WO2017179496A1 - Brake device and plunger pump - Google Patents

Brake device and plunger pump Download PDF

Info

Publication number
WO2017179496A1
WO2017179496A1 PCT/JP2017/014443 JP2017014443W WO2017179496A1 WO 2017179496 A1 WO2017179496 A1 WO 2017179496A1 JP 2017014443 W JP2017014443 W JP 2017014443W WO 2017179496 A1 WO2017179496 A1 WO 2017179496A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
seal member
cylinder
brake device
inner periphery
Prior art date
Application number
PCT/JP2017/014443
Other languages
French (fr)
Japanese (ja)
Inventor
淳喜 大平
雅記 御簾納
千春 中澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2017179496A1 publication Critical patent/WO2017179496A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a plunger pump.
  • a plunger pump includes a seal member that separates the inside of a cylinder in the direction of a moving axis of a piston (for example, Patent Document 1).
  • the seal member partially contacts the surface of the member on which the seal member is mounted.
  • FIG. 1 shows a schematic configuration of a brake system 1 of an embodiment. It is a perspective view of the housing 6 of the embodiment.
  • FIG. 3 is a cross-sectional view of a second unit 1B of the embodiment.
  • FIG. 4 is an enlarged view of a cross section of a pump section 7A in FIG.
  • FIG. 4 is a perspective view of a cross section of a pump section 7A in FIG.
  • FIG. 5 is an exploded perspective view of some components in the pump unit 7A of the first embodiment.
  • FIG. 5 is an exploded perspective view of some components in the pump unit 7A of the first embodiment.
  • FIG. 4 shows the cylinder 71, the piston 75, and the third seal member 793 of the first embodiment in the cross-sectional view taken along the line VIII-VIII of FIG.
  • FIG. 6 is an exploded perspective view of some components in a pump unit 7A of a second embodiment.
  • FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the second embodiment in the cross-sectional view taken along the line VIII-VIII of FIG.
  • FIG. 9 is an exploded perspective view of some components in a pump unit 7A of a third embodiment.
  • FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the third embodiment in the cross-sectional view taken along the line VIII-VIII of FIG.
  • FIG. 10 is an exploded perspective view of some components in a pump unit 7A of a fourth embodiment.
  • FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the fourth embodiment in the cross-sectional view taken along the line VIII-VIII of FIG.
  • FIG. 10 is an exploded perspective view of some components in a pump unit 7A of a fifth embodiment.
  • FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the fifth embodiment in the VIII-VIII sectional view of FIG.
  • FIG. 10 is an exploded perspective view of some components in a pump unit 7A of a sixth embodiment.
  • FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the fourth embodiment in the cross-sectional view taken along the line VIII-VIII of FIG.
  • FIG. 10 is an exploded perspective view of some components in a pump unit 7A of a fifth embodiment.
  • FIG. 4 shows a cylinder
  • FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the sixth embodiment in the XIX-IXXIX sectional view of FIG.
  • FIG. 4 shows a piston 75 and a third seal member 793 of the sixth embodiment in the cross-sectional view taken along the line VIII-VIII of FIG.
  • FIG. 10 is an exploded perspective view of some components in a pump unit 7A of a seventh embodiment.
  • FIG. 8 is an enlarged view of an end portion of a piston 75, a valve case 76, a first ball 771, a first spring 781, and a third seal member 793 in the cross section of the pump portion 7A in FIG. Part XXIII in FIG. 22 is shown enlarged.
  • FIG. 8 is an enlarged view of an end portion of a piston 75, a valve case 76, a first ball 771, a first spring 781, and a third seal member 793 in the cross section of the pump portion 7A in FIG. Part X
  • FIG. 20 is an exploded perspective view of some components in a pump unit 7A of an eighth embodiment.
  • FIG. 25 is an enlarged perspective view showing a part 794 (third seal member 793 and valve case 76) of FIG.
  • FIG. 25 is a perspective view of the component 794 in FIG. 24 as viewed from the Z axis positive direction side.
  • the brake system 1 shown in FIG. 1 is a vehicle equipped with only an internal combustion engine (engine) as a prime mover for driving wheels, a hybrid vehicle equipped with an electric motor (generator) in addition to the internal combustion engine,
  • This is a hydraulic brake system that can be mounted on an electric vehicle equipped with only a motor.
  • the system 1 includes a first unit 1A and a second unit 1B.
  • FIG. 1 shows a hydraulic circuit of the second unit 1B together with a cross section of the first unit 1A.
  • the x axis is provided in the moving axis direction of the piston 41 of the master cylinder 4, and the side on which the piston 41 moves in response to the depression operation of the brake pedal 100 is positive.
  • the first unit 1A is connected to the brake pedal 100 via a push rod 100a.
  • the first unit 1A and the second unit 1B are installed in the engine compartment of the vehicle and are connected to each other by a plurality of pipes 10.
  • the plurality of pipes 10 include a master cylinder pipe 10M (primary pipe 10MP, secondary pipe 10MS), a suction pipe 10R, and a back pressure pipe 10X.
  • the wheel cylinder 101 and the second unit 1B of the left front wheel FL, the right front wheel FR, the left rear wheel RL, and the right rear wheel RR of the vehicle are connected to each other by a wheel cylinder pipe 10W.
  • the pipes 10M, 10W, and 10X are metal brake pipes, and the pipe 10R is a rubber hose.
  • the system 1 supplies the brake fluid as hydraulic fluid to the wheel cylinder 101 and generates the wheel cylinder hydraulic pressure (brake hydraulic pressure), thereby applying the friction braking force (hydraulic braking force) to each wheel FL to RR. .
  • System 1 has two brake pipes (primary P system and secondary S system).
  • the piping type is X piping, but front and rear piping may be adopted. In order to distinguish a member corresponding to the P system and a member corresponding to the S system, the suffixes P and S are added to the end of each symbol.
  • the first unit 1A has a reservoir tank 2, a housing 3, a master cylinder 4, a stroke simulator 5, and a stroke sensor 91.
  • the reservoir tank 2 is a brake fluid source that stores brake fluid, and is opened to atmospheric pressure.
  • the reservoir tank 2 is installed in the housing 3.
  • the reservoir tank 2 has a first partition wall 21 and a second partition wall 22.
  • the partition walls 21 and 22 extend from the bottom of the reservoir tank 2 to a predetermined height, and divide the bottom of the reservoir tank 2 into three chambers. These three chambers have first chambers 23P and 23S and a second chamber 23R.
  • the second chamber 23R includes a liquid level sensor 24.
  • the housing 3 accommodates (internally) the master cylinder 4 and the stroke simulator 5 therein.
  • the x-axis negative direction side of the housing 3 is fixed to the dash panel on the vehicle body side with bolts or the like.
  • the housing 3 includes a first cylinder 30, a second cylinder 31, a replenishment liquid path 32, a supply liquid path 33, a positive pressure liquid path 34, a back pressure liquid path 35, a supply port 36, and a back pressure port. 37.
  • the ports 36 and 37 open on the outer surface of the housing 3.
  • the first cylinder 30 extends in the x-axis direction.
  • the cylinder 30 has two seal grooves 301 and 302 and one supply port 303 on both sides in the x-axis direction (for each of the P and S systems).
  • the grooves 301 and 302 and the port 303 have an annular shape extending in the direction around the axis of the cylinder 30.
  • the port 303 is between the grooves 301 and 302.
  • the second cylinder 31 extends in the x-axis direction, and is arranged coaxially with the first cylinder 30 on the x-axis positive direction side of the cylinder 30.
  • the cylinder 31 has a small diameter portion 311 on the x axis negative direction side and a large diameter portion 312 on the x axis positive direction side.
  • the small diameter portion 311 has two seal grooves 313 and 314.
  • the grooves 313 and 314 are annular extending in the direction around the axis of the cylinder 31.
  • the replenishment liquid path 32 connects the replenishment port 303 and the first chambers 23P and 23S.
  • the supply liquid path 33 connects the first cylinder 30 and the supply port 36.
  • the positive pressure liquid passage 34 connects the first cylinder 30 and the small diameter portion 311.
  • the back pressure liquid path 35 connects the large diameter portion 312 and the back pressure port 37.
  • One end of the master cylinder pipe 10M is connected to the supply port 36.
  • One end of a back pressure pipe 10X is connected to the back pressure port 37.
  • the master cylinder 4 is a first hydraulic pressure source that operates according to the operation of the brake pedal 100 by the driver and can supply hydraulic fluid pressure to the wheel cylinder 101.
  • the master cylinder 4 has a piston 41 and a spring unit 42 for each of the P and S systems.
  • the master cylinder 4 is a tandem type, and has, as a piston 41, a primary piston 41P connected to the push rod 100a and a free piston type secondary piston 41S in series.
  • the piston 41 has a bottomed cylindrical shape, and a supply hole 410 passes through the peripheral wall of the piston 41.
  • the piston 41 is accommodated in the cylinder 30 and can move in the x-axis direction along the inner peripheral surface of the cylinder 30.
  • the stroke sensor 91 detects the movement amount (pedal stroke) of the primary piston 41P in the x-axis direction.
  • the piston 41 defines a hydraulic chamber 40.
  • a primary chamber 40P is defined between the primary piston 41P and the secondary piston 41S
  • a secondary chamber 40S is defined between the secondary piston 41S and the x-axis positive direction end of the cylinder 30.
  • a supply liquid path 33 is always open in the chamber 40.
  • a spring unit 42 is accommodated in the hydraulic chamber 40.
  • the spring unit 42 includes a spring 420, a first retainer 421, a second retainer 422, and a stopper 423.
  • the spring 420 is a compression coil spring, and both ends thereof are held by the retainers 421 and 422, respectively.
  • the spring 420 has a maximum axial length limited by the stopper 423, is in a state of being constantly compressed, and can be compressed and elastically deformed within a predetermined amount in the axial direction.
  • the spring 420 functions as a return spring that constantly biases the piston 41 in the negative x-axis direction.
  • Seal members 431 and 432 as rod seals are fitted in the seal grooves 301 and 302, respectively.
  • the seal members 431 and 432 are annular and have a U-shaped cross section.
  • the seal member 432 on the x axis positive direction side suppresses the flow of brake fluid from the hydraulic pressure chamber 40 side to the replenishment port 303 side on the outer peripheral side of the piston 41, and allows the flow of brake fluid in the reverse direction. .
  • the supply hole 410 is located between the inner peripheral lips of the seal members 431 and 432 and communicates with the supply port 303.
  • the stroke simulator 5 operates in accordance with the driver's braking operation, and applies a reaction force and a stroke to the brake pedal 100.
  • the stroke simulator 5 includes a piston 51, a first spring unit 52, and a second spring unit 53.
  • the piston 51 has a bottomed cylindrical shape and is accommodated in the second cylinder 31.
  • the piston 51 is movable in the x-axis direction along the inner peripheral surface of the small diameter portion 311.
  • the second cylinder 31 has a positive pressure chamber 501 (main chamber) defined between the piston 51 and the x axis negative direction end of the small diameter portion 311, and the piston 51 and the x axis positive direction end of the large diameter portion 312 In the meantime, a back pressure chamber 502 (sub chamber) is defined.
  • a back pressure liquid path 35 is always open in the back pressure chamber 502.
  • Seal members 541 and 542 as rod seals are fitted in the seal grooves 313 and 314, respectively.
  • the seal members 541 and 542 are ring-shaped packings having a U-shaped cross section.
  • the seal member 542 on the x-axis positive direction side suppresses the flow of brake fluid from the back pressure chamber 502 side to the positive pressure chamber 501 side, and the seal member 541 on the x-axis negative direction side. Suppresses the flow of brake fluid from the positive pressure chamber 501 side toward the back pressure chamber 502 side.
  • Both chambers 501 and 502 are liquid-tightly separated by seal members 541 and 542.
  • the first spring unit 52 includes a first spring 520, a first retainer 521, a second retainer 522, a stopper 523, and a first damper 524.
  • the first spring 520 is a compression coil spring, and both ends thereof are held by the first and second retainers 521 and 522, respectively.
  • the first spring 520 has a maximum axial length limited by a stopper 523, is in a state of being constantly compressed, and can be compressed and elastically deformed within a predetermined amount in the axial direction.
  • the first damper 524 is an elastic member such as rubber, and is between the stopper 523 and the piston 51 inside the first retainer 521.
  • the second spring unit 53 includes a second spring 530, a third retainer 531, a plug member 532, and a second damper 533.
  • the plug member 532 closes the opening of the second cylinder 31 on the x axis positive direction side.
  • the second spring 530 is a large-diameter compression coil spring having a spring coefficient larger than that of the first spring 520, and both ends are held by the third retainer 531 and the plug member 532.
  • the third retainer 531 holds the second retainer 522.
  • the second spring 530 is in a state where it is always compressed and can be compressed and elastically deformed within a predetermined amount in the axial direction.
  • the second damper 533 is an elastic member such as rubber and is installed on the plug member 532.
  • the first spring unit 52 is located between the second spring unit 53 and the piston 51.
  • the first and second springs 520 and 530 function as return springs that constantly urge the piston 51 toward the negative x-axis direction.
  • the first damper 524 starts compressive elastic deformation when the first spring 520 is compressed by a predetermined amount or more in the axial direction, and alleviates the impact.
  • the second damper 533 starts compressive elastic deformation and alleviates the impact.
  • the second unit 1B is a hydraulic pressure control device as a brake device.
  • the second unit 1B includes a housing 6, a motor 7a, a pump 7, a plurality of electromagnetic valves 81 and the like, a plurality of hydraulic pressure sensors 92 and the like, and an electronic control unit (control unit; hereinafter referred to as ECU) 90.
  • ECU electronice control unit
  • the housing 6 accommodates valve bodies such as the pump 7 and the electromagnetic valve 81 therein.
  • the above-mentioned two systems (P system and S system) in which the brake fluid flows (brake fluid pressure circuit) are formed by a plurality of fluid paths.
  • the plurality of liquid paths are the supply liquid path 11, the suction liquid path 12, the discharge liquid path 13, the pressure regulation liquid path 14, the decompression liquid path 15, the back pressure liquid path 16, and the first simulator liquid path 17. And a second simulator liquid path 18.
  • the plurality of ports 67 are continuous with the liquid path 11 and the like inside the housing 6 and connect the liquid path 11 and the like inside the housing 6 with a liquid path (pipe 10M and the like) outside the housing 6.
  • the plurality of ports 67 include a master cylinder port 671 (primary port 671P, secondary port 671S), a wheel cylinder port 672, a suction port 673, and a back pressure port 674.
  • the master cylinder port 671 connects to the supply liquid path 11 inside the housing 6 and connects the housing 6 (second unit 1B) to the master cylinder 4 (hydraulic pressure chamber 40).
  • the other end of the primary pipe 10MP is connected to the primary port 671P.
  • the other end of the secondary pipe 10MS is connected to the secondary port 671S.
  • the suction port 673 connects to the first liquid reservoir chamber 63 inside the housing 6 and connects the housing 6 to the reservoir tank 2 (second chamber 23R).
  • the other end of the suction pipe 10R is connected to the suction port 673.
  • the back pressure port 674 connects to the back pressure liquid path 16 inside the housing 6 and connects the housing 6 to the stroke simulator 5 (back pressure chamber 502).
  • the other end of the back pressure pipe 10X is connected to the back pressure port 674.
  • the wheel cylinder port 672 connects to the supply liquid path 11 inside the housing 6 and connects the housing 6 (second unit 1B) to the wheel cylinder 101.
  • One end of a wheel cylinder pipe 10W is connected to the wheel cylinder port 672.
  • the motor 7a is a rotary electric motor and includes a rotating shaft for driving the pump 7.
  • the motor 7a may be a motor with a brush, or may be a brushless motor provided with a resolver that detects the rotation angle or the rotation speed of the rotating shaft.
  • the pump 7 is a second hydraulic pressure source that is driven by a motor 7a and can supply hydraulic fluid pressure to the wheel cylinder 101, and is commonly used in the S system and the P system.
  • the electromagnetic valve 81 or the like is an actuator that operates in response to a control signal, and includes a solenoid and a valve body. The valve body strokes in response to energization of the solenoid, and switches between opening and closing the liquid path (connecting and disconnecting the liquid path).
  • the electromagnetic valve 81 or the like generates a control hydraulic pressure by controlling the communication state of the circuit and adjusting the flow state of the brake fluid.
  • the plurality of solenoid valves 81 and the like include a shut-off valve 81, a pressure increasing valve (hereinafter referred to as SOL / V IN) 82, a communication valve 83, a pressure regulating valve 84, and a pressure reducing valve (hereinafter referred to as SOL / V OUT).
  • SOL / V IN pressure increasing valve
  • SS / V IN pressure increasing valve
  • SS / V IN a stroke simulator in valve
  • SS / V OUT stroke simulator out valve
  • the shut-off valve 81, the SOL / V IN 82, and the pressure regulating valve 84 are normally open valves that open in a non-energized state.
  • the communication valve 83, the pressure reducing valve 25, SS / V IN87, and SS / V OUT88 are normally closed valves that close in a non-energized state.
  • the shut-off valve 81, the SOL / V IN 82, and the pressure regulating valve 84 are proportional control valves in which the opening degrees of the valves are adjusted according to the current supplied to the solenoid.
  • the communication valve 83, the pressure reducing valve 25, SS / V IN87, and SS / V OUT88 are on / off valves that are controlled to be switched in a binary manner.
  • the hydraulic pressure sensor 92 and the like detect the discharge pressure of the pump 7 and the master cylinder pressure.
  • the plurality of hydraulic pressure sensors 92 and the like include a master cylinder pressure sensor 92, a wheel cylinder pressure sensor 93 (a primary pressure sensor 93P and a secondary pressure sensor 93S), and a discharge pressure sensor 94.
  • the ECU 90 receives detection values of the stroke sensor 91 and the hydraulic pressure sensor 92 and information on the running state from the vehicle side, and based on a built-in program, opens and closes the electromagnetic valve 81 and the rotational speed of the motor 7a (that is, By controlling the discharge amount of the pump 7, the wheel cylinder hydraulic pressure (hydraulic braking force) of each wheel FL to RR is controlled.
  • the ECU 90 can be used for various brake controls (anti-lock brake control to suppress wheel slip due to braking, boost control to reduce the driver's brake operation force, and vehicle motion control.
  • Vehicle motion control includes vehicle behavior stabilization control such as skidding prevention.
  • regenerative cooperative brake control the wheel cylinder hydraulic pressure is controlled so as to achieve the target deceleration (target braking force) in cooperation with the regenerative brake.
  • the members corresponding to the wheels FL to RR are appropriately distinguished by adding suffixes a to d at the end of the reference numerals.
  • One end side of the supply liquid path 11P is connected to the primary port 671P.
  • the other end of the liquid path 11P branches into a liquid path 11a for the front left wheel and a liquid path 11d for the rear right wheel.
  • Each fluid passage 11a, 11d is connected to a corresponding wheel cylinder port 672.
  • One end side of the supply liquid path 11S is connected to the secondary port 671S.
  • the other end of the liquid path 11S branches into a liquid path 11b for the front right wheel and a liquid path 11c for the rear left wheel.
  • Each fluid passage 11b, 11c is connected to a corresponding wheel cylinder port 672.
  • a shut-off valve 81 is provided on the one end side of the liquid path 11.
  • the liquid paths 11a to 11d on the other end side have SOL / VSOLIN82.
  • the valve 820 allows only the flow of brake fluid from the wheel cylinder port 672 side to the master cylinder port 671 side.
  • the suction liquid path 12 connects the first liquid reservoir chamber 63 and the suction port 623a of the pump 7.
  • the first liquid reservoir chamber 63 is a volume chamber on the suction liquid passage 12, and functions as a reservoir (internal reservoir).
  • One end side of the discharge liquid passage 13 is connected to the discharge port 624a of the pump 7.
  • the other end side of the discharge liquid path 13 branches into a liquid path 13P for the P system and a liquid path 13S for the S system.
  • Each liquid path 13P, 13S is connected between the shutoff valve 81 and the SOL / V IN 82 in the supply liquid path 11.
  • Each fluid passage 13P, 13S has a communication valve 83.
