WO2018066974A1 - Electrode fiber and method for producing same - Google Patents
Electrode fiber and method for producing same Download PDFInfo
- Publication number
- WO2018066974A1 WO2018066974A1 PCT/KR2017/011120 KR2017011120W WO2018066974A1 WO 2018066974 A1 WO2018066974 A1 WO 2018066974A1 KR 2017011120 W KR2017011120 W KR 2017011120W WO 2018066974 A1 WO2018066974 A1 WO 2018066974A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- carbon nanotube
- nanotube sheet
- fiber
- functional material
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 523
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 84
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 389
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 305
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 305
- 239000000463 material Substances 0.000 claims abstract description 71
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 144
- 239000002245 particle Substances 0.000 claims description 106
- 229910021389 graphene Inorganic materials 0.000 claims description 80
- 238000000034 method Methods 0.000 claims description 72
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 58
- 239000011701 zinc Substances 0.000 claims description 57
- 239000002042 Silver nanowire Substances 0.000 claims description 56
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 55
- 229910052725 zinc Inorganic materials 0.000 claims description 55
- 239000002131 composite material Substances 0.000 claims description 54
- 238000002360 preparation method Methods 0.000 claims description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 9
- 229910044991 metal oxide Inorganic materials 0.000 claims description 9
- 150000004706 metal oxides Chemical class 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000011572 manganese Substances 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 86
- 239000000243 solution Substances 0.000 description 82
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 72
- 238000004146 energy storage Methods 0.000 description 60
- 239000004744 fabric Substances 0.000 description 48
- 239000000758 substrate Substances 0.000 description 33
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 30
- 239000003792 electrolyte Substances 0.000 description 28
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 22
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 21
- 239000002904 solvent Substances 0.000 description 19
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 15
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 14
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 14
- 239000003990 capacitor Substances 0.000 description 13
- 238000004626 scanning electron microscopy Methods 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- 238000005266 casting Methods 0.000 description 11
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 10
- 238000002484 cyclic voltammetry Methods 0.000 description 10
- 230000014759 maintenance of location Effects 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 6
- 239000002048 multi walled nanotube Substances 0.000 description 6
- 239000002070 nanowire Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000011149 active material Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000011244 liquid electrolyte Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 4
- 229910021607 Silver chloride Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000003223 protective agent Substances 0.000 description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002135 nanosheet Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000009210 therapy by ultrasound Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002060 nanoflake Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/40—Fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Definitions
- the present invention relates to an electrode fiber, a method for manufacturing the same, and a super capacitor including the same, and more particularly, to an electrode fiber including a carbon nanotube sheet and a functional material, a method for manufacturing the same, and a super capacitor including the same. will be.
- Supercapacitors are capacitors with high capacitance and are called ultracapacitors or ultracapacitors.
- Supercapacitors unlike batteries that use chemical reactions, use charge phenomena due to surface chemistry or movement of ions to the electrode and electrolyte interfaces. Accordingly, it has been spotlighted as a next-generation energy storage device that can be used as a secondary battery or a battery replacement due to its rapid charge and discharge, high charge and discharge efficiency, and semi-permanent cycle life characteristics.
- EVs electric vehicles
- HEVs hybrid electric vehicles
- FCVs fuel cell vehicles
- Korean Patent Laid-Open Publication No. 10-2012-0016343 (Application No. 10-2010-0078611) discloses an electrode formed by a screen printing method in order to reduce the thickness while maintaining the capacity of a supercapacitor, so that the reaction area at the electrode is reduced. A technique for widening the is disclosed.
- One technical problem to be solved by the present invention is to provide an electrode fiber with a simplified manufacturing process and a method of manufacturing the same.
- Another technical problem to be solved by the present invention is to provide an electrode fiber and a method of manufacturing the reduced manufacturing cost.
- Another technical problem to be solved by the present invention is to provide an electrode fiber with improved energy storage characteristics and a method of manufacturing the same.
- Another technical problem to be solved by the present invention is to provide a highly stretchable electrode fiber and its manufacturing method.
- Another technical problem to be solved by the present invention is to provide a highly reliable electrode fiber and its manufacturing method.
- Another technical problem to be solved by the present invention is to provide an electrode fiber and a method of manufacturing the same that can be easily applied to a wearable device.
- the technical problem to be solved by the present invention is not limited to the above.
- the present invention provides a method for producing an electrode fiber.
- the manufacturing method of the electrode fiber, preparing a carbon nanotube sheet, providing a functional material on the carbon nanotube sheet, and the carbon provided with the functional material Twisting the nanotube sheet may include producing an electrode fiber extending in the first direction.
- the manufacturing method of the electrode fibers, twisting a plurality of the electrode fibers (twist), may further comprise the step of producing a composite fiber.
- the carbon tube sheet comprises a first carbon nanotube sheet and a second carbon nanotube sheet
- the functional material comprises a first functional material and a second functional material
- the electrode fiber A first electrode fiber provided with the first functional material on the first carbon nanotube sheet and a second electrode fiber provided with the second functional material on the second carbon nanotube sheet, wherein the first electrode fiber And controlling the content of the first functional material to be 70 wt% or less, and controlling the content of the second functional material to be 70 wt% or less in the second electrode fiber.
- the first carbon nanotube sheet and the second carbon nanotube sheet each comprising a plurality of carbon nanotubes extending in the first direction
- manufacturing the first electrode fiber and The manufacturing of the second electrode fiber may include twisting one ends of the plurality of carbon nanotubes extending in the first direction, using the first direction as the rotation axis.
- the first functional material includes metal oxide particles
- the providing of the first functional material may include preparing a source solution in which the metal oxide particles are dispersed, and the metal oxide particles It may include providing a dispersed source solution on the first carbon nanotube sheet.
- the electrode fiber manufacturing method the first carbon nanotube sheet is twisted directly after the source solution in which the metal oxide particles are dispersed (directly after) is provided on the first carbon nanotube sheet.
- the method may include manufacturing the first electrode fiber.
- the first functional material comprises a reduced graphene oxide
- the second functional material comprises manganese dioxide, on the first carbon nanotube sheet, to provide the first functional material
- the method may include preparing a source solution in which the reduced graphene oxide is dispersed, and providing a source solution in which the reduced graphene oxide is dispersed on the first carbon nanotube sheet.
- the providing of the second functional material on the second carbon nanotube sheet may include preparing a source solution in which the manganese dioxide is dispersed, and providing the source solution in which the manganese dioxide is dispersed on the second carbon nanotube sheet.
- the concentration of the reduced graphene oxide in the source solution in which the reduced graphene oxide is dispersed, and the source solution in which the idealized manganese is dispersed It may include higher than the concentration of the manganese dioxide in the.
- the providing of the first functional material on the first carbon nanotube sheet may include providing a source solution in which the reduced graphene oxide is dispersed on the first carbon nanotube sheet. And repeating the step of drying the first carbon nanotube sheet provided with the source solution in which the reduced graphene oxide is dispersed.
- the first functional material comprises silver nanowires
- the second functional material comprises zinc particles
- the number of the first electrode fibers may include more than the number of the second electrode fibers.
- the present invention provides an electrode fiber.
- the electrode fiber comprises a carbon nanotube sheet and an electrode fiber comprising a functional material, wherein an inner region of the electrode fiber is rolled and stacked on the carbon nanotube sheet. It may include that the functional material is provided between the carbon nanotube sheet is provided in the form, dried and laminated.
- the electrode fiber extends in a first direction, and in the cross section of the electrode fiber cut into the first plane having the first direction as a normal, the cross section of the carbon nanotube sheet is spiral
- the functional material is provided between the helical carbon nanotube sheets, and within the electrode fiber, the functional
- the content of the material may include higher than the content of the carbon nanotube sheet.
- the carbon nanotube sheet includes a first carbon nanotube sheet and a second carbon nanotube sheet
- the functional material comprises a first functional material and a second functional material
- the electrode fiber The first functional material may include a first electrode fiber provided on the first carbon nanotube sheet
- the second functional material may include a second electrode fiber provided on the second carbon nanotube sheet.
- the electrode fibers, the first and second electrode fibers, the content of the first and second functional material, respectively, higher than the content of the first and second carbon nanotube sheet It may include.
- the first functional material comprises a reduced graphene oxide
- the second functional material comprises manganese dioxide, wt% of the reduced graphene oxide in the first electrode fiber, It may include higher than the wt% of the manganese dioxide in the second electrode fiber.
- the number of the first carbon nanotube sheets in the first electrode fibers may include more than the number of the second carbon nanotube sheets in the second electrode fibers.
- the reduced graphene oxide may include nitrogen doped.
- the first functional material comprises silver nanowires
- the second functional material comprises zinc particles
- the wt% of the silver nanowires is higher than the wt% of the zinc particles. It may include.
- the electrode fibers may include wt% of the silver nanowires in the first electrode fiber and wt% of the zinc particles in the second electrode fiber.
- the first electrode fiber and the second electrode fiber are twisted with each other, wherein x first electrode fibers are twisted with y second electrode fibers, and x and y are greater than zero. Is a natural number, and x may include greater than y.
- an electrode fiber In the method of manufacturing an electrode fiber according to the first embodiment of the present invention, providing energy storage particles on a carbon nanotube sheet, and twisting the carbon nanotube sheet provided with the energy storage particles in a first direction. It may comprise the step of producing the extending base fibers. Accordingly, the content of the energy storage particles in the base fiber can be maximized, thereby providing an electrode fiber and a method of manufacturing the same, which simplifies the manufacturing process and reduces the manufacturing cost.
- the electrode fiber according to the second embodiment of the present invention includes a first electrode fiber and a manganese dioxide and a manganese dioxide including a reduced graphene oxide and a first carbon nanotube sheet twisted to surround the reduced graphene oxide. It may comprise a second electrode fiber comprising a twisted second carbon nanotube sheet. Accordingly, when the supercapacitor is manufactured using the electrode fiber according to the second embodiment, a highly efficient asymmetric supercapacitor including the reduced graphene oxide and the manganese dioxide may be provided.
- the electrode fiber according to the second embodiment the graphene oxide is reduced on the first and second carbon nanotube sheet before the fiber is manufactured using the first and second carbon nanotube sheet And the manganese dioxide is provided, and the reduced graphene oxide and the manganese dioxide are provided, the first and second carbon nanotube sheets are twisted to produce the first and second electrode fibers. . Accordingly, the content of the reduced graphene oxide and the manganese dioxide in the first and second electrode fibers is increased, and when manufacturing a supercapacitor using the electrode fibers according to the second embodiment, Energy storage can be improved.
- the silver-zinc battery including the electrode fiber according to the third embodiment of the present invention includes a first electrode fiber, zinc particles, including a silver nanowire, and a first carbon nanotube sheet twisted to surround the silver nanowire. It may include a second electrode fiber including a second carbon nanotube sheet twisted to surround the zinc particles, an electrolyte between the first electrode fiber and the second electrode fiber. Accordingly, a high-efficiency silver-zinc battery including the silver nanowires and the zinc particles may be provided.
- the silver-zinc battery including the electrode fiber according to the third embodiment, on the first and the second carbon nanotube sheet, before the fiber is manufactured using the first and second carbon nanotube sheet.
- the silver nanowires and the zinc particles are provided, and the silver nanowires and the zinc particles are provided, the first and second carbon nanotube sheets are twisted to form the first and second electrode fibers.
- FIG. 1 is a flowchart illustrating a method of manufacturing an electrode fiber according to a first embodiment of the present invention.
- FIG 2 to 4 are views for explaining the manufacturing process of the electrode fiber according to the first embodiment of the present invention.
- FIG. 5 is a photograph of a base fiber, a composite fiber, and an electrode fabric prepared according to the method for manufacturing electrode fibers according to Examples 1-1 and 1-2 of the present invention.
- 6A and 6B are graphs showing the mechanical properties of the composite fibers according to Examples 1-2, Examples 1-10, and Comparative Examples 1-2 of the present invention.
- FIG. 11 are graphs illustrating characteristics of a super capacitor according to Examples 1-6 of the present invention.
- FIG. 13 is a graph showing energy densities of supercapacitors according to Examples 1-6 and 1-7 of the present invention.
- FIG 14 and 15 are views for explaining a manufacturing process of the first electrode fiber included in the electrode fiber according to the second embodiment of the present invention.
- 16 and 17 are diagrams for describing a manufacturing process of the second electrode fibers included in the electrode fibers according to the second embodiment of the present invention.
- FIG. 18 is a view illustrating a supercapacitor including an electrode fiber and a method of manufacturing the same according to the second embodiment of the present invention.
- FIG 19 is a photograph of the first electrode fibers included in the electrode fibers according to the second exemplary embodiment of the present invention.
- FIG. 20 is a photograph of the second electrode fibers included in the electrode fibers according to the second exemplary embodiment of the present invention.
- 21 is a graph showing the electrochemical characteristics of the supercapacitor according to Comparative Example 2-1 of the present invention.
- FIG. 22 is a graph comparing characteristics of the reduced graphene oxide content of the first electrode fibers according to Example 2-1 of the present invention.
- Examples 2-1 and 2-2 of the present invention are a graph comparing the characteristics of the first electrode fibers and the second electrode fibers according to Examples 2-1 and 2-2 of the present invention.
- 24 is a graph showing the characteristics of the supercapacitor according to the embodiment 2-3 of the present invention.
- 25 is a graph showing the characteristics of the supercapacitor according to the embodiment 2-4 of the present invention.
- FIG. 26 is a graph comparing characteristics of supercapacitors according to Examples 2-3 and 2-4 of the present invention.
- FIG. 27 is a graph comparing energy storage characteristics of supercapacitors according to Examples 2-3, 2-4 and Comparative Examples 2-2 to 2-7 of the present invention.
- 29 is a graph showing the electrochemical characteristics of the supercapacitors according to Examples 2-3 and 2-4 of the present invention.
- Example 30 is a graph comparing characteristics of the supercapacitors according to Example 2-3 and Comparative Example 2-1 of the present invention.
- Example 31 is a graph showing charge and discharge characteristics of a supercapacitor according to Example 2-3 of the present invention.
- Example 33 is a graph showing electrochemical characteristics when the electrode fabrics according to Example 2-5 of the present invention are connected in series and in parallel.
- 35 is a graph showing the durability of the electrode fabric according to Example 2-5 of the present invention.
- 36 and 37 are views for explaining a manufacturing process of the first electrode fibers included in the electrode fiber according to the third embodiment of the present invention.
- 38 and 39 are views for explaining a manufacturing process of the second electrode fibers included in the electrode fiber according to the third embodiment of the present invention.
- FIG 40 is a view illustrating a silver-zinc battery including an electrode fiber and a method of manufacturing the same according to the third embodiment of the present invention.
- FIG. 41 is a photograph of the first electrode fibers included in the electrode fibers according to Example 3-1 of the present invention.
- FIG. 42 is a photograph of a second electrode fiber included in the electrode fiber according to Example 3-2 of the present invention.
- Example 43 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-3 and Comparative Example 3-1 of the present invention.
- Example 44 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-3 of the present invention.
- Example 45 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-4 of the present invention.
- Example 46 is a graph comparing characteristics of silver-zinc batteries according to Example 3-4 and batteries according to Comparative Examples 3-2 to 3-4.
- Example 47 is a graph showing the stretchability of a silver-zinc battery according to Example 3-4 of the present invention.
- 49 is a photograph of a device using an electrode fabric according to Examples 3-5 of the present invention.
- first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Thus, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment.
- first component in one embodiment may be referred to as a second component in another embodiment.
- second component in another embodiment.
- Each embodiment described and illustrated herein also includes its complementary embodiment.
- the term 'and / or' is used herein to include at least one of the components listed before and after.
- connection is used herein to mean both indirectly connecting a plurality of components, and directly connecting.
- the term "functional material” is used to include all energy storage materials, reduced graphene oxide, manganese dioxide, silver nanowires and the like.
- FIG. 1 is a flowchart illustrating a method of manufacturing an electrode fiber according to the first embodiment of the present invention
- Figures 2 to 4 are views for explaining a manufacturing process of the electrode fiber according to the first embodiment of the present invention. .
- the carbon nanotube sheet 110 may be prepared (S110).
- the preparing of the carbon nanotube sheet 110 may include preparing a carbon nanotube forest by chemical vapor deposition, and the carbon nanotube sheet 110 from the carbon nanotube forest. ) May be prepared.
- the carbon nanotube sheet 110 may include a plurality of carbon nanotubes extending in a first direction. Further, according to one embodiment, the plurality of carbon nanotubes may be multi-walled carbon nanotubes (MWCNT).
- MWCNT multi-walled carbon nanotubes
- the carbon nanotube sheet 110 may be prepared on the support substrate 100.
- the support substrate 100 may be a glass substrate.
- the support substrate 100 may include any one of a plastic substrate, a semiconductor substrate, a ceramic substrate, and a metal substrate.
- Energy storage particles 120 may be provided on the carbon nanotube sheet 110 (S120).
- the energy storage particles 120 may have a lower conductivity than the carbon nanotube sheet 110 and may have a higher charge storage capability than the carbon nanotube sheet 110.
- the energy storage particles 120 may include metal oxide particles.
- the energy storage particles 120 may include manganese oxide, ruthenium oxide, and the like.
- the source solution may be prepared by adding the energy storage particles 120 to the solvent and performing ultrasonic treatment to disperse the energy storage particles 120.
- the solvent may be ethanol.
- the source solution may be provided on the carbon nanotube sheet 110 by a drop casting method.
- the size of the energy storage particles 120 in the source solution may be substantially the same. Alternatively, according to another embodiment, sizes of the energy storage particles 120 in the source solution may be different.
- a base fiber 130 may be manufactured (S130).
- the manufacturing of the base fiber 130 may include twisting one ends of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. It may include).
- the carbon nanotube sheet 110 provided with the energy storage particles 120 may be twisted about 2,000 times per meter.
- the inner region of the base fiber 130 may be provided in a form in which the carbon nanotube sheet 110 is rolled and stacked.
- the energy storage particles 120 may be provided between the carbon nanotube sheets 110 which are dried and stacked.
- the carbon nanotube sheet A cross section of 110 may be provided in a spiral shape, and the energy storage particles 120 may be provided between the carbon nanotube sheet 110 in a spiral shape.
- the content of the energy storage particles 120 may be higher than the content of the carbon nanotube sheet 110.
- the energy storage particles 120 when the energy storage particles 120 are formed using the source solution, immediately after the source solution is provided on the carbon nanotube sheet 110.
- the base fiber 130 By twisting the carbon nanotube sheet 110, the base fiber 130 may be manufactured.
- the carbon nanotube sheet 110 is twisted, and the base fiber 130 may be manufactured. Accordingly, aggregation of the energy storage particles 120 may be minimized.
- the carbon nanotube sheet 110 is twisted immediately after the source solution is provided on the carbon nanotube sheet 110, the base fiber 130 is not manufactured.
- the solvent in the source solution may be evaporated.
- the energy storage particles 120 on the carbon nanotube sheet 110 may aggregate with each other.
- the dispersion degree of the energy storage particles 120 in the base fiber 130 is lowered, so that the energy storage particles 120 are concentrated in a portion of the base fiber 130, the base fiber ( The uniformity of electrical, chemical, and physical properties of 130 may be degraded.
- the The base fiber 130 may be manufactured, and thus, uniformity of electrical, physical, and chemical properties of the base fiber 130 may be improved.
- the energy storage particles 120 are provided on the carbon nanotube sheet 110, and the energy storage particles ( In the state where 120 is provided on the carbon nanotube sheet 110, the base fiber 130 may be manufactured by twisting the carbon nanotube sheet 110. Accordingly, the content of the energy storage particles 120 in the base fiber 130 may be increased.
- the energy storage particles 120 Is substantially located primarily on the surface of the fiber and is not easy to fill the inner region of the fiber. Accordingly, the energy storage particles 120 may be easily separated from the fiber, or there may be a limit in increasing the content of the energy storage particles 120 in the fiber. In addition, as described above, in a simple process of providing the source solution to the carbon nanotube sheet 110, it is not easy to manufacture the fiber having the energy storage particles 120.
- the carbon nanotube sheet 110 in a state in which the source solution including the energy storage particles 120 is provided on the carbon nanotube sheet 110.
- the base fiber 130 may be manufactured, and accordingly, energy storage characteristics of the base fiber 130 may be improved.
- a manufacturing method of the base fiber 130 can be provided with a simplified manufacturing process and reduced manufacturing cost.
- a plurality of the base fibers 130 may be manufactured according to the above-described embodiment of the present invention.
- the amount of t of the energy storage particles 120 may be substantially the same (substantially).
- the content of the energy storage particles 120 may be different from each other.
- a composite fiber 140 By twisting a plurality of the base fibers 130 with each other, a composite fiber 140 can be produced (S140). For example, five of the base fibers 130 are twisted about 25,000 times per meter, so that the composite fibers 140 can be made.
- the composite fiber 140 in which the plurality of the base fibers 130 is twisted may have elasticity as well as a high tensile strength as compared with the base fibers 130.
- the step of providing the energy storage particles 120 on the carbon nanotube sheet 110, the content of the energy storage particles 120 in the base fiber 130 is less than the reference content Control to include.
- the reference content may be 70wt%.
- the base fiber 130 may burst.
- the content of the energy storage particles 120 in the base fiber 130 may be controlled to be less than the reference content, accordingly, the composite fiber ( Production yield of 140 may be improved.
- the plurality of the composite fibers 140 may cross each other and be made of an electrode fabric 150.
- the silicon substrate is prepared.
- a carbon nanotube forest including a height of about 400 ⁇ m, a diameter of about 12 nm, and about nine walls was prepared.
- Pulling the carbon nanotube forest in a first direction a carbon nanotube sheet (CNT sheet) including a plurality of carbon nanotubes extending in the first direction was prepared on a glass substrate.
- CNT sheet carbon nanotube sheet
- Manganese dioxide (MnO 2 ) nanoparticles prepared from Sigma-Aldrich, including 30 nm in diameter, 100 nm in length, and rod-shaped, are prepared. Ethanol solvents having a concentration of 1 to 5 mg / ml are prepared. The manganese dioxide nanoparticles were dispersed in the ethanol solvent. The ethanol solvent in which the manganese dioxide nanoparticles were dispersed was sonicated at 150W for 1 hour to prepare a source solution. The source solution was provided on the carbon nanotube sheet by a drop casting method. While the source solution was provided on the carbon nanotube sheet, the content of the manganese dioxide was controlled to be 91.1 wt% based on the total content.
- the carbon nanotube sheet provided with the source solution is provided with the first solution as the axis of rotation immediately after the source solution is provided on the carbon nanotube sheet. By twisting about 2,000 times, a base yarn was produced.
- the carbon nanotube sheet and the source solution according to Example 1-1 described above are prepared.
- the source solution was provided on the carbon nanotube sheet by the method according to Example 1-1 described above. While the source solution was provided on the carbon nanotube sheet, the content of the manganese dioxide was controlled to be 70 wt% based on the total content. Thereafter, a base fiber was prepared by the method according to Example 1 described above.
- the base fibers were prepared. The base fibers were twisted about 25,000 times per meter to make composite fibers.
- Example 1-2 The composite fibers according to Example 1-2 described above were crossed with each other to produce an electrode fabric.
- a mixed solution was prepared by mixing 3 g of polyvinyalcohol (PVA), 6 g of lithium chloride (LiCl), and 30 ml of DI water having a molecular weight of 146,000 to 186,000. The mixed solution was heat-treated at a temperature of 90 °C to prepare a PVA / LiCl gel electrolyte.
- Base fibers according to Examples 1-2 were placed in parallel at a distance of about 100 ⁇ m. The PVA / LiCl gel electrolyte was coated on each of the base fibers according to Example 2, thereby preparing a supercapacitor.
- the carbon nanotube sheet and the source solution according to Example 1-1 described above are prepared.
- the source solution was provided on the carbon nanotube sheet by the method according to Example 1-1 described above. While the source solution was provided on the carbon nanotube sheet, the content of the manganese dioxide was controlled to be 80.5 wt% based on the total content. Thereafter, a base fiber was prepared by the method according to Example 1 described above.
- Example 1-1 Two base fibers according to Example 1-1 described above were prepared. Thereafter, a supercapacitor was manufactured by the method according to Example 1-4 described above.
- Example 1-2 Two composite fibers according to Example 1-2 described above were prepared. Thereafter, an electrolyte according to Example 4 was prepared. The composite fibers according to Example 1-2 described above were placed in parallel at a distance of about 100 ⁇ m. The supercapacitor was manufactured by coating the electrolyte according to Example 1-4, respectively, on the composite fiber according to Example 1-2.
- the carbon nanotube sheet according to Example 1-1 described above is prepared.
- the reduced graphene oxide (rGO) was dispersed in the ethanol solvent according to Example 1-1 described above.
- a source solution was prepared by the method according to Example 1-1 described above.
- the source solution was provided on the carbon nanotube sheet by the method according to Example 1-1 described above. While the source solution was provided on the carbon nanotube sheet, the content of the reduced graphene oxide was controlled to be 18.5 wt% based on the total content.
- base fibers were prepared by the method according to Example 1-1 described above.
- One base fiber and one base fiber according to Example 1-1 described above were prepared.
- the base fiber was used as the anode, and the base fiber according to Example 1-1 described above was used as the cathode. Thereafter, an asymmetric supercapacitor was manufactured by the method according to Examples 1-4 described above.
- Example 1-2 While preparing the base fiber according to Example 1-2 described above, the content of the manganese dioxide was controlled to be 80wt% based on the total content. Thereafter, a composite fiber was prepared by the method according to Example 1-2 described above.
- Example 1-2 To prepare a base fiber according to Example 1-2 described above, the content of the manganese dioxide was controlled to be 93wt% based on the total content. Thereafter, a composite fiber was prepared by the method according to Example 1-2 described above.
- the carbon nanotube sheet according to Example 1-1 described above is prepared. Thereafter, base fibers were prepared by the method according to Example 1 described above without a source solution.
- the carbon nanotube sheet according to Example 1-1 described above is prepared. Thereafter, base fibers were prepared by the method according to Example 1-1 described above without a source solution.
- Example 1-1 91.1wt% MnO 2 / CNT Base Fiber
- Example 1-2 70wt% MnO 2 / CNT Composite Fiber
- Example 1-3 91.1wt% MnO 2 / CNT Electrode Fabric
- Example 1-4 Supercapacitors with 70wt% MnO 2 / CNT base fibers
- Example 1-5 Supercapacitor with 80.5wt% MnO 2 / CNT Base Fiber
- Example 1-6 Supercapacitors containing 91.1wt% MnO 2 / CNT base fibers
- Example 1-7 Supercapacitors containing 70wt% MnO 2 / CNT composite fibers
- Example 1-8 Asymmetric Supercapacitors Include 18.5wt% rGO / CNT Base Fiber and 91.1wt% MnO 2 / CNT Base Fiber
- Example 1-9 80wt% MnO 2 / CNT Composite Fiber
- Example 1-10 93wt% MnO 2 / CNT Composite Fiber Comparative
- Example 1-1 Supercapacit
- FIG. 5 is a photograph of a base fiber, a composite fiber, and an electrode fabric prepared according to the method for manufacturing electrode fibers according to Examples 1-1 and 1-2 of the present invention.
- the composite fiber according to Example 1-2 of the present invention and the electrode fabric according to Example 3 of the present invention were taken by SEM and general photography.
- 6A and 6B are graphs showing the mechanical properties of the composite fibers according to Examples 1-2, Examples 1-10, and Comparative Examples 1-2 of the present invention.
- the stress (MPa) according to the strain (%) of the composite fibers according to Examples 1-2, Examples 1-10, and Comparative Examples 1-2 of the present invention was measured.
- the composite fibers according to Examples 1-10 and Comparative Examples 1-2 of the present invention was subjected to high stress even a slight strain, it was confirmed that the break.
- the composite fiber according to Example 1-2 of the present invention was confirmed that the change in stress is small even in a wide strain range. Accordingly, it can be seen that the composite fibers according to Example 1-10 and Comparative Example 1-2 have a breakage phenomenon in the manufacturing process of the composite fiber and are not made of the composite fiber.
- FIG. 7 SEM photographs of the entire portion of the composite fiber according to Examples 1-9 of the present invention are performed. Referring to FIG. 7 (b), (x) of FIG. An enlarged portion of the SEM image was taken. Referring to FIG. 7C, the enlarged portion (y) of FIG. 7A was taken as an SEM image. As can be seen from (a), (b), and (c) of FIG. 7, it was confirmed that the composite fiber according to Examples 1-9 of the present invention exhibited a breaking phenomenon in the manufacturing process of the composite fiber. Accordingly, in the manufacturing step of the composite fiber, controlling the content of the manganese dioxide to 70wt% or less, it can be seen that the efficient method for producing a composite fiber having high elasticity and high reliability.
- the current density according to the voltage of the supercapacitor according to Examples 1-4 to 1-6 and Comparative Example 1-1 of the present invention is measured, and a cyclic voltage current curve (hereinafter, , CV curve).
- the supercapacitors according to Examples 1-4 to 1-6 have a CV curve in a rectangular form
- the supercapacitors according to Comparative Example 1-1 have a CV curve in a straight form. Appeared.
- the area of the CV curve increases as the supercapacitor having a higher content of manganese dioxide.
- the cyclic voltage current characteristics of the supercapacitor according to the embodiment of the present invention are significantly superior to the cyclic voltage current characteristics of the supercapacitor according to the comparative example.
- the supercapacitor including the base fiber having a higher content of manganese dioxide improves the circulating voltage and current characteristics.
- the voltage of the supercapacitor according to Examples 1-4 to 1-6 and Comparative Example 1-1 of the present invention is measured and charged / discharged. The curve is shown.
- the supercapacitors according to Examples 1-4 to 1-6 have a charge / discharge curve in a triangular form, and the supercapacitor according to Comparative Example 1-1 has a charge / discharge curve. It appeared in a straight line. Accordingly, it can be seen that the charge and discharge characteristics of the supercapacitor according to the embodiment of the present invention are significantly superior to the charge and discharge characteristics of the supercapacitor according to the comparative example. In addition, it can be seen that the supercapacitor including the base fiber having a higher content of manganese dioxide improves the circulating voltage and current characteristics.
- the supercapacitor according to Comparative Example 1-1 is 0.01 F / cm 2
- the supercapacitor according to Example 1-4 is 0.3 F / cm 2
- Example 1-5 the supercapacitor showed 0.42 F / cm 2
- the supercapacitor according to Examples 1-6 showed areal capacitance of 0.6 F / cm 2 . Accordingly, it can be seen that the supercapacitor including the base fiber according to the embodiment of the present invention improves the areal capacitance of the supercapacitor as the manganese dioxide content of the base fiber increases.
- the linear capacitors and areal capacitances of the supercapacitors according to Examples 1-6 of the present invention are measured according to a scan speed of 10 to 100 mV / s.
- Areal capacitance of a supercapacitor according to the embodiment 1-6, as seen in 9 (b), is, 10mV / s in 750mF / cm 2, 30mV / s in 430mF / cm in 525mF / cm 2, 50mV / s 2, showing the 225mF / cm 2 in 320mF / cm 2, 100mV / s at 70mV / s.
- the linear capacitance of the supercapacitor according to Examples 1-6 is 52.5 mF / cm at 10 mV / s, 43 mF / cm at 30 mV / s, 32 mF / cm at 50 mV / s, 22.5 mF / cm at 70 mV / s, 15 mF / cm at 100 mV / s. Accordingly, it can be seen that the supercapacitor according to the sixth embodiment of the present invention decreases linear capacitance and areal capacitance as the scan speed increases.
- the current density according to the voltage of the asymmetric supercapacitor according to the embodiment 1-8 is measured while varying the working voltage from 1.4V to 2.2V, and the cyclic voltage current (CV) curves.
- the CV curve according to the change of the drive voltage has a rectangular shape.
- the area of the CV curve increases as the driving voltage increases. Accordingly, in the asymmetric supercapacitor according to the eighth embodiment, it can be seen that the cyclic voltage current characteristics improve as the driving voltage increases.
- the capacitance retention characteristics were measured by adjusting the charge / discharge cycle of the asymmetric supercapacitor according to Examples 1-8 from 1 to 1000 times.
- the current density according to the voltage when the charge / discharge cycles of the asymmetric supercapacitors according to Examples 1-8 and 1000 times were measured, and the cyclic voltage current curves were shown.
- FIG. 11 are graphs illustrating characteristics of a super capacitor according to Examples 1-6 of the present invention.
- the MnO 2 / CNT base fiber electrode of the supercapacitor according to Examples 1-6 was wound at an original state (Pristine), at a bending angle of 165 ° (Bent), and at 1 mm intervals.
- the current was measured according to the 0 to 0.8 energy range (V vs. Ag / AgCl) in the state of Wound and Knotted, and the cyclic voltammetry curve was shown.
- the supercapacitor according to Examples 1-6, the MnO 2 / CNT base fiber electrode is in the original state (Pristine), bent at a bending angle of 165 ° (Bent), 1mm interval It can be seen that there is substantially no difference in the area of the CV curve in the wound state and the knotted state.
- the capacitance retention of the MnO 2 / CNT base fiber electrode of the supercapacitor according to Examples 1-6 was bent 1 to 1000 times at a bending angle of 165 °.
- the supercapacitor according to Example 1-7 has a length of 0%, 10%, 20%, and 30% of MnO 2 / CNT composite fiber electrode in a first direction. It can be seen that all show similar CV curve areas.
- the supercapacitors according to Examples 1-7 were all stretched to 0%, 10%, 20%, and 30% lengths of the MnO 2 / CNT composite fiber in the first direction. It can be seen that it shows a similar EIS curve. Accordingly, it can be seen that the MnO 2 / CNT composite fiber of the supercapacitor according to Examples 1-7 of the present invention has excellent elasticity.
- FIG. 13 is a graph showing energy densities of supercapacitors according to Examples 1-6 and 1-7 of the present invention.
- the supercapacitors according to Examples 1-6 and 1-7 were maintained at 1.2 V in charge / discharge voltage, and energy density according to power density was measured. .
- the supercapacitor according to Examples 1-6 exhibited an energy density of 33 ⁇ Wh / cm 2
- the supercapacitor according to Examples 1-7 showed an energy density of 12 ⁇ Wh / cm 2 .
- the supercapacitors according to Examples 1-6 and 1-7 of the present invention exhibit excellent performance.
- the carbon nanotube sheet may include first and second carbon nanotube sheets
- the functional material may include first and second functional materials
- the electrode fiber may be formed of the first functional material.
- the first electrode fiber provided on the first carbon nanotube sheet and the second functional material may include a second electrode fiber provided on the second carbon nanotube sheet.
- an electrode fiber according to a second embodiment of the present invention will be described with reference to FIGS. 14 to 35 for a case in which the first electrode fiber includes reduced graphene oxide and the second electrode fiber includes manganese dioxide. The manufacturing method is described.
- FIG 14 and 15 are views for explaining a manufacturing process of the first electrode fiber included in the electrode fiber according to the second embodiment of the present invention.
- a first carbon nanotube sheet 210 may be prepared.
- the preparing of the first carbon nanotube sheet may include preparing a carbon nanotube forest by chemical vapor deposition and the first carbon nanotube sheet from the carbon nanotube forest. 210 may be prepared.
- the first carbon nanotube sheet 210 may include a plurality of carbon nanotubes extending in a first direction. Further, according to one embodiment, the plurality of carbon nanotubes may be multi-walled carbon nanotubes (MWCNT).
- MWCNT multi-walled carbon nanotubes
- the first carbon nanotube sheet 210 may be prepared on the support substrate 200.
- the support substrate 200 may be a glass substrate.
- the support substrate 200 may include any one of a plastic substrate, a semiconductor substrate, a ceramic substrate, and a metal substrate.
- Reduced graphene oxide 220 may be provided on the first carbon nanotube sheet 210.
- the reduced graphene oxide 220 may have a lower conductivity than the first carbon nanotube sheet 210 and may have a higher charge storage capability than the first carbon nanotube sheet 210.
- the providing of the reduced graphene oxide 220 on the first carbon nanotube sheet 210 may include preparing a first source solution in which the reduced graphene oxide 220 is dispersed, and The method may include providing a source solution on the first carbon nanotube sheet 210, and drying the first carbon nanotube sheet 210 provided with the first source solution.
- the first source solution may be prepared by adding the reduced graphene oxide 220 to a solvent and performing ultrasonic treatment to disperse the reduced graphene oxide 220.
- the solvent may be dimethylformamide.
- wt% of the reduced graphene oxide 220 in the first source solution may be provided at 8 mg / ml.
- the first source solution may be provided on the first carbon nanotube sheet 210 by a drop casting method.
- providing a first source solution in which the reduced graphene oxide 220 is dispersed on the first carbon nanotube sheet 210, and the first source solution is provided Drying the carbon nanotube sheet 210 may be repeatedly performed. Accordingly, the content of the reduced graphene oxide 220 on the first carbon nanotube sheet 210 may be increased.
- the reduced graphene oxide 220 may be provided in the form of flakes. According to one embodiment, the size of the reduced graphene oxide 220 in the first source solution may be substantially the same. Alternatively, according to another embodiment, sizes of the reduced graphene oxide 220 in the first source solution may be different.
- the first electrode fiber 230 may be manufactured by twisting the first carbon nanotube sheet 210 provided with the reduced graphene oxide 220.
- the manufacturing of the first electrode fibers 230 may include twisting one end of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. (twist) may be included.
- the first carbon nanotube sheet 210 provided with the reduced graphene oxide 220 may have about 3000 turns per meter.
- the inner region of the first electrode fiber 230 may be provided in a form in which the first carbon nanotube sheet 210 is rolled and stacked.
- the reduced graphene oxide 220 may be provided between the dried and stacked first carbon nanotube sheets 210.
- a cross section of the first carbon nanotube sheet 210 may be provided in a spiral shape, and the reduced graphene oxide 220 may be provided between the first carbon nanotube sheet 210 in a spiral shape.
- wt% of the reduced graphene oxide 220 may be higher than wt% of the first carbon nanotube sheet 210.
- the first electrode fiber 230 may include more of the reduced graphene oxide 220 than the first carbon nanotube sheet 210. Accordingly, the first electrode fiber 230 may have improved charge storage characteristics.
- the reduced graphene oxide 220 may be doped with nitrogen (nitrogen).
- the first electrode fibers 230 may be manufactured in a form in which the reduced graphene oxide doped with nitrogen is provided between the first carbon nanotube sheets 210 which are dried and stacked.
- an electrochemical reaction may be unstable, thereby degrading the characteristics of the supercapacitor.
- 16 and 17 are diagrams for describing a manufacturing process of the second electrode fibers included in the electrode fibers according to the second embodiment of the present invention.
- a second carbon nanotube sheet 310 may be prepared.
- the second carbon nanotube sheet 310 may be prepared by the same method as the preparation method of the first carbon nanotube sheet 210 described with reference to FIG.
- Manganese dioxide (MnO 2 , 320) may be provided on the second carbon nanotube sheet 310.
- the manganese dioxide 320 may have a lower conductivity than the second carbon nanotube sheet 310 and may have a higher charge storage capability than the second carbon nanotube sheet 310.
- the providing of the manganese dioxide 320 on the second carbon nanotube sheet 310 may include preparing a second source solution in which the manganese dioxide 320 is dispersed, and supplying the second source solution to the second carbon nanotube sheet 310. It may include the step of providing on the carbon nanotube sheet (310).
- the second source solution may be prepared by a method of dispersing the manganese dioxide 320 by adding the manganese dioxide 320 to a solvent and performing ultrasonic treatment.
- the solvent may be ethanol.
- wt% of the manganese dioxide 320 in the second source solution may be provided at 5 mg / ml.
- the second source solution may be provided on the second carbon nanotube sheet 310 by a drop casting method.
- the manganese dioxide 320 may be provided in the form of particles. According to one embodiment, the size of the manganese dioxide 320 in the second source solution may be substantially the same. Alternatively, according to another embodiment, the sizes of the manganese dioxide 320 in the second source solution may be different.
- the second electrode fiber 330 may be manufactured by twisting the second carbon nanotube sheet 310 provided with the manganese dioxide 320.
- the manufacturing of the second electrode fibers 330 may include twisting one end of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. (twist) may be included.
- the number of twists per meter of the second carbon nanotube sheet 310 may be greater than the number of twists per meter of the first carbon nanotube sheet 310.
- the second carbon nanotube sheet 310 provided with the manganese dioxide 320 may have about 5000 twist times per meter.
- the inner region of the second electrode fiber 330 may be provided in a form in which the second carbon nanotube sheet 310 is rolled and stacked.
- the manganese dioxide 320 may be provided between the dried and stacked second carbon nanotube sheets 310.
- the A cross section of the second carbon nanotube sheet 310 may be provided in a spiral shape, and the manganese dioxide 320 may be provided between the second carbon nanotube sheet 310 in a spiral shape.
- wt% of the manganese dioxide 320 may be higher than wt% of the second carbon nanotube sheet 310.
- the second electrode fibers 330 may include more of the manganese dioxide 320 than the second carbon nanotube sheet 310. Accordingly, the second electrode fiber 330 may have improved charge storage characteristics.
- the supercapacitor including the first electrode fiber 230 and the second electrode fiber 330 described above and a manufacturing method thereof will be described with reference to FIG. 18.
- FIG. 18 is a view illustrating a supercapacitor including an electrode fiber and a method of manufacturing the same according to the second embodiment of the present invention.
- the first electrode fibers 230 and the second electrode fibers 330 described with reference to FIGS. 14 to 17 are prepared.
- the first electrode fibers 230 and the second electrode fibers 330 may be coated with an electrolyte 400, respectively.
- the electrolyte 400 may be polyvinyl alcohol (LiVA) -LiCl or polyvinylidenefluoride-hexafluoropropylene (PVDF-HFP) -tetraethylammoniumtetrafluouroborate (TEABF 4 ).
- the supercapacitor 500 may be manufactured by twisting the first electrode fiber 230 and the second electrode fiber 330 coated with the electrolyte 400. have.
- the first electrode fibers 230 may be used as an anode.
- the second electrode fibers 330 may be used as a cathode.
- the plurality of supercapacitors 500 may be made of an electrode fabric by crossing each other.
- the reduced graphene oxide 220 storing negative charges in the first electrode fibers 230.
- the manganese dioxide 320 that stores a positive charge in the second electrode fiber 330 may have a difference in charge storage characteristics. In this case, due to the characteristics of the supercapacitor, the amount of energy storage may be determined by the low charge storage characteristics among the first electrode fibers 230 and the second electrode fibers 330.
- the charge storage property of the reduced graphene oxide 220 is lower than that of the manganese dioxide 320
- the charge storage property of the first electrode fiber 330 is lower than that of the second electrode fiber 230.
- the amount of energy stored in the supercapacitor may be determined by the first electrode fiber 330.
- the supercapacitor including the electrode fiber and the manufacturing method thereof according to the second embodiment of the present invention may provide various methods. Hereinafter, methods for maximizing the energy storage efficiency of the supercapacitor are described.
- wt% of the reduced graphene oxide 220 in the first electrode fiber 230 is wt% of the manganese dioxide 320 in the second electrode fiber 330. It can be higher than%.
- the reduced graphene oxide 220 may be provided at 90 wt%, and the manganese dioxide 320 may be provided at 70.5 wt%.
- the number of the first carbon nanotube sheets 210 in the first electrode fibers 230 may be greater than the number of the second carbon nanotube sheets 310 in the second electrode fibers 330.
- the first electrode fibers 230 may be made thicker than the second electrode fibers 330.
- the number of the first carbon nanotube sheets 210 may be five, and the number of the second carbon nanotube sheets 310 may be four.
