 폴리이미드를 제조하는 단계;를 포함하는 폴리이미드 제조방법을 제공한다.In one embodiment of the present invention for achieving the above object, a) preparing a monomer salt mixture by putting a dianhydride monomer and a diamine monomer in water; b) recovering the monomer salts by filtration and drying the monomer salt mixture or by evaporating water; And c) heating the monomer salt to prepare a polyimide.
본 발명의 또 다른 일실시예에서는, 상기 방법에 따라 제조되는 폴리이미드로서 수평균 분자량이 5,000 내지 1,000,000인 폴리이미드를 제공한다.In another embodiment of the present invention, a polyimide having a number average molecular weight of 5,000 to 1,000,000 is provided as a polyimide prepared according to the above method.
본 발명의 또 다른 일실시예에서는, 상기 방법에 따라 제조되는 복합체 형태의 폴리이미드로서 수평균 분자량이 50,000 내지 2,000,000인 폴리이미드를 제공한다.In another embodiment of the present invention, a polyimide having a number average molecular weight of 50,000 to 2,000,000 as a polyimide in the form of a composite prepared according to the above method is provided.
본 발명의 또 다른 일실시예에서는, 상기 c) 단계의 이미드화와 동시에, 용융 가공, 중공 가공, 캘린더 가공 및 소결법을 포함하는 필름 가공; 캐스팅, 적층법, 압축 성형, 사출 성형, 중공 성형, 회전 성형, 열 성형 및 슬러시 성형을 포함하는 성형품 가공; 및 습식 방사, 건식 방사 및 용융 방사를 포함하는 섬유 가공;으로 이루어지는 군에서 선택되는 1종 이상의 가공 방법으로 가공하는 단계를 더 포함하는 폴리이미드 성형품 제조방법을 제공한다.In another embodiment of the present invention, at the same time as the imidization of the step c), film processing, including melt processing, hollow processing, calender processing and sintering method; Molded article processing including casting, lamination, compression molding, injection molding, blow molding, rotational molding, thermoforming and slush molding; And it provides a method for producing a polyimide molded article further comprising the step of processing by one or more processing methods selected from the group consisting of fiber spinning, including wet spinning, dry spinning and melt spinning.
본 발명의 또 다른 일실시예에서는, 상기 방법에 따라 제조되는 폴리이미드 성형품으로서 폴리이미드 필름, 고내열성 엔지니어링 플라스틱, 접착제, 테이프, 섬유, 액정 배향막, 층간 절연체, 코팅막 수지, 인쇄회로 기판 및 플렉서블 디스플레이 기판으로 이루어지는 군에서 선택되는 하나 이상의 용도로 사용되는 폴리이미드 성형품을 제공한다.In another embodiment of the present invention, a polyimide molded article manufactured according to the above method, a polyimide film, a high heat resistance engineering plastic, an adhesive, a tape, a fiber, a liquid crystal alignment film, an interlayer insulator, a coating film resin, a printed circuit board, and a flexible display Provided is a polyimide molded article for use in one or more applications selected from the group consisting of substrates.
본 발명에 따르면 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체 제조가 온화한 조건에서 진행되며, 제조과정이 간단하고 경제적이며, 유기용매를 사용하지 않아 친환경적이다. According to the present invention, the production of polyimide, polyimide copolymer or polyimide composite proceeds under mild conditions, the manufacturing process is simple and economical, and it is environmentally friendly because no organic solvent is used.
본 발명에 따라 제조되는 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체는 종래의 방법에 따라 제조되는 폴리이미드 대비 높은 분자량, 우수한 기계적 물성 및 높은 열적 특성을 가진다. The polyimide, polyimide copolymer or polyimide composite prepared according to the present invention has higher molecular weight, better mechanical properties and higher thermal properties than the polyimide prepared according to the conventional method.
도 1은 본 발명의 실시예 1-1에 따라 제조된 폴리이미드의 FT-IR 스펙트럼을 나타낸 것이다. Figure 1 shows the FT-IR spectrum of the polyimide prepared according to Example 1-1 of the present invention.
도 2는 본 발명의 실시예 1-2에 따라 제조된 폴리이미드의 FT-IR 스펙트럼을 나타낸 것이다.Figure 2 shows the FT-IR spectrum of the polyimide prepared according to Examples 1-2 of the present invention.
도 3은 본 발명의 실시예 1-3에 따라 제조된 폴리이미드의 FT-IR 스펙트럼을 나타낸 것이다.Figure 3 shows the FT-IR spectrum of the polyimide prepared according to Examples 1-3 of the present invention.
도 4는 본 발명의 실시예 1-4에 따라 제조된 폴리이미드의 FT-IR 스펙트럼을 나타낸 것이다.Figure 4 shows the FT-IR spectrum of the polyimide prepared according to Examples 1-4 of the present invention.
도 5는 본 발명의 비교예 1-1에 따라 제조된 물질의 FT-IR 스펙트럼을 나타낸 것이다.Figure 5 shows the FT-IR spectrum of the material prepared according to Comparative Example 1-1 of the present invention.
도 6은 본 발명의 비교예 1-2에 따라 제조된 물질의 FT-IR 스펙트럼을 나타낸 것이다.Figure 6 shows the FT-IR spectrum of the material prepared according to Comparative Example 1-2 of the present invention.
도 7은 본 발명의 비교예 1-3에 따른 폴리이미드의 FT-IR 스펙트럼을 나타낸 것이다.Figure 7 shows the FT-IR spectrum of the polyimide according to Comparative Examples 1-3 of the present invention.
도 8은 본 발명의 비교예 1-4에 따른 폴리이미드의 FT-IR 스펙트럼을 나타낸 것이다.8 shows the FT-IR spectrum of the polyimide according to Comparative Example 1-4 of the present invention.
도 9는 본 발명의 실시예 2-1에 따른 단량체 염의 FT-IR 스펙트럼을 나타낸 것이다.Figure 9 shows the FT-IR spectrum of the monomer salt according to Example 2-1 of the present invention.
도 10은 본 발명의 실시예 2-1에 따른 단량체 염을 가열하여 얻은 폴리이미드의 FT-IR 스펙트럼을 나타낸 것이다. 10 shows the FT-IR spectrum of the polyimide obtained by heating the monomer salt according to Example 2-1 of the present invention.
도 11은 본 발명의 실시예 2-4에 따른 단량체 염의 FT-IR 스펙트럼을 나타낸 것이다.11 shows the FT-IR spectrum of monomer salts according to Examples 2-4 of the present invention.
도 12는 본 발명의 실시예 2-4에 따른 단량체 염을 가열하여 얻은 폴리이미드의 FT-IR 스펙트럼을 나타낸 것이다.12 shows the FT-IR spectrum of the polyimide obtained by heating the monomer salt according to Examples 2-4 of the present invention.
도 13은 본 발명의 비교예 2-3에 따른 폴리아믹산과 그래핀옥사이드의 조성물을 가열하여 얻은 폴리이미드 복합체 필름의 사진을 나타낸 것이다.Figure 13 shows a photograph of a polyimide composite film obtained by heating a composition of polyamic acid and graphene oxide according to Comparative Example 2-3 of the present invention.
도 14는 본 발명의 비교예 2-4에 따른 폴리아믹산과 그래핀옥사이드의 조성물을 가열하여 얻은 폴리이미드 복합체 필름의 사진을 나타낸 것이다. Figure 14 shows a photograph of a polyimide composite film obtained by heating the composition of polyamic acid and graphene oxide according to Comparative Example 2-4 of the present invention.
도 15는 본 발명의 실시예 2-3에 따른 단량체 염과 그래핀옥사이드의 조성물을 가열하여 얻은 폴리이미드 복합체 필름의 사진을 나타낸 것이다.Figure 15 shows a photo of the polyimide composite film obtained by heating the composition of the monomer salt and graphene oxide according to Example 2-3 of the present invention.
도 16은 본 발명의 실시예 2-4에 따른 단량체 염과 물에 분산시킨 그래핀옥사이드의 조성물을 가열하여 얻은 폴리이미드 복합체 필름의 사진을 나타낸 것이다.Figure 16 shows a photo of the polyimide composite film obtained by heating the composition of the graphene oxide dispersed in the monomer salt and water according to Example 2-4 of the present invention.
도 17은 본 발명의 실시예 3-1에 따른 폴리이미드 복합체의 FT-IR 스펙트럼을 나타낸 것이다.17 shows the FT-IR spectrum of the polyimide composite according to Example 3-1 of the present invention.
도 18은 본 발명의 실시예 3-3에 따른 폴리이미드 복합체의 FT-IR 스펙트럼을 나타낸 것이다.18 shows the FT-IR spectrum of the polyimide composite according to Example 3-3 of the present invention.
도 19는 본 발명의 실시예 3-4에 따른 폴리이미드 복합체의 FT-IR 스펙트럼을 나타낸 것이다.19 shows the FT-IR spectrum of the polyimide composite according to Examples 3-4 of the present invention.
도 20은 본 발명의 실시예 3-5에 따른 폴리이미드 복합체의 FT-IR 스펙트럼을 나타낸 것이다.20 shows the FT-IR spectrum of the polyimide composite according to Examples 3-5 of the present invention.
도 21는 본 발명의 실시예 3-6에 따른 폴리이미드 복합체의 FT-IR 스펙트럼을 나타낸 것이다.Figure 21 shows the FT-IR spectrum of the polyimide composite according to Examples 3-6 of the present invention.
도 22는 본 발명의 실시예 4-1에 따른 폴리이미드 공중합체의 FT-IR 스펙트럼을 나타낸 것이다.22 shows the FT-IR spectrum of the polyimide copolymer according to Example 4-1 of the present invention.
도 23은 본 발명의 실시예 4-2에 따른 폴리이미드 공중합체의 FT-IR 스펙트럼을 나타낸 것이다.Figure 23 shows the FT-IR spectrum of the polyimide copolymer according to Example 4-2 of the present invention.
도 24는 본 발명의 실시예 4-3에 따른 폴리이미드 공중합체의 FT-IR 스펙트럼을 나타낸 것이다.24 shows the FT-IR spectrum of the polyimide copolymer according to Example 4-3 of the present invention.
도 25는 본 발명의 실시예 4-4에 따른 폴리이미드 공중합체의 FT-IR 스펙트럼을 나타낸 것이다.25 shows the FT-IR spectrum of the polyimide copolymer according to Examples 4-4 of the present invention.
도 26은 본 발명의 실시예 4-5에 따른 폴리이미드 공중합체의 FT-IR 스펙트럼을 나타낸 것이다.26 shows the FT-IR spectrum of the polyimide copolymer according to Example 4-5 of the present invention.
도 27은 본 발명의 실시예 4-6에 따른 폴리이미드 공중합체의 FT-IR 스펙트럼을 나타낸 것이다.27 shows the FT-IR spectrum of the polyimide copolymer according to Examples 4-6 of the present invention.
본 발명은 단량체로부터 단량체 염을 제조하고, 상기 제조된 단량체 염을 이용하여 폴리이미드를 제조하는 방법에 관한 것이다.The present invention relates to a process for preparing monomer salts from monomers and for preparing polyimides using the monomer salts prepared above.
본 발명에 따르면 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체 제조가 온화한 조건에서 진행되며, 제조과정이 간단하고 경제적이며, 유기용매를 사용하지 않아 친환경적이다. 또한, 본 발명에 따라 제조되는 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체는 종래의 방법에 따라 제조되는 폴리이미드 대비 높은 분자량, 우수한 기계적 물성 및 높은 열적 특성을 가진다. According to the present invention, the production of polyimide, polyimide copolymer or polyimide composite proceeds under mild conditions, the manufacturing process is simple and economical, and it is environmentally friendly because no organic solvent is used. In addition, the polyimide, polyimide copolymer or polyimide composite prepared according to the present invention has higher molecular weight, excellent mechanical properties and higher thermal properties than the polyimide prepared according to the conventional method.
이하, 본 발명을 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail.
폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체 제조 방법Process for preparing polyimide, polyimide copolymer or polyimide composite
본 발명의 목적을 달성하기 위한 일실시예에 따른 폴리이미드 제조방법은 a) 다이안하이드라이드(dianhydride) 단량체 및 다이아민(diamine) 단량체를 물에 넣어 단량체 염 혼합물을 제조하는 단계; b)상기 단량체 염 혼합물을 여과 및 건조하거나 또는 물을 증발시켜 단량체 염을 회수하는 단계; 및 c) 상기 단량체 염을 가열하여 폴리이미드를 제조하는 단계;를 포함한다.Polyimide manufacturing method according to an embodiment for achieving the object of the present invention comprises the steps of: a) preparing a monomer salt mixture by putting a dianhydride monomer and a diamine monomer in water; b) recovering the monomer salt by filtration and drying the monomer salt mixture or by evaporating water; And c) heating the monomer salt to produce a polyimide.
우선, 다이안하이드라이드(dianhydride) 단량체와 다이아민(diamine) 단량체를 물에 넣어 단량체 염 혼합물을 제조한다(단계 a). First, a dianhydride monomer and a diamine monomer are added to water to prepare a monomer salt mixture (step a).
본 발명의 일실시예에서, 상기 다이안하이드라이드는 1종 이상의 다이안하이드라이드일 수 있으며, 상기 다이안하이드라이드는 방향족 또는 지방족일 수 있다. 한편, 상기 다이안하이드라이드가 2종 이상으로 사용되는 경우 공중합체 형태의 폴리이미드가 제조될 수 있다. In one embodiment of the invention, the dianhydride may be one or more dianhydrides, the dianhydride may be aromatic or aliphatic. On the other hand, when the dianhydride is used in two or more types, a polyimide in the form of a copolymer may be prepared.
한편, 본 발명의 일실시예에서 상기 다이안하이드라이드는 하기 화학식 1의 화합물을 포함할 수 있다. Meanwhile, in one embodiment of the present invention, the dianhydride may include a compound of Formula 1 below.
Figure PCTKR2015009102-appb-I000001
Figure PCTKR2015009102-appb-I000001
<화학식 1> <Formula 1>
(상기 화학식 1에서 R1은 아래의 화학구조(In Formula 1 R 1 is the chemical structure of
Figure PCTKR2015009102-appb-I000002
Figure PCTKR2015009102-appb-I000002
Figure PCTKR2015009102-appb-I000003
Figure PCTKR2015009102-appb-I000003
Figure PCTKR2015009102-appb-I000004
Figure PCTKR2015009102-appb-I000004
Figure PCTKR2015009102-appb-I000005
Figure PCTKR2015009102-appb-I000005
로 이루어지는 군에서 선택된다.)It is selected from the group consisting of.)
본 발명의 일실시예에서, 상기 다이아민은 1종 이상의 다이아민일 수 있으며, 상기 다이아민은 방향족 또는 지방족일 수 있다. 한편, 상기 다이아민이 2종 이상으로 사용되는 경우 공중합체 형태의 폴리이미드가 제조될 수 있다. In one embodiment of the invention, the diamine may be one or more diamines, the diamine may be aromatic or aliphatic. On the other hand, when the diamine is used in two or more types, a polyimide in the form of a copolymer may be prepared.
한편, 본 발명의 일실시예에서 상기 다이아민은 하기 화학식 2의 화합물을 포함할 수 있다. Meanwhile, in one embodiment of the present invention, the diamine may include a compound of Formula 2 below.