  • Each of the liquid paths 13P and 13S functions as a communication path that connects the supply liquid path 11P of the P system and the supply liquid path 11S of the S system.
  • the pump 7 is connected to each wheel cylinder port 672 via the communication path (discharge liquid paths 13P, 13S) and the supply liquid paths 11P, 11S.
  • the pressure adjusting liquid path 14 connects the pump 7 and the communication valve 83 in the discharge liquid path 13 to the first liquid reservoir chamber 63.
  • the liquid passage 14 has a pressure regulating valve 84 as a first pressure reducing valve.
  • the depressurizing liquid path 15 connects the first liquid reservoir chamber 63 between the SOL / V IN 82 and the wheel cylinder port 672 in each of the liquid paths 11a to 11d of the supply liquid path 11.
  • the liquid path 15 has SOL / V OUT85 as a second pressure reducing valve.
  • the back pressure fluid passage 16 is connected to the back pressure port 674.
  • the other end side of the liquid path 16 branches into a first simulator liquid path 17 and a second simulator liquid path 18.
  • the first simulator liquid path 17 is connected between the shutoff valve 81S and the SOL / V IN 82b, 22c in the supply liquid path 11S.
  • the valve 870 allows only the flow of brake fluid from the back pressure fluid passage 16 side to the supply fluid passage 11S side.
  • the second simulator liquid path 18 is connected to the first liquid reservoir chamber 63.
  • SS / V OUT88 there is SS / V180OUT88 in the liquid channel 18. Bypassing SS / V180OUT88, there is a bypass liquid path 180 in parallel with the liquid path 18, and the liquid path 180 has a check valve 880.
  • the valve 880 allows only the flow of the brake fluid from the first liquid reservoir chamber 63 side toward the back pressure fluid path 16 side.
  • a fluid pressure sensor 92 that detects the fluid pressure at this location (the fluid pressure in the positive pressure chamber 501 of the stroke simulator 5 and the master cylinder pressure) is provided. is there.
  • the brake chambers 40P and 40S of the master cylinder 4 are supplied with brake fluid from the reservoir tank 2, and generate hydraulic pressure (master cylinder pressure) by the movement of the piston 41.
  • the second unit 1B can supply a master cylinder pressure to each wheel cylinder 101.
  • the master cylinder 4 is connected to the wheel cylinder 101 via the master cylinder pipe 10M, the supply liquid path 11 (of the second unit 1B), and the wheel cylinder pipe 10W, and the wheel cylinder hydraulic pressure can be increased.
  • the brake fluid that has flowed out of the master cylinder 4 due to the driver's braking operation flows into the master cylinder piping 10M and is taken into the supply liquid passage 11 through the master cylinder port 671.
  • the master cylinder 4 can pressurize the wheel cylinders 101 (FL) and 101 (RR) through the P system liquid passage (supply liquid passage 11P) by the master cylinder pressure generated in the primary chamber 40P. At the same time, the master cylinder 4 can pressurize the wheel cylinders 101 (FR) and 101 (RL) via the S system liquid path (supply liquid path 11S) by the master cylinder pressure generated in the secondary chamber 40S.
  • the first unit 1A does not include a negative pressure booster that boosts the driver's brake operation force by using negative pressure generated by a vehicle engine or a negative pressure pump provided separately.
  • the ECU 90 deactivates the pump 7, and controls the shut-off valve 81 in the opening direction, SS / V IN87 in the closing direction, and SS / V OUT88 in the closing direction.
  • a fluid passage system supply fluid passage 11 or the like
  • a pedal force brake non-boosting control
  • the ECU 90 controls the SS / V OUT 88 in the closing direction. As a result, the stroke simulator 5 does not function.
  • the second unit 1B uses the hydraulic pressure generated by the pump 7 to control the hydraulic pressure of each wheel cylinder 101 independently of the brake operation by the driver. It can be controlled individually.
  • the ECU 90 controls the shut-off valve 81 in the closing direction.
  • the brake system (the suction fluid passage 12, the discharge fluid passage 13, etc.) connecting the first fluid reservoir 63 and the wheel cylinder 101 creates the wheel cylinder fluid pressure by the fluid pressure generated using the pump 7. It functions as a so-called brake-by-wire system.
  • the pump 7 sucks and discharges the brake fluid in the first liquid reservoir chamber 63.
  • the first fluid reservoir chamber 63 is supplied with brake fluid from the reservoir tank 2 via the pipe 10R.
  • the second unit 1B supplies the brake fluid boosted by the pump 7 to the wheel cylinder 101 via the wheel cylinder pipe 10W.
  • a brake fluid pressure wheel cylinder fluid pressure
  • the ECU 90 controls SS / V IN87 in the closing direction and SS / V OUT88 in the opening direction.
  • the stroke simulator 5 functions.
  • the brake fluid flows from the master cylinder 4 into the positive pressure chamber 501 of the stroke simulator 5 according to the driver's brake operation, a pedal stroke occurs and the urging force of the first and second springs 520 and 530 causes the driver to A brake operation reaction force (pedal reaction force) is generated.
  • the ECU 90 creates a wheel cylinder hydraulic pressure higher than the master cylinder pressure using the discharge pressure of the pump 7 as a hydraulic pressure source when the driver operates the brake, and generates a hydraulic braking force that is insufficient for the driver's brake operating force.
  • the generated boost control is executed. Specifically, based on the detected pedal stroke, a desired boost ratio, that is, the ideal relationship between the pedal stroke and the driver's required brake fluid pressure (vehicle deceleration requested by the driver) is achieved.
  • the target wheel cylinder hydraulic pressure is calculated.
  • the pump 7 is operated to control the shut-off valve 81 in the closing direction and the communication valve 83 in the opening direction.
  • the target wheel cylinder hydraulic pressure is realized by adjusting the amount of brake fluid supplied from the pump 7 to the wheel cylinder 101 by controlling the pressure regulating valve 84 while operating the pump 7 at a predetermined rotational speed. That is, the brake system 1 exhibits a boost function that assists the brake operation force by operating the pump 7 of the second unit 1B instead of the engine negative pressure booster. Further, the ECU 90 calculates the target wheel cylinder hydraulic pressure in relation to the regenerative braking force during regenerative cooperative brake control. For example, the target wheel cylinder in which the sum of the regenerative braking force input from the control unit of the regenerative braking device of the vehicle and the hydraulic braking force corresponding to the target wheel cylinder hydraulic pressure satisfies the vehicle deceleration required by the driver. Calculate fluid pressure. At the time of motion control, for example, the target wheel cylinder hydraulic pressure of each wheel FL to RR is calculated so as to realize a desired vehicle motion state based on the detected vehicle motion state amount (lateral acceleration or the like).
  • ⁇ SS / V OUT88, SS / VIN87 and check valve 870 adjust the flow of brake fluid flowing from the back pressure port 674 into the housing 6 through the back pressure pipe 10X.
  • These valves 88 and the like allow or prohibit the brake fluid flowing into the housing 6 from the back pressure port 674 from flowing toward any low pressure part (the first liquid reservoir chamber 63 or the wheel cylinder 101), Allow or prohibit the flow of brake fluid from the master cylinder 4 into the stroke simulator 5 (positive pressure chamber 501). Thereby, the operation of the stroke simulator 5 is adjusted. Further, these valves 88 and the like provide a supply destination (outflow destination) of the brake fluid flowing into the housing 6 (back pressure fluid passage 16) from the back pressure port 674 between the first fluid reservoir chamber 63 and the wheel cylinder 101.
  • the ECU 90 functions as a switching unit that switches at. For example, when the ECU 90 determines that the brake operation state is a predetermined sudden brake operation state, the ECU 90 operates the pump 7, controls the shut-off valve 81 in the closing direction, and sets SS / V IN87 in the opening direction, and the SS / V Controls OUT88 in the closing direction.
  • the second pedal force brake that creates the wheel cylinder hydraulic pressure using the brake fluid flowing out from the back pressure chamber 502 of the stroke simulator 5 until the pump 7 can generate a sufficiently high wheel cylinder pressure. Is realized. Thereby, the pressurization responsiveness of wheel cylinder hydraulic pressure is securable.
  • the pump 7 can generate a sufficiently high wheel cylinder pressure, it switches to boost control or the like.
  • FIG. 2 a three-dimensional orthogonal coordinate system having an X axis, a Y axis, and a Z axis is provided for convenience of explanation.
  • the Z-axis direction is the vertical direction
  • the Z-axis positive direction side is the vertical direction upper side
  • the X-axis direction is the vehicle front-rear direction
  • the X-axis positive direction side is the vehicle front side
  • the Y-axis direction is the lateral direction of the vehicle.
  • the arrangement of the housing 6 is not restricted at all, and the housing 6 can be arranged at an arbitrary position and orientation in accordance with the vehicle layout and the like.
  • the housing 6 is viewed from the X axis positive direction side, the Y axis negative direction side, and the Z axis positive direction side.
  • the housing 6 is a substantially rectangular parallelepiped block formed of an aluminum alloy.
  • the outer surface of the housing 6 has a front surface 601, a back surface, a lower surface 603, an upper surface 604, a left side surface 605, and a right side surface 606.
  • the front surface 601 and the back surface are planes having a relatively large area and are orthogonal to the Y axis.
  • the lower surface 603 and the upper surface 604 are planes connected to the front surface 601 and the back surface, and are orthogonal to the Z axis.
  • the left side surface 605 and the right side surface 606 are planes connected to the front surface 601, the back surface, the lower surface 603, and the upper surface 604, and are orthogonal to the X axis.
  • the first recess 60a is opened (opened) to the front surface 601, the upper surface 604, and the left side surface 605.
  • the second recess 60b is opened to the front surface 601, the upper surface 604, and the right side surface 606.
  • the housing 6 includes a cam accommodating hole 61, a plurality (five) of cylinder accommodating holes 62A to 62E, a first liquid reservoir chamber 63, a second liquid reservoir chamber 64, a plurality of fixing holes 65, and a plurality of valves. It has an accommodation hole, a plurality of sensor accommodation holes, a power supply hole 66, a plurality of ports 67, a plurality of liquid passages 11 and the like. These holes and ports are formed by a drill or the like.
  • the cam accommodation hole 61 has a bottomed cylindrical shape having an axis O extending in the Y-axis direction, and opens in the approximate center of the front surface 601.
  • the cylinder accommodation hole 62 has a stepped cylindrical shape having an axis Q extending in the radial direction of the cam accommodation hole 61 (radial direction centered on the axis O).
  • the plurality of holes 62 are provided radially about the axis O.
  • the holes 62A to 62E are evenly (equally spaced) in the direction around the axis O.
  • the angle formed by the axis Q of the holes 62 adjacent in the direction around the axis O is 72 °.
  • the holes 62A to 62E are in a single row along the Y-axis direction and are arranged on the Y-axis negative direction side of the housing 6.
  • FIG. 3 shows a cross section of the second unit 1B cut along this plane.
  • the hole 62 has a minimum diameter portion 621, a small diameter portion 622, a medium diameter portion 623, a large diameter portion 624, and a maximum diameter portion 625 in order from the side closer to the cam housing hole 61 to the side farther from the cam accommodation hole 61.
  • Each of these parts is cylindrical and has the same axis Q.
  • a portion 623a closer to the small diameter portion 622 has a slightly larger diameter than the other portions.
  • the portions 623a of the holes 62A to 62E are connected to each other by the suction liquid passage 12 and to the first liquid reservoir chamber 63, and function as suction ports for the pump portions 7A to 7E.
  • the portion 624a on the side close to the medium diameter portion 623 is connected to each other by the discharge liquid passage 13, and functions as a discharge port of the pump portions 7A to 7E.
  • the holes 62A to 62E are arranged inside the housing 6 as follows.
  • the hole 62A extends from the lower surface 603 to the Z axis positive direction side.
  • the hole 62B extends from the portion of the left side surface 605 located on the lower side in the Z-axis negative direction with respect to the axis O to the X-axis positive direction side and the Z-axis positive direction side.
  • the hole 62C extends from the first recess 60a to the X axis positive direction side and the Z axis negative direction side.
  • the hole 62D extends from the second recess 60b to the X-axis negative direction side and the Z-axis negative direction side.
  • the hole 62E extends from the portion of the right side surface 606 located on the lower side in the Z-axis negative direction with respect to the axis O to the X-axis negative direction side and the Z-axis positive direction side.
  • the hole 62A is at the same X-axis position as the axis O on the Z-axis negative direction side with respect to the axis O, and the holes 62B and 62E are arranged on both sides in the X-axis direction with the axis O (hole 62A) in between.
  • the holes 62C and 62D are arranged on both sides in the X-axis direction with the axis O in between on the Z-axis positive direction side with respect to the axis O.
  • the minimum diameter portion 621 of each of the holes 62A to 62E opens on the inner peripheral surface of the cam accommodating hole 61.
  • the maximum diameter portion 625 of the hole 62A opens to the approximate center of the lower surface 603 in the X-axis direction and the negative Y-axis side.
  • the maximum diameter portion 625 of the hole 62B opens on the Y axis negative direction side and the Z axis negative direction side of the left side surface 605.
  • the maximum diameter portion 625 of the hole 62E opens on the Y axis negative direction side and the Z axis negative direction side of the right side surface 606.
  • the maximum diameter portions 625 of the holes 62C and 62D open to the first and second recesses 60a and 60b, respectively.
  • the first liquid reservoir chamber 63 has a bottomed cylindrical shape whose axial center extends in the Z-axis direction, and opens toward the approximate center in the X-axis direction on the upper surface 604 and closer to the negative Y-axis direction.
  • the second liquid reservoir chamber 64 has a bottomed cylindrical shape whose axis extends in the Z-axis direction, and opens toward the X-axis negative direction side and the Y-axis negative direction side of the lower surface 603.
  • the cam housing hole 61 and the second liquid reservoir chamber 64 are connected by a drain liquid passage 19.
  • the plurality of valve accommodation holes and sensor accommodation holes extend in the Y-axis direction and open on the back surface.
  • These holes are in a single row along the Y-axis direction, and are disposed on the Y-axis positive direction side of the housing 6.
  • the cylinder accommodation hole 62 and the valve accommodation hole and the like overlap at least partially.
  • the valve portion of the electromagnetic valve is fitted in each valve accommodation hole, and the valve body is accommodated.
  • Each sensor accommodation hole accommodates a pressure sensitive part such as the hydraulic pressure sensor 92.
  • the power supply hole 66 is disposed in a region between adjacent cylinder accommodation holes 62C and 62D, and penetrates the housing 6 (between the front surface 601 and the back surface) in the Y-axis direction.
  • the suction port 673 is an opening of the first liquid reservoir chamber 63 on the upper surface 604.
  • the master cylinder port 671 has a bottomed cylindrical shape whose axial center extends in the Y-axis direction, and opens at a portion of the front 601 on the Z-axis positive direction side and sandwiched between the recesses 60a and 60b.
  • the wheel cylinder port 672 has a bottomed cylindrical shape whose axis extends in the Z-axis direction, and opens on the Y axis positive direction side of the upper surface 604. Ports 672a to 872d are arranged in a line in the X-axis direction.
  • the back pressure port 674 has a bottomed cylindrical shape whose axial center extends in the X-axis direction, and opens to the Z-axis negative direction side of the right side surface 606.
  • the plurality of liquid passages 11 and the like connect the port 67, the liquid reservoir chambers 63 and 64, the cylinder accommodation hole 62, the valve accommodation hole, and the hydraulic pressure sensor accommodation hole.
  • the plurality of fixing holes 65 include a bolt hole 651 for fixing the motor, a bolt hole for fixing the ECU, a bolt hole 652 for fixing the housing, and a pin hole.
  • a motor 7a is disposed on the front surface 601 of the housing 6, and the motor housing is attached to the hole 651 with a bolt.
  • the housing 6 (accommodating the pump 7) and the motor 7a are integrated as a second unit 1B, and the second unit 1B functions as a pump device.
  • a conductive member (power connector) is connected to the rotor of the motor 7a via a brush. The conductive member is accommodated in the power supply hole 66.
  • An ECU 90 is disposed on the back surface of the housing 6.
  • the ECU 90 is provided integrally with the housing 6, and the ECU 90 and the housing 6 are integrated as the second unit 1B.
  • the housing 6 is sandwiched between the motor 7a and the ECU 90. That is, the motor 7a, the housing 6, and the ECU 90 are arranged in this order along the axial direction of the motor 7a.
  • the ECU 90 has a control board and a housing (case). The control board is accommodated in the case and arranged in parallel with the back surface. The case is attached to the back surface of the housing 6. From the back, a solenoid terminal such as the electromagnetic valve 81, a terminal such as the hydraulic pressure sensor 92, and a conductive member from the motor 7a protrude.
  • the terminals and conductive members extend to the Y axis positive direction side and are directly connected to the control board. Power is supplied to the control board from an external power source (battery).
  • the conductive member functions as a connecting portion that electrically connects the control board and the motor 7a (rotor), and power is supplied from the control board to the motor 7a (rotor) via the conductive member.
  • Various sensors for detecting the motion state of the vehicle for example, an acceleration sensor for detecting the acceleration of the vehicle and an angular velocity sensor for detecting the angular velocity (yaw rate) of the vehicle may be mounted on the control board.
  • a pedestal mounting member
  • Bolts and pins are fixed in the holes 652 of the housing 6. The bolts and the like fix the housing 6 to the base via an insulator (an elastic member for suppressing vibration).
  • FIG. 5 the cross section of the pump portion 7A is viewed from the X-axis negative direction side, the Y-axis negative direction side, and the Z-axis negative direction side.
  • FIG. 6 the cylinder 71, the piston 75, the valve case 76, the first ball 771, the third spring 783, and the third seal member 793 that are disassembled and arranged coaxially are viewed obliquely.
  • FIG. 7 the piston 75, the valve case 76, the first ball 771, the first spring 781, and the third seal member 793 disassembled and arranged coaxially are viewed obliquely. As shown in FIG.
  • the cam housing hole 61 (inside the housing 6) accommodates a rotation drive shaft 700 that is a rotation shaft and a drive shaft of the pump 7, and a cam mechanism 70.
  • the rotational drive shaft 700 is a drive shaft of the pump 7.
  • the rotational drive shaft 700 is connected and fixed to the rotational shaft of the motor 7a, and is rotationally driven by the motor 7a.
  • the axis (axis) of the rotation drive shaft 700 (the rotation axis of the motor 7a) substantially coincides with the axis O of the cam accommodation hole 61 (within the tolerance of each member, the same applies hereinafter).
  • the rotation drive shaft 700 rotates around the axis O together with the rotation shaft of the motor 7a.
  • the cam mechanism 70 is provided on the outer periphery of the rotary drive shaft 700, and includes a cam (eccentric part) 70a and a drive unit 70b.
  • the cam mechanism 70 is a mechanism for driving the piston 75 using the cam 70a.
  • the cam 70a is a cylindrical eccentric cam, and has an axis P that is eccentric with respect to the axis O of the rotary drive shaft 700.
  • the axis P extends substantially parallel to the axis O.
  • the cam 70a oscillates (the shaft center P rotates relative to the shaft center O) while rotating around the shaft center O integrally with the rotation drive shaft 700.
  • the drive unit 70b is cylindrical and is disposed on the outer peripheral side of the cam 70a. The axis of the drive unit 70b coincides with the axis P.
  • the drive unit 70b includes a plurality of rolling elements 701, a holder 702, and a drive member 703 as one assembly.
  • This assembly has the same configuration as a so-called shell-shaped needle roller bearing.
  • the rolling element 701 is a needle roller and extends in the axial direction of the rotation drive shaft 700.
  • the cage 702 has a cylindrical shape, and holds the rolling elements 701 in a rotatable manner independently of each other at substantially constant intervals in the circumferential direction.
  • the drive member 703 has the same configuration as the outer ring of the rolling bearing, and is disposed on the outer peripheral side of the cage 702. The drive member 703 can rotate around the axis P with respect to the cam 70a.
  • the plurality of rolling elements 701 are disposed between the outer peripheral surface of the cam 70a and the inner peripheral surface of the drive member 703.
  • the pump 7 is a fixed cylinder type radial plunger pump, and includes a housing 6, a rotary drive shaft 700, a cam mechanism 70, and a plurality (five) of pump units 7A to 7E.