- an area of the first carbon nanotube sheet 210 may be larger than an area of the second carbon nanotube sheet 310. Accordingly, the amount of the reduced graphene oxide 220 provided on the first carbon nanotube sheet 210 is the amount of the manganese dioxide 320 provided on the second carbon nanotube sheet 310. Can be more.
- a highly efficient asymmetric supercapacitor including the reduced graphene oxide 220 and the manganese dioxide 320 may be provided.
- the supercapacitor may be reduced on the first and second carbon nanotube sheets 210 and 310 before the fiber is manufactured using the first and second carbon nanotube sheets 210 and 310.
- Graphene oxide 220, and the manganese dioxide 320 is provided, the reduced graphene oxide 220, and the manganese dioxide 320 is provided, the first and second carbon nanotube sheet ( By twisting 210 and 310, the first and second electrode fibers 230 and 330 may be manufactured. Accordingly, the content of the reduced graphene oxide 220 and the manganese dioxide 320 in the first and second electrode fibers 230 and 330 may be increased, and the energy storage amount of the supercapacitor may be improved. .
- wt% of the reduced graphene oxide 220 in the first electrode fiber 230 may be provided higher than wt% of the manganese dioxide 320 in the second electrode fiber 330. have.
- the number of the first carbon nanotube sheets 210 in the first electrode fibers 230 is greater than the number of the second carbon nanotube sheets 310 in the second electrode fibers 330. There can be many.
- an area of the first carbon nanotube sheet 210 may be higher than an area of the second carbon nanotube sheet 310.
- the reduced graphene oxide 220 may be doped with nitrogen (nitrogen).
- the energy storage efficiency may be maximized and the energy storage amount may be improved.
- the silicon substrate is prepared.
- a carbon nanotube forest including a height of about 400 ⁇ m, a diameter of about 12 nm, and about nine walls was prepared.
- Pulling the carbon nanotube forest in a first direction a carbon nanotube sheet (CNT sheet) including a plurality of carbon nanotubes extending in the first direction was prepared on a glass substrate.
- CNT sheet carbon nanotube sheet
- Reduced graphene oxide (rGO) in the form of nanoflakes and dimethylformamide with wt% of 8 mg / ml are prepared. After mixing the reduced graphene oxide in dimethylformamide, using a VCX750 ultrasonic equipment for 1 hour by ultrasonication at 150W to disperse to prepare a mixed solution.
- the mixed solution was sprayed by a drop casting method and dried for 20 minutes.
- the drop casting process and the drying process for 20 minutes were repeated five times.
- the dried carbon nanotube sheet includes a reduced graphene oxide having a wt% of 90 wt% by twisting one end of the plurality of carbon nanotube sheets about 3000 times per meter using the first direction as a rotation axis.
- a first electrode fiber was prepared.
- Manganese dioxide (MnO 2 ) nanoparticles manufactured by Sigma-Aldrich, having a diameter of 30 nm, a length of 100 nm, and a rod form, and an ethanol solvent containing 5 mg / ml wt% are prepared.
- the manganese dioxide nanoparticles were mixed in ethanol and sonicated to prepare a mixed solution.
- the mixed solution was sprayed by a drop casting method and dried for 20 minutes.
- the dried carbon nanotube sheet is a second electrode fiber including manganese dioxide having a wt% of 70 wt% by twisting one end of the plurality of carbon nanotube sheets about 5000 times per meter using the first direction as a rotation axis. Prepared.
- PVA having a capacity of 3 g, LiCl having a capacity of 6 g, and DI water having a capacity of 30 ml were mixed at a temperature of 90 ° C. to prepare a PVA-LiCl electrolyte. Thereafter, an electrolyte was coated on each of the first electrode fibers according to Example 2-1 and the second electrode fibers according to Example 2-2.
- a supercapacitor was manufactured by using a first electrode fiber coated with an electrolyte as a cathode and a second electrode fiber coated with an electrolyte as a cathode, and connecting a copper (Cu) wire having a diameter of 180 ⁇ m to each electrode.
- PVDF-HFP mixed with acetone and TEABF 4 mixed with propylene carbonate was prepared at a ratio of 4: 1, and dried for 3 hours on a slide glass to prepare PVDF-HFP-TEABF 4 electrolyte. Thereafter, a supercapacitor was manufactured by the method according to Example 2-3 described above.
- the first electrode fiber according to Example 2-1 and the second electrode fiber according to Example 2-2 are coated with the electrolyte according to Example 2-3, respectively, and weave each other to fabricate an electrode fabric (textile super capacitor).
- Example 2-3 The electrolyte according to Example 2-3, respectively, and weave each other to fabricate an electrode fabric (textile super capacitor).
- the first electrode fiber according to Example 2-1 described above was prepared and a Na 2 SO 4 liquid electrolyte was coated on the first electrode fiber.
- the second electrode fiber according to Example 2-2 described above was prepared and a Na 2 SO 4 liquid electrolyte was coated on the second electrode fiber.
- Example 2-1 Another electrode fiber in Example 2-1 described above was coated with an electrolyte according to Example 2-3, and a supercapacitor was manufactured using the same as an anode and a cathode.
- Comparative Example 2-2 CNT / MnO 2 based stretchable asymmetric fibers
- Comparative Example 2-6 MnO 2 nanosheet decorated asymmetric carbon fibers
- Comparative Example 2-7 MnO 2 coated stretchable, asymmetric CNT wires
- Electrode fibers, supercapacitors, and electrode fabrics according to Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-6 are summarized through Table 2 below.
- Example 2-1 Electrode fiber rGO / CNT Example 2-2 Electrode fiber MnO 2 / CNT Example 2-3 Supercapacitor rGO / CNT, MnO 2 / CNT PVA-LiCl Example 2-4 Supercapacitor rGO / CNT, MnO 2 / CNT PVDF-HFP-TEABF 4 Example 2-5 Electrode fabric rGO / CNT, MnO 2 / CNT PVA-LiCl Example 2-6 Electrode fiber rGO / CNT Na 2 SO 4 Example 2-7 Electrode fiber MnO 2 / CNT Na 2 SO 4 Comparative Example 2-1 Supercapacitor rGO / CNT, rGO / CNT PVA-LiCl Comparative Example 2-2 Supercapacitor CNT / MnO 2 based stretchable asymmetric fibers Comparative Example 2-3 Supercapacitor rGO / MnO 2 / PPy yarns Comparative Example 2-4 Supercapacitor
- FIG 19 is a photograph of the first electrode fibers included in the electrode fibers according to the second exemplary embodiment of the present invention.
- the first electrode fiber according to the embodiment 2-1 has a twisted (twist) form, the reduced graphene oxide (rGO) in the form of flakes (carbon nanotubes) It was confirmed that it existed between sheets.
- FIG. 19B it was confirmed that the cross section of the first electrode fiber according to Example 2-1 was spiral.
- the cross section shows a form in which the carbon nanotube sheet is rolled and stacked, and the reduced graphene oxide is provided between the dried and stacked carbon nanotube sheets.
- FIG. 20 is a photograph of the second electrode fibers included in the electrode fibers according to the second exemplary embodiment of the present invention.
- the second electrode fiber according to the embodiment 2-2 has a twist (twist) form, the manganese dioxide (MnO 2 ) in the form of particles (particle) between the carbon nanotube sheet I could confirm that it exists.
- FIG. 20B it was confirmed that the cross section of the second electrode fiber according to Example 2-2 was spiral.
- the cross section shows a form in which the carbon nanotube sheet is rolled and stacked, and it is confirmed that manganese dioxide (MnO 2 ) is provided between the carbon nanotube sheets that are rolled and stacked.
- 21 is a graph showing the electrochemical characteristics of the supercapacitor according to Comparative Example 2-1 of the present invention.
- the supercapacitor according to Comparative Example 2-1 is connected to a voltage V in a voltage scan rate range of 10, 30, 50, 70, and 100 mV / s.
- the current density was measured, and a cyclic voltammogram (hereinafter referred to as CV curve) was shown.
- CV curve cyclic voltammogram
- the CV curve of the supercapacitor according to Comparative Example 2-1 does not show a peak in the voltage scan rate range of 10, 30, 50, 70, 100mV / s I could confirm it. This, it can be seen that the supercapacitor according to Comparative Example 2-1 is associated with the Faradic redox reaction.
- the supercapacitor according to Comparative Example 2-1 is measured with voltage over time in a current density range of 0.5, 2.5, and 5 mA / cm 2 , and charge / discharge ( charge / discharge) curves.
- the supercapacitor according to Comparative Example 1 was confirmed that the charge and discharge curve in a triangular form in the current density range of 0.5, 2.5, 5 mA / cm 2 .
- FIG. 22 is a graph comparing characteristics of the reduced graphene oxide content of the first electrode fibers according to Example 2-1 of the present invention.
- a first electrode fiber according to Example 2-1 and a first electrode fiber having reduced graphene oxide wt% of 18.5 wt% are prepared, and a current curve according to voltage is measured to obtain a CV curve. Indicated.
- the CV curve area of the first electrode fiber having 90.3 wt% reduced graphene oxide wt% is the CV of the first electrode fiber having wt% reduced graphene oxide wt% 18.5 wt%. It was confirmed that it was wider than the curve area. Accordingly, it can be seen that the first electrode fiber has a reduced graphene oxide wt% of 90.3 wt% to improve the cyclic voltammetry.
- Examples 2-1 and 2-2 of the present invention are a graph comparing the characteristics of the first electrode fibers and the second electrode fibers according to Examples 2-1 and 2-2 of the present invention.
- the current according to the voltage of the electrode fibers according to Example 2-1 and Example 2-2 was measured and a CV curve was shown.
- using a three electrode system using Ag / AgCl as a reference electrode and as a counter electrode Pt mesh was used.
- the area of the CV curve according to the embodiment 2-2 is wider than the area of the CV curve according to the embodiment 2-1. Accordingly, it can be seen that the charge storage characteristics of the first electrode including the reduced graphene oxide and the second electrode including manganese dioxide are different.
- 24 is a graph showing the characteristics of the supercapacitor according to the embodiment 2-3 of the present invention.
- a current density according to voltage (V) in a maximum applied voltage range of 0.9, 1.3, 1.7, and 2.1V may be obtained. It measured and showed the cyclic voltammogram (henceforth a CV curve). Scan rate was measured at 100 mV / s. As can be seen in Figure 24 (a), it was confirmed that the CV curve area of the supercapacitor according to the embodiment 2-3 is gradually increased in the range of the maximum applied voltages of 0.9, 1.3, 1.7, 2.1V. In addition, the CV curve area in the 2.1V maximum applied voltage range was similar to the CV curve area of the general supercapacitors. Accordingly, it can be seen that the supercapacitor according to the embodiment 2-3 can be applied as a supercapacitor.
- the supercapacitor according to the embodiment 2-3 measures voltage over time in the maximum applied voltages of 0.9, 1.3, 1.7, and 2.1V, and charges and discharges (charge / discharge). The curve is shown.
- the current density according to the voltage of the supercapacitor according to Example 2-3 was measured and IR drop was measured.
- Figure 24 (b) it was confirmed that the supercapacitor according to the embodiment 2-3 shows a stable inverted triangle charge and discharge curve at the maximum applied voltages of 2.1V.
- a small IR drop of 47 mV at a current density of 1.2 mA / cm 2 Accordingly, it can be seen that the supercapacitor according to the embodiment 2-3 can be applied as a supercapacitor.
- 25 is a graph showing the characteristics of the supercapacitor according to the embodiment 2-4 of the present invention.
- the supercapacitor according to the embodiment 2-4 is 0 to 2 in a voltage scan rate range of 10, 30, 50, 70, and 100 mV / s.
- Current densities according to voltages (V) and current densities according to 0 to 4 voltages were measured, and cyclic voltammograms (hereinafter referred to as CV curves) were shown.
- the CV curve area of the supercapacitor according to the embodiment 2-4 is a super according to the embodiment 2-3 described with reference to Figure 24 (a) It was confirmed that the area larger than the CV curve area of the capacitor. Accordingly, when manufacturing the supercapacitor according to the embodiment, it can be seen that using the electrolyte of PVDF-HFP-TEABF 4 has a higher redox stability than using the electrolyte of PVA-LiCl.
- the voltage of the supercapacitor according to Example 2-4 was measured over time in a voltage range of 3.5V or more, and a charge / discharge curve was shown. As can be seen in Figure 25 (c), it was confirmed that the supercapacitor according to Example 2-4 shows a stable inverted triangle charge and discharge curve. Accordingly, it can be seen that the supercapacitor according to the embodiment 2-4 can be applied as a supercapacitor.
- FIG. 26 is a graph comparing characteristics of supercapacitors according to Examples 2-3 and 2-4 of the present invention.
- FIG. 27 is a graph comparing energy storage characteristics of supercapacitors according to Examples 2-3, 2-4 and Comparative Examples 2-2 to 2-7 of the present invention.
- the supercapacitor according to Example 2-3 shows 30.1 ⁇ Wh / cm 2
- the supercapacitor according to Example 2-4 shows 43 ⁇ Wh / cm 2
- Comparative Example 2- The supercapacitor according to 2 shows 18.9 ⁇ Wh / cm 2
- the supercapacitor according to Comparative Example 2-3 shows 9.2 ⁇ Wh / cm 2
- the supercapacitor according to Comparative Example 2-4 shows 10 ⁇ Wh / cm 2 .
- the supercapacitor according to Comparative Example 2-5 shows 6.8 ⁇ Wh / cm 2
- the supercapacitor according to Comparative Example 2-6 shows 1.428 ⁇ Wh / cm 2
- the supercapacitor according to Comparative Example 2-7 Represents 1.25 ⁇ Wh / cm 2
- the areal energy density of the supercapacitors according to Examples 2-3 and 2-4 was high. Accordingly, it can be seen that the energy storage characteristics of the supercapacitor using the electrode including the reduced graphene oxide and the electrode including manganese dioxide as the asymmetric electrode are good as in Examples 2-3 and 2-4.
- the current density of the first electrode fibers according to Examples 2-6 according to voltage in a voltage scan rate range of 10, 30, 50, 70, and 100 mV / s was measured, and a cyclic voltammogram (hereinafter referred to as CV curve) was shown.
- CV curve a cyclic voltammogram
- a three electrode system was used, Ag / AgCl was used as the reference electrode and Pt mesh was used as the counter electrode.
- the first electrode fiber according to the embodiment 2-6 was confirmed that the CV curve area increases as the scan rate increases.
- the supercapacitor according to the embodiment 2-3 is a current density according to the voltage in the voltage scan rate range of 100, 200, 300, 400, 500 mV / s It measured and showed the cyclic voltammogram (henceforth a CV curve). As can be seen from (c) of Figure 28, as the scan rate increases, it was confirmed that the CV curve appears in a gradually stable square shape while maintaining an initial capacitance of 61.8%.
- 29 is a graph showing the electrochemical characteristics of the supercapacitors according to Examples 2-3 and 2-4 of the present invention.
- Example 30 is a graph comparing characteristics of the supercapacitors according to Example 2-3 and Comparative Example 2-1 of the present invention.
- areal capacitance (mF / cm 2 ) and volumetric capacitance (mF / cm 3 ) according to the scan rate (mV / s) of the supercapacitor according to the embodiment 2-3 are described.
- the supercapacitor according to the embodiment 2-3 it was confirmed that the areal capacitance of 322.4 mF / cm 2 and 57.2 mF / cm 3 at a scan rate of 10 mV / s .
- Example 31 is a graph showing charge and discharge characteristics of a supercapacitor according to Example 2-3 of the present invention.
- the current density according to the voltage was measured and the CV curve was measured for the case of charging and discharging the supercapacitor according to Example 2-3 once and 1000 times.
- the CV curve area when charging and discharging the supercapacitor according to Example 2-3 is substantially the same as the CV curve area when charging and discharging 1000 times. there was.
- the electrode fabrics according to Example 2-5 were photographed. As can be seen in Figure 32 (a), it can be seen that the electrode fabric according to the embodiment 2-5 can be produced in the form of a general fabric.
- Example 33 is a graph showing electrochemical characteristics when the electrode fabrics according to Example 2-5 of the present invention are connected in series and in parallel.
- 35 is a graph showing the durability of the electrode fabric according to Example 2-5 of the present invention.
- FIG. 35 current density according to voltage is measured for pristine, dynamically bent, and 100 times bent of the electrode fabric according to Example 2-5. And a CV curve.
- the electrode fabric according to the embodiment 2-5 it was confirmed that the CV curve area of the original state, the kinematically bent state, and 100 times bent state is substantially the same. Accordingly, it can be seen that the electrode fabric according to Example 2-5 has excellent durability.
- the first electrode fiber includes silver nanowires and the second electrode fiber includes zinc particles
- 36 and 37 are views for explaining a manufacturing process of the first electrode fibers included in the electrode fiber according to the third embodiment of the present invention.
- a first carbon nanotube sheet 610 may be prepared.
- the preparing of the first carbon nanotube sheet may include preparing a carbon nanotube forest by chemical vapor deposition and the first carbon nanotube sheet from the carbon nanotube forest. 610 may be prepared.
- the first carbon nanotube sheet 610 may include a plurality of carbon nanotubes extending in a first direction. Further, according to one embodiment, the plurality of carbon nanotubes may be multi-walled carbon nanotubes (MWCNT).
- MWCNT multi-walled carbon nanotubes
- the first carbon nanotube sheet 610 may be prepared on the support substrate 600.
- the support substrate 600 may be a glass substrate.
- the support substrate 600 may include any one of a plastic substrate, a semiconductor substrate, a ceramic substrate, and a metal substrate.
- Silver nanowires 120 may be provided on the first carbon nanotube sheet 610.
- the silver nanowires 620 may be provided as a positive electrode active material (active material).
- Providing the silver nanowires 620 on the first carbon nanotube sheet 610 may include preparing a first source solution in which the silver nanowires 620 are dispersed, and preparing the first source solution.
- the method may include providing the first carbon nanotube sheet 610 and drying the first carbon nanotube sheet 610 provided with the first source solution.
- the first source solution may be prepared by a method of dispersing the silver nanowires 620 in a solvent.
- the solvent may be isopropyl alcohol.
- the first source solution may be provided on the first carbon nanotube sheet 610 by a drop casting method.
- the step of providing a first source solution in which the silver nanowires 620 are dispersed on the first carbon nanotube sheet 610, and the first carbon nano provided with the first source solution Drying the tube sheet 610 may be repeated. Accordingly, the content of the silver nanowires 620 on the first carbon nanotube sheet 610 may be increased.
- the sizes of the silver nanowires 620 in the first source solution may be substantially the same. Alternatively, according to another embodiment, sizes of the silver nanowires 620 in the first source solution may be different.
- the first electrode fibers 630 may be manufactured by twisting the first carbon nanotube sheet 610 provided with the silver nanowires 620.
- the manufacturing of the first electrode fibers 630 may be performed by twisting one end of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. (twist) may be included.
- the first carbon nanotube sheet 610 provided with the silver nanowires 620 may have about 1000 turns per meter.
- the inner region of the first electrode fiber 630 may be provided in a form in which the first carbon nanotube sheet 610 is rolled and stacked.
- the silver nanowires 620 may be provided between the dried and stacked first carbon nanotube sheets 610.
- a cross section of the first carbon nanotube sheet 610 may be provided in a spiral shape, and the silver nanowire 620 may be provided between the first carbon nanotube sheet 610 in a spiral shape.
- 38 and 39 are views for explaining a manufacturing process of the second electrode fibers included in the electrode fiber according to the third embodiment of the present invention.
- a second carbon nanotube sheet 710 may be prepared.
- the second carbon nanotube sheet 710 may be prepared by the same method as the preparation method of the first carbon nanotube sheet 710 described with reference to FIG.
- Zinc particles 720 may be provided on the second carbon nanotube sheet 710. According to one embodiment, the zinc particles 720 may be provided as a negative electrode active material.
- Providing the zinc particles 720 on the second carbon nanotube sheet 710 may include preparing a second source solution in which the zinc particles 720 are dispersed, and preparing the second source solution. It may include providing on the second carbon nanotube sheet 710.
- the second source solution may be prepared by a method of dispersing the zinc particles 720 by putting the zinc particles 720 in a solvent and sonicating.
- the solvent may be ethanol.
- the second source solution may be provided on the second carbon nanotube sheet 710 by a drop casting method.
- the size of the zinc particles 720 in the second source solution may be substantially the same. Alternatively, according to another embodiment, sizes of the zinc particles 720 in the second source solution may be different.
- a second electrode fiber 730 may be manufactured by twisting the second carbon nanotube sheet 710 provided with the zinc particles 720.
- the manufacturing of the second electrode fibers 730 may be performed by twisting one end of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. (twist) may be included.
- the number of twists per meter of the second carbon nanotube sheet 710 may be greater than the number of twists per meter of the first carbon nanotube sheet 610.
- the second carbon nanotube sheet 710 provided with the zinc particles 720 may have about 2000 twists per meter.
- the inner region of the second electrode fiber 730 may be provided in a form in which the second carbon nanotube sheet 710 is rolled and stacked.
- the zinc particles 720 may be provided between the dried and stacked second carbon nanotube sheets 710.
- the A cross section of the second carbon nanotube sheet 710 may be provided in a spiral shape, and the zinc particles 720 may be provided between the second carbon nanotube sheet 710 in a spiral shape.
- FIG 40 is a view illustrating a silver-zinc battery including an electrode fiber and a method of manufacturing the same according to the third embodiment of the present invention.
- the first electrode fibers 630 and the second electrode fibers 730 described with reference to FIGS. 36 to 39 are prepared.
- the silver-zinc battery 800 according to the embodiment may be manufactured twisted with each other.
- the manufacturing of the silver-zinc battery 800 may include preparing one second electrode fiber 730, coating a protective agent on the second electrode fiber 730, and drying the same. Twisting the second electrode fibers 730 and the two first electrode fibers 630 coated with a protective agent, and the electrolyte on the twisted first and second electrode fibers 630 and 730. It may include the step of coating.
- the protective agent may be polyvinyl alcohol (PVA) having a concentration of 10 wt%.
- PVA polyvinyl alcohol
- the second electrode fiber 730 may be prevented from electrical shortage as the protective agent is coated.
- the electrolyte may be a solution in which KOH, PVA, and DI water are mixed.
- the silver The wt% of the nanowires 620 may be provided higher than the wt% of the zinc particles 720.
- the wt% of the silver nanowires 620 in the silver-zinc battery 800 may be higher than the wt% of the zinc particles 720.
- x first electrode fibers 630 are twisted with y second electrode fibers 730.
- x and y are natural numbers greater than zero, and x may be greater than y.
- x 2y.
- x may be 2 and y may be 1. That is, the silver-zinc battery 800 according to the embodiment may be manufactured by twisting two first electrode fibers 630 with one second electrode fiber 730.
- the wt% of the silver nanowire 620 in the first electrode fiber 630 and the wt% of the zinc particles 720 in the second electrode fiber 730 may be substantially the same. have.
- the wt% of the silver nanowires 620 in the first electrode fiber 630 may be 98.6 wt%.
- the wt% of the zinc particles 720 in the second electrode fiber 730 may be 97.2 wt%. Accordingly, in the total weight of the silver-zinc battery 800 according to the embodiment, the wt% of the silver nanowires 620 may be higher than the wt% of the zinc particles 720.
- the silver-zinc battery 800 is manufactured using each of the first electrode fibers 630 and the second electrode fibers 730, wt% of the silver nanowires 620 is different.
- the amount of the first source solution and the silver nanowires 620 is increased to provide higher than wt% of the zinc particles 720, the thickness of the first carbon nanotube sheet 610 is too high. By thickening, it may not be easy to twist the first carbon nanotube sheet 610 into a fiber form. Accordingly, the manufacturing of the first electrode fiber 630 may not be easy.
- the area of the first carbon nanotube sheet 610 may be equal to the first carbon nanotube sheet 610. 2 may be wider than the area of the carbon nanotube sheet 710. As the area of the first carbon nanotube sheet 610 increases, the first electrode fibers 630 may be manufactured by increasing the amounts of the first source solution and the silver nanowires 620.
- the silver-zinc battery including the electrode fiber according to the third embodiment of the present invention described above may include the silver nanowire 620 and the first carbon nanotube sheet twisted to surround the silver nanowire 620.
- the silver-zinc battery is formed on the first and second carbon nanotube sheets 610 and 710 before fabricating fibers using the first and second carbon nanotube sheets 610 and 710.
- the first and second carbon nanotube sheets By twisting 610 and 710, the first and second electrode fibers 630 and 730 may be manufactured. Accordingly, the content of the silver nanowires 620 and the zinc particles 720 in the first and second electrode fibers 630 and 730 may be increased, and energy storage of the silver-zinc battery may be improved. have.
- wt% of the silver nanowire 620 may be provided higher than wt% of the zinc particles 720.
- the silver-zinc battery may be manufactured by twisting x first electrode fibers 630 with y second electrode fibers 730.
- x and y are natural numbers greater than zero, and x may be greater than y.
- x 2y.
- wt% of the silver nanowire 620 in the first electrode fiber 630 and wt% of the zinc particles 720 in the second electrode fiber 730 may be substantially the same. Accordingly, a high efficiency silver-zinc battery can be provided.
- a glass substrate is prepared.
- a carbon nanotube forest including a height of about 400 ⁇ m, a diameter of about 12 nm, and about nine walls was prepared.
- a carbon nanotube sheet including a plurality of carbon nanotubes extending in the first direction was prepared on a glass substrate.
- Silver nanowires and isopropyl alcohol having a capacity of 200 ml are prepared.
- the silver nanowires were mixed with isopropyl alcohol to prepare a mixed solution.
- the mixed solution was sprayed by a drop casting method and dried at room temperature for 5 minutes.
- the dried carbon nanotube sheet includes a first electrode including silver nanowires having a concentration of 98.6 wt% by twisting one end of the plurality of carbon nanotube sheets about 1000 meters per meter using the first direction as a rotation axis. Fibers were prepared.
- Zinc nanoparticles and ethanol solvents are prepared.
- the zinc nanoparticles were mixed in ethanol and sonicated for 2 hours to prepare a mixed solution.
- the mixed solution was sprinkled with a drop casting method on a carbon nanotube sheet prepared by the method according to Example 3-1, and dried. Drying the carbon nanotube sheet using the first direction as the axis of rotation, twisting one end of the plurality of carbon nanotube sheets about 2000 times per meter to produce a second electrode fiber containing manganese dioxide having a concentration of 97.2 wt%. It was.
- the first electrode fiber according to Example 3-1 and the second electrode fiber according to Example 3-2 described above are prepared.
- a copper wire having a diameter of 180 ⁇ m was connected to each electrode fiber end, and the copper wire and the first and second electrode fibers were coated with epoxy.
- KOH having a mass of 33.67 g was dispersed in DI water having a volume of 100 mL, and stirred at 60 rotational speeds per minute to prepare a KOH liquid electrolyte having a concentration of 6 M.
- Example 3-1 the first electrode fiber according to Example 3-1 and the second electrode fiber according to Example 2, in which a copper wire was connected in a KOH liquid electrolyte, were immersed to prepare a silver-zinc battery according to Example 3-3.
- the first electrode fiber according to Example 3-1 described above was used as a cathode, and the second electrode fiber was used as an anode.
- Two first electrode fibers according to Example 3-1 and one second electrode fiber according to Example 2 are prepared.
- a copper wire having a diameter of 180 ⁇ m was connected to each electrode fiber end, and the copper wire and the first and second electrode fibers were coated with epoxy.
- An electrolyte mixed with KOH having 3 M concentration and polyvinyl alcohol (PVA) and PVA having a concentration of 10 wt% were prepared.
- the electrolyte was prepared by mixing KOH with a capacity of 3.37 g, PVA with a capacity of 2 g, and DI water with a capacity of 20 mL and stirring at 60 revolutions per minute at a temperature of 140 ° C.
- one prepared second electrode fiber was coated with PVA having a concentration of 10 wt%.
- PVA having a concentration of 10 wt%.
- One PVA-coated second electrode fiber and two prepared first electrode fibers were twisted together, and an electrolyte was coated on the first and second electrode fibers to prepare a silver-zinc battery according to Example 3-4.
- the first electrode fiber according to Example 3-1 described above was used as a cathode, and the second electrode fiber was used as an anode.
- a battery according to Comparative Example 3-1 consisting of a metal anode comprising silver and a metal anode comprising zinc is prepared.
- LMO lithium ion manganese oxide
- LTO lithium titanate
- Example 3-1 Electrode fiber Ag nanowire / CNT Example 3-2 Electrode fiber Zn / CNT Example 3-3 Fiber battery Ag nanowire / CNTZn / CNT KOH liquid electrolyte Example 3-4 Fiber battery Ag nanowire / CNTZn / CNT 3M KOH + PVA Example 3-5 Electrode fabric Ag nanowire / CNTZn / CNT two series connection Comparative Example 3-1 Metal battery Ag / Zn Comparative Example 3-2 Fiber battery Winding of LTO / LMO Comparative Example 3-3 Fiber battery Coiling of LTO / LMO Comparative Example 3-4 Fiber battery Plying of LTO / LMO
- FIG. 41 is a photograph of the first electrode fibers included in the electrode fibers according to Example 3-1 of the present invention.
- the first electrode fiber according to Example 3-1 was confirmed that the silver nanowires loaded on the carbon nanotube sheet at 98.6 wt.
- the cross section of the first electrode fiber according to Example 3-1 was spiral.
- the cross section shows a form in which the carbon nanotube sheets are rolled and stacked, and silver nanowires are provided between the rolled and stacked carbon nanotube sheets.
- FIG. 42 is a photograph of a second electrode fiber included in the electrode fiber according to Example 3-2 of the present invention.
- the second electrode fiber according to Example 3-2 was confirmed that the zinc particles loaded on the carbon nanotube sheet at 97.2 wt.
- the cross section of the second electrode fiber according to Example 3-2 was spiral.
- the cross section shows a form in which the carbon nanotube sheets are rolled and stacked, and zinc particles are provided between the carbon nanotube sheets that are rolled and stacked. Accordingly, it is understood that the wt% of silver nanowires included in the first electrode fiber according to Example 3-1 is substantially the same as the wt% of zinc particles included in the second electrode fiber according to Example 3-2. Can be.
- Example 43 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-3 and Comparative Example 3-1 of the present invention.
- the silver-zinc battery according to Example 3-3 measures current density (mAh / cm) according to voltage (V) at a scan rate of 10 mV / s, and calculates a circulating voltage.
- the current curve (hereinafter referred to as CV curve) is shown.
- CV curve The current curve
- an oxidation peak at two parts of 1.65 V (Ag-> Ag + ) and 2 V (Ag + -> Ag 2 + ) is shown. It was confirmed that the reduction peak appeared in two parts of 1.82V (Ag 2+ -> Ag + ) and 1.43V (Ag + -> Ag). Accordingly, it can be seen that the silver-zinc battery according to the embodiment 3-3 has a good agreement.
- the voltage V according to the linear capacity (mAh / cm) of the silver-zinc battery according to Example 3-3 and Comparative Example 3-1 was measured, and a galvanostatic discharge curve was measured. Indicated. As shown in (b) of FIG. 43, the linear capacity of the silver-zinc battery according to Example 3-3 is expressed as 8.7 microamp hour ⁇ Ah / cm, and the silver-zinc battery according to Comparative Example 3-1 is shown. The linear capacity was found to be 0.04 microamperes ⁇ Ah / cm. Accordingly, it can be seen that the silver-zinc battery according to Example 3-3 has about 100 times better performance than the silver-zinc battery according to Comparative Example 3-1.
- Example 44 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-3 of the present invention.
- the linear capacity (mAh / cm) according to the mass ratio of silver nanowires and zinc particles in the silver-zinc battery according to Example 3-3 is measured and shown.
- the voltage (V) according to the linear capacity (mAh / cm) of the silver-zinc battery according to Example 3-3 was measured.
- the silver-zinc battery according to the embodiment 3-3 shows the highest linear capacity when the mass ratio of silver nanowires and zinc particles is 1.7: 1.
- the mass ratio of silver nanowires and zinc particles is 1.7: 1 and the current density is 0.1 mA / cm, it is confirmed that the highest linear capacity of the silver-zinc battery according to Example 3-3 shows 0.285 mAh / cm.
- it can be seen that it is efficient to manufacture so that the mass ratio of silver nanowires and zinc particles is close to 1.7: 1.
- a silver-zinc battery according to Example 3-3 was prepared, but ZnO having a 0.25 M concentration was mixed with KOH having a 6 M concentration as an electrolyte. Thereafter, capacity retention (C / C 0 ) according to the number of charge / discharge cycles of the silver-zinc battery according to Example 3-3 in which the above-described electrolyte was used was measured. As can be seen from (b) of Figure 44, the silver-zinc battery according to Example 3-3 using the above-described electrolyte, it was confirmed that the capacity of about 30% remaining after 50 charge and discharge.
- Example 45 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-4 of the present invention.
- the silver-zinc battery according to Example 3-4 measures current density (mAh / cm) according to voltage (V) at a scan rate of 10 mV / s, and calculates a CV curve. Indicated. As can be seen from (a) of Figure 45, the silver-zinc battery according to Example 3-4, it was confirmed that the reduction peak appears at 1.82V (Ag 2+ -> Ag + ).
- Example 46 is a graph comparing characteristics of silver-zinc batteries according to Example 3-4 and batteries according to Comparative Examples 3-2 to 3-4.
- the silver-zinc battery according to Example 3-4 when the zinc particles loaded on the negative electrode is 97.2 wt%, the linear capacity of 0.276 mAh / cm, according to Comparative Example 3-2
- the battery shows a linear capacity of 0.0028 mAh / cm when the active material loaded on the negative electrode is 83.6 wt%
- the battery according to Comparative Example 3-3 shows a linear capacity of 0.022 mAh / cm when the active material loaded on the negative electrode is 86 wt%.
- the battery according to Comparative Example 3-4 was confirmed that the linear capacity of 0.0036 mAh / cm when the active material loaded on the negative electrode is 90 wt%. Accordingly, it was confirmed that the performance of the silver-zinc battery according to Example 3-4 was higher than that of the batteries according to Comparative Examples 3-2 to 3-4.
- Example 47 is a graph showing the stretchability of a silver-zinc battery according to Example 3-4 of the present invention.
- the silver-zinc battery according to Examples 3-4 when the silver-zinc battery according to Examples 3-4 was originally bent, bent at an angle of 80 °, bent at an angle of 150 °, and again The voltage (V) according to linear capacity (mAh / cm) was measured for the released case.
- the silver-zinc battery according to the embodiment 3-4 is the original case (pristine), when bent at an angle of 80 ° (bent), for the case of bent (bent) at 150 ° angle
- the performance was kept constant. Accordingly, it can be seen that the silver-zinc battery according to Example 3-4 has high flexibility.
- 49 is a photograph of a device using an electrode fabric according to Examples 3-5 of the present invention.
- the electrode fabric and the general electronic clock according to Example 3-5 were connected with copper wires and photographed. As can be seen from Figure 49, it can be seen that the electronic clock is connected to the electrode fabric according to the embodiment 3-5. Accordingly, it can be seen that the electrode fabrics according to Examples 3-5 can be used for other devices.
- Electrode fiber according to an embodiment of the present invention and a method of manufacturing the same may be used in a supercapacitor, a battery, and wearers device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Provided is a method for producing an electrode fiber. The method for producing an electrode fiber may comprise the steps of: preparing a carbon nanotube sheet; providing a functional material onto the carbon nanotube sheet; and twisting the carbon nanotube sheet provided with the functional material to produce an electrode fiber extending in a first direction.
Description
본 발명은 전극 섬유, 그 제조 방법, 및 이를 포함하는 슈퍼 커패시터에 관련된 것으로, 보다 상세하게는, 탄소나노튜브 시트 및 기능성 물질을 포함하는 전극 섬유, 그 제조 방법, 및 이를 포함하는 슈퍼 커패시터에 관련된 것이다.The present invention relates to an electrode fiber, a method for manufacturing the same, and a super capacitor including the same, and more particularly, to an electrode fiber including a carbon nanotube sheet and a functional material, a method for manufacturing the same, and a super capacitor including the same. will be.
슈퍼 커패시터는 축전용량이 큰 커패시터로 울트라 커패시터(Ultra Capacitor) 또는 초고용량 커패시터라고 한다. 슈퍼 커패시터는 화학반응을 이용하는 배터리와 달리 전극과 전해질 계면으로의 이온의 이동이나 표면 화학반응에 의한 충전현상을 이용한다. 이에 따라, 급속 충방전이 가능하고 높은 충방전 효율 및 반영구적인 사이클 수명 특성으로 보조 배터리나 배터리 대체용으로 사용될 수 있는 차세대 에너지 저장장치로 각광받고 있다.Supercapacitors are capacitors with high capacitance and are called ultracapacitors or ultracapacitors. Supercapacitors, unlike batteries that use chemical reactions, use charge phenomena due to surface chemistry or movement of ions to the electrode and electrolyte interfaces. Accordingly, it has been spotlighted as a next-generation energy storage device that can be used as a secondary battery or a battery replacement due to its rapid charge and discharge, high charge and discharge efficiency, and semi-permanent cycle life characteristics.
이러한 슈퍼 커패시터는 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV) 또는 연료전지자동차(Fuel Cell Vehicle, FCV) 등과 같은 차세대 환경친화 차량 개발 분야에 있어 에너지 버퍼로써 효용성은 날로 증가하고 있다.These supercapacitors are useful as energy buffers in the development of next-generation environmentally friendly vehicles such as electric vehicles (EVs), hybrid electric vehicles (HEVs), or fuel cell vehicles (FCVs). It is increasing.
슈퍼 커패시터에 대한 산업계의 요구에 따라, 슈퍼 커패시터의 특성에 큰 영향을 미치는 슈퍼 커패시터용 전극에 대한 많은 연구개발이 진행되고 있다. 예를 들어, 대한민국 특허 공개 공보 10-2012-0016343(출원 번호 10-2010-0078611)에는 슈퍼 커패시터의 용량을 유지하면서 두께를 감소시키기 위해, 스크린 프린팅 방법으로 전극을 형성하여, 전극에서의 반응 면적을 넓히는 기술이 개시되어 있다.According to the industrial demand for super capacitors, many researches and developments on electrodes for super capacitors having a great influence on the characteristics of the super capacitors have been conducted. For example, Korean Patent Laid-Open Publication No. 10-2012-0016343 (Application No. 10-2010-0078611) discloses an electrode formed by a screen printing method in order to reduce the thickness while maintaining the capacity of a supercapacitor, so that the reaction area at the electrode is reduced. A technique for widening the is disclosed.
본 발명이 해결하고자 하는 일 기술적 과제는, 제조 공정이 간소화된 전극 섬유 및 그 제조 방법을 제공하는 데 있다. One technical problem to be solved by the present invention is to provide an electrode fiber with a simplified manufacturing process and a method of manufacturing the same.
본 발명이 해결하고자 하는 다른 기술적 과제는, 제조 비용이 감소된 전극 섬유 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide an electrode fiber and a method of manufacturing the reduced manufacturing cost.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 에너지 저장 특성이 향상된 전극 섬유 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide an electrode fiber with improved energy storage characteristics and a method of manufacturing the same.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 고신축성의 전극 섬유 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide a highly stretchable electrode fiber and its manufacturing method.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 고신뢰성의 전극 섬유 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide a highly reliable electrode fiber and its manufacturing method.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 웨어러블 디바이스에 적용이 용이한 전극 섬유 및 그 제조 방법을 제공하는 데 있다.Another technical problem to be solved by the present invention is to provide an electrode fiber and a method of manufacturing the same that can be easily applied to a wearable device.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다.The technical problem to be solved by the present invention is not limited to the above.
상기 기술적 과제를 해결하기 위해, 본 발명은 전극 섬유의 제조 방법을 제공한다. In order to solve the above technical problem, the present invention provides a method for producing an electrode fiber.
일 실시 예에 따르면, 상기 전극 섬유의 제조 방법은, 탄소나노튜브 시트를 준비하는 단계, 상기 탄소나노튜브 시트 상에, 기능성 물질(functional material)을 제공하는 단계, 및 상기 기능성 물질이 제공된 상기 탄소나노튜브 시트를 꼬아서, 제1 방향으로 연장하는 전극 섬유를 제조하는 단계를 포함할 수 있다. According to one embodiment, the manufacturing method of the electrode fiber, preparing a carbon nanotube sheet, providing a functional material on the carbon nanotube sheet, and the carbon provided with the functional material Twisting the nanotube sheet may include producing an electrode fiber extending in the first direction.
일 실시 예에 따르면, 상기 전극 섬유의 제조 방법은, 복수의 상기 전극 섬유를 서로 꼬아서(twist), 복합 섬유를 제조하는 단계를 더 포함할 수 있다. According to one embodiment, the manufacturing method of the electrode fibers, twisting a plurality of the electrode fibers (twist), may further comprise the step of producing a composite fiber.
일 실시 예에 따르면, 상기 탄소나튜브 시트는 제1 탄소나노튜브 시트 및 제2 탄소나노튜브 시트를 포함하고, 상기 기능성 물질은 제1 기능성 물질 및 제2 기능성 물질을 포함하고, 상기 전극 섬유는 상기 제1 기능성 물질이 상기 제1 탄소나노튜브 시트 상에 제공된 제1 전극 섬유 및 상기 제2 기능성 물질이 상기 제2 탄소나노튜브 시트 상에 제공된 제2 전극 섬유를 포함하되, 상기 제1 전극 섬유 내에 상기 제1 기능성 물질의 함량이 70 wt% 이하가 되도록 제어하고, 상기 제2 전극 섬유 내에 상기 제2 기능성 물질의 함량이 70 wt%이하가 되도록 제어하는 것을 포함할 수 있다. According to one embodiment, the carbon tube sheet comprises a first carbon nanotube sheet and a second carbon nanotube sheet, the functional material comprises a first functional material and a second functional material, the electrode fiber A first electrode fiber provided with the first functional material on the first carbon nanotube sheet and a second electrode fiber provided with the second functional material on the second carbon nanotube sheet, wherein the first electrode fiber And controlling the content of the first functional material to be 70 wt% or less, and controlling the content of the second functional material to be 70 wt% or less in the second electrode fiber.
일 실시 예에 따르면, 상기 제1 탄소나노튜브 시트 및 상기 제2 탄소나노튜브 시트는, 각각 상기 제1 방향으로 연장하는 복수의 탄소나노튜브를 포함하고, 상기 제1 전극 섬유를 제조하는 단계 및 상기 제2 전극 섬유를 제조하는 단계는, 상기 제1 방향을 회전축으로 사용하여, 상기 제1 방향으로 연장하는 상기 복수의 탄소나노튜브의 일단들을, 꼬으는 것을 포함할 수 있다. According to one embodiment, the first carbon nanotube sheet and the second carbon nanotube sheet, each comprising a plurality of carbon nanotubes extending in the first direction, manufacturing the first electrode fiber and The manufacturing of the second electrode fiber may include twisting one ends of the plurality of carbon nanotubes extending in the first direction, using the first direction as the rotation axis.
일 실시 예에 따르면, 상기 제1 기능성 물질은, 금속 산화물 입자를 포함하고, 상기 제1 기능성 물질을 제공하는 단계는, 상기 금속 산화물 입자가 분산된 소스 용액을 제조하는 단계, 및 상기 금속 산화물 입자가 분산된 소스 용액을 상기 제1 탄소나노튜브 시트 상에 제공하는 단계를 포함할 수 있다. According to an embodiment, the first functional material includes metal oxide particles, and the providing of the first functional material may include preparing a source solution in which the metal oxide particles are dispersed, and the metal oxide particles It may include providing a dispersed source solution on the first carbon nanotube sheet.