Figure PCTKR2015009102-appb-I000006
Figure PCTKR2015009102-appb-I000006
<화학식 2> <Formula 2>
(상기 화학식 2에서 R2는 아래의 화학구조(In Formula 2 R 2 is the chemical structure of
Figure PCTKR2015009102-appb-I000007
Figure PCTKR2015009102-appb-I000007
Figure PCTKR2015009102-appb-I000008
Figure PCTKR2015009102-appb-I000008
Figure PCTKR2015009102-appb-I000009
Figure PCTKR2015009102-appb-I000009
Figure PCTKR2015009102-appb-I000010
Figure PCTKR2015009102-appb-I000010
Figure PCTKR2015009102-appb-I000011
Figure PCTKR2015009102-appb-I000011
Figure PCTKR2015009102-appb-I000012
Figure PCTKR2015009102-appb-I000012
Figure PCTKR2015009102-appb-I000013
Figure PCTKR2015009102-appb-I000013
Figure PCTKR2015009102-appb-I000014
Figure PCTKR2015009102-appb-I000014
Figure PCTKR2015009102-appb-I000015
Figure PCTKR2015009102-appb-I000015
로 이루어지는 군에서 선택된다. 한편, 상기 x는 1≤x≤50을 만족하는 정수이고, 상기 n은 1 내지 20 범위의 자연수이며, W, X, Y는 각각 탄소수 1 내지 30 사이의 알킬기 또는 아릴기이고, Z는 에스테르기, 아미드기, 이미드기 및 에테르기로 이루어지는 군에서 선택된다.)It is selected from the group consisting of. On the other hand, x is an integer satisfying 1≤x≤50, n is a natural number in the range of 1 to 20, W, X, Y are each an alkyl group or an aryl group having 1 to 30 carbon atoms, Z is an ester group , Amide group, imide group and ether group.)
한편, 상기 a) 단계에서 다이안하이드라이드에 대한 다이아민의 몰 비는 0.5 내지 2 당량일 수 있다. 상기 몰 비는 상세하게는 0.8 내지 1.5 당량일 수 있다. 상기 몰 비를 0.5 당량 미만으로 하거나 2 당량을 초과하게 한 경우에는 최종적으로 형성되는 폴리이미드의 분자량이 매우 작아지게 되고, 이에 따라 폴리이미드의 물리적, 화학적 성질이 매우 떨어지는 문제점이 있을 수 있다. On the other hand, the molar ratio of the diamine to dianhydride in step a) may be 0.5 to 2 equivalents. The molar ratio may be specifically 0.8 to 1.5 equivalents. When the molar ratio is less than 0.5 equivalents or more than 2 equivalents, the molecular weight of the finally formed polyimide becomes very small, and thus there may be a problem that the physical and chemical properties of the polyimide are very low.
한편, 상기 a) 단계는 다양한 방법으로 진행될 수 있는데, 예를 들어 각 단량체를 물에 각각 분산시킨 다음, 이를 반응 용기에 투입하는 방법에 의해 수행될 수 있고, 또 다른 방법으로서 반응 용기에 물을 우선적으로 투입한 다음 각 단량체를 투입하는 방법에 의해서도 수행될 수 있다. 또한 반응 용기에 각 단량체를 우선적으로 투입한 다음 물을 투입하는 방법으로 수행될 수도 있고, 상기 방법들의 조합에 의해서도 수행이 가능하다.On the other hand, step a) may be carried out in a variety of ways, for example, by dispersing each monomer in water, and then putting it in the reaction vessel, as another method, the water in the reaction vessel It may also be carried out by the method of adding the first monomer and then adding each monomer. In addition, each monomer may be first added to the reaction vessel and then water may be added thereto, or a combination of the above methods may be performed.
한편, 본 발명의 일실시예에서, 상기 a) 단계의 단량체 염 혼합물 제조 시 분산 물질을 더 넣는 단계를 포함할 수 있다.On the other hand, in one embodiment of the present invention, when the monomer salt mixture of step a) is prepared, it may comprise the step of adding a dispersing material.
상기 사용되는 분산 물질은 유기계 물질 및 무기계 물질로 이루어지는 군에서 선택되는 1종 이상의 물질일 수 있다. 한편, 상기 유기계 물질 또는 무기계 물질은 화학약품과 반응시키는 화학적 방법 및 물에 침지시켜 분산하거나 또는 분쇄하는 방법을 포함하는 물리적 방법 중 선택되는 하나 이상의 방법에 의해 처리된 것일 수 있다. The dispersion material used may be at least one material selected from the group consisting of organic materials and inorganic materials. On the other hand, the organic material or inorganic material may be processed by one or more methods selected from chemical methods that react with chemicals and physical methods including immersion in water to disperse or pulverize.
본 발명의 일실시예에서, 상기 유기계 물질은 폴리에테르 에테르케톤 및 폴리프로필렌 설파이드로 이루어지는 군에서 선택되는 하나 이상의 물질일 수 있다.In one embodiment of the present invention, the organic material may be at least one material selected from the group consisting of polyether ether ketone and polypropylene sulfide.
한편, 본 발명의 일실시예에서, 상기 무기계 물질은 그라파이트, 산화아연, 실리케이트, 카올리나이트, 스멕타이트, 그래핀 옥사이드, 이산화 지르코늄 및 탄소 나노튜브로 이루어지는 군에서 선택되는 하나 이상의 물질일 수 있다. Meanwhile, in one embodiment of the present invention, the inorganic material may be at least one material selected from the group consisting of graphite, zinc oxide, silicate, kaolinite, smectite, graphene oxide, zirconium dioxide and carbon nanotubes.
한편, 상기 분산 물질은 입자상 물질, 판상 물질, 섬유상 물질로 이루어지는 군에서 선택되는 1종 또는 2종 이상의 물질일 수 있다. 상기 분산 물질이 입자상인 경우 조성물 및 최종 제품에 있어 열안정성, 밀도 증가, 강성(stiffness) 또는 텍스쳐(texture)와 같은 추가적인 이점을 부여할 수 있으며, 판상인 경우에는 분산 물질이 잘 퍼지고 고분자 물질의 열팽창을 감소, 기체투과율 감소 및 분산 물질의 표면을 다양한 작용기로 처리하여 부착성과 같은 특성을 부여할 수 있으며, 섬유상인 경우에는 열선팽창 계수의 저감, 또는 탄성률, 휨 강도 등의 기계적 강도의 향상 등의 이점을 부여할 수 있다. On the other hand, the dispersion material may be one or two or more materials selected from the group consisting of particulate matter, plate-like material, fibrous material. If the dispersion is particulate, it can give additional benefits such as thermal stability, increased density, stiffness or texture in the composition and final product, and in the case of a plate, the dispersion spreads well and By reducing thermal expansion, reducing gas permeability, and treating the surface of the dispersing material with various functional groups, it is possible to give such properties as adhesion.In the case of fibrous materials, it is possible to reduce the coefficient of thermal expansion or improve mechanical strength such as elastic modulus and bending strength. It can give the advantage of.
한편, 분산 물질을 더 넣는 경우 상기 분산 물질은 상기 단량체 염 혼합물 내에서 상기 혼합물 전체 중량 대비 1 내지 90wt%로 포함될 수 있으며 상세하게는 1 내지 50wt%로 포함될 수 있다. 상기 분산 물질의 함량이 혼합물 전체 중량 대비 1wt% 미만인 경우 제조되는 복합체 형태의 폴리이미드에서 분산 물질의 고유의 특성을 발현시키기 어려우며, 90wt% 초과인 경우 제조되는 복합체 형태의 폴리이미드의 기계적 물성이 크게 감소할 수 있다. On the other hand, when the dispersion material is further added, the dispersion material may be included in 1 to 90wt% of the total weight of the mixture in the monomer salt mixture and may be included in detail from 1 to 50wt%. When the content of the dispersion material is less than 1wt% of the total weight of the mixture, it is difficult to express the inherent characteristics of the dispersion material in the polyimide of the composite form to be produced, and when it is more than 90wt%, the mechanical properties of the polyimide of the composite form to be produced are greatly increased. May decrease.
한편, 상기 단량체 염 혼합물 제조 시, 분산제 및 증점제로 이루어지는 군에서 선택되는 1종 이상의 첨가제를 더 포함할 수 있다. On the other hand, when preparing the monomer salt mixture, it may further include one or more additives selected from the group consisting of dispersants and thickeners.
본 발명의 일실시예에서, 상기 분산제는 양이온, 음이온 및 비이온의 계면활성제로 이루어지는 군에서 선택되는 1종 이상의 분산제일 수 있다.In one embodiment of the present invention, the dispersant may be one or more dispersants selected from the group consisting of surfactants of cations, anions and nonions.
본 발명의 일실시예에서, 상기 증점제는 하이드록시프로필 셀룰로오즈, 하이드록시프로필메틸 셀룰로오즈, 하이드록시에틸 셀룰로오즈, 메틸셀룰로오스, 카르복시메틸셀룰로오스, 폴리에틸렌글리콜, 폴리아크릴산나트륨, 폴리비닐알코올 및 폴리비닐피롤리돈으로 이루어지는 군에서 선택되는 1종 이상의 증점제일 수 있다. In one embodiment of the invention, the thickener is hydroxypropyl cellulose, hydroxypropylmethyl cellulose, hydroxyethyl cellulose, methyl cellulose, carboxymethyl cellulose, polyethylene glycol, sodium polyacrylate, polyvinyl alcohol and polyvinylpyrrolidone It may be one or more thickeners selected from the group consisting of.
상기 첨가제의 함량은 상기 단량체 염 혼합물 내에서 상기 단량체와 분산 물질을 합한 중량 대비 0.1 내지 10wt%일 수 있다. 상기 첨가제의 함량이 0.1wt% 미만인 경우 첨가제의 효과가 미미할 수 있고, 10wt% 초과인 경우 생성된 폴리이미드의 기계적 물성이 크게 감소될 수 있다. The amount of the additive may be 0.1 to 10 wt% based on the total weight of the monomer and the dispersion material in the monomer salt mixture. If the content of the additive is less than 0.1wt%, the effect of the additive may be insignificant, and if it is more than 10wt%, the mechanical properties of the resulting polyimide may be greatly reduced.
한편, 상기 단량체 염 조성물을 제조할 때, 교반기 분산, 균질기 분산, 초고압 분산 및 초음파 분산으로 이루어지는 군에서 선택되는 하나 이상의 방법으로 분산하는 과정을 거칠 수 있으며, 또한 교반하는 과정을 거칠 수 있다. On the other hand, when the monomer salt composition is prepared, the dispersion may be performed by one or more methods selected from the group consisting of stirrer dispersion, homogenizer dispersion, ultrahigh pressure dispersion, and ultrasonic dispersion, and may also undergo agitation process.
한편, 상기 a) 단계는 5 내지 55℃ 온도 범위 내에서 수행될 수 있고, 상세하게는 10 내지 35℃ 온도 범위 내에서 수행될 수 있다. a) 단계가 5℃ 미만에서 수행되는 경우 교반 및 분산 과정이 원활하게 진행되지 않을 수 있으며, 55℃ 초과에서 수행되는 경우 별도의 열원 공급 장치 또는 냉각 응축 장치 등이 필요하게 될 수 있다. On the other hand, step a) may be carried out in the temperature range of 5 to 55 ℃ ℃, in detail may be carried out in the temperature range of 10 to 35 ℃. If the step a) is carried out below 5 ° C, the stirring and dispersion process may not proceed smoothly, and when carried out above 55 ° C, a separate heat source supply device or a cooling condensation device may be required.
한편, 상기 a) 단계는 1시간 내지 5일 동안 수행될 수 있고, 상세하게는 3시간 내지 1일 동안 수행될 수 있다. a) 단계가 1시간 미만으로 수행되는 경우 투입된 분산 물질이 균일하게 분산되지 않을 수 있으며, 5일을 초과하여 수행되는 경우 공정에 따른 비용이 지나치게 증가하는 문제점이 생길 수 있다. On the other hand, step a) may be performed for 1 hour to 5 days, in detail it may be performed for 3 hours to 1 day. If the step a) is performed for less than 1 hour, the added dispersing material may not be uniformly dispersed, and if the process is performed for more than 5 days, the cost may be excessively increased according to the process.
다음으로, 상기 단량체 염 혼합물을 여과 및 건조하거나, 또는 물을 증발시킴으로써 다이안하이드라이드 및 다이아민의 단량체 염을 회수하게 된다(단계 b). 한편, 상기 얻어지는 단량체 염의 경우 a) 단계에서 분산 물질을 가한 경우라면 분산 물질과 단량체 염이 혼합된 형태로 존재하는 것일 수 있다. Next, the monomer salt mixture is filtered and dried, or water is evaporated to recover the monomer salts of dianhydride and diamine (step b). On the other hand, in the case of the obtained monomer salt, if the dispersion material is added in step a) may be present in the form of a mixture of the dispersion material and the monomer salt.
본 발명의 일실시예에서, 상기 혼합물을 여과하면 고체를 얻을 수 있고, 상기 얻어진 고체를 건조하여 염을 제조할 수 있다. 한편, 상기 여과 과정에서 얻어진 여과액을 증발시킴으로써 염을 추가로 얻을 수도 있다. In one embodiment of the present invention, filtering the mixture may yield a solid, and the obtained solid may be dried to prepare a salt. On the other hand, a salt may be further obtained by evaporating the filtrate obtained in the said filtration process.
본 발명의 또 다른 일실시예에서, 상기 혼합물의 물을 증발시키면 염을 제조할 수 있다. 한편, 상기 증발에 의해 생성된 수증기는 냉각 및 응축함으로써, 물을 회수하여 재사용 할 수도 있다. In another embodiment of the present invention, salts may be prepared by evaporating the water in the mixture. On the other hand, the water vapor generated by the evaporation may be cooled and condensed to recover the water and reuse.
본 발명의 일실시예에서, 상기 여과는 중력 여과, 진공 여과, 가압 여과, 압착 여과, 원심 여과, 미세 여과, 한외 여과 및 역삼투 방법으로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 조합에 의해 수행되는 것일 수 있다.In one embodiment of the present invention, the filtration is carried out by one or two or more combinations selected from the group consisting of gravity filtration, vacuum filtration, pressure filtration, compression filtration, centrifugal filtration, microfiltration, ultrafiltration and reverse osmosis method. It may be.
본 발명의 일실시예에서, 상기 건조는 자연 건조, 가압 건조, 열풍 건조, 분무 건조, 피막 건조, 진공 건조, 동결 건조, 분무동결 건조, 전자기파 건조 및 플래시 건조 방법으로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 조합에 의해 수행되는 것일 수 있다. In one embodiment of the present invention, the drying is one selected from the group consisting of natural drying, pressure drying, hot air drying, spray drying, film drying, vacuum drying, freeze drying, spray freeze drying, electromagnetic wave drying and flash drying method or It may be performed by a combination of two or more.
본 발명의 일실시예에서, 상기 증발은 자연 증발, 막 증발, 열 증발, 투과 증발, 진공 증발, 동시진공 증발 및 회전농축 증발 방법으로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 조합에 의해 수행되는 것일 수 있다. In one embodiment of the invention, the evaporation is to be carried out by one or two or more combinations selected from the group consisting of natural evaporation, membrane evaporation, thermal evaporation, pervaporation, vacuum evaporation, co-vacuum evaporation and rotary concentrated evaporation method. Can be.
한편, 상기 건조 또는 증발은 1기압 이하의 조건에서 수행되는 것일 수 있다. 또한, 상기 건조 또는 증발은 -60 내지 200℃ 온도 범위 내에서 수행되는 것일 수 있다. 상기 건조 또는 증발이 -60℃ 미만의 온도에서 수행되는 경우 건조 또는 증발이 원활하게 일어나지 않을 수 있으며, 200℃ 초과의 온도에서 수행되는 경우 변색이 일어나는 문제점이 있을 수 있다. On the other hand, the drying or evaporation may be performed under conditions of 1 atm or less. In addition, the drying or evaporation may be carried out in a temperature range of -60 to 200 ℃. When the drying or evaporation is carried out at a temperature of less than -60 ℃ may not occur smoothly drying or evaporation, there may be a problem that discoloration occurs when carried out at a temperature of more than 200 ℃.
다음으로, 상기 과정을 통해 얻어진 단량체 염을 가열하면 이미드화가 진행되어 폴리이미드를 제조하게 된다(단계 c).Next, when the monomer salt obtained through the above process is heated, imidization proceeds to prepare a polyimide (step c).