  • the pump units 7A to 7E are plunger pumps (piston pumps) as reciprocating pumps, and operate by rotation of the rotary drive shaft 700.
  • the piston (plunger) 75 reciprocates, the brake fluid is sucked and discharged as hydraulic fluid.
  • the pump portions 7A to 7E are arranged around the cam mechanism 70 and are received in the cylinder receiving holes 62, respectively.
  • the axial center of the piston 75 substantially coincides with the axial center Q of the cylinder accommodation hole 62 (within a width that allows smooth operation of the piston 75), and extends in the radial direction of the rotary drive shaft 700.
  • the pistons 75 are provided in the number corresponding to the number of the cylinder accommodation holes 62 (five), and extend in the radial direction with respect to the axis O.
  • the pistons 75A to 75E are arranged evenly (at equal intervals) in the direction around the rotational drive shaft 700 (hereinafter simply referred to as the circumferential direction), that is, in the rotational direction of the rotational drive shaft 700.
  • the axes Q of the pistons 75A to 75E are in the same plane.
  • Each pump portion 7A to 7E includes a cylinder 71, a plug member 72a, a stopper 72b, a filter member 73, a guide 74, a piston 75, a valve case 76, a first ball 771, and a second ball 772.
  • the first spring 781, the second spring 782, the third spring 783, the first seal member 791, the second seal member 792, and the third seal member 793 are provided.
  • the pump unit 7A will be described as an example with reference to FIGS.
  • the other pump units 7B to 7E have the same configuration.
  • the cylinder (cylinder sleeve) 71 has a bottomed cylindrical shape, and has a cylindrical inner periphery 717 and a bottom portion 710.
  • the bottom 710 has a first hole 711 and a second hole 712. Both holes 711 and 712 extend in the axial direction on the axial center of the cylinder 71.
  • the first hole 711 is a bottomed cylindrical recess and opens on the surface of one side of the bottom 710 in the axial direction (Z-axis positive direction side, the same applies hereinafter).
  • the second hole 712 has a smaller diameter than the first hole 711.
  • the second hole 712 passes through the bottom portion 710 and opens to the bottom surface of the first hole 711 and the other surface in the axial direction of the bottom portion 710 (the Z-axis negative direction side, the same applies hereinafter).
  • a surface 716 on the other side in the axial direction of the bottom portion 710 has a planar shape extending in a direction perpendicular to the axis of the cylinder 71.
  • the periphery of the opening of the second hole 712 in the surface 716 is a conical surface.
  • the outer peripheral side of the cylinder 71 has a main body portion 71a, a first end portion 71b, and a second end portion 71c.
  • the main body 71a has a cylindrical shape, and its diameter is substantially equal to the diameter of the middle diameter portion 623 of the cylinder accommodation hole 62.
  • the first end portion 71b has a cylindrical shape coaxial with the main body portion 71a, is on one side in the axial direction with respect to the main body portion 71a, and has a smaller diameter than the main body portion 71a. Between the main body portion 71a and the first end portion 71b, there is a tapered portion 71d whose diameter gradually decreases from the main body portion 71a side toward the first end portion 71b side.
  • the second end 71c is on the other side in the axial direction with respect to the main body 71a, has a cylindrical shape coaxial with the main body 71a, and has a larger diameter than the main body 71a.
  • the second end portion 71c has a first flange portion 71c1 and a second flange portion 71c2.
  • the first flange portion 71c1 protrudes radially outward from the end on the one axial side of the second end portion 71c.
  • a portion connected to the first flange portion 71c1 in the main body portion 71a has a groove 713 extending in the circumferential direction.
  • One axial direction side of the first flange portion 71c1 has a flat surface portion 714 that extends in the direction perpendicular to the axial direction of the cylinder 71.
  • the other axial side of the first flange portion 71c1 has a tapered portion 715 that gradually decreases in diameter toward the other axial side.
  • the diameter of the first flange portion 71c1 (plane portion 714) is larger than the diameter of the medium diameter portion 623 of the cylinder accommodation hole 62 and smaller than the diameter of the large diameter portion 624.
  • the second flange portion 71c2 protrudes radially outward from the other axial end of the second end portion 71c and has a smaller diameter than the first flange portion 71c1.
  • the cylinder 71 is accommodated in the cylinder accommodation hole 62 and is fixed to the hole 62 by, for example, press fitting.
  • the main body portion 71a is fixed to the middle diameter portion 623 of the hole 62.
  • the axis of the cylinder 71 substantially coincides with the axis Q of the cylinder accommodation hole 62.
  • the first end portion 71b is disposed in the middle diameter portion 623 (suction port 623a) of the hole 62, and the second end portion 71c (and bottom portion 710) is disposed in the large diameter portion 624 (discharge port 624a) of the hole 62.
  • the plug member 72a has a columnar main body 72a1 and a columnar projection 72a2 coaxially.
  • the diameter of the main body portion 72a1 is slightly smaller than the diameter of the large diameter portion 624 of the cylinder accommodation hole 62.
  • the outer periphery of the main body 72a1 has a groove 720 extending in the circumferential direction.
  • One side of the main body portion 72a1 in the axial direction has a first hole 721, a second hole 722, and a plurality of grooves 723. Both holes 721 and 722 extend in the axial direction on the axial center of the main body 72a1.
  • the first hole 721 is a bottomed cylindrical recess.
  • the diameter of the first hole 721 is slightly larger than the diameter of the second flange portion 71c2 of the cylinder 71.
  • the bottom surface 724 of the first hole 721 has a planar shape that extends in the direction perpendicular to the axis of the main body 72a1.
  • the second hole 722 is a bottomed cylindrical recess that opens to the bottom surface 724.
  • the diameter of the second hole 722 is smaller than the diameter of the first hole 721 and larger than the diameter of the second hole 712 of the cylinder 71.
  • the groove 723 is provided in the bottom surface 724 to a predetermined depth, extends in the radial direction from the second hole 722, and opens to the outer periphery of the main body 72a1.
  • the convex portion 72a2 protrudes from the surface on the other side in the axial direction of the main body portion 72a1.
  • the plug member 72 a is accommodated in the large diameter portion 624 of the cylinder accommodation hole 62 and closes the opening of the cylinder accommodation hole 62 on the outer peripheral surface of the housing 6.
  • the axial center of the plug member 72a substantially coincides with the axial center Q of the cylinder accommodation hole 62 and the cylinder 71.
  • One side of the plug member 72a in the axial direction is installed at the bottom 710 of the cylinder 71.
  • the second flange portion 71c2 of the cylinder 71 is accommodated in the first hole 721 of the plug member 72a, and the surface 716 of the bottom portion 710 contacts the bottom surface 724 of the first hole 721.
  • a passage is formed between the groove 723 and the surface 716.
  • the second hole 712 of the cylinder 71 is connected to the second hole 722 of the plug member 72a.
  • the stopper 72b has an annular shape.
  • the outer diameter of the stopper 72b is substantially the same as the diameter of the maximum diameter portion 625 of the cylinder accommodation hole 62.
  • One end of the stopper 72b in the axial direction has a bottomed cylindrical recess 725.
  • the bottom surface 726 of the recess 725 has a planar shape extending in the direction perpendicular to the axis of the stopper 72b.
  • the diameter of the recess 725 is slightly larger than the diameter of the main body 72a1 of the plug member 72a.
  • the stopper 72b has a first hole 727 and a second hole 728. Both holes 727 and 728 penetrate the stopper 72b in the axial direction and open on the surface 726.
  • the first hole 727 extends on the axis of the stopper 72b, and a plurality of second holes 728 are arranged in the circumferential direction so as to surround the first hole 727.
  • the diameter of the first hole 727 is slightly larger than the diameter of the convex portion 72a2 of the plug member 72a.
  • the stopper 72b is accommodated in the maximum diameter portion 625 of the cylinder accommodation hole 62.
  • the outer periphery of the stopper 72b is fixed to the maximum diameter portion 625.
  • the convex part 72a2 of the plug member 72a is accommodated in the first hole 727, and the other axial side of the main body part 72a1 of the plug member 72a is accommodated in the concave part 725.
  • the axial position of the plug member 72a with respect to the hole 62 is regulated by the bottom surface 726 of the recess 725 coming into contact with the surface on the other axial side of the main body 72a1.
  • the filter member 73 is substantially cylindrical.
  • the inner peripheral side of the filter member 73 has a large diameter portion 73a1, a small diameter portion 73a2, a first taper portion 73a3, and a second taper portion 73a4.
  • the large-diameter portion 73a1 has a bottomed cylindrical shape, and opens on the end surface on the other axial side of the filter member 73.
  • the diameter of the large diameter portion 73a1 is substantially the same as the diameter of the first end portion 71b of the cylinder 71.
  • the small diameter portion 73a2 is on one side of the filter member 73 in the axial direction.
  • the small-diameter portion 73a2 has a cylindrical shape that is coaxial with the large-diameter portion 73a1, and opens on the end surface on one axial side of the filter member 73.
  • the small diameter portion 73a2 has a smaller diameter than the large diameter portion 73a1.
  • the first taper portion 73a3 opens at the bottom of the large diameter portion 73a1, and the diameter gradually decreases from the large diameter portion 73a1 side toward the small diameter portion 73a2.
  • the second taper portion 73a4 is between the first taper portion 73a3 and the small diameter portion 73a2, and gradually (from the first taper portion 73a3 side toward the small diameter portion 73a2 side (slower than the first taper portion 73a3) The diameter becomes smaller (with a gradient).
  • the outer peripheral side of the filter member 73 has a large diameter portion 73b1 and a small diameter portion 73b2.
  • the large diameter portion 73b1 is cylindrical and is on the other side in the axial direction of the filter member 73.
  • the diameter of the large diameter portion 73b1 is smaller than the diameter of the medium diameter portion 623 of the cylinder accommodation hole 62 and larger than the diameter of the small diameter portion 622.
  • the small diameter portion 73b2 is on one side of the filter member 73 in the axial direction.
  • the small diameter portion 73b2 has a cylindrical shape coaxial with the large diameter portion 73b1, and has a smaller diameter than the large diameter portion 73b1.
  • the diameter of the small diameter portion 73b2 is slightly smaller than the diameter of the small diameter portion 622 of the cylinder accommodation hole 62.
  • a plurality of holes penetrates the filter member 73 in the radial direction. These holes open to the first tapered portion 73a3 on the inner peripheral side of the filter member 73, and open to the large diameter portion 73b1 on the outer peripheral side of the filter member 73.
  • a filter covers each hole.
  • the filter member 73 is fixed to the first end 71b of the cylinder 71.
  • the first end 71b is fitted into the large diameter portion 73a1 on the inner peripheral side of the filter member 73.
  • the axis of the filter member 73 substantially coincides with the axis of the cylinder 71.
  • the large-diameter portion 73b1 on the outer peripheral side of the filter member 73 is accommodated on one axial side of the medium-diameter portion 623 of the cylinder accommodation hole 62, and a part of the small-diameter portion 73b2 is the other axial side of the small-diameter portion 622 of the cylinder accommodation hole 62 Is housed in.
  • On the outer peripheral side of the filter member 73 there is a gap between the large diameter portion 73b1 (where the hole is opened) and the medium diameter portion 623 (suction port 623a) of the cylinder accommodation hole 62.
  • the guide 74 has an annular shape, and has a substantially rectangular cross section cut by a plane passing through its axis.
  • the outer diameter of the guide 74 is substantially equal to the diameter of the small diameter portion 622 of the cylinder accommodation hole 62.
  • the guide 74 is accommodated on one side of the small diameter portion 622 in the axial direction.
  • the outer periphery of the guide 74 is fixed to the small diameter portion 622 by press fitting or the like.
  • the axis of the guide 74 (inner and outer periphery) substantially coincides with the axis Q of the cylinder accommodation hole 62.
  • the piston 75 has a columnar shape and has a main body portion 75a, an end portion 75b, and a flange portion 75c.
  • the outer periphery of the main body 75a is cylindrical.
  • the outer diameter of the main body 75a is slightly smaller than the diameter of the small diameter portion 73a2 on the inner peripheral side of the filter member 73 and slightly smaller than the inner diameter of the guide 74.
  • An end surface (hereinafter referred to as a piston end surface) 750 in the axial direction of the main body 75a is a flat surface extending in a direction orthogonal to the axial center of the piston 75, and has a circular shape centering on this axial center.
  • the flange portion 75c protrudes radially outward from the other axial side of the main body portion 75a.
  • the outer periphery of the flange portion 75c has a cylindrical shape that is coaxial with the outer periphery of the main body portion 75a.
  • the outer diameter of the flange portion 75c is slightly smaller than the diameter (inner diameter) of the inner periphery 717 of the cylinder 71.
  • the surface 754 on the other axial side of the flange portion 75c is an annular shape centering on the axial center of the piston 75, and has a planar shape extending in the direction perpendicular to the axis.
  • the end portion 75b is at the tip of the main body portion 75a1 on the other side in the axial direction from the flange portion 75c, and the outer periphery thereof is cylindrical.
  • the outer diameter of the end portion 75b is smaller than the outer diameter of the main body portion 75a1.
  • On the outer periphery of the piston 75 there is a tapered portion 75d between the main body portion 75a1 and the end portion 75b.
  • the diameter of the tapered portion 75d gradually decreases from the main body portion 75a1 side toward the end portion 75b side.
  • the piston 75 has a first hole 751 and a second hole 752 therein.
  • the first hole 751 penetrates a portion of the main body 75a adjacent to one side in the axial direction with respect to the flange 75c in the radial direction of the piston 75.
  • the first hole 751 has a cylindrical shape, and its axis crosses the axis of the piston 75.
  • the second hole 752 has a cylindrical shape extending in the axial direction on the axial center of the piston 75, and one end of the second hole 752 is connected to the central part in the axial direction of the first hole 751.
  • the other end of the second hole 752 opens in the end surface 753 on the other axial side of the piston 75.
  • the periphery of the opening of the second hole 752 in the surface 753 is a conical surface.
  • the valve case 76 has a bottomed cylindrical shape made of a thin plate, and includes a bottom portion 76a, a side wall portion 76b, and a flange portion 76c.
  • the bottom 76a has a disk shape, and the first hole 761 passes through the center of the bottom 76a.
  • the side wall part 76b is cylindrical, has a small diameter part 76b1 on the side close to the bottom part 76a, and has a large diameter part 76b2 on the side far from the bottom part.
  • the inner diameter of the large diameter portion 76b2 is smaller than the outer diameter of the main body portion 75a of the piston 75 and slightly larger than the outer diameter of the end portion 75b of the piston 75.
  • the second hole 762 passes through the side wall portion 76b.
  • a plurality (three) of the second holes 762 are provided in the circumferential direction of the valve case 76 and extend in the axial direction of the valve case 76.
  • the circumferential dimension (width) of the second hole 762 is larger in the large diameter portion 76b2 than in the small diameter portion 76b1.
  • the flange portion 76c extends radially outward from the opening end of the side wall portion 76b (large diameter portion 76b2).
  • the flange portion 76c has a planar shape extending in the direction perpendicular to the side wall portion 76b, and has an annular shape centered on the axis of the side wall portion 76b.
  • the outer diameter of the flange portion 76c is slightly smaller than the inner diameter of the cylinder 71.
  • a third hole 763 passes through the flange portion 76c.
  • the third hole 763 is plural (three) in the circumferential direction of the valve case 76, extends in the radial direction of the valve case 76, and opens to the inner and outer circumferences of the flange portion 76c.
  • the third hole 763 is continuous with the second hole 762.
  • the valve case 76 is cut at three locations in the circumferential direction by the holes 762 and 763 and connected to one at the bottom 76a.
  • the valve case 76 is installed at the end 75b of the piston 75.
  • the outer periphery of the end portion 75b is fitted to the inner periphery on the opening side of the side wall portion 76b (large diameter portion 76b2).
  • the diameter of the first ball 771 is larger than the diameter of the second hole 752 of the piston 75 and smaller than the inner diameter of the valve case 76 (large diameter portion 76b2).
  • the first ball 771 is on the inner peripheral side of the valve case 76 and between the bottom 76a and the end 75b of the piston 75.
  • the first spring 781 is a compression coil spring, and the inner diameter thereof is smaller than the diameter of the first ball 771.
  • the first spring 781 is in the compressed state between the bottom 76a and the first ball 771 on the inner peripheral side of the valve case 76.
  • the first spring 781 is in contact with the bottom 76a (around the opening of the first hole 761), and the other end of the first spring 781 is in contact with the first ball 771 (the outer surface thereof).
  • the first ball 771 and the first spring 781 are elements constituting the suction valve 77a.
  • the first ball 771 functions as a valve body, and the first spring 781 functions as a return spring.
  • the periphery of the opening of the second hole 752 in the end surface 753 of the piston 75 functions as a valve seat. When the first ball 771 is seated on the valve seat, the second hole 752 is closed.
  • the first spring 781 always urges the first ball 771 toward the valve seat with respect to the valve case 76 (piston 75).
  • the diameter of the second ball 772 is larger than the diameter of the second hole 712 of the bottom portion 710 of the cylinder 71 and smaller than the diameter of the second hole 722 of the plug member 72a.
  • the second ball 772 is on the inner peripheral side of the second hole 722 and between the plug member 72a and the bottom portion 710.
  • the second spring 782 is a compression coil spring, and the inner diameter thereof is smaller than the diameter of the second ball 772.
  • the second spring 782 is in a state of being compressed between the bottom of the hole and the second ball 772 in the hole of the plug member 72a.
  • the second ball 772 and the second spring 782 are elements constituting the discharge valve 77b.
  • the second ball 772 functions as a valve body, and the second spring 782 functions as a return spring.
  • the periphery of the opening of the second hole 712 in the surface 716 of the cylinder 71 functions as a valve seat.
  • the second hole 712 is closed when the second ball 772 is seated on the valve seat.
  • the second spring 782 always urges the second ball 772 toward the valve seat with respect to the plug member 72a.
  • the third spring 783 is a compression coil spring, and the inner diameter thereof is slightly larger than the outer diameter of the side wall portion 76b (large diameter portion 76b2) of the valve case 76 and smaller than the outer diameter of the flange portion 76c.
  • the third spring 783 has a larger wire diameter and spring constant than the first spring 781.
  • the outer diameter of the third spring 783 is smaller than the inner diameter of the cylinder 71.
  • the third spring 783 is on the inner peripheral side of the cylinder 71 and is compressed between the bottom 710 and the piston 75.
  • One end of the third spring 783 is in contact with the bottom portion 310 (around the opening of the first hole 711), and the other end of the third spring 783 is in contact with the flange portion 76c of the valve case 76.
  • the third spring 783 always biases the valve case 76 (piston 75) toward the cam housing hole 61 with respect to the cylinder 71 (cylinder housing hole 62).
  • the first seal member 791 is a fixing (stationary) seal, for example, a rubber gasket.
  • the first seal member 791 has an annular shape, and is a D-ring having a substantially D-shaped cross section cut along a plane passing through its axis.
  • the first seal member 791 is accommodated in the groove 720 of the plug member 72a.
  • the second seal member 792 is a contact-type reciprocating seal, for example, a squeeze packing.
  • the second seal member 792 has an annular shape, and has a cross-sectional shape cut along a plane passing through the axial center of the second seal member 792 having an X shape or a rectangular shape (substantially square) with four corners bulging outward.
  • the second seal member 792 is located between the guide 74 and the filter member 73 in the cylinder accommodation hole 62 (small diameter portion 622).
  • the third seal member 793 is a contact-type reciprocating seal, and is an elastic member formed from a non-metallic material such as resin.
  • the resin is, for example, a polyamide system.
  • At least a part of the material of the third seal member 793 is, for example, polytetrafluoroethylene PTFE. Details of the third seal member 793 will be described with reference to FIGS.
  • FIG. 8 shows a cross section of the piston 75 assembled with the third seal member 793 and the cylinder 71 that accommodates the piston 75 in a plane perpendicular to the axis Q so as to pass through the third seal member 793. .
  • the third seal member 793 has an annular shape, and has a rectangular (square) cross-sectional shape cut along a plane passing through the axis. Each vertex (corner) of the cross section has a curve (R).
  • the cross section may be circular, for example.