일 실시 예에 따르면, 상기 전극 섬유의 제조 방법은, 상기 금속 산화물 입자가 분산된 소스 용액이 상기 제1 탄소나노튜브 시트 상에 제공된 직후에(directly after), 상기 제1 탄소나노튜브 시트를 꼬아서, 상기 제1 전극 섬유를 제조하는 것을 포함할 수 있다. According to one embodiment, the electrode fiber manufacturing method, the first carbon nanotube sheet is twisted directly after the source solution in which the metal oxide particles are dispersed (directly after) is provided on the first carbon nanotube sheet. In some embodiments, the method may include manufacturing the first electrode fiber.
일 실시 예에 따르면, 상기 제1 기능성 물질은 환원된 그래핀 산화물을 포함하고, 상기 제2 기능성 물질은 이산화망간을 포함하되, 상기 제1 탄소나노튜브 시트 상에, 상기 제1 기능성 물질을 제공하는 단계는, 상기 환원된 그래핀 산화물이 분산된 소스 용액을 준비하는 단계, 및 상기 환원된 그래핀 산화물이 분산된 소스 용액을 상기 제1 탄소나노튜브 시트 상에 제공하는 단계를 포함하고, 상기 제2 탄소나노튜브 시트 상에, 상기 제2 기능성 물질을 제공하는 단계는, 상기 이산화망간이 분산된 소스 용액을 준비하는 단계, 및 상기 이산화망간이 분산된 소스 용액을 상기 제2 탄소나노튜브 시트 상에 제공하는 단계를 포함하고, 상기 환원된 그래핀 산화물이 분산된 소스 용액 내 상기 환원된 그래핀 산화물의 농도가, 상기 이상화망긴이 분산된 소스 용액 내 상기 이산화망간의 농도보다 높은 것을 포함할 수 있다. According to one embodiment, the first functional material comprises a reduced graphene oxide, the second functional material comprises manganese dioxide, on the first carbon nanotube sheet, to provide the first functional material The method may include preparing a source solution in which the reduced graphene oxide is dispersed, and providing a source solution in which the reduced graphene oxide is dispersed on the first carbon nanotube sheet. The providing of the second functional material on the second carbon nanotube sheet may include preparing a source solution in which the manganese dioxide is dispersed, and providing the source solution in which the manganese dioxide is dispersed on the second carbon nanotube sheet. And the concentration of the reduced graphene oxide in the source solution in which the reduced graphene oxide is dispersed, and the source solution in which the idealized manganese is dispersed. It may include higher than the concentration of the manganese dioxide in the.
일 실시 예에 따르면, 상기 제1 탄소나노튜브 시트 상에, 상기 제1 기능성 물질을 제공하는 단계는, 상기 환원된 그래핀 산화물이 분산된 소스 용액을 상기 제1 탄소나노튜브 시트 상에 제공하는 단계, 및 상기 환원된 그래핀 산화물이 분산된 소스 용액이 제공된 상기 제1 탄소나노튜브 시트를 건조하는 단계를 복수회 반복 수행하는 것을 포함할 수 있다. According to an embodiment, the providing of the first functional material on the first carbon nanotube sheet may include providing a source solution in which the reduced graphene oxide is dispersed on the first carbon nanotube sheet. And repeating the step of drying the first carbon nanotube sheet provided with the source solution in which the reduced graphene oxide is dispersed.
일 실시 예에 따르면, 상기 제1 기능성 물질은 은 나노 와이어를 포함하고, 상기 제2 기능성 물질은 아연 입자를 포함하며, 상기 제1 및 제2 전극 섬유를 서로 꼬으는 단계를 더 포함하되, 꼬인 상기 제1 전극 섬유의 개수가 상기 제2 전극 섬유의 개수보다 많은 것을 포함할 수 있다. According to one embodiment, the first functional material comprises silver nanowires, the second functional material comprises zinc particles, and further comprising twisting the first and second electrode fibers with each other, the twisted The number of the first electrode fibers may include more than the number of the second electrode fibers.
상기 기술적 과제를 해결하기 위해, 본 발명은 전극 섬유를 제공한다. In order to solve the above technical problem, the present invention provides an electrode fiber.
일 실시 예에 따르면, 상기 전극 섬유는, 탄소나노튜브 시트, 및 기능성 물질을 포함하는 전극 섬유를 포함하되, 상기 전극 섬유의 내부 영역은, 상기 탄소나노튜브 시트가 말리고(rolled) 적층된(stacked) 형태로 제공되고, 말리고 적층된 상기 탄소나노튜브 시트 사이에 상기 기능성 물질이 제공되는 것을 포함할 수 있다. According to one embodiment, the electrode fiber comprises a carbon nanotube sheet and an electrode fiber comprising a functional material, wherein an inner region of the electrode fiber is rolled and stacked on the carbon nanotube sheet. It may include that the functional material is provided between the carbon nanotube sheet is provided in the form, dried and laminated.
일 실시 예에 따르면, 상기 전극 섬유는 제1 방향으로 연장하고, 상기 제1 방향을 법선으로 갖는 제1 평면으로 절취한 상기 전극 섬유의 단면에서, 상기 탄소나노튜브 시트의 단면은 나선형(spiral)으로 제공되되, 상기 제1 방향을 법선으로 갖는 상기 제1 평면으로 절취한 상기 전극 섬유의 단면에서, 나선형의 상기 탄소나노튜브 시트 사이에 상기 기능성 물질이 제공되며, 상기 전극 섬유 내에서, 상기 기능성 물질의 함량이, 상기 탄소나노튜브 시트의 함량보다 높은 것을 포함할 수 있다. According to one embodiment, the electrode fiber extends in a first direction, and in the cross section of the electrode fiber cut into the first plane having the first direction as a normal, the cross section of the carbon nanotube sheet is spiral Wherein, in the cross section of the electrode fiber cut into the first plane having the first direction as a normal, the functional material is provided between the helical carbon nanotube sheets, and within the electrode fiber, the functional The content of the material may include higher than the content of the carbon nanotube sheet.
일 실시 예에 따르면, 상기 탄소나노튜브 시트는 제1 탄소나노튜브 시트 및 제2 탄소나노튜브 시트를 포함하고, 상기 기능성 물질은 제1 기능성 물질 및 제2 기능성 물질을 포함하고, 상기 전극 섬유는 상기 제1 기능성 물질이 상기 제1 탄소나노튜브 시트 상에 제공된 제1 전극 섬유 및 상기 제2 기능성 물질이 상기 제2 탄소나노튜브 시트 상에 제공된 제2 전극 섬유를 포함할 수 있다. According to one embodiment, the carbon nanotube sheet includes a first carbon nanotube sheet and a second carbon nanotube sheet, the functional material comprises a first functional material and a second functional material, the electrode fiber The first functional material may include a first electrode fiber provided on the first carbon nanotube sheet, and the second functional material may include a second electrode fiber provided on the second carbon nanotube sheet.
일 실시 예에 따르면, 상기 전극 섬유는, 상기 제1 및 제2 전극 섬유 내에서, 각각 상기 제1 및 제2 기능성 물질의 함량이, 상기 제1 및 제2 탄소나노튜브 시트의 함량보다 높은 것을 포함할 수 있다. According to one embodiment, the electrode fibers, the first and second electrode fibers, the content of the first and second functional material, respectively, higher than the content of the first and second carbon nanotube sheet It may include.
일 실시 예에 따르면, 상기 제1 기능성 물질은 환원된 그래핀 산화물을 포함하고, 상기 제2 기능성 물질은 이산화망간을 포함하되, 상기 제1 전극 섬유에서 상기 환원된 그래핀 산화물의 wt%가, 상기 제2 전극 섬유에서 상기 이산화망간의 wt%보다, 높은 것을 포함할 수 있다. According to one embodiment, the first functional material comprises a reduced graphene oxide, the second functional material comprises manganese dioxide, wt% of the reduced graphene oxide in the first electrode fiber, It may include higher than the wt% of the manganese dioxide in the second electrode fiber.
일 실시 예에 따르면, 상기 제1 전극 섬유에서 상기 제1 탄소나노튜브 시트의 개수는, 상기 제2 전극 섬유에서 상기 제2 탄소나노튜브 시트의 개수보다, 많은 것을 포함할 수 있다. According to an embodiment, the number of the first carbon nanotube sheets in the first electrode fibers may include more than the number of the second carbon nanotube sheets in the second electrode fibers.
일 실시 예에 따르면, 상기 환원된 그래핀 산화물은 질소 도핑된 것을 포함할 수 있다. According to one embodiment, the reduced graphene oxide may include nitrogen doped.
일 실시 예에 따르면, 상기 제1 기능성 물질은 은 나노 와이어를 포함하고, 상기 제2 기능성 물질은 아연 입자를 포함하되, 상기 은 나노 와이어의 wt%가, 상기 아연 입자의 wt%보다, 높은 것을 포함할 수 있다. According to one embodiment, wherein the first functional material comprises silver nanowires, and the second functional material comprises zinc particles, wherein the wt% of the silver nanowires is higher than the wt% of the zinc particles. It may include.
일 실시 예에 따르면, 상기 전극 섬유는, 상기 제1 전극 섬유에서 상기 은 나노 와이어의 wt%와 상기 제2 전극 섬유에서 상기 아연 입자의 wt%는 동일한 것을 포함할 수 있다. According to an embodiment, the electrode fibers may include wt% of the silver nanowires in the first electrode fiber and wt% of the zinc particles in the second electrode fiber.
일 실시 예에 따르면, 상기 제1 전극 섬유 및 상기 제2 전극 섬유는 서로 꼬이되, x개의 상기 제1 전극 섬유가 y개의 상기 제2 전극 섬유와 꼬인 것을 포함하고, x 및 y는 0보다 큰 자연수이고, x는 y보다 큰 것을 포함할 수 있다. According to an embodiment, the first electrode fiber and the second electrode fiber are twisted with each other, wherein x first electrode fibers are twisted with y second electrode fibers, and x and y are greater than zero. Is a natural number, and x may include greater than y.
일 실시 예에 따르면, 상기 전극 섬유는, x = 2y인 것을 포함할 수 있다.According to an embodiment, the electrode fiber may include x = 2y.
본 발명의 제1 실시 예에 따른 전극 섬유의 제조 방법은, 탄소나노튜브 시트 상에 에너지 저장 입자를 제공하는 단계, 및 상기 에너지 저장 입자가 제공된 상기 탄소나노튜브 시트를 꼬아서, 제1 방향으로 연장하는 베이스 섬유를 제조하는 단계를 포함할 수 있다. 이에 따라, 상기 베이스 섬유 내 상기 에너지 저장 입자의 함량이 최대화될 수 있고, 이로 인해, 제조 공정이 간소화되고, 제조 비용이 감소된 전극 섬유 및 그 제조 방법이 제공될 수 있다. In the method of manufacturing an electrode fiber according to the first embodiment of the present invention, providing energy storage particles on a carbon nanotube sheet, and twisting the carbon nanotube sheet provided with the energy storage particles in a first direction. It may comprise the step of producing the extending base fibers. Accordingly, the content of the energy storage particles in the base fiber can be maximized, thereby providing an electrode fiber and a method of manufacturing the same, which simplifies the manufacturing process and reduces the manufacturing cost.
본 발명의 제2 실시 예에 따른 전극 섬유는, 환원된 그래핀 산화물과 상기 환원된 그래핀 산화물을 둘러싸도록 꼬인 제1 탄소나노튜브 시트를 포함하는 제1 전극 섬유 및 이산화망간과 상기 이산화망간을 둘러싸도록 꼬인 제2 탄소나노튜브 시트를 포함하는 제2 전극 섬유를 포함할 수 있다. 이에 따라, 상기 제2 실시 예에 따른 전극 섬유를 이용하여 슈퍼커패시터를 제조하는 경우, 상기 환원된 그래핀 산화물 및 상기 이산화망간을 포함하는 고효율의 비대칭 슈퍼커패시터가 제공될 수 있다.The electrode fiber according to the second embodiment of the present invention includes a first electrode fiber and a manganese dioxide and a manganese dioxide including a reduced graphene oxide and a first carbon nanotube sheet twisted to surround the reduced graphene oxide. It may comprise a second electrode fiber comprising a twisted second carbon nanotube sheet. Accordingly, when the supercapacitor is manufactured using the electrode fiber according to the second embodiment, a highly efficient asymmetric supercapacitor including the reduced graphene oxide and the manganese dioxide may be provided.
또한, 상기 제2 실시 예에 따른 전극 섬유는, 상기 제1 및 제2 탄소나노튜브 시트를 이용하여 섬유를 제조하기 전에, 상기 제1 및 제2 탄소나노튜브 시트 상에 상기 환원된 그래핀 산화물, 및 상기 이산화망간이 제공되고, 상기 환원된 그래핀 산화물, 및 상기 이산화망간이 제공된 상태에서, 상기 제1 및 제2 탄소나노튜브 시트를 꼬아서, 상기 제1 및 제2 전극 섬유가 제조될 수 있다. 이에 따라, 상기 제1 및 제2 전극 섬유 내에 상기 환원된 그래핀 산화물, 및 상기 이산화망간의 함량이 증가되고, 상기 제2 실시 예에 따른 전극 섬유를 이용하여 슈퍼커패시터를 제조하는 경우, 슈퍼커패시터의 에너지 저장량이 향상될 수 있다.In addition, the electrode fiber according to the second embodiment, the graphene oxide is reduced on the first and second carbon nanotube sheet before the fiber is manufactured using the first and second carbon nanotube sheet And the manganese dioxide is provided, and the reduced graphene oxide and the manganese dioxide are provided, the first and second carbon nanotube sheets are twisted to produce the first and second electrode fibers. . Accordingly, the content of the reduced graphene oxide and the manganese dioxide in the first and second electrode fibers is increased, and when manufacturing a supercapacitor using the electrode fibers according to the second embodiment, Energy storage can be improved.
본 발명의 제3 실시 예에 따른 전극 섬유를 포함하는 은-아연 전지는, 은 나노 와이어, 및 상기 은 나노 와이어를 둘러싸도록 꼬인 제1 탄소나노튜브 시트를 포함하는 제1 전극 섬유, 아연 입자 및 상기 아연 입자를 둘러싸도록 꼬인 제2 탄소나노튜브 시트를 포함하는 제2 전극 섬유, 상기 제1 전극 섬유 및 상기 제2 전극 섬유 사이의 전해질을 포함할 수 있다. 이에 따라, 상기 은 나노 와이어 및 상기 아연 입자를 포함하는 고효율의 은-아연 전지가 제공될 수 있다. The silver-zinc battery including the electrode fiber according to the third embodiment of the present invention includes a first electrode fiber, zinc particles, including a silver nanowire, and a first carbon nanotube sheet twisted to surround the silver nanowire. It may include a second electrode fiber including a second carbon nanotube sheet twisted to surround the zinc particles, an electrolyte between the first electrode fiber and the second electrode fiber. Accordingly, a high-efficiency silver-zinc battery including the silver nanowires and the zinc particles may be provided.
또한, 제3 실시 예에 따른 전극 섬유를 포함하는 은-아연 전지는, 상기 제1 및 제2 탄소나노튜브 시트를 이용하여 섬유를 제조하기 전에, 상기 제1 및 제2 탄소나노튜브 시트 상에 상기 은 나노 와이어, 및 상기 아연 입자가 제공되고, 상기 은 나노 와이어, 및 상기 아연 입자가 제공된 상태에서, 상기 제1 및 제2 탄소나노튜브 시트를 꼬아서, 상기 제1 및 제2 전극 섬유가 제조될 수 있다. 이에 따라, 상기 제1 및 제2 전극 섬유 내에 상기 은 나노 와이어, 및 상기 아연 입자의 함량이 증가되고, 상기 은-아연 전지의 에너지 저장량이 향상될 수 있다.In addition, the silver-zinc battery including the electrode fiber according to the third embodiment, on the first and the second carbon nanotube sheet, before the fiber is manufactured using the first and second carbon nanotube sheet. When the silver nanowires and the zinc particles are provided, and the silver nanowires and the zinc particles are provided, the first and second carbon nanotube sheets are twisted to form the first and second electrode fibers. Can be prepared. Accordingly, the content of the silver nanowires and the zinc particles in the first and second electrode fibers may be increased, and energy storage of the silver-zinc battery may be improved.
도 1은 본 발명의 제1 실시 예에 따른 전극 섬유의 제조 방법을 설명하기 위한 순서도이다. 1 is a flowchart illustrating a method of manufacturing an electrode fiber according to a first embodiment of the present invention.
도 2 내지 도 4는 본 발명의 제1 실시 예에 따른 전극 섬유의 제조 공정을 설명하기 위한 도면들이다. 2 to 4 are views for explaining the manufacturing process of the electrode fiber according to the first embodiment of the present invention.
도 5는, 본 발명의 실시 예 1-1 및 1-2에 따른 전극 섬유의 제조 방법에 따라 제조된 베이스 섬유, 복합 섬유, 및 전극 직물을 촬영한 사진들이다.5 is a photograph of a base fiber, a composite fiber, and an electrode fabric prepared according to the method for manufacturing electrode fibers according to Examples 1-1 and 1-2 of the present invention.
도 6a 및 도 6b는 본 발명의 실시 예 1-2, 실시 예 1-10, 및 비교 예 1-2에 따른 복합 섬유들의 기계적 성질을 나타내는 그래프이다. 6A and 6B are graphs showing the mechanical properties of the composite fibers according to Examples 1-2, Examples 1-10, and Comparative Examples 1-2 of the present invention.
도 7은 본 발명의 실시 예 1-9에 따른 복합 섬유의 SEM 사진이다. 7 is a SEM photograph of a composite fiber according to Examples 1-9 of the present invention.
도 8은 본 발명의 실시 예 1-4 내지 실시 예 1-6 및 비교 예 1-1에 따른 슈퍼 커패시터들의 순환전압전류 및 충방전 특성을 비교한 그래프들이다. 8 are graphs comparing cyclic voltage current and charge / discharge characteristics of supercapacitors according to Examples 1-4 to 1-6 and Comparative Example 1-1 of the present invention.
도 9는 본 발명의 실시 예 1-4 내지 실시 예 1-6 및 비교 예 1-1에 따른 슈퍼 커패시터의 용량 특성을 비교한 그래프들이다. 9 are graphs comparing the capacitance characteristics of the supercapacitors according to Examples 1-4 to 1-6 and Comparative Examples 1-1 of the present invention.
도 10은 본 발명의 실시 예 1-8에 따른 비대칭 슈퍼 커패시터의 특성을 나타내는 그래프들이다. 10 are graphs illustrating characteristics of an asymmetric supercapacitor according to Examples 1-8 of the present invention.
도 11은 본 발명의 실시 예 1-6에 따른 슈퍼 커패시터의 특성을 나타내는 그래프들이다. 11 are graphs illustrating characteristics of a super capacitor according to Examples 1-6 of the present invention.
도 12는 본 발명의 실시 예 1-7에 따른 슈퍼 커패시터의 특성을 나타내는 그래프이다. 12 is a graph showing the characteristics of the super capacitor according to the embodiment 1-7 of the present invention.
도 13은 본 발명의 실시 예 1-6 및 1-7에 따른 슈퍼 커패시터들의 에너지 밀도를 나타내는 그래프이다. 13 is a graph showing energy densities of supercapacitors according to Examples 1-6 and 1-7 of the present invention.
도 14 및 도 15는 본 발명의 제2 실시 예에 따른 전극 섬유가 포함하는 제1 전극 섬유의 제조 공정을 설명하기 위한 도면들이다. 14 and 15 are views for explaining a manufacturing process of the first electrode fiber included in the electrode fiber according to the second embodiment of the present invention.
도 16 및 도 17은 본 발명의 제2 실시 예에 따른 전극 섬유가 포함하는 제2 전극 섬유의 제조 공정을 설명하기 위한 도면들이다. 16 and 17 are diagrams for describing a manufacturing process of the second electrode fibers included in the electrode fibers according to the second embodiment of the present invention.
도 18은 본 발명의 제2 실시 예에 따른 전극 섬유를 포함하는 슈퍼커패시터 및 그 제조 방법을 설명하는 도면이다. 18 is a view illustrating a supercapacitor including an electrode fiber and a method of manufacturing the same according to the second embodiment of the present invention.
도 19는 본 발명의 제2 실시 예에 따른 전극 섬유가 포함하는 제1 전극 섬유를 촬영한 사진이다. 19 is a photograph of the first electrode fibers included in the electrode fibers according to the second exemplary embodiment of the present invention.
도 20은 본 발명의 제2 실시 예에 따른 전극 섬유가 포함하는 제2 전극 섬유를 촬영한 사진이다. 20 is a photograph of the second electrode fibers included in the electrode fibers according to the second exemplary embodiment of the present invention.
도 21은 본 발명의 비교 예 2-1에 따른 슈퍼커패시터의 전기화학특성을 나타내는 그래프이다. 21 is a graph showing the electrochemical characteristics of the supercapacitor according to Comparative Example 2-1 of the present invention.
도 22는 본 발명의 실시 예 2-1에 따른 제1 전극 섬유의 환원된 그래핀 산화물의 함량에 따른 특성을 비교한 그래프이다. FIG. 22 is a graph comparing characteristics of the reduced graphene oxide content of the first electrode fibers according to Example 2-1 of the present invention. FIG.
도 23은 본 발명의 실시 예 2-1 및 2-2에 따른 제1 전극 섬유 및 제2 전극 섬유의 특성을 비교하는 그래프이다. 23 is a graph comparing the characteristics of the first electrode fibers and the second electrode fibers according to Examples 2-1 and 2-2 of the present invention.
도 24는 본 발명의 실시 예 2-3에 따른 슈퍼커패시터의 특성을 나타내는 그래프이다. 24 is a graph showing the characteristics of the supercapacitor according to the embodiment 2-3 of the present invention.
도 25는 본 발명의 실시 예 2-4에 따른 슈퍼커패시터의 특성을 나타내는 그래프이다. 25 is a graph showing the characteristics of the supercapacitor according to the embodiment 2-4 of the present invention.
도 26은 본 발명의 실시 예 2-3 및 2-4에 따른 슈퍼커패시터들의 특성을 비교하는 그래프이다. FIG. 26 is a graph comparing characteristics of supercapacitors according to Examples 2-3 and 2-4 of the present invention. FIG.
도 27는 본 발명의 실시 예 2-3, 2-4 및 비교 예 2-2 내지 2-7에 따른 슈퍼커패시터들의 에너지 저장특성을 비교한 그래프이다. 27 is a graph comparing energy storage characteristics of supercapacitors according to Examples 2-3, 2-4 and Comparative Examples 2-2 to 2-7 of the present invention.
도 28는 본 발명의 실시 예 2-3, 2-6, 2-7에 따른 슈퍼커패시터, 제1 전극, 및 제2 전극의 전기화학특성을 나타내는 그래프이다. 28 is a graph illustrating electrochemical characteristics of the supercapacitor, the first electrode, and the second electrode according to Examples 2-3, 2-6, and 2-7 of the present invention.
도 29는 본 발명의 실시 예 2-3 및 2-4에 따른 슈퍼커패시터들의 전기화학특성을 나타내는 그래프이다. 29 is a graph showing the electrochemical characteristics of the supercapacitors according to Examples 2-3 and 2-4 of the present invention.
도 30은 본 발명의 실시 예 2-3 및 비교 예 2-1에 따른 슈퍼커패시터들의 특성을 비교하는 그래프이다. 30 is a graph comparing characteristics of the supercapacitors according to Example 2-3 and Comparative Example 2-1 of the present invention.
도 31은 본 발명의 실시 예 2-3에 따른 슈퍼커패시터의 충방전 특성을 나타내는 그래프이다. 31 is a graph showing charge and discharge characteristics of a supercapacitor according to Example 2-3 of the present invention.
도 32는 본 발명의 실시 예 2-5에 따른 전극 직물 및 이를 이용한 회로의 작동을 촬영한 사진이다. 32 is a photograph showing the operation of the electrode fabric and the circuit using the same according to the embodiment 2-5 of the present invention.
도 33은 본 발명의 실시 예 2-5에 따른 전극 직물을 직렬 연결 및 병렬 연결한 경우 전기화학특성을 나타내는 그래프이다. 33 is a graph showing electrochemical characteristics when the electrode fabrics according to Example 2-5 of the present invention are connected in series and in parallel.
도 34는 본 발명의 실시 예 2-5에 따른 전극 직물을 직렬 연결한 경우와 병렬 연결한 경우에 대해 특성을 비교한 그래프이다. 34 is a graph comparing characteristics of the electrode fabrics according to the embodiment 2-5 of the present invention and the parallel connection.
도 35는 본 발명의 실시 예 2-5에 따른 전극 직물의 내구성을 나타내는 그래프이다. 35 is a graph showing the durability of the electrode fabric according to Example 2-5 of the present invention.
도 36 및 도 37 본 발명의 제3 실시 예에 따른 전극 섬유가 포함하는 제1 전극 섬유의 제조 공정을 설명하기 위한 도면들이다.36 and 37 are views for explaining a manufacturing process of the first electrode fibers included in the electrode fiber according to the third embodiment of the present invention.
도 38 및 도 39는 본 발명의 제3 실시 예에 따른 전극 섬유가 포함하는 제2 전극 섬유의 제조 공정을 설명하기 위한 도면들이다. 38 and 39 are views for explaining a manufacturing process of the second electrode fibers included in the electrode fiber according to the third embodiment of the present invention.
도 40은 본 발명의 제3 실시 예에 따른 전극 섬유를 포함하는 은-아연 전지 및 그 제조 방법을 설명하는 도면이다. 40 is a view illustrating a silver-zinc battery including an electrode fiber and a method of manufacturing the same according to the third embodiment of the present invention.
도 41은 본 발명의 실시 예 3-1에 따른 전극 섬유가 포함하는 제1 전극 섬유를 촬영한 사진이다. FIG. 41 is a photograph of the first electrode fibers included in the electrode fibers according to Example 3-1 of the present invention. FIG.
도 42는 본 발명의 실시 예 3-2에 따른 전극 섬유가 포함하는 제2 전극 섬유를 촬영한 사진이다. FIG. 42 is a photograph of a second electrode fiber included in the electrode fiber according to Example 3-2 of the present invention. FIG.
도 43은 본 발명의 실시 예 3-3 및 비교 예 3-1에 따른 은-아연 전지의 전기화학특성을 나타내는 그래프이다. 43 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-3 and Comparative Example 3-1 of the present invention.
도 44는 본 발명의 실시 예 3-3에 따른 은-아연 전지의 전기화학특성을 나타내는 그래프이다. 44 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-3 of the present invention.
도 45는 본 발명의 실시 예 3-4에 다른 은-아연 전지의 전기화학특성을 나타내는 그래프이다. 45 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-4 of the present invention.
도 46은 본 발명의 실시 예 3-4에 따른 은-아연 전지 와 비교 예 3-2 내지 3-4에 따른 전지들의 특성을 비교하는 그래프이다. 46 is a graph comparing characteristics of silver-zinc batteries according to Example 3-4 and batteries according to Comparative Examples 3-2 to 3-4.
도 47은 본 발명의 실시 예 3-4에 따른 은-아연 전지의 신축성을 나타내는 그래프이다. 47 is a graph showing the stretchability of a silver-zinc battery according to Example 3-4 of the present invention.
도 48은 본 발명의 실시 예 3-4에 따른 은-아연 전지의 연결 방식에 따른 성능을 나타내는 그래프이다. 48 is a graph showing the performance according to the connection method of the silver-zinc battery according to the embodiment 3-4 of the present invention.
도 49는 본 발명의 실시 예 3-5에 따른 전극 직물이 사용된 디바이스를 촬영한 사진이다.49 is a photograph of a device using an electrode fabric according to Examples 3-5 of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the technical idea of the present invention is not limited to the exemplary embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete, and that the spirit of the present invention can be sufficiently delivered to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is mentioned to be on another component, it means that it may be formed directly on the other component or a third component may be interposed therebetween. In addition, in the drawings, the thicknesses of films and regions are exaggerated for effective explanation of technical contents.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Thus, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. In addition, the term 'and / or' is used herein to include at least one of the components listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다. In the specification, the singular encompasses the plural unless the context clearly indicates otherwise. In addition, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, element, or combination thereof described in the specification, and one or more other features or numbers, steps, configurations It should not be understood to exclude the possibility of the presence or the addition of elements or combinations thereof. In addition, the term "connection" is used herein to mean both indirectly connecting a plurality of components, and directly connecting.
또한, "기능성 물질"의 용어는 에너지 저장 물질, 환원된 그래핀 산화물, 이산화망간, 은 나노 와이어 등을 모두 포함하는 의미로 사용된다. In addition, the term "functional material" is used to include all energy storage materials, reduced graphene oxide, manganese dioxide, silver nanowires and the like.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
제1 실시 예에 따른 전극 섬유 및 그 제조 방법An electrode fiber and a method of manufacturing the same according to the first embodiment
도 1은 본 발명의 제1 실시 예에 따른 전극 섬유의 제조 방법을 설명하기 위한 순서도이고, 도 2 내지 도 4는 본 발명의 제1 실시 예에 따른 전극 섬유의 제조 공정을 설명하기 위한 도면들이다. 1 is a flowchart illustrating a method of manufacturing an electrode fiber according to the first embodiment of the present invention, Figures 2 to 4 are views for explaining a manufacturing process of the electrode fiber according to the first embodiment of the present invention. .
도 1 및 도 2를 참조하면, 탄소나노튜브 시트(110)이 준비될 수 있다(S110). 일 실시 예에 따르면, 상기 탄소나노튜브 시트(110)를 준비하는 단계는, 화학 기상 증착법으로 탄소나노튜브 숲(forest)을 제조하는 단계, 및 상기 탄소나노튜브 숲으로부터 상기 탄소나노튜브 시트(110)를 제조하는 단계를 포함할 수 있다. 1 and 2, the carbon nanotube sheet 110 may be prepared (S110). According to an embodiment, the preparing of the carbon nanotube sheet 110 may include preparing a carbon nanotube forest by chemical vapor deposition, and the carbon nanotube sheet 110 from the carbon nanotube forest. ) May be prepared.
일 실시 예에 따르면, 상기 탄소나노튜브 시트(110)는 제1 방향으로 연장하는 복수의 탄소나노튜브를 포함할 수 있다. 또한, 일 실시 예에 따르면, 상기 복수의 탄소나노튜브는 다중벽 탄소나노튜브(MWCNT)일 수 있다. According to one embodiment, the carbon nanotube sheet 110 may include a plurality of carbon nanotubes extending in a first direction. Further, according to one embodiment, the plurality of carbon nanotubes may be multi-walled carbon nanotubes (MWCNT).
일 실시 예에 따르면, 상기 탄소나노튜브 시트(110)는 지지 기판(100) 상에 준비될 수 있다. 예를 들어, 상기 지지 기판(100)은 유리 기판일 수 있다. 또는, 다른 예를 들어, 상기 지지 기판(100)은 플라스틱 기판, 반도체 기판, 세라믹 기판, 또는 금속 기판 중 어느 하나를 포함할 수 있다. According to an embodiment, the carbon nanotube sheet 110 may be prepared on the support substrate 100. For example, the support substrate 100 may be a glass substrate. Alternatively, for example, the support substrate 100 may include any one of a plastic substrate, a semiconductor substrate, a ceramic substrate, and a metal substrate.
상기 탄소나노튜브 시트(110) 상에 에너지 저장 입자(energy storage particle, 120)이 제공될 수 있다(S120). 상기 에너지 저장 입자(120)는 상기 탄소나노튜브 시트(110)보다 낮은 전도성을 가질 수 있고, 상기 탄소나노튜브 시트(110)보다 높은 전하 저장 능력을 가질 수 있다. 일 실시 예에 따르면, 상기 에너지 저장 입자(120)는 금속 산화물 입자를 포함할 수 있다. 구체적으로 예를 들어, 상기 에너지 저장 입자(120)는 망간 산화물, 루테늄 산화물 등을 포함할 수 있다. Energy storage particles 120 may be provided on the carbon nanotube sheet 110 (S120). The energy storage particles 120 may have a lower conductivity than the carbon nanotube sheet 110 and may have a higher charge storage capability than the carbon nanotube sheet 110. According to one embodiment, the energy storage particles 120 may include metal oxide particles. Specifically, for example, the energy storage particles 120 may include manganese oxide, ruthenium oxide, and the like.
상기 에너지 저장 입자(120)를 상기 탄소나노튜브 시트(110) 상에 제공하는 단계는, 용매에 상기 에너지 저장 입자(120)를 분산하여 소스 용액을 제조하는 단계, 및 상기 소스 용액을 상기 탄소나노튜브 시트(110) 상에 제공하는 단계를 포함할 수 있다. 일 실시 예에 따르면, 상기 소스 용액은, 상기 용매에 상기 에너지 저장 입자(120)를 투입하고 초음파 처리하여, 상기 에너지 저장 입자(120)를 분산시키는 방법으로 제조될 수 있다. 예를 들어, 상기 용매는 에탄올일 수 있다. 또한, 일 실시 예에 따르면, 상기 소스 용액은 drop casting 방법으로 상기 탄소나노튜브 시트(110) 상에 제공될 수 있다. Providing the energy storage particles 120 on the carbon nanotube sheet 110, dispersing the energy storage particles 120 in a solvent to prepare a source solution, and the source solution to the carbon nano Providing on tube sheet 110. According to an embodiment of the present disclosure, the source solution may be prepared by adding the energy storage particles 120 to the solvent and performing ultrasonic treatment to disperse the energy storage particles 120. For example, the solvent may be ethanol. In addition, according to one embodiment, the source solution may be provided on the carbon nanotube sheet 110 by a drop casting method.
일 실시 예에 따르면, 상기 소스 용액 내의 상기 에너지 저장 입자(120)의 사이즈는 실질적으로 서로 동일할 수 있다. 또는, 다른 실시 예에 따르면, 상기 소스 용액 내의 상기 에너지 저장 입자(120)의 사이즈는 서로 다를 수 있다. According to one embodiment, the size of the energy storage particles 120 in the source solution may be substantially the same. Alternatively, according to another embodiment, sizes of the energy storage particles 120 in the source solution may be different.
도 1 및 도 3을 참조하면, 상기 에너지 저장 입자(120)가 제공된 상기 탄소나노튜브 시트(110)를 꼬아서, 베이스 섬유(base yarn, 130)가 제조될 수 있다(S130). 일 실시 예에 따르면, 상기 베이스 섬유(130)를 제조하는 단계는, 상기 복수의 탄소나노튜브가 연장하는 상기 제1 방향을 회전축으로 사용하여, 상기 복수의 탄소나노튜브의 일단들을 꼬으는(twist) 것을 포함할 수 있다. 예를 들어, 상기 에너지 저장 입자(120)가 제공된 상기 탄소나노튜브 시트(110)는 미터당 약 2,000회 꼬여질 수 있다. 1 and 3, by twisting the carbon nanotube sheet 110 provided with the energy storage particles 120, a base fiber 130 may be manufactured (S130). According to an embodiment, the manufacturing of the base fiber 130 may include twisting one ends of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. It may include). For example, the carbon nanotube sheet 110 provided with the energy storage particles 120 may be twisted about 2,000 times per meter.
이에 따라, 상기 베이스 섬유(130)의 내부 영역은, 상기 탄소나노튜브 시트(110)가 말리고(rolled) 적층된(stacked) 형태로 제공될 수 있다. 말리고 적층된 상기 탄소나노튜브 시트(110) 사이에 상기 에너지 저장 입자(120)가 제공될 수 있다. 다시 말하면, 상기 베이스 섬유(130)가 연장하는 상기 제1 방향을 법선으로 갖는 제1 평면이 정의되는 경우, 상기 제1 평면으로 절취한 상기 베이스 섬유(130)의 단면에서, 상기 탄소나노튜브 시트(110)의 단면은 나선형(spiral)으로 제공되고, 나선형의 상기 탄소나노튜브 시트(110) 사이에 상기 에너지 저장 입자(120)가 제공될 수 있다. Accordingly, the inner region of the base fiber 130 may be provided in a form in which the carbon nanotube sheet 110 is rolled and stacked. The energy storage particles 120 may be provided between the carbon nanotube sheets 110 which are dried and stacked. In other words, when a first plane having a normal line in the first direction in which the base fiber 130 extends is defined, in the cross section of the base fiber 130 cut into the first plane, the carbon nanotube sheet A cross section of 110 may be provided in a spiral shape, and the energy storage particles 120 may be provided between the carbon nanotube sheet 110 in a spiral shape.
일 실시 예에 따르면, 상기 베이스 섬유(130)에서, 상기 에너지 저장 입자(120)의 함량이, 상기 탄소나노튜브 시트(110)의 함량보다 높을 수 있다. According to one embodiment, in the base fiber 130, the content of the energy storage particles 120 may be higher than the content of the carbon nanotube sheet 110.
일 실시 예에 따르면, 상술된 바와 같이, 상기 에너지 저장 입자(120)가 상기 소스 용액을 이용하여 형성되는 경우, 상기 소스 용액이 상기 탄소나노튜브 시트(110) 상에 제공된 직후에(directly after), 상기 탄소나노튜브 시트(110)를 꼬아서, 상기 베이스 섬유(130)가 제조될 수 있다. 다시 말하면, 상기 소스 용액 내의 상기 용매가 건조되기 전, 상기 탄소나노튜브 시트(110)가 꼬여, 상기 베이스 섬유(130)가 제조될 수 있다. 이에 따라, 상기 에너지 저장 입자(120)가 응집(aggregation)되는 것이 최소화될 수 있다. According to an embodiment, as described above, when the energy storage particles 120 are formed using the source solution, immediately after the source solution is provided on the carbon nanotube sheet 110. By twisting the carbon nanotube sheet 110, the base fiber 130 may be manufactured. In other words, before the solvent is dried in the source solution, the carbon nanotube sheet 110 is twisted, and the base fiber 130 may be manufactured. Accordingly, aggregation of the energy storage particles 120 may be minimized.
만약, 상술된 본 발명의 실시 예와 달리, 상기 탄소나노튜브 시트(110) 상에 상기 소스 용액이 제공된 직후에 상기 탄소나노튜브 시트(110)가 꼬여 상기 베이스 섬유(130)가 제조되지 않고, 상기 소스 용액이 제공되고 상기 베이스 섬유(130)를 제조하기 전 추가적인 공정이 수행되는 경우, 상기 소스 용액 내의 용매가 증발될 수 있다. 이에 따라, 상기 탄소나노튜브 시트(110) 상의 상기 에너지 저장 입자(120)들이 서로 응집될 수 있다. 이로 인해, 상기 베이스 섬유(130) 내에 상기 에너지 저장 입자(120)들의 분산도가 저하되어, 상기 베이스 섬유(130)의 일부분에 상기 에너지 저장 입자(120)가 집중적으로 분포되어, 상기 베이스 섬유(130)의 전기적, 화학적, 물리적 특성의 균일성(uniformity)가 저하될 수 있다. If, unlike the above-described embodiment of the present invention, the carbon nanotube sheet 110 is twisted immediately after the source solution is provided on the carbon nanotube sheet 110, the base fiber 130 is not manufactured, When the source solution is provided and an additional process is performed before the base fiber 130 is prepared, the solvent in the source solution may be evaporated. Accordingly, the energy storage particles 120 on the carbon nanotube sheet 110 may aggregate with each other. Thus, the dispersion degree of the energy storage particles 120 in the base fiber 130 is lowered, so that the energy storage particles 120 are concentrated in a portion of the base fiber 130, the base fiber ( The uniformity of electrical, chemical, and physical properties of 130 may be degraded.
하지만, 상술된 바와 같이, 본 발명의 실시 예에 따르면, 상기 소스 용액이 상기 탄소나노튜브 시트(110) 상에 제공된 직후에(directly after), 상기 탄소나노튜브 시트(110)를 꼬아서, 상기 베이스 섬유(130)가 제조될 수 있고, 이에 따라, 상기 베이스 섬유(130)의 전기적, 물리적, 화학적 특성의 균일성이 향상될 수 있다. However, as described above, according to an embodiment of the present invention, immediately after the source solution is provided on the carbon nanotube sheet 110 (twist the carbon nanotube sheet 110), the The base fiber 130 may be manufactured, and thus, uniformity of electrical, physical, and chemical properties of the base fiber 130 may be improved.
또한, 상술된 바와 같이, 상기 탄소나노튜브 시트(110)를 이용하여 섬유를 제조하기 전에, 상기 탄소나노튜브 시트(110) 상에 상기 에너지 저장 입자(120)가 제공되고, 상기 에너지 저장 입자(120)가 상기 탄소나노튜브 시트(110) 상에 제공된 상태에서, 상기 탄소나노튜브 시트(110)를 꼬아서, 상기 베이스 섬유(130)가 제조될 수 있다. 이에 따라, 상기 베이스 섬유(130) 내에 상기 에너지 저장 입자(120)의 함량이 증가될 수 있다. In addition, as described above, before the fiber is manufactured using the carbon nanotube sheet 110, the energy storage particles 120 are provided on the carbon nanotube sheet 110, and the energy storage particles ( In the state where 120 is provided on the carbon nanotube sheet 110, the base fiber 130 may be manufactured by twisting the carbon nanotube sheet 110. Accordingly, the content of the energy storage particles 120 in the base fiber 130 may be increased.
만약, 상술된 본 발명의 실시 예와 달리, 상기 탄소나노튜브 시트(110)로부터 섬유를 제조한 후, 상기 섬유 상에 상기 에너지 저장 입자(120)를 제공하는 경우, 상기 에너지 저장 입자(120)가, 실질적으로 상기 섬유의 표면에 주로(mainly) 위치하고, 상기 섬유의 내부 영역을 채우는 것이 용이하지 않다. 이에 따라, 상기 에너지 저장 입자(120)가 상기 섬유로부터 용이하게 분리되거나, 또는, 상기 섬유 내에 상기 에너지 저장 입자(120)의 함량을 높이는데 한계가 있을 수 있다. 또한, 상술된 바와 같이, 상기 소스 용액을 상기 탄소나노튜브 시트(110)에 제공하는 간단한 공정으로, 상기 에너지 저장 입자(120)를 갖는 상기 섬유를 제조하는 것이 용이하지 않다. If, unlike the above-described embodiment of the present invention, after producing the fiber from the carbon nanotube sheet 110, when providing the energy storage particles 120 on the fiber, the energy storage particles 120 Is substantially located primarily on the surface of the fiber and is not easy to fill the inner region of the fiber. Accordingly, the energy storage particles 120 may be easily separated from the fiber, or there may be a limit in increasing the content of the energy storage particles 120 in the fiber. In addition, as described above, in a simple process of providing the source solution to the carbon nanotube sheet 110, it is not easy to manufacture the fiber having the energy storage particles 120.
하지만, 상술된 바와 같이, 본 발명의 실시 예에 따르면, 상기 에너지 저장 입자(120)를 포함하는 상기 소스 용액이 상기 탄소나노튜브 시트(110) 상에 제공된 상태에서, 상기 탄소나노튜브 시트(110)를 꼬아서, 상기 베이스 섬유(130)가 제조될 수 있고, 이에 따라, 상기 베이스 섬유(130)의 에너지 저장 특성이 향상될 수 있다. 또한, 제조 공정이 간소화되고, 제조 비용이 감소된 상기 베이스 섬유(130)의 제조 방법이 제공될 수 있다. However, as described above, according to an embodiment of the present invention, the carbon nanotube sheet 110 in a state in which the source solution including the energy storage particles 120 is provided on the carbon nanotube sheet 110. By twisting), the base fiber 130 may be manufactured, and accordingly, energy storage characteristics of the base fiber 130 may be improved. In addition, a manufacturing method of the base fiber 130 can be provided with a simplified manufacturing process and reduced manufacturing cost.