본 발명의 일실시예에서, 상기 단계 c)는 150 내지 450℃ 온도 범위 내에서 수행될 수 있다. 상세하게는 180 내지 400℃의 온도 범위 내에서 수행될 수 있다. 상기 단계 c)가 150℃ 미만의 온도에서 수행되는 경우 이미드화가 진행되지 않을 수 있으며, 450℃ 초과의 온도에서 수행되는 경우 단량체 또는 고분자 자체의 열분해가 발생할 수 있다. In one embodiment of the present invention, step c) may be carried out in a temperature range of 150 to 450 ℃. Specifically, it may be performed within a temperature range of 180 to 400 ° C. If the step c) is carried out at a temperature of less than 150 ℃ imidization may not proceed, when carried out at a temperature of more than 450 ℃ may cause thermal decomposition of the monomer or polymer itself.
본 발명의 일실시예에서, 상기 단계 c)는 10분 내지 3일 동안 수행될 수 있으며, 상세하게는 30분 내지 2일 동안 수행될 수 있고, 더욱 상세하게는 1시간 내지 1일 동안 수행될 수 있다. 상기 단계 c)가 10분 미만으로 수행되는 경우 이미드화가 수행되지 않을 수 있으며, 3일을 초과하여 수행되는 경우 고분자 자체의 열분해가 발생할 수 있다. In one embodiment of the present invention, the step c) may be performed for 10 minutes to 3 days, in detail may be performed for 30 minutes to 2 days, more specifically 1 hour to 1 day Can be. If step c) is performed in less than 10 minutes, imidization may not be performed, and if it is performed for more than 3 days, thermal decomposition of the polymer itself may occur.
한편, 상기 단계 c)에서 가열은 열 처리, 열풍 처리, 코로나 처리, 고주파 처리, 자외선 처리, 적외선 처리 및 레이저 처리 방법으로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 조합에 의해 수행되는 것일 수 있다. Meanwhile, the heating in step c) may be performed by one or more combinations selected from the group consisting of heat treatment, hot air treatment, corona treatment, high frequency treatment, ultraviolet treatment, infrared treatment, and laser treatment.
한편, 상기 단계 c)는 대기압, 가압, 감압 또는 진공 조건에서 수행될 수 있고, 예를 들어 가압 또는 감압 조건은 0 초과 내지 1000 bar 조건으로 가압 또는 감압하는 것일 수 있다. 한편, 반응 압력이 1000bar 초과인 경우에는 반응 용기의 손상이 초래될 수 있다. On the other hand, step c) may be carried out at atmospheric pressure, pressure, reduced pressure or vacuum conditions, for example, the pressure or reduced pressure conditions may be to pressurized or reduced pressure to more than 0 to 1000 bar conditions. On the other hand, when the reaction pressure is more than 1000 bar, damage to the reaction vessel may be caused.
한편, 상기 단계 c)는 대기 또는 비활성기체 분위기에서 수행될 수 있다. 본 발명의 일실시예에서, 상기 비활성 기체는 질소, 아르곤, 헬륨, 네온, 크립톤 및 크세논으로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 조합일 수 있다. On the other hand, step c) may be performed in an atmosphere or inert gas atmosphere. In one embodiment of the present invention, the inert gas may be one or a combination of two or more selected from the group consisting of nitrogen, argon, helium, neon, krypton and xenon.
한편, 상기 단계 c)가 가압 조건에서 수행되는 경우, 압력 용기 내부에서 수증기압이 형성되거나, 압력 용기 내부에 비활성 기체를 주입하거나 또는 압력 용기를 압축하는 방법으로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 조합에 의해 수행되는 것일 수 있다. 상기 비활성 기체는 질소, 아르곤, 헬륨, 네온, 크롭톤 및 크세논으로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 조합일 수 있다. On the other hand, when step c) is carried out under pressurized conditions, one or more combinations selected from the group consisting of a method of forming a water vapor pressure inside the pressure vessel, injecting an inert gas into the pressure vessel, or compressing the pressure vessel It may be to be performed by. The inert gas may be one or a combination of two or more selected from the group consisting of nitrogen, argon, helium, neon, cropton and xenon.
상기 일련의 과정을 통하여 제조되는 폴리이미드 또는 폴리이미드 공중합체는 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic) 폴리이미드일 수 있고, 상기 폴리이미드의 수평균 분자량은 5,000 내지 1,000,000일 수 있다. The polyimide or polyimide copolymer prepared through the series of processes may be a fully aromatic, partially aliphatic or fully aliphatic polyimide, and the number average molecular weight of the polyimide is 5,000 to 1,000,000.
또한, 상기 일련의 과정을 통하여 제조되는 복합체 형태의 폴리이미드는 폴리이미드 내에 분산 물질(유기계 또는 무기계)이 균일하게 분산되어 있는 형태를 가지며, 상기 폴리이미드는 전방향족(fully aromatic), 부분지방족(partially aliphatic) 또는 전지방족(fully aliphatic) 폴리이미드일 수 있고, 상기 복합체 형태의 폴리이미드의 분자량은 50,000 내지 2,000,000일 수 있다.In addition, the polyimide of the composite form prepared through the series of processes has a form in which the dispersing material (organic or inorganic) is uniformly dispersed in the polyimide, the polyimide is fully aromatic, partially aliphatic ( It may be a partially aliphatic or fully aliphatic polyimide, and the molecular weight of the polyimide in the complex form may be 50,000 to 2,000,000.
상기 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체의 분자량은 종래의 폴리이미드 제조방법에 따라 제조된 폴리이미드 대비 현저히 높으며, 이에 따라 우수한 기계적 물성 및 높은 열적 특성을 가진다. The molecular weight of the polyimide, polyimide copolymer or polyimide composite is significantly higher than the polyimide prepared according to the conventional polyimide production method, and thus has excellent mechanical and high thermal properties.
특히, 본 발명의 일실시예에 따라 제조된 복합체 형태의 폴리이미드는 영률이 2.0 내지 8.0GPa일 수 있고, 더욱 상세하게는 6.2 내지 8.0GPa 일 수 있다. 한편, 본 발명의 일실시예에 따라 제조된 복합체 형태의 폴리이미드의 인장 강도는 100 내지 300MPa일 수 있으며, 더욱 상세하게는 182 내지 210MPa의 범위를 가질 수 있다. 이는 종래의 방법에 따라 제조된 폴리이미드의 기계적 강도 대비 현저히 향상된 것이다.In particular, the polyimide in the form of a composite prepared according to one embodiment of the present invention may have a Young's modulus of 2.0 to 8.0 GPa, more specifically 6.2 to 8.0 GPa. On the other hand, the tensile strength of the polyimide of the composite form prepared according to an embodiment of the present invention may be 100 to 300MPa, more specifically may have a range of 182 to 210MPa. This is a marked improvement over the mechanical strength of polyimides prepared according to conventional methods.
따라서, 본 발명에 따라 제조된 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체는 우주, 항공, 전기/전자, 반도체, 투명/유연 디스플레이, 액정 배향막, 자동차, 정밀기기, 패키징, 의료용 소재, 분리막, 연료전지 및 2차전지 등 광범위한 산업분야에 이용 가치가 높다. Accordingly, the polyimide, polyimide copolymer or polyimide composite prepared according to the present invention may be used in space, aviation, electrical / electronics, semiconductors, transparent / flexible displays, liquid crystal alignment films, automobiles, precision instruments, packaging, medical materials, separators, It is highly useful in a wide range of industries such as fuel cells and secondary batteries.
기계적 분쇄 방법을 이용한 폴리이미드 제조방법Polyimide Manufacturing Method Using Mechanical Grinding Method
한편, 상기 다이안하이드라이드 단량체와 다이아민 단량체로부터 제조된 단량체 염을 분산 물질과 혼합한 후 분쇄하여 분말 형태의 조성물로 제조한 다음, 이를 가열하여 이미드화시켜 폴리이미드 복합체를 제조할 수도 있다. On the other hand, the monomer salts prepared from the dianhydride monomer and the diamine monomer may be mixed with the dispersion material and then ground to prepare a composition in powder form, and then heated to imidize to prepare a polyimide composite.
이때 사용되는 상기 단량체 염은 앞서 설명한 바와 같으며, 분산 물질 역시 앞서 설명한 바와 같다. The monomer salt used here is as described above, the dispersion material is also as described above.
한편, 상기 분쇄 과정은 6 내지 50 ㎜ 크기의 원료를 3 내지 10㎜ 크기로 분쇄가 가능한 중쇄기 또는 3 내지 10 ㎜ 이하의 원료를 150㎛ 이하로 분쇄가 가능한 미분쇄기를 사용하여 진행될 수 있으며, 중쇄기로는 롤 크러셔, 에지런너, 햄머 크러셔 및 디스크 크러셔를 사용할 수 있고, 미분쇄기로는 볼밀, 제트 밀, 포트 밀, 터보 밀, 슈퍼미크론 밀, 롤러 밀, 레이몬드 밀 및 튜브 밀을 사용할 수 있다. 한편, 상기 분쇄 과정은 분쇄기로 수행되는 것일 수 있다.On the other hand, the grinding process may be carried out using a heavy mill capable of grinding the raw material of 6 to 50 mm in size 3 to 10 mm or a fine grinding machine capable of grinding the raw material of 3 to 10 mm or less to 150 ㎛, Roll crushers, edge runners, hammer crushers and disc crushers can be used as heavy mills, and ball mills, jet mills, port mills, turbo mills, supermicron mills, roller mills, raymond mills and tube mills can be used as grinding mills. . On the other hand, the grinding process may be performed by a grinder.
한편, 상기 분쇄 과정을 통하여 조성물 내에 포함되는 분말 입자 크기는 100㎚ 내지 10㎜ 범위를 가질 수 있다. 한편 본 발명의 일실시예에서, 상기 분쇄 과정을 통하여 조성물 내에 미분말 입자를 포함할 수 있고, 상기 미분말 입자의 크기는 100㎚ 내지 150㎛의 범위일 수 있다. On the other hand, the powder particle size included in the composition through the grinding process may have a range of 100nm to 10mm. Meanwhile, in one embodiment of the present invention, the fine powder particles may be included in the composition through the grinding process, and the size of the fine powder particles may be in the range of 100 nm to 150 μm.
한편, 상기 다이안하이드라이드 단량체와 다이아민 단량체로부터 제조된 단량체 염으로서, 서로 다른 2종 이상의 단량체 염을 혼합한 후 분쇄하여 분말 형태로 제조한 다음, 이를 가열하여 이미드화시켜 폴리이미드 공중합체를 제조할 수도 있다.Meanwhile, as a monomer salt prepared from the dianhydride monomer and the diamine monomer, two or more different kinds of monomer salts are mixed and pulverized to prepare a powder, followed by heating and imidization to prepare a polyimide copolymer. You may.
이때 사용되는 단량체 염은 앞서 설명한 바와 같으며, 분산 물질 역시 앞서 설명한 바와 같다. 한편, 상기 분쇄 과정 역시 앞서 설명한 바와 동일하다. The monomer salt used here is as described above, the dispersion material is also as described above. On the other hand, the grinding process is also the same as described above.
폴리이미드 성형품 제조방법Polyimide molded article manufacturing method
한편, 상기 c) 단계의 이미드화를 성형 장치 내에서 수행하는 경우, 이미드화와 동시에 성형이 진행되어 폴리이미드 성형품을 제조할 수 있게 된다. On the other hand, when the imidization of the step c) is carried out in a molding apparatus, the molding proceeds simultaneously with the imidization, thereby producing a polyimide molded article.
상기 c) 단계에서 단량체 염을 성형 장치 내에서 가열하여 이미드 반응을 진행시킴과 동시에, 용융 가공, 중공 가공, 캘린더 가공 및 소결법을 포함하는 필름 가공; 캐스팅, 적층법, 압축 성형, 사출 성형, 중공 성형, 회전 성형, 열 성형 및 슬러시 성형을 포함하는 성형품 가공; 및 습식 방사, 건식 방사 및 용융 방사를 포함하는 섬유 가공;으로 이루어지는 군에서 선택되는 1종 이상의 가공 방법으로 가공하면, 폴리이미드 성형품을 바로 제조할 수 있다. In the step c), the monomer salt is heated in a molding apparatus to advance the imide reaction, and at the same time, film processing including melt processing, hollow processing, calender processing, and sintering method; Molded article processing including casting, lamination, compression molding, injection molding, blow molding, rotational molding, thermoforming and slush molding; And fiber processing including wet spinning, dry spinning and melt spinning; by processing by one or more processing methods selected from the group consisting of, a polyimide molded article can be produced immediately.
한편, 상기 제조되는 폴리이미드 성형품은 a) 단계에서 2종 이상의 다이안하이드라이드 혹은 2종 이상의 다이아민을 사용한 경우, 폴리이미드 공중합체 성형품에 해당하며, a) 단계에서 분산 물질을 더 넣은 경우, 폴리이미드 복합체 성형품에 해당한다. Meanwhile, the manufactured polyimide molded article corresponds to a polyimide copolymer molded article when two or more dianhydrides or two or more diamines are used in step a), and when the dispersion material is further added in step a), Corresponds to the mid composite molded article.
한편, 상기 방법에 따라 제조되는 폴리이미드 성형품은 폴리이미드 필름, 고내열성 엔지니어링 플라스틱, 접착제, 테이프, 섬유, 액정 배향막, 층간 절연체, 코팅막 수지, 인쇄회로 기판 및 플렉서블 디스플레이 기판으로 이루어지는 군에서 선택되는 하나 이상의 용도로 사용될 수 있다.Meanwhile, the polyimide molded article manufactured according to the above method is one selected from the group consisting of polyimide film, high heat resistant engineering plastic, adhesive, tape, fiber, liquid crystal alignment film, interlayer insulator, coating film resin, printed circuit board, and flexible display substrate. It can be used for the above uses.
이하, 본 발명의 실시예 및 실험예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예 및 실험예는 본 발명의 이해를 돕기 위한 것이고 본 발명의 권리범위를 이로 한정하는 것을 의도하지 않는다. Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the following Examples and Experimental Examples are intended to help the understanding of the present invention and are not intended to limit the scope of the present invention thereto.
실시예 Example
실시예 1-1: 전 방향족 폴리이미드의 제조Example 1-1 Preparation of Whole Aromatic Polyimide
질소 가스로 치환한 100-mL 1구 둥근바닥 플라스크에 물 60mL을 넣고 4,4'-옥시다이프탈릭 안하이드라이드 3.102g (0.01mol)와 2,2-비스(3-아미노-4-하이드록실페닐)헥사플루오로프로판 3.663g (0.01mol)을 한 번에 넣은 후 20℃에서 12시간 교반시켰다. 다음으로 상기 혼합물을 중력 여과하여 고체를 얻은 후 1일 동안 진공 건조하여 단량체 염을 제조하였다.Into a 100-mL 1-neck round bottom flask with nitrogen gas, add 60 mL of water, and 3.102 g (0.01 mol) of 4,4'-oxydiphthalic anhydride and 2,2-bis (3-amino-4-hydride. 3.663 g (0.01 mol) of loxylphenyl) hexafluoropropane was added at once, followed by stirring at 20 ° C. for 12 hours. Next, the mixture was gravity filtered to obtain a solid, followed by vacuum drying for 1 day to prepare a monomer salt.
다음으로 상기 단량체 염을 전기로를 사용하여 350℃에서 6시간 동안 가열하여 전 방향족 폴리이미드를 합성하였다. 상기 합성된 중합체의 적외선 흡수 스펙트럼에서는 1786cm- 1와 1719cm-1에서 이미드기의 C=O 흡수띠, 1380cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다(도 1).Next, the monomer salt was heated at 350 ° C. for 6 hours using an electric furnace to synthesize a wholly aromatic polyimide. In the infrared absorption spectrum of the synthesized polymer 1786cm - 1 and 1719cm -1 C = O absorption band of the already deugi, already CN absorption band at 1380cm -1 in the deugi was observed (Fig. 1).