  • the third seal member 793 has an end surface 79a on one axial side, an end surface 79b on the other axial side, an inner periphery (surface) 79c, and an outer periphery (surface) 79d.
  • the surfaces 79a and 79b have a planar shape extending in the direction perpendicular to the axis of the third seal member 793.
  • the inner periphery 79c is polygonal when viewed from the axial direction of the third seal member 793. Specifically, it is a regular hexagon having six sides.
  • the inner circumference 79 c is a rectangular rectangular (rectangular) side surface 79 c 1 having a regular hexagonal bottom surface, and each side surface 79 c 1 extends in the axial direction of the third seal member 793.
  • Each vertex of the regular hexagon in other words, each boundary line (connection part) 79c2 of the side surface 79c1 adjacent in the circumferential direction has a curve (R).
  • the (shortest) distance from the axis of the third seal member 793 to each side (side surface) 79c1 is slightly shorter than the distance from the axis of the piston 75 to the outer periphery of the main body 75a1 (radius of the main body 75a1). .
  • the (shortest) distance from the axial center of the third seal member 793 to each vertex (boundary line) 79c2 is longer than the radius of the main body 75a1.
  • the axial dimension of the inner periphery 79c is slightly larger than the axial dimension of the main body 75a1.
  • the outer periphery 79d is cylindrical, and its diameter is substantially the same as or slightly larger than the inner diameter of the cylinder 71.
  • the third seal member 793 is installed between the flange portion 76c of the valve case 76 and the flange portion 75c of the piston 75 so as to surround the main body portion 75a1.
  • the inner periphery 79c faces the outer periphery of the main body portion 75a1.
  • the axis of the third seal member 793 substantially coincides with the axis of the piston 75.
  • One side in the axial direction of the piston 75 from the first hole 751 is on the inner peripheral side of the small diameter portion 73a2, the second seal member 792, and the guide 74 of the filter member 73, and is guided and supported by these.
  • One end of the piston 75 in the axial direction projects into the cam housing hole 61.
  • the piston end surface 750 comes into contact with the outer peripheral surface of the drive member 703 of the cam mechanism 70 by the force with which the third spring 783 biases the valve case 76 (piston 75).
  • the other axial side of the piston 75 is on the inner peripheral side of the cylinder 71, and the flange portion 75 c is guided and supported by the inner periphery 717 of the cylinder 71.
  • the inner periphery of the large diameter portion 624 (discharge port 624a), the second end portion 71c of the cylinder 71, the outer periphery of the plug member 72a on the Z-axis positive direction side, and the Z of the first seal member 791 A space surrounded by the surface in the positive axial direction is the first space 121.
  • the first space 121 is prevented from communicating with the maximum diameter portion 625 side of the cylinder accommodation hole 62 by the first seal member 791.
  • the first seal member 791 is in a state of being compressed and elastically deformed in the radial direction.
  • the first seal member 791 applies pressure (or stress, hereinafter referred to as contact pressure) due to elastic contact between the plug member 72a and the bottom surface of the groove 720 and between the cylinder housing hole 62 and the large diameter portion 624. generate.
  • contact pressure or stress, hereinafter referred to as contact pressure
  • one axial side (the first space 121 side) and the other side (the maximum diameter portion 625 side) of the first seal member 791 inside the cylinder housing hole 62 are liquid-tightly partitioned.
  • the space surrounded by the inner periphery of (the suction port 623a) and the surface of the second seal member 792 on the Z-axis negative direction side is the second space 122.
  • the volume of the second space 122 changes with the reciprocation (stroke) of the piston 75 with respect to the cylinder 71.
  • the second space 122 has a space 1221 on the outer peripheral side of the filter member 73 and a space 1222 on the inner peripheral side.
  • the suction liquid passage 12 opens in the space 1221, and the first hole 751 of the piston 75 opens in the space 1222.
  • the communication between the space 1221 and the cam housing hole 61 side is suppressed by the second seal member 792.
  • the second seal member 792 is compressed and elastically deformed in the radial direction at the axially opposite ends of the inner and outer peripheries thereof, and between the small diameter portion 622 in the cylinder housing hole 62 and the piston 75.
  • a contact pressure is generated between the outer periphery of (main body portion 75a).
  • one side in the axial direction (cam housing hole 61 side) and the other side (second space 122 side) of the second sealing member 792 inside the cylinder housing hole 62 are liquid-tightly partitioned.
  • brake fluid can leak from each cylinder accommodation hole 62 to the cam accommodation hole 61 via the second seal member 792.
  • the brake fluid can leak from the second space 122 through a gap between the piston 75 and the second seal member 792.
  • the brake fluid leaking into the cam accommodation hole 61 flows into the second liquid reservoir chamber 64 via the drain liquid passage 19 and is stored in the chamber 64.
  • the third space 123 On the inner peripheral side of the cylinder 71, the space surrounded by the surface 754 of the flange 75c on the negative Z-axis side of the piston 75 and the surface on the negative Z-axis side of the flange 75c, and the inner periphery 717 of the cylinder 71, This is the third space 123.
  • the volume of the third space 123 changes with the stroke of the piston 75.
  • the third space 123 is prevented from communicating with the second space 122 (1222) by the third seal member 793. Similar to the squeeze packing, the third seal member 793 generates a contact pressure with the inner periphery (wall surface) 717 of the cylinder 71 by a certain compression elastic force applied in an attached state and a pressure transmitted from the sealing fluid.
  • the outer periphery 79d of the third seal member 793 is in general contact with the inner periphery 717 of the cylinder 71 in the circumferential direction and the axial direction of the piston 75 in a range facing the inner periphery 717 of the cylinder 71 in the radial direction.
  • the end surface 79a on the one axial side of the third seal member 793 can contact the flange portion 75c of the piston 75 as a whole in the circumferential direction of the piston 75.
  • the end surface 79b on the other axial side of the third seal member 793 can contact the flange portion 76c of the valve case 76 as a whole in the circumferential direction of the piston 75.
  • the third seal member 793 is compressed and elastically deformed in the axial direction between the flange portion 76c and the flange portion 75c. That is, the third seal member 793 is sandwiched between the flange portion 76c and the flange portion 75c.
  • a third spring 783 biases the valve case 76.
  • the end surface 79a of the third seal member 793 generates a contact pressure with respect to the surface 754 of the flange portion 75c as a whole in the circumferential direction of the piston 75. Further, the third seal member 793 is slightly compressed in the axial direction by the urging force of the third spring 783.
  • the outer periphery 79d of the third seal member 793 generates a contact pressure with respect to the inner periphery 717 of the cylinder 71 as a whole in the circumferential direction of the piston 75. Further, when the third seal member 793 is urged to one side in the axial direction by the hydraulic pressure in the pressure chamber (third space 123), the end surface 79a of the third seal member 793 is entirely in the circumferential direction of the piston 75. Then, a (further) contact pressure with respect to the surface 754 of the flange portion 75c is generated. The third seal member 793 is slightly compressed in the axial direction by the hydraulic pressure in the pressure chamber (third space 123).
  • the outer periphery 79d of the third seal member 793 generates a (further) contact pressure with the inner periphery 717 of the cylinder 71 in the entire circumferential direction of the piston 75.
  • the third seal member 793 does not have to be in a state of being compressed and elastically deformed in the axial direction between the flange portion 76c of the valve case 76 and the flange portion 75c of the piston 75 at the time of attachment.
  • the large diameter portion 76b2 of the valve case 76 is fixed to the end portion 75b of the piston 75 by press fitting or the like, and the third spring 783 does not bias the second seal member 792 via the valve case 76. Also good.
  • the third pressure inside the cylinder 71 is increased.
  • One axial side (the second space 122 side) and the other side (the third space 123 side) of the seal member 793 are partitioned liquid-tightly. In this way, the third seal member 793 separates the inside of the cylinder 71 in the direction of the movement axis of the piston 75 and functions as a high pressure seal.
  • the first hole 751 of the piston 75 opens in the second space 122.
  • the second hole 752 functions as a passage connecting the first hole 751 (second space 122) and the third space 123.
  • a suction valve 77a is provided between the passage (second hole 752) and the third space 123.
  • the intake valve 77a switches between communication and blocking between the second hole 752 and the third space 123.
  • the suction valve 77a is a normally closed valve, and opens the second hole 752 and the third space 123 in communication with each other.
  • a groove 723 (passage) and a discharge liquid passage 13 are opened.
  • the holes 711 and 712 of the cylinder 71, the second hole 722 of the plug member 72a, and the plurality of grooves 723 function as a passage connecting the third space 123 and the first space 121.
  • This passage has a discharge valve 77b.
  • the discharge valve 77b switches communication / blocking between the hole 712 (the third space 123 side), the hole 722, and the plurality of grooves 723 (the first space 121 side).
  • the discharge valve 77b is a normally closed valve, and opens the hole 712 to allow the hole 722 and the plurality of grooves 723 to communicate with each other.
  • the volume of the third space 123 increases and the pressure of the third space 123 decreases.
  • the piston 75 moves to the other side in the axial direction (side away from the cam housing hole 61)
  • the volume of the second space 122 increases and the pressure of the second space 122 decreases.
  • the working fluid flows into the second space 122 from the suction fluid path 12. Further, the volume of the third space 123 decreases, and the pressure of the third space 123 increases.
  • the third space 123 functions as a pressure chamber that is compressed and generates a high pressure.
  • the discharge valve 77b is opened, and the brake fluid flows from the third space 123 to the first space 121 (discharge fluid passage 13).
  • the brake fluid is discharged from the pump portions 7A to 7E to the discharge fluid passage 13 as the piston 75 reciprocates.
  • the brake fluid discharged from each pump unit 7A to 7E is collected in one discharge liquid passage 13, and is used in common in two systems of hydraulic circuits.
  • the mechanism that causes the piston 75 to reciprocate is a (eccentric) cam mechanism 70.
  • the cam mechanism 70 converts the rotational motion of the rotary drive shaft 700 into the reciprocating motion of the piston 75.
  • the cam 70a rotates integrally therewith.
  • the cam 70a functions as a driving node of the cam mechanism 70.
  • the drive unit 70b (drive member 703) is disposed on the outer peripheral side of the cam 70a, and swings around the rotation axis O of the cam 70a (rotation drive shaft 700) by the rotation of the cam 70a.
  • the plurality of rolling elements 701 roll around the axis O while rolling with respect to the outer circumferential surface of the cam 70a and rolling with respect to the inner circumferential surface of the driving member 703, and swing the cam 70a to drive the driving member 703.
  • the piston 75 is disposed around the drive member 703 and functions as a follower of the cam mechanism 70. As the drive member 703 swings, the pistons 75 of the pump portions 7A to 7E are pushed by the drive member 703 and reciprocate.
  • the plurality of rolling elements 701 allow the relative displacement (rotation) between the cam 70a and the drive member 703, thereby suppressing the rotation of the drive member 703 accompanying the rotation of the cam 70a, and the direction around the axis O relative to the piston 75
  • the movement of the driving member 703 is suppressed.
  • the drive member 703 swings without changing its posture in an ideal state.
  • the drive member 703 is displaced (rotated) relative to the cam 70a on the inner peripheral side.
  • the drive member 703 drives the piston 75 by pushing the piston 75 radially outward of the cam 70a (rotation drive shaft 700) on the outer peripheral side thereof.
  • Each point (for example, each part on the outer peripheral surface 731) of the drive member 703 is a distance between the axis P and the axis O of the drive unit 70b (drive member 703) in a plane orthogonal to the axis O ( It moves on a small circle whose radius is eccentricity. Therefore, the relative displacement between the drive member 703 and the piston 75 can be suppressed within the range of the small circle, and the friction between them can be reduced. While the rotation drive shaft 700 makes one rotation, the respective portions of the drive member 703 make one rotation on the small circle.
  • each of the above-mentioned parts not only reciprocates a distance twice the eccentric amount in the axial direction of the piston 75, but also in a direction (circumferential direction) perpendicular to the axial center of the piston 75 with respect to the piston 75. Reciprocate twice as much as the eccentric amount.
  • the contour curve of the cam 70a is not limited to a circular shape.
  • a member such as a bush constituting a sliding bearing may be provided instead of the rolling element 701.
  • a low friction material or film is provided on the sliding portion of the cam 70a and the drive member 703 (the outer peripheral surface of the cam 70a or the inner peripheral surface of the drive member 703). May be. Further, the drive unit 70b may be omitted, and the cam 70a may directly push the piston 75.
  • the inner circumference 79c of the third seal member 793 partially contacts the outer circumference of the piston 75 in the circumferential direction of the piston 75 in a range facing the outer circumference of the piston 75 in the radial direction.
  • the circumferential central portion 79c0 of each hexagonal side 79c1 of the inner periphery 79c of the third seal member 793 is a portion that contacts the piston 75 and serves as a contact portion. Function.
  • the third seal member 793 has a contact portion 79c0 on its inner periphery 79c.
  • the inner periphery 79c of the third seal member 793 is in contact with the outer periphery of the piston 75 at a major portion in the axial direction (range facing the outer periphery of the piston 75 in the radial direction) at each contact portion 79c0.
  • the outer periphery of the main body 75a1 of the piston 75 is in contact with each contact portion 79c0 of the third seal member 793 substantially in the axial direction (range facing the inner periphery 79c of the third seal member 793 in the radial direction).
  • the contact portion 79c0 and its vicinity are in a state of being compressed and elastically deformed at least in the radial direction, and contact pressure is generated between the contact portion 79c0 and the outer peripheral surface of the piston 75.
  • the compressive elastic force of the contact portion 79c0 is an additional contact between the portion 79d0 on the outer periphery 79d of the third seal member 793 on the radial straight line passing through the contact portion 79c0 and its vicinity and the inner periphery 717 of the cylinder 71. Generate pressure.
  • the contact pressure between the portion 79d1 sandwiched in the circumferential direction by the portion 79d0 and the inner periphery 717 of the cylinder 71 is the contact pressure between the portion 79d0 and the inner periphery 717 of the cylinder 71. Smaller than.
  • the radial position of the outer periphery of the piston 75 (flange portion 75c) with respect to the inner periphery 717 of the cylinder 71 is regulated by the third seal member 793. Therefore, since the radial movement of the piston 75 is suppressed, the vibration of the piston 75 is suppressed.
  • the piston 75 While the rotation drive shaft 700 makes one rotation, the piston 75 includes a force due to the discharge pressure, an urging force of the third spring 783, and a piston 75 (including a third seal member 793) against the cylinder 71. Hereinafter, referred to as a piston 75 or the like. )) And the frictional force.
  • the torque of the rotary drive shaft 700 for driving the piston 75 hereinafter referred to as drive torque
  • the frictional force may increase due to variations in dimensions of parts to be assembled, temperature changes during operation, etc., and drive torque may increase.
  • the third seal member 793 and the cylinder 71 are equivalent to the amount that the third seal member 793 generates a contact pressure with the outer periphery of the piston 75.
  • An additional contact pressure (in addition to the contact pressure for ensuring the sealing performance) is generated between the inner periphery 717 and the inner periphery 717.
  • the said friction force may increase. Since the material of the third seal member 793 includes a solid lubricant, the third seal member 793 (outer periphery 79d in sliding contact with the cylinder 71) has lubricity. Since the frictional force is reduced, an increase in driving torque can be suppressed.
  • the material of the third seal member 793 (of which the outer periphery 79d slidably contacting the cylinder 71) may be a solid material having self-lubricating properties, and is not limited to PTFE. Further, a lubricating film may be provided on the outer periphery 79d of the third seal member 793 that is in sliding contact with the cylinder 71.
  • the inner periphery 79c of the third seal member 793 partially contacts the outer periphery of the piston 75 (in a range facing the outer periphery of the piston 75 in the radial direction). Therefore, the third seal member 793 has a compression elasticity in the third seal member 793 as compared with the case where the inner periphery 79c of the third seal member 793 is in total contact with the outer periphery of the piston 75 (in a range facing the outer periphery of the piston 75 in the radial direction). A portion with a large amount of deformation decreases (a portion with a small amount of compressive elastic deformation increases).
  • the portion of the outer periphery 79d of the third seal member 793 where the contact pressure with respect to the inner periphery 717 of the cylinder 71 is large (additional contact pressure is generated) is reduced.
  • the portion where the contact pressure (the pressing force of the third seal member 793 against the inner periphery 717 of the cylinder 71) is small increases. Accordingly, since the frictional force between the outer periphery 79d of the third seal member 793 and the inner periphery 717 of the cylinder 71 is reduced as a whole, the frictional force of the piston 75 and the like against the cylinder 71 is reduced.
  • the inner circumference 79c of the third seal member 793 partially contacts the outer circumference of the piston 75 in the circumferential direction of the piston 75 (in a range facing the outer circumference of the piston 75 in the radial direction). Therefore, it is possible to more effectively achieve both suppression of vibration of the piston 75 and suppression of increase in driving torque.
  • the contact portion 79c0 is a portion that contacts the outer periphery of the piston 75 regardless of the position of the piston 75 relative to the piston 75 in the circumferential direction, and is the contact portion 79c0 on the seal member side. Therefore, in order for the third seal member 793 to partially contact the outer periphery of the piston 75 in the circumferential direction of the piston 75, the inner periphery 79c of the third seal member 793 in the circumferential direction of the piston 75 Changing the shape is sufficient. As a result, the outer periphery of the piston 75 can have a simple shape (cylindrical shape) in the circumferential direction at least in a range facing the inner periphery 79c of the third seal member 793 in the radial direction. Therefore, the productivity of the piston 75 (and hence the pump 7, the same applies hereinafter) can be improved.
  • the contact portion 79c0 is located on each side 79c1 of the hexagon as viewed from the axial direction of the third seal member 793 (the moving axis direction of the piston 75).
  • the hexagon is a polygon. Therefore, the inner periphery 79c of the third seal member 793 can be easily molded (for example, can be molded), and the contact portion 79c0 can be easily provided. For this reason, the productivity of the third seal member 793 (and hence the pump 7, the same applies hereinafter) can be improved. Further, since the number of contact portions 79c0 is three or more, the contact pressure is dispersed in the circumferential direction and the balance of contact pressure is improved as compared with the case where the number of contact portions 79c0 is two or less.
  • the contact portion 79c0 is not limited to a hexagon, and may be on each side of an arbitrary polygon.
  • the sides of these polygons are not limited to straight lines, and may be curves that are convex in the direction away from the axis of the third seal member 793 or convex in the direction of approaching the axis of the third seal member 793. Also in these cases, the side can function as the contact portion 79c0.
  • the side 79c1 is a straight line, it is easy to form the side (side surface) 79c1 on the inner periphery 79c of the third seal member 793, and the contact portion 79c0 can be easily provided.
  • the side is a convex curve in a direction approaching the axial center of the third seal member 793, the side makes more positive contact with the outer periphery of the piston 75. Therefore, the piston 75 is more securely held in the cylinder 71, and the radial position of the piston 75 with respect to the cylinder 71 is regulated. Therefore, the vibration of the piston 75 is more effectively suppressed.
  • the thickness of the thinnest portion of the third seal member 793 in the radial direction (the third seal member 793 on the radial straight line passing through the apex of the polygon)
  • the distance from the corner portion of the inner periphery 79c of the third seal member 793 to the outer periphery 79d of the third seal member 793 (the thickness of the inner and outer diameters) can be easily set to a certain value or more. Therefore, since the radial thickness of the third seal member 793 can be ensured even at the thinnest portion, the durability and formability (workability) of the third seal member 793 can be improved.
  • the polygon is a hexagon. Therefore, compared with the case where the polygon is a pentagon, for example, the angle formed by each side 79c1 adjacent to the polygon (the angle at the vertex 79c2) can be increased. Therefore, it is easier to set the thickness of the thinnest portion of the third seal member 793 in the radial direction to a certain value or more.
  • the number of polygon sides 79c1 (contact portions 79c0) is larger than when the polygon is, for example, a pentagon. Therefore, the contact pressure is more dispersed in the circumferential direction, and the balance of the contact pressure is further improved.
  • the number of hexagonal sides 79c1 (vertices 79c2) is 6, that is, an even number. In other words, the hexagon is an even square. Therefore, the moldability of the third seal member 793 can be improved compared to the case of an odd-numbered square.