도 1 및 도 4를 참조하면, 상술된 본 발명의 실시 예에 따라서 복수의 상기 베이스 섬유(130)가 제조될 수 있다. 일 실시 예에 따르면, 복수의 상기 베이스 섬유(130)에서, 상기 에너지 저장 입자(120)의 ?t량은 실질적으로(substantially) 동일할 수 있다. 또는, 다른 실시 예에 따르면, 상기 복수의 상기 베이스 섬유(130)에서, 상기 에너지 저장 입자(120)의 함량은 서로 다를 수 있다. 1 and 4, a plurality of the base fibers 130 may be manufactured according to the above-described embodiment of the present invention. According to one embodiment, in the plurality of base fibers 130, the amount of t of the energy storage particles 120 may be substantially the same (substantially). Alternatively, according to another embodiment, in the plurality of base fibers 130, the content of the energy storage particles 120 may be different from each other.
복수의 상기 베이스 섬유(130)를 서로 꼬아서, 복합 섬유(140)가 제조될 수 있다(S140). 예를 들어, 5개의 상기 베이스 섬유(130)가 미터당 약 25,000회 꼬여, 상기 복합 섬유(140)가 제조될 수 있다. 복수의 상기 베이스 섬유(130)가 꼬인 상기 복합 섬유(140)는 신축성을 갖는 것은 물론, 상기 베이스 섬유(130)와 비교하여 높은 인장 강도를 가질 수 있다. By twisting a plurality of the base fibers 130 with each other, a composite fiber 140 can be produced (S140). For example, five of the base fibers 130 are twisted about 25,000 times per meter, so that the composite fibers 140 can be made. The composite fiber 140 in which the plurality of the base fibers 130 is twisted may have elasticity as well as a high tensile strength as compared with the base fibers 130.
일 실시 예에 따르면, 상기 탄소나노튜브 시트(110) 상에 상기 에너지 저장 입자(120)를 제공하는 단계는, 상기 베이스 섬유(130) 내에 상기 에너지 저장 입자(120)의 함량이 기준 함량 이하가 되도록 제어하는 것을 포함할 수 있다. 예를 들어, 상술된 바와 같이, 상기 에너지 저장 입자(120)가 상기 소스 용액을 이용하여, 상기 탄소나노튜브 시트(110) 상에 제공되는 경우, 상기 소스 용액의 제공량, 및/또는 상기 소스 용액 내 상기 에너지 저장 입자(120)의 농도를 조절하여, 상기 베이스 섬유(130) 내에서 상기 에너지 저장 입자(120)의 함량이 기준 함량 이하가 되도록 용이하게 제어할 수 있다. 이에 따라, 복수의 상기 베이스 섬유(130)가 꼬여 상기 복합 섬유(140)가 제조되는 과정에서, 상기 베이스 섬유(130)의 외벽이 터져 상기 에너지 저장 입자(120)가 유출되어 상기 베이스 섬유(130)가 손상되는 것이 최소화될 수 있다. 일 실시 예에 따르면, 상기 기준 함량은 70wt%일 수 있다. According to one embodiment, the step of providing the energy storage particles 120 on the carbon nanotube sheet 110, the content of the energy storage particles 120 in the base fiber 130 is less than the reference content Control to include. For example, as described above, when the energy storage particles 120 are provided on the carbon nanotube sheet 110 using the source solution, the supply amount of the source solution, and / or the source solution By adjusting the concentration of the energy storage particles in the inside, it can be easily controlled so that the content of the energy storage particles 120 in the base fiber 130 is less than the reference content. Accordingly, in the process in which the plurality of base fibers 130 are twisted to manufacture the composite fiber 140, the outer wall of the base fibers 130 bursts to cause the energy storage particles 120 to flow out of the base fibers 130. ) Damage can be minimized. According to one embodiment, the reference content may be 70wt%.
만약, 상술된 바와 달리, 상기 베이스 섬유(130) 내 상기 에너지 저장 입자(120)가 상기 기준 함량을 초과하는 경우, 복수의 상기 베이스 섬유(130)를 꼬아서 상기 복합 섬유(140)를 제조하는 과정에서, 상기 베이스 섬유(130)가 터질 수 있다. If, unlike the above-described, when the energy storage particles 120 in the base fiber 130 exceeds the reference content, twisting a plurality of the base fibers 130 to produce the composite fiber 140 In the process, the base fiber 130 may burst.
하지만, 상술된 바와 같이, 본 발명의 실시 예에 따르면, 상기 베이스 섬유(130) 내의 상기 에너지 저장 입자(120)의 함량이 상기 기준 함량 이하가 되도록 제어될 수 있고, 이에 따라, 상기 복합 섬유(140)의 제조 수율이 향상될 수 있다. However, as described above, according to an embodiment of the present invention, the content of the energy storage particles 120 in the base fiber 130 may be controlled to be less than the reference content, accordingly, the composite fiber ( Production yield of 140 may be improved.
복수의 상기 복합 섬유(140)는 도 4의 (b)에 도시된 바와 같이, 서로 교차되어, 전극 직물(150)로 제조될 수 있다. As shown in (b) of FIG. 4, the plurality of the composite fibers 140 may cross each other and be made of an electrode fabric 150.
이하, 상술된 본 발명의 제1 실시 예에 따른 전극 섬유의 제조 방법에 따른 구체적인 실험 예 및 특성 평가 결과가 설명된다. Hereinafter, specific experimental examples and characteristic evaluation results according to the manufacturing method of the electrode fiber according to the first embodiment of the present invention described above will be described.
실시 예 1-1에 따른 베이스 섬유 제조Base fiber preparation according to Example 1-1
실리콘 기판이 준비된다. 상기 실리콘 기판 상에 화학 기상 증착법으로, 약 400μm의 높이, 약 12nm 의 직경, 및 약 9개의 벽을 포함하는 탄소나노튜브 숲(CNT forest)을 제조하였다. 상기 탄소나노튜브 숲을 제1 방향으로 잡아당겨, 상기 제1 방향으로 연장하는 복수의 탄소나노튜브를 포함하는 탄소나노튜브 시트(CNT sheet)를 유리 기판 상에 제조하였다. The silicon substrate is prepared. By chemical vapor deposition on the silicon substrate, a carbon nanotube forest including a height of about 400 μm, a diameter of about 12 nm, and about nine walls was prepared. Pulling the carbon nanotube forest in a first direction, a carbon nanotube sheet (CNT sheet) including a plurality of carbon nanotubes extending in the first direction was prepared on a glass substrate.
30nm의 직경, 100 nm의 길이, 및 막대형태를 포함하고, Sigma-Aldrich사에서 제조된 이산화망간(MnO2) 나노입자들(nanoparticles)이 준비된다. 1 내지 5 mg/ml 의 농도를 포함하는 에탄올 용매가 준비된다. 상기 에탄올 용매에 상기 이산화망간 나노입자들을 분산시켰다. 상기 이산화망간 나노입자들이 분산된 상기 에탄올 용매를, 1시간 동안 150W로 초음파 처리하여 소스 용액을 제조하였다. 상기 소스 용액은, drop casting 방법으로 상기 탄소나노튜브 시트 상에 제공되었다. 상기 소스 용액이 상기 탄소나노튜브 시트 상에 제공되는 동안, 상기 이산화망간의 함량이 전체 함량 기준 91.1wt %가 되도록 제어하였다. Manganese dioxide (MnO 2 ) nanoparticles prepared from Sigma-Aldrich, including 30 nm in diameter, 100 nm in length, and rod-shaped, are prepared. Ethanol solvents having a concentration of 1 to 5 mg / ml are prepared. The manganese dioxide nanoparticles were dispersed in the ethanol solvent. The ethanol solvent in which the manganese dioxide nanoparticles were dispersed was sonicated at 150W for 1 hour to prepare a source solution. The source solution was provided on the carbon nanotube sheet by a drop casting method. While the source solution was provided on the carbon nanotube sheet, the content of the manganese dioxide was controlled to be 91.1 wt% based on the total content.
상기 소스 용액이 제공된 상기 탄소나노튜브 시트는, 상기 소스 용액이 상기 탄소나노튜브 시트 상에 제공된 직후에(directly after), 상기 제1 방향을 회전축으로 사용하여, 상기 복수의 탄소나노튜브 일단들을 미터당 약 2,000회로 꼬아서(twist), 베이스 섬유(base yarn)를 제조하였다. The carbon nanotube sheet provided with the source solution is provided with the first solution as the axis of rotation immediately after the source solution is provided on the carbon nanotube sheet. By twisting about 2,000 times, a base yarn was produced.
실시 예 1-2에 따른 복합 섬유 제조Preparation of the composite fiber according to Example 1-2
상술된 실시 예 1-1에 따른 탄소나노튜브 시트 및 소스 용액이 준비된다. 상기 소스 용액을 상술된 실시 예 1-1에 따른 방법으로 상기 탄소나노튜브 시트 상에 제공하였다. 상기 소스 용액이 상기 탄소나노튜브 시트 상에 제공되는 동안, 상기 이산화망간의 함량이 전체 함량 기준 70wt %가 되도록 제어하였다. 이후, 상술된 실시 예 1에 따른 방법으로 베이스 섬유를 제조하였다. The carbon nanotube sheet and the source solution according to Example 1-1 described above are prepared. The source solution was provided on the carbon nanotube sheet by the method according to Example 1-1 described above. While the source solution was provided on the carbon nanotube sheet, the content of the manganese dioxide was controlled to be 70 wt% based on the total content. Thereafter, a base fiber was prepared by the method according to Example 1 described above.
상기 베이스 섬유를 5개 준비했다. 상기 베이스 섬유들을, 미터당 약 25,000회 꼬아서 복합 섬유를 제조하였다. Five base fibers were prepared. The base fibers were twisted about 25,000 times per meter to make composite fibers.
실시 예 1-3에 따른 전극 직물 제조Preparation of Electrode Fabrics According to Examples 1-3
상술된 실시 예 1-2에 따른 상기 복합 섬유들을, 서로 교차하여 전극 직물을 제조하였다. The composite fibers according to Example 1-2 described above were crossed with each other to produce an electrode fabric.
실시 예 1-4에 따른 슈퍼커패시터 제조Preparation of Supercapacitors According to Examples 1-4
상술된 실시 예 1-2에 따른 베이스 섬유를 2개 제조하였다. 146,000 내지 186,000 분자량(molecular weight)을 갖는 PVA(polyvinyalcohol) 3g, 염화리튬(LiCl) 6g, 및 DI water 30ml를 혼합하여 혼합 용액을 제조하였다. 상기 혼합 용액을 90℃의 온도로 열처리 하여 PVA/LiCl gel 전해질을 제조하였다. 상기 실시 예 1-2에 따른 베이스 섬유를 약 100μm의 거리를 두고 평행하게 배치하였다. 상기 실시 예 2에 따른 베이스 섬유에 각각 PVA/LiCl gel 전해질을 코팅하여 슈퍼커패시터를 제조하였다. Two base fibers according to Example 1-2 described above were prepared. A mixed solution was prepared by mixing 3 g of polyvinyalcohol (PVA), 6 g of lithium chloride (LiCl), and 30 ml of DI water having a molecular weight of 146,000 to 186,000. The mixed solution was heat-treated at a temperature of 90 ℃ to prepare a PVA / LiCl gel electrolyte. Base fibers according to Examples 1-2 were placed in parallel at a distance of about 100 μm. The PVA / LiCl gel electrolyte was coated on each of the base fibers according to Example 2, thereby preparing a supercapacitor.
실시 예 1-5에 따른 슈퍼커패시터 제조Preparation of Supercapacitors According to Example 1-5
상술된 실시 예 1-1에 따른 탄소나노튜브 시트 및 소스 용액이 준비된다. 상기 소스 용액을 상술된 실시 예 1-1에 따른 방법으로 상기 탄소나노튜브 시트 상에 제공하였다. 상기 소스 용액이 상기 탄소나노튜브 시트 상에 제공되는 동안, 상기 이산화망간의 함량이 전체 함량 기준 80.5wt %가 되도록 제어하였다. 이후, 상술된 실시 예 1에 따른 방법으로 베이스 섬유를 제조하였다.The carbon nanotube sheet and the source solution according to Example 1-1 described above are prepared. The source solution was provided on the carbon nanotube sheet by the method according to Example 1-1 described above. While the source solution was provided on the carbon nanotube sheet, the content of the manganese dioxide was controlled to be 80.5 wt% based on the total content. Thereafter, a base fiber was prepared by the method according to Example 1 described above.
상기 베이스 섬유를 2개 준비했다. 이후 상술된 실시 예 1-4에 따른 방법으로 슈퍼커패시터를 제조하였다. Two base fibers were prepared. Thereafter, a supercapacitor was manufactured by the method according to Example 1-4.
실시 예 1-6에 따른 슈퍼커패시터 제조Preparation of Supercapacitors According to Examples 1-6
상술된 실시 예 1-1에 따른 베이스 섬유를 2개 제조하였다. 이후, 상술된 실시 예 1-4에 따른 방법으로 슈퍼커패시터를 제조하였다. Two base fibers according to Example 1-1 described above were prepared. Thereafter, a supercapacitor was manufactured by the method according to Example 1-4 described above.
실시 예 1-7에 따른 슈퍼커패시터 제조Preparation of Supercapacitors According to Examples 1-7
상술된 실시 예 1-2에 따른 복합 섬유를 2개 제조하였다. 이후, 상술된 실시 예 4에 따른 전해질을 제조하였다. 상술된 실시 예 1-2에 따른 복합 섬유를 약 100μm의 거리를 두고 평행하게 배치하였다. 상기 실시 예 1-2에 따른 복합 섬유에 각각 상술된 실시 예 1-4에 따른 전해질을 코팅하여 슈퍼커패시터를 제조하였다. Two composite fibers according to Example 1-2 described above were prepared. Thereafter, an electrolyte according to Example 4 was prepared. The composite fibers according to Example 1-2 described above were placed in parallel at a distance of about 100 μm. The supercapacitor was manufactured by coating the electrolyte according to Example 1-4, respectively, on the composite fiber according to Example 1-2.
실시 예 1-8에 따른 슈퍼커패시터 제조Preparation of Supercapacitors According to Examples 1-8
상술된 실시 예 1-1에 따른 탄소나노튜브 시트가 준비된다. 상술된 실시 예 1-1에 따른 에탄올 용매에 환원된 그래핀 산화물(rGO)을 분산시켰다. 이후, 상술된 실시 예 1-1에 따른 방법으로 소스 용액을 제조하였다. 상기 소스 용액을 상술된 실시 예 1-1에 따른 방법으로 상기 탄소나노튜브 시트 상에 제공하였다. 상기 소스 용액이 상기 탄소나노튜브 시트 상에 제공되는 동안, 상기 환원된 그래핀 산화물의 함량이 전체 함량 기준 18.5wt %가 되도록 제어하였다. 이후, 상술된 실시 예 1-1에 따른 방법으로 베이스 섬유를 제조하였다. The carbon nanotube sheet according to Example 1-1 described above is prepared. The reduced graphene oxide (rGO) was dispersed in the ethanol solvent according to Example 1-1 described above. Thereafter, a source solution was prepared by the method according to Example 1-1 described above. The source solution was provided on the carbon nanotube sheet by the method according to Example 1-1 described above. While the source solution was provided on the carbon nanotube sheet, the content of the reduced graphene oxide was controlled to be 18.5 wt% based on the total content. Thereafter, base fibers were prepared by the method according to Example 1-1 described above.
상기 베이스 섬유 및 상술된 실시 예 1-1에 따른 베이스 섬유를 각각 1개씩 준비했다. 상기 베이스 섬유는 anode, 상술된 실시 예 1-1에 따른 베이스 섬유는 cathode로 사용하였다. 이후, 상술된 실시 예 1-4에 따른 방법으로 비대칭 슈퍼 커패시터를 제조하였다. One base fiber and one base fiber according to Example 1-1 described above were prepared. The base fiber was used as the anode, and the base fiber according to Example 1-1 described above was used as the cathode. Thereafter, an asymmetric supercapacitor was manufactured by the method according to Examples 1-4 described above.
실시 예 1-9에 따른 복합 섬유 제조Preparation of Composite Fibers According to Examples 1-9
상술된 실시 예 1-2에 따른 베이스 섬유를 준비하되, 상기 이산화망간의 함량이 전체 함량 기준 80wt %가 되도록 제어하였다. 이후, 상술된 실시 예 1-2에 따른 방법으로 복합 섬유를 제조하였다. While preparing the base fiber according to Example 1-2 described above, the content of the manganese dioxide was controlled to be 80wt% based on the total content. Thereafter, a composite fiber was prepared by the method according to Example 1-2 described above.
실시 예 1-10에 따른 복합 섬유 제조Preparation of Composite Fibers According to Examples 1-10
상술된 실시 예 1-2에 따른 베이스 섬유를 준비하되, 상기 이산화망간의 함량이 전체 함량 기준 93wt %가 되도록 제어하였다. 이후, 상술된 실시 예 1-2에 따른 방법으로 복합 섬유를 제조하였다. To prepare a base fiber according to Example 1-2 described above, the content of the manganese dioxide was controlled to be 93wt% based on the total content. Thereafter, a composite fiber was prepared by the method according to Example 1-2 described above.
비교 예 1-1에 따른 슈퍼커패시터 제조Manufacture of supercapacitors according to Comparative Example 1-1
상술된 실시 예 1-1에 따른 탄소나노튜브 시트가 준비된다. 이후, 소스 용액 없이, 상술된 실시 예 1에 따른 방법으로 베이스 섬유를 제조하였다. The carbon nanotube sheet according to Example 1-1 described above is prepared. Thereafter, base fibers were prepared by the method according to Example 1 described above without a source solution.
상기 베이스 섬유를 2개 준비했다. 이후 상술된 실시 예 1-4에 따른 방법으로 슈퍼커패시터를 제조하였다.Two base fibers were prepared. Thereafter, a supercapacitor was manufactured by the method according to Example 1-4.
비교 예 1-2에 따른 복합 섬유 제조Preparation of Composite Fibers According to Comparative Example 1-2
상술된 실시 예 1-1에 따른 탄소나노튜브 시트가 준비된다. 이후, 소스 용액 없이, 상술된 실시 예 1-1에 따른 방법으로 베이스 섬유를 제조하였다. The carbon nanotube sheet according to Example 1-1 described above is prepared. Thereafter, base fibers were prepared by the method according to Example 1-1 described above without a source solution.
상기 베이스 섬유를 5개 준비했다, 이후 상술된 실시 예 1-2에 따른 방법으로 복합 섬유를 제조하였다. Five base fibers were prepared, and then composite fibers were prepared by the method according to Example 1-2 described above.
상기 실시 예 1-1 내지 실시 예 1-8, 및 비교 예 1-1, 1-2에 따른 전극 섬유 및 이를 포함하는 슈퍼커패시터의 구조가 아래 <표 1>을 통해 정리된다. The structure of the electrode fiber and the supercapacitor including the same according to Examples 1-1 to 1-8, and Comparative Examples 1-1 and 1-2 are summarized through Table 1 below.
구분division | 구조rescue |
실시 예 1-1Example 1-1 | 91.1wt% MnO2/CNT 베이스 섬유91.1wt% MnO 2 / CNT Base Fiber |
실시 예 1-2Example 1-2 | 70wt% MnO2/CNT 복합 섬유70wt% MnO 2 / CNT Composite Fiber |
실시 예 1-3Example 1-3 | 91.1wt% MnO2/CNT 전극 직물91.1wt% MnO 2 / CNT Electrode Fabric |
실시 예 1-4Example 1-4 | 70wt% MnO2/CNT 베이스 섬유를 포함하는 슈퍼 커패시터Supercapacitors with 70wt% MnO 2 / CNT base fibers |
실시 예 1-5Example 1-5 | 80.5wt% MnO2/CNT 베이스 섬유를 포함하는 슈퍼 커패시터Supercapacitor with 80.5wt% MnO 2 / CNT Base Fiber |
실시 예 1-6Example 1-6 | 91.1wt% MnO2/CNT 베이스 섬유를 포함하는 슈퍼 커패시터Supercapacitors containing 91.1wt% MnO 2 / CNT base fibers |
실시 예 1-7Example 1-7 | 70wt% MnO2/CNT 복합 섬유를 포함하는 슈퍼 커패시터Supercapacitors containing 70wt% MnO 2 / CNT composite fibers |
실시 예 1-8Example 1-8 | 18.5wt% rGO/CNT 베이스 섬유 및 91.1wt% MnO2/CNT 베이스 섬유를 포함하는 비대칭 슈퍼 커패시터Asymmetric Supercapacitors Include 18.5wt% rGO / CNT Base Fiber and 91.1wt% MnO 2 / CNT Base Fiber |
실시 예 1-9Example 1-9 | 80wt% MnO2/CNT 복합 섬유80wt% MnO 2 / CNT Composite Fiber |
실시 예 1-10Example 1-10 | 93wt% MnO2/CNT 복합 섬유93wt% MnO 2 / CNT Composite Fiber |
비교 예 1-1Comparative Example 1-1 | 0wt% MnO2/CNT 베이스 섬유를 포함하는 슈퍼 커패시터Supercapacitor with 0wt% MnO 2 / CNT base fiber |
비교 예 1-2Comparative Example 1-2 | 0wt% MnO2/CNT 복합 섬유0wt% MnO 2 / CNT Composite Fiber |
도 5는, 본 발명의 실시 예 1-1 및 1-2에 따른 전극 섬유의 제조 방법에 따라 제조된 베이스 섬유, 복합 섬유, 및 전극 직물을 촬영한 사진들이다.5 is a photograph of a base fiber, a composite fiber, and an electrode fabric prepared according to the method for manufacturing electrode fibers according to Examples 1-1 and 1-2 of the present invention.
도 5의 (a) 및 (b)를 참조하면, 본 발명의 실시 예 1-1에 따른 베이스 섬유의 옆모습 및 단면을 SEM(scanning electron microscopy) 촬영하였다. Referring to (a) and (b) of Figure 5, the scanning electron microscopy (SEM) of the side profile and cross section of the base fiber according to Example 1-1 of the present invention.
도 5의 (a)에서 알 수 있듯이, 상기 실시 예 1-1에 따른 베이스 섬유는, 꼬인 (twist)형태인 것을 확인할 수 있었다. 도 5의 (b)에서 알 수 있듯이, 상기 실시 예 1-1에 따른 베이스 섬유의 단면은, 나선형(spiral)인 것을 확인할 수 있었다. 또한, 상기 단면은, 상기 탄소나노튜브 시트가 말리고(rolled) 적층된(stacked) 형태를 나타내고, 말리고 적층된 상기 탄소나노튜브 시트 사이에 상기 이산화망간이 제공되어 있는 것을 확인할 수 있었다. As can be seen from (a) of FIG. 5, it was confirmed that the base fiber according to Example 1-1 was twisted. As can be seen from (b) of FIG. 5, it was confirmed that the cross section of the base fiber according to Example 1-1 was spiral. In addition, the cross section shows that the carbon nanotube sheet is rolled and stacked, and the manganese dioxide is provided between the carbon nanotube sheets that are rolled and stacked.
도 5의 (c)를 참조하면, 본 발명의 실시 예 1-2에 따른 복합 섬유 및 본 발명의 실시 예 3에 따른 전극 직물을 SEM 촬영 및 일반 사진 촬영하였다. Referring to Figure 5 (c), the composite fiber according to Example 1-2 of the present invention and the electrode fabric according to Example 3 of the present invention were taken by SEM and general photography.
도 5의 (c)에서 알 수 있듯이, 상기 실시 예 1-2에 따른 복합 섬유는, 꼬인(twist)형태인 것을 확인할 수 있었다. 또한, 상기 복합 섬유는, 직경이 약 100μm이고, 센티미터당 100번의 꼬임구조를 갖는 것을 확인할 수 있었다. 또한, 상기 실시 예 1-3에 따른 전극 직물은, 강하고(strong) 유연한(flexible) 특성을 갖는 것을 확인할 수 있었다. As can be seen in Figure 5 (c), it was confirmed that the composite fiber according to Example 1-2, the twisted (twist) form. In addition, it was confirmed that the composite fiber had a diameter of about 100 μm and had a twist structure of 100 times per centimeter. In addition, it was confirmed that the electrode fabrics according to Examples 1-3 had strong and flexible characteristics.
도 6a 및 도 6b는 본 발명의 실시 예 1-2, 실시 예 1-10, 및 비교 예 1-2에 따른 복합 섬유들의 기계적 성질을 나타내는 그래프이다. 6A and 6B are graphs showing the mechanical properties of the composite fibers according to Examples 1-2, Examples 1-10, and Comparative Examples 1-2 of the present invention.
도 6a를 참조하면, 본 발명의 실시 예 1-2, 실시 예 1-10, 및 비교 예 1-2에 따른 복합 섬유들의 Strain(%)에 따른 Stress(MPa)를 측정하였다. 도 6a에서 알 수 있듯이, 본 발명의 실시 예 1-10 및 비교 예 1-2에 따른 복합 섬유들은, 약간의 Strain에도 높은 Stress를 받아, 끊어지는 것을 확인할 수 있었다. 하지만, 본 발명의 실시 예 1-2에 따른 복합 섬유는, 넓은 Strain 범위에서도 Stress의 변화가 작은 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 1-10 및 비교 예 1-2에 따른 복합 섬유들은, 복합 섬유의 제조 과정에서 끊어짐 현상이 나타나고, 복합 섬유로 제조되지 않는 것을 알 수 있다.Referring to Figure 6a, the stress (MPa) according to the strain (%) of the composite fibers according to Examples 1-2, Examples 1-10, and Comparative Examples 1-2 of the present invention was measured. As can be seen in Figure 6a, the composite fibers according to Examples 1-10 and Comparative Examples 1-2 of the present invention, was subjected to high stress even a slight strain, it was confirmed that the break. However, the composite fiber according to Example 1-2 of the present invention was confirmed that the change in stress is small even in a wide strain range. Accordingly, it can be seen that the composite fibers according to Example 1-10 and Comparative Example 1-2 have a breakage phenomenon in the manufacturing process of the composite fiber and are not made of the composite fiber.
도 6b를 참조하면, 본 발명의 실시 예 1-2에 따른 복합 섬유를, 1회 내지 100회 동안 구부렸다 폈다를 반복한 경우, Strain(%)에 따른 Stress(MPa)를 측정하였다. 도 6b에서 알 수 있듯이, 본 발명의 실시 예 1-2에 따른 복합 섬유는, 구부렸다 폈다를 100회 동안 반복 한 경우에도, 1회 반복한 경우와 비교하여 작은 변형률을 나타내는 것을 확인할 수 있었다. 이에 따라, 본 발명의 실시 예 1-2에 따른 복합 섬유는, 신축성이 뛰어나다는 것을 알 수 있다. Referring to FIG. 6B, when the composite fiber according to Example 1-2 of the present invention was bent and repeated for 1 to 100 times, stress (MPa) according to strain (%) was measured. As it can be seen in Figure 6b, it was confirmed that the composite fiber according to Example 1-2 of the present invention shows a small strain compared to the case of repeating once, even if repeated bending for 100 times. Accordingly, it can be seen that the composite fiber according to Example 1-2 of the present invention is excellent in elasticity.
도 7은 본 발명의 실시 예 1-9에 따른 복합 섬유의 SEM 사진이다. 7 is a SEM photograph of a composite fiber according to Examples 1-9 of the present invention.
도 7의 (a)를 참조하면, 본 발명의 실시 예 1-9에 따른 복합 섬유의 전체 부분을 SEM 촬영하였고, 도 7의 (b)를 참조하면, 도 7의 (a)의 (x) 부분을 확대하여 SEM 촬영하였고, 도 7의 (c)를 참조하면, 도 7의 (a)의 (y) 부분을 확대하여 SEM 촬영하였다. 도 7의 (a), (b), 및 (c)에서 알 수 있듯이, 본 발명의 실시 예 1-9에 따른 복합 섬유는, 복합 섬유의 제조 과정에서 끊어짐 현상이 나타나는 것을 확인할 수 있었다. 이에 따라, 상기 복합 섬유의 제조 단계에서, 상기 이산화망간의 함량이 70wt % 이하가 되도록 제어하는 것이, 고신축성 및 고신뢰성을 갖는 복합 섬유를 제조하는 효율적인 방법인 것을 확인할 수 있다. Referring to (a) of FIG. 7, SEM photographs of the entire portion of the composite fiber according to Examples 1-9 of the present invention are performed. Referring to FIG. 7 (b), (x) of FIG. An enlarged portion of the SEM image was taken. Referring to FIG. 7C, the enlarged portion (y) of FIG. 7A was taken as an SEM image. As can be seen from (a), (b), and (c) of FIG. 7, it was confirmed that the composite fiber according to Examples 1-9 of the present invention exhibited a breaking phenomenon in the manufacturing process of the composite fiber. Accordingly, in the manufacturing step of the composite fiber, controlling the content of the manganese dioxide to 70wt% or less, it can be seen that the efficient method for producing a composite fiber having high elasticity and high reliability.
도 8은 본 발명의 실시 예 1-4 내지 실시 예 1-6 및 비교 예 1-1에 따른 슈퍼 커패시터들의 순환전압전류 및 충방전 특성을 비교한 그래프들이다. 8 are graphs comparing cyclic voltage current and charge / discharge characteristics of supercapacitors according to Examples 1-4 to 1-6 and Comparative Example 1-1 of the present invention.
도 8의 (a)를 참조하면, 본 발명의 실시 예 1-4 내지 실시 예 1-6 및 비교 예 1-1에 따른 슈퍼 커패시터의 전압에 따른 전류 밀도를 측정하고, 순환전압전류 곡선(이하, CV 곡선이라고 한다)을 나타내었다. Referring to FIG. 8A, the current density according to the voltage of the supercapacitor according to Examples 1-4 to 1-6 and Comparative Example 1-1 of the present invention is measured, and a cyclic voltage current curve (hereinafter, , CV curve).
도 8의 (a)에서 알 수 있듯이, 실시 예 1-4 내지 실시 예 1-6에 따른 슈퍼 커패시터들은 CV 곡선이 직사각형 형태로 나타나고, 비교 예 1-1에 따른 슈퍼 커패시터는 CV 곡선이 직선 형태로 나타났다. 또한, 이산화망간의 함량이 높은 슈퍼 커패시터일수록 CV 곡선의 면적이 증가하는 것을 확인할 수 있다. 이에 따라, 본 발명의 실시 예에 따른 슈퍼 커패시터의 순환전압전류 특성이 비교 예에 따른 슈퍼 커패시터의 순환전압전류 특성보다 현저하게 우수한 것을 알 수 있다. 또한, 이산화망간의 함량이 높은 베이스 섬유를 포함하는 슈퍼 커패시터일수록 순환전압전류 특성이 향상되는 것을 확인할 수 있다. As shown in FIG. 8A, the supercapacitors according to Examples 1-4 to 1-6 have a CV curve in a rectangular form, and the supercapacitors according to Comparative Example 1-1 have a CV curve in a straight form. Appeared. In addition, it can be seen that the area of the CV curve increases as the supercapacitor having a higher content of manganese dioxide. Accordingly, it can be seen that the cyclic voltage current characteristics of the supercapacitor according to the embodiment of the present invention are significantly superior to the cyclic voltage current characteristics of the supercapacitor according to the comparative example. In addition, it can be seen that the supercapacitor including the base fiber having a higher content of manganese dioxide improves the circulating voltage and current characteristics.
도 8의 (b)를 참조하면, 본 발명의 실시 예 1-4 내지 실시 예 1-6 및 비교 예 1-1에 따른 슈퍼 커패시터의 시간에 따른 전압을 측정하고, 충방전(charge/discharge) 곡선을 나타내었다. Referring to FIG. 8B, the voltage of the supercapacitor according to Examples 1-4 to 1-6 and Comparative Example 1-1 of the present invention is measured and charged / discharged. The curve is shown.
도 8의 (b)에서 알 수 있듯이, 실시 예 1-4 내지 실시 예 1-6에 따른 슈퍼 커패시터들은 충방전 곡선이 삼각형 형태로 나타나고, 비교 예 1-1에 따른 슈퍼 커패시터는 충방전 곡선이 직선 형태로 나타났다. 이에 따라, 본 발명의 실시 예에 따른 슈퍼 커패시터의 충방전 특성이 비교 예에 따른 슈퍼 커패시터의 충방전 특성보다 현저하게 우수한 것을 알 수 있다. 또한, 이산화망간의 함량이 높은 베이스 섬유를 포함하는 슈퍼 커패시터일수록 순환전압전류 특성이 향상되는 것을 확인할 수 있다. As shown in (b) of FIG. 8, the supercapacitors according to Examples 1-4 to 1-6 have a charge / discharge curve in a triangular form, and the supercapacitor according to Comparative Example 1-1 has a charge / discharge curve. It appeared in a straight line. Accordingly, it can be seen that the charge and discharge characteristics of the supercapacitor according to the embodiment of the present invention are significantly superior to the charge and discharge characteristics of the supercapacitor according to the comparative example. In addition, it can be seen that the supercapacitor including the base fiber having a higher content of manganese dioxide improves the circulating voltage and current characteristics.
도 9는 본 발명의 실시 예 1-4 내지 실시 예 1-6 및 비교 예 1-1에 따른 슈퍼 커패시터의 용량 특성을 비교한 그래프들이다. 9 are graphs comparing the capacitance characteristics of the supercapacitors according to Examples 1-4 to 1-6 and Comparative Examples 1-1 of the present invention.
도 9의 (a)를 참조하면, 본 발명의 실시 예 1-4 내지 실시 예 1-6 및 비교 예 1-1에 따른 슈퍼 커패시터의, 이산화망간 함량에 따른 areal capacitance을 측정하였다. Referring to FIG. 9A, areal capacitances of the supercapacitors according to Examples 1-4 to 1-6 and Comparative Example 1-1 of the present invention were measured.
도 9의 (a)에서 알 수 있듯이, 비교 예 1-1에 따른 슈퍼 커패시터는 0.01 F/cm2, 실시 예 1-4에 따른 슈퍼 커패시터는 0.3 F/cm2, 실시 예 1-5에 따른 슈퍼 커패시터는 0.42 F/cm2, 실시 예 1-6에 따른 슈퍼 커패시터는 0.6 F/cm2의 areal capacitance을 나타내었다. 이에 따라, 본 발명의 실시 예에 따른 베이스 섬유를 포함하는 슈퍼 커패시터는, 상기 베이스 섬유의 이산화망간 함량이 증가할수록 상기 슈퍼 커패시터의 areal capacitance이 향상된다는 것을 알 수 있었다. As shown in FIG. 9A, the supercapacitor according to Comparative Example 1-1 is 0.01 F / cm 2 , the supercapacitor according to Example 1-4 is 0.3 F / cm 2 , and according to Example 1-5. The supercapacitor showed 0.42 F / cm 2 , and the supercapacitor according to Examples 1-6 showed areal capacitance of 0.6 F / cm 2 . Accordingly, it can be seen that the supercapacitor including the base fiber according to the embodiment of the present invention improves the areal capacitance of the supercapacitor as the manganese dioxide content of the base fiber increases.
도 9의 (b)를 참조하면, 본 발명의 실시 예 1-6에 따른 슈퍼 커패시터를 10 ~100 mV/s 스캔 속도에 따른 linear capacitance 및 areal capacitance을 측정하였다. Referring to (b) of FIG. 9, the linear capacitors and areal capacitances of the supercapacitors according to Examples 1-6 of the present invention are measured according to a scan speed of 10 to 100 mV / s.
도 9의 (b)에서 알 수 있듯이, 실시 예 1-6에 따른 슈퍼 커패시터의 areal capacitance은, 10mV/s 에서 750mF/cm2, 30mV/s 에서 525mF/cm2, 50mV/s 에서 430mF/cm2, 70mV/s 에서 320mF/cm2, 100mV/s 에서 225mF/cm2을 나타내었다. 또한, 실시 예 1-6에 따른 슈퍼 커패시터의 linear capacitance은, 10mV/s 에서 52.5mF/cm, 30mV/s 에서 43mF/cm, 50mV/s 에서 32mF/cm, 70mV/s 에서 22.5mF/cm, 100mV/s 에서 15mF/cm을 나타내었다. 이에 따라, 본 발명의 실시 예 6에 따른 슈퍼 커패시터는, 스캔 속도가 증가할수록 linear capacitance 및 areal capacitance은 감소되는 것을 알 수 있다. Areal capacitance of a supercapacitor according to the embodiment 1-6, as seen in 9 (b), is, 10mV / s in 750mF / cm 2, 30mV / s in 430mF / cm in 525mF / cm 2, 50mV / s 2, showing the 225mF / cm 2 in 320mF / cm 2, 100mV / s at 70mV / s. In addition, the linear capacitance of the supercapacitor according to Examples 1-6 is 52.5 mF / cm at 10 mV / s, 43 mF / cm at 30 mV / s, 32 mF / cm at 50 mV / s, 22.5 mF / cm at 70 mV / s, 15 mF / cm at 100 mV / s. Accordingly, it can be seen that the supercapacitor according to the sixth embodiment of the present invention decreases linear capacitance and areal capacitance as the scan speed increases.
도 10은 본 발명의 실시 예 1-8에 따른 비대칭 슈퍼 커패시터의 특성을 나타내는 그래프들이다. 10 are graphs illustrating characteristics of an asymmetric supercapacitor according to Examples 1-8 of the present invention.
도 10의 (a)를 참조하면, 실시 예 1-8에 따른 비대칭 슈퍼 커패시터의 전압에 따른 전류밀도를 구동전압(working voltage)을 1.4V 에서 2.2V까지 변화를 주며 측정하고, 순환전압전류(CV) 곡선을 나타내었다. Referring to (a) of FIG. 10, the current density according to the voltage of the asymmetric supercapacitor according to the embodiment 1-8 is measured while varying the working voltage from 1.4V to 2.2V, and the cyclic voltage current ( CV) curves.
도 10의 (a)에서 알 수 있듯이, 실시 예 1-8에 따른 비대칭 슈퍼 커패시터는, 구동전압의 변화에 따른 CV 곡선이 직사각형 형태를 나타내었다. 또한, 구동 전압이 증가할수록 CV 곡선의 면적이 증가하는 것을 확인할 수 있다. 이에 따라, 실시 예 8에 따른 비대칭 슈퍼 커패시터는, 구동 전압이 증가할수록 순환전압전류 특성이 향상되는 것을 확인할 수 있다. As can be seen in Figure 10 (a), in the asymmetric supercapacitor according to the embodiment 1-8, the CV curve according to the change of the drive voltage has a rectangular shape. In addition, it can be seen that the area of the CV curve increases as the driving voltage increases. Accordingly, in the asymmetric supercapacitor according to the eighth embodiment, it can be seen that the cyclic voltage current characteristics improve as the driving voltage increases.
도 10의 (b)를 참조하면, 실시 예 1-8에 따른 비대칭 슈퍼 커패시터의 충방전 싸이클(charge/discharge cycle)을 1회부터 1000회까지 조정하며 capacitance retention 특성을 측정하였다. 또한, 실시 예 1-8에 따른 비대칭 슈퍼 커퍼시터의 충방전 싸이클을 1회 했을 경우와 1000회 했을 경우의 전압에 따른 전류 밀도를 측정하고, 순환전압전류 곡선을 나타내었다. Referring to FIG. 10 (b), the capacitance retention characteristics were measured by adjusting the charge / discharge cycle of the asymmetric supercapacitor according to Examples 1-8 from 1 to 1000 times. In addition, the current density according to the voltage when the charge / discharge cycles of the asymmetric supercapacitors according to Examples 1-8 and 1000 times were measured, and the cyclic voltage current curves were shown.
도 10의 (b)에서 알 수 있듯이, 실시 예 1-8에 따른 비대칭 슈퍼 커패시터는, 충방전 싸이클이 1회에서 1000회까지 변하는 동안 capacitance retention의 변화가 실질적으로(substantially) 없는 것을 확인할 수 있다. 또한, 충방전 싸이클이 1회인 경우의 CV 곡선 면적과, 충방전 싸이클이 1000회인 경우의 CV 곡선 면적의 차이도 실질적으로 없는 것을 확인할 수 있다. 이에 따라, 실시 예 1-8에 따른 비대칭 슈퍼 커패시터의 내구성 및 수명 특성이 우수한 것을 확인할 수 있다. As can be seen in Figure 10 (b), it can be seen that in the asymmetric supercapacitor according to Examples 1-8, there is substantially no change in capacitance retention while the charge / discharge cycle changes from 1 to 1000 times. . In addition, it can be confirmed that there is substantially no difference between the CV curve area when the charge / discharge cycle is one time and the CV curve area when the charge / discharge cycle is 1000 times. Accordingly, it can be seen that the durability and lifespan characteristics of the asymmetric supercapacitor according to Examples 1-8 are excellent.
도 11은 본 발명의 실시 예 1-6에 따른 슈퍼 커패시터의 특성을 나타내는 그래프들이다. 11 are graphs illustrating characteristics of a super capacitor according to Examples 1-6 of the present invention.
도 11의 (a)를 참조하면, 실시 예 1-6에 따른 슈퍼 커패시터의 MnO2/CNT 베이스 섬유 전극을, 원래 상태(Pristine), 165°의 굽힘 각 구부린 상태(Bent), 1mm 간격으로 감긴 상태(Wound), 및 매듭진 상태(Knotted)에서 0~0.8 에너지 범위(V vs. Ag/AgCl)에 따른 전류를 측정하고, 순환전압전류 곡선을 나타내었다. Referring to (a) of FIG. 11, the MnO 2 / CNT base fiber electrode of the supercapacitor according to Examples 1-6 was wound at an original state (Pristine), at a bending angle of 165 ° (Bent), and at 1 mm intervals. The current was measured according to the 0 to 0.8 energy range (V vs. Ag / AgCl) in the state of Wound and Knotted, and the cyclic voltammetry curve was shown.
도 11의 (a)에서 알 수 있듯이, 실시 예 1-6에 따른 슈퍼 커패시터는, MnO2/CNT 베이스 섬유 전극이 원래 상태(Pristine), 165°의 굽힘 각으로 구부린 상태(Bent), 1mm 간격으로 감긴 상태(Wound), 및 매듭진 상태(Knotted)에서의 CV 곡선 면적의 차이가 실질적으로 없는 것을 확인할 수 있다. As can be seen in Figure 11 (a), the supercapacitor according to Examples 1-6, the MnO 2 / CNT base fiber electrode is in the original state (Pristine), bent at a bending angle of 165 ° (Bent), 1mm interval It can be seen that there is substantially no difference in the area of the CV curve in the wound state and the knotted state.
도 11의 (b)를 참조하면, 실시 예 1-6에 따른 슈퍼 커패시터의 MnO2/CNT 베이스 섬유 전극을 165°의 굽힘 각으로 1회 내지 1000회 구부림에 따른 Capacitance retention을 측정하였다. Referring to (b) of FIG. 11, the capacitance retention of the MnO 2 / CNT base fiber electrode of the supercapacitor according to Examples 1-6 was bent 1 to 1000 times at a bending angle of 165 °.