실시예 1-2: 부분 지방족 폴리이미드의 제조Example 1-2 Preparation of Partial Aliphatic Polyimides
질소 가스로 치환한 100-mL 1구 둥근바닥 플라스크에 물 50mL을 넣고 3,3',4,4'-벤조페논-테트라카복실릭 다이안하이드라이드 3.222g (0.01mol)와 4,4'-메틸렌비스(2-메틸사이클로헥사민) 2.384g (0.01mol)을 한 번에 넣은 후 20℃에서 12시간 교반시켰다. 다음으로 상기 혼합물을 중력 여과하여 고체를 얻은 후 1일 동안 진공 건조하여 단량체 염을 제조하였다.50 mL of water was added to a 100-mL one-neck round bottom flask substituted with nitrogen gas, and 3.222 g (0.01 mol) of 3,3 ', 4,4'-benzophenone-tetracarboxylic dianhydride and 4,4'-methylene 2.384 g (0.01 mol) of bis (2-methylcyclohexamine) was added at once, followed by stirring at 20 ° C. for 12 hours. Next, the mixture was gravity filtered to obtain a solid, followed by vacuum drying for 1 day to prepare a monomer salt.
다음으로 상기 단량체 염을 전기로를 사용하여 350℃에서 6시간 동안 가열하여 부분 지방족 폴리이미드를 합성하였다. 상기 합성된 중합체의 적외선 흡수 스펙트럼에서는 1770cm- 1와 1706cm-1에서 이미드기의 C=O 흡수띠, 1381cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다(도 2). Next, the monomer salt was heated at 350 ° C. for 6 hours using an electric furnace to synthesize a partial aliphatic polyimide. In the infrared absorption spectrum of the synthesized polymer 1770cm - it is already in the CN absorption band of deugi 1 and 1706cm -1 C = O absorption band of the already deugi, 1381cm -1 in was observed (Fig. 2).
실시예 1-3: 부분 지방족 폴리이미드의 제조Example 1-3 Preparation of Partial Aliphatic Polyimides
질소 가스로 치환한 2개의 50-mL 1구 둥근바닥 플라스크에 싸이클로부탄-1,2,3,4-테트라카복실릭 다이안하이드라이드 1.961g (0.01mol)와 4,4'-옥시다이아닐린 2.002g (0.01mol)을 각각 넣은 후 각 플라스크에 10mL 물을 첨가하여 분산시켰다. 얻어진 각 혼합물을, 질소 가스로 치환한 100-mL 1구 둥근바닥 플라스크에 넣은 후 15mL 물을 첨가한 후 25℃에서 18시간 교반시켰다. 다음으로 상기 혼합물을 중력 여과하여 고체를 얻은 후 1일 동안 진공 건조하여 단량체 염을 제조하였다.Two 50-mL one-neck round-bottom flasks replaced with nitrogen gas: 1.961 g (0.01 mol) of cyclobutane-1,2,3,4-tetracarboxylic dianhydride and 2.002 g of 4,4'-oxydianiline (0.01 mol) was added to each flask, and 10 mL water was added to each flask for dispersion. Each obtained mixture was put into a 100-mL 1-neck round bottom flask substituted with nitrogen gas, and 15 mL of water was added thereto, followed by stirring at 25 ° C for 18 hours. Next, the mixture was gravity filtered to obtain a solid, followed by vacuum drying for 1 day to prepare a monomer salt.
다음으로 상기 단량체 염을 전기로를 사용하여 300℃에서 8시간 동안 가열하여 부분 지방족 폴리이미드를 합성하였다. 상기 합성된 중합체의 적외선 흡수 스펙트럼에서는 1774cm- 1와 1710cm-1에서 이미드기의 C=O 흡수띠, 1381cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다(도 3). Next, the monomer salt was heated at 300 ° C. for 8 hours using an electric furnace to synthesize a partial aliphatic polyimide. In the infrared absorption spectrum of the synthesized polymer 1774cm - 1 and 1710cm -1 C = O absorption band of the already deugi, already CN absorption band at 1381cm -1 in the deugi was observed (Fig. 3).
실시예 1-4: 전 지방족 폴리이미드의 제조Example 1-4 Preparation of Whole Aliphatic Polyimide
질소 가스로 치환한 2개의 50-mL 1구 둥근바닥 플라스크에 1,2,4,5-싸이클로헥산테트라카르복실릭 다이안하이드라이드 2.242g (0.01mol)와 4,4'-메틸렌비스(싸이클로헥실아민) 2.104g (0.01mol)을 각각 넣은 후 각 플라스크에 10mL 물을 첨가하여 분산시켰다. 얻어진 각 혼합물을, 질소 가스로 치환한 100-mL 1구 둥근바닥 플라스크에 넣은 후 20mL 물을 첨가한 후 30℃에서 18시간 교반시켰다. 다음으로 상기 혼합물을 중력 여과하여 고체를 얻은 후 1일 동안 진공 건조하여 단량체 염을 제조하였다.2.242g (0.01mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 4,4'-methylenebis (cyclohexyl) in two 50-mL 1-neck round bottom flasks substituted with nitrogen gas 2.104 g (0.01 mol) of amine) was added to the flask, and 10 mL of water was added to each flask for dispersion. Each obtained mixture was put into a 100-mL 1-neck round bottom flask substituted with nitrogen gas, and 20 mL of water was added thereto, followed by stirring at 30 ° C. for 18 hours. Next, the mixture was gravity filtered to obtain a solid, followed by vacuum drying for 1 day to prepare a monomer salt.
다음으로 상기 단량체 염을 전기로를 사용하여 300℃에서 8시간 동안 가열하여 전 지방족 폴리이미드를 합성하였다. 상기 합성된 중합체의 적외선 흡수 스펙트럼에서는 1782cm- 1와 1714cm-1에서 이미드기의 C=O 흡수띠, 1374cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다(도 4). Next, the monomer salt was heated at 300 ° C. for 8 hours using an electric furnace to synthesize all aliphatic polyimide. In the infrared absorption spectrum of the synthesized polymer 1782cm - it was already deugi the C = O absorption band, already CN absorption band at 1374cm -1 for deugi observed at 1 and 1714cm -1 (Fig. 4).
비교예 1-1: 전 지방족 폴리이미드의 제조Comparative Example 1-1: Preparation of Whole Aliphatic Polyimide
질소 가스로 치환한 100-mL 1구 둥근바닥 플라스크에 물 40mL을 넣고 1,2,4,5-싸이클로헥산테트라카르복실릭 다이안하이드라이드 2.242g (0.01mol)와 4,4'-메틸렌비스(싸이클로헥실아민) 2.104g (0.01mol)을 한 번에 넣은 후 25℃에서 12시간 교반시켰다. 다음으로 상기 혼합물을 중력 여과하여 고체를 얻은 후 1일 동안 진공 건조하여 단량체 염을 제조하였다.40 mL of water was added to a 100-mL 1-neck round bottom flask substituted with nitrogen gas, and 2.242 g (0.01 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 4,4'-methylenebis ( 2.104 g (0.01 mol) of cyclohexylamine) was added at a time and stirred at 25 ° C. for 12 hours. Next, the mixture was gravity filtered to obtain a solid, followed by vacuum drying for 1 day to prepare a monomer salt.
다음으로 상기 단량체 염을 전기로를 사용하여 80℃에서 24시간 동안 가열하였으나 전 지방족 폴리이미드를 합성할 수 없었다. 상기 합성된 중합체의 적외선 흡수 스펙트럼에서는 전형적인 폴리이미드에서 확인할 수 있는 1785cm-1에서의 이미드기의 C=O 흡수띠가 관찰되지 않았다(도 5).Next, the monomer salt was heated at 80 ° C. for 24 hours using an electric furnace, but it was not possible to synthesize all aliphatic polyimide. In the infrared absorption spectrum of the synthesized polymer, no C═O absorption band of the imide group at 1785 cm −1 , which can be seen in the typical polyimide, was observed (FIG. 5).
비교예 1-2: 전 지방족 폴리이미드의 제조Comparative Example 1-2: Preparation of Whole Aliphatic Polyimide
질소 가스로 치환한 100-mL 1구 둥근바닥 플라스크에 물 40mL을 넣고 1,2,4,5-싸이클로헥산테트라카르복실릭 다이안하이드라이드 2.242g (0.01mol)와 4,4'-메틸렌비스(싸이클로헥실아민) 2.104g (0.01mol)을 한 번에 넣은 후 25℃에서 12시간 교반시켰다. 다음으로 상기 혼합물을 중력 여과하여 고체를 얻은 후 1일 동안 진공 건조하여 단량체 염을 제조하였다.40 mL of water was added to a 100-mL 1-neck round bottom flask substituted with nitrogen gas, and 2.242 g (0.01 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 4,4'-methylenebis ( 2.104 g (0.01 mol) of cyclohexylamine) was added at a time and stirred at 25 ° C. for 12 hours. Next, the mixture was gravity filtered to obtain a solid, followed by vacuum drying for 1 day to prepare a monomer salt.
다음으로 상기 단량체 염을 전기로를 사용하여 180℃에서 1분 동안 가열하였으나 전 지방족 폴리이미드를 합성할 수 없었다. 상기 합성된 중합체의 적외선 흡수 스펙트럼에서는 전형적인 폴리이미드에서 확인할 수 있는 1785cm-1에서의 이미드기의 C=O 흡수띠가 관찰되지 않았다(도 6).Next, the monomer salt was heated at 180 ° C. for 1 minute using an electric furnace, but it was not possible to synthesize all aliphatic polyimide. In the infrared absorption spectrum of the synthesized polymer, no C═O absorption band of the imide group at 1785 cm −1 , which can be seen in the typical polyimide, was observed (FIG. 6).
비교예 1-3: 전 방향족 폴리이미드의 제조Comparative Example 1-3: Preparation of Whole Aromatic Polyimide
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 45 mL을 넣고 4,4'-옥시다이프탈릭 안하이드라이드 3.102g (0.01mol)와 4,4'-옥시다이아닐린 2.002g (0.01mol)을 넣은 후 25℃에서 18시간 반응시켜 단량체 염을 합성하였다. 다음으로 상기 혼합물을 물을 사용하여 재침전을 하였다. 중력 여과 후 물 100mL와 메탄올 100mL로 세척 후 진공 건조하여 건조된 폴리아믹산을 얻었다. 45 mL of N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, and 3.102 g (0.01 mol) of 4,4'-oxydiphthalic anhydride and 4,4 'were added. -Oxydianiline 2.002g (0.01mol) was added and reacted at 25 ° C for 18 hours to synthesize a monomer salt. Next, the mixture was reprecipitated using water. After gravity filtration, the resultant was washed with 100 mL of water and 100 mL of methanol and dried in vacuo to obtain a dried polyamic acid.
화학적 이미드화 방법으로 이 용액에 5mL의 아세틱안하이드라이드와 3mL의 피리딘을 넣고 170℃ 에서 5시간 동안 환류 시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 그리고 물 100mL와 메틸알콜 100mL로 세척 후 진공 건조하여 전 방향족 폴리이미드를 합성하였다(열적 이미드화 방법으로는 합성된 폴리아믹산 용액을 250 ~ 300℃로 오븐 또는 핫플레이트로 단계별로 승온하여 12시간 가열하는 방법을 사용하여 폴리이미드를 얻을 수 있다). 상기 합성된 중합체의 적외선 흡수 스펙트럼에서는 1783cm- 1와 1713cm-1에서 이미드기의 C=O 흡수띠, 1385cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다(도 7). 5 mL of acetic anhydride and 3 mL of pyridine were added to the solution by chemical imidization, and the mixture was refluxed at 170 ° C. for 5 hours, cooled to room temperature, and reprecipitated using excess ice water. Then, the mixture was washed with 100 mL of water and 100 mL of methyl alcohol, followed by vacuum drying to synthesize all aromatic polyimides. (The thermal imidization method heated the synthesized polyamic acid solution stepwise in an oven or a hot plate at 250 to 300 ° C. and heated it for 12 hours. Polyimide can be obtained). In the infrared absorption spectrum of the synthesized polymer 1783cm - 1 and 1713cm -1 C = O absorption band of the already deugi, already CN absorption band at 1385cm -1 in the deugi was observed (Fig. 7).
비교예 1-4: 전 지방족 폴리이미드의 제조Comparative Example 1-4: Preparation of Whole Aliphatic Polyimide
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈 40 mL을 넣고 1,2,4,5-싸이클로헥산테트라카르복실릭 다이안하이드라이드 2.242g (0.01mol)와 4,4'-메틸렌비스(싸이클로헥실아민) 2.002g (0.01mol)을 넣은 후 25℃에서 18시간 반응시켜 폴리아믹산 용액을 합성하였다. 다음으로 상기 혼합물을 물을 사용하여 재침전을 하였다. 중력여과 후 물 100mL와 메탄올 100mL로 세척 후 진공 건조하여 건조된 폴리아믹산을 얻었다. 2.242g (0.01mol) of 1,2,4,5-cyclocyclotetracarboxylic dianhydride was added to 40 mL of N-methyl-2-pyrrolidone in a 100-mL two-necked round-bottom flask substituted with nitrogen gas. And 2.002g (0.01mol) of 4,4'-methylenebis (cyclohexylamine) were added and reacted at 25 ° C for 18 hours to synthesize a polyamic acid solution. Next, the mixture was reprecipitated using water. After gravity filtration, washed with 100 mL of water and 100 mL of methanol and dried in vacuo to obtain a dried polyamic acid.
화학적 이미드화 방법으로 이 용액에 5mL의 아세틱안하이드라이드와 3mL의 피리딘을 넣고 170℃ 에서 5시간 동안 환류 시킨 후 상온까지 온도를 내린 후 과량의 얼음물을 사용하여 재침전을 하였다. 그리고 물 100mL와 메틸알콜 100mL로 세척 후 진공 건조하여 전 지방족 폴리이미드를 합성하였다(열적 이미드화 방법으로는 합성된 폴리아믹산 용액을 250 ~ 300℃로 오븐 또는 핫플레이트로 단계별로 승온하여 12시간 가열하는 방법을 사용하여 폴리이미드를 얻을 수 있다). 상기 합성된 중합체의 적외선 흡수 스펙트럼에서는 1774cm- 1와 1711cm-1에서 이미드기의 C=O 흡수띠, 1380cm-1에서 이미드기의 C-N 흡수띠가 관찰되었다(도 8). 5 mL of acetic anhydride and 3 mL of pyridine were added to the solution by chemical imidization, and the mixture was refluxed at 170 ° C. for 5 hours, cooled to room temperature, and reprecipitated using excess ice water. After washing with 100 mL of water and 100 mL of methyl alcohol and drying in vacuo, all aliphatic polyimides were synthesized (by thermal imidization, the synthesized polyamic acid solution was heated to 250-300 ° C. step by step in an oven or hot plate and heated for 12 hours. Polyimide can be obtained). In the infrared absorption spectrum of the synthesized polymer 1774cm - 1 and 1711cm -1 C = O absorption band of the already deugi, already CN absorption band at 1380cm -1 in the deugi was observed (Fig. 8).
실시예 2-1: 전 방향족 폴리이미드 복합체 필름의 제조Example 2-1 Preparation of Whole Aromatic Polyimide Composite Film
피로멜리틱 다이안하이드라이드(10.906g)와 4,4'-옥시다이아닐린(10.012g) 및 그래핀 옥사이드(5.00g)를 전체 조성물 중량대비 5wt%로 물에 첨가한 후 25℃에서 24시간동안 교반기로 분산시켜 단량체 염 조성물을 제조하였다. Pyromellitic dianhydride (10.906 g), 4,4'-oxydianiline (10.012 g), and graphene oxide (5.00 g) were added to the water at 5 wt% based on the total weight of the composition, followed by 24 hours at 25 ° C. The monomer salt composition was prepared by dispersing with a stirrer.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 7시간 동안 최종 온도가 250℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다(도 9 및 도 10).Next, the composition was spun onto a glass plate and then heated to a temperature of about 7 hours at atmospheric pressure using a heater until the final temperature reached 250 ° C., and then maintained for 1 hour to prepare a polyimide composite film (FIGS. 9 and FIG. 10).