  • the hexagon is a regular hexagon.
  • a regular hexagon is a regular polygon. Therefore, the thickness of the thinnest portion of the third seal member 793 can be made uniform. Thereby, the sealing performance and durability of the third seal member 793 can be improved.
  • the shape of the inner periphery 79 c of the third seal member 793 is symmetric in the direction around the axis of the third seal member 793.
  • the contact portion 79c0 is positioned symmetrically with respect to the axis of the third seal member 793.
  • the contact pressure is more evenly distributed in the circumferential direction and the balance of the contact pressure is improved, so that the piston holding performance and the sealing performance can be further improved.
  • the drive source of the pump 7 is not limited to the motor 7a but may be an internal combustion engine or the like.
  • the use of the electric motor 7a, which is more quiet than the other drive sources, as the drive source of the pump 7, makes the effect of improving the sound vibration of the pump 7 stand out.
  • the pump 7 may be used in a device other than the brake device. In the present embodiment, by using the pump 7 in the brake device, vibration and noise when brake control is performed by the operation of the pump 7 can be reduced, and the uncomfortable feeling given to the driver can be reduced.
  • FIG. 10 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment.
  • FIG. 11 is a cross-sectional view similar to FIG. 8, including the third seal member 793 of the present embodiment.
  • the inner periphery 79c of the third seal member 793 is a regular pentagon when viewed from the axial direction of the third seal member 793.
  • the inner circumference 79c of the third seal member 793 is each side surface of a right prism having a regular pentagonal bottom surface, and each side surface is rectangular.
  • the (shortest) distance from the axial center of the third seal member 793 to each side (side surface) 79c1 of the regular pentagon is slightly shorter than the distance (radius) from the axial center of the piston 75 to the outer periphery of the main body 75a1.
  • the distance from the axial center of the third seal member 793 to each vertex 79c2 of the regular pentagon, in other words, the boundary line (connection part) 79c2 of each side surface 79c1 is longer than the radius of the main body 75a1.
  • each pentagonal side 79c1 of the inner periphery 79c of the third seal member 793 when the third seal member 793 is viewed from the axial direction functions as the contact portion 79c0 (on the seal member side). Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the inner periphery 79c is a polygon when viewed from the axial direction of the third seal member 793, and this polygon is a pentagon. Therefore, there are five contact portions 79c0.
  • the number of contact portions 79c0 is smaller than when the polygon is a hexagon, for example. In other words, the number of portions where additional contact pressure is generated on the outer periphery 79d of the third seal member 793 is small.
  • the frictional force of the piston 75 or the like with respect to the cylinder 71 is reduced, so that an increase in driving torque can be further suppressed.
  • the thickness of the thinnest portion of the third seal member 793 in the radial direction can be ensured as compared with the case where the polygon is a triangle or a rectangle.
  • Other functions and effects are the same as those of the first embodiment.
  • FIG. 12 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment.
  • FIG. 13 is a cross-sectional view similar to FIG. 8, including the third seal member 793 of the present embodiment.
  • the third seal member 793 has a seal body and a protrusion 79c3.
  • the inner periphery 793c of the seal body has a cylindrical shape substantially concentric with the outer periphery 79d of the third seal member 793.
  • the protrusion 79c3 is integrated with the seal body (as one component) and protrudes radially inward from the inner periphery 793c of the seal body.
  • the protrusion 79c3 has a prismatic shape extending in the axial direction of the third seal member 793, and has one side surface 79c30 extending in the circumferential direction and two side surfaces 79c31 and 79c32 extending in the radial direction. Each of the side surfaces 79c30 to 79c32 is planar.
  • the protrusion 79c3 extends over the entire axial range of the third seal member 793.
  • the axial end surface of the protrusion 79c3 constitutes the same plane as the axial end surfaces 79a and 79b of the seal body.
  • the outer diameter of the seal body is substantially the same as or slightly larger than the inner diameter of the cylinder 71.
  • the inner diameter of the seal main body (the diameter of the inner periphery 793c) is slightly larger than the outer diameter of the main body 75a1 of the piston 75.
  • the (shortest) distance from the axial center of the third seal member 793 to the side surface 79c30 of the protrusion 79c3 is slightly shorter than the distance (radius) from the axial center of the piston 75 to the outer peripheral surface of the main body 75a1. Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the protrusion 79c3 (side surface 79c30) functions as a contact portion 79c0 that comes into contact with the main body portion 75a1 of the piston 75.
  • the inner periphery 79c of the third seal member 793 is substantially entirely in the axial direction at each projection 79c3 and partially in the circumferential direction of the piston 75 (in a range facing the outer periphery of the main body 75a1 in the radial direction). The piston 75 comes into contact with the outer periphery.
  • the inner periphery 79c of the third seal member 793 does not contact the outer periphery of the piston 75 in a recess sandwiched between the protrusions 79c3 adjacent in the circumferential direction of the piston 75.
  • the contact portion 79c0 is a contact portion 79c0 on the seal member side, and is positioned symmetrically with respect to the axis of the third seal member 793.
  • the contact portion 79c0 is a protrusion 79c3 that protrudes radially inward from the inner periphery 793 c of the seal body. Therefore, the inner periphery 79c of the third seal member 793 comes into more active contact with the outer periphery of the piston 75 at the contact portion 79c0.
  • the shape of the protrusion 79c3 is arbitrary, and is not limited to a prism shape, for example, and each side surface thereof may be a curved surface. Further, the number of protrusions 79c3 is not limited to eight. The dimension (length) in the axial direction of the protrusion 79c3 and the width in the circumferential direction of the protrusion 79c3 (or the interval between the protrusions 79c3) are also arbitrary. The protrusions 79c3 may be provided discontinuously (plural) in the axial direction of the third seal member 793.
  • the protrusion 79c3 is integral with the seal body. Therefore, the number of parts can be reduced and the assembling property of the third seal member 793 can be improved as compared with the case where the projection 79c3 is separate from the seal body. Other functions and effects are the same as those of the first embodiment.
  • FIG. 14 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment.
  • FIG. 15 is a cross-sectional view similar to FIG. 8, including the third seal member 793 of the present embodiment.
  • the third seal member 793 has a seal body and an interposition member 79c4.
  • the seal main body is a main body portion of the third seal member 793, and an inner periphery 793c thereof has a cylindrical shape substantially concentric with the outer periphery 79d of the third seal member 793.
  • the interposed member 79c4 is a separate member separated from the seal body.
  • interposed members 79c4 there are a plurality (three) of interposed members 79c4 on the inner periphery 79c of the third seal member 793, and the interposed members 79c4 are arranged so as to be arranged at substantially equal intervals in the circumferential direction of the third seal member 793.
  • the interposed member 79c4 has a columnar shape and is disposed so as to extend in the axial direction of the third seal member 793.
  • the axial dimension of the interposed member 79c4 is substantially the same as the axial dimension of the seal body.
  • the interposed member 79c4 is disposed such that the outer periphery thereof is in contact with the inner periphery 793c of the seal body over the entire axial range of the third seal member 793.
  • the interposed member 79c4 is disposed such that its axial end surface forms the same plane as the axial end surfaces 79a and 79b of the seal body.
  • the outer diameter of the seal body is substantially the same as or slightly larger than the inner diameter of the cylinder 71.
  • the inner diameter of the seal main body (the diameter of the inner periphery 793c) is slightly larger than the outer diameter of the main body 75a1 of the piston 75.
  • the diameter of the interposed member 79c4 is slightly larger than the distance from the outer periphery of the main body 75a1 to the inner periphery 793c of the seal body when the piston 75 and the third seal member 793 are coaxial.
  • the outer periphery of the seal body contacts the inner periphery 717 of the cylinder 71.
  • the outer periphery of the interposed member 79c4 is in contact with the inner periphery 793c of the seal body on the side far from the axis of the third seal member 793, and on the side close to the axis of the third seal member 793, Contact the outer periphery.
  • the interposition member 79c4 (the side close to the axis of the third seal member 793) functions as a contact portion 79c0 that contacts the piston 75 (on the seal member side).
  • the inner circumference 79c of the third seal member 793 is partly in the circumferential direction of the piston 75 in each interposed member 79c4 substantially in the axial direction and (in the range facing the outer circumference of the main body 75a1 in the radial direction). In addition, it contacts the outer periphery of the piston 75.
  • the inner periphery 79c of the third seal member 793 does not contact the outer periphery of the piston 75 in a gap between the interposed members 79c4 adjacent in the circumferential direction of the piston 75.
  • the contact portion 79c0 is a contact portion on the seal member side, and is disposed substantially symmetrically with respect to the axis of the third seal member 793. Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the interposed member 79c4 is disposed so as to protrude radially inward with respect to the inner periphery 793c of the seal body. Therefore, the inner periphery 79c of the third seal member 793 is more positively brought into contact with the outer periphery of the piston 75 at the contact portion 79c0 (interposition member 79c4).
  • the shape of the interposed member 79c4 is arbitrary, and is not limited to a cylindrical shape, and may be, for example, a prismatic shape.
  • the number of the interposition members 79c4 is not limited to three, and the dimension (length) in the axial direction of the interposition members 79c4 and the width in the circumferential direction of the interposition members 79c4 (or the interval between the interposition members 79c4) are also arbitrary.
  • the interposed member 79c4 may be provided discontinuously (plural) in the axial direction of the third seal member 793.
  • the interposed member 79c4 is a separate body from the seal body.
  • the inner periphery 793c of the seal body can be formed in a simple shape (cylindrical shape) in the circumferential direction, and the productivity of the seal body can be improved.
  • the design freedom of the shape and properties of the interposition member 79c4 that functions as the contact portion 79c0 can be improved.
  • the interposition member 79c4 is formed of a softer material (rubber or the like) than the seal body.
  • FIG. 16 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment.
  • FIG. 17 is a cross-sectional view similar to FIG. 8, including the third seal member 793 of the present embodiment.
  • the inner periphery 79c of the third seal member 793 is a regular hexagon when viewed from the axial direction.
  • Each vertex 79c2 of the regular hexagon has a curve (R).
  • the hole 79e extends in the axial direction and penetrates the third seal member 793. That is, the hole 79e opens in both axial end surfaces 79a and 79b of the third seal member 793.
  • the hole 79e has a flat shape and extends substantially parallel to each side surface 79c1.
  • the dimension of the hole 79e is smaller than the dimension of the side surface 79c1.
  • the center of the hole 79e is substantially at the same position as the center of the side surface 79c1.
  • the compression elastic deformation of the contact portion 79c0 due to the contact with the outer periphery of the piston 75 (main body portion 75a1) is so-called absorbed by the hole 79e, and the deformation is less likely to be transmitted radially outward than the hole 79e.
  • the compression elastic force of the contact portion 79c0 is an additional contact pressure between the portion 79d0 on the radial straight line passing through the contact portion 79c0 and its vicinity and the inner periphery 717 of the cylinder 71 on the outer periphery 79d of the third seal member 793.
  • production of is suppressed by the hole 79e.
  • the hole 79e may not penetrate the third seal member 793 in the axial direction, and may occupy a part of the third seal member 793 in the axial direction inside the third seal member 793.
  • the shape of the hole 79e is arbitrary, and may be an ellipse or the like when viewed from the axial direction.
  • the number of holes 79e is arbitrary, and two or more holes 79e (in the circumferential direction or the axial direction) may be arranged on one side surface 79c1. There may be a side surface of the polygonal side surface 79c1 where the hole 79e is not disposed.
  • a material having a smaller elastic modulus in the radial direction than other portions may be disposed at a portion on the radial straight line passing through the contact portion 79c0 in place of the hole 79e.
  • Other functions and effects are the same as those of the first embodiment.
  • FIG. 18 is an exploded perspective view similar to FIG. 7, including the third seal member 793 and the piston 75 of the present embodiment.
  • FIG. 19 is a plan view of the piston 75 assembled with the third seal member 793 and the cylinder 71 that accommodates the piston 75 including the end surface 79b of the third seal member 793 and perpendicular to the axis Q. A cut section is shown.
  • FIG. 19 corresponds to a cross section taken along line XIX-XIX in FIG. 20 is a cross-sectional view similar to FIG. 9, including the third seal member 793 and the piston 75 of the present embodiment.
  • the outer periphery of the main body 75a1 on the other axial side of the flange 75c of the piston 75 is polygonal when viewed from the axial direction of the piston 75. Specifically, it is a regular hexagon. In other words, the outer periphery of the main body 75a1 of the piston 75 is each side surface 75a2 of a right prism having a regular hexagonal bottom surface.
  • the inner periphery 79c of the third seal member 793 has a cylindrical shape substantially concentric with the outer periphery 79d.
  • the (shortest) distance from the axis of the piston 75 to each side surface (each side of the regular hexagon) 75a2 is shorter than the distance (radius) from the axis of the third seal member 793 to the inner periphery 79c.
  • the distance from the axial center of the piston 75 to each vertex 75a3 of the regular hexagon, in other words, the boundary line (connection part) 75a3 of each side surface 75a2, is slightly longer than the radius of the inner periphery 79c of the third seal member 793. Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the inner periphery 79c of the third seal member 793 partially contacts the outer periphery of the piston 75 in the circumferential direction of the piston 75 in a range facing the outer periphery of the piston 75 (main body portion 75a1) in the radial direction.
  • each of the hexagonal apexes (boundary lines of the side surfaces 75a2) 75a3 of the main body 75a1 and its vicinity (75a0) in the circumferential direction are located on the inner periphery 79c of the third seal member 793. It is a part which contacts and functions as a contact part. In other words, the piston 75 has a contact portion 75a0 on its outer periphery.
  • Each contact portion 75a0 is substantially in contact with the inner periphery 79c of the third seal member 793 in the axial direction.
  • the third seal member 793 In a state in which the third seal member 793 is attached, at least a portion of the inner periphery 79c of the third seal member 793 that contacts the contact portion 75a0 and its vicinity are in a state of being compressed and elastically deformed at least in the radial direction.
  • Contact pressure is generated between the contact portion 75a0 of the member 793 and the contact portion 75a0.
  • the compressive elastic force of the above portion is an additional contact pressure between the portion 79d0 on the outer periphery 79d of the third seal member 793 on the radial straight line passing through the contact portion 75a0 and its vicinity and the inner periphery 717 of the cylinder 71. Is generated.
  • the contact pressure between the portion 79d1 sandwiched in the circumferential direction by the portion 79d0 and the inner periphery 717 of the cylinder 71 is the contact pressure between the portion 79d0 and the inner periphery 717 of the cylinder 71. Smaller than.
  • the contact portion 75a0 is a contact portion on the piston side, and is a portion that contacts the inner periphery 79c of the third seal member 793 regardless of the position of the piston 75 in the circumferential direction with respect to the third seal member 793. Therefore, in order to make the piston 75 partially contact with the inner circumference 79c of the third seal member 793 in the circumferential direction of the piston 75, the shape of the outer circumference of the piston 75 (main body portion 75a1) in the circumferential direction. It is enough to change.
  • the inner circumference 79c of the third seal member 793 can be a simple shape (cylindrical shape) in the circumferential direction at least in the range facing the outer circumference of the piston 75 in the radial direction, and the productivity of the third seal member 793 is increased. Can be improved.
  • the contact portion 75a0 is a polygonal vertex 75a3 and its vicinity as seen from the moving axis direction of the piston 75, and includes the polygonal vertex 75a3. Therefore, the contact portion 75a0 can be easily formed on the outer periphery of the piston 75, and the contact portion 75a0 can be easily provided, so that the productivity of the piston 75 can be improved.
  • the polygon is not limited to a hexagon, and may be a pentagon, for example.
  • the outer periphery of the piston 75 may have a protrusion or an interposed member extending in the axial direction of the piston 75 as the contact portion 75a0.
  • Each vertex of the polygon in other words, a boundary line (connection part) on each side surface of the main body 75a1 may be provided with a curve (R).
  • Other functions and effects are the same as those of the first embodiment.
  • FIG. 21 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment.
  • FIG. 22 is a cross-sectional view of the end of the piston 75 assembled with the valve case 76, the first ball 771, the first spring 781, and the third seal member 793 of the present embodiment, cut by a plane including its axis. Indicates.
  • the inner periphery 79c of the third seal member 793 has a cylindrical shape with a step in the axial direction.
  • the inner periphery 79c has a large diameter part 79c5 and a small diameter part 79c6.
  • the large-diameter portion 79c5 and the small-diameter portion 79c6 have a cylindrical shape substantially concentric with the outer periphery 79d of the third seal member 793, and the small-diameter portion 79c6 has a smaller diameter than the large-diameter portion 79c5.
  • the diameter of the small diameter portion 79c6 is slightly smaller than the diameter of the main body portion 75a1 of the piston 75.
  • the diameter of the large diameter part 79c5 is larger than the diameter of the main body part 75a1.
  • the large-diameter portion 79c5 and the small-diameter portion 79c6 have the same axial dimension, or the small-diameter portion 79c6 has a slightly smaller axial dimension than the large-diameter portion 79c5.
  • the axial dimension of the small diameter portion 79c6 is less than or equal to half of the overall axial dimension of the third seal member 793.
  • the axial dimension of the small diameter part 79c6 is smaller than the axial dimension of the main body part 75a1.
  • the small-diameter portion 79c6 is on one side in the axial direction of the third seal member 793, and opens on the end surface 79a on one side in the axial direction of the third seal member 793.
  • the large diameter portion 79c5 is on the other axial side of the third seal member 793, and opens to the end surface 79b on the other axial side of the third seal member 793.
  • the third seal member 793 is such that one side in the axial direction (small diameter portion 79c6) is on the side close to the flange portion 75c of the piston 75 and the other side in the axial direction (large diameter portion 79c5) is on the side far from the flange portion 75c.
  • the piston 75 is installed.
  • the end surface 79a of the third seal member 793 can contact the surface 754 of the flange portion 75c as a whole in the circumferential direction of the piston 75. Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
  • the inner periphery 79c of the third seal member 793 partially contacts the outer periphery of the piston 75 in the moving axis direction of the piston 75.
  • the small diameter portion 79c6 functions as a contact portion 79c0 that is a portion that contacts the piston 75 (on the seal member side).
  • the third seal member 793 has a contact portion 79c0 on its inner periphery 79c.
  • the inner circumference 79c is in contact with the outer circumference of the piston 75 (main body 75a1) at the small diameter portion 79c6 in the circumferential direction.
  • the small diameter portion 79c6 contacts the outer periphery of the piston 75 in the entire axial range.
  • the outer periphery of the piston 75 faces the inner periphery 79c of the third seal member 793 in the entire axial range, and a part in the axial direction contacts the small diameter portion 79c6.
  • the third seal member 793 is in a state in which at least the small diameter portion 79c6 and its vicinity are compressed and elastically deformed at least in the radial direction in the attached state, and between the small diameter portion 79c6 and the outer periphery of the piston 75 (main body portion 75a1). Contact pressure is generated.
  • the compression elastic force of the small diameter part 79c6 generates an additional contact pressure between the outer periphery 79d of the third seal member 793 and the inner periphery 717 of the cylinder 71.
  • the large-diameter portion 79c5 of the third seal member 793 and its vicinity do not contact the outer periphery of the piston 75, so that the compression elastic deformation of this portion is suppressed.
  • the contact pressure between the portion 79d0 that overlaps the small-diameter portion 79c6 in the axial direction (as viewed from the radial direction) and the inner periphery 717 of the cylinder 71 on the outer periphery 79d of the third seal member 793 is axially (as viewed from the radial direction).
  • the contact pressure between the portion 79d1 overlapping the large diameter portion 79c5 and the inner periphery 717 of the cylinder 71 is smaller.
  • the inner periphery 79c of the third seal member 793 partially contacts the outer periphery of the piston 75 in the moving axis direction of the piston 75 in a range facing the outer periphery of the piston 75 (main body portion 75a1) in the radial direction.
  • the axial dimension of the contact part 79c0 (small diameter part 79c6) is less than or equal to half the axial dimension of the third seal member 793. Therefore, the inner periphery 79c of the third seal member 793 contacts the outer periphery of the piston 75 in the (moving) axial direction of the piston 75 in a range in which the inner periphery 79c faces the outer periphery of the piston 75 (main body portion 75a1) in the radial direction.