도 11의 (b)에서 알 수 있듯이, 실시 예 1-6에 따른 슈퍼 커패시터는, MnO2/CNT 베이스 섬유 전극이 1회 에서 1000회까지 구부려도 저장용량의 변화가 거의 없는 것을 확인할 수 있다. 이에 따라, 본 발명의 실시 예 1-6에 따른 슈퍼 커패시터의 MnO2/CNT 베이스 섬유는, 우수한 내구성 갖는 것을 확인할 수 있다. As can be seen in Figure 11 (b), the supercapacitor according to Example 1-6, it can be seen that there is almost no change in storage capacity even if the MnO 2 / CNT base fiber electrode is bent from 1 to 1000 times. Accordingly, it can be seen that the MnO 2 / CNT base fiber of the supercapacitor according to Examples 1-6 of the present invention has excellent durability.
도 12는 본 발명의 실시 예 1-7에 따른 슈퍼 커패시터의 특성을 나타내는 그래프이다. 12 is a graph showing the characteristics of the super capacitor according to the embodiment 1-7 of the present invention.
도 12의 (a)를 참조하면, 실시 예 1-7에 따른 슈퍼 커패시터의 MnO2/CNT 복합 섬유 전극을 제1 방향으로 0%, 10%, 20%, 30% 길이 인장을 한 경우, 전압에 따른 전류 밀도를 측정하고, 순환전압전류 곡선을 나타내었다. Referring to FIG. 12A, when the MnO 2 / CNT composite fiber electrode of the supercapacitor according to Example 1-7 is stretched by 0%, 10%, 20%, and 30% in the first direction, the voltage The current density was measured and the cyclic voltammogram was shown.
도 12의 (a)에서 알 수 있듯이, 실시 예 1-7에 따른 슈퍼 커패시터는, MnO2/CNT 복합 섬유 전극을 제1 방향으로 0%, 10%, 20%, 30% 길이 인장을 한 경우 모두 비슷한 CV 곡선 면적을 나타내는 것을 확인할 수 있다. As shown in (a) of FIG. 12, the supercapacitor according to Example 1-7 has a length of 0%, 10%, 20%, and 30% of MnO 2 / CNT composite fiber electrode in a first direction. It can be seen that all show similar CV curve areas.
도 12의 (b)를 참조하면, 실시 예 1-7에 따른 슈퍼커패시터의 MnO2/CNT 복합 섬유 전극을 제1 방향으로 0%, 10%, 20%, 30% 길이 인장을 한 경우, 전기화학적 임피던스 분광법(EIS)으로 분석하고, EIS 곡선을 나타내었다.Referring to FIG. 12B, when the MnO 2 / CNT composite fiber electrode of the supercapacitor according to Example 1-7 is stretched to 0%, 10%, 20%, and 30% in the first direction, the electric Analyzed by chemical impedance spectroscopy (EIS), the EIS curve is shown.
도 12의 (b)에서 알 수 있듯이, 실시 예 1-7에 따른 슈퍼 커패시터는, MnO2/CNT 복합 섬유를 제1 방향으로 0%, 10%, 20%, 30% 길이 인장을 한 경우 모두 비슷한 EIS 곡선을 나타내는 것을 확인할 수 있다. 이에 따라, 본 발명의 실시 예 1-7에 따른 슈퍼 커패시터의 MnO2/CNT 복합 섬유는, 우수한 신축성을 갖는 것을 확인할 수 있다. As shown in FIG. 12B, the supercapacitors according to Examples 1-7 were all stretched to 0%, 10%, 20%, and 30% lengths of the MnO 2 / CNT composite fiber in the first direction. It can be seen that it shows a similar EIS curve. Accordingly, it can be seen that the MnO 2 / CNT composite fiber of the supercapacitor according to Examples 1-7 of the present invention has excellent elasticity.
도 13은 본 발명의 실시 예 1-6 및 1-7에 따른 슈퍼 커패시터들의 에너지 밀도를 나타내는 그래프이다. 13 is a graph showing energy densities of supercapacitors according to Examples 1-6 and 1-7 of the present invention.
도 13을 참조하면, 실시 예 1-6 및 실시 예 1-7에 따른 슈퍼 커패시터들을, 충방전 전압을 1.2V로 유지하고, 출력밀도(power density)에 따른 에너지 밀도(energy density)를 측정하였다. Referring to FIG. 13, the supercapacitors according to Examples 1-6 and 1-7 were maintained at 1.2 V in charge / discharge voltage, and energy density according to power density was measured. .
도 13에서 알 수 있듯이, 실시 예 1-6에 따른 슈퍼 커패시터는 33 μWh/cm2 의 에너지 밀도를 나타내었고, 실시 예 1-7에 따른 슈퍼 커패시터는 12 μWh/cm2의 에너지 밀도를 나타내었다. 이에 따라, 본 발명의 실시 예 1-6 및 실시 예 1-7에 따른 슈퍼 커패시터는 우수한 성능을 나타내는 것을 확인할 수 있다. As can be seen in FIG. 13, the supercapacitor according to Examples 1-6 exhibited an energy density of 33 μWh / cm 2 , and the supercapacitor according to Examples 1-7 showed an energy density of 12 μWh / cm 2 . . Accordingly, it can be seen that the supercapacitors according to Examples 1-6 and 1-7 of the present invention exhibit excellent performance.
일 실시 예에 따르면, 상기 탄소나노튜브 시트는 제1 및 제2 탄소나노튜브 시트를 포함하고, 상기 기능성 물질은 제1 및 제2 기능성 물질을 포함하고, 상기 전극 섬유는 상기 제1 기능성 물질이 상기 제1 탄소나노튜브 시트 상에 제공된 제1 전극 섬유 및 상기 제2 기능성 물질이 상기 제2 탄소나노튜브 시트 상에 제공된 제2 전극 섬유를 포함할 수 있다. According to an embodiment, the carbon nanotube sheet may include first and second carbon nanotube sheets, the functional material may include first and second functional materials, and the electrode fiber may be formed of the first functional material. The first electrode fiber provided on the first carbon nanotube sheet and the second functional material may include a second electrode fiber provided on the second carbon nanotube sheet.
이하, 상기 제1 전극 섬유가 환원된 그래핀 산화물을 포함하고 상기 제2 전극 섬유가 이산화망간을 포함하는 경우에 대해, 도 14 내지 도 35를 참조하여 본 발명의 제2 실시 예에 따른 전극 섬유 및 그 제조 방법이 설명된다.Hereinafter, an electrode fiber according to a second embodiment of the present invention will be described with reference to FIGS. 14 to 35 for a case in which the first electrode fiber includes reduced graphene oxide and the second electrode fiber includes manganese dioxide. The manufacturing method is described.
제2 실시 예에 따른 전극 섬유 및 그 제조 방법Electrode Fiber and Method for Manufacturing the Same According to the Second Embodiment
도 14 및 도 15는 본 발명의 제2 실시 예에 따른 전극 섬유가 포함하는 제1 전극 섬유의 제조 공정을 설명하기 위한 도면들이다. 14 and 15 are views for explaining a manufacturing process of the first electrode fiber included in the electrode fiber according to the second embodiment of the present invention.
도 14를 참조하면, 제1 탄소나노튜브 시트(210)가 준비될 수 있다. 일 실시 예에 따르면, 상기 제1 탄소나노튜브 시트를 준비하는 단계는, 화학 기상 증착법으로 탄소나노튜브 숲(forest)을 제조하는 단계 및, 상기 탄소나노튜브 숲으로부터 상기 제1 탄소나노튜브 시트(210)를 제조하는 단계를 포함할 수 있다.Referring to FIG. 14, a first carbon nanotube sheet 210 may be prepared. According to an embodiment, the preparing of the first carbon nanotube sheet may include preparing a carbon nanotube forest by chemical vapor deposition and the first carbon nanotube sheet from the carbon nanotube forest. 210 may be prepared.
일 실시 예에 따르면, 상기 제1 탄소나노튜브 시트(210)는 제1 방향으로 연장하는 복수의 탄소나노튜브를 포함할 수 있다. 또한, 일 실시 예에 따르면, 상기 복수의 탄소나노튜브는 다중벽 탄소나노튜브(MWCNT)일 수 있다. According to one embodiment, the first carbon nanotube sheet 210 may include a plurality of carbon nanotubes extending in a first direction. Further, according to one embodiment, the plurality of carbon nanotubes may be multi-walled carbon nanotubes (MWCNT).
일 실시 예에 따르면, 상기 제1 탄소나노튜브 시트(210)는 지지 기판(200) 상에 준비될 수 있다. 예를 들어, 상기 지지 기판(200)은 유리 기판일 수 있다. 또는, 다른 예를 들어, 상기 지지 기판(200)은 플라스틱 기판, 반도체 기판, 세라믹 기판, 또는 금속 기판 중 어느 하나를 포함할 수 있다. According to one embodiment, the first carbon nanotube sheet 210 may be prepared on the support substrate 200. For example, the support substrate 200 may be a glass substrate. Alternatively, for example, the support substrate 200 may include any one of a plastic substrate, a semiconductor substrate, a ceramic substrate, and a metal substrate.
상기 제1 탄소나노튜브 시트(210) 상에 환원된 그래핀 산화물(reduced graphene oxide, 220)이 제공될 수 있다. 상기 환원된 그래핀 산화물(220)은 상기 제1 탄소나노튜브 시트(210)보다 낮은 전도성을 가질 수 있고, 상기 제1 탄소나노튜브 시트(210)보다 높은 전하 저장 능력을 가질 수 있다.Reduced graphene oxide 220 may be provided on the first carbon nanotube sheet 210. The reduced graphene oxide 220 may have a lower conductivity than the first carbon nanotube sheet 210 and may have a higher charge storage capability than the first carbon nanotube sheet 210.
상기 환원된 그래핀 산화물(220)을 상기 제1 탄소나노튜브 시트(210) 상에 제공하는 단계는, 상기 환원된 그래핀 산화물(220)이 분산된 제1 소스 용액을 준비하는 단계, 상기 제1 소스 용액을 상기 제1 탄소나노튜브 시트(210) 상에 제공하는 단계, 및 상기 제1 소스 용액이 제공된 상기 제1 탄소나노튜브 시트(210)를 건조하는 단계를 포함할 수 있다. The providing of the reduced graphene oxide 220 on the first carbon nanotube sheet 210 may include preparing a first source solution in which the reduced graphene oxide 220 is dispersed, and The method may include providing a source solution on the first carbon nanotube sheet 210, and drying the first carbon nanotube sheet 210 provided with the first source solution.
일 실시 예에 따르면, 상기 제1 소스 용액은, 용매에 상기 환원된 그래핀 산화물(220)을 투입하고 초음파 처리하여, 상기 환원된 그래핀 산화물(220)을 분산시키는 방법으로 제조될 수 있다. 예를 들어, 상기 용매는 dimethylformamide일 수 있다. 예를 들어, 상기 제1 소스 용액 내 상기 환원된 그래핀 산화물(220)의 wt%는 8mg/ml로 제공될 수 있다. 또한, 일 실시 예에 따르면, 상기 제1 소스 용액은, drop casting 방법으로 상기 제1 탄소나노튜브 시트(210) 상에 제공될 수 있다. According to an embodiment of the present disclosure, the first source solution may be prepared by adding the reduced graphene oxide 220 to a solvent and performing ultrasonic treatment to disperse the reduced graphene oxide 220. For example, the solvent may be dimethylformamide. For example, wt% of the reduced graphene oxide 220 in the first source solution may be provided at 8 mg / ml. In addition, according to an embodiment, the first source solution may be provided on the first carbon nanotube sheet 210 by a drop casting method.
일 실시 예에 따르면, 상기 환원된 그래핀 산화물(220)이 분산된 제1 소스 용액을 상기 제1 탄소나노튜브 시트(210) 상에 제공하는 단계, 및 상기 제1 소스 용액이 제공된 상기 제1 탄소나노튜브 시트(210)를 건조하는 단계가 반복 수행될 수 있다. 이에 따라, 상기 제1 탄소나노튜브 시트(210) 상의 상기 환원된 그래핀 산화물(220)의 함량이 증가될 수 있다.According to one embodiment, providing a first source solution in which the reduced graphene oxide 220 is dispersed on the first carbon nanotube sheet 210, and the first source solution is provided Drying the carbon nanotube sheet 210 may be repeatedly performed. Accordingly, the content of the reduced graphene oxide 220 on the first carbon nanotube sheet 210 may be increased.
일 실시 예에 따르면, 상기 환원된 그래핀 산화물(220)은, 플레이크(flake) 형태로 제공될 수 있다. 일 실시 예에 따르면, 상기 제1 소스 용액 내의 상기 환원된 그래핀 산화물(220)의 사이즈는 실질적으로 서로 동일할 수 있다. 또는, 다른 실시 예에 따르면, 상기 제1 소스 용액 내의 상기 환원된 그래핀 산화물(220)의 사이즈는 서로 다를 수 있다. According to one embodiment, the reduced graphene oxide 220 may be provided in the form of flakes. According to one embodiment, the size of the reduced graphene oxide 220 in the first source solution may be substantially the same. Alternatively, according to another embodiment, sizes of the reduced graphene oxide 220 in the first source solution may be different.
도 15를 참조하면, 상기 환원된 그래핀 산화물(220)이 제공된 상기 제1 탄소나노튜브 시트(210)를 꼬아서, 제1 전극 섬유(230)가 제조될 수 있다. 일 실시 예에 따르면, 상기 제1 전극 섬유(230)를 제조하는 단계는, 상기 복수의 탄소나노튜브가 연장하는 상기 제1 방향을 회전축으로 사용하여, 상기 복수의 탄소나노튜브의 일단을 꼬으는(twist) 것을 포함할 수 있다. 예를 들어, 상기 환원된 그래핀 산화물(220)이 제공된 상기 제1 탄소나노튜브 시트(210)는 약 3000회의 미터당 꼬임 횟수(turns per meter)를 가질 수 있다. Referring to FIG. 15, the first electrode fiber 230 may be manufactured by twisting the first carbon nanotube sheet 210 provided with the reduced graphene oxide 220. According to an embodiment, the manufacturing of the first electrode fibers 230 may include twisting one end of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. (twist) may be included. For example, the first carbon nanotube sheet 210 provided with the reduced graphene oxide 220 may have about 3000 turns per meter.
이에 따라, 상기 제1 전극 섬유(230)의 내부 영역은, 상기 제1 탄소나노튜브 시트(210)가 말리고(rolled) 적층된(stacked) 형태로 제공될 수 있다. 말리고 적층된 상기 제1 탄소나노튜브 시트(210) 사이에 상기 환원된 그래핀 산화물(220)이 제공될 수 있다. 다시 말하면, 상기 제1 전극 섬유(230)가 연장하는 상기 제1 방향을 법선으로 갖는 제1 평면이 정의되는 경우, 상기 제1 평면으로 절취한 상기 제1 전극 섬유(230)의 단면에서, 상기 제1 탄소나노튜브 시트(210)의 단면은 나선형(spiral)으로 제공되고, 나선형의 상기 제1 탄소나노튜브 시트(210) 사이에 상기 환원된 그래핀 산화물(220)이 제공될 수 있다. Accordingly, the inner region of the first electrode fiber 230 may be provided in a form in which the first carbon nanotube sheet 210 is rolled and stacked. The reduced graphene oxide 220 may be provided between the dried and stacked first carbon nanotube sheets 210. In other words, in the cross section of the first electrode fiber 230 cut into the first plane when the first plane having the first direction extending from the first electrode fiber 230 as a normal is defined, A cross section of the first carbon nanotube sheet 210 may be provided in a spiral shape, and the reduced graphene oxide 220 may be provided between the first carbon nanotube sheet 210 in a spiral shape.
일 실시 예에 따르면, 상기 제1 전극 섬유(230)에서, 상기 환원된 그래핀 산화물(220)의 wt%가 상기 제1 탄소나노튜브 시트(210)의 wt%보다 높을 수 있다. 다시 말해, 상기 제1 전극 섬유(230)는 상기 제1 탄소나노튜브 시트(210)보다 상기 환원된 그래핀 산화물(220)을 더 많이 포함할 수 있다. 이에 따라, 상기 제1 전극 섬유(230)는 전하저장 특성이 향상될 수 있다. According to an embodiment, in the first electrode fiber 230, wt% of the reduced graphene oxide 220 may be higher than wt% of the first carbon nanotube sheet 210. In other words, the first electrode fiber 230 may include more of the reduced graphene oxide 220 than the first carbon nanotube sheet 210. Accordingly, the first electrode fiber 230 may have improved charge storage characteristics.
일 실시 예에 따르면, 상기 환원된 그래핀 산화물(220)은 질소(nitrogen)로 도핑될 수 있다. 다시 말해, 상기 제1 전극 섬유(230)는 말리고 적층된 상기 제1 탄소나노튜브 시트(210) 사이에 질소가 도핑된 상기 환원된 그래핀 산화물이 제공된 형태로 제조될 수 있다. 이와 달리, 상기 환원된 그래핀 산화물(220)에 질소가 아닌 금속을 도핑한 경우, 전기화학반응이 불안정 하여 상기 슈퍼커패시터의 특성이 저하될 수 있다.According to one embodiment, the reduced graphene oxide 220 may be doped with nitrogen (nitrogen). In other words, the first electrode fibers 230 may be manufactured in a form in which the reduced graphene oxide doped with nitrogen is provided between the first carbon nanotube sheets 210 which are dried and stacked. On the contrary, when the reduced graphene oxide 220 is doped with a metal other than nitrogen, an electrochemical reaction may be unstable, thereby degrading the characteristics of the supercapacitor.
도 16 및 도 17은 본 발명의 제2 실시 예에 따른 전극 섬유가 포함하는 제2 전극 섬유의 제조 공정을 설명하기 위한 도면들이다. 16 and 17 are diagrams for describing a manufacturing process of the second electrode fibers included in the electrode fibers according to the second embodiment of the present invention.
도 16을 참조하면, 제2 탄소나노튜브 시트(310)가 준비될 수 있다. 일 실시 예에 따르면, 상기 제2 탄소나노튜브 시트(310)는 도 16를 참조하여 설명된 상기 제1 탄소나노튜브 시트(210)의 준비 방법과 같은 방법으로 준비될 수 있다. Referring to FIG. 16, a second carbon nanotube sheet 310 may be prepared. According to one embodiment, the second carbon nanotube sheet 310 may be prepared by the same method as the preparation method of the first carbon nanotube sheet 210 described with reference to FIG.
상기 제2 탄소나노튜브 시트(310) 상에 이산화망간(MnO2, 320)이 제공될 수 있다. 상기 이산화망간(320)은 상기 제2 탄소나노튜브 시트(310)보다 낮은 전도성을 가질 수 있고, 상기 제2 탄소나노튜브 시트(310)보다 높은 전하 저장 능력을 가질 수 있다. Manganese dioxide (MnO 2 , 320) may be provided on the second carbon nanotube sheet 310. The manganese dioxide 320 may have a lower conductivity than the second carbon nanotube sheet 310 and may have a higher charge storage capability than the second carbon nanotube sheet 310.
상기 이산화망간(320)을 상기 제2 탄소나노튜브 시트(310) 상에 제공하는 단계는, 상기 이산화망간(320)이 분산된 제2 소스 용액을 준비하는 단계, 및 상기 제2 소스 용액을 상기 제2 탄소나노튜브 시트(310) 상에 제공하는 단계를 포함할 수 있다. The providing of the manganese dioxide 320 on the second carbon nanotube sheet 310 may include preparing a second source solution in which the manganese dioxide 320 is dispersed, and supplying the second source solution to the second carbon nanotube sheet 310. It may include the step of providing on the carbon nanotube sheet (310).
일 실시 예에 따르면, 상기 제2 소스 용액은, 용매에 상기 이산화망간(320)을 투입하고 초음파 처리하여, 상기 이산화망간(320)을 분산시키는 방법으로 제조될 수 있다. 예를 들어, 상기 용매는 에탄올일 수 있다. 예를 들어, 상기 제2 소스 용액 내 상기 이산화망간(320)의 wt%는 5mg/ml로 제공될 수 있다. 또한, 일 실시 예에 따르면, 상기 제2 소스 용액은, drop casting 방법으로 상기 제2 탄소나노튜브 시트(310) 상에 제공될 수 있다.According to an embodiment of the present disclosure, the second source solution may be prepared by a method of dispersing the manganese dioxide 320 by adding the manganese dioxide 320 to a solvent and performing ultrasonic treatment. For example, the solvent may be ethanol. For example, wt% of the manganese dioxide 320 in the second source solution may be provided at 5 mg / ml. In addition, according to an embodiment, the second source solution may be provided on the second carbon nanotube sheet 310 by a drop casting method.
일 실시 예에 따르면, 상기 이산화망간(320)은, 입자(particle) 형태로 제공될 수 있다. 일 실시 예에 따르면, 상기 제2 소스 용액 내의 상기 이산화망간(320)의 사이즈는 실질적으로 서로 동일할 수 있다. 또는, 다른 실시 예에 따르면, 상기 제2 소스 용액 내의 상기 이산화망간(320)의 사이즈는 서로 다를 수 있다. According to one embodiment, the manganese dioxide 320 may be provided in the form of particles. According to one embodiment, the size of the manganese dioxide 320 in the second source solution may be substantially the same. Alternatively, according to another embodiment, the sizes of the manganese dioxide 320 in the second source solution may be different.
도 17을 참조하면, 상기 이산화망간(320)이 제공된 상기 제2 탄소나노튜브 시트(310)를 꼬아서, 제2 전극 섬유(330)가 제조될 수 있다. 일 실시 예에 따르면, 상기 제2 전극 섬유(330)를 제조하는 단계는, 상기 복수의 탄소나노튜브가 연장하는 상기 제1 방향을 회전축으로 사용하여, 상기 복수의 탄소나노튜브의 일단을 꼬으는(twist) 것을 포함할 수 있다. 일 실시 예에 따르면, 상기 제2 탄소나노튜브 시트(310)의 미터당 꼬임 횟수는 상기 제1 탄소나노튜브 시트(310)의 미터당 꼬임 횟수보다 더 많을 수 있다. 예를 들어, 상기 이산화망간(320)이 제공된 상기 제2 탄소나노튜브 시트(310)는 약 5000회의 미터당 꼬임 횟수를 가질 수 있다. Referring to FIG. 17, the second electrode fiber 330 may be manufactured by twisting the second carbon nanotube sheet 310 provided with the manganese dioxide 320. According to an embodiment, the manufacturing of the second electrode fibers 330 may include twisting one end of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. (twist) may be included. According to one embodiment, the number of twists per meter of the second carbon nanotube sheet 310 may be greater than the number of twists per meter of the first carbon nanotube sheet 310. For example, the second carbon nanotube sheet 310 provided with the manganese dioxide 320 may have about 5000 twist times per meter.
이에 따라, 상기 제2 전극 섬유(330)의 내부 영역은, 상기 제2 탄소나노튜브 시트(310)가 말리고(rolled) 적층된(stacked) 형태로 제공될 수 있다. 말리고 적층된 상기 제2 탄소나노튜브 시트(310) 사이에 상기 이산화망간(320)이 제공될 수 있다. 다시 말하면, 상기 제2 전극 섬유(330)가 연장하는 상기 제1 방향을 법선으로 갖는 제1 평면이 정의되는 경우, 상기 제1 평면으로 절취한 상기 제2 전극 섬유(330)의 단면에서, 상기 제2 탄소나노튜브 시트(310)의 단면은 나선형(spiral)으로 제공되고, 나선형의 상기 제2 탄소나노튜브 시트(310) 사이에 상기 이산화망간(320)이 제공될 수 있다. Accordingly, the inner region of the second electrode fiber 330 may be provided in a form in which the second carbon nanotube sheet 310 is rolled and stacked. The manganese dioxide 320 may be provided between the dried and stacked second carbon nanotube sheets 310. In other words, in the cross section of the second electrode fiber 330 cut into the first plane when the first plane having the first direction extending from the second electrode fiber 330 as a normal is defined, the A cross section of the second carbon nanotube sheet 310 may be provided in a spiral shape, and the manganese dioxide 320 may be provided between the second carbon nanotube sheet 310 in a spiral shape.
일 실시 예에 따르면, 상기 제2 전극 섬유(330)에서, 상기 이산화망간(320)의 wt%가 상기 제2 탄소나노튜브 시트(310)의 wt%보다 높을 수 있다. 다시 말해, 상기 제2 전극 섬유(330)는 상기 제2 탄소나노튜브 시트(310)보다 상기 이산화망간(320)을 더 많이 포함할 수 있다. 이에 따라, 상기 제2 전극 섬유(330)는 전하저장 특성이 향상될 수 있다. According to an embodiment, in the second electrode fiber 330, wt% of the manganese dioxide 320 may be higher than wt% of the second carbon nanotube sheet 310. In other words, the second electrode fibers 330 may include more of the manganese dioxide 320 than the second carbon nanotube sheet 310. Accordingly, the second electrode fiber 330 may have improved charge storage characteristics.
이하, 상술된 상기 제1 전극 섬유(230) 및 상기 제2 전극 섬유(330)를 포함하는 슈퍼커패시터 및 그 제조 방법이 도 18을 참조하여 설명된다. Hereinafter, the supercapacitor including the first electrode fiber 230 and the second electrode fiber 330 described above and a manufacturing method thereof will be described with reference to FIG. 18.
도 18은 본 발명의 제2 실시 예에 따른 전극 섬유를 포함하는 슈퍼커패시터 및 그 제조 방법을 설명하는 도면이다. 18 is a view illustrating a supercapacitor including an electrode fiber and a method of manufacturing the same according to the second embodiment of the present invention.
도 18의 (a)를 참조하면, 도 14 내지 도 17을 참조하여 설명된 상기 제1 전극 섬유(230) 및 상기 제2 전극 섬유(330)가 준비된다. 상기 제1 전극 섬유(230) 및 상기 제2 전극 섬유(330)는 각각 전해질(400)로 코팅될 수 있다. 예를 들어, 상기 전해질(400)은 PVA(polyvinyl alcohol)-LiCl 또는 PVDF-HFP(polyvinylidenefluoride-hexafluoropropylene)-TEABF4(tetraethylammoniumtetrafluouroborate)일 수 있다. Referring to FIG. 18A, the first electrode fibers 230 and the second electrode fibers 330 described with reference to FIGS. 14 to 17 are prepared. The first electrode fibers 230 and the second electrode fibers 330 may be coated with an electrolyte 400, respectively. For example, the electrolyte 400 may be polyvinyl alcohol (LiVA) -LiCl or polyvinylidenefluoride-hexafluoropropylene (PVDF-HFP) -tetraethylammoniumtetrafluouroborate (TEABF 4 ).
도 18의 (b)를 참조하면, 상기 전해질(400)이 코팅된 상기 제1 전극 섬유(230) 및 상기 제2 전극 섬유(330)를 서로 꼬아서, 상기 슈퍼커패시터(500)가 제조될 수 있다. 일 실시 예에 따르면, 상기 제1 전극 섬유(230)는 음극(anode)으로 사용될 수 있다. 일 실시 예에 따르면, 상기 제2 전극 섬유(330)는 양극(cathode)으로 사용될 수 있다. 일 실시 예에 따르면, 복수의 상기 슈퍼커패시터(500)는 서로 교차되어 전극 직물로 제조될 수 있다. Referring to FIG. 18B, the supercapacitor 500 may be manufactured by twisting the first electrode fiber 230 and the second electrode fiber 330 coated with the electrolyte 400. have. According to an embodiment, the first electrode fibers 230 may be used as an anode. According to one embodiment, the second electrode fibers 330 may be used as a cathode. According to one embodiment, the plurality of supercapacitors 500 may be made of an electrode fabric by crossing each other.
상기 제1 전극 섬유(230) 및 상기 제2 전극 섬유(330)를 사용하여 슈퍼커패시터를 제조하는 경우, 상기 제1 전극 섬유(230)에서 음의 전하를 저장하는 상기 환원된 그래핀 산화물(220) 및 상기 제2 전극 섬유(330)에서 양의 전하를 저장하는 상기 이산화망간(320)은, 전하 저장 특성의 차이가 발생할 수 있다. 이 경우, 슈퍼커패시터의 특성 상, 상기 제1 전극 섬유(230) 및 상기 제2 전극 섬유(330) 중에서 전하 저장 특성이 낮은 것에 의해 에너지 저장량이 결정될 수 있다. When manufacturing a supercapacitor using the first electrode fibers 230 and the second electrode fibers 330, the reduced graphene oxide 220 storing negative charges in the first electrode fibers 230. ) And the manganese dioxide 320 that stores a positive charge in the second electrode fiber 330 may have a difference in charge storage characteristics. In this case, due to the characteristics of the supercapacitor, the amount of energy storage may be determined by the low charge storage characteristics among the first electrode fibers 230 and the second electrode fibers 330.
구체적으로, 상기 환원된 그래핀 산화물(220)을 포함하는 제1 전극 섬유(230) 및 상기 이산화망간(320)을 포함하는 상기 제2 전극 섬유(230)를 사용하여 슈퍼커패시터를 제조하는 경우, 상기 이산화망간(320) 보다 상기 환원된 그래핀 산화물(220)의 전하 저장 특성이 낮음에 따라, 상기 제1 전극 섬유(330)의 전하 저장 특성이 상기 제2 전극 섬유(230)의 전하 저장 특성보다 낮을 수 있다. 이에 따라, 상기 슈퍼커패시터는 상기 제1 전극 섬유(330)에 의해 에너지 저장량이 결정될 수 있다. Specifically, in the case of manufacturing a supercapacitor using the first electrode fiber 230 including the reduced graphene oxide 220 and the second electrode fiber 230 including the manganese dioxide 320, As the charge storage property of the reduced graphene oxide 220 is lower than that of the manganese dioxide 320, the charge storage property of the first electrode fiber 330 is lower than that of the second electrode fiber 230. Can be. Accordingly, the amount of energy stored in the supercapacitor may be determined by the first electrode fiber 330.
상기 슈퍼커패시터의 에너지 저장 효율을 최대화 하기 위해, 본 발명의 제2 실시 예에 따른 전극 섬유를 포함하는 슈퍼커패시터 및 그 제조 방법은, 다양한 방법을 제공할 수 있다. 이하, 상기 슈퍼커패시터의 에너지 저장 효율을 최대화 하기 위한 방법들이 상술된다. In order to maximize the energy storage efficiency of the supercapacitor, the supercapacitor including the electrode fiber and the manufacturing method thereof according to the second embodiment of the present invention may provide various methods. Hereinafter, methods for maximizing the energy storage efficiency of the supercapacitor are described.
상기 슈퍼커패시터의 에너지 저장 효율을 최대화 하기 위해, 상기 제1 전극 섬유(230)에서 상기 환원된 그래핀 산화물(220)의 wt%가 상기 제2 전극 섬유(330)에서 상기 이산화망간(320)의 wt%보다 높을 수 있다. 예를 들어, 상기 환원된 그래핀 산화물(220)은 90wt%로 제공되고, 상기 이산화망간(320)은 70.5wt%로 제공될 수 있다. In order to maximize the energy storage efficiency of the supercapacitor, wt% of the reduced graphene oxide 220 in the first electrode fiber 230 is wt% of the manganese dioxide 320 in the second electrode fiber 330. It can be higher than%. For example, the reduced graphene oxide 220 may be provided at 90 wt%, and the manganese dioxide 320 may be provided at 70.5 wt%.
만약, 이와 달리, 상기 제1 전극 섬유(230)에서 상기 환원된 그래핀 산화물(220)의 wt%와 상기 제2 전극 섬유(330)에서 상기 이산화망간(320)의 wt%가 동일한 경우, 상기 제1 전극 섬유(230)에서 상기 제1 탄소나노튜브 시트(210)의 개수는, 상기 제2 전극 섬유(330)에서 상기 제2 탄소나노튜브 시트(310)의 개수보다 많을 수 있다. 다시 말해, 상기 제1 전극 섬유(230)는 상기 제2 전극 섬유(330) 보다 두껍게 제조될 수 있다. 예를 들어, 상기 제1 탄소나노튜브 시트(210)의 개수는 5개이고, 상기 제2 탄소나노튜브 시트(310)의 개수는 4개일 수 있다. Otherwise, if the wt% of the reduced graphene oxide 220 in the first electrode fiber 230 and the wt% of the manganese dioxide 320 in the second electrode fiber 330 are the same, The number of the first carbon nanotube sheets 210 in the first electrode fibers 230 may be greater than the number of the second carbon nanotube sheets 310 in the second electrode fibers 330. In other words, the first electrode fibers 230 may be made thicker than the second electrode fibers 330. For example, the number of the first carbon nanotube sheets 210 may be five, and the number of the second carbon nanotube sheets 310 may be four.
또한, 상기 제1 탄소나노튜브 시트(210)의 면적은, 상기 제2 탄소나노튜브 시트(310)의 면적보다 넓을 수 있다. 이에 따라, 상기 제1 탄소나노튜브 시트(210) 상에 제공되는 상기 환원된 그래핀 산화물(220)의 양이 상기 제2 탄소나노튜브 시트(310) 상에 제공되는 상기 이산화망간(320)의 양보다 많을 수 있다. In addition, an area of the first carbon nanotube sheet 210 may be larger than an area of the second carbon nanotube sheet 310. Accordingly, the amount of the reduced graphene oxide 220 provided on the first carbon nanotube sheet 210 is the amount of the manganese dioxide 320 provided on the second carbon nanotube sheet 310. Can be more.
상술된 본 발명의 제2 실시 예에 따른 전극 섬유를 포함하는 슈퍼커패시터는, 상기 환원된 그래핀 산화물(220)과 상기 환원된 그래핀 산화물(220)을 둘러싸도록 꼬인 제1 탄소나노튜브 시트(210)를 포함하는 제1 전극 섬유(230) 및 상기 이산화망간(320)과 상기 이산화망간(320)을 둘러싸도록 꼬인 제2 탄소나노튜브 시트(320)를 포함하는 제2 전극 섬유(330)를 포함할 수 있다. 이에 따라, 상기 환원된 그래핀 산화물(220) 및 상기 이산화망간(320)을 포함하는 고효율의 비대칭 슈퍼커패시터가 제공될 수 있다.The supercapacitor including the electrode fiber according to the second embodiment of the present invention described above, the first carbon nanotube sheet twisted to surround the reduced graphene oxide 220 and the reduced graphene oxide 220 ( And a second electrode fiber 330 including a first electrode fiber 230 including 210 and a second carbon nanotube sheet 320 twisted to surround the manganese dioxide 320 and the manganese dioxide 320. Can be. Accordingly, a highly efficient asymmetric supercapacitor including the reduced graphene oxide 220 and the manganese dioxide 320 may be provided.
또한, 상기 슈퍼커패시터는, 상기 제1 및 제2 탄소나노튜브 시트(210, 310)를 이용하여 섬유를 제조하기 전에, 상기 제1 및 제2 탄소나노튜브 시트(210, 310) 상에 상기 환원된 그래핀 산화물(220), 및 상기 이산화망간(320)이 제공되고, 상기 환원된 그래핀 산화물(220), 및 상기 이산화망간(320)이 제공된 상태에서, 상기 제1 및 제2 탄소나노튜브 시트(210, 310)를 꼬아서, 상기 제1 및 제2 전극 섬유(230, 330)가 제조될 수 있다. 이에 따라, 상기 제1 및 제2 전극 섬유(230, 330) 내에 상기 환원된 그래핀 산화물(220), 및 상기 이산화망간(320)의 함량이 증가되고, 상기 슈퍼커패시터의 에너지 저장량이 향상될 수 있다.In addition, the supercapacitor may be reduced on the first and second carbon nanotube sheets 210 and 310 before the fiber is manufactured using the first and second carbon nanotube sheets 210 and 310. Graphene oxide 220, and the manganese dioxide 320 is provided, the reduced graphene oxide 220, and the manganese dioxide 320 is provided, the first and second carbon nanotube sheet ( By twisting 210 and 310, the first and second electrode fibers 230 and 330 may be manufactured. Accordingly, the content of the reduced graphene oxide 220 and the manganese dioxide 320 in the first and second electrode fibers 230 and 330 may be increased, and the energy storage amount of the supercapacitor may be improved. .
또한, 상기 슈퍼커패시터의 에너지 저장 효율을 최대화 하기 위한 방법들이 제공될 수 있다. In addition, methods for maximizing the energy storage efficiency of the supercapacitor may be provided.
일 실시 예에 따르면, 상기 제1 전극 섬유(230)에서 상기 환원된 그래핀 산화물(220)의 wt%가 상기 제2 전극 섬유(330)에서 상기 이산화망간(320)의 wt%보다 높게 제공될 수 있다. According to one embodiment, wt% of the reduced graphene oxide 220 in the first electrode fiber 230 may be provided higher than wt% of the manganese dioxide 320 in the second electrode fiber 330. have.
일 실시 예에 따르면, 상기 제1 전극 섬유(230)에서 상기 제1 탄소나노튜브 시트(210)의 개수가 상기 제2 전극 섬유(330)에서 상기 제2 탄소나노튜브 시트(310)의 개수보다 많을 수 있다. According to an embodiment, the number of the first carbon nanotube sheets 210 in the first electrode fibers 230 is greater than the number of the second carbon nanotube sheets 310 in the second electrode fibers 330. There can be many.
일 실시 예에 따르면, 상기 제1 탄소나노튜브 시트(210)의 면적이 상기 제2 탄소나노튜브 시트(310)의 면적보다 높을 수 있다.According to an embodiment, an area of the first carbon nanotube sheet 210 may be higher than an area of the second carbon nanotube sheet 310.
일 실시 예에 따르면, 상기 환원된 그래핀 산화물(220)이 질소(nitrogen)로 도핑될 수 있다. According to one embodiment, the reduced graphene oxide 220 may be doped with nitrogen (nitrogen).
이에 따라 상기 실시 예에 따른 슈퍼커패시터는, 에너지 저장 효율이 최대화 되고, 에너지 저장량이 향상될 수 있다.Accordingly, in the supercapacitor according to the embodiment, the energy storage efficiency may be maximized and the energy storage amount may be improved.
이하, 본 발명의 제2 실시 예에 따른 전극 섬유 및 이를 포함하는 슈퍼커패시터의 구체적인 실험 예 및 특성 평가 결과가 설명된다. Hereinafter, specific experimental examples and characteristics evaluation results of the electrode fiber and the supercapacitor including the same according to the second embodiment of the present invention will be described.
실시 예 2-1에 따른 제1 전극 섬유 제조Preparation of First Electrode Fibers According to Example 2-1
실리콘 기판이 준비된다. 상기 실리콘 기판 상에 화학 기상 증착법으로, 약 400μm의 높이, 약 12nm 의 직경, 및 약 9개의 벽을 포함하는 탄소나노튜브 숲(CNT forest)을 제조하였다. 상기 탄소나노튜브 숲을 제1 방향으로 잡아당겨, 상기 제1 방향으로 연장하는 복수의 탄소나노튜브를 포함하는 탄소나노튜브 시트(CNT sheet)를 유리 기판 상에 제조하였다. The silicon substrate is prepared. By chemical vapor deposition on the silicon substrate, a carbon nanotube forest including a height of about 400 μm, a diameter of about 12 nm, and about nine walls was prepared. Pulling the carbon nanotube forest in a first direction, a carbon nanotube sheet (CNT sheet) including a plurality of carbon nanotubes extending in the first direction was prepared on a glass substrate.
나노플레이크(nanoflake)형태의 환원된 그래핀 산화물(reduced graphene oxide, rGO) 및 8mg/ml의 wt%를 갖는 dimethylformamide가 준비된다. 상기 환원된 그래핀 산화물을 dimethylformamide에 혼합시킨 후, VCX750 ultrasonic 장비를 사용하여 1시간 동안 150W로 초음파 처리하여 분산시켜 혼합 용액을 제조하였다. Reduced graphene oxide (rGO) in the form of nanoflakes and dimethylformamide with wt% of 8 mg / ml are prepared. After mixing the reduced graphene oxide in dimethylformamide, using a VCX750 ultrasonic equipment for 1 hour by ultrasonication at 150W to disperse to prepare a mixed solution.
상기 탄소나노튜브 시트를 5장 적층시킨 후, 상기 혼합 용액을 drop casting 방법으로 뿌리고 20분의 시간 동안 건조시켰다. Drop casting 과정과 20분의 건조 과정은 5번 반복하였다. After stacking five sheets of carbon nanotubes, the mixed solution was sprayed by a drop casting method and dried for 20 minutes. The drop casting process and the drying process for 20 minutes were repeated five times.
건조된 상기 탄소나노튜브 시트는, 상기 제1 방향을 회전축으로 사용하여, 복수의 상기 탄소나노튜브 시트 일단들을 미터당 약 3000회로 꼬아서 90 wt%의 wt%를 갖는 환원된 그래핀 산화물을 포함하는 제1 전극 섬유를 제조하였다. The dried carbon nanotube sheet includes a reduced graphene oxide having a wt% of 90 wt% by twisting one end of the plurality of carbon nanotube sheets about 3000 times per meter using the first direction as a rotation axis. A first electrode fiber was prepared.
실시 예 2-2에 따른 제2 전극 섬유 제조Preparation of Second Electrode Fiber According to Example 2-2
30nm의 직경, 100 nm의 길이, 및 막대형태를 갖는, Sigma-Aldrich사에서 제조된 이산화망간(MnO2) 나노입자들(nanoparticles) 및 5 mg/ml 의 wt%를 포함하는 에탄올 용매가 준비된다. 상기 이산화망간 나노입자들을 에탄올에 혼합시킨 후, 초음파 처리하여 혼합 용액을 제조하였다. Manganese dioxide (MnO 2 ) nanoparticles manufactured by Sigma-Aldrich, having a diameter of 30 nm, a length of 100 nm, and a rod form, and an ethanol solvent containing 5 mg / ml wt% are prepared. The manganese dioxide nanoparticles were mixed in ethanol and sonicated to prepare a mixed solution.
상술된 실시 예 2-1에 따른 방법으로 제조된 탄소나노튜브 시트를 4장 적층시킨 후, 상기 혼합 용액을 drop casting 방법으로 뿌리고 20분의 시간 동안 건조시켰다. 건조된 상기 탄소나노튜브 시트는 상기 제1 방향을 회전축으로 사용하여, 복수의 상기 탄소나노튜브 시트 일단들을 미터당 약 5000회로 꼬아서 70 wt%의 wt%를 갖는 이산화망간을 포함하는 제2 전극 섬유를 제조하였다. After laminating four carbon nanotube sheets prepared by the method according to Example 2-1 described above, the mixed solution was sprayed by a drop casting method and dried for 20 minutes. The dried carbon nanotube sheet is a second electrode fiber including manganese dioxide having a wt% of 70 wt% by twisting one end of the plurality of carbon nanotube sheets about 5000 times per meter using the first direction as a rotation axis. Prepared.
실시 예 2-3에 따른 슈퍼커패시터 제조Preparation of Supercapacitors According to Example 2-3
3g의 용량을 갖는 PVA, 6g의 용량을 갖는 LiCl, 및 30ml의 용량을 갖는 DI water를 90℃의 온도에서 혼합하여 PVA-LiCl 전해질을 제조하였다. 이후, 상술된 실시 예 2-1에 따른 제1 전극 섬유 및 실시 예 2-2에 따른 제2 전극 섬유에 각각 전해질을 코팅하였다. PVA having a capacity of 3 g, LiCl having a capacity of 6 g, and DI water having a capacity of 30 ml were mixed at a temperature of 90 ° C. to prepare a PVA-LiCl electrolyte. Thereafter, an electrolyte was coated on each of the first electrode fibers according to Example 2-1 and the second electrode fibers according to Example 2-2.