실시예 2-2: 부분 지방족 폴리이미드 복합체 필름의 제조Example 2-2 Preparation of Partial Aliphatic Polyimide Composite Film
피로멜리틱 다이안하이드라이드(10.906g)와 헥사메틸렌 다이아민(5.810g) 및 마이카(운모)(5.00g)을 첨가한 후 25℃에서 24시간동안 교반기로 분산시켜 단량체 염 조성물을 제조하였다.A pyromellitic dianhydride (10.906 g), hexamethylene diamine (5.810 g) and mica (mica) (5.00 g) were added and then dispersed in a stirrer at 25 ° C. for 24 hours to prepare a monomer salt composition.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 7시간 동안 최종 온도가 250℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
실시예 2-3: 부분 지방족 폴리이미드 복합체 필름의 제조Example 2-3 Preparation of Partial Aliphatic Polyimide Composite Film
4,4'-옥시다이프탈릭 다이안하이드라이드(15.510g)와 헥사메틸렌 다이아민(5.810g) 및 그래핀 옥사이드(5.00g)를 첨가한 후 25℃에서 24시간동안 교반기로 분산시켜 단량체 염 조성물을 제조하였다.4,4'-oxydiphthalic dianhydride (15.510g), hexamethylene diamine (5.810g) and graphene oxide (5.00g) were added and dispersed in a stirrer at 25 ℃ for 24 hours to monomer salt composition Was prepared.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 7시간 동안 최종 온도가 250℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다(도 15).Next, the composition was spun on a glass plate and heated to a temperature slowly until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare a polyimide composite film (FIG. 15).
실시예 2-4: 전 지방족 폴리이미드 복합체 필름의 제조Example 2-4 Preparation of Whole Aliphatic Polyimide Composite Film
1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드(11.208g)와 헥사메틸렌 다이아민(5.810g) 및 미리 물에 1wt%로 분산시킨 그래핀 옥사이드 혼합액(5.00g)을 첨가한 후 25℃에서 24시간동안 교반기로 분산시켜 단량체 염 조성물을 제조하였다.1,2,4,5-cyclohexanetetracarboxylic dianhydride (11.208g) and hexamethylene diamine (5.810g) and graphene oxide mixture (5.00g) previously dispersed in water at 1wt% were added. The monomer salt composition was prepared by dispersing at 25 ° C. for 24 hours with a stirrer.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 7시간 동안 최종 온도가 250℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.(도 11, 도 12 및 도 16)Next, the composition was spun on a glass plate and heated to a temperature gradually until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare the polyimide composite film (FIG. 11, 12 and 16)
실시예 2-5: 전 지방족 폴리이미드 복합체 필름의 제조Example 2-5 Preparation of Whole Aliphatic Polyimide Composite Films
1,2,3,4-싸이클로부탄테트라카복실릭 다이안하이드라이드(9.805g)와 4,4'-메틸렌비스(2-메틸싸이클로헥실아민)(11.920g) 및 마이카(운모)(5.00g)를 첨가한 후 25℃에서 24시간동안 교반기로 분산시켜 단량체 염 조성물을 제조하였다.1,2,3,4-cyclobutanetetracarboxylic dianhydride (9.805g), 4,4'-methylenebis (2-methylcyclohexylamine) (11.920g) and mica (mica) (5.00g) After addition, the monomer salt composition was prepared by dispersing with a stirrer at 25 ° C. for 24 hours.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 7시간 동안 최종 온도가 250℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
실시예 2-6: 전 지방족 폴리이미드 복합체 필름의 제조Example 2-6 Preparation of Whole Aliphatic Polyimide Composite Films
1,2,3,4-싸이클로펜탄테트라카복실릭 다이안하이드라이드(10.507g)와 4,4'-메틸렌비스(싸이클로헥실아민)(10.518g) 및 탄소나노튜브(5.00g)를 첨가한 후 25℃에서 24시간동안 교반기로 분산시켜 단량체 염 조성물을 제조하였다.1,2,3,4-cyclopentanetetracarboxylic dianhydride (10.507g), 4,4'-methylenebis (cyclohexylamine) (10.518g) and carbon nanotubes (5.00g) were added. The monomer salt composition was prepared by dispersing with a stirrer at 占 폚 for 24 hours.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 7시간 동안 최종 온도가 250℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 250 ° C. for 7 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
비교예 2-1 : 전 방향족 폴리이미드 복합체 필름의 제조Comparative Example 2-1: Preparation of Whole Aromatic Polyimide Composite Film
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 피로멜리틱 다이안하이드라이드(6.543g)와 4,4'-옥시다이아닐린(6.072g)을 넣은 후 25℃에서 18시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, pyromellitic dianhydride (6.543 g) and 4,4'-oxydianiline (6.072 g). After reacting at 25 ℃ for 18 hours to synthesize a 10wt% polyamic acid solution.
다음으로 상기 용액에 그래핀 옥사이드(5.00g)를 투입하고 25℃에서 18시간동안 교반기로 분산시켜 조성물을 제조하였다.Next, graphene oxide (5.00 g) was added to the solution, and the composition was prepared by dispersing with a stirrer at 25 ° C. for 18 hours.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
비교예 2-2 : 부분 지방족 폴리이미드 복합체 필름의 제조Comparative Example 2-2: Preparation of Partially Aliphatic Polyimide Composite Film
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 피로멜리틱 다이안하이드라이드(7.634g)와 헥사메틸렌 다이아민(4.067g)을 넣은 후 25℃에서 18시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, pyromellitic dianhydride (7.634 g) and hexamethylene diamine (4.067 g) were added. After reacting for 18 hours, a 10 wt% polyamic acid solution was synthesized.
다음으로 상기 용액에 그래핀 옥사이드(5.00g)를 투입하고 25℃에서 18시간동안 교반기로 분산시켜 조성물을 제조하였다.Next, graphene oxide (5.00 g) was added to the solution, and the composition was prepared by dispersing with a stirrer at 25 ° C. for 18 hours.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
비교예 2-3 : 부분 지방족 폴리이미드 복합체 필름의 제조Comparative Example 2-3: Preparation of Partially Aliphatic Polyimide Composite Film
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 4,4'-옥시다이프탈릭 다이안하이드라이드(9.306g)와 헥사메틸렌 다이아민(3.486g)을 넣은 후 25℃에서 18시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, and 4,4'-oxydiphthalic dianhydride (9.306g) and hexamethylene diamine (3.486g) were added. After the reaction was carried out at 25 ℃ 18 hours to synthesize a 10wt% polyamic acid solution.
다음으로 상기 용액에 그래핀 옥사이드(5.00g)를 투입하고 25℃에서 18시간동안 교반기로 분산시켜 조성물을 제조하였다.Next, graphene oxide (5.00 g) was added to the solution, and the composition was prepared by dispersing with a stirrer at 25 ° C. for 18 hours.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.(도 13)Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film (FIG. 13).
비교예 2-4 : 전 지방족 폴리이미드 복합체 필름의 제조Comparative Example 2-4: Preparation of Total Aliphatic Polyimide Composite Film
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N,N-다이메틸아세트아마이드를 넣고 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드(7.845g)와 헥사메틸렌 다이아민(4.067g)을 넣은 후 25℃에서 18시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다.N, N-dimethylacetamide was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 1,2,4,5-cyclocyclotetracarboxylic dianhydride (7.845 g) and hexamethylene diamine ( 4.067 g) was reacted at 25 ° C. for 18 hours to synthesize a 10 wt% polyamic acid solution.
다음으로 상기 용액에 그래핀 옥사이드(5.00g)를 투입하고 25℃에서 18시간동안 교반기로 분산시켜 조성물을 제조하였다.Next, graphene oxide (5.00 g) was added to the solution, and the composition was prepared by dispersing with a stirrer at 25 ° C. for 18 hours.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다(도 14).Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film (FIG. 14).
Figure PCTKR2015009102-appb-T000001
Figure PCTKR2015009102-appb-T000001
상기 표 1에서 확인할 수 있듯이 실시예 1-1 내지 1-4에서는 단량체 염 제조 과정이 물을 사용하여 20 내지 30℃ 온도 범위에서 12 내지 24시간 범위 내에서 수행되었으며, 상기 단량체 염을 180 내지 350℃ 온도 범위에서 6 내지 24시간 열처리하여 얻어진 폴리이미드는 높은 분자량을 지니는 것을 확인할 수 있었다.As can be seen in Table 1, in Examples 1-1 to 1-4, the monomer salt preparation process was performed in a range of 12 to 24 hours at a temperature range of 20 to 30 ° C. using water, and the monomer salt was 180 to 350. It was confirmed that the polyimide obtained by heat treatment for 6 to 24 hours in the temperature range of ℃ having a high molecular weight.
반면, 비교예 1-1과 비교예 1-2에서는 제조한 단량체 염을 160℃ 미만의 온도, 또는 5분 미만의 시간에서 열처리를 수행하였는데, 상기 방법으로 폴리이미드를 얻을 수 없는 것을 확인할 수 있었다. 또한 비교예 1-3과 비교예 1-4에서는 유기용매를 사용하여 폴리아믹산 전구체를 합성하여 폴리이미드를 제작하는 기존의 방법을 수행하여 폴리이미드를 얻었으나, 상기 얻어진 폴리이미드는 실시예 1-1 내지 1-4에서 얻어진 폴리이미드 대비 낮은 수준의 분자량을 지닌 것을 확인할 수 있었다. On the other hand, in Comparative Example 1-1 and Comparative Example 1-2, the prepared monomer salt was heat-treated at a temperature of less than 160 ℃, or less than 5 minutes, it was confirmed that the polyimide can not be obtained by the above method. . In Comparative Examples 1-3 and Comparative Examples 1-4, a polyimide was obtained by performing a conventional method of preparing a polyimide by synthesizing a polyamic acid precursor using an organic solvent, but the obtained polyimide was obtained in Example 1-. It was confirmed that the molecular weight of the low level compared to the polyimide obtained in 1 to 1-4.
Figure PCTKR2015009102-appb-T000002
Figure PCTKR2015009102-appb-T000002
한편, 상기 표 2에서 확인할 수 있듯이 실시예 2-1 내지 2-6에 따라, 합성된 단량체 염 조성물을 제조한 후 상기 용액을 유리판에 회전 도포하여 8시간동안 상온부터 250℃로 천천히 승온하는 방법으로 열처리하여 폴리이미드 복합체 필름을 얻을 수 있었다. 상기 폴리이미드 복합체 필름은 일반적인 폴리이미드 필름 제조방법으로 제작한 폴리이미드 복합체 필름과 비교하여 보다 향상된 기계적 물성 및 열적 특성을 지니는 것을 확인할 수 있었다. On the other hand, as can be seen in Table 2, according to Examples 2-1 to 2-6, after the synthesized monomer salt composition prepared by rotating the solution on a glass plate to increase the temperature slowly from room temperature to 250 ℃ for 8 hours It was heat-treated to obtain a polyimide composite film. The polyimide composite film was confirmed to have improved mechanical and thermal properties compared to the polyimide composite film produced by a general polyimide film production method.
특히, 도 15 및 16을 참조하면, 단량체 염 합성과 동시에 분산물질을 분산시켜 제조한 폴리이미드 복합체 필름에서는 분산물질이 골고루 퍼져있는 것을 확인할 수 있었다. In particular, referring to Figures 15 and 16, it was confirmed that the dispersion material is evenly spread in the polyimide composite film prepared by dispersing the dispersion material at the same time as the monomer salt synthesis.
한편, 비교예 2-1 내지 2-3에서 제조된 폴리이미드 복합체 필름은 기존의 폴리이미드 복합체 필름 제조시 분산 물질이 유기용매에서 잘 분산되지 않아 뭉쳐져 있는 것을 확인할 수 있으며 이는 도 13 및 14에서 확인할 수 있었다. 특히 비교예 2-4에서는 필름에 생긴 균열로 인해 기계적 물성을 확인할 수 없었다. 상기 제조된 폴리이미드 복합체 필름은 분산 물질이 잘 분산되지 않아 기계적 물성 및 열적 특성이 낮은 것을 확인할 수 있었다.On the other hand, the polyimide composite film prepared in Comparative Examples 2-1 to 2-3 can be confirmed that the dispersion material is not dispersed well in the organic solvent when the conventional polyimide composite film is prepared, which is agglomerated, as shown in FIGS. 13 and 14. Could. In particular, in Comparative Example 2-4, mechanical properties could not be confirmed due to cracks in the film. The prepared polyimide composite film was not well dispersed in the dispersion material was confirmed that the mechanical properties and thermal properties are low.
실시예 3-1 : 전방향족 폴리이미드 복합체의 제조Example 3-1 Preparation of Whole Aromatic Polyimide Composite
2.18g의 피로멜리틱 다이안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수 100ml를 둥근바닥플라스크에 넣고 상온에서 단량체 염을 제조하였다. 2.18 g of pyromellitic dianhydride, 2.00 g of 4,4'-oxydianiline and 100 ml of distilled water were added to a round bottom flask to prepare a monomer salt at room temperature.
다음으로 상기 얻어진 0.10g의 단량체 염에 0.01g의 몬모릴로나이트를 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of montmorillonite was added to the obtained 0.10 g of the monomer salt, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
실시예 3-2 : 전방향족 폴리이미드 복합체의 제조Example 3-2 Preparation of Whole Aromatic Polyimide Composites
3.10g의 4,4'-옥시다이프탈릭 안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수 100ml를 둥근바닥플라스크에 넣고 상온에서 단량체 염을 제조하였다. 3.10 g of 4,4'-oxydiphthalic anhydride, 2.00 g of 4,4'-oxydianiline and 100 ml of distilled water were added to a round bottom flask to prepare a monomer salt at room temperature.
다음으로 상기 얻어진 0.10g의 단량체 염에 0.01g의 그래핀 옥사이드를 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of graphene oxide was added to the obtained 0.10 g of the monomer salt, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
실시예 3-3 : 부분지방족 폴리이미드 복합체의 제조Example 3-3 Preparation of Subaliphatic Polyimide Composites
2.18g의 피로멜리틱 다이안하이드라이드, 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민) 및 증류수 100ml를 둥근바닥플라스크에 넣고 상온에서 단량체 염을 제조하였다. 2.18 g of pyromellitic dianhydride, 2.10 g of 4,4'-methylenebis (cyclohexylamine) and 100 ml of distilled water were added to a round bottom flask to prepare a monomer salt at room temperature.
다음으로 상기 얻어진 0.10g의 단량체 염에 0.01g의 벤토나이트를 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of bentonite was added to the obtained 0.10 g of the monomer salt, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 부분지방족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a aliphatic polyimide composite.
실시예 3-4 : 부분지방족 폴리이미드 복합체의 제조Example 3-4 Preparation of Subaliphatic Polyimide Composites
3.10g의 4,4'-옥시다이프탈릭 안하이드라이드, 1.16g의 헥사메틸렌 다이아민 및 증류수 100ml를 둥근바닥플라스크에 넣고 상온에서 단량체 염을 제조하였다. 3.10 g of 4,4'-oxydiphthalic anhydride, 1.16 g of hexamethylene diamine and 100 ml of distilled water were added to a round bottom flask to prepare a monomer salt at room temperature.
다음으로 상기 얻어진 0.10g의 단량체 염에 0.01g의 그래핀 옥사이드를 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of graphene oxide was added to the obtained 0.10 g of the monomer salt, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 부분지방족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a aliphatic polyimide composite.