  • the range of the portion is suppressed to a certain level or less. For this reason, in the outer periphery 79d of the third seal member 793, the range of the portion 79d0 where the contact pressure with respect to the inner periphery 717 of the cylinder 71 is large (additional contact pressure is generated) becomes a certain level or less. Therefore, the frictional force of the piston 75 etc. against the cylinder 71 is more effectively reduced.
  • the inner periphery 79c of the third seal member 793 may not only partially contact the outer periphery of the piston 75 in the axial direction but also partially contact in the circumferential direction.
  • the portion corresponding to the small-diameter portion 79c6 of the third seal member 793 is a polygonal column shape, or a protrusion or unevenness (integrated with the third seal member 793) extending in the axial direction or separate from the third seal member 793.
  • an intervening member and may have a region that does not partially contact the outer periphery of the piston 75 in the circumferential direction.
  • the inner periphery 79c of the third seal member 793 contacts the outer periphery of the piston 75 (main body portion 75a1) in the circumferential direction of the piston 75 at the contact portion 79c0 (small diameter portion 79c6). .
  • the compression elastic force of the contact portion 79c0 generates an additional contact pressure with the inner periphery 717 of the cylinder 71 in the entire circumferential range of the outer periphery 79d (part 79d0) of the third seal member 793. Therefore, the sealing performance of the third seal member 793 is improved. Further, the shape of the inner periphery 79c of the third seal member 793 can be made uniform over the entire circumferential range.
  • At least the inner periphery 79c of the small-diameter portion 79c6 can have a simple shape (annular shape) in the circumferential direction. Therefore, the productivity of the third seal member 793 can be improved.
  • the shape of the portion (large diameter portion 79c5) that does not contact the outer periphery of the piston 75 on the inner periphery 79c of the third seal member 793 is arbitrary. In the present embodiment, the shape of this portion (large diameter portion 79c5) is also a simple shape (cylindrical shape). Therefore, the productivity of the third seal member 793 can be improved.
  • the inner periphery 79c of the third seal member 793 may have a plurality of contact portions 79c0 (small diameter portions 79c6) or non-contact portions (large diameter portions 79c5) with the piston 75 in the axial direction.
  • the shape of the inner periphery of the small diameter portion 79c6 cut by a plane passing through the axis of the third seal member 793 is convex in a direction away from the axis of the third seal member 793 or in a direction approaching the axis of the third seal member 793. It may be a convex curve.
  • the inner periphery 79c of the third seal member 793 may have irregularities extending partially in the axial direction in the circumferential direction.
  • the portion closest to the axial center on the inner periphery 79c of the third seal member 793 can function as a contact portion 79c0 that partially contacts the outer periphery of the piston 75 in the moving axis direction of the piston 75.
  • the inner periphery 79c of the third seal member 793 has, as a contact portion 79c0, a protrusion (integrated with the third seal member 793) extending in the circumferential direction or an interposition member (separate from the third seal member 793) as a shaft. You may have partial in direction.
  • the contact portion 79c0 is a portion that contacts the outer periphery of the piston 75 regardless of the position of the piston 75 relative to the piston 75 in the movement axis direction, and is a contact portion on the seal member side. Therefore, in order for the third seal member 793 to partially contact the outer periphery of the piston 75 in the moving axis direction of the piston 75, the third seal member in the axial direction of the third seal member 793 is used. It is sufficient to change the shape of the inner periphery 79c of 793.
  • the contact portion 79c0 small diameter portion 79c6
  • the contact portion 79c0 small diameter portion 79c6
  • the outer periphery of the main body portion 75a1 that is in general contact with the contact portion 79c0 in the circumferential direction can have a simple shape in the axial direction (linear shape when cut by a plane passing through the axis of the piston 75).
  • the outer periphery of the piston 75 may have a contact portion that partially contacts the inner periphery 79c of the third seal member 793 in the moving axis direction of the piston 75.
  • This contact portion is a portion that contacts the inner periphery 79c of the third seal member 793 regardless of the position of the piston 75 in the movement axis direction with respect to the third seal member 793, and is a piston-side contact portion.
  • the outer periphery of the main body portion 75a1 may have a step having a different diameter, an unevenness or a protrusion (extending in the circumferential direction), or an interposition member extending in the circumferential direction (as a part of the main body portion 75a1). Also good.
  • the inner periphery 79c has a simple shape in the axial direction (straight when cut by a plane passing through the axial center of the third seal member 793) at least in a range facing the outer periphery of the main body 75a1 in the radial direction. be able to.
  • the small diameter part 79c6 is on the side close to the flange part 75c. Therefore, unlike the case where the small diameter portion 79c6 is on the side far from the flange portion 75c, the entire range in the axial direction of the small diameter portion 79c6 can contact the outer periphery of the piston 75 (main body portion 75a1). For this reason, compared with the above case, the range in which additional contact pressure is generated between the outer periphery 79d of the third seal member 793 and the inner periphery 717 of the cylinder 71 due to the compression elastic force of the small diameter portion 79c6 is wide. Therefore, the sealing performance of the third seal member 793 is improved.
  • the end surface 79a on the one axial side of the third seal member 793 is formed on the flange portion 75c.
  • a (further) contact pressure against surface 754 is generated.
  • the small diameter portion 79c6 opens in the end face 79a. Therefore, compared with the case where the large-diameter portion 79c5 opens to the end surface 79a, the area of the end surface 79a that contacts the surface 754 is large, so the range in which the contact pressure due to the hydraulic pressure is generated is wide. Therefore, the sealing performance of the third seal member 793 is improved.
  • the boundary (corner portion) between the small diameter portion 79c6 and the end surface 79a of the third seal member 793 has a curved surface (R). For this reason, even when the small diameter portion 79c6 opens in the end surface 79a, the degree of adhesion between the small diameter portion 79c6 and the outer periphery of the main body portion 75a1 and between the end surface 79a and the flange portion 75c (surface 754) is improved.
  • the small diameter portion 79c6 and the end surface 79a of the third seal member 793 function as a so-called continuous (unbroken) seal surface. Therefore, the sealing performance of the third seal member 793 is improved.
  • Other functions and effects are the same as those of the first embodiment.
  • FIG. 24 is an exploded perspective view similar to FIG. 6, including the third seal member 793 of the present embodiment.
  • the illustration of the first spring 781 is omitted.
  • the third seal member 793 is integrated with the valve case 76 as one part 794.
  • the component 794 is made of, for example, a polyamide-based resin. Therefore, the number of parts can be reduced and the assembling property can be improved. Other configurations and operational effects are the same as those of the first embodiment.
  • the seal body of the third seal member 793 of the second, third, fifth, and seventh embodiments and the third seal member 793 of the fourth embodiment may be integrated with the valve case 76. Further, the third seal member 793 of the sixth embodiment may be integrated with the valve case 76, and the main body 75a1 of the piston 75 may be the one of the sixth embodiment.
  • the pump 7 may be a plunger pump provided with a seal member that separates the inside of the cylinder in the direction of the movement axis of the piston, and its specific configuration is not limited to that of this embodiment.
  • the number of pistons (pump parts) is arbitrary.
  • the member that drives the piston is not limited to the eccentric cam, and may be a swash plate or the like.
  • the arrangement form of the pistons is not limited to the radial type, but may be an axial type.
  • the cylinder is not limited to a fixed one (fixed cylinder type), and may rotate with the piston (rotary cylinder type).
  • the outer periphery of the third seal member 793 has a cylindrical shape that can come into full contact with the inner periphery of the cylinder 71. The shape may be in contact with
  • the shape of the third seal member 793 facing the pressure chamber (third space 123) on the other side in the axial direction may be a concave shape such as V packing or U packing.
  • the third seal member 793 is a piston seal that is attached to the piston 75 and slides against the inner periphery of the cylinder 71, but is a rod seal that is attached to the cylinder 71 and the outer periphery of the piston 75 slides relative thereto. There may be.
  • the outer periphery of the third seal member 793 is in partial contact with the inner periphery of the cylinder 71, the radial position of the piston 75 relative to the cylinder 71 is regulated via the third seal member 793.
  • the frictional force of the piston 75 against the cylinder 71 decreases.
  • the seal member may be configured to partially contact the surface in a range where the seal member is opposed to the surface of the member to which the seal member is mounted in the radial direction.
  • the brake device of the present technical idea is, in one aspect thereof, A housing having a liquid passage and a hole therein; A cylinder housed in the hole, a piston housed in the cylinder so as to be movable, and the inside of the cylinder is separated in a direction of a movement axis of the piston, and an inner circumference is a part of an outer circumference of the piston A plunger pump connected to the liquid path, Is provided.
  • the inner periphery of the seal member partially contacts the outer periphery of the piston in the circumferential direction of the piston.
  • the seal member has, on its inner periphery, a seal member side contact portion that is a portion that contacts the outer periphery of the piston regardless of the position of the piston in the circumferential direction with respect to the piston.
  • the seal member side contact portion is on each side of the polygon as viewed from the moving axis direction of the piston.
  • the polygon is a hexagon.
  • the polygon is a pentagon.
  • the seal member has a hole between an outer peripheral surface thereof and the seal member side contact portion.
  • the seal member side contact portion is a protrusion protruding inward in the radial direction of the seal member.
  • the piston has a piston side contact portion on the outer periphery thereof, which is a portion that contacts the inner periphery of the seal member regardless of the position of the piston in the circumferential direction with respect to the seal member.
  • the piston-side contact portion includes each vertex of a polygon as viewed from the moving axis direction of the piston.
  • the seal member includes a main body portion that contacts the inner periphery of the cylinder, and an interposition member that contacts the inner periphery of the main body portion and the outer periphery of the piston.
  • the inner periphery of the seal member partially contacts the outer periphery of the piston in the direction of the movement axis of the piston.
  • a housing having a liquid passage and a hole formed therein;
  • a cylinder housed in the hole, a piston housed in the cylinder so as to be movable, and the inside of the cylinder is separated in a direction of a movement axis of the piston, and an inner circumference is a part of an outer circumference of the piston
  • a plunger pump having a sealing member that comes into contact with each other, and capable of discharging brake fluid into the fluid path;
  • a cam mechanism for moving the piston in contact with an end surface on one side in the movement axis direction of the piston;
  • a rotary drive shaft provided on the outer periphery with the cam mechanism;
  • An electric motor for rotating the rotary drive shaft; Is provided.
  • the inner periphery of the seal member is polygonal when viewed from the moving axis direction of the piston.
  • the plunger pump of the present technical idea is A cylinder, A piston movably accommodated within the cylinder; A seal member that divides the inside of the cylinder in the direction of the movement axis of the piston, and the inner periphery partially contacts the outer periphery of the piston; Is provided.
  • the inner periphery of the seal member partially contacts the outer periphery of the piston in the circumferential direction of the piston.
  • the seal member has, on its inner periphery, a seal member side contact portion that is a portion that contacts the outer periphery of the piston regardless of the position of the seal member with respect to the piston in the circumferential direction of the piston.
  • the seal member side contact portion is on each side of the polygon as viewed from the moving axis direction of the piston.
  • the seal member side contact portion is a protrusion protruding inward in the radial direction of the seal member.
  • the piston has, on its outer periphery, a piston-side contact portion that is a portion that contacts the inner periphery of the seal member regardless of the position of the piston in the circumferential direction with respect to the seal member.
  • Second unit (brake device) 13 Discharge liquid path 6 Housing 62 Cylinder housing hole 7 Plunger pump 7a Electric motor 70 Cam mechanism 700 Rotation drive shaft 71 Cylinder 75 Piston 793 Third seal member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Sealing Devices (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

Provided is a plunger pump capable of achieving minimization of energy loss. This plunger pump comprises a cylinder, a piston, and a seal member. The piston is movably housed within the cylinder. The seal member partitions the interior of the cylinder in the moving axis direction of the piston. The inner periphery of the seal member is brought into partial contact with the outer periphery of the piston.

Description

ブレーキ装置およびプランジャポンプBrake device and plunger pump
 本発明は、プランジャポンプに関する。 The present invention relates to a plunger pump.
 一般に、プランジャポンプは、シリンダの内部をピストンの移動軸方向に隔成するシール部材を備えている(例えば特許文献1)。 Generally, a plunger pump includes a seal member that separates the inside of a cylinder in the direction of a moving axis of a piston (for example, Patent Document 1).
特表2013-527899号公報Special table 2013-527899 gazette
 上記プランジャポンプでは、エネルギー損失の抑制を図れなかった。 The energy loss could not be suppressed with the above plunger pump.
 本発明の1つの実施形態に係るプランジャポンプでは、シール部材が装着される部材の表面に対してシール部材が部分的に接触する。 In the plunger pump according to one embodiment of the present invention, the seal member partially contacts the surface of the member on which the seal member is mounted.
 よって、本発明の一実施形態によれば、エネルギー損失の抑制を図ることができる。 Therefore, according to one embodiment of the present invention, energy loss can be suppressed.
実施形態のブレーキシステム1の概略構成を示す。1 shows a schematic configuration of a brake system 1 of an embodiment. 実施形態のハウジング6の斜視図である。It is a perspective view of the housing 6 of the embodiment. 実施形態の第2ユニット1Bの断面図である。FIG. 3 is a cross-sectional view of a second unit 1B of the embodiment. 図3におけるポンプ部7Aの断面の拡大図である。FIG. 4 is an enlarged view of a cross section of a pump section 7A in FIG. 図3におけるポンプ部7Aの断面の斜視図である。FIG. 4 is a perspective view of a cross section of a pump section 7A in FIG. 第1実施形態のポンプ部7Aにおける一部の部品の分解斜視図である。FIG. 5 is an exploded perspective view of some components in the pump unit 7A of the first embodiment. 第1実施形態のポンプ部7Aにおける一部の部品の分解斜視図である。FIG. 5 is an exploded perspective view of some components in the pump unit 7A of the first embodiment. 図4のVIII-VIII視断面のうち第1実施形態のシリンダ71、ピストン75、および第3シール部材793を示す。FIG. 4 shows the cylinder 71, the piston 75, and the third seal member 793 of the first embodiment in the cross-sectional view taken along the line VIII-VIII of FIG. 図4のVIII-VIII視断面のうち第1実施形態のピストン75および第3シール部材793を示す。The piston 75 and the third seal member 793 of the first embodiment are shown in the VIII-VIII sectional view of FIG. 第2実施形態のポンプ部7Aにおける一部の部品の分解斜視図である。FIG. 6 is an exploded perspective view of some components in a pump unit 7A of a second embodiment. 図4のVIII-VIII視断面のうち第2実施形態のシリンダ71、ピストン75、および第3シール部材793を示す。FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the second embodiment in the cross-sectional view taken along the line VIII-VIII of FIG. 第3実施形態のポンプ部7Aにおける一部の部品の分解斜視図である。FIG. 9 is an exploded perspective view of some components in a pump unit 7A of a third embodiment. 図4のVIII-VIII視断面のうち第3実施形態のシリンダ71、ピストン75、および第3シール部材793を示す。FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the third embodiment in the cross-sectional view taken along the line VIII-VIII of FIG. 第4実施形態のポンプ部7Aにおける一部の部品の分解斜視図である。FIG. 10 is an exploded perspective view of some components in a pump unit 7A of a fourth embodiment. 図4のVIII-VIII視断面のうち第4実施形態のシリンダ71、ピストン75、および第3シール部材793を示す。FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the fourth embodiment in the cross-sectional view taken along the line VIII-VIII of FIG. 第5実施形態のポンプ部7Aにおける一部の部品の分解斜視図である。FIG. 10 is an exploded perspective view of some components in a pump unit 7A of a fifth embodiment. 図4のVIII-VIII視断面のうち第5実施形態のシリンダ71、ピストン75、および第3シール部材793を示す。FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the fifth embodiment in the VIII-VIII sectional view of FIG. 第6実施形態のポンプ部7Aにおける一部の部品の分解斜視図である。FIG. 10 is an exploded perspective view of some components in a pump unit 7A of a sixth embodiment. 図4のXIX- XIX視断面のうち第6実施形態のシリンダ71、ピストン75、および第3シール部材793を示す。FIG. 4 shows a cylinder 71, a piston 75, and a third seal member 793 of the sixth embodiment in the XIX-IXXIX sectional view of FIG. 図4のVIII-VIII視断面のうち第6実施形態のピストン75および第3シール部材793を示す。FIG. 4 shows a piston 75 and a third seal member 793 of the sixth embodiment in the cross-sectional view taken along the line VIII-VIII of FIG. 第7実施形態のポンプ部7Aにおける一部の部品の分解斜視図である。FIG. 10 is an exploded perspective view of some components in a pump unit 7A of a seventh embodiment. 図3におけるポンプ部7Aの断面のうち、第7実施形態のピストン75の端部、弁ケース76、第1ボール771、第1ばね781、および第3シール部材793の拡大図である。FIG. 8 is an enlarged view of an end portion of a piston 75, a valve case 76, a first ball 771, a first spring 781, and a third seal member 793 in the cross section of the pump portion 7A in FIG. 図22の部分XXIIIを拡大して示す。Part XXIII in FIG. 22 is shown enlarged. 第8実施形態のポンプ部7Aにおける一部の部品の分解斜視図である。FIG. 20 is an exploded perspective view of some components in a pump unit 7A of an eighth embodiment. 図24の部品794(第3シール部材793及び弁ケース76)を拡大して示す斜視図である。FIG. 25 is an enlarged perspective view showing a part 794 (third seal member 793 and valve case 76) of FIG. 図24の部品794をZ軸正方向側から見た斜視図である。FIG. 25 is a perspective view of the component 794 in FIG. 24 as viewed from the Z axis positive direction side.
 以下、本発明を実施するための形態を、図面に基づき説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
 [第1実施形態]
  まず、構成を説明する。図1に示すブレーキシステム1は、車輪を駆動する原動機として内燃機関(エンジン)のみを備えた車両のほか、内燃機関に加えて電動式のモータ(ジェネレータ)を備えたハイブリッド車や、電動式のモータのみを備えた電気自動車等に搭載可能な液圧式ブレーキシステムである。システム1は、第1ユニット1Aと第2ユニット1Bを有する。図1では、第1ユニット1Aの断面と共に第2ユニット1Bの液圧回路を示す。説明の便宜上、マスタシリンダ4のピストン41の移動軸方向にx軸を設け、ブレーキペダル100の踏込み操作に応じてピストン41が移動する側を正とする。第1ユニット1Aは、プッシュロッド100aを介してブレーキペダル100に連結される。第1ユニット1Aと第2ユニット1Bは、車両のエンジン室等に設置され、複数の配管10によって互いに接続される。複数の配管10は、マスタシリンダ配管10M(プライマリ配管10MP、セカンダリ配管10MS)、吸入配管10R、及び背圧配管10Xを有する。車両の左前輪FL、右前輪FR、左後輪RL、および右後輪RRのホイルシリンダ101と第2ユニット1Bとは、ホイルシリンダ配管10Wによって互いに接続される。配管10M,10W,10Xは金属製のブレーキパイプであり、配管10Rはゴムホースである。システム1は、作動液としてのブレーキ液をホイルシリンダ101に供給し、ホイルシリンダ液圧(ブレーキ液圧)を発生させることにより、摩擦制動力(液圧制動力)を各車輪FL~RRに付与する。システム1は2系統(プライマリP系統及びセカンダリS系統)のブレーキ配管を有する。配管形式はX配管であるが、前後配管等を採用してもよい。P系統に対応する部材とS系統に対応する部材とを区別する場合は、それぞれの符号の末尾に添字P,Sを付す。
[First embodiment]
First, the configuration will be described. The brake system 1 shown in FIG. 1 is a vehicle equipped with only an internal combustion engine (engine) as a prime mover for driving wheels, a hybrid vehicle equipped with an electric motor (generator) in addition to the internal combustion engine, This is a hydraulic brake system that can be mounted on an electric vehicle equipped with only a motor. The system 1 includes a first unit 1A and a second unit 1B. FIG. 1 shows a hydraulic circuit of the second unit 1B together with a cross section of the first unit 1A. For convenience of explanation, the x axis is provided in the moving axis direction of the piston 41 of the master cylinder 4, and the side on which the piston 41 moves in response to the depression operation of the brake pedal 100 is positive. The first unit 1A is connected to the brake pedal 100 via a push rod 100a. The first unit 1A and the second unit 1B are installed in the engine compartment of the vehicle and are connected to each other by a plurality of pipes 10. The plurality of pipes 10 include a master cylinder pipe 10M (primary pipe 10MP, secondary pipe 10MS), a suction pipe 10R, and a back pressure pipe 10X. The wheel cylinder 101 and the second unit 1B of the left front wheel FL, the right front wheel FR, the left rear wheel RL, and the right rear wheel RR of the vehicle are connected to each other by a wheel cylinder pipe 10W. The pipes 10M, 10W, and 10X are metal brake pipes, and the pipe 10R is a rubber hose. The system 1 supplies the brake fluid as hydraulic fluid to the wheel cylinder 101 and generates the wheel cylinder hydraulic pressure (brake hydraulic pressure), thereby applying the friction braking force (hydraulic braking force) to each wheel FL to RR. . System 1 has two brake pipes (primary P system and secondary S system). The piping type is X piping, but front and rear piping may be adopted. In order to distinguish a member corresponding to the P system and a member corresponding to the S system, the suffixes P and S are added to the end of each symbol.