전해질이 코팅된 제1 전극 섬유를 양극, 전해질이 코팅된 제2 전극 섬유를 음극으로 사용하고, 각각의 전극에 180 μm의 직경을 갖는 구리(Cu) 전선을 연결하여 슈퍼커패시터를 제조하였다. A supercapacitor was manufactured by using a first electrode fiber coated with an electrolyte as a cathode and a second electrode fiber coated with an electrolyte as a cathode, and connecting a copper (Cu) wire having a diameter of 180 μm to each electrode.
실시 예 2-4에 따른 슈퍼커패시터 제조Preparation of Supercapacitors According to Example 2-4
아세톤에 PVDF-HFP가 혼합된 용액 및 propylene carbonate에 TEABF4가 혼합된 용액을 4:1의 비율로 준비하고, 이를 slide glass에서 3시간 동안 건조시켜 PVDF-HFP-TEABF4 전해질을 제조하였다. 이후, 상술된 실시 예 2-3에 따른 방법으로 슈퍼커패시터를 제조하였다. A solution of PVDF-HFP mixed with acetone and TEABF 4 mixed with propylene carbonate was prepared at a ratio of 4: 1, and dried for 3 hours on a slide glass to prepare PVDF-HFP-TEABF 4 electrolyte. Thereafter, a supercapacitor was manufactured by the method according to Example 2-3 described above.
실시 예 2-5에 따른 전극 직물 제조Preparation of Electrode Fabrics According to Examples 2-5
상술된 실시 예 2-1에 따른 제1 전극 섬유 및 실시 예 2-2에 따른 제2 전극 섬유를 실시 예 2-3에 따른 전해질로 각각 코팅하고, 이를 서로 직조하여 전극 직물(textile super capacitor)을 제조하였다. The first electrode fiber according to Example 2-1 and the second electrode fiber according to Example 2-2 are coated with the electrolyte according to Example 2-3, respectively, and weave each other to fabricate an electrode fabric (textile super capacitor). Was prepared.
실시 예 2-6에 따른 제1 전극 섬유 제조Preparation of First Electrode Fibers According to Examples 2-6
상술된 실시 예 2-1에 따른 제1 전극 섬유를 준비하고 상기 제1 전극 섬유에 Na2SO4 liquid 전해질을 코팅하였다. The first electrode fiber according to Example 2-1 described above was prepared and a Na 2 SO 4 liquid electrolyte was coated on the first electrode fiber.
실시 예 2-7에 따른 제2 전극 섬유 제조Preparation of Second Electrode Fiber According to Examples 2-7
상술된 실시 예 2-2에 따른 제2 전극 섬유를 준비하고 상기 제2 전극 섬유에 Na2SO4 liquid 전해질을 코팅하였다. The second electrode fiber according to Example 2-2 described above was prepared and a Na 2 SO 4 liquid electrolyte was coated on the second electrode fiber.
비교 예 2-1에 따른 슈퍼커패시터 제조Manufacture of supercapacitors according to Comparative Example 2-1
상술된 실시 예 2-1에 다른 전극 섬유를 실시 예 2-3에 따른 전해질로 코팅하고, 이를 양극 및 음극으로 사용하여 슈퍼커패시터를 제조하였다. Another electrode fiber in Example 2-1 described above was coated with an electrolyte according to Example 2-3, and a supercapacitor was manufactured using the same as an anode and a cathode.
비교 예 2-2 내지 2-7에 따른 슈퍼커패시터 준비Supercapacitor preparation according to Comparative Examples 2-2 to 2-7
비교 예 2-2: CNT/MnO2 based stretchable asymmetric fibers Comparative Example 2-2: CNT / MnO 2 based stretchable asymmetric fibers
비교 예 2-3: rGO/MnO2/PPy yarns Comparative Example 2-3: rGO / MnO 2 / PPy yarns
비교 예 2-4: NiOH/MnO2 asymmetric yarns Comparative Example 2-4: NiOH / MnO 2 asymmetric yarns
비교 예 2-5: Hollow rGo fiber Comparative Example 2-5: Hollow rGo fiber
비교 예 2-6: MnO2 nanosheet decorated asymmetric carbon fibers Comparative Example 2-6: MnO 2 nanosheet decorated asymmetric carbon fibers
비교 예 2-7: MnO2 coated stretchable, asymmetric CNT wires Comparative Example 2-7: MnO 2 coated stretchable, asymmetric CNT wires
상기 실시 예 2-1 내지 2-5, 비교 예 2-1 내지 2-6에 따른 전극 섬유, 슈퍼커패시터 및 전극 직물이 아래 <표 2>를 통하여 정리된다. The electrode fibers, supercapacitors, and electrode fabrics according to Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-6 are summarized through Table 2 below.
구분division | 종류Kinds | 구성Configuration | 전해질Electrolyte |
실시 예 2-1Example 2-1 | 전극 섬유Electrode fiber | rGO/CNTrGO / CNT | |
실시 예 2-2Example 2-2 | 전극 섬유Electrode fiber | MnO2/CNTMnO 2 / CNT | |
실시 예 2-3Example 2-3 | 슈퍼커패시터Supercapacitor | rGO/CNT, MnO2/CNTrGO / CNT, MnO 2 / CNT | PVA-LiClPVA-LiCl |
실시 예 2-4Example 2-4 | 슈퍼커패시터Supercapacitor | rGO/CNT, MnO2/CNTrGO / CNT, MnO 2 / CNT | PVDF-HFP-TEABF4 PVDF-HFP-TEABF 4 |
실시 예 2-5Example 2-5 | 전극 직물Electrode fabric | rGO/CNT, MnO2/CNTrGO / CNT, MnO 2 / CNT | PVA-LiClPVA-LiCl |
실시 예 2-6Example 2-6 | 전극 섬유Electrode fiber | rGO/CNTrGO / CNT | Na2SO4 Na 2 SO 4 |
실시 예 2-7Example 2-7 | 전극 섬유Electrode fiber | MnO2/CNTMnO 2 / CNT | Na2SO4 Na 2 SO 4 |
비교 예 2-1Comparative Example 2-1 | 슈퍼커패시터Supercapacitor | rGO/CNT,rGO/CNTrGO / CNT, rGO / CNT | PVA-LiClPVA-LiCl |
비교 예 2-2Comparative Example 2-2 | 슈퍼커패시터Supercapacitor | CNT/MnO2 based stretchable asymmetric fibersCNT / MnO 2 based stretchable asymmetric fibers | |
비교 예 2-3Comparative Example 2-3 | 슈퍼커패시터Supercapacitor | rGO/MnO2/PPy yarnsrGO / MnO 2 / PPy yarns | |
비교 예 2-4Comparative Example 2-4 | 슈퍼커패시터Supercapacitor | NiOH/MnO2 asymmetric yarnsNiOH / MnO 2 asymmetric yarns | |
비교 예 2-5Comparative Example 2-5 | 슈퍼커패시터Supercapacitor | Hollow rGo fiberHollow rGo fiber | |
비교 예 2-6Comparative Example 2-6 | 슈퍼커패시터Supercapacitor | MnO2 nanosheet decorated asymmetric carbon fibersMnO 2 nanosheet decorated asymmetric carbon fibers | |
비교 예 2-7Comparative Example 2-7 | 슈퍼커패시터Supercapacitor | MnO2 coated stretchable, asymmetric CNT wiresMnO 2 coated stretchable, asymmetric CNT wires |
도 19는 본 발명의 제2 실시 예에 따른 전극 섬유가 포함하는 제1 전극 섬유를 촬영한 사진이다. 19 is a photograph of the first electrode fibers included in the electrode fibers according to the second exemplary embodiment of the present invention.
도 19의 (a) 및 (b)를 참조하면, 실시 예 2-1에 따른 제1 전극 섬유의 옆모습과 단면을 낮은 배율(scale bar = 300μm)과 높은 배율(scale bar =600nm)에서 SEM(scanning electron microscopy) 촬영하였다.Referring to (a) and (b) of FIG. 19, the SEM and the cross-sectional view of the first electrode fiber according to Example 2-1 are obtained at low magnification (scale bar = 300 μm) and high magnification (scale bar = 600 nm). scanning electron microscopy).
도 19의 (a)에서 알 수 있듯이, 상기 실시 예 2-1에 따른 제1 전극 섬유는 꼬인(twist) 형태를 갖고, 환원된 그래핀 산화물(rGO)이 플레이크(flake)형태로 탄소나노튜브 시트 사이에 존재하는 것을 확인할 수 있었다. 도 19의 (b)에서 알 수 있듯이, 상기 실시 예 2-1에 따른 제1 전극 섬유의 단면은, 나선형(spiral)인 것을 확인할 수 있었다. 또한, 상기 단면은, 탄소나노튜브 시트가 말리고(rolled) 적층된(stacked) 형태를 나타내고, 말리고 적층된 상기 탄소나노튜브 시트 사이에 환원된 그래핀 산화물이 제공되어 있는 것을 확인할 수 있었다. As can be seen in Figure 19 (a), the first electrode fiber according to the embodiment 2-1 has a twisted (twist) form, the reduced graphene oxide (rGO) in the form of flakes (carbon nanotubes) It was confirmed that it existed between sheets. As can be seen from FIG. 19B, it was confirmed that the cross section of the first electrode fiber according to Example 2-1 was spiral. In addition, the cross section shows a form in which the carbon nanotube sheet is rolled and stacked, and the reduced graphene oxide is provided between the dried and stacked carbon nanotube sheets.
도 20은 본 발명의 제2 실시 예에 따른 전극 섬유가 포함하는 제2 전극 섬유를 촬영한 사진이다. 20 is a photograph of the second electrode fibers included in the electrode fibers according to the second exemplary embodiment of the present invention.
도 20의 (a) 및 (b)를 참조하면, 실시 예 2-2에 따른 제2 전극 섬유의 옆모습과 단면을 낮은 배율(scale bar = 300μm)과 높은 배율(scale bar =600nm)에서 SEM(scanning electron microscopy) 촬영하였다.Referring to (a) and (b) of FIG. 20, the SEM and the cross-section of the second electrode fiber according to Example 2-2 are obtained at low magnification (scale bar = 300 μm) and high magnification (scale bar = 600 nm). scanning electron microscopy).
도 20의 (a)에서 알 수 있듯이, 상기 실시 예 2-2에 따른 제2 전극 섬유는 꼬인(twist) 형태를 갖고, 이산화망간(MnO2)이 입자(particle)형태로 탄소나노튜브 시트 사이에 존재하는 것을 확인할 수 있었다. 도 20의 (b)에서 알 수 있듯이, 상기 실시 예 2-2에 따른 제2 전극 섬유의 단면은, 나선형(spiral)인 것을 확인할 수 있었다. 또한, 상기 단면은, 탄소나노튜브 시트가 말리고(rolled) 적층된(stacked) 형태를 나타내고, 말리고 적층된 상기 탄소나노튜브 시트 사이에 이산화망간(MnO2)이 제공되어 있는 것을 확인할 수 있었다. As can be seen in Figure 20 (a), the second electrode fiber according to the embodiment 2-2 has a twist (twist) form, the manganese dioxide (MnO 2 ) in the form of particles (particle) between the carbon nanotube sheet I could confirm that it exists. As can be seen from FIG. 20B, it was confirmed that the cross section of the second electrode fiber according to Example 2-2 was spiral. In addition, the cross section shows a form in which the carbon nanotube sheet is rolled and stacked, and it is confirmed that manganese dioxide (MnO 2 ) is provided between the carbon nanotube sheets that are rolled and stacked.
도 21은 본 발명의 비교 예 2-1에 따른 슈퍼커패시터의 전기화학특성을 나타내는 그래프이다. 21 is a graph showing the electrochemical characteristics of the supercapacitor according to Comparative Example 2-1 of the present invention.
도 21의 (a)를 참조하면, 상기 비교 예 2-1에 따른 슈퍼커패시터를 10, 30, 50, 70, 100mV/s의 전압 스캔 레이트(voltage scan rate) 범위에서 전압(voltage, V)에 따른 전류 밀도(current density)를 측정하고, 순환전압전류 곡선(이하, CV 곡선이라고 한다)을 나타내었다. 도 21의 (a)에서 알 수 있듯이, 상기 비교 예 2-1에 따른 슈퍼커패시터의 CV곡선은 10, 30, 50, 70, 100mV/s의 전압 스캔 레이트 범위에서 피크(peak)를 나타내지 않는 것을 확인할 수 있었다. 이는, 상기 비교 예 2-1에 따른 슈퍼커패시터가 Faradic redox reaction과 관련되어 있음을 알 수 있다. Referring to (a) of FIG. 21, the supercapacitor according to Comparative Example 2-1 is connected to a voltage V in a voltage scan rate range of 10, 30, 50, 70, and 100 mV / s. The current density was measured, and a cyclic voltammogram (hereinafter referred to as CV curve) was shown. As can be seen from (a) of Figure 21, the CV curve of the supercapacitor according to Comparative Example 2-1 does not show a peak in the voltage scan rate range of 10, 30, 50, 70, 100mV / s I could confirm it. This, it can be seen that the supercapacitor according to Comparative Example 2-1 is associated with the Faradic redox reaction.
도 21의 (b)를 참조하면, 상기 비교 예 2-1에 따른 슈퍼커패시터를 0.5, 2.5, 5 mA/cm2의 전류 밀도(current density) 범위에서 시간에 따른 전압을 측정하고, 충방전(charge/discharge) 곡선을 나타내었다. 도 21의 (b)에서 알 수 있듯이, 상기 비교 예 1에 따른 슈퍼커패시터는 0.5, 2.5, 5 mA/cm2의 전류 밀도 범위에서 충방전 곡선이 삼각형 형태로 나타나는 것을 확인할 수 있었다. Referring to (b) of FIG. 21, the supercapacitor according to Comparative Example 2-1 is measured with voltage over time in a current density range of 0.5, 2.5, and 5 mA / cm 2 , and charge / discharge ( charge / discharge) curves. As it can be seen in Figure 21 (b), the supercapacitor according to Comparative Example 1 was confirmed that the charge and discharge curve in a triangular form in the current density range of 0.5, 2.5, 5 mA / cm 2 .
도 21의 (c)를 참조하면, 상기 비교 예 2-1에 따른 슈퍼커패시터의 스캔 레이트(scan rate, mV/s)에 따른 areal capacitance(mF/cm2)와 linear capacitance(mF/cm)를 측정하였다. 도 21의 (c)에서 알 수 있듯이, 상기 비교 예 2-1에 따른 슈퍼커패시터는 스캔 레이트가 증가함에 따라 areal capacitance가 172 mF/cm2에서 점차 줄어들고, linear capacitance가 17 mF/cm에서 점점 줄어드는 것을 확인할 수 있었다. Referring to (c) of FIG. 21, areal capacitance (mF / cm 2 ) and linear capacitance (mF / cm) according to the scan rate (mV / s) of the supercapacitor according to Comparative Example 2-1 are calculated. Measured. As can be seen from (c) of FIG. 21, the supercapacitor according to Comparative Example 2-1 gradually decreases areal capacitance at 172 mF / cm 2 as the scan rate increases, and linear capacitance gradually decreases at 17 mF / cm. I could confirm that.
도 22는 본 발명의 실시 예 2-1에 따른 제1 전극 섬유의 환원된 그래핀 산화물의 함량에 따른 특성을 비교한 그래프이다. FIG. 22 is a graph comparing characteristics of the reduced graphene oxide content of the first electrode fibers according to Example 2-1 of the present invention. FIG.
도 22를 참조하면, 상기 실시 예 2-1에 따른 제1 전극 섬유 및 18.5 wt%의 환원된 그래핀 산화물 wt%를 갖는 제1 전극 섬유를 준비하고, 전압에 따른 전류 밀도를 측정하여 CV곡선을 나타내었다. 도 22에서 알 수 있듯이, 90.3 wt%의 환원된 그래핀 산화물 wt%를 갖는 상기 제1 전극 섬유의 CV 곡선 면적이 18.5 wt%의 환원된 그래핀 산화물 wt%를 갖는 상기 제1 전극 섬유의 CV 곡선 면적보다 넓은 것을 확인할 수 있었다. 이에 따라, 상기 제1 전극 섬유는 90.3 wt의 환원된 그래핀 산화물 wt%를 갖는 것이 순환전압전류 특성이 향상되는 것을 알 수 있다.Referring to FIG. 22, a first electrode fiber according to Example 2-1 and a first electrode fiber having reduced graphene oxide wt% of 18.5 wt% are prepared, and a current curve according to voltage is measured to obtain a CV curve. Indicated. As can be seen in FIG. 22, the CV curve area of the first electrode fiber having 90.3 wt% reduced graphene oxide wt% is the CV of the first electrode fiber having wt% reduced graphene oxide wt% 18.5 wt%. It was confirmed that it was wider than the curve area. Accordingly, it can be seen that the first electrode fiber has a reduced graphene oxide wt% of 90.3 wt% to improve the cyclic voltammetry.
도 23은 본 발명의 실시 예 2-1 및 2-2에 따른 제1 전극 섬유 및 제2 전극 섬유의 특성을 비교하는 그래프이다. 23 is a graph comparing the characteristics of the first electrode fibers and the second electrode fibers according to Examples 2-1 and 2-2 of the present invention.
도 23을 참조하면, 상기 실시 예 2-1 및 실시 예 2-2에 따른 전극 섬유의 전압에 따른 전류를 측정하고 CV 곡선을 나타내었다. 상기 실시 예 2-1 및 실시 예 2-2에 따른 전극 섬유의 전압에 따른 전류를 측정하기 위하여, 3전극 시스템(three electrode system)을 이용하되, reference electrode로 Ag/AgCl을 사용하고 counter electrode로 Pt mesh를 사용하였다. 도 23에서 알 수 있듯이, 상기 실시 예 2-2에 따른 CV 곡선의 면적이 상기 실시 예 2-1에 따른 CV 곡선의 면적보다 넓은 것을 확인할 수 있었다. 이에 따라, 환원된 그래핀 산화물을 포함하는 상기 제1 전극 및 이산화망간을 포함하는 상기 제2 전극의 전하저장 특성이 차이가 있음을 알 수 있다. Referring to FIG. 23, the current according to the voltage of the electrode fibers according to Example 2-1 and Example 2-2 was measured and a CV curve was shown. In order to measure the current according to the voltage of the electrode fibers according to Examples 2-1 and 2-2, using a three electrode system, using Ag / AgCl as a reference electrode and as a counter electrode Pt mesh was used. As can be seen in Figure 23, it was confirmed that the area of the CV curve according to the embodiment 2-2 is wider than the area of the CV curve according to the embodiment 2-1. Accordingly, it can be seen that the charge storage characteristics of the first electrode including the reduced graphene oxide and the second electrode including manganese dioxide are different.
도 24는 본 발명의 실시 예 2-3에 따른 슈퍼커패시터의 특성을 나타내는 그래프이다. 24 is a graph showing the characteristics of the supercapacitor according to the embodiment 2-3 of the present invention.
도 24의 (a)를 참조하면, 상기 실시 예 2-3에 따른 슈퍼커패시터를 0.9, 1.3, 1.7, 2.1V 의 maximum applied voltages 범위에서 전압(voltage, V)에 따른 전류 밀도(current density)를 측정하고, 순환전압전류 곡선(이하, CV 곡선이라고 한다)을 나타내었다. 스캔 레이트는 100 mV/s로 측정하였다. 도 24의 (a)에서 알 수 있듯이, 상기 실시 예 2-3에 따른 슈퍼커패시터의 CV곡선 면적은 0.9, 1.3, 1.7, 2.1V 의 maximum applied voltages 범위에서 점점 증가하는 것을 확인할 수 있었다. 또한, 2.1V maximum applied voltages 범위에서의 CV곡선 면적은 일반 슈퍼커패시터들의 CV곡선 면적과 비슷한 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 2-3에 따른 슈퍼커패시터는 슈퍼커패시터로서 적용이 가능함을 알 수 있다. Referring to (a) of FIG. 24, a current density according to voltage (V) in a maximum applied voltage range of 0.9, 1.3, 1.7, and 2.1V may be obtained. It measured and showed the cyclic voltammogram (henceforth a CV curve). Scan rate was measured at 100 mV / s. As can be seen in Figure 24 (a), it was confirmed that the CV curve area of the supercapacitor according to the embodiment 2-3 is gradually increased in the range of the maximum applied voltages of 0.9, 1.3, 1.7, 2.1V. In addition, the CV curve area in the 2.1V maximum applied voltage range was similar to the CV curve area of the general supercapacitors. Accordingly, it can be seen that the supercapacitor according to the embodiment 2-3 can be applied as a supercapacitor.
도 24의 (b)를 참조하면, 상기 실시 예 2-3에 따른 슈퍼커패시터를 0.9, 1.3, 1.7, 2.1V 의 maximum applied voltages 범위에서 시간에 따른 전압을 측정하고, 충방전(charge/discharge) 곡선을 나타내었다. 또한, 상기 실시 예 2-3에 따른 슈퍼커패시터의 전압에 따른 전류 밀도를 측정하고 IR drop을 측정하였다. 도 24의 (b)에서 알 수 있듯이, 상기 실시 예 2-3에 따른 슈퍼커패시터는 2.1V의 maximum applied voltages에서 안정적인 역삼각형 충방전 곡선을 나타내는 것을 확인할 수 있었다. 또한, 1.2 mA/cm2의 전류 밀도에서 47 mV의 작은 IR drop을 나타내는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 2-3에 따른 슈퍼커패시터는 슈퍼커패시터로서 적용이 가능함을 알 수 있다.Referring to FIG. 24B, the supercapacitor according to the embodiment 2-3 measures voltage over time in the maximum applied voltages of 0.9, 1.3, 1.7, and 2.1V, and charges and discharges (charge / discharge). The curve is shown. In addition, the current density according to the voltage of the supercapacitor according to Example 2-3 was measured and IR drop was measured. As can be seen in Figure 24 (b), it was confirmed that the supercapacitor according to the embodiment 2-3 shows a stable inverted triangle charge and discharge curve at the maximum applied voltages of 2.1V. In addition, it was confirmed that a small IR drop of 47 mV at a current density of 1.2 mA / cm 2 . Accordingly, it can be seen that the supercapacitor according to the embodiment 2-3 can be applied as a supercapacitor.
도 25는 본 발명의 실시 예 2-4에 따른 슈퍼커패시터의 특성을 나타내는 그래프이다. 25 is a graph showing the characteristics of the supercapacitor according to the embodiment 2-4 of the present invention.
도 25의 (a) 및 (b)를 참조하면, 상기 실시 예 2-4에 따른 슈퍼커패시터를 10, 30, 50, 70, 100mV/s의 전압 스캔 레이트(voltage scan rate) 범위에서 0~2 전압(voltage, V)에 따른 전류 밀도(current density) 및 0~4 전압에 따른 전류 밀도를 측정하고, 순환전압전류 곡선(이하, CV 곡선이라고 한다)을 나타내었다. 도 25의 (a) 및 (b)에서 알 수 있듯이, 상기 실시 예 2-4에 따른 슈퍼커패시터의 CV 곡선 면적은 도 24의 (a)를 참조하여 설명된 상기 실시 예 2-3에 따른 슈퍼커패시터의 CV곡선 면적보다 넓은 것을 확인할 수 있었다. 이에 따라, 상기 실시 예에 따른 슈퍼커패시터를 제조하는 경우, PVDF-HFP-TEABF4의 전해질을 사용하는 것이 PVA-LiCl의 전해질을 사용하는 것보다 높은 redox stability를 갖는 것을 알 수 있다. Referring to (a) and (b) of FIG. 25, the supercapacitor according to the embodiment 2-4 is 0 to 2 in a voltage scan rate range of 10, 30, 50, 70, and 100 mV / s. Current densities according to voltages (V) and current densities according to 0 to 4 voltages were measured, and cyclic voltammograms (hereinafter referred to as CV curves) were shown. As can be seen from (a) and (b) of Figure 25, the CV curve area of the supercapacitor according to the embodiment 2-4 is a super according to the embodiment 2-3 described with reference to Figure 24 (a) It was confirmed that the area larger than the CV curve area of the capacitor. Accordingly, when manufacturing the supercapacitor according to the embodiment, it can be seen that using the electrolyte of PVDF-HFP-TEABF 4 has a higher redox stability than using the electrolyte of PVA-LiCl.
도 25의 (c)를 참조하면, 상기 실시 예 2-4에 따른 슈퍼커패시터를 3.5V 이상의 전압 범위에서 시간에 따른 전압을 측정하고, 충방전(charge/discharge) 곡선을 나타내었다. 도 25의 (c)에서 알 수 있듯이, 상기 실시 예 2-4에 따른 슈퍼커패시터는 안정적인 역삼각형 충방전 곡선을 나타내는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 2-4에 따른 슈퍼커패시터는 슈퍼커패시터로서 적용이 가능함을 알 수 있다.Referring to FIG. 25C, the voltage of the supercapacitor according to Example 2-4 was measured over time in a voltage range of 3.5V or more, and a charge / discharge curve was shown. As can be seen in Figure 25 (c), it was confirmed that the supercapacitor according to Example 2-4 shows a stable inverted triangle charge and discharge curve. Accordingly, it can be seen that the supercapacitor according to the embodiment 2-4 can be applied as a supercapacitor.
도 26은 본 발명의 실시 예 2-3 및 2-4에 따른 슈퍼커패시터들의 특성을 비교하는 그래프이다. FIG. 26 is a graph comparing characteristics of supercapacitors according to Examples 2-3 and 2-4 of the present invention. FIG.
도 26의 (a)를 참조하면, 상기 실시 예 2-3 및 실시 예 2-4에 따른 슈퍼커패시터들을 전기화학적 임피던스 분광법(EIS)으로 분석하고, EIS 곡선을 나타내었다. 도 26의 (a)에서 알 수 있듯이, 상기 실시 예 2-3 및 실시 예 2-4에 따른 슈퍼커패시터들 모두 low equivalent series resistance를 나타내는 것을 확인할 수 있었다. Referring to FIG. 26A, supercapacitors according to Examples 2-3 and 2-4 were analyzed by electrochemical impedance spectroscopy (EIS), and an EIS curve was shown. As can be seen from (a) of FIG. 26, it can be seen that the supercapacitors according to Examples 2-3 and 2-4 both exhibit low equivalent series resistance.
도 26의 (b)를 참조하면, 상기 실시 예 2-3 및 실시 예 2-4에 따른 슈퍼커패시터들의 스캔 레이트(scan rate, mV/s)에 따른 areal capacitance(mF/cm2)와 linear capacitance(mF/cm)를 측정하였다. 도 26의 (b)에서 알 수 있듯이, 상기 실시 예 2-4에 따른 슈퍼커패시터의 areal capacitance 및 linear capacitance가 상기 실시 예 2-3에 다른 슈퍼커패시터의 areal capacitance 및 linear capacitance보다 낮게 나타나는 것을 확인할 수 있었다. Referring to (b) of FIG. 26, areal capacitance (mF / cm 2 ) and linear capacitance according to the scan rate (mV / s) of the supercapacitors according to the embodiments 2-3 and 2-4 are shown. (mF / cm) was measured. As can be seen from (b) of Figure 26, it is confirmed that the areal capacitance and linear capacitance of the supercapacitor according to the embodiment 2-4 is lower than the areal capacitance and linear capacitance of the other supercapacitors in the embodiment 2-3. there was.
도 27는 본 발명의 실시 예 2-3, 2-4 및 비교 예 2-2 내지 2-7에 따른 슈퍼커패시터들의 에너지 저장특성을 비교한 그래프이다. 27 is a graph comparing energy storage characteristics of supercapacitors according to Examples 2-3, 2-4 and Comparative Examples 2-2 to 2-7 of the present invention.
도 27을 참조하면, 상기 실시 예 2-3, 실시 예 2-4, 및 비교 예 2-2 내지 비교 예 2-7에 따른 슈퍼커패시터들의 areal power density(mW/cm2)에 따른 areal energy density(μWh/cm2)를 측정하였다. 도 27에서 알 수 있듯이, 상기 실시 예 2-3에 따른 슈퍼커패시터는 30.1 μWh/cm2을 나타내고, 상기 실시 예 2-4에 따른 슈퍼커패시터는 43 μWh/cm2을 나타내고, 상기 비교 예 2-2에 따른 슈퍼커패시터는 18.9 μWh/cm2을 나타내고, 상기 비교 예 2-3에 따른 슈퍼커패시터는 9.2 μWh/cm2을 나타내고, 상기 비교 예 2-4에 따른 슈퍼커패시터는 10 μWh/cm2을 나타내고, 상기 비교 예 2-5에 따른 슈퍼커패시터는 6.8 μWh/cm2을 나타내고, 상기 비교 예 2-6에 따른 슈퍼커패시터는 1.428 μWh/cm2을 나타내고, 상기 비교 예 2-7에 따른 슈퍼커패시터는 1.25 μWh/cm2을 나타내어, 상기 실시 예 2-3 및 실시 예 2-4에 따른 슈퍼커패시터들의 areal energy density가 높게 나타나는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 2-3 및 실시 예 2-4와 같이 환원된 그래핀 산화물을 포함하는 전극과 이산화망간을 포함하는 전극을 비대칭 전극으로 사용한 슈퍼커패시터의 에너지 저장 특성이 좋은 것을 알 수 있다. Referring to FIG. 27, areal energy density according to areal power density (mW / cm 2 ) of supercapacitors according to Examples 2-3, Examples 2-4, and Comparative Examples 2-2 to Comparative Examples 2-7. (μWh / cm 2 ) was measured. As can be seen from FIG. 27, the supercapacitor according to Example 2-3 shows 30.1 μWh / cm 2 , the supercapacitor according to Example 2-4 shows 43 μWh / cm 2 , and Comparative Example 2- The supercapacitor according to 2 shows 18.9 μWh / cm 2 , the supercapacitor according to Comparative Example 2-3 shows 9.2 μWh / cm 2 , and the supercapacitor according to Comparative Example 2-4 shows 10 μWh / cm 2 . The supercapacitor according to Comparative Example 2-5 shows 6.8 μWh / cm 2 , the supercapacitor according to Comparative Example 2-6 shows 1.428 μWh / cm 2 , and the supercapacitor according to Comparative Example 2-7. Represents 1.25 μWh / cm 2 , and the areal energy density of the supercapacitors according to Examples 2-3 and 2-4 was high. Accordingly, it can be seen that the energy storage characteristics of the supercapacitor using the electrode including the reduced graphene oxide and the electrode including manganese dioxide as the asymmetric electrode are good as in Examples 2-3 and 2-4.
또한, 비대칭 전극을 갖는 다양한 슈퍼커패시터들의 linear energy density(EL, μWh/cm2), areal energy density(EA, μWh/cm2), 및 volumetric energy density(EV, μWh/cm2)가 아래 <표 3>을 통해 정리될 수 있다.In addition, the linear energy density (E L , μWh / cm 2 ), areal energy density (E A , μWh / cm 2 ), and volumetric energy density (E V , μWh / cm 2 ) of various supercapacitors with asymmetric electrodes are This can be summarized in <Table 3> below.
구분division | Voltage(V)Voltage (V) | EL E L | EA E A | EV E V |
실시 예 2-3Example 2-3 | 2.12.1 | 5.55.5 | 30.130.1 | 3.83.8 |
실시 예 2-4Example 2-4 | 3.53.5 | 4.54.5 | 4343 | 55 |
MnO2/carbon fiber 비대칭 슈퍼커패시터MnO 2 / carbon fiber asymmetric supercapacitors | 1.51.5 | 0.2160.216 | 1.431.43 | -- |
MnO2 nanosheet/CNT fiber 비대칭 슈퍼커패시터MnO 2 nanosheet / CNT fiber asymmetric supercapacitors | 1.51.5 | 0.0470.047 | 1.251.25 | 1.571.57 |
MnO2/CNT core-sheath fiber 비대칭 슈퍼커패시터MnO 2 / CNT core-sheath fiber asymmetric supercapacitors | 1.51.5 | 6.26.2 | 18.918.9 | 2.982.98 |
Ni(OH)2/ordered mesoporous carbon based micro fiber 비대칭 슈퍼커패시터Ni (OH) 2 / ordered mesoporous carbon based micro fiber asymmetric supercapacitors | 1.51.5 | -- | 1010 | 2.162.16 |
MnO2/N-doped CNT fiber 비대칭 슈퍼커패시터MnO 2 / N-doped CNT fiber Asymmetric Supercapacitors | 1.81.8 | -- | -- | 55 |
Co3O4 nanowire/graphene fiber 비대칭 슈퍼커패시터Co 3 O 4 nanowire / graphene fiber asymmetric supercapacitors | 1.51.5 | -- | -- | 0.620.62 |
도 28는 본 발명의 실시 예 2-3, 2-6, 2-7에 따른 슈퍼커패시터, 제1 전극, 및 제2 전극의 전기화학특성을 나타내는 그래프이다. 28 is a graph illustrating electrochemical characteristics of the supercapacitor, the first electrode, and the second electrode according to Examples 2-3, 2-6, and 2-7 of the present invention.
도 28의 (a)를 참조하면, 상기 실시 예 2-6에 따른 제1 전극 섬유를 10, 30, 50, 70, 100mV/s의 전압 스캔 레이트(voltage scan rate) 범위에서 전압에 따른 전류 밀도를 측정하고, 순환전압전류 곡선(이하, CV 곡선이라고 한다)을 나타내었다. 상기 실시 예 2-6에 따른 전극 섬유의 전압에 따른 전류를 측정하기 위하여, 3전극 시스템(three electrode system)을 이용하되, reference electrode로 Ag/AgCl을 사용하고 counter electrode로 Pt mesh를 사용하였다. 도 28의 (a)에서 알 수 있듯이, 상기 실시 예 2-6에 따른 제1 전극 섬유는 스캔 레이트가 증가할수록 CV 곡선 면적이 증가하는 것을 확인할 수 있었다. Referring to (a) of FIG. 28, the current density of the first electrode fibers according to Examples 2-6 according to voltage in a voltage scan rate range of 10, 30, 50, 70, and 100 mV / s Was measured, and a cyclic voltammogram (hereinafter referred to as CV curve) was shown. In order to measure the current according to the voltage of the electrode fiber according to Examples 2-6, a three electrode system was used, Ag / AgCl was used as the reference electrode and Pt mesh was used as the counter electrode. As can be seen from (a) of Figure 28, the first electrode fiber according to the embodiment 2-6 was confirmed that the CV curve area increases as the scan rate increases.
도 28의 (b)를 참조하면, 상기 실시 예 2-7에 따른 제2 전극 섬유를 10, 30, 50, 70, 100mV/s의 전압 스캔 레이트(voltage scan rate) 범위에서 전압에 따른 전류 밀도를 측정하고, 순환전압전류 곡선(이하, CV 곡선이라고 한다)을 나타내었다. 상기 실시 예 2-7에 따른 전극 섬유의 전압에 따른 전류를 측정하기 위하여, 3전극 시스템(three electrode system)을 이용하되, reference electrode로 Ag/AgCl을 사용하고 counter electrode로 Pt mesh를 사용하였다. 도 28의 (b)에서 알 수 있듯이, 상기 실시 예 2-7에 따른 제2 전극 섬유는 스캔 레이트가 증가할수록 CV 곡선 면적이 증가하는 것을 확인할 수 있었다. Referring to (b) of FIG. 28, the current density of the second electrode fiber according to the embodiment 2-7 according to the voltage in the voltage scan rate range of 10, 30, 50, 70, 100 mV / s Was measured, and a cyclic voltammogram (hereinafter referred to as CV curve) was shown. In order to measure the current according to the voltage of the electrode fiber according to Example 2-7, using a three-electrode system (Three electrode system), Ag / AgCl as a reference electrode and Pt mesh was used as a counter electrode. As it can be seen in Figure 28 (b), it was confirmed that the CV curve area of the second electrode fiber according to the embodiment 2-7 increases as the scan rate increases.
도 28의 (c)를 참조하면, 상기 실시 예 2-3에 따른 슈퍼커패시터를 100, 200, 300, 400, 500 mV/s의 전압 스캔 레이트(voltage scan rate) 범위에서 전압에 따른 전류 밀도를 측정하고, 순환전압전류 곡선(이하, CV 곡선이라고 한다)을 나타내었다. 도 28의 (c)에서 알 수 있듯이, 스캔 레이트가 증가함에 따라 CV 곡선이 61.8%의 initial capacitance를 유지하면서, 점차 안정적인 사각형 형태로 나타나는 것을 확인할 수 있었다. Referring to (c) of Figure 28, the supercapacitor according to the embodiment 2-3 is a current density according to the voltage in the voltage scan rate range of 100, 200, 300, 400, 500 mV / s It measured and showed the cyclic voltammogram (henceforth a CV curve). As can be seen from (c) of Figure 28, as the scan rate increases, it was confirmed that the CV curve appears in a gradually stable square shape while maintaining an initial capacitance of 61.8%.
도 29는 본 발명의 실시 예 2-3 및 2-4에 따른 슈퍼커패시터들의 전기화학특성을 나타내는 그래프이다. 29 is a graph showing the electrochemical characteristics of the supercapacitors according to Examples 2-3 and 2-4 of the present invention.
도 29의 (a) 및 (b)를 참조하면, 상기 실시 예 2-4 및 실시 예 2-3에 따른 슈퍼커패시터를 10, 30, 50, 70, 100mV/s의 전압 스캔 레이트(voltage scan rate) 범위에서 전압에 따른 전류 밀도를 측정하고, 순환전압전류 곡선(이하, CV 곡선이라고 한다)을 나타내었다. 도 29의 (a) 및 (b)에서 알 수 있듯이, 상기 실시 예 2-4 및 실시 예 2-3에 따른 슈퍼커패시터의 CV 곡선 면적이 서로 비슷한 것을 확인할 수 있었다. 이에 따라, 상기 실시 예에 따른 슈퍼커패시터를 제조하는 경우, 전해질로서, PVDF-HEP-TEABF4 및 PVA-LiCl 둘 다 사용 가능하다는 것을 알 수 있다. Referring to (a) and (b) of FIG. 29, voltage scan rates of 10, 30, 50, 70, and 100 mV / s of supercapacitors according to the embodiments 2-4 and 2-3 are described. The current density according to the voltage was measured in the following range, and the cyclic voltammogram (hereinafter, referred to as CV curve) was shown. As can be seen from (a) and (b) of Figure 29, it was confirmed that the CV curve areas of the supercapacitors according to the above Examples 2-4 and 2-3 are similar to each other. Accordingly, when manufacturing the supercapacitor according to the embodiment, it can be seen that both PVDF-HEP-TEABF 4 and PVA-LiCl can be used as the electrolyte.
도 30은 본 발명의 실시 예 2-3 및 비교 예 2-1에 따른 슈퍼커패시터들의 특성을 비교하는 그래프이다. 30 is a graph comparing characteristics of the supercapacitors according to Example 2-3 and Comparative Example 2-1 of the present invention.
도 30의 (a)를 참조하면, 상기 실시 예 2-3에 따른 슈퍼커패시터의 스캔 레이트(scan rate, mV/s)에 따른 areal capacitance(mF/cm2)와 volumetric capacitance(mF/cm3)를 측정하였다. 도 30의 (a)에서 알 수 있듯이, 상기 실시 예 2-3에 따른 슈퍼커패시터는, 10mV/s의 스캔 레이트에서 322.4 mF/cm2의 areal capacitance와 57.2 mF/cm3를 나타내는 것을 확인할 수 있었다. Referring to FIG. 30A, areal capacitance (mF / cm 2 ) and volumetric capacitance (mF / cm 3 ) according to the scan rate (mV / s) of the supercapacitor according to the embodiment 2-3 are described. Was measured. As can be seen from (a) of Figure 30, the supercapacitor according to the embodiment 2-3, it was confirmed that the areal capacitance of 322.4 mF / cm 2 and 57.2 mF / cm 3 at a scan rate of 10 mV / s .
도 30의 (b)를 참조하면, 상기 실시 예 2-3 및 비교 예 2-1에 따른 슈퍼커패시터의 스캔 레이트에 따른 capacitance retention(%)을 측정하였다. 도 30의 (b)에서 알 수 있듯이, 스캔 레이트가 증가할수록, 상기 비교 예 2-1에 따른 슈퍼커패시터의 capacitance retention 감소량이 상기 실시 예 2-3에 따른 슈퍼커패시터의 capacitance retention 감소량보다 현저하게 높은 것을 확인할 수 있었다. 이에 따라, 상기 실시 예에 따른 슈퍼커패시터를 제조하는 경우, 대칭 전극을 사용하는 것보다 비대칭 전극을 사용하는 것이 capacitance retention을 유지하는데 있어 효율적이라는 것을 알 수 있다. Referring to FIG. 30B, capacitance retention (%) according to the scan rate of the supercapacitors according to Example 2-3 and Comparative Example 2-1 was measured. As shown in (b) of FIG. 30, as the scan rate increases, the decrease in capacitance retention of the supercapacitor according to Comparative Example 2-1 is significantly higher than the decrease in capacitance retention of the supercapacitor according to Examples 2-3. I could confirm that. Accordingly, when manufacturing the supercapacitor according to the above embodiment, it can be seen that using an asymmetric electrode is more efficient in maintaining capacitance retention than using a symmetric electrode.
도 31은 본 발명의 실시 예 2-3에 따른 슈퍼커패시터의 충방전 특성을 나타내는 그래프이다. 31 is a graph showing charge and discharge characteristics of a supercapacitor according to Example 2-3 of the present invention.
도 31의 (a)를 참조하면, 상기 실시 예 2-3에 따른 슈퍼커패시터를 1회 충방전한 경우와 1000회 충방전한 경우에 대해 전압에 따른 전류 밀도를 측정하고 CV곡선을 나타내었다. 도 31의 (a)에서 알 수 있듯이, 상기 실시 예 2-3에 따른 슈퍼커패시터를 1회 충방전한 경우의 CV곡선 면적과 1000회 충방전한 경우의 CV곡선 면적이 실질적으로 동일한 것을 확인할 수 있었다. Referring to (a) of FIG. 31, the current density according to the voltage was measured and the CV curve was measured for the case of charging and discharging the supercapacitor according to Example 2-3 once and 1000 times. As can be seen from (a) of FIG. 31, it can be seen that the CV curve area when charging and discharging the supercapacitor according to Example 2-3 is substantially the same as the CV curve area when charging and discharging 1000 times. there was.
도 31의 (b)를 참조하면, 상기 실시 예 2-3에 따른 슈퍼커패시터의 충방전 횟수에 따른 capacitance retention(C/C0)을 측정하였다. 도 31의 (b)에서 알 수 있듯이, 상기 실시 예 2-3에 따른 슈퍼커패시터를 1회 내지 1000회 충방전하는 동안 capacitance retention이 실질적으로 일정하게 유지되는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 2-3에 따른 슈퍼커패시터는 내구성 및 수명 특성이 우수하다는 것을 알 수 있다. Referring to FIG. 31B, capacitance retention (C / C 0 ) according to the number of charge / discharge cycles of the supercapacitor according to Example 2-3 was measured. As shown in (b) of FIG. 31, it was confirmed that the capacitance retention was substantially constant during charge and discharge of the supercapacitor according to Example 2-3 once to 1000 times. Accordingly, it can be seen that the supercapacitor according to the embodiment 2-3 has excellent durability and lifespan characteristics.
도 32는 본 발명의 실시 예 2-5에 따른 전극 직물 및 이를 이용한 회로의 작동을 촬영한 사진이다. 32 is a photograph showing the operation of the electrode fabric and the circuit using the same according to the embodiment 2-5 of the present invention.