실시예 3-5 : 전지방족 폴리이미드 복합체의 제조Example 3-5 Preparation of Full Aliphatic Polyimide Composites
2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민) 및 증류수 100ml를 둥근바닥플라스크에 넣고 상온에서 단량체 염을 제조하였다. 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride, 2.10 g of 4,4'-methylenebis (cyclohexylamine) and 100 ml of distilled water were added to a round bottom flask to prepare monomer salts at room temperature. It was.
다음으로 상기 얻어진 0.10g의 단량체 염에 0.01g의 몬모릴로나이트를 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of montmorillonite was added to the obtained 0.10 g of the monomer salt, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전지방족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare an aliphatic polyimide composite.
실시예 3-6 : 전지방족 폴리이미드 복합체의 제조Example 3-6 Preparation of Full Aliphatic Polyimide Composites
2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 1.16g의 헥사메틸렌 다이아민 및 증류수 100ml를 둥근바닥플라스크에 넣고 상온에서 단량체 염을 제조하였다. 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride, 1.16 g of hexamethylene diamine and 100 ml of distilled water were added to a round bottom flask to prepare monomer salts at room temperature.
다음으로 상기 얻어진 0.10g의 단량체 염에 0.01g의 벤토나이트를 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of bentonite was added to the obtained 0.10 g of the monomer salt, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전지방족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare an aliphatic polyimide composite.
비교예 3-1 : 전방향족 폴리이미드 복합체의 제조Comparative Example 3-1: Preparation of Whole Aromatic Polyimide Composite
2.18g의 피로멜리틱 다이안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수 100ml를 둥근바닥플라스크에 넣고 상온에서 단량체 염을 제조하였다. 2.18 g of pyromellitic dianhydride, 2.00 g of 4,4'-oxydianiline and 100 ml of distilled water were added to a round bottom flask to prepare a monomer salt at room temperature.
다음으로 상기 얻어진 0.10g의 단량체 염에 9.90g의 몬모릴로나이트를 조성물 전체중량 대비 99wt%로 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 9.90 g of montmorillonite was added to the obtained 0.10 g of the monomer salt in an amount of 99 wt% based on the total weight of the composition, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
비교예 3-2 : 전지방족 폴리이미드 복합체의 제조Comparative Example 3-2: Preparation of Full Aliphatic Polyimide Composite
2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 1.16g의 헥사메틸렌 다이아민 및 증류수 100ml를 둥근바닥플라스크에 넣고 상온에서 단량체 염을 제조하였다. 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride, 1.16 g of hexamethylene diamine and 100 ml of distilled water were added to a round bottom flask to prepare monomer salts at room temperature.
다음으로 상기 얻어진 0.10g의 단량체 염에 0.01g의 벤토나이트를 첨가한 후 별도의 밀링 과정 없이 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전지방족 폴리이미드 복합체를 제조하였다.Next, 0.01 g of bentonite was added to the obtained 0.10 g of the monomer salt, followed by heating at 200 ° C. for 6 hours using a heater without a separate milling process, thereby preparing an aliphatic polyimide composite.
비교예 3-3 : 전방향족 폴리이미드 복합체의 제조Comparative Example 3-3: Preparation of Whole Aromatic Polyimide Composite
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 3.10g의 4,4'-옥시다이프탈릭 안하이드라이드와 2.00g의 4,4'-옥시다이아닐린을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 3.10 g of 4,4'-oxydiphthalic anhydride and 2.00 g of 4,4'-oxy were added. After adding dianiline and reacting at 25 ° C. for 24 hours, a 10 wt% polyamic acid solution was synthesized.
다음으로 상기 용액에 0.51g의 그래핀 옥사이드를 투입하고 25℃에서 18시간동안 교반기로 분산시켜 조성물을 제조하였다.Next, 0.51 g of graphene oxide was added to the solution, and the composition was prepared by dispersing with a stirrer at 25 ° C. for 18 hours.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
비교예 3-4 : 전방향족 폴리이미드 복합체의 제조Comparative Example 3-4: Preparation of Whole Aromatic Polyimide Composite
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 2.18g의 피로멜리틱 다이안하이드라이드와 2.00g의 4,4'-옥시다이아닐린을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, followed by 2.18 g of pyromellitic dianhydride and 2.00 g of 4,4'-oxydianiline. The reaction was carried out at 24 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution.
다음으로 상기 용액에 0.42g의 몬모릴로나이트를 투입하고 25℃에서 18시간동안 교반기로 분산시켜 조성물을 제조하였다.Next, 0.42 g of montmorillonite was added to the solution and dispersed at 25 ° C. for 18 hours using a stirrer to prepare a composition.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
비교예 3-5 : 전지방족 폴리이미드 복합체의 제조Comparative Example 3-5: Preparation of Battery-Arm Polyimide Composite
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민)을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclohexanetetracarboxylic dianhydride and 2.10 g of 4, 4'-methylenebis (cyclohexylamine) was added thereto and reacted at 25 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution.
다음으로 상기 용액에 0.43g의 몬모릴로나이트를 투입하고 25℃에서 18시간동안 교반기로 분산시켜 조성물을 제조하였다.Next, 0.43 g of montmorillonite was added to the solution, and the composition was dispersed by stirring at 25 ° C. for 18 hours.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
비교예 3-6 : 전지방족 폴리이미드 복합체의 제조Comparative Example 3-6: Preparation of Full Aliphatic Polyimide Composite
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 1.16g의 헥사메틸렌 다이아민을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclohexanetetracarboxylic dianhydride and 1.16 g of hexamethylene After diamine was added and reacted at 25 ° C. for 24 hours, a 10 wt% polyamic acid solution was synthesized.
다음으로 상기 용액에 0.34g의 벤토나이트를 투입하고 25℃에서 18시간동안 교반기로 분산시켜 조성물을 제조하였다.Next, 0.34 g of bentonite was added to the solution, followed by dispersion at 25 ° C. for 18 hours to prepare a composition.
다음으로 상기 조성물을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 폴리이미드 복합체 필름을 제조하였다.Next, the composition was spun onto a glass plate and heated to a temperature slowly until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater to prepare a polyimide composite film.
비교예 3-7 : 전방향족 폴리이미드 복합체의 제조Comparative Example 3-7: Preparation of Whole Aromatic Polyimide Composite
상기 비교예 3에서 합성한 폴리아믹산을 깨끗한 증류수에 재침전하여 얻은 고체를 건조하여 폴리아믹산 고체를 제조하였다.A solid obtained by reprecipitating the polyamic acid synthesized in Comparative Example 3 to clean distilled water was dried to prepare a polyamic acid solid.
다음으로 상기 0.10g의 폴리아믹산에 0.01g의 그래핀 옥사이드를 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of graphene oxide was added to the 0.10 g of polyamic acid, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
비교예 3-8: 전방향족 폴리이미드 복합체의 제조Comparative Example 3-8: Preparation of Whole Aromatic Polyimide Composite
상기 비교예 4에서 합성한 폴리아믹산을 깨끗한 증류수에 재침전하여 얻은 고체를 건조하여 폴리아믹산 고체를 제조하였다.The solid obtained by reprecipitating the polyamic acid synthesized in Comparative Example 4 in clean distilled water was dried to prepare a polyamic acid solid.
다음으로 상기 0.10g의 폴리아믹산에 0.01g의 몬모릴로나이트를 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of montmorillonite was added to the 0.10 g of polyamic acid, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic polyimide composite.
비교예 3-9: 전지방족 폴리이미드 복합체의 제조Comparative Example 3-9: Preparation of Full Aliphatic Polyimide Composite
상기 비교예 5에서 합성한 폴리아믹산을 깨끗한 증류수에 재침전하여 얻은 고체를 건조하여 폴리아믹산 고체를 제조하였다.A solid obtained by reprecipitating the polyamic acid synthesized in Comparative Example 5 to clean distilled water was dried to prepare a polyamic acid solid.
다음으로 상기 0.10g의 폴리아믹산에 0.01g의 몬모릴로나이트를 첨가한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of montmorillonite was added to the 0.10 g of polyamic acid, and then milled for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전지방족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare an aliphatic polyimide composite.
비교예 3-10 : 전지방족 폴리이미드 복합체의 제조Comparative Example 3-10: Preparation of Battery Aliphatic Polyimide Composite
상기 비교예 6에서 합성한 폴리아믹산을 깨끗한 증류수에 재침전하여 얻은 고체를 건조하여 폴리아믹산 고체를 제조하였다.A solid obtained by reprecipitation of the polyamic acid synthesized in Comparative Example 6 in clean distilled water was dried to prepare a polyamic acid solid.
다음으로 상기 0.10g의 폴리아믹산에 0.01g의 벤토나이트를 볼밀을 사용하여 1시간동안 밀링하여 미분말 조성물을 제조하였다.Next, 0.01 g of bentonite was milled in 0.10 g of polyamic acid for 1 hour using a ball mill to prepare a fine powder composition.
다음으로 상기 미분말 조성물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전지방족 폴리이미드 복합체를 제조하였다.Next, the fine powder composition was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare an aliphatic polyimide composite.
Figure PCTKR2015009102-appb-T000003
Figure PCTKR2015009102-appb-T000003
Figure PCTKR2015009102-appb-T000004
Figure PCTKR2015009102-appb-T000004
상기 표 3에서 확인할 수 있듯이 실시예 3-1 내지 3-6에 따라 단량체 염에 분산 물질을 혼합하고 분쇄 및 가열하면 폴리이미드 복합체를 얻을 수 있었다. 상기 폴리이미드 복합체는 일반적인 폴리이미드 복합체 제조방법으로 제조한 폴리이미드 복합체 대비 향상된 기계적 물성 및 열적 특성을 지니는 것을 확인할 수 있었다. As can be seen in Table 3, the polyimide composite was obtained by mixing, grinding and heating the dispersion material in the monomer salt according to Examples 3-1 to 3-6. The polyimide composite was confirmed to have improved mechanical and thermal properties compared to the polyimide composite prepared by a general polyimide composite manufacturing method.
한편, 표 4에서 확인할 수 있듯이 비교예 3-1에서 합성된 단량체 염에 분산물질을 전체 조성물의 99wt%로 혼합하여 제조된 폴리이미드 복합체는 기계적 성질 및 열적 성질이 크게 감소하였으며 비교예 3-2에서 합성된 단량체 염에 분산물질을 넣고 별도의 밀링 과정 없이 제조한 폴리이미드 복합체는 기계적 성질 및 열적 성질이 크게 감소하였다. 비교예 3-3 내지 3-6에서 합성된 폴리아믹산에 분산물질 및 용매를 첨가하여 제조된 폴리이미드 복합체는 일반적인 폴리이미드의 기계적 성질 및 열적 성질과 비교하여 향상된 결과를 확인할 수 있었으나 실시예 3-1 내지 3-6에서 합성된 폴리이미드 복합체 보다 낮은 결과를 보였으며 비교예 3-7 내지 3-10에서 합성된 고체 폴리아믹산에 분산물질을 첨가하여 제조한 폴리이미드 복합체는 분산물질이 잘 분산되지 않아 폴리이미드와 분산물질이 서로 분리되었으며 기계적 성질 및 열적 성질이 크게 감소한 것을 확인할 수 있었다.On the other hand, as shown in Table 4, the polyimide composite prepared by mixing the dispersion material in the monomer salt synthesized in Comparative Example 3-1 at 99wt% of the total composition significantly reduced mechanical and thermal properties, Comparative Example 3-2 The polyimide composites prepared without the addition of dispersions to the monomer salts synthesized at and without milling were significantly reduced in mechanical and thermal properties. Polyimide composite prepared by adding a dispersion and a solvent to the polyamic acid synthesized in Comparative Examples 3-3 to 3-6 was able to confirm the improved results compared to the mechanical and thermal properties of the general polyimide Example 3 The results were lower than those of the polyimide composites synthesized in 1 to 3-6, and the polyimide composites prepared by adding the dispersion to the solid polyamic acid synthesized in Comparative Examples 3-7 to 3-10 did not disperse the dispersion well. As a result, the polyimide and the dispersion were separated from each other, and the mechanical and thermal properties were greatly reduced.
실시예 4-1 : 전방향족 및 부분지방족 폴리이미드 공중합체의 제조Example 4-1 Preparation of Whole Aromatic and Subaliphatic Polyimide Copolymers
2.18g의 피로멜리틱 다이안하이드라이드(2.18g), 2.00g의 4,4'-옥시다이아닐린 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 A를 제조하였다. 또한 3.10g의 4,4'-옥시다이프탈릭 안하이드라이드, 1.16g의 헥사메틸렌 다이아민 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염B를 제조하였다. 2.18 g of pyromellitic dianhydride (2.18 g), 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, 3.10 g of 4,4'-oxydiphthalic anhydride, 1.16 g of hexamethylene diamine, and distilled water were added to a 100 ml round bottom flask to prepare monomer salt B at room temperature.
다음으로 상기 단량체 염 A 및 B를 각 1.00g씩 혼합한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말을 제조하였다.Next, 1.00 g of the monomer salts A and B were mixed, and then milled for 1 hour using a ball mill to prepare a fine powder.
다음으로 상기 미분말을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 부분지방족 폴리이미드 공중합체를 제조하였다.Next, the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic and partially aliphatic polyimide copolymer.
실시예 4-2 : 전방향족 및 전지방족 폴리이미드 공중합체의 제조Example 4-2 Preparation of Whole Aromatic and Fully Aromatic Polyimide Copolymers
2.18g의 피로멜리틱 다이안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 A를 제조하였다. 또한 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민) 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 B를 제조하였다. 2.18 g of pyromellitic dianhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, add 2.24 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2.10 g of 4,4'-methylenebis (cyclohexylamine) and distilled water in a 100 ml round bottom flask to add monomer salt B at room temperature. Was prepared.
다음으로 상기 단량체 염 A 및 B를 각 1.00g씩 혼합한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말을 제조하였다.Next, 1.00 g of the monomer salts A and B were mixed, and then milled for 1 hour using a ball mill to prepare a fine powder.
다음으로 상기 미분말을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
실시예 4-3 : 전방향족 및 전지방족 폴리이미드 공중합체의 제조Example 4-3 Preparation of Whole Aromatic and Fully Aromatic Polyimide Copolymers
2.18g의 피로멜리틱 다이안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 A를 제조하였다. 또한 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 1.16g의 헥사메틸렌 다이아민 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염B를 제조하였다.2.18 g of pyromellitic dianhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, monomer salt B was prepared at room temperature by adding 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride, 1.16 g of hexamethylene diamine and distilled water to a 100 ml round bottom flask.
다음으로 상기 단량체 염 A 및 B를 각 1.00g씩 혼합한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말을 제조하였다.Next, 1.00 g of the monomer salts A and B were mixed, and then milled for 1 hour using a ball mill to prepare a fine powder.
다음으로 상기 미분말을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
실시예 4-4 : 전방향족 및 부분지방족 폴리이미드 공중합체의 제조Example 4-4 Preparation of Whole Aromatic and Subaliphatic Polyimide Copolymers
3.10g의 4,4'-옥시다이프탈릭 안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 A를 제조하였다. 또한 2.18g의 피로멜리틱 다이안하이드라이드, 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민) 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염B를 제조하였다.3.10 g of 4,4'-oxydiphthalic anhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, 2.18 g of pyromellitic dianhydride, 2.10 g of 4,4'-methylenebis (cyclohexylamine) and distilled water were added to a 100 ml round bottom flask to prepare monomer salt B at room temperature.
다음으로 상기 단량체 염 A 및 B를 각 1.00g씩 혼합한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말을 제조하였다.Next, 1.00 g of the monomer salts A and B were mixed, and then milled for 1 hour using a ball mill to prepare a fine powder.
다음으로 상기 미분말을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 부분지방족 폴리이미드 공중합체를 제조하였다.Next, the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare a wholly aromatic and partially aliphatic polyimide copolymer.