 第1ユニット1Aは、リザーバタンク2と、ハウジング3と、マスタシリンダ4と、ストロークシミュレータ5と、ストロークセンサ91とを有する。リザーバタンク2は、ブレーキ液を貯留するブレーキ液源であり、大気圧に開放される。リザーバタンク2は、ハウジング3に設置される。リザーバタンク2は、第1隔壁21と第2隔壁22を有する。隔壁21,22は、リザーバタンク2の底部から所定の高さまで延びて、リザーバタンク2の底部側を3つの室に仕切る。この3つの室は、第1室23P,23Sと第2室23Rを有する。第2室23Rは液面センサ24を備える。 The first unit 1A has a reservoir tank 2, a housing 3, a master cylinder 4, a stroke simulator 5, and a stroke sensor 91. The reservoir tank 2 is a brake fluid source that stores brake fluid, and is opened to atmospheric pressure. The reservoir tank 2 is installed in the housing 3. The reservoir tank 2 has a first partition wall 21 and a second partition wall 22. The partition walls 21 and 22 extend from the bottom of the reservoir tank 2 to a predetermined height, and divide the bottom of the reservoir tank 2 into three chambers. These three chambers have first chambers 23P and 23S and a second chamber 23R. The second chamber 23R includes a liquid level sensor 24.
 ハウジング3は、その内部にマスタシリンダ4やストロークシミュレータ5を収容(内蔵)する。ハウジング3のx軸負方向側は、ボルト等により、車体側のダッシュパネルに固定される。ハウジング3は、第1シリンダ30と、第2シリンダ31と、補給液路32と、供給液路33と、正圧液路34と、背圧液路35と、供給ポート36と、背圧ポート37とを有する。ポート36,37はハウジング3の外表面に開口する。第1シリンダ30は、x軸方向に延びる。シリンダ30は、x軸方向両側(P,S系統毎)に、2つのシール溝301,302と1つの補給ポート303を有する。溝301,302とポート303はシリンダ30の軸心の周り方向に延びる環状である。ポート303は溝301,302の間にある。第2シリンダ31は、x軸方向に延び、シリンダ30のx軸正方向側に第1シリンダ30と同軸上に配置される。シリンダ31は、x軸負方向側に小径部311を有し、x軸正方向側に大径部312を有する。小径部311は2つのシール溝313,314を有する。溝313,314はシリンダ31の軸心の周り方向に延びる環状である。補給液路32は、補給ポート303と第1室23P,23Sを接続する。供給液路33は、第1シリンダ30と供給ポート36を接続する。正圧液路34は、第1シリンダ30と小径部311を接続する。背圧液路35は、大径部312と背圧ポート37を接続する。供給ポート36には、マスタシリンダ配管10Mの一端が接続される。背圧ポート37には、背圧配管10Xの一端が接続される。 The housing 3 accommodates (internally) the master cylinder 4 and the stroke simulator 5 therein. The x-axis negative direction side of the housing 3 is fixed to the dash panel on the vehicle body side with bolts or the like. The housing 3 includes a first cylinder 30, a second cylinder 31, a replenishment liquid path 32, a supply liquid path 33, a positive pressure liquid path 34, a back pressure liquid path 35, a supply port 36, and a back pressure port. 37. The ports 36 and 37 open on the outer surface of the housing 3. The first cylinder 30 extends in the x-axis direction. The cylinder 30 has two seal grooves 301 and 302 and one supply port 303 on both sides in the x-axis direction (for each of the P and S systems). The grooves 301 and 302 and the port 303 have an annular shape extending in the direction around the axis of the cylinder 30. The port 303 is between the grooves 301 and 302. The second cylinder 31 extends in the x-axis direction, and is arranged coaxially with the first cylinder 30 on the x-axis positive direction side of the cylinder 30. The cylinder 31 has a small diameter portion 311 on the x axis negative direction side and a large diameter portion 312 on the x axis positive direction side. The small diameter portion 311 has two seal grooves 313 and 314. The grooves 313 and 314 are annular extending in the direction around the axis of the cylinder 31. The replenishment liquid path 32 connects the replenishment port 303 and the first chambers 23P and 23S. The supply liquid path 33 connects the first cylinder 30 and the supply port 36. The positive pressure liquid passage 34 connects the first cylinder 30 and the small diameter portion 311. The back pressure liquid path 35 connects the large diameter portion 312 and the back pressure port 37. One end of the master cylinder pipe 10M is connected to the supply port 36. One end of a back pressure pipe 10X is connected to the back pressure port 37.
 マスタシリンダ4は、運転者によるブレーキペダル100の操作に応じて作動し、ホイルシリンダ101に対し作動液圧を供給可能な第1の液圧源である。マスタシリンダ4は、ピストン41とばねユニット42を、P,S系統毎に有する。マスタシリンダ4は、タンデム型であり、ピストン41として、プッシュロッド100aに接続されるプライマリピストン41Pと、フリーピストン型のセカンダリピストン41Sとを、直列に有する。ピストン41は、有底円筒状であり、ピストン41の周壁には補給孔410が貫通する。ピストン41は、シリンダ30に収容され、シリンダ30の内周面に沿ってx軸方向に移動可能である。ストロークセンサ91は、プライマリピストン41Pのx軸方向移動量(ペダルストローク)を検出する。ピストン41は、液圧室40を画成する。シリンダ30には、プライマリピストン41Pとセカンダリピストン41Sとの間にプライマリ室40Pが画成され、セカンダリピストン41Sとシリンダ30のx軸正方向端との間にセカンダリ室40Sが画成される。室40には供給液路33が常時開口する。液圧室40には、ばねユニット42が収容される。ばねユニット42は、ばね420と、第1リテーナ421と、第2リテーナ422と、ストッパ423とを有する。ばね420は圧縮コイルばねであり、両端がそれぞれリテーナ421,422に保持される。ばね420は、ストッパ423により軸方向の最大長が制限され、常時押し縮められた状態であると共に、軸方向に所定量内で圧縮弾性変形可能である。ばね420は、ピストン41をx軸負方向側に常時付勢する戻しばねとして機能する。シール溝301,302には、ロッドシールとしてのシール部材431,432がそれぞれ嵌合する。シール部材431,432は、環状であり、断面形状がU字状のパッキンである。x軸正方向側のシール部材432は、ピストン41の外周側において、液圧室40の側から補給ポート303の側へ向うブレーキ液の流れを抑制し、逆方向のブレーキ液の流れを許容する。ピストン41がx軸負方向側に最大変位した初期状態で、補給孔410は、両シール部材431,432の内周側リップの間に位置し、補給ポート303に連通する。 The master cylinder 4 is a first hydraulic pressure source that operates according to the operation of the brake pedal 100 by the driver and can supply hydraulic fluid pressure to the wheel cylinder 101. The master cylinder 4 has a piston 41 and a spring unit 42 for each of the P and S systems. The master cylinder 4 is a tandem type, and has, as a piston 41, a primary piston 41P connected to the push rod 100a and a free piston type secondary piston 41S in series. The piston 41 has a bottomed cylindrical shape, and a supply hole 410 passes through the peripheral wall of the piston 41. The piston 41 is accommodated in the cylinder 30 and can move in the x-axis direction along the inner peripheral surface of the cylinder 30. The stroke sensor 91 detects the movement amount (pedal stroke) of the primary piston 41P in the x-axis direction. The piston 41 defines a hydraulic chamber 40. In the cylinder 30, a primary chamber 40P is defined between the primary piston 41P and the secondary piston 41S, and a secondary chamber 40S is defined between the secondary piston 41S and the x-axis positive direction end of the cylinder 30. A supply liquid path 33 is always open in the chamber 40. A spring unit 42 is accommodated in the hydraulic chamber 40. The spring unit 42 includes a spring 420, a first retainer 421, a second retainer 422, and a stopper 423. The spring 420 is a compression coil spring, and both ends thereof are held by the retainers 421 and 422, respectively. The spring 420 has a maximum axial length limited by the stopper 423, is in a state of being constantly compressed, and can be compressed and elastically deformed within a predetermined amount in the axial direction. The spring 420 functions as a return spring that constantly biases the piston 41 in the negative x-axis direction. Seal members 431 and 432 as rod seals are fitted in the seal grooves 301 and 302, respectively. The seal members 431 and 432 are annular and have a U-shaped cross section. The seal member 432 on the x axis positive direction side suppresses the flow of brake fluid from the hydraulic pressure chamber 40 side to the replenishment port 303 side on the outer peripheral side of the piston 41, and allows the flow of brake fluid in the reverse direction. . In an initial state in which the piston 41 is maximum displaced in the x-axis negative direction side, the supply hole 410 is located between the inner peripheral lips of the seal members 431 and 432 and communicates with the supply port 303.
 ストロークシミュレータ5は、運転者のブレーキ操作に伴い作動し、ブレーキペダル100に反力及びストロークを付与する。ストロークシミュレータ5は、ピストン51と、第1ばねユニット52と、第2ばねユニット53とを有する。ピストン51は、有底円筒状であり、第2シリンダ31に収容される。ピストン51は、小径部311の内周面に沿ってx軸方向に移動可能である。第2シリンダ31には、ピストン51と小径部311のx軸負方向端との間に正圧室501(主室)が画成され、ピストン51と大径部312のx軸正方向端との間に背圧室502(副室)が画成される。背圧室502には背圧液路35が常時開口する。シール溝313,314には、ロッドシールとしてのシール部材541,542がそれぞれ嵌合する。シール部材541,542は、環状であり、断面形状がU字状のパッキンである。ピストン51の外周側において、x軸正方向側のシール部材542は、背圧室502の側から正圧室501の側へ向うブレーキ液の流れを抑制し、x軸負方向側のシール部材541は、正圧室501の側から背圧室502の側へ向うブレーキ液の流れを抑制する。シール部材541,542により両室501,502が液密に隔てられる。背圧室502には、第1,第2ばねユニット52,53が収容される。第1ばねユニット52は、第1ばね520と、第1リテーナ521と、第2リテーナ522と、ストッパ523と、第1ダンパ524とを有する。第1ばね520は圧縮コイルばねであり、両端がそれぞれ第1,第2リテーナ521,522に保持される。第1ばね520は、ストッパ523により軸方向の最大長が制限され、常時押し縮められた状態であると共に、軸方向に所定量内で圧縮弾性変形可能である。第1ダンパ524はゴム等の弾性部材であり、第1リテーナ521の内部で、ストッパ523とピストン51との間にある。第2ばねユニット53は、第2ばね530と、第3リテーナ531と、栓部材532と、第2ダンパ533とを有する。栓部材532は、第2シリンダ31のx軸正方向側の開口を閉塞する。第2ばね530は第1ばね520よりもばね係数が大きい大径の圧縮コイルばねであり、両端が第3リテーナ531と栓部材532に保持される。第3リテーナ531は第2リテーナ522を保持する。第2ばね530は、常時押し縮められた状態であると共に、軸方向に所定量内で圧縮弾性変形可能である。第2ダンパ533はゴム等の弾性部材であり、栓部材532に設置される。第1ばねユニット52は、第2ばねユニット53とピストン51との間にある。第1,第2ばね520, 530は、ピストン51をx軸負方向側に常時付勢する戻しばねとして機能する。第1ダンパ524は、第1ばね520が軸方向で所定量以上圧縮されると圧縮弾性変形を開始し、衝撃を緩和する。第2ダンパ533は、第2ばね530が軸方向で所定量以上圧縮されると圧縮弾性変形を開始し、衝撃を緩和する。 The stroke simulator 5 operates in accordance with the driver's braking operation, and applies a reaction force and a stroke to the brake pedal 100. The stroke simulator 5 includes a piston 51, a first spring unit 52, and a second spring unit 53. The piston 51 has a bottomed cylindrical shape and is accommodated in the second cylinder 31. The piston 51 is movable in the x-axis direction along the inner peripheral surface of the small diameter portion 311. The second cylinder 31 has a positive pressure chamber 501 (main chamber) defined between the piston 51 and the x axis negative direction end of the small diameter portion 311, and the piston 51 and the x axis positive direction end of the large diameter portion 312 In the meantime, a back pressure chamber 502 (sub chamber) is defined. A back pressure liquid path 35 is always open in the back pressure chamber 502. Seal members 541 and 542 as rod seals are fitted in the seal grooves 313 and 314, respectively. The seal members 541 and 542 are ring-shaped packings having a U-shaped cross section. On the outer peripheral side of the piston 51, the seal member 542 on the x-axis positive direction side suppresses the flow of brake fluid from the back pressure chamber 502 side to the positive pressure chamber 501 side, and the seal member 541 on the x-axis negative direction side. Suppresses the flow of brake fluid from the positive pressure chamber 501 side toward the back pressure chamber 502 side. Both chambers 501 and 502 are liquid-tightly separated by seal members 541 and 542. First and second spring units 52 and 53 are accommodated in the back pressure chamber 502. The first spring unit 52 includes a first spring 520, a first retainer 521, a second retainer 522, a stopper 523, and a first damper 524. The first spring 520 is a compression coil spring, and both ends thereof are held by the first and second retainers 521 and 522, respectively. The first spring 520 has a maximum axial length limited by a stopper 523, is in a state of being constantly compressed, and can be compressed and elastically deformed within a predetermined amount in the axial direction. The first damper 524 is an elastic member such as rubber, and is between the stopper 523 and the piston 51 inside the first retainer 521. The second spring unit 53 includes a second spring 530, a third retainer 531, a plug member 532, and a second damper 533. The plug member 532 closes the opening of the second cylinder 31 on the x axis positive direction side. The second spring 530 is a large-diameter compression coil spring having a spring coefficient larger than that of the first spring 520, and both ends are held by the third retainer 531 and the plug member 532. The third retainer 531 holds the second retainer 522. The second spring 530 is in a state where it is always compressed and can be compressed and elastically deformed within a predetermined amount in the axial direction. The second damper 533 is an elastic member such as rubber and is installed on the plug member 532. The first spring unit 52 is located between the second spring unit 53 and the piston 51. The first and second springs 520 and 530 function as return springs that constantly urge the piston 51 toward the negative x-axis direction. The first damper 524 starts compressive elastic deformation when the first spring 520 is compressed by a predetermined amount or more in the axial direction, and alleviates the impact. When the second spring 530 is compressed by a predetermined amount or more in the axial direction, the second damper 533 starts compressive elastic deformation and alleviates the impact.
 第2ユニット1Bは、ブレーキ装置としての液圧制御装置である。第2ユニット1Bは、ハウジング6と、モータ7aと、ポンプ7と、複数の電磁弁81等と、複数の液圧センサ92等と、電子制御ユニット(コントロールユニット。以下、ECUという。)90とを有する。ハウジング6は、その内部にポンプ7や電磁弁81等の弁体を収容する。ハウジング6の内部には、ブレーキ液が流通する上記2系統(P系統及びS系統)の回路(ブレーキ液圧回路)が複数の液路により形成される。複数の液路は、供給液路11と、吸入液路12と、吐出液路13と、調圧液路14と、減圧液路15と、背圧液路16と、第1シミュレータ液路17と、第2シミュレータ液路18とを有する。ハウジング6の内部には複数のポート67があり、これらのポート67はハウジング6の外表面に開口する。複数のポート67は、ハウジング6の内部の液路11等に連続し、この内部の液路11等とハウジング6の外部の液路(配管10M等)とを接続する。複数のポート67は、マスタシリンダポート671(プライマリポート671P、セカンダリポート671S)と、ホイルシリンダポート672と、吸入ポート673と、背圧ポート674とを有する。マスタシリンダポート671は、ハウジング6の内部の供給液路11に接続すると共に、ハウジング6(第2ユニット1B)をマスタシリンダ4(液圧室40)に接続する。プライマリポート671Pにはプライマリ配管10MPの他端が接続される。セカンダリポート671Sにはセカンダリ配管10MSの他端が接続される。吸入ポート673は、ハウジング6の内部の第1液溜め室63に接続すると共に、ハウジング6をリザーバタンク2(第2室23R)に接続する。吸入ポート673には吸入配管10Rの他端が接続される。背圧ポート674は、ハウジング6の内部の背圧液路16に接続すると共に、ハウジング6をストロークシミュレータ5(背圧室502)に接続する。背圧ポート674には背圧配管10Xの他端が接続される。ホイルシリンダポート672は、ハウジング6の内部の供給液路11に接続すると共に、ハウジング6(第2ユニット1B)をホイルシリンダ101に接続する。ホイルシリンダポート672にはホイルシリンダ配管10Wの一端が接続される。 The second unit 1B is a hydraulic pressure control device as a brake device. The second unit 1B includes a housing 6, a motor 7a, a pump 7, a plurality of electromagnetic valves 81 and the like, a plurality of hydraulic pressure sensors 92 and the like, and an electronic control unit (control unit; hereinafter referred to as ECU) 90. Have The housing 6 accommodates valve bodies such as the pump 7 and the electromagnetic valve 81 therein. Inside the housing 6, the above-mentioned two systems (P system and S system) in which the brake fluid flows (brake fluid pressure circuit) are formed by a plurality of fluid paths. The plurality of liquid paths are the supply liquid path 11, the suction liquid path 12, the discharge liquid path 13, the pressure regulation liquid path 14, the decompression liquid path 15, the back pressure liquid path 16, and the first simulator liquid path 17. And a second simulator liquid path 18. There are a plurality of ports 67 inside the housing 6, and these ports 67 open to the outer surface of the housing 6. The plurality of ports 67 are continuous with the liquid path 11 and the like inside the housing 6 and connect the liquid path 11 and the like inside the housing 6 with a liquid path (pipe 10M and the like) outside the housing 6. The plurality of ports 67 include a master cylinder port 671 (primary port 671P, secondary port 671S), a wheel cylinder port 672, a suction port 673, and a back pressure port 674. The master cylinder port 671 connects to the supply liquid path 11 inside the housing 6 and connects the housing 6 (second unit 1B) to the master cylinder 4 (hydraulic pressure chamber 40). The other end of the primary pipe 10MP is connected to the primary port 671P. The other end of the secondary pipe 10MS is connected to the secondary port 671S. The suction port 673 connects to the first liquid reservoir chamber 63 inside the housing 6 and connects the housing 6 to the reservoir tank 2 (second chamber 23R). The other end of the suction pipe 10R is connected to the suction port 673. The back pressure port 674 connects to the back pressure liquid path 16 inside the housing 6 and connects the housing 6 to the stroke simulator 5 (back pressure chamber 502). The other end of the back pressure pipe 10X is connected to the back pressure port 674. The wheel cylinder port 672 connects to the supply liquid path 11 inside the housing 6 and connects the housing 6 (second unit 1B) to the wheel cylinder 101. One end of a wheel cylinder pipe 10W is connected to the wheel cylinder port 672.