도 32의 (a)를 참조하면 상기 실시 예 2-5에 따른 전극 직물을 사진촬영 하였다. 도 32의 (a)에서 알 수 있듯이, 상기 실시 예 2-5에 따른 전극 직물은 일반 직물의 형태로 제조될 수 있음을 확인할 수 있다. Referring to FIG. 32A, the electrode fabrics according to Example 2-5 were photographed. As can be seen in Figure 32 (a), it can be seen that the electrode fabric according to the embodiment 2-5 can be produced in the form of a general fabric.
도 32의 (b)를 참조하면, 상기 실시 예 2-5에 따른 전극 직물에 도선과 0.65W의 blue LED를 설치하여 회로를 작동시킨 직후 사진촬영 하였다. 도 32의 (b)에서 알 수 있듯이, 상기 실시 예 2-5에 따른 전극 직물로 인해 0.65W의 blue LED가 작동하는 것을 확인할 수 있었다. Referring to (b) of FIG. 32, a photograph was taken immediately after the circuit was operated by installing a conductive wire and a blue LED of 0.65W in the electrode fabric according to Example 2-5. As can be seen in Figure 32 (b), it was confirmed that the blue LED of 0.65W due to the electrode fabric according to the embodiment 2-5.
도 32의 (c)를 참조하면, 상술된 도 32의 (b) 회로를 5분의 시간 동안 작동 시킨 후 사진촬영 하였다. 도 19의 (c)에서 알 수 있듯이, 상기 실시 예 2-3에 따른 전극 직물은, 0.65W의 blue LED를 5분의 시간 동안 작동시키는 저장 용량을 갖는 것을 알 수 있다. Referring to (c) of FIG. 32, the above-described circuit of FIG. 32 (b) was operated for 5 minutes and photographed. As can be seen in Figure 19 (c), it can be seen that the electrode fabric according to the embodiment 2-3 has a storage capacity for operating a blue LED of 0.65W for 5 minutes.
도 33은 본 발명의 실시 예 2-5에 따른 전극 직물을 직렬 연결 및 병렬 연결한 경우 전기화학특성을 나타내는 그래프이다. 33 is a graph showing electrochemical characteristics when the electrode fabrics according to Example 2-5 of the present invention are connected in series and in parallel.
도 33의 (a)를 참조하면, 상기 실시 예 2-5에 따른 전극 직물이 하나인 경우, 두개를 직렬(series) 연결한 경우, 세개를 직렬 연결한 경우, 네개를 직렬 연결한 경우에 대해 전압에 따른 전류를 측정하고 CV 곡선을 나타내었다. 도 33의 (a)에서 알 수 있듯이, 상기 실시 예 2-5에 따른 전극 직물의 개수를 증가시켜 직렬연결 시키는 경우, 상기 실시 예 2-5에 따른 전극 직물의 개수가 증가할수록 CV 곡선의 면적이 점차 증가하는 것을 확인할 수 있었다. Referring to (a) of FIG. 33, when the electrode fabrics according to the embodiment 2-5 are one, two are connected in series, three are connected in series, and four is connected in series. The current with voltage was measured and the CV curve was shown. As can be seen from (a) of Figure 33, when the number of electrode fabrics according to the embodiment 2-5 is connected in series, the area of the CV curve as the number of electrode fabrics according to the embodiment 2-5 increases This gradually increased.
도 33의 (b)를 참조하면, 상기 실시 예 2-5에 따른 전극 직물이 하나인 경우, 두개를 병렬(parallel) 연결한 경우, 세개를 병렬 연결한 경우, 네개를 병렬 연결한 경우에 대해 전압에 따른 전류를 측정하고 CV 곡선을 나타내었다. 도 33의 (b)에서 알 수 있듯이, 상기 실시 예 2-5에 따른 전극 직물의 개수를 증가시켜 병렬연결 시키는 경우, 1V의 전압에서 상기 실시 예 2-5에 따른 전극 직물의 개수가 증가할수록 전류가 3.2 mA까지 증가하는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 2-5에 따른 전극 직물이 슈퍼커패시터로서 사용 가능하다는 것을 알 수 있다. Referring to (b) of FIG. 33, when the electrode fabrics according to Example 2-5 are one, two are connected in parallel, three are connected in parallel, and four are connected in parallel. The current with voltage was measured and the CV curve was shown. As shown in (b) of FIG. 33, when the number of electrode fabrics according to the embodiment 2-5 is increased and connected in parallel, the number of electrode fabrics according to the embodiment 2-5 increases at a voltage of 1V. It was confirmed that the current increased to 3.2 mA. Accordingly, it can be seen that the electrode fabric according to Example 2-5 can be used as a supercapacitor.
도 34는 본 발명의 실시 예 2-5에 따른 전극 직물을 직렬 연결한 경우와 병렬 연결한 경우에 대해 특성을 비교한 그래프이다. 34 is a graph comparing characteristics of the electrode fabrics according to the embodiment 2-5 of the present invention and the parallel connection.
도 34를 참조하면, 상기 실시 예 2-5에 따른 전극 직물 4개를 각각 직렬 연결 및 병렬 연결하여 스캔 레이트에 따른 areal energy(μWh/cm2)를 측정하였다. 도 34에서 알 수 있듯이, 상기 실시 예 2-5에 따른 전극 직물 4개를 직렬 연결한 경우 10 mV/s 스캔 레이트에서 142 μWh/cm2의 areal energy를 나타내고, 병렬 연결한 경우 10 mV/s 스캔 레이트에서 86.2 μWh/cm2의 areal energy를 나타내는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 2-5에 따른 전극 직물을 여러 개 연결하는 경우, 직렬 연결하는 것이 더 효율적이라는 것을 알 수 있다. Referring to FIG. 34, four electrode fabrics according to Example 2-5 were connected in series and in parallel to measure areal energy (μWh / cm 2 ) according to a scan rate. As can be seen in Figure 34, when the four electrode fabrics according to the embodiment 2-5 is connected in series shows an areal energy of 142 μWh / cm 2 at 10 mV / s scan rate, 10 mV / s in parallel It was found that the scan rate was 86.2 μWh / cm 2 . Accordingly, when connecting the electrode fabrics according to the embodiment 2-5, it can be seen that in series connection is more efficient.
도 35는 본 발명의 실시 예 2-5에 따른 전극 직물의 내구성을 나타내는 그래프이다. 35 is a graph showing the durability of the electrode fabric according to Example 2-5 of the present invention.
도 35를 참조하면, 상기 실시 예 2-5에 따른 전극 직물을 원래 상태(pristine), 동력학적으로 구부린 상태(dynamically bent), 100회 구부린 상태(100th bent)에 대해 전압에 따른 전류 밀도를 측정하고 CV 곡선을 나타내었다. 도 35에서 알 수 있듯이, 상기 실시 예 2-5에 따른 전극 직물은, 원래 상태, 동력학적으로 구부린 상태, 및 100회 구부린 상태의 CV 곡선 면적이 실직적으로 동일한 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 2-5에 따른 전극 직물은 우수한 내구성을 갖는 것을 알 수 있다. Referring to FIG. 35, current density according to voltage is measured for pristine, dynamically bent, and 100 times bent of the electrode fabric according to Example 2-5. And a CV curve. As can be seen in Figure 35, the electrode fabric according to the embodiment 2-5, it was confirmed that the CV curve area of the original state, the kinematically bent state, and 100 times bent state is substantially the same. Accordingly, it can be seen that the electrode fabric according to Example 2-5 has excellent durability.
상기 제1 전극 섬유가 은 나노 와이어를 포함하고 상기 제2 전극 섬유가 아연 입자를 포함하는 경우에 대해, 도 36 내지 도 49를 참조하여 본 발명의 제3 실시 예에 따른 전극 섬유 및 그 제조 방법이 설명된다. In the case where the first electrode fiber includes silver nanowires and the second electrode fiber includes zinc particles, an electrode fiber according to a third embodiment of the present invention and a manufacturing method thereof with reference to FIGS. 36 to 49. This is explained.
제3 실시 예에 따른 전극 섬유 및 그 제조 방법An electrode fiber and a method of manufacturing the same according to the third embodiment
도 36 및 도 37 본 발명의 제3 실시 예에 따른 전극 섬유가 포함하는 제1 전극 섬유의 제조 공정을 설명하기 위한 도면들이다.36 and 37 are views for explaining a manufacturing process of the first electrode fibers included in the electrode fiber according to the third embodiment of the present invention.
도 36을 참조하면, 제1 탄소나노튜브 시트(610)가 준비될 수 있다. 일 실시 예에 따르면, 상기 제1 탄소나노튜브 시트를 준비하는 단계는, 화학 기상 증착법으로 탄소나노튜브 숲(forest)을 제조하는 단계 및, 상기 탄소나노튜브 숲으로부터 상기 제1 탄소나노튜브 시트(610)를 제조하는 단계를 포함할 수 있다.Referring to FIG. 36, a first carbon nanotube sheet 610 may be prepared. According to an embodiment, the preparing of the first carbon nanotube sheet may include preparing a carbon nanotube forest by chemical vapor deposition and the first carbon nanotube sheet from the carbon nanotube forest. 610 may be prepared.
일 실시 예에 따르면, 상기 제1 탄소나노튜브 시트(610)는 제1 방향으로 연장하는 복수의 탄소나노튜브를 포함할 수 있다. 또한, 일 실시 예에 따르면, 상기 복수의 탄소나노튜브는 다중벽 탄소나노튜브(MWCNT)일 수 있다. According to one embodiment, the first carbon nanotube sheet 610 may include a plurality of carbon nanotubes extending in a first direction. Further, according to one embodiment, the plurality of carbon nanotubes may be multi-walled carbon nanotubes (MWCNT).
일 실시 예에 따르면, 상기 제1 탄소나노튜브 시트(610)는 지지 기판(600) 상에 준비될 수 있다. 예를 들어, 상기 지지 기판(600)은 유리 기판일 수 있다. 또는, 다른 예를 들어, 상기 지지 기판(600)은 플라스틱 기판, 반도체 기판, 세라믹 기판, 또는 금속 기판 중 어느 하나를 포함할 수 있다. According to an embodiment, the first carbon nanotube sheet 610 may be prepared on the support substrate 600. For example, the support substrate 600 may be a glass substrate. Alternatively, for example, the support substrate 600 may include any one of a plastic substrate, a semiconductor substrate, a ceramic substrate, and a metal substrate.
상기 제1 탄소나노튜브 시트(610) 상에 은 나노 와이어(silver nanowire, 120)가 제공될 수 있다. 일 실시 예에 따르면, 상기 은 나노 와이어(620)는 양극 활물질(active material)로 제공될 수 있다. Silver nanowires 120 may be provided on the first carbon nanotube sheet 610. According to one embodiment, the silver nanowires 620 may be provided as a positive electrode active material (active material).
상기 은 나노 와이어(620)를 상기 제1 탄소나노튜브 시트(610) 상에 제공하는 단계는, 상기 은 나노 와이어(620)가 분산된 제1 소스 용액을 준비하는 단계, 상기 제1 소스 용액을 상기 제1 탄소나노튜브 시트(610) 상에 제공하는 단계, 및 상기 제1 소스 용액이 제공된 상기 제1 탄소나노튜브 시트(610)를 건조하는 단계를 포함할 수 있다. 일 실시 예에 따르면, 상기 제1 소스 용액은, 용매에 상기 은 나노 와이어(620)를 분산시키는 방법으로 제조될 수 있다. 예를 들어, 상기 용매는 isopropyl alcohol일 수 있다. 또한, 일 실시 예에 따르면, 상기 제1 소스 용액은, drop casting 방법으로 상기 제1 탄소나노튜브 시트(610) 상에 제공될 수 있다. Providing the silver nanowires 620 on the first carbon nanotube sheet 610 may include preparing a first source solution in which the silver nanowires 620 are dispersed, and preparing the first source solution. The method may include providing the first carbon nanotube sheet 610 and drying the first carbon nanotube sheet 610 provided with the first source solution. According to one embodiment, the first source solution may be prepared by a method of dispersing the silver nanowires 620 in a solvent. For example, the solvent may be isopropyl alcohol. In addition, according to an embodiment, the first source solution may be provided on the first carbon nanotube sheet 610 by a drop casting method.
일 실시 예에 따르면, 상기 은 나노 와이어(620)가 분산된 제1 소스 용액을 상기 제1 탄소나노튜브 시트(610) 상에 제공하는 단계, 및 상기 제1 소스 용액이 제공된 상기 제1 탄소나노튜브 시트(610)를 건조하는 단계가 반복 수행될 수 있다. 이에 따라, 상기 제1 탄소나노튜브 시트(610) 상의 상기 은 나노 와이어(620)의 함량이 증가될 수 있다. According to one embodiment, the step of providing a first source solution in which the silver nanowires 620 are dispersed on the first carbon nanotube sheet 610, and the first carbon nano provided with the first source solution Drying the tube sheet 610 may be repeated. Accordingly, the content of the silver nanowires 620 on the first carbon nanotube sheet 610 may be increased.
일 실시 예에 따르면, 상기 제1 소스 용액 내의 상기 은 나노 와이어(620)의 사이즈는 실질적으로 서로 동일할 수 있다. 또는, 다른 실시 예에 따르면, 상기 제1 소스 용액 내의 상기 은 나노 와이어(620)의 사이즈는 서로 다를 수 있다. According to one embodiment, the sizes of the silver nanowires 620 in the first source solution may be substantially the same. Alternatively, according to another embodiment, sizes of the silver nanowires 620 in the first source solution may be different.
도 37을 참조하면, 상기 은 나노 와이어(620)가 제공된 상기 제1 탄소나노튜브 시트(610)를 꼬아서, 제1 전극 섬유(630)가 제조될 수 있다. 일 실시 예에 따르면, 상기 제1 전극 섬유(630)를 제조하는 단계는, 상기 복수의 탄소나노튜브가 연장하는 상기 제1 방향을 회전축으로 사용하여, 상기 복수의 탄소나노튜브의 일단을 꼬으는(twist) 것을 포함할 수 있다. 예를 들어, 상기 은 나노 와이어(620)가 제공된 상기 제1 탄소나노튜브 시트(610)는 약 1000회의 미터당 꼬임 횟수(turns per meter)를 가질 수 있다. Referring to FIG. 37, the first electrode fibers 630 may be manufactured by twisting the first carbon nanotube sheet 610 provided with the silver nanowires 620. According to an embodiment, the manufacturing of the first electrode fibers 630 may be performed by twisting one end of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. (twist) may be included. For example, the first carbon nanotube sheet 610 provided with the silver nanowires 620 may have about 1000 turns per meter.
이에 따라, 상기 제1 전극 섬유(630)의 내부 영역은, 상기 제1 탄소나노튜브 시트(610)가 말리고(rolled) 적층된(stacked) 형태로 제공될 수 있다. 말리고 적층된 상기 제1 탄소나노튜브 시트(610) 사이에 상기 은 나노 와이어(620)가 제공될 수 있다. 다시 말하면, 상기 제1 전극 섬유(630)가 연장하는 상기 제1 방향을 법선으로 갖는 제1 평면이 정의되는 경우, 상기 제1 평면으로 절취한 상기 제1 전극 섬유(630)의 단면에서, 상기 제1 탄소나노튜브 시트(610)의 단면은 나선형(spiral)으로 제공되고, 나선형의 상기 제1 탄소나노튜브 시트(610) 사이에 상기 은 나노 와이어(620)가 제공될 수 있다. Accordingly, the inner region of the first electrode fiber 630 may be provided in a form in which the first carbon nanotube sheet 610 is rolled and stacked. The silver nanowires 620 may be provided between the dried and stacked first carbon nanotube sheets 610. In other words, in the cross section of the first electrode fiber 630 cut into the first plane when the first plane having a normal as the normal to the first direction in which the first electrode fiber 630 extends is defined, A cross section of the first carbon nanotube sheet 610 may be provided in a spiral shape, and the silver nanowire 620 may be provided between the first carbon nanotube sheet 610 in a spiral shape.
도 38 및 도 39는 본 발명의 제3 실시 예에 따른 전극 섬유가 포함하는 제2 전극 섬유의 제조 공정을 설명하기 위한 도면들이다. 38 and 39 are views for explaining a manufacturing process of the second electrode fibers included in the electrode fiber according to the third embodiment of the present invention.
도 38을 참조하면, 제2 탄소나노튜브 시트(710)가 준비될 수 있다. 일 실시 예에 따르면, 상기 제2 탄소나노튜브 시트(710)는 도 1을 참조하여 설명된 상기 제1 탄소나노튜브 시트(710)의 준비 방법과 같은 방법으로 준비될 수 있다. Referring to FIG. 38, a second carbon nanotube sheet 710 may be prepared. According to one embodiment, the second carbon nanotube sheet 710 may be prepared by the same method as the preparation method of the first carbon nanotube sheet 710 described with reference to FIG.
상기 제2 탄소나노튜브 시트(710) 상에 아연 입자(zinc nanoparticle, 720)이 제공될 수 있다. 일 실시 예에 따르면, 상기 아연 입자(720)는 음극 활물질로 제공될 수 있다. Zinc particles 720 may be provided on the second carbon nanotube sheet 710. According to one embodiment, the zinc particles 720 may be provided as a negative electrode active material.
상기 아연 입자(720)를 상기 제2 탄소나노튜브 시트(710) 상에 제공하는 단계는, 상기 아연 입자(720)가 분산된 제2 소스 용액을 준비하는 단계, 및 상기 제2 소스 용액을 상기 제2 탄소나노튜브 시트(710) 상에 제공하는 단계를 포함할 수 있다. 일 실시 예에 따르면, 상기 제2 소스 용액은, 용매에 상기 아연 입자(720)를 투입하고 초음파 처리하여, 상기 아연 입자(720)를 분산시키는 방법으로 제조될 수 있다. 예를 들어, 상기 용매는 에탄올일 수 있다. 또한, 일 실시 예에 따르면, 상기 제2 소스 용액은, drop casting 방법으로 상기 제2 탄소나노튜브 시트(710) 상에 제공될 수 있다.Providing the zinc particles 720 on the second carbon nanotube sheet 710 may include preparing a second source solution in which the zinc particles 720 are dispersed, and preparing the second source solution. It may include providing on the second carbon nanotube sheet 710. According to one embodiment, the second source solution may be prepared by a method of dispersing the zinc particles 720 by putting the zinc particles 720 in a solvent and sonicating. For example, the solvent may be ethanol. In addition, according to an embodiment, the second source solution may be provided on the second carbon nanotube sheet 710 by a drop casting method.
일 실시 예에 따르면, 상기 제2 소스 용액 내의 상기 아연 입자(720)의 사이즈는 실질적으로 서로 동일할 수 있다. 또는, 다른 실시 예에 따르면, 상기 제2 소스 용액 내의 상기 아연 입자(720)의 사이즈는 서로 다를 수 있다. According to one embodiment, the size of the zinc particles 720 in the second source solution may be substantially the same. Alternatively, according to another embodiment, sizes of the zinc particles 720 in the second source solution may be different.
도 39를 참조하면, 상기 아연 입자(720)가 제공된 상기 제2 탄소나노튜브 시트(710)를 꼬아서, 제2 전극 섬유(730)가 제조될 수 있다. 일 실시 예에 따르면, 상기 제2 전극 섬유(730)를 제조하는 단계는, 상기 복수의 탄소나노튜브가 연장하는 상기 제1 방향을 회전축으로 사용하여, 상기 복수의 탄소나노튜브의 일단을 꼬으는(twist) 것을 포함할 수 있다. 일 실시 예에 따르면, 상기 제2 탄소나노튜브 시트(710)의 미터당 꼬임 횟수는 상기 제1 탄소나노튜브 시트(610)의 미터당 꼬임 횟수보다 더 많을 수 있다. 예를 들어, 상기 아연 입자(720)가 제공된 상기 제2 탄소나노튜브 시트(710)는 약 2000회의 미터당 꼬임 횟수를 가질 수 있다. Referring to FIG. 39, a second electrode fiber 730 may be manufactured by twisting the second carbon nanotube sheet 710 provided with the zinc particles 720. According to an embodiment, the manufacturing of the second electrode fibers 730 may be performed by twisting one end of the plurality of carbon nanotubes by using the first direction in which the plurality of carbon nanotubes extend as a rotation axis. (twist) may be included. According to an embodiment, the number of twists per meter of the second carbon nanotube sheet 710 may be greater than the number of twists per meter of the first carbon nanotube sheet 610. For example, the second carbon nanotube sheet 710 provided with the zinc particles 720 may have about 2000 twists per meter.
이에 따라, 상기 제2 전극 섬유(730)의 내부 영역은, 상기 제2 탄소나노튜브 시트(710)가 말리고(rolled) 적층된(stacked) 형태로 제공될 수 있다. 말리고 적층된 상기 제2 탄소나노튜브 시트(710) 사이에 상기 아연 입자(720)가 제공될 수 있다. 다시 말하면, 상기 제2 전극 섬유(730)가 연장하는 상기 제1 방향을 법선으로 갖는 제1 평면이 정의되는 경우, 상기 제1 평면으로 절취한 상기 제2 전극 섬유(730)의 단면에서, 상기 제2 탄소나노튜브 시트(710)의 단면은 나선형(spiral)으로 제공되고, 나선형의 상기 제2 탄소나노튜브 시트(710) 사이에 상기 아연 입자(720)가 제공될 수 있다. Accordingly, the inner region of the second electrode fiber 730 may be provided in a form in which the second carbon nanotube sheet 710 is rolled and stacked. The zinc particles 720 may be provided between the dried and stacked second carbon nanotube sheets 710. In other words, when a first plane having a normal to the first direction in which the second electrode fiber 730 extends is defined, in the cross section of the second electrode fiber 730 cut into the first plane, the A cross section of the second carbon nanotube sheet 710 may be provided in a spiral shape, and the zinc particles 720 may be provided between the second carbon nanotube sheet 710 in a spiral shape.
이하, 상술된 상기 제1 전극 섬유(630) 및 상기 제2 전극 섬유(730)를 포함하는 은-아연 전지 및 그 제조 방법이 도 40을 참조하여 설명된다. Hereinafter, a silver-zinc battery including the first electrode fiber 630 and the second electrode fiber 730 described above and a method of manufacturing the same will be described with reference to FIG. 40.
도 40은 본 발명의 제3 실시 예에 따른 전극 섬유를 포함하는 은-아연 전지 및 그 제조 방법을 설명하는 도면이다. 40 is a view illustrating a silver-zinc battery including an electrode fiber and a method of manufacturing the same according to the third embodiment of the present invention.
도 40의 (a) 및 (b)를 참조하면, 도 36 내지 도 39를 참조하여 설명된 상기 제1 전극 섬유(630) 및 상기 제2 전극 섬유(730)가 준비된다. 상기 실시 예에 따른 은-아연 전지(800)는, 서로 꼬여(twisted) 제조될 수 있다. Referring to FIGS. 40A and 40B, the first electrode fibers 630 and the second electrode fibers 730 described with reference to FIGS. 36 to 39 are prepared. The silver-zinc battery 800 according to the embodiment may be manufactured twisted with each other.
일 실시 예에 따르면, 상기 은-아연 전지(800)를 제조하는 단계는, 1개의 상기 제2 전극 섬유(730)를 준비하는 단계, 상기 제2 전극 섬유(730) 상에 보호제를 코팅하고 건조하는 단계, 보호제가 코팅된 상기 제2 전극 섬유(730)와 2개의 상기 제1 전극 섬유(630)를 서로 꼬으는 단계, 및 꼬인 상기 제1 및 제2 전극 섬유(630, 730) 상에 전해질을 코팅하는 단계를 포함할 수 있다. According to an embodiment, the manufacturing of the silver-zinc battery 800 may include preparing one second electrode fiber 730, coating a protective agent on the second electrode fiber 730, and drying the same. Twisting the second electrode fibers 730 and the two first electrode fibers 630 coated with a protective agent, and the electrolyte on the twisted first and second electrode fibers 630 and 730. It may include the step of coating.
예를 들어, 상기 보호제는, 10wt%의 농도를 갖는 PVA(polyvinyl alcohol)일 수 있다. 상기 제2 전극 섬유(730)는, 상기 보호제가 코팅됨에 따라 electrical shortage가 예방될 수 있다. 예를 들어, 상기 전해질은 KOH, PVA, 및 DI water가 혼합된 용액일 수 있다.For example, the protective agent may be polyvinyl alcohol (PVA) having a concentration of 10 wt%. The second electrode fiber 730 may be prevented from electrical shortage as the protective agent is coated. For example, the electrolyte may be a solution in which KOH, PVA, and DI water are mixed.
상기 제1 전극 섬유(630) 및 상기 제2 전극 섬유(730)를 사용하여 상기 은-아연 전지(800)를 제조하는 경우, 상기 은-아연 전지(800)의 효율을 향상시키기 위하여, 상기 은 나노 와이어(620)의 wt%가 상기 아연 입자(720)의 wt%보다 높게 제공될 수 있다. 다시 말해, 상기 은-아연 전지(800) 내에 상기 은 나노 와이어(620)의 wt%가 상기 아연 입자(720)의 wt% 보다 높을 수 있다. When manufacturing the silver-zinc battery 800 using the first electrode fiber 630 and the second electrode fiber 730, in order to improve the efficiency of the silver-zinc battery 800, the silver The wt% of the nanowires 620 may be provided higher than the wt% of the zinc particles 720. In other words, the wt% of the silver nanowires 620 in the silver-zinc battery 800 may be higher than the wt% of the zinc particles 720.
이를 위해, 상기 제3 실시 예에 따른 전극 섬유를 포함하는 은-아연 전지(800)는, x개의 상기 제1 전극 섬유(630)가 y개의 상기 제2 전극 섬유(730)와 서로 꼬여(twisted) 제조될 수 있다. 일 실시 예에 따르면, x 및 y는 0보다 큰 자연수이고, x 는 y보다 클 수 있다. 일 실시 예에 따르면, x=2y일 수 있다. 예를 들어, x는 2이고 y는 1일 수 있다. 즉, 상기 실시 예에 따른 은-아연 전지(800)는, 2개의 상기 제1 전극 섬유(630)가 1개의 상기 제2 전극 섬유(730)와 서로 꼬여 제조될 수 있다. To this end, in the silver-zinc battery 800 including the electrode fibers according to the third embodiment, x first electrode fibers 630 are twisted with y second electrode fibers 730. ) Can be prepared. According to one embodiment, x and y are natural numbers greater than zero, and x may be greater than y. According to one embodiment, x = 2y. For example, x may be 2 and y may be 1. That is, the silver-zinc battery 800 according to the embodiment may be manufactured by twisting two first electrode fibers 630 with one second electrode fiber 730.
일 실시 예에 따르면, 상기 제1 전극 섬유(630)에서 상기 은 나노 와이어(620)의 wt%와 상기 제2 전극 섬유(730)에서 상기 아연 입자(720)의 wt%는 실질적으로 동일할 수 있다. 예를 들어, 상기 제1 전극 섬유(630)에서 상기 은 나노 와이어(620)의 wt%는 98.6wt%일 수 있다. 예를 들어, 상기 제2 전극 섬유(730)에서 상기 아연 입자(720)의 wt%는 97.2wt%일 수 있다. 이에 따라, 상기 실시 예에 따른 은-아연 전지(800)의 전체 중량에서, 상기 은 나노와이어(620)의 wt%는 상기 아연 입자(720)의 wt%보다 높을 수 있다. According to one embodiment, the wt% of the silver nanowire 620 in the first electrode fiber 630 and the wt% of the zinc particles 720 in the second electrode fiber 730 may be substantially the same. have. For example, the wt% of the silver nanowires 620 in the first electrode fiber 630 may be 98.6 wt%. For example, the wt% of the zinc particles 720 in the second electrode fiber 730 may be 97.2 wt%. Accordingly, in the total weight of the silver-zinc battery 800 according to the embodiment, the wt% of the silver nanowires 620 may be higher than the wt% of the zinc particles 720.
만약, 이와 달리, 상기 제1 전극 섬유(630) 및 상기 제2 전극 섬유(730)를 각각 하나씩 사용하여 상기 은-아연 전지(800)를 제조하는 경우, 상기 은 나노 와이어(620)의 wt%가 상기 아연 입자(720)의 wt%보다 높게 제공되기 위해, 상기 제1 소스 용액 및 상기 은 나노 와이어(620)의 양을 증가시키게 되면, 상기 제1 탄소나노튜브 시트(610)의 두께가 너무 두꺼워져서, 상기 제1 탄소나노튜브 시트(610)를 꼬아 섬유 형태로 제조하는 것이 용이하지 않을 수 있다. 이에 따라, 상기 제1 전극 섬유(630)의 제조가 용이하지 않을 수 있다.In contrast, when the silver-zinc battery 800 is manufactured using each of the first electrode fibers 630 and the second electrode fibers 730, wt% of the silver nanowires 620 is different. When the amount of the first source solution and the silver nanowires 620 is increased to provide higher than wt% of the zinc particles 720, the thickness of the first carbon nanotube sheet 610 is too high. By thickening, it may not be easy to twist the first carbon nanotube sheet 610 into a fiber form. Accordingly, the manufacturing of the first electrode fiber 630 may not be easy.
또한, 일 실시 예에 따르면, 상기 은 나노 와이어(620)의 wt%가 상기 아연 입자(720)의 wt%보다 높게 제공되기 위해, 상기 제1 탄소나노튜브 시트(610)의 면적은, 상기 제2 탄소나노튜브 시트(710)의 면적보다 넓을 수 있다. 상기 제1 탄소나노튜브 시트(610)의 면적이 넓음에 따라, 상기 제1 소스 용액 및 상기 은 나노 와이어(620)의 양을 증가시켜 상기 제1 전극 섬유(630)가 제조될 수 있다. In addition, according to an embodiment, in order for the wt% of the silver nanowire 620 to be provided higher than the wt% of the zinc particles 720, the area of the first carbon nanotube sheet 610 may be equal to the first carbon nanotube sheet 610. 2 may be wider than the area of the carbon nanotube sheet 710. As the area of the first carbon nanotube sheet 610 increases, the first electrode fibers 630 may be manufactured by increasing the amounts of the first source solution and the silver nanowires 620.
상술된 본 발명의 제3 실시 예에 따른 전극 섬유를 포함하는 은-아연 전지는, 상기 은 나노 와이어(620), 및 상기 은 나노 와이어(620)를 둘러싸도록 꼬인 상기 제1 탄소나노튜브 시트(610)를 포함하는 상기 제1 전극 섬유(630), 상기 아연 입자(720) 및 상기 아연 입자(720)를 둘러싸도록 꼬인 상기 제2 탄소나노튜브 시트(710)를 포함하는 상기 제2 전극 섬유(730), 상기 제1 전극 섬유(630) 및 상기 제2 전극 섬유(730) 사이의 전해질을 포함할 수 있다. 이에 따라, 상기 은 나노 와이어(620) 및 상기 아연 입자(720)를 포함하는 고효율의 은-아연 전지가 제공될 수 있다. The silver-zinc battery including the electrode fiber according to the third embodiment of the present invention described above may include the silver nanowire 620 and the first carbon nanotube sheet twisted to surround the silver nanowire 620. The second electrode fiber including the first electrode fiber 630 including the 610, the zinc particles 720 and the second carbon nanotube sheet 710 twisted to surround the zinc particles 720 ( 730, an electrolyte between the first electrode fiber 630 and the second electrode fiber 730. Accordingly, a high-efficiency silver-zinc battery including the silver nanowires 620 and the zinc particles 720 may be provided.
또한, 상기 은-아연 전지는, 상기 제1 및 제2 탄소나노튜브 시트(610, 710)를 이용하여 섬유를 제조하기 전에, 상기 제1 및 제2 탄소나노튜브 시트(610, 710) 상에 상기 은 나노 와이어(620), 및 상기 아연 입자(720)가 제공되고, 상기 은 나노 와이어(620), 및 상기 아연 입자(720)가 제공된 상태에서, 상기 제1 및 제2 탄소나노튜브 시트(610, 710)를 꼬아서, 상기 제1 및 제2 전극 섬유(630, 730)가 제조될 수 있다. 이에 따라, 상기 제1 및 제2 전극 섬유(630, 730) 내에 상기 은 나노 와이어(620), 및 상기 아연 입자(720)의 함량이 증가되고, 상기 은-아연 전지의 에너지 저장량이 향상될 수 있다.In addition, the silver-zinc battery is formed on the first and second carbon nanotube sheets 610 and 710 before fabricating fibers using the first and second carbon nanotube sheets 610 and 710. In the state where the silver nanowires 620 and the zinc particles 720 are provided, and the silver nanowires 620 and the zinc particles 720 are provided, the first and second carbon nanotube sheets ( By twisting 610 and 710, the first and second electrode fibers 630 and 730 may be manufactured. Accordingly, the content of the silver nanowires 620 and the zinc particles 720 in the first and second electrode fibers 630 and 730 may be increased, and energy storage of the silver-zinc battery may be improved. have.
또한, 상기 은-아연 전지는, 상기 은 나노 와이어(620)의 wt%가 상기 아연 입자(720)의 wt%보다 높게 제공될 수 있다. 이를 위해, 상기 은-아연 전지는, x개의 상기 제1 전극 섬유(630)가 y개의 상기 제2 전극 섬유(730)와 꼬여서 제조될 수 있다. 일 실시 예에 따르면, x 및 y는 0보다 큰 자연수이고, x는 y보다 클 수 있다. 일 실시 예에 따르면, x = 2y일 수 있다. 이때, 상기 제1 전극 섬유(630)에서 상기 은 나노 와이어(620)의 wt%와 상기 제2 전극 섬유(730)에서 상기 아연 입자(720)의 wt%는 실질적으로 동일할 수 있다. 이에 따라, 고효율의 은-아연 전지가 제공될 수 있다. In addition, in the silver-zinc battery, wt% of the silver nanowire 620 may be provided higher than wt% of the zinc particles 720. To this end, the silver-zinc battery may be manufactured by twisting x first electrode fibers 630 with y second electrode fibers 730. According to one embodiment, x and y are natural numbers greater than zero, and x may be greater than y. According to one embodiment, x = 2y. In this case, wt% of the silver nanowire 620 in the first electrode fiber 630 and wt% of the zinc particles 720 in the second electrode fiber 730 may be substantially the same. Accordingly, a high efficiency silver-zinc battery can be provided.
이하, 본 발명의 제3 실시 예에 따른 전극 섬유 및 이를 포함하는 은-아연 전지의 구체적인 실험 예 및 특성 평가 결과가 설명된다. Hereinafter, specific experimental examples and characteristics evaluation results of the electrode fiber and the silver-zinc battery including the same according to the third embodiment of the present invention will be described.
실시 예 3-1에 따른 제1 전극 섬유 제조Preparation of First Electrode Fibers According to Example 3-1
유리 기판이 준비된다. 상기 실리콘 기판 상에 화학 기상 증착법으로, 약 400μm의 높이, 약 12nm 의 직경, 및 약 9개의 벽을 포함하는 탄소나노튜브 숲(CNT forest)을 제조하였다. 상기 탄소나노튜브 숲을 제1 방향으로 잡아당겨, 상기 제1 방향으로 연장하는 복수의 탄소나노튜브를 포함하는 탄소나노튜브 시트(CNT sheet)를 유리 기판 상에 제조하였다. A glass substrate is prepared. By chemical vapor deposition on the silicon substrate, a carbon nanotube forest including a height of about 400 μm, a diameter of about 12 nm, and about nine walls was prepared. Pulling the carbon nanotube forest in a first direction, a carbon nanotube sheet (CNT sheet) including a plurality of carbon nanotubes extending in the first direction was prepared on a glass substrate.
200ml의 용량을 갖는 은 나노 와이어(silver nanowire) 및 isopropyl alcohol이 준비된다. 상기 은 나노 와이어를 isopropyl alcohol에 혼합시켜, 혼합 용액을 제조하였다. Silver nanowires and isopropyl alcohol having a capacity of 200 ml are prepared. The silver nanowires were mixed with isopropyl alcohol to prepare a mixed solution.
상기 탄소나노튜브 시트를 3장 적층시킨 후, 상기 혼합 용액을 drop casting 방법으로 뿌리고 상온(room temperature)에서 5분의 시간 동안 건조시켰다. After stacking three sheets of carbon nanotubes, the mixed solution was sprayed by a drop casting method and dried at room temperature for 5 minutes.
건조된 상기 탄소나노튜브 시트는, 상기 제1 방향을 회전축으로 사용하여, 복수의 상기 탄소나노튜브 시트 일단들을 미터당 약 1000회로 꼬아서 98.6 wt%의 농도를 갖는 은 나노 와이어를 포함하는 제1 전극 섬유를 제조하였다. The dried carbon nanotube sheet includes a first electrode including silver nanowires having a concentration of 98.6 wt% by twisting one end of the plurality of carbon nanotube sheets about 1000 meters per meter using the first direction as a rotation axis. Fibers were prepared.
실시 예 3-2에 따른 제2 전극 섬유 제조Preparation of Second Electrode Fiber According to Example 3-2
아연 나노입자(zinc nanoparticle) 및 에탄올 용매가 준비된다. 상기 아연 나노입자들을 에탄올에 혼합시킨 후, 2시간 동안 초음파 처리하여 혼합 용액을 제조하였다. Zinc nanoparticles and ethanol solvents are prepared. The zinc nanoparticles were mixed in ethanol and sonicated for 2 hours to prepare a mixed solution.
상술된 실시 예 3-1에 따른 방법으로 제조된 탄소나노튜브 시트 상에 상기 혼합 용액을 drop casting 방법으로 뿌리고 건조시켰다. 건조된 상기 탄소나노튜브 시트는 상기 제1 방향을 회전축으로 사용하여, 복수의 상기 탄소나노튜브 시트 일단들을 미터당 약 2000회로 꼬아서 97.2 wt%의 농도를 갖는 이산화망간을 포함하는 제2 전극 섬유를 제조하였다. The mixed solution was sprinkled with a drop casting method on a carbon nanotube sheet prepared by the method according to Example 3-1, and dried. Drying the carbon nanotube sheet using the first direction as the axis of rotation, twisting one end of the plurality of carbon nanotube sheets about 2000 times per meter to produce a second electrode fiber containing manganese dioxide having a concentration of 97.2 wt%. It was.
실시 예 3-3에 따른 은-아연 전지 제조Preparation of Silver-Zinc Battery According to Example 3-3
상술된 실시 예 3-1에 따른 제1 전극 섬유 및 실시 예 3-2에 따른 제2 전극 섬유가 준비된다. 각각의 전극 섬유 끝단에 180μm의 직경을 갖는 구리 전선을 연결하고, 구리 전선과 제1 및 제2 전극 섬유를 epoxy로 코팅하였다. The first electrode fiber according to Example 3-1 and the second electrode fiber according to Example 3-2 described above are prepared. A copper wire having a diameter of 180 μm was connected to each electrode fiber end, and the copper wire and the first and second electrode fibers were coated with epoxy.
33.67g의 질량을 갖는 KOH를 100mL 용량을 갖는 DI water에 분산시키고, 1분당 60회의 회전 속도로 저어주어(stirred) 6M 농도를 갖는 KOH 액체 전해질을 제조하였다. KOH having a mass of 33.67 g was dispersed in DI water having a volume of 100 mL, and stirred at 60 rotational speeds per minute to prepare a KOH liquid electrolyte having a concentration of 6 M.
이후, KOH 액체 전해질 내에 구리 전선이 연결된 실시 예 3-1에 따른 제1 전극 섬유 및 실시 예 2에 따른 제2 전극 섬유를 침지시켜, 실시 예 3-3에 따른 은-아연 전지를 제조하였다. 상술된 실시 예 3-1에 따른 제1 전극 섬유는 양극(cathode)으로 사용되고, 제2 전극 섬유는 음극(anode)으로 사용되었다. Thereafter, the first electrode fiber according to Example 3-1 and the second electrode fiber according to Example 2, in which a copper wire was connected in a KOH liquid electrolyte, were immersed to prepare a silver-zinc battery according to Example 3-3. The first electrode fiber according to Example 3-1 described above was used as a cathode, and the second electrode fiber was used as an anode.
실시 예 3-4에 따른 은-아연 전지 제조Preparation of Silver-Zinc Battery According to Example 3-4
상술된 실시 예 3-1에 따른 제1 전극 섬유 2개와 실시 예 2에 따른 제2 전극 섬유 1개가 준비된다. 각각의 전극 섬유 끝단에 180μm의 직경을 갖는 구리 전선을 연결하고, 구리 전선과 제1 및 제2 전극 섬유를 epoxy로 코팅하였다.Two first electrode fibers according to Example 3-1 and one second electrode fiber according to Example 2 are prepared. A copper wire having a diameter of 180 μm was connected to each electrode fiber end, and the copper wire and the first and second electrode fibers were coated with epoxy.
3M 농도를 갖는 KOH와 PVA(polyvinyl alcohol)이 혼합된 전해질 및 10 wt%의 농도를 갖는 PVA가 준비된다. 전해질은, 3.37g의 용량을 갖는 KOH, 2g의 용량을 갖는 PVA, 및 20mL의 용량을 갖는 DI water를 혼합하고 140℃의 온도에서 1분당 60회의 회전 속도로 저어주어(stirred) 제조하였다.An electrolyte mixed with KOH having 3 M concentration and polyvinyl alcohol (PVA) and PVA having a concentration of 10 wt% were prepared. The electrolyte was prepared by mixing KOH with a capacity of 3.37 g, PVA with a capacity of 2 g, and DI water with a capacity of 20 mL and stirring at 60 revolutions per minute at a temperature of 140 ° C.
이후, 준비된 제2 전극 섬유 1개에 10 wt%의 농도를 갖는 PVA를 코팅하였다. PVA가 코팅된 제2 전극 섬유 1개와 준비된 제1 전극 섬유 2개를 서로 꼬으고, 제1 및 제2 전극 섬유에 전해질을 코팅하여 실시 예 3-4에 따른 은-아연 전지를 제조하였다. 상술된 실시 예 3-1에 따른 제1 전극 섬유는 양극(cathode)으로 사용되고, 제2 전극 섬유는 음극(anode)으로 사용되었다. Thereafter, one prepared second electrode fiber was coated with PVA having a concentration of 10 wt%. One PVA-coated second electrode fiber and two prepared first electrode fibers were twisted together, and an electrolyte was coated on the first and second electrode fibers to prepare a silver-zinc battery according to Example 3-4. The first electrode fiber according to Example 3-1 described above was used as a cathode, and the second electrode fiber was used as an anode.
실시 예 3-5에 따른 전극 직물 제조Preparation of Electrode Fabrics According to Examples 3-5
상술된 실시 예 3-4에 따른 은-아연 전지 두개를 직렬 연결하고, 이를 watch trap textile 내에 바느질(sewn)하여 전극 직물을 제조하였다. Two silver-zinc batteries according to Example 3-4 described above were connected in series, and then sewn in a watch trap textile to fabricate an electrode fabric.
비교 예 3-1에 따른 전지 준비Battery Preparation According to Comparative Example 3-1
은을 포함하는 금속 양극 및 아연을 포함하는 금속 음극으로 구성된 비교 예 3-1에 따른 전지가 준비된다. A battery according to Comparative Example 3-1 consisting of a metal anode comprising silver and a metal anode comprising zinc is prepared.
비교 예 3-2에 따른 전지 준비Battery Preparation According to Comparative Example 3-2
LMO(lithium ion manganese oxide) 섬유 전극 및 LTO(lithium titanate) 섬유 전극이 신축 가능한 중심 전극에 감긴 비교 예 3-2에 따른 전지가 준비된다. A battery according to Comparative Example 3-2, in which a lithium ion manganese oxide (LMO) fiber electrode and a lithium titanate (LTO) fiber electrode is wound around a stretchable center electrode, is prepared.