실시예 4-5 : 전방향족 및 전지방족 폴리이미드 공중합체의 제조Example 4-5 Preparation of Whole Aromatic and Fully Aromatic Polyimide Copolymers
3.10g의 4,4'-옥시다이프탈릭 안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 A를 제조하였다. 또한 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민) 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 B를 제조하였다.3.10 g of 4,4'-oxydiphthalic anhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, add 2.24 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2.10 g of 4,4'-methylenebis (cyclohexylamine) and distilled water in a 100 ml round bottom flask to add monomer salt B at room temperature. Was prepared.
다음으로 상기 단량체 염 A 및 B를 각 1.00g씩 혼합한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말을 제조하였다.Next, 1.00 g of the monomer salts A and B were mixed, and then milled for 1 hour using a ball mill to prepare a fine powder.
다음으로 상기 미분말을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
실시예 4-6 : 전방향족 및 전지방족 폴리이미드 공중합체의 제조Example 4-6 Preparation of Whole Aromatic and Whole Aromatic Polyimide Copolymers
3.10g의 4,4'-옥시다이프탈릭 안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 A를 제조하였다. 또한 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 1.16g의 헥사메틸렌 다이아민 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 B를 제조하였다.3.10 g of 4,4'-oxydiphthalic anhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, monomer salt B was prepared at room temperature by adding 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride, 1.16 g of hexamethylene diamine and distilled water to a 100 ml round bottom flask.
다음으로 상기 단량체 염 A 및 B를 각 1.00g씩 혼합한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말을 제조하였다.Next, 1.00 g of the monomer salts A and B were mixed, and then milled for 1 hour using a ball mill to prepare a fine powder.
다음으로 상기 미분말을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
비교예 4-1 : 전방향족 및 전지방족 폴리이미드 공중합체의 제조Comparative Example 4-1: Preparation of Whole-aromatic and All-Aromatic Polyimide Copolymers
2.18g의 피로멜리틱 다이안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 A를 제조하였다. 또한 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민) 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 B를 제조하였다. 2.18 g of pyromellitic dianhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, add 2.24 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2.10 g of 4,4'-methylenebis (cyclohexylamine) and distilled water in a 100 ml round bottom flask to add monomer salt B at room temperature. Was prepared.
다음으로 상기 단량체 염 A 및 B를 각 1.00g씩 혼합한 후 상기 혼합물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, 1.00 g of the monomer salts A and B were mixed, and the mixture was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
비교예 4-2 : 전방향족 및 전지방족 폴리이미드 공중합체의 제조Comparative Example 4-2: Preparation of Whole-aromatic and All-Aromatic Polyimide Copolymers
3.10g의 4,4'-옥시다이프탈릭 안하이드라이드, 2.00g의 4,4'-옥시다이아닐린 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 A를 제조하였다. 또한 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드, 1.16g의 헥사메틸렌 다이아민 및 증류수를 100ml 둥근바닥플라스크에 넣고 상온에서 단량체 염 B를 제조하였다.3.10 g of 4,4'-oxydiphthalic anhydride, 2.00 g of 4,4'-oxydianiline and distilled water were added to a 100 ml round bottom flask to prepare monomer salt A at room temperature. Also, monomer salt B was prepared at room temperature by adding 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride, 1.16 g of hexamethylene diamine and distilled water to a 100 ml round bottom flask.
다음으로 상기 단량체 염 A 및 B를 각 1.00g씩 혼합한 후 상기 혼합물을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, 1.00 g of the monomer salts A and B were mixed, and the mixture was heated at 200 ° C. for 6 hours at atmospheric pressure using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
비교예 4-3 : 전방향족 및 전지방족 폴리이미드 공중합체의 제조Comparative Example 4-3 Preparation of Fully Aromatic and Fully Aromatic Polyimide Copolymer
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 2.18g의 피로멜리틱 다이안하이드라이드와 2.00g의 4,4'-옥시다이아닐린을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액 A를 합성하였다. 또한 질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 1.16g의 헥사메틸렌 다이아민을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액 B를 합성하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, followed by 2.18 g of pyromellitic dianhydride and 2.00 g of 4,4'-oxydianiline. The reaction was carried out at 24 ° C. for 24 hours to synthesize 10 wt% polyamic acid solution A. In addition, N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclohexanetetracarboxylic dianhydride and 1.16 g of hexa were added. Methylene diamine was added and reacted at 25 ° C. for 24 hours to synthesize 10 wt% polyamic acid solution B.
다음으로 상기 용액 A 및 B를 반응용기에 넣고 3시간동안 혼합하여 폴리아믹산 용액을 제조하였다.Next, the solution A and B were added to the reaction vessel and mixed for 3 hours to prepare a polyamic acid solution.
다음으로 상기 폴리아믹산 용액을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, the polyamic acid solution was rotated on a glass plate, and the temperature was gradually raised until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater, and then maintained for 1 hour to form a wholly aromatic and all-aliphatic polyimide copolymer. Prepared.
비교예 4-4 : 전방향족 및 전지방족 폴리이미드 공중합체의 제조Comparative Example 4-4: Preparation of Whole Aromatic and Fully Aromatic Polyimide Copolymer
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 3.10g의 4,4'-옥시다이프탈릭 안하이드라이드와 2.00g의 4,4'-옥시다이아닐린을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액 A를 합성하였다. 또한 질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민)을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액 B를 합성하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 3.10 g of 4,4'-oxydiphthalic anhydride and 2.00 g of 4,4'-oxy were added. After adding dianiline and reacting at 25 ° C. for 24 hours, 10 wt% polyamic acid solution A was synthesized. In addition, N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclohexanetetracarboxylic dianhydride and 2.10 g of 4 were added. After adding 4'-methylenebis (cyclohexylamine) and reacting at 25 ° C. for 24 hours, 10 wt% polyamic acid solution B was synthesized.
다음으로 상기 용액 A 및 B를 반응용기에 넣고 3시간동안 혼합하여 폴리아믹산 용액을 제조하였다.Next, the solution A and B were added to the reaction vessel and mixed for 3 hours to prepare a polyamic acid solution.
다음으로 상기 폴리아믹산 용액을 유리판 위에 회전도포하고 가열기를 사용하여 대기압에서 11시간 동안 최종 온도가 300℃에 도달할 때까지 서서히 온도를 올려 1시간 동안 유지하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, the polyamic acid solution was rotated on a glass plate, and the temperature was gradually raised until the final temperature reached 300 ° C. for 11 hours at atmospheric pressure using a heater, and then maintained for 1 hour to form a wholly aromatic and all-aliphatic polyimide copolymer. Prepared.
비교예 4-5 : 전방향족 및 전지방족 폴리이미드 공중합체의 제조Comparative Example 4-5: Preparation of Whole-aromatic and All-Aromatic Polyimide Copolymer
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 2.18g의 피로멜리틱 다이안하이드라이드와 2.00g의 4,4'-옥시다이아닐린을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다. 상기 폴리아믹산 용액을 깨끗한 증류수에 재침전한 후 건조하여 폴리아믹산 A를 제조하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round-bottom flask substituted with nitrogen gas, followed by 2.18 g of pyromellitic dianhydride and 2.00 g of 4,4'-oxydianiline. The reaction was carried out at 24 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution. The polyamic acid solution was reprecipitated in clean distilled water and dried to prepare polyamic acid A.
다음으로 질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민)을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다. 상기 폴리아믹산 용액을 깨끗한 증류수에 재침전한 후 건조하여 폴리아믹산 B를 제조하였다. Next, N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 2.10 g of 4,4'-methylenebis (cyclohexylamine) was added thereto, and reacted at 25 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution. The polyamic acid solution was reprecipitated in clean distilled water and dried to prepare polyamic acid B.
다음으로 상기 폴리아믹산 A 및 B를 각 1.00g씩 혼합한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말을 제조하였다.Next, 1.00 g of each of the polyamic acids A and B were mixed, and then milled for 1 hour using a ball mill to prepare a fine powder.
다음으로 상기 미분말을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
비교예 4-6 : 전방향족 및 전지방족 공중합체 폴리이미드의 제조Comparative Example 4-6: Preparation of Whole Aromatic and Whole Aromatic Copolymer Polyimide
질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 3.10g의 4,4'-옥시다이프탈릭 안하이드라이드와 2.00g의 4,4'-옥시다이아닐린을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다. 상기 폴리아믹산 용액을 깨끗한 증류수에 재침전한 후 건조하여 폴리아믹산 A를 제조하였다.N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 3.10 g of 4,4'-oxydiphthalic anhydride and 2.00 g of 4,4'-oxy were added. After adding dianiline and reacting at 25 ° C. for 24 hours, a 10 wt% polyamic acid solution was synthesized. The polyamic acid solution was reprecipitated in clean distilled water and dried to prepare polyamic acid A.
다음으로 질소 가스로 치환한 100-mL 2구 둥근바닥 플라스크에 N-메틸-2-피롤리돈을 넣고 2.24g의 1,2,4,5-싸이클로헥산테트라카복실릭 다이안하이드라이드와 2.10g의 4,4'-메틸렌비스(싸이클로헥실아민)을 넣은 후 25℃에서 24시간 반응시켜 10wt% 폴리아믹산 용액을 합성하였다. 상기 폴리아믹산 용액을 깨끗한 증류수에 재침전한 후 건조하여 폴리아믹산 B를 제조하였다. Next, N-methyl-2-pyrrolidone was added to a 100-mL two-necked round bottom flask substituted with nitrogen gas, and 2.24 g of 1,2,4,5-cyclocyclotetracarboxylic dianhydride and 2.10 g of 4,4'-methylenebis (cyclohexylamine) was added thereto, and reacted at 25 ° C. for 24 hours to synthesize a 10 wt% polyamic acid solution. The polyamic acid solution was reprecipitated in clean distilled water and dried to prepare polyamic acid B.
다음으로 상기 폴리아믹산 A 및 B를 각 1.00g씩 혼합한 후 볼밀을 사용하여 1시간동안 밀링하여 미분말을 제조하였다.Next, 1.00 g of each of the polyamic acids A and B were mixed, and then milled for 1 hour using a ball mill to prepare a fine powder.
다음으로 상기 미분말을 가열기를 사용하여 대기압에서 200℃에서 6시간 동안 가열하여 전방향족 및 전지방족 폴리이미드 공중합체를 제조하였다.Next, the fine powder was heated at 200 ° C. for 6 hours using a heater to prepare the wholly aromatic and all-aliphatic polyimide copolymer.
Figure PCTKR2015009102-appb-T000005
Figure PCTKR2015009102-appb-T000005
Figure PCTKR2015009102-appb-T000006
Figure PCTKR2015009102-appb-T000006
상기 표 5에서 확인할 수 있듯이 실시예 4-1 내지 4-6에 따르면 제조된 단량체 염 2종을 혼합하고 분쇄 및 가열하면 폴리이미드 공중합체를 얻을 수 있었다. 상기 폴리이미드 공중합체는 일반적인 폴리이미드 공중합체 제조방법으로 제작한 폴리이미드 공중합체와 대비하여 향상된 열적 특성 및 분자량을 지니는 것을 확인할 수 있었다. As can be seen in Table 5, according to Examples 4-1 to 4-6, a polyimide copolymer was obtained by mixing, pulverizing and heating the prepared two monomer salts. The polyimide copolymer was confirmed to have improved thermal properties and molecular weight as compared to the polyimide copolymer prepared by the general polyimide copolymer production method.
한편, 표 6에서 확인할 수 있듯이 비교예 4-1 내지 4-2에 따르면 제조된 단량체 염 2종을 섞어서 제조한 폴리이미드 조성물은 분쇄 과정을 거치지 않아 폴리이미드 공중합체가 형성되지 않은 것을 확인하였으며, 이는 분자량 및 열적 특성에서 확인할 수 있었다. 비교예 4-3 내지 4-4에 따르면 합성된 폴리아믹산 용액을 섞어 제조한 폴리이미드 공중합체는 폴리이미드 공중합체가 잘 형성되었지만 본 발명의 실시예에 따라 제조된 폴리이미드 공중합체 대비 분자량이 낮은 것을 확인할 수 있었다. 또한 비교예 4-5 내지 4-6에 따르면 합성된 폴리아믹산을 섞어 제조한 폴리이미드 조성물은 폴리이미드 공중합체가 형성되지 않았음을 확인할 수 있었다.On the other hand, as can be seen in Table 6, according to Comparative Examples 4-1 to 4-2 it was confirmed that the polyimide composition prepared by mixing two prepared monomer salts did not form a polyimide copolymer because it does not undergo a grinding process, This could be confirmed in molecular weight and thermal properties. According to Comparative Examples 4-3 to 4-4, the polyimide copolymer prepared by mixing the synthesized polyamic acid solution has a well formed polyimide copolymer but has a lower molecular weight than the polyimide copolymer prepared according to the embodiment of the present invention. I could confirm that. In addition, according to Comparative Examples 4-5 to 4-6, it was confirmed that the polyimide composition prepared by mixing the synthesized polyamic acid did not form a polyimide copolymer.
본 발명은 합성 단계가 대폭 감소하고, 단량체 염 제조 시 온화한 조건에서 반응이 진행되며, 상기 제조된 단량체 염을 이용하여 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체를 제조하는 방법 및 이를 통하여 제조된 폴리이미드, 폴리이미드 공중합체 또는 폴리이미드 복합체를 제공한다.In the present invention, the synthesis step is greatly reduced, the reaction proceeds under mild conditions during the preparation of the monomer salt, and a method for preparing a polyimide, polyimide copolymer or polyimide composite using the prepared monomer salt, and Polyimide, polyimide copolymers or polyimide composites are provided.

Claims (20)

  1. a) 다이안하이드라이드(dianhydride) 단량체 및 다이아민(diamine) 단량체를 물에 넣어 단량체 염 혼합물을 제조하는 단계;a) adding a dianhydride monomer and a diamine monomer into water to prepare a monomer salt mixture;
    b) 상기 단량체 염 혼합물을 여과 및 건조하거나 또는 물을 증발시켜 단량체 염을 회수하는 단계; 및b) recovering the monomer salts by filtration and drying the monomer salt mixture or by evaporating water; And
    c) 상기 단량체 염을 가열하여 폴리이미드를 제조하는 단계;를 포함하는 폴리이미드 제조방법.c) heating the monomer salt to prepare a polyimide.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 다이안하이드라이드는 1종 이상의 다이안하이드라이드이고, 상기 다이아민은 1종 이상의 다이아민인 폴리이미드 제조방법.Wherein said dianhydride is at least one dianhydride and said diamine is at least one diamine.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 a) 단계의 단량체 염 혼합물 제조 시 분산 물질을 더 넣는 단계를 포함하는 폴리이미드 제조방법.Method for producing a polyimide comprising the step of further adding a dispersing material when preparing the monomer salt mixture of step a).
  4. 제 1 항에 있어서,The method of claim 1,
    상기 다이안하이드라이드는 방향족 또는 지방족 다이안하이드라이드인 폴리이미드 제조방법.Wherein said dianhydride is an aromatic or aliphatic dianhydride.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 다이안하이드라이드는 하기의 화학식 1의 다이안하이드라이드인 폴리이미드 제조방법.The dianhydride is a polyimide manufacturing method of the dianhydride of the formula (1).
    Figure PCTKR2015009102-appb-I000016
    Figure PCTKR2015009102-appb-I000016
    <화학식 1> <Formula 1>
    (상기 화학식 1에서 R1은 아래의 화학구조(In Formula 1 R 1 is the chemical structure of
    Figure PCTKR2015009102-appb-I000017
    Figure PCTKR2015009102-appb-I000017
    Figure PCTKR2015009102-appb-I000018
    Figure PCTKR2015009102-appb-I000018
    Figure PCTKR2015009102-appb-I000019
    Figure PCTKR2015009102-appb-I000019
    Figure PCTKR2015009102-appb-I000020
    Figure PCTKR2015009102-appb-I000020
    로 이루어지는 군에서 선택된다.)It is selected from the group consisting of.)
  6. 제 1 항에 있어서,The method of claim 1,
    상기 다이아민은 방향족 또는 지방족 다이아민인 폴리이미드 제조방법.Wherein said diamine is an aromatic or aliphatic diamine.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 다이아민은 하기의 화학식 2의 다이아민인 폴리이미드 제조방법.The diamine is a polyimide production method of the diamine of the formula (2).
    Figure PCTKR2015009102-appb-I000021
    Figure PCTKR2015009102-appb-I000021
    <화학식 2><Formula 2>
    (상기 화학식 2에서 R2는 아래의 화학구조(In Formula 2 R 2 is the chemical structure of
    Figure PCTKR2015009102-appb-I000022
    Figure PCTKR2015009102-appb-I000022
    Figure PCTKR2015009102-appb-I000023
    Figure PCTKR2015009102-appb-I000023
    Figure PCTKR2015009102-appb-I000024
    Figure PCTKR2015009102-appb-I000024
    Figure PCTKR2015009102-appb-I000025
    Figure PCTKR2015009102-appb-I000025
    Figure PCTKR2015009102-appb-I000026
    Figure PCTKR2015009102-appb-I000026
    Figure PCTKR2015009102-appb-I000027
    Figure PCTKR2015009102-appb-I000027
    Figure PCTKR2015009102-appb-I000028
    Figure PCTKR2015009102-appb-I000028
    Figure PCTKR2015009102-appb-I000029
    Figure PCTKR2015009102-appb-I000029
    Figure PCTKR2015009102-appb-I000030
    Figure PCTKR2015009102-appb-I000030
    로 이루어지는 군에서 선택된다. 한편, 상기 x는 1≤x≤50을 만족하는 정수이고, 상기 n은 1 내지 20 범위의 자연수이며, W, X, Y는 각각 탄소수 1 내지 30 사이의 알킬기 또는 아릴기이고, Z는 에스테르기, 아미드기, 이미드기 및 에테르기로 이루어지는 군에서 선택된다.)It is selected from the group consisting of. On the other hand, x is an integer satisfying 1≤x≤50, n is a natural number in the range of 1 to 20, W, X, Y are each an alkyl group or an aryl group having 1 to 30 carbon atoms, Z is an ester group , Amide group, imide group and ether group.)
  8. 제 3 항에 있어서,The method of claim 3, wherein
    상기 분산 물질은 유기계 물질 및 무기계 물질로 이루어지는 군에서 선택되는 1종 이상의 물질인 폴리이미드 제조방법.The dispersion material is a polyimide manufacturing method of at least one material selected from the group consisting of organic materials and inorganic materials.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 유기계 물질은 폴리에테르 에테르케톤 및 폴리프로필렌 설파이드로 이루어지는 군에서 선택되는 하나 이상인 폴리이미드 제조방법.Wherein said organic material is at least one selected from the group consisting of polyether ether ketone and polypropylene sulfide.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 무기계 물질은 그라파이트, 산화아연, 실리케이트, 카올리나이트, 스멕타이트, 그래핀 옥사이드, 이산화 지르코늄 및 탄소 나노튜브로 이루어지는 군에서 선택되는 하나 이상인인 폴리이미드 제조방법.The inorganic material is polyimide manufacturing method of at least one selected from the group consisting of graphite, zinc oxide, silicate, kaolinite, smectite, graphene oxide, zirconium dioxide and carbon nanotubes.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 a) 단계는 5 내지 55℃ 온도 범위 내에서 수행되는 폴리이미드 제조방법.The step a) is a polyimide manufacturing method carried out in the temperature range of 5 to 55 ℃.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 a) 단계는 1시간 내지 5일 동안 수행되는 폴리이미드 제조방법.Step a) is a method for producing polyimide is carried out for 1 hour to 5 days.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 b) 단계에서 여과에 의해 얻어진 여과액으로부터 물을 증발시켜 염을 추가로 얻는 단계를 더 포함하는 폴리이미드 제조방법.The method for producing a polyimide further comprising the step of further evaporating water from the filtrate obtained by filtration in step b).
  14. 제 1 항에 있어서,The method of claim 1,
    상기 b) 단계에서 증발에 의해 생성된 수증기를 냉각 및 응축하여 용매를 회수하는 단계를 더 포함하는 폴리이미드 제조방법.And b) recovering the solvent by cooling and condensing the water vapor generated by evaporation in step b).
  15. 제 1 항에 있어서,The method of claim 1,
    상기 c) 단계는 150 내지 450℃ 온도 범위 내에서 수행되는 폴리이미드 제조방법.Wherein c) step is carried out in a temperature range of 150 to 450 ℃.
  16. 제 1 항에 있어서,The method of claim 1,
    상기 c) 단계는 10분 내지 3일 동안 수행되는 폴리이미드 제조방법.C) step is performed for 10 minutes to 3 days.
  17. 제 1 항에 따라 제조되는 폴리이미드는 수평균 분자량이 5,000 내지 1,000,000인 폴리이미드.The polyimide prepared according to claim 1 has a number average molecular weight of 5,000 to 1,000,000.
  18. 제 3 항에 따라 제조되는 복합체 형태의 폴리이미드는 수평균 분자량이 50,000 내지 2,000,000인 폴리이미드.Polyimide in the form of a composite prepared according to claim 3 has a number average molecular weight of 50,000 to 2,000,000.
  19. 제 1 항에 있어서,The method of claim 1,
    상기 c) 단계의 이미드화와 동시에, 용융 가공, 중공 가공, 캘린더 가공 및 소결법을 포함하는 필름 가공; 캐스팅, 적층법, 압축 성형, 사출 성형, 중공 성형, 회전 성형, 열 성형 및 슬러시 성형을 포함하는 성형품 가공; 및 습식 방사, 건식 방사 및 용융 방사를 포함하는 섬유 가공;으로 이루어지는 군에서 선택되는 1종 이상의 가공 방법으로 가공하는 단계를 더 포함하는 폴리이미드 성형품 제조방법.Simultaneously with the imidization of step c), film processing including melt processing, hollow processing, calendering and sintering; Molded article processing including casting, lamination, compression molding, injection molding, blow molding, rotational molding, thermoforming and slush molding; And processing the fiber by at least one processing method selected from the group consisting of wet spinning, dry spinning and melt spinning.
  20. 제 19 항에 따라 제조되는 폴리이미드 성형품은 폴리이미드 필름, 고내열성 엔지니어링 플라스틱, 접착제, 테이프, 섬유, 액정 배향막, 층간 절연체, 코팅막 수지, 인쇄회로 기판 및 플렉서블 디스플레이 기판으로 이루어지는 군에서 선택되는 하나 이상의 용도로 사용되는 폴리이미드 성형품.The polyimide molded article manufactured according to claim 19 is at least one selected from the group consisting of polyimide films, high heat resistant engineering plastics, adhesives, tapes, fibers, liquid crystal alignment films, interlayer insulators, coating film resins, printed circuit boards and flexible display substrates. Polyimide molded articles for use.
PCT/KR2015/009102 2014-08-29 2015-08-29 Polyimide preparation method using monomer salt WO2016032299A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020140114159A KR101548877B1 (en) 2014-08-29 2014-08-29 Preparation method for polyimide from salt of monomer and the polyimide thereby
KR10-2014-0114159 2014-08-29
KR10-2014-0123904 2014-09-17
KR1020140123904A KR20160033009A (en) 2014-09-17 2014-09-17 Preparation method for polyimide product and the polyimide product thereby
KR1020150050470A KR101728830B1 (en) 2015-04-09 2015-04-09 Preparation method for polyimide composites from monomer
KR10-2015-0050470 2015-04-09
KR10-2015-0114105 2015-08-12
KR1020150114105A KR101755245B1 (en) 2015-08-12 2015-08-12 Preparation method for polyimide composites from monomer salt

Publications (1)

Publication Number Publication Date
WO2016032299A1 true WO2016032299A1 (en) 2016-03-03

Family

ID=55400093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009102 WO2016032299A1 (en) 2014-08-29 2015-08-29 Polyimide preparation method using monomer salt

Country Status (1)

Country Link
WO (1) WO2016032299A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519038A1 (en) * 2016-08-19 2018-03-15 Univ Wien Tech Production process for polyimides
CN109912618A (en) * 2019-03-20 2019-06-21 浙江福斯特新材料研究院有限公司 Multifunctional organic acid anhydride and low-dielectric-constant hyperbranched polyimide film
WO2019156717A3 (en) * 2017-10-05 2019-10-24 Zymergen Inc. Optically transparent polyimides
DE102020104587A1 (en) * 2019-02-22 2020-08-27 Dupont Electronics, Inc. POLYIMIDE FILMS AND ELECTRONIC DEVICES
CN112090169A (en) * 2020-08-12 2020-12-18 柳州紫荆技术转移中心有限公司 Preparation method of graphene composite filtering material for efficient integrated water purification equipment for sewage treatment
CN112194792A (en) * 2020-06-16 2021-01-08 中国科学院长春应用化学研究所 High-strength low-thermal-expansion transparent polyimide and preparation method thereof
CN112759763A (en) * 2021-01-20 2021-05-07 株洲时代新材料科技股份有限公司 Polyimide composite glue solution, black matte polyimide material, preparation and application
WO2021258120A2 (en) 2020-06-23 2021-12-30 Technische Universität Wien Process for preparing polyimides
US11294281B2 (en) 2019-06-28 2022-04-05 Hutchinson Technology Incorporated Chain extenders and formulations thereof for improving elongation in photosensitive polyimide
WO2023056263A1 (en) * 2021-10-01 2023-04-06 Zymergen Inc. Cadaverine-based polyimides

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145321A (en) * 1993-11-22 1995-06-06 Mitsui Toatsu Chem Inc Extruded polyimide molding with slip property
JP2000302897A (en) * 1999-04-22 2000-10-31 Kanegafuchi Chem Ind Co Ltd Preparation of polyimide-based film
US6790930B1 (en) * 1999-10-06 2004-09-14 Kaneka Corporation Process for producing polyimide resin
US20080300360A1 (en) * 2007-05-31 2008-12-04 The Boeing Company Water-entrained-polyimide chemical compositions for use in high-performance composite fabrication
KR20110110955A (en) * 2010-04-02 2011-10-10 부산대학교 산학협력단 Polyimide nanocomposites and method for making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145321A (en) * 1993-11-22 1995-06-06 Mitsui Toatsu Chem Inc Extruded polyimide molding with slip property
JP2000302897A (en) * 1999-04-22 2000-10-31 Kanegafuchi Chem Ind Co Ltd Preparation of polyimide-based film
US6790930B1 (en) * 1999-10-06 2004-09-14 Kaneka Corporation Process for producing polyimide resin
US20080300360A1 (en) * 2007-05-31 2008-12-04 The Boeing Company Water-entrained-polyimide chemical compositions for use in high-performance composite fabrication
KR20110110955A (en) * 2010-04-02 2011-10-10 부산대학교 산학협력단 Polyimide nanocomposites and method for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITOY A. K. ET AL.: "High-Pressure Synthesis of Aliphatic Polyimides via Salt Monomers Composed of Aliphatic Diamines and Oxydiphthalic Acid", MACROMOLECULES, vol. 27, 1994, pages 4101 - 4105, XP000456651, DOI: doi:10.1021/ma00093a011 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519038B1 (en) * 2016-08-19 2018-11-15 Univ Wien Tech Production process for polyimides
AT519038A1 (en) * 2016-08-19 2018-03-15 Univ Wien Tech Production process for polyimides
WO2019156717A3 (en) * 2017-10-05 2019-10-24 Zymergen Inc. Optically transparent polyimides
DE102020104587A1 (en) * 2019-02-22 2020-08-27 Dupont Electronics, Inc. POLYIMIDE FILMS AND ELECTRONIC DEVICES
US11643515B2 (en) 2019-02-22 2023-05-09 Dupont Electronics, Inc. Polyimide compositions and polyimide solutions
US11359061B2 (en) 2019-02-22 2022-06-14 Dupont Electronics, Inc. Polyimide films and electronic devices
CN109912618A (en) * 2019-03-20 2019-06-21 浙江福斯特新材料研究院有限公司 Multifunctional organic acid anhydride and low-dielectric-constant hyperbranched polyimide film
US11294281B2 (en) 2019-06-28 2022-04-05 Hutchinson Technology Incorporated Chain extenders and formulations thereof for improving elongation in photosensitive polyimide
CN112194792A (en) * 2020-06-16 2021-01-08 中国科学院长春应用化学研究所 High-strength low-thermal-expansion transparent polyimide and preparation method thereof
CN112194792B (en) * 2020-06-16 2022-03-29 中国科学院长春应用化学研究所 High-strength low-thermal-expansion transparent polyimide and preparation method thereof
WO2021258120A2 (en) 2020-06-23 2021-12-30 Technische Universität Wien Process for preparing polyimides
CN112090169A (en) * 2020-08-12 2020-12-18 柳州紫荆技术转移中心有限公司 Preparation method of graphene composite filtering material for efficient integrated water purification equipment for sewage treatment
CN112759763B (en) * 2021-01-20 2022-05-17 株洲时代新材料科技股份有限公司 Polyimide composite glue solution, black matte polyimide material, preparation and application
CN112759763A (en) * 2021-01-20 2021-05-07 株洲时代新材料科技股份有限公司 Polyimide composite glue solution, black matte polyimide material, preparation and application
WO2023056263A1 (en) * 2021-10-01 2023-04-06 Zymergen Inc. Cadaverine-based polyimides

Similar Documents

Publication Publication Date Title
WO2016032299A1 (en) Polyimide preparation method using monomer salt
WO2015183056A1 (en) Polyimide-based liquid and polyimide-based film produced using same
WO2018038436A1 (en) Diamine compound and method for producing same
WO2017111300A1 (en) Polyamic acid solution to which diamine monomer having novel structure is applied, and polyimide film comprising same
WO2010041909A2 (en) Polymer and preparation method thereof
WO2017047917A1 (en) Modified polyimide and curable resin composition containing same
WO2018030552A1 (en) Polymerizable composition
WO2019235712A1 (en) Siloxane compound and polyimide precursor composition comprising same
WO2014021635A1 (en) Separation membrane comprising coating layer and battery using same
WO2014021634A1 (en) Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
WO2020149574A1 (en) Liquid crystal alignment composition, method of preparing liquid crystal alignment film using same, and liquid crystal alignment film and liquid crystal display using same
WO2022045737A1 (en) Positive photosensitive resin composition
WO2022107992A1 (en) Surface-modified two-dimensional mxene, and method for producing same
WO2021054771A1 (en) Phosphorous-containing resin endcapped with unsaturated group, preparation method therefor, and resin composition comprising phosphorous-containing resin endcapped with unsaturated group
WO2021060752A1 (en) Polyimide-based film having excellent surface evenness and method for producing same
WO2014104496A1 (en) Monomer, hardmask composition including monomer, and method for forming pattern by using hardmask composition
WO2020159086A1 (en) Polyamide resin film and resin laminate using same
WO2020105933A1 (en) Liquid crystal alignment agent composition, method for preparing liquid crystal alignment film by using same, and liquid crystal alignment film and liquid crystal display device which use same
WO2020036443A1 (en) Low-friction resin composite
WO2015072692A1 (en) Thermally rearranged poly(benzoxazole-imide) copolymer having cross-linked structure, gas separation membrane comprising same and preparation method therefor
WO2020130261A1 (en) Crosslinking agent compound, photosensitive composition including same, and photosensitive material using same
WO2022173083A1 (en) Organic-inorganic particles for controlling surface energy, release film comprising same, and method for preparing organic-inorganic particles for controlling surface energy
WO2018147617A1 (en) Polyamide-imide film and method for producing same
WO2020153771A1 (en) Diamine compound, and polyimide precursor and polyimide film using same
WO2020153659A1 (en) Liquid crystal alignment composition, and liquid crystal alignment film and liquid crystal display using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835714

Country of ref document: EP

Kind code of ref document: A1