비교 예 3-3에 따른 전지 준비Battery Preparation According to Comparative Example 3-3
LMO 섬유 전극 및 LTO 섬유 전극이 코일 형태를 이루는 비교 예 3-3에 따른 전지가 준비된다. A battery according to Comparative Example 3-3, in which the LMO fiber electrode and the LTO fiber electrode form a coil, is prepared.
비교 예 3-4에 따른 전지 준비Battery Preparation According to Comparative Example 3-4
LMO 섬유 전극 및 LTO 섬유 전극이 서로 꼬인 비교 예 3-4에 따른 전지가 준비된다. The battery according to Comparative Example 3-4 in which the LMO fiber electrode and the LTO fiber electrode were twisted with each other is prepared.
상기 실시 예 3-1 내지 3-4, 비교 예 3-1 내지 3-4에 따른 전극 섬유 및 전지들이 아래 <표 4>를 통하여 정리된다. The electrode fibers and the batteries according to Examples 3-1 to 3-4 and Comparative Examples 3-1 to 3-4 are summarized through Table 4 below.
구분division | 종류Kinds | 구성Configuration | 전해질Electrolyte |
실시 예 3-1Example 3-1 | 전극 섬유Electrode fiber | Ag nanowire/CNTAg nanowire / CNT | |
실시 예 3-2Example 3-2 | 전극 섬유Electrode fiber | Zn/CNTZn / CNT | |
실시 예 3-3Example 3-3 | 섬유 전지Fiber battery | Ag nanowire/CNTZn/CNTAg nanowire / CNTZn / CNT | KOH 액체 전해질KOH liquid electrolyte |
실시 예 3-4Example 3-4 | 섬유 전지Fiber battery | Ag nanowire/CNTZn/CNTAg nanowire / CNTZn / CNT | 3M KOH + PVA3M KOH + PVA |
실시 예 3-5Example 3-5 | 전극 직물Electrode fabric | Ag nanowire/CNTZn/CNT두개 직렬 연결Ag nanowire / CNTZn / CNT two series connection | |
비교 예 3-1Comparative Example 3-1 | 금속 전지Metal battery | Ag/ZnAg / Zn | |
비교 예 3-2Comparative Example 3-2 | 섬유 전지Fiber battery | Winding of LTO/LMOWinding of LTO / LMO | |
비교 예 3-3Comparative Example 3-3 | 섬유 전지Fiber battery | Coiling of LTO/LMOCoiling of LTO / LMO | |
비교 예 3-4Comparative Example 3-4 | 섬유 전지Fiber battery | Plying of LTO/LMOPlying of LTO / LMO |
도 41은 본 발명의 실시 예 3-1에 따른 전극 섬유가 포함하는 제1 전극 섬유를 촬영한 사진이다. FIG. 41 is a photograph of the first electrode fibers included in the electrode fibers according to Example 3-1 of the present invention. FIG.
도 41의 (a) 및 (b)를 참조하면, 실시 예 3-1에 따른 제1 전극 섬유의 옆모습과 단면을 낮은 배율(scale bar = 300μm)에서 SEM(scanning electron microscopy) 촬영하고, 도 41의 (c)를 참조하면, 실시 예 3-1에 따른 제1 전극 섬유의 단면을 높은 배율(scale bar = 2μm)에서 SEM 촬영하였다. Referring to (a) and (b) of FIG. 41, scanning electron microscopy (SEM) images of the side profile and the cross section of the first electrode fibers according to Example 3-1 at a low magnification (scale bar = 300 μm), and FIG. 41. Referring to (c), the cross section of the first electrode fiber according to Example 3-1 was SEM photographed at a high magnification (scale bar = 2μm).
도 41의 (a)에서 알 수 있듯이, 실시 예 3-1에 따른 제1 전극 섬유는 탄소나노튜브 시트 상에 은 나노 와이어가 98.6 wt로 로딩된 것을 확인할 수 있었다. 도 41의 (b) 및 (c)에서 알 수 있듯이, 실시 예 3-1에 따른 제1 전극 섬유의 단면은, 나선형(spiral)인 것을 확인할 수 있었다. 또한, 상기 단면은, 탄소나노튜브 시트가 말리고(rolled) 적층된(stacked) 형태를 나타내고, 말리고 적층된 상기 탄소나노튜브 시트 사이에 은 나노 와이어가 제공되어 있는 것을 확인할 수 있었다. As can be seen from (a) of Figure 41, the first electrode fiber according to Example 3-1 was confirmed that the silver nanowires loaded on the carbon nanotube sheet at 98.6 wt. As can be seen from (b) and (c) of FIG. 41, it was confirmed that the cross section of the first electrode fiber according to Example 3-1 was spiral. In addition, the cross section shows a form in which the carbon nanotube sheets are rolled and stacked, and silver nanowires are provided between the rolled and stacked carbon nanotube sheets.
도 42는 본 발명의 실시 예 3-2에 따른 전극 섬유가 포함하는 제2 전극 섬유를 촬영한 사진이다. FIG. 42 is a photograph of a second electrode fiber included in the electrode fiber according to Example 3-2 of the present invention. FIG.
도 42의 (a) 및 (b)를 참조하면, 실시 예 3-2에 따른 제2 전극 섬유의 옆모습과 단면을 낮은 배율(scale bar = 300μm)에서 SEM(scanning electron microscopy) 촬영하고, 도 42의 (c)를 참조하면, 실시 예 3-2에 따른 제2 전극 섬유의 단면을 높은 배율(scale bar = 2μm)에서 SEM 촬영하였다. Referring to (a) and (b) of FIG. 42, scanning electron microscopy (SEM) imaging of a side view and a cross section of the second electrode fiber according to Example 3-2 at a low magnification (scale bar = 300 μm), and FIG. 42. Referring to (c), the cross section of the second electrode fiber according to Example 3-2 was SEM photographed at a high magnification (scale bar = 2μm).
도 42의 (a)에서 알 수 있듯이, 실시 예 3-2에 따른 제2 전극 섬유는 탄소나노튜브 시트 상에 아연 입자가 97.2 wt로 로딩된 것을 확인할 수 있었다. 도 42의 (b) 및 (c)에서 알 수 있듯이, 실시 예 3-2에 따른 제2 전극 섬유의 단면은, 나선형(spiral)인 것을 확인할 수 있었다. 또한, 상기 단면은, 탄소나노튜브 시트가 말리고(rolled) 적층된(stacked) 형태를 나타내고, 말리고 적층된 상기 탄소나노튜브 시트 사이에 아연 입자가 제공되어 있는 것을 확인할 수 있었다. 이에 따라, 실시 예 3-1에 따른 제1 전극 섬유가 포함하는 은 나노 와이어의 wt%는 실시 예 3-2에 따른 제2 전극 섬유가 포함하는 아연 입자의 wt%와 실질적으로 동일하다는 것을 알 수 있다. As can be seen from (a) of Figure 42, the second electrode fiber according to Example 3-2 was confirmed that the zinc particles loaded on the carbon nanotube sheet at 97.2 wt. As can be seen from (b) and (c) of FIG. 42, it was confirmed that the cross section of the second electrode fiber according to Example 3-2 was spiral. In addition, the cross section shows a form in which the carbon nanotube sheets are rolled and stacked, and zinc particles are provided between the carbon nanotube sheets that are rolled and stacked. Accordingly, it is understood that the wt% of silver nanowires included in the first electrode fiber according to Example 3-1 is substantially the same as the wt% of zinc particles included in the second electrode fiber according to Example 3-2. Can be.
도 43은 본 발명의 실시 예 3-3 및 비교 예 3-1에 따른 은-아연 전지의 전기화학특성을 나타내는 그래프이다. 43 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-3 and Comparative Example 3-1 of the present invention.
도 43의 (a)를 참조하면, 상기 실시 예 3-3에 따른 은-아연 전지를 10 mV/s의 스캔 레이트에서 전압(V)에 따른 전류 밀도(mAh/cm)를 측정하고, 순환전압전류 곡선(이하, CV 곡선이라고 한다)을 나타내었다. 도 43의 (a)에서 알 수 있듯이, 상기 실시 예 3-3에 따른 은-아연 전지는, 1.65V(Ag->Ag+) 및 2V(Ag+->Ag2
+) 두 부분에서 oxidation peak가 나타나고, 1.82V(Ag2+->Ag+) 및 1.43V(Ag+->Ag) 두 부분에서 reduction peak가 나타나는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 3-3에 따른 은-아연 전지는 good agreement를 갖는 것을 알 수 있다. Referring to FIG. 43A, the silver-zinc battery according to Example 3-3 measures current density (mAh / cm) according to voltage (V) at a scan rate of 10 mV / s, and calculates a circulating voltage. The current curve (hereinafter referred to as CV curve) is shown. As can be seen from (a) of FIG. 43, in the silver-zinc battery according to Example 3-3, an oxidation peak at two parts of 1.65 V (Ag-> Ag + ) and 2 V (Ag + -> Ag 2 + ) is shown. It was confirmed that the reduction peak appeared in two parts of 1.82V (Ag 2+ -> Ag + ) and 1.43V (Ag + -> Ag). Accordingly, it can be seen that the silver-zinc battery according to the embodiment 3-3 has a good agreement.
도 43의 (b)를 참조하면, 상기 실시 예 3-3및 비교 예 3-1에 따른 은-아연 전지의 linear capacity(mAh/cm)에 따른 전압(V)을 측정하고, galvanostatic discharge curve를 나타내었다. 도 43의 (b)에서 알 수 있듯이, 상기 실시 예 3-3에 따른 은-아연 전지의 linear capacity는 8.7 마이크로 암페어아워 μAh/cm로 나타나고, 상기 비교 예 3-1에 따른 은-아연 전지의 linear capacity는 0.04 마이크로 암페어아워 μAh/cm로 나타나는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 3-3에 따른 은-아연 전지가 상기 비교 예 3-1에 따른 은-아연 전지보다 약 100배 정도 우수한 성능을 갖는다는 것을 알 수 있다. Referring to (b) of FIG. 43, the voltage V according to the linear capacity (mAh / cm) of the silver-zinc battery according to Example 3-3 and Comparative Example 3-1 was measured, and a galvanostatic discharge curve was measured. Indicated. As shown in (b) of FIG. 43, the linear capacity of the silver-zinc battery according to Example 3-3 is expressed as 8.7 microamp hour μAh / cm, and the silver-zinc battery according to Comparative Example 3-1 is shown. The linear capacity was found to be 0.04 microamperes μAh / cm. Accordingly, it can be seen that the silver-zinc battery according to Example 3-3 has about 100 times better performance than the silver-zinc battery according to Comparative Example 3-1.
도 44는 본 발명의 실시 예 3-3에 따른 은-아연 전지의 전기화학특성을 나타내는 그래프이다. 44 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-3 of the present invention.
도 44의 (a)를 참조하면, 상기 실시 예 3-3에 따른 은-아연 전지에서 은 나노와이어 및 아연 입자의 질량 비율(mass ratio)에 따른 linear capacity(mAh/cm)을 측정하여 나타내고, 은 나노와이어 및 아연 입자의 질량 비율이 1.7:1이고 전류 밀도가 0.1mA/cm인 경우, 상기 실시 예 3-3에 따른 은-아연 전지의 linear capacity(mAh/cm)에 따른 전압(V)을 측정하였다. Referring to (a) of FIG. 44, the linear capacity (mAh / cm) according to the mass ratio of silver nanowires and zinc particles in the silver-zinc battery according to Example 3-3 is measured and shown. When the mass ratio of silver nanowires and zinc particles is 1.7: 1 and the current density is 0.1 mA / cm, the voltage (V) according to the linear capacity (mAh / cm) of the silver-zinc battery according to Example 3-3 Was measured.
도 44의 (a)에서 알 수 있듯이, 상기 실시 예 3-3에 따른 은-아연 전지는, 은 나노 와이어 및 아연 입자의 질량 비율이 1.7:1인 경우 가장 높은 linear capacity를 나타내는 것을 확인할 수 있고, 은 나노와이어 및 아연 입자의 질량 비율이 1.7:1이고 전류 밀도가 0.1mA/cm인 경우 상기 실시 예 3-3에 따른 은-아연 전지의 가장 높은 linear capacity가 0.285mAh/cm를 나타내는 것을 확인할 수 있다. 이에 따라, 상기 실시 예 3-3에 다른 은-아연 전지를 제조하는 경우, 은 나노 와이어 및 아연 입자의 질량 비율이 1.7:1에 가깝도록 제조하는 것이 효율적이라는 것을 알 수 있다. As can be seen in Figure 44 (a), the silver-zinc battery according to the embodiment 3-3, it can be seen that shows the highest linear capacity when the mass ratio of silver nanowires and zinc particles is 1.7: 1. When the mass ratio of silver nanowires and zinc particles is 1.7: 1 and the current density is 0.1 mA / cm, it is confirmed that the highest linear capacity of the silver-zinc battery according to Example 3-3 shows 0.285 mAh / cm. Can be. Accordingly, when manufacturing the silver-zinc battery according to Example 3-3, it can be seen that it is efficient to manufacture so that the mass ratio of silver nanowires and zinc particles is close to 1.7: 1.
도 44의 (b)를 참조하면, 상기 실시 예 3-3에 따른 은-아연 전지를 준비하되, 전해질로서 6M 농도를 갖는 KOH에 0.25M 농도를 갖는 ZnO를 혼합하여 사용하였다. 이후, 상술된 전해질이 사용된 실시 예 3-3에 따른 은-아연 전지의 충방전 횟수에 따른 capacity retention(C/C0)을 측정하였다. 도 44의 (b)에서 알 수 있듯이, 상술된 전해질이 사용된 실시 예 3-3에 따른 은-아연 전지는, 50회의 충방전 이후 30%가량의 capacity가 남아있는 것을 확인할 수 있었다. Referring to (b) of FIG. 44, a silver-zinc battery according to Example 3-3 was prepared, but ZnO having a 0.25 M concentration was mixed with KOH having a 6 M concentration as an electrolyte. Thereafter, capacity retention (C / C 0 ) according to the number of charge / discharge cycles of the silver-zinc battery according to Example 3-3 in which the above-described electrolyte was used was measured. As can be seen from (b) of Figure 44, the silver-zinc battery according to Example 3-3 using the above-described electrolyte, it was confirmed that the capacity of about 30% remaining after 50 charge and discharge.
도 45는 본 발명의 실시 예 3-4에 다른 은-아연 전지의 전기화학특성을 나타내는 그래프이다. 45 is a graph showing the electrochemical characteristics of the silver-zinc battery according to Example 3-4 of the present invention.
도 45의 (a)를 참조하면, 상기 실시 예 3-4에 따른 은-아연 전지를 10 mV/s의 스캔 레이트에서 전압(V)에 따른 전류 밀도(mAh/cm)를 측정하고, CV 곡선을 나타내었다. 도 45의 (a)에서 알 수 있듯이, 상기 실시 예 3-4에 따른 은-아연 전지는, 1.82V(Ag2+->Ag+)에서 reduction peak가 나타나는 것을 확인할 수 있었다. Referring to FIG. 45A, the silver-zinc battery according to Example 3-4 measures current density (mAh / cm) according to voltage (V) at a scan rate of 10 mV / s, and calculates a CV curve. Indicated. As can be seen from (a) of Figure 45, the silver-zinc battery according to Example 3-4, it was confirmed that the reduction peak appears at 1.82V (Ag 2+ -> Ag + ).
도 45의 (b)를 참조하면, 상기 실시 예 3-4에 따른 은-아연 전지의 linear capacity(mAh/cm)에 따른 전압(V)을 측정하고, galvanostatic discharge curve를 나타내었다. 도 45의 (b)에서 알 수 있듯이, 상기 실시 예 3-4에 따른 은-아연 전지는, 오직 하나의 plateaus를 갖는 것을 확인할 수 있었다. Referring to FIG. 45 (b), the voltage V according to the linear capacity (mAh / cm) of the silver-zinc battery according to Example 3-4 was measured, and a galvanostatic discharge curve was shown. As can be seen from (b) of FIG. 45, it was confirmed that the silver-zinc battery according to Example 3-4 has only one plateaus.
도 46은 본 발명의 실시 예 3-4에 따른 은-아연 전지 와 비교 예 3-2 내지 3-4에 따른 전지들의 특성을 비교하는 그래프이다. 46 is a graph comparing characteristics of silver-zinc batteries according to Example 3-4 and batteries according to Comparative Examples 3-2 to 3-4.
도 46을 참조하면, 상기 실시 예 3-4에 따른 은-아연 전지, 비교 예 3-2 내지 3-4에 따른 전지들에서 음극에 로딩된 활물질(active material)의 양(wt%)에 따른 linear capacity(mAh/cm)를 측정하여 나타내고, 상기 실시 예 3-4에 따른 은-아연 전지에서 음극에 로딩된 아연 입자의 양(wt%)에 따른 linear capacity(mAh/cm)를 측정하여 나타내었다. 46, according to the amount (wt%) of the active material loaded on the negative electrode in the silver-zinc battery according to Example 3-4 and the batteries according to Comparative Examples 3-2 to 3-4 The linear capacity (mAh / cm) is measured and shown, and the linear capacity (mAh / cm) according to the amount (wt%) of zinc particles loaded on the negative electrode is shown in the silver-zinc battery according to Example 3-4. It was.
도 46에서 알 수 있듯이, 상기 실시 예 3-4에 따른 은-아연 전지는, 음극에 로딩된 아연 입자가 97.2 wt%인 경우 0.276 mAh/cm의 linear capacity로 나타나고, 비교 예 3-2에 따른 전지는 음극에 로딩된 활물질이 83.6 wt%인 경우 0.0028 mAh/cm의 linear capacity로 나타나고, 비교 예 3-3에 따른 전지는 음극에 로딩된 활물질이 86 wt%인 경우 0.022 mAh/cm의 linear capacity로 나타나고, 비교 예 3-4에 따른 전지는 음극에 로딩된 활물질이 90 wt%인 경우 0.0036 mAh/cm의 linear capacity로 나타나는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 3-4에 따른 은-아연 전지의 성능이 상기 비교 예 3-2 내지 3-4에 따른 전지들의 성능보다 높다는 것을 확인할 수 있었다. As can be seen in Figure 46, the silver-zinc battery according to Example 3-4, when the zinc particles loaded on the negative electrode is 97.2 wt%, the linear capacity of 0.276 mAh / cm, according to Comparative Example 3-2 The battery shows a linear capacity of 0.0028 mAh / cm when the active material loaded on the negative electrode is 83.6 wt%, and the battery according to Comparative Example 3-3 shows a linear capacity of 0.022 mAh / cm when the active material loaded on the negative electrode is 86 wt%. And, the battery according to Comparative Example 3-4 was confirmed that the linear capacity of 0.0036 mAh / cm when the active material loaded on the negative electrode is 90 wt%. Accordingly, it was confirmed that the performance of the silver-zinc battery according to Example 3-4 was higher than that of the batteries according to Comparative Examples 3-2 to 3-4.
도 47은 본 발명의 실시 예 3-4에 따른 은-아연 전지의 신축성을 나타내는 그래프이다. 47 is a graph showing the stretchability of a silver-zinc battery according to Example 3-4 of the present invention.
도 47을 참조하면, 상기 실시 예 3-4에 따른 은-아연 전지를 원래의 경우(pristine), 80°의 각도로 구부린(bent) 경우, 150°의 각도로 구부린(bent) 경우, 및 다시 원래대로 펴진(released) 경우에 대해 linear capacity(mAh/cm)에 따른 전압(V)을 측정하였다. 도 47에서 알 수 있듯이, 상기 실시 예 3-4에 따른 은-아연 전지는 원래의 경우(pristine), 80°의 각도로 구부린(bent) 경우, 150°의 각도로 구부린(bent) 경우에 대해 실직적으로 성능이 일정하게 유지되는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 3-4에 따른 은-아연 전지는, 높은 신축성(flexibility)을 갖는다는 것을 알 수 있다. Referring to FIG. 47, when the silver-zinc battery according to Examples 3-4 was originally bent, bent at an angle of 80 °, bent at an angle of 150 °, and again The voltage (V) according to linear capacity (mAh / cm) was measured for the released case. As can be seen in Figure 47, the silver-zinc battery according to the embodiment 3-4 is the original case (pristine), when bent at an angle of 80 ° (bent), for the case of bent (bent) at 150 ° angle In practice, it was confirmed that the performance was kept constant. Accordingly, it can be seen that the silver-zinc battery according to Example 3-4 has high flexibility.
도 48은 본 발명의 실시 예 3-4에 따른 은-아연 전지의 연결 방식에 따른 성능을 나타내는 그래프이다. 48 is a graph showing the performance according to the connection method of the silver-zinc battery according to the embodiment 3-4 of the present invention.
도 48의 (a)를 참조하면, 상기 실시 예 3-4에 따른 은-아연 전지가 하나인 경우(single battery), 두개를 직렬 연결한 경우(two serial battery), 두개를 병렬 연결한 경우(two parallel battery)에 대해 linear capacity(mAh/cm)에 따른 전압(V)을 측정하였다. Referring to (a) of FIG. 48, when the silver-zinc battery according to the embodiment 3-4 is one (single battery), when two are connected in series (two serial battery), when two are connected in parallel ( Voltage (V) according to linear capacity (mAh / cm) was measured for two parallel batteries.
도 48의 (a)에서 알 수 있듯이, 상기 실시 예 3-4에 따른 은-아연 전지 두개를 직렬 연결한 경우에는 하나인 경우와 비교하여 두배 높은 전압이 나타나고, 두개를 병렬 연결한 경우에는 하나인 경우와 비교하여 두배 높은 용량이 나타나는 것을 확인할 수 있었다. As can be seen from (a) of FIG. 48, when two silver-zinc batteries according to the embodiment 3-4 are connected in series, a voltage twice as high as that of the case of one appears, and one when two are connected in parallel. It was confirmed that the dose appears twice as high compared to the case of.
도 48의 (b)를 참조하면, 상기 실시 예 3-4에 따른 은-아연 전지 두개를 직렬 연결하고 도선과 LED가 연결된 회로를 만들어 이의 작동에 대해 사진촬영 하였다. 도 48의 (b)에서 알 수 있듯이, 상기 실시 예 3-4에 따른 은-아연 전지로 인해 LED가 작동되는 것을 확인할 수 있었다. Referring to (b) of FIG. 48, two silver-zinc batteries according to Example 3-4 were connected in series, and a circuit was connected to the lead and the LED to make a photograph of the operation thereof. As can be seen in Figure 48 (b), it was confirmed that the LED is due to the operation of the silver-zinc battery according to the embodiment 3-4.
도 49는 본 발명의 실시 예 3-5에 따른 전극 직물이 사용된 디바이스를 촬영한 사진이다. 49 is a photograph of a device using an electrode fabric according to Examples 3-5 of the present invention.
도 49를 참조하면, 상기 실시 예 3-5에 따른 전극 직물과 일반적인 전자 시계를 구리 전선으로 연결시킨 뒤 사진촬영 하였다. 도 49에서 알 수 있듯이, 상기 실시 예 3-5에 따른 전극 직물이 연결된 전자 시계가 작동하는 것을 확인할 수 있었다. 이에 따라, 상기 실시 예 3-5에 따른 전극 직물을 사용하여 다른 디바이스 들에도 사용될 수 있음을 알 수 있다. Referring to FIG. 49, the electrode fabric and the general electronic clock according to Example 3-5 were connected with copper wires and photographed. As can be seen from Figure 49, it can be seen that the electronic clock is connected to the electrode fabric according to the embodiment 3-5. Accordingly, it can be seen that the electrode fabrics according to Examples 3-5 can be used for other devices.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As mentioned above, although this invention was demonstrated in detail using the preferable embodiment, the scope of the present invention is not limited to a specific embodiment, Comprising: It should be interpreted by the attached Claim. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.
본 발명의 실시 예에 따른 전극 섬유 및 그 제조 방법은 슈퍼커패시터, 전지, 및 웨어러들 디바이스 등에 이용될 수 있다. Electrode fiber according to an embodiment of the present invention and a method of manufacturing the same may be used in a supercapacitor, a battery, and wearers device.
Claims (20)
- 탄소나노튜브 시트를 준비하는 단계;Preparing a carbon nanotube sheet;상기 탄소나노튜브 시트 상에, 기능성 물질(functional material)을 제공하는 단계; 및Providing a functional material on the carbon nanotube sheet; And상기 기능성 물질이 제공된 상기 탄소나노튜브 시트를 꼬아서, 제1 방향으로 연장하는 전극 섬유를 제조하는 단계를 포함하는 전극 섬유의 제조 방법. Twisting the carbon nanotube sheet provided with the functional material to produce electrode fibers extending in a first direction.
- 제1 항에 있어서, According to claim 1,복수의 상기 전극 섬유를 서로 꼬아서(twist), 복합 섬유를 제조하는 단계를 더 포함하는 전극 섬유의 제조 방법. Twisting a plurality of said electrode fibers with each other, thereby producing a composite fiber.
- 제1 항에 있어서, According to claim 1,상기 탄소나튜브 시트는 제1 탄소나노튜브 시트 및 제2 탄소나노튜브 시트를 포함하고, The carbon nanotube sheet includes a first carbon nanotube sheet and a second carbon nanotube sheet,상기 기능성 물질은 제1 기능성 물질 및 제2 기능성 물질을 포함하고, The functional material comprises a first functional material and a second functional material,상기 전극 섬유는 상기 제1 기능성 물질이 상기 제1 탄소나노튜브 시트 상에 제공된 제1 전극 섬유 및 상기 제2 기능성 물질이 상기 제2 탄소나노튜브 시트 상에 제공된 제2 전극 섬유를 포함하되, The electrode fiber includes a first electrode fiber provided with the first functional material on the first carbon nanotube sheet and a second electrode fiber provided with the second functional material on the second carbon nanotube sheet,상기 제1 전극 섬유 내에 상기 제1 기능성 물질의 함량이 70 wt% 이하가 되도록 제어하고, 상기 제2 전극 섬유 내에 상기 제2 기능성 물질의 함량이 70 wt%이하가 되도록 제어하는 것을 포함하는 전극 섬유의 제조 방법. Controlling the content of the first functional material in the first electrode fiber to be 70 wt% or less, and controlling the content of the second functional material in the second electrode fiber to be 70 wt% or less Method of preparation.
- 제3 항에 있어서, The method of claim 3, wherein상기 제1 탄소나노튜브 시트 및 상기 제2 탄소나노튜브 시트는, 각각 상기 제1 방향으로 연장하는 복수의 탄소나노튜브를 포함하고,The first carbon nanotube sheet and the second carbon nanotube sheet each include a plurality of carbon nanotubes extending in the first direction,상기 제1 전극 섬유를 제조하는 단계 및 상기 제2 전극 섬유를 제조하는 단계는, 상기 제1 방향을 회전축으로 사용하여, 상기 제1 방향으로 연장하는 상기 복수의 탄소나노튜브의 일단들을, 꼬으는 것을 포함하는 전극 섬유의 제조 방법. The manufacturing of the first electrode fibers and the manufacturing of the second electrode fibers may include twisting ends of the plurality of carbon nanotubes extending in the first direction, using the first direction as a rotation axis. The manufacturing method of the electrode fiber containing the thing.
- 제3 항에 있어서, The method of claim 3, wherein상기 제1 기능성 물질은, 금속 산화물 입자를 포함하고, The first functional material includes metal oxide particles,상기 제1 기능성 물질을 제공하는 단계는, Providing the first functional material,상기 금속 산화물 입자가 분산된 소스 용액을 제조하는 단계; 및 Preparing a source solution in which the metal oxide particles are dispersed; And상기 금속 산화물 입자가 분산된 소스 용액을 상기 제1 탄소나노튜브 시트 상에 제공하는 단계를 포함하는 전극 섬유의 제조 방법. Providing a source solution in which the metal oxide particles are dispersed on the first carbon nanotube sheet.
- 제5 항에 있어서, The method of claim 5,상기 금속 산화물 입자가 분산된 소스 용액이 상기 제1 탄소나노튜브 시트 상에 제공된 직후에(directly after), 상기 제1 탄소나노튜브 시트를 꼬아서, 상기 제1 전극 섬유를 제조하는 것을 포함하는 전극 섬유의 제조 방법. Immediately after the source solution in which the metal oxide particles are dispersed is provided on the first carbon nanotube sheet, twisting the first carbon nanotube sheet to produce the first electrode fiber. Method of making fibers.
- 제3 항에 있어서, The method of claim 3, wherein상기 제1 기능성 물질은 환원된 그래핀 산화물을 포함하고, 상기 제2 기능성 물질은 이산화망간을 포함하되, The first functional material comprises a reduced graphene oxide, the second functional material includes manganese dioxide,상기 제1 탄소나노튜브 시트 상에, 상기 제1 기능성 물질을 제공하는 단계는, Providing the first functional material on the first carbon nanotube sheet,상기 환원된 그래핀 산화물이 분산된 소스 용액을 준비하는 단계; 및Preparing a source solution in which the reduced graphene oxide is dispersed; And상기 환원된 그래핀 산화물이 분산된 소스 용액을 상기 제1 탄소나노튜브 시트 상에 제공하는 단계를 포함하고, Providing a source solution in which the reduced graphene oxide is dispersed on the first carbon nanotube sheet,상기 제2 탄소나노튜브 시트 상에, 상기 제2 기능성 물질을 제공하는 단계는, Providing the second functional material on the second carbon nanotube sheet,상기 이산화망간이 분산된 소스 용액을 준비하는 단계; 및 Preparing a source solution in which the manganese dioxide is dispersed; And상기 이산화망간이 분산된 소스 용액을 상기 제2 탄소나노튜브 시트 상에 제공하는 단계를 포함하고, Providing a source solution in which the manganese dioxide is dispersed on the second carbon nanotube sheet,상기 환원된 그래핀 산화물이 분산된 소스 용액 내 상기 환원된 그래핀 산화물의 농도가, 상기 이상화망간이 분산된 소스 용액 내 상기 이산화망간의 농도보다 높은 것을 포함하는 전극 섬유의 제조 방법.And the concentration of the reduced graphene oxide in the source solution in which the reduced graphene oxide is dispersed is higher than the concentration of the manganese dioxide in the source solution in which the manganese idealized dispersion is dispersed.
- 제7 항에 있어서, The method of claim 7, wherein상기 제1 탄소나노튜브 시트 상에, 상기 제1 기능성 물질을 제공하는 단계는, Providing the first functional material on the first carbon nanotube sheet,상기 환원된 그래핀 산화물이 분산된 소스 용액을 상기 제1 탄소나노튜브 시트 상에 제공하는 단계, 및Providing a source solution in which the reduced graphene oxide is dispersed on the first carbon nanotube sheet, and상기 환원된 그래핀 산화물이 분산된 소스 용액이 제공된 상기 제1 탄소나노튜브 시트를 건조하는 단계를 복수회 반복 수행하는 것을 포함하는 전극 섬유의 제조 방법. Method of producing an electrode fiber comprising the step of repeating the step of drying the first carbon nanotube sheet provided with the source solution in which the reduced graphene oxide is dispersed.
- 제3 항에 있어서, The method of claim 3, wherein상기 제1 기능성 물질은 은 나노 와이어를 포함하고, 상기 제2 기능성 물질은 아연 입자를 포함하며, The first functional material comprises silver nanowires, the second functional material comprises zinc particles,상기 제1 및 제2 전극 섬유를 서로 꼬으는 단계를 더 포함하되,Further comprising twisting the first and second electrode fibers with each other,꼬인 상기 제1 전극 섬유의 개수가 상기 제2 전극 섬유의 개수보다 많은 것을 포함하는 전극 섬유의 제조 방법.And the number of twisted first electrode fibers is greater than the number of second electrode fibers.
- 탄소나노튜브 시트, 및 기능성 물질을 포함하는 전극 섬유를 포함하되,An electrode fiber comprising a carbon nanotube sheet, and a functional material,상기 전극 섬유의 내부 영역은, 상기 탄소나노튜브 시트가 말리고(rolled) 적층된(stacked) 형태로 제공되고,The inner region of the electrode fiber is provided in a form in which the carbon nanotube sheet is rolled and stacked,말리고 적층된 상기 탄소나노튜브 시트 사이에 상기 기능성 물질이 제공되는 것을 포함하는 전극 섬유. An electrode fiber comprising the functional material provided between the dried carbon nanotube sheet.
- 제10 항에 있어서, The method of claim 10,상기 전극 섬유는 제1 방향으로 연장하고, The electrode fibers extend in a first direction,상기 제1 방향을 법선으로 갖는 제1 평면으로 절취한 상기 전극 섬유의 단면에서, 상기 탄소나노튜브 시트의 단면은 나선형(spiral)으로 제공되되, In the cross section of the electrode fiber cut into the first plane having the first direction as a normal, the cross section of the carbon nanotube sheet is provided in a spiral,상기 제1 방향을 법선으로 갖는 상기 제1 평면으로 절취한 상기 전극 섬유의 단면에서, 나선형의 상기 탄소나노튜브 시트 사이에 상기 기능성 물질이 제공되며,In the cross section of the electrode fiber cut into the first plane having the first direction in a normal line, the functional material is provided between the spiral carbon nanotube sheets,상기 전극 섬유 내에서, 상기 기능성 물질의 함량이, 상기 탄소나노튜브 시트의 함량보다 높은 것을 포함하는 전극 섬유.In the electrode fiber, the electrode fiber comprising a higher content of the functional material than the content of the carbon nanotube sheet.
- 제11 항에 있어서, The method of claim 11, wherein상기 탄소나노튜브 시트는 제1 탄소나노튜브 시트 및 제2 탄소나노튜브 시트를 포함하고, The carbon nanotube sheet includes a first carbon nanotube sheet and a second carbon nanotube sheet,상기 기능성 물질은 제1 기능성 물질 및 제2 기능성 물질을 포함하고, The functional material comprises a first functional material and a second functional material,상기 전극 섬유는 상기 제1 기능성 물질이 상기 제1 탄소나노튜브 시트 상에 제공된 제1 전극 섬유 및 상기 제2 기능성 물질이 상기 제2 탄소나노튜브 시트 상에 제공된 제2 전극 섬유를 포함하는 전극 섬유.The electrode fiber includes an electrode fiber including a first electrode fiber provided with the first functional material on the first carbon nanotube sheet and a second electrode fiber provided with the second functional material on the second carbon nanotube sheet. .
- 제12 항에 있어서, The method of claim 12,상기 제1 및 제2 전극 섬유 내에서, 각각 상기 제1 및 제2 기능성 물질의 함량이, 상기 제1 및 제2 탄소나노튜브 시트의 함량보다 높은 것을 포함하는 전극 섬유.In the first and second electrode fibers, wherein the content of the first and second functional material, respectively, higher than the content of the first and second carbon nanotube sheet.
- 제12 항에 있어서, The method of claim 12,상기 제1 기능성 물질은 환원된 그래핀 산화물을 포함하고, 상기 제2 기능성 물질은 이산화망간을 포함하되, The first functional material comprises a reduced graphene oxide, the second functional material includes manganese dioxide,상기 제1 전극 섬유에서 상기 환원된 그래핀 산화물의 wt%가, 상기 제2 전극 섬유에서 상기 이산화망간의 wt%보다, 높은 것을 포함하는 전극 섬유.And wt% of the reduced graphene oxide in the first electrode fiber is higher than wt% of the manganese dioxide in the second electrode fiber.
- 제14 항에 있어서, The method of claim 14,상기 제1 전극 섬유에서 상기 제1 탄소나노튜브 시트의 개수는, 상기 제2 전극 섬유에서 상기 제2 탄소나노튜브 시트의 개수보다, 많은 것을 포함하는 전극 섬유.The number of the first carbon nanotube sheet in the first electrode fiber, the electrode fiber comprising more than the number of the second carbon nanotube sheet in the second electrode fiber.
- 제14 항에 있어서, The method of claim 14,상기 환원된 그래핀 산화물은 질소 도핑된 것을 포함하는 전극 섬유. Wherein the reduced graphene oxide is nitrogen doped.
- 제12 항에 있어서, The method of claim 12,상기 제1 기능성 물질은 은 나노 와이어를 포함하고, 상기 제2 기능성 물질은 아연 입자를 포함하되, The first functional material includes silver nanowires, and the second functional material includes zinc particles,상기 은 나노 와이어의 wt%가, 상기 아연 입자의 wt%보다, 높은 것을 포함하는 전극 섬유.The wt% of the silver nanowires, the wt% of the zinc particles, the electrode fiber comprising higher.
- 제17 항에 있어서, The method of claim 17,상기 제1 전극 섬유에서 상기 은 나노 와이어의 wt%와 상기 제2 전극 섬유에서 상기 아연 입자의 wt%는 동일한 것을 포함하는 전극 섬유.And wt% of the silver nanowires in the first electrode fiber and wt% of the zinc particles in the second electrode fiber are the same.
- 제17 항에 있어서, The method of claim 17,상기 제1 전극 섬유 및 상기 제2 전극 섬유는 서로 꼬이되, The first electrode fibers and the second electrode fibers are twisted with each other,x개의 상기 제1 전극 섬유가 y개의 상기 제2 전극 섬유와 꼬인 것을 포함하고, x first electrode fibers twisted with y second electrode fibers,x 및 y는 0보다 큰 자연수이고, x는 y보다 큰 것을 포함하는 전극 섬유.x and y are natural numbers greater than zero and x is greater than y.
- 제19 항에 있어서, The method of claim 19,x = 2y인 것을 포함하는 전극 섬유.An electrode fiber comprising x = 2y.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0129202 | 2016-10-06 | ||
KR1020160129202A KR101961005B1 (en) | 2016-10-06 | 2016-10-06 | Electrode yarn, method of fabricating of the same, and super capacitor comprising of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066974A1 true WO2018066974A1 (en) | 2018-04-12 |
Family
ID=61831833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/011120 WO2018066974A1 (en) | 2016-10-06 | 2017-10-10 | Electrode fiber and method for producing same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101961005B1 (en) |
WO (1) | WO2018066974A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111986931A (en) * | 2020-07-24 | 2020-11-24 | 华南理工大学 | Manganese oxide nano-structure electrode material and preparation method and application thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102079446B1 (en) * | 2017-06-08 | 2020-02-19 | 한양대학교 산학협력단 | Electric energy charging system and Electric energy charging method |
KR102098690B1 (en) * | 2018-10-02 | 2020-04-08 | 한양대학교 산학협력단 | Wet-spun Electrode Fibers and Supercapacitors There upon |
KR102270773B1 (en) * | 2020-01-15 | 2021-06-29 | 한국과학기술원 | Method for improving charge-discharge characteristics of mxene and cnt based energy repositors |
KR102661743B1 (en) * | 2021-11-26 | 2024-04-29 | 한국생산기술연구원 | Carbon nanotube yarn composite inclluding metal nanopatticle, energy harvester comprising same and method of fabricatin same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110033733A (en) * | 2009-09-25 | 2011-03-31 | 전남대학교산학협력단 | Method for producing complex of manganese dioxide and carbon nanofiber and pseudo capacitor including the complex |
JP2011088814A (en) * | 2009-10-23 | 2011-05-06 | Qinghua Univ | Method for making carbon nanotube composite |
KR20130100239A (en) * | 2010-06-15 | 2013-09-10 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
KR20130131086A (en) * | 2012-05-23 | 2013-12-03 | 한국과학기술원 | Metal oxide nanotubes, fabrication method for preparing the same, and gas sensor comprising the same |
KR101523665B1 (en) * | 2013-12-17 | 2015-05-28 | 한양대학교 산학협력단 | Flexible Yarned Structure for Supercapacitor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101148126B1 (en) | 2010-08-16 | 2012-05-23 | 엘지이노텍 주식회사 | Supercapacitor and manufacturing method of the same |
-
2016
- 2016-10-06 KR KR1020160129202A patent/KR101961005B1/en active IP Right Grant
-
2017
- 2017-10-10 WO PCT/KR2017/011120 patent/WO2018066974A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110033733A (en) * | 2009-09-25 | 2011-03-31 | 전남대학교산학협력단 | Method for producing complex of manganese dioxide and carbon nanofiber and pseudo capacitor including the complex |
JP2011088814A (en) * | 2009-10-23 | 2011-05-06 | Qinghua Univ | Method for making carbon nanotube composite |
KR20130100239A (en) * | 2010-06-15 | 2013-09-10 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
KR20130131086A (en) * | 2012-05-23 | 2013-12-03 | 한국과학기술원 | Metal oxide nanotubes, fabrication method for preparing the same, and gas sensor comprising the same |
KR101523665B1 (en) * | 2013-12-17 | 2015-05-28 | 한양대학교 산학협력단 | Flexible Yarned Structure for Supercapacitor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111986931A (en) * | 2020-07-24 | 2020-11-24 | 华南理工大学 | Manganese oxide nano-structure electrode material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101961005B1 (en) | 2019-03-21 |
KR20180038287A (en) | 2018-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018066974A1 (en) | Electrode fiber and method for producing same | |
WO2020022822A1 (en) | Carbon nanotube, method for preparing same, and cathode for primary battery comprising same | |
WO2018110776A1 (en) | Method for manufacturing crumpled graphene composite, composite manufactured thereby, and supercapacitor including composite | |
WO2018044129A1 (en) | Gel polymer electrolyte and lithium secondary battery including same | |
WO2020167022A1 (en) | Electrochemical device and manufacturing method therefor | |
WO2021075874A1 (en) | Positive electrode active material and method for preparing same | |
WO2020005029A1 (en) | Structural battery electrode, method for manufacturing same, and structural battery using same structural battery electrode | |
WO2023182826A1 (en) | Silicon-carbon composite, preparation method therefor, and anode active material and lithium secondary battery comprising same | |
WO2023096443A1 (en) | Silicon-carbon composite, method for preparing same, and negative electrode active material for lithium secondary battery comprising same | |
WO2023068891A1 (en) | Cylindrical battery, and battery pack and vehicle comprising same | |
WO2023158262A1 (en) | Silicon-carbon mixture, preparation method therefor, and anode active material and lithium secondary battery which comprise same | |
WO2023068886A1 (en) | Cylindrical secondary battery, and battery pack and vehicle including same | |
WO2023101522A1 (en) | Porous silicon-carbon composite, preparing method therefor, and anode active material comprising same | |
WO2023068897A1 (en) | Cylindrical battery, and battery pack and vehicle including same | |
WO2022005064A1 (en) | Intermediate for preparation of porous silicon oxycarbide, preparation method therefor, and lithium secondary battery comprising porous silicon oxycarbide prepared therefrom as anode active material | |
WO2021045530A1 (en) | Electrolyte for lithium secondary battery, and lithium secondary battery including same | |
WO2017175978A1 (en) | Positive electrode active material, method for manufacturing same, and lithium secondary battery containing same | |
WO2015111801A1 (en) | Polyaniline nanopaste and preparation method therefor | |
WO2021167432A1 (en) | Electrode structure, electrode structure for positive electrode of metal-air battery comprising same, and methods for manufacturing same | |
WO2024090905A1 (en) | Polymer solid electrolyte and all-solid-state battery comprising same | |
WO2023075442A1 (en) | Anode and secondary battery comprising same | |
WO2024144231A1 (en) | Dry electrode film, and dry electrode and lithium battery comprising same | |
WO2023068887A1 (en) | Cylindrical battery, and battery pack and vehicle comprising same | |
WO2023068884A1 (en) | Cylindrical secondary battery, and battery pack and vehicle including cylindrical secondary battery | |
WO2018110941A1 (en) | Flexible electromagnetic wave shielding material, electromagnetic wave shielding type circuit module comprising same and electronic device furnished with same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17858768 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17858768 Country of ref document: EP Kind code of ref document: A1 |