 モータ7aは、回転式の電動機であり、ポンプ7を駆動するための回転軸を備える。モータ7aは、ブラシ付きモータでもよいし、回転軸の回転角度ないし回転数を検出するレゾルバを備えるブラシレスモータでもよい。ポンプ7は、モータ7aにより駆動され、ホイルシリンダ101に対し作動液圧を供給可能な第2の液圧源であり、S系統及びP系統で共通に用いられる。電磁弁81等は、制御信号に応じて動作するアクチュエータであり、ソレノイドと弁体を有する。弁体は、ソレノイドへの通電に応じてストロークし、液路の開閉を切り換える(液路を断接する)。電磁弁81等は、上記回路の連通状態を制御し、ブレーキ液の流通状態を調整することで、制御液圧を発生する。複数の電磁弁81等は、遮断弁81と、増圧弁(以下、SOL/V INという。)82と、連通弁83と、調圧弁84と、減圧弁(以下、SOL/V OUTという。)85と、ストロークシミュレータイン弁(以下、SS/V INという。)87及びストロークシミュレータアウト弁(以下、SS/V OUTという。)88とを有する。遮断弁81、SOL/V IN82、及び調圧弁84は、非通電状態で開弁する常開弁である。連通弁83、減圧弁25、SS/V IN87、及びSS/V OUT88は、非通電状態で閉弁する常閉弁である。遮断弁81、SOL/V IN82、及び調圧弁84は、ソレノイドに供給される電流に応じて弁の開度が調整される比例制御弁である。連通弁83、減圧弁25、SS/V IN87、及びSS/V OUT88は、弁の開閉が二値的に切り替え制御されるオン・オフ弁である。尚、これらの弁は比例制御弁でもよい。液圧センサ92等は、ポンプ7の吐出圧やマスタシリンダ圧を検出する。複数の液圧センサ92等は、マスタシリンダ圧センサ92と、ホイルシリンダ圧センサ93(プライマリ圧センサ93P及びセカンダリ圧センサ93S)と、吐出圧センサ94とを有する。ECU90は、ストロークセンサ91および液圧センサ92等の検出値や車両側からの走行状態に関する情報が入力され、内蔵されたプログラムに基づき、電磁弁81等の開閉動作やモータ7aの回転数(すなわちポンプ7の吐出量)を制御することで、各車輪FL~RRのホイルシリンダ液圧(液圧制動力)を制御する。これにより、ECU90は、各種のブレーキ制御(制動による車輪のスリップを抑制するためのアンチロックブレーキ制御や、運転者のブレーキ操作力を低減するための倍力制御や、車両の運動制御のためのブレーキ制御や、先行車追従制御等の自動ブレーキ制御や、回生協調ブレーキ制御等)を実行する。車両の運動制御には、横滑り防止等の車両挙動安定化制御が含まれる。回生協調ブレーキ制御では、回生ブレーキと協調して目標減速度(目標制動力)を達成するようにホイルシリンダ液圧を制御する。 The motor 7a is a rotary electric motor and includes a rotating shaft for driving the pump 7. The motor 7a may be a motor with a brush, or may be a brushless motor provided with a resolver that detects the rotation angle or the rotation speed of the rotating shaft. The pump 7 is a second hydraulic pressure source that is driven by a motor 7a and can supply hydraulic fluid pressure to the wheel cylinder 101, and is commonly used in the S system and the P system. The electromagnetic valve 81 or the like is an actuator that operates in response to a control signal, and includes a solenoid and a valve body. The valve body strokes in response to energization of the solenoid, and switches between opening and closing the liquid path (connecting and disconnecting the liquid path). The electromagnetic valve 81 or the like generates a control hydraulic pressure by controlling the communication state of the circuit and adjusting the flow state of the brake fluid. The plurality of solenoid valves 81 and the like include a shut-off valve 81, a pressure increasing valve (hereinafter referred to as SOL / V IN) 82, a communication valve 83, a pressure regulating valve 84, and a pressure reducing valve (hereinafter referred to as SOL / V OUT). 85 and a stroke simulator in valve (hereinafter referred to as SS / V IN) 87 and a stroke simulator out valve (hereinafter referred to as SS / V OUT) 88. The shut-off valve 81, the SOL / V IN 82, and the pressure regulating valve 84 are normally open valves that open in a non-energized state. The communication valve 83, the pressure reducing valve 25, SS / V IN87, and SS / V OUT88 are normally closed valves that close in a non-energized state. The shut-off valve 81, the SOL / V IN 82, and the pressure regulating valve 84 are proportional control valves in which the opening degrees of the valves are adjusted according to the current supplied to the solenoid. The communication valve 83, the pressure reducing valve 25, SS / V IN87, and SS / V OUT88 are on / off valves that are controlled to be switched in a binary manner. These valves may be proportional control valves. The hydraulic pressure sensor 92 and the like detect the discharge pressure of the pump 7 and the master cylinder pressure. The plurality of hydraulic pressure sensors 92 and the like include a master cylinder pressure sensor 92, a wheel cylinder pressure sensor 93 (a primary pressure sensor 93P and a secondary pressure sensor 93S), and a discharge pressure sensor 94. The ECU 90 receives detection values of the stroke sensor 91 and the hydraulic pressure sensor 92 and information on the running state from the vehicle side, and based on a built-in program, opens and closes the electromagnetic valve 81 and the rotational speed of the motor 7a (that is, By controlling the discharge amount of the pump 7, the wheel cylinder hydraulic pressure (hydraulic braking force) of each wheel FL to RR is controlled. As a result, the ECU 90 can be used for various brake controls (anti-lock brake control to suppress wheel slip due to braking, boost control to reduce the driver's brake operation force, and vehicle motion control. Brake control, automatic brake control such as preceding vehicle follow-up control, regenerative cooperative brake control, etc.). Vehicle motion control includes vehicle behavior stabilization control such as skidding prevention. In regenerative cooperative brake control, the wheel cylinder hydraulic pressure is controlled so as to achieve the target deceleration (target braking force) in cooperation with the regenerative brake.
 以下、第2ユニット1Bのブレーキ液圧回路を説明する。各車輪FL~RRに対応する部材には、その符号の末尾にそれぞれ添字a~dを付して適宜区別する。供給液路11Pの一端側は、プライマリポート671Pに接続する。液路11Pの他端側は、前左輪用の液路11aと後右輪用の液路11dとに分岐する。各液路11a,11dは対応するホイルシリンダポート672に接続する。供給液路11Sの一端側は、セカンダリポート671Sに接続する。液路11Sの他端側は、前右輪用の液路11bと後左輪用の液路11cとに分岐する。各液路11b,11cは対応するホイルシリンダポート672に接続する。液路11の上記一端側には遮断弁81がある。上記他端側の各液路11a~11dにはSOL/V IN82がある。SOL/V IN82をバイパスして各液路11と並列にバイパス液路110があり、液路110にはチェック弁820がある。弁820は、ホイルシリンダポート672の側からマスタシリンダポート671の側へ向うブレーキ液の流れのみを許容する。 Hereinafter, the brake hydraulic circuit of the second unit 1B will be described. The members corresponding to the wheels FL to RR are appropriately distinguished by adding suffixes a to d at the end of the reference numerals. One end side of the supply liquid path 11P is connected to the primary port 671P. The other end of the liquid path 11P branches into a liquid path 11a for the front left wheel and a liquid path 11d for the rear right wheel. Each fluid passage 11a, 11d is connected to a corresponding wheel cylinder port 672. One end side of the supply liquid path 11S is connected to the secondary port 671S. The other end of the liquid path 11S branches into a liquid path 11b for the front right wheel and a liquid path 11c for the rear left wheel. Each fluid passage 11b, 11c is connected to a corresponding wheel cylinder port 672. A shut-off valve 81 is provided on the one end side of the liquid path 11. The liquid paths 11a to 11d on the other end side have SOL / VSOLIN82. There is a bypass liquid passage 110 in parallel with each liquid passage 11 bypassing SOL / V IN 82, and a check valve 820 is provided in the liquid passage 110. The valve 820 allows only the flow of brake fluid from the wheel cylinder port 672 side to the master cylinder port 671 side.
 吸入液路12は、第1液溜め室63とポンプ7の吸入ポート623aとを接続する。第1液溜め室63は、吸入液路12上の容積室であり、リザーバ(内部リザーバ)として機能する。吐出液路13の一端側は、ポンプ7の吐出ポート624aに接続する。吐出液路13の他端側は、P系統用の液路13PとS系統用の液路13Sとに分岐する。各液路13P,13Sは、供給液路11における遮断弁81とSOL/V IN82との間に接続する。各液路13P,13Sには連通弁83がある。各液路13P,13Sは、P系統の供給液路11PとS系統の供給液路11Sとを接続する連通路として機能する。ポンプ7は、上記連通路(吐出液路13P,13S)及び供給液路11P,11Sを介して、各ホイルシリンダポート672に接続する。調圧液路14は、吐出液路13におけるポンプ7と連通弁83との間と、第1液溜め室63とを接続する。液路14には第1減圧弁としての調圧弁84がある。減圧液路15は、供給液路11の各液路11a~11dにおけるSOL/V IN82とホイルシリンダポート672との間と、第1液溜め室63とを接続する。液路15には第2減圧弁としてのSOL/V OUT85がある。 The suction liquid path 12 connects the first liquid reservoir chamber 63 and the suction port 623a of the pump 7. The first liquid reservoir chamber 63 is a volume chamber on the suction liquid passage 12, and functions as a reservoir (internal reservoir). One end side of the discharge liquid passage 13 is connected to the discharge port 624a of the pump 7. The other end side of the discharge liquid path 13 branches into a liquid path 13P for the P system and a liquid path 13S for the S system. Each liquid path 13P, 13S is connected between the shutoff valve 81 and the SOL / V IN 82 in the supply liquid path 11. Each fluid passage 13P, 13S has a communication valve 83. Each of the liquid paths 13P and 13S functions as a communication path that connects the supply liquid path 11P of the P system and the supply liquid path 11S of the S system. The pump 7 is connected to each wheel cylinder port 672 via the communication path (discharge liquid paths 13P, 13S) and the supply liquid paths 11P, 11S. The pressure adjusting liquid path 14 connects the pump 7 and the communication valve 83 in the discharge liquid path 13 to the first liquid reservoir chamber 63. The liquid passage 14 has a pressure regulating valve 84 as a first pressure reducing valve. The depressurizing liquid path 15 connects the first liquid reservoir chamber 63 between the SOL / V IN 82 and the wheel cylinder port 672 in each of the liquid paths 11a to 11d of the supply liquid path 11. The liquid path 15 has SOL / V OUT85 as a second pressure reducing valve.
 背圧液路16の一端側は、背圧ポート674に接続する。液路16の他端側は、第1シミュレータ液路17と第2シミュレータ液路18とに分岐する。第1シミュレータ液路17は、供給液路11Sにおける遮断弁81SとSOL/V IN82b,22cとの間に接続する。液路17にはSS/V IN87がある。SS/V IN87をバイパスして液路17と並列にバイパス液路170があり、液路170にはチェック弁870がある。弁870は、背圧液路16の側から供給液路11Sの側へ向うブレーキ液の流れのみを許容する。第2シミュレータ液路18は、第1液溜め室63に接続する。液路18にはSS/V OUT88がある。SS/V OUT88をバイパスして液路18と並列にバイパス液路180があり、液路180にはチェック弁880がある。弁880は、第1液溜め室63の側から背圧液路16の側へ向うブレーキ液の流れのみを許容する。供給液路11Sにおける遮断弁81Sとセカンダリポート671Sとの間には、この箇所の液圧(ストロークシミュレータ5の正圧室501の液圧であり、マスタシリンダ圧)を検出する液圧センサ92がある。供給液路11における遮断弁81とSOL/V IN82との間には、この箇所の液圧(ホイルシリンダ液圧に相当)を検出する液圧センサ93がある。吐出液路13におけるポンプ7と連通弁83との間には、この箇所の液圧(ポンプ吐出圧)を検出する液圧センサ94がある。 一端 One end of the back pressure fluid passage 16 is connected to the back pressure port 674. The other end side of the liquid path 16 branches into a first simulator liquid path 17 and a second simulator liquid path 18. The first simulator liquid path 17 is connected between the shutoff valve 81S and the SOL / V IN 82b, 22c in the supply liquid path 11S. In liquid line 17, there is SS / V 液 IN87. Bypassing SS / V170IN87, there is a bypass fluid passage 170 in parallel with the fluid passage 17, and the fluid passage 170 has a check valve 870. The valve 870 allows only the flow of brake fluid from the back pressure fluid passage 16 side to the supply fluid passage 11S side. The second simulator liquid path 18 is connected to the first liquid reservoir chamber 63. There is SS / V OUT88 in the liquid channel 18. Bypassing SS / V180OUT88, there is a bypass liquid path 180 in parallel with the liquid path 18, and the liquid path 180 has a check valve 880. The valve 880 allows only the flow of the brake fluid from the first liquid reservoir chamber 63 side toward the back pressure fluid path 16 side. Between the shutoff valve 81S and the secondary port 671S in the supply fluid path 11S, a fluid pressure sensor 92 that detects the fluid pressure at this location (the fluid pressure in the positive pressure chamber 501 of the stroke simulator 5 and the master cylinder pressure) is provided. is there. Between the shut-off valve 81 and the SOL / V IN 82 in the supply fluid path 11, there is a fluid pressure sensor 93 that detects the fluid pressure at this location (corresponding to the wheel cylinder fluid pressure). Between the pump 7 and the communication valve 83 in the discharge liquid passage 13, there is a liquid pressure sensor 94 that detects the liquid pressure (pump discharge pressure) at this location.
 マスタシリンダ4の各液圧室40P,40Sは、リザーバタンク2からブレーキ液を補給され、ピストン41の移動により液圧(マスタシリンダ圧)を発生する。第2ユニット1Bは、各ホイルシリンダ101にマスタシリンダ圧を供給可能である。マスタシリンダ4は、マスタシリンダ配管10M、(第2ユニット1Bの)供給液路11、及びホイルシリンダ配管10Wを介してホイルシリンダ101と接続し、ホイルシリンダ液圧を増圧可能である。運転者のブレーキ操作に伴いマスタシリンダ4から流出したブレーキ液は、マスタシリンダ配管10Mに流れ、マスタシリンダポート671を介して供給液路11内に取り込まれる。マスタシリンダ4は、プライマリ室40Pに発生したマスタシリンダ圧によりP系統の液路(供給液路11P)を介してホイルシリンダ101(FL),101(RR)を加圧可能である。同時に、マスタシリンダ4は、セカンダリ室40Sにより発生したマスタシリンダ圧によりS系統の液路(供給液路11S)を介してホイルシリンダ101(FR),101(RL)を加圧可能である。尚、第1ユニット1Aは、車両のエンジン又は別に設けた負圧ポンプが発生する負圧を利用して運転者のブレーキ操作力を倍力する負圧ブースタを備えていない。ECU90は、ポンプ7を非作動とし、遮断弁81を開方向に、SS/V IN87を閉方向に、SS/V OUT88を閉方向に制御する。遮断弁81が開方向に制御された状態で、マスタシリンダ4の液圧室40とホイルシリンダ101とを接続する液路系統(供給液路11等)は、ペダル踏力を用いて発生させたマスタシリンダ圧によりホイルシリンダ液圧を創生する踏力ブレーキ(非倍力制御)を実現する。ECU90は、SS/V OUT88を閉方向に制御する。これにより、ストロークシミュレータ5が機能しない。 The brake chambers 40P and 40S of the master cylinder 4 are supplied with brake fluid from the reservoir tank 2, and generate hydraulic pressure (master cylinder pressure) by the movement of the piston 41. The second unit 1B can supply a master cylinder pressure to each wheel cylinder 101. The master cylinder 4 is connected to the wheel cylinder 101 via the master cylinder pipe 10M, the supply liquid path 11 (of the second unit 1B), and the wheel cylinder pipe 10W, and the wheel cylinder hydraulic pressure can be increased. The brake fluid that has flowed out of the master cylinder 4 due to the driver's braking operation flows into the master cylinder piping 10M and is taken into the supply liquid passage 11 through the master cylinder port 671. The master cylinder 4 can pressurize the wheel cylinders 101 (FL) and 101 (RR) through the P system liquid passage (supply liquid passage 11P) by the master cylinder pressure generated in the primary chamber 40P. At the same time, the master cylinder 4 can pressurize the wheel cylinders 101 (FR) and 101 (RL) via the S system liquid path (supply liquid path 11S) by the master cylinder pressure generated in the secondary chamber 40S. The first unit 1A does not include a negative pressure booster that boosts the driver's brake operation force by using negative pressure generated by a vehicle engine or a negative pressure pump provided separately. The ECU 90 deactivates the pump 7, and controls the shut-off valve 81 in the opening direction, SS / V IN87 in the closing direction, and SS / V OUT88 in the closing direction. In a state where the shut-off valve 81 is controlled in the opening direction, a fluid passage system (supply fluid passage 11 or the like) that connects the hydraulic chamber 40 of the master cylinder 4 and the wheel cylinder 101 is a master that is generated using pedal depression force. A pedal force brake (non-boosting control) that creates wheel cylinder hydraulic pressure using cylinder pressure is realized. The ECU 90 controls the SS / V OUT 88 in the closing direction. As a result, the stroke simulator 5 does not function.
 マスタシリンダ4とホイルシリンダ101との連通を遮断した状態で、第2ユニット1Bは、運転者によるブレーキ操作とは独立に、ポンプ7が発生する液圧を用いて各ホイルシリンダ101の液圧を個別に制御可能である。ECU90は、遮断弁81を閉方向に制御する。この状態で、第1液溜め室63とホイルシリンダ101を接続するブレーキ系統(吸入液路12、吐出液路13等)は、ポンプ7を用いて発生させた液圧によりホイルシリンダ液圧を創生する所謂ブレーキバイワイヤシステムとして機能する。ポンプ7は、第1液溜め室63のブレーキ液を吸入して吐出する。第1液溜め室63には、配管10Rを介してリザーバタンク2からブレーキ液が補給される。第2ユニット1Bは、ポンプ7により昇圧されたブレーキ液を、ホイルシリンダ配管10Wを介してホイルシリンダ101へ供給する。これにより、ブレーキ液圧(ホイルシリンダ液圧)を発生させ、ブレーキシステム1が搭載される車両に制動トルクを発生可能である。ECU90は、SS/V IN87を閉方向に、SS/V OUT88を開方向に制御する。これにより、ストロークシミュレータ5が機能する。運転者のブレーキ操作に応じてマスタシリンダ4からストロークシミュレータ5の正圧室501にブレーキ液が流入することで、ペダルストロークが発生すると共に、第1,第2ばね520,530の付勢力により運転者のブレーキ操作反力(ペダル反力)が生成される。 In a state where communication between the master cylinder 4 and the wheel cylinder 101 is cut off, the second unit 1B uses the hydraulic pressure generated by the pump 7 to control the hydraulic pressure of each wheel cylinder 101 independently of the brake operation by the driver. It can be controlled individually. The ECU 90 controls the shut-off valve 81 in the closing direction. In this state, the brake system (the suction fluid passage 12, the discharge fluid passage 13, etc.) connecting the first fluid reservoir 63 and the wheel cylinder 101 creates the wheel cylinder fluid pressure by the fluid pressure generated using the pump 7. It functions as a so-called brake-by-wire system. The pump 7 sucks and discharges the brake fluid in the first liquid reservoir chamber 63. The first fluid reservoir chamber 63 is supplied with brake fluid from the reservoir tank 2 via the pipe 10R. The second unit 1B supplies the brake fluid boosted by the pump 7 to the wheel cylinder 101 via the wheel cylinder pipe 10W. As a result, it is possible to generate a brake fluid pressure (wheel cylinder fluid pressure) and generate a braking torque in a vehicle on which the brake system 1 is mounted. The ECU 90 controls SS / V IN87 in the closing direction and SS / V OUT88 in the opening direction. Thereby, the stroke simulator 5 functions. When the brake fluid flows from the master cylinder 4 into the positive pressure chamber 501 of the stroke simulator 5 according to the driver's brake operation, a pedal stroke occurs and the urging force of the first and second springs 520 and 530 causes the driver to A brake operation reaction force (pedal reaction force) is generated.
 例えば、ECU90は、運転者のブレーキ操作時に、ポンプ7の吐出圧を液圧源としてマスタシリンダ圧よりも高いホイルシリンダ液圧を創生し、運転者のブレーキ操作力では不足する液圧制動力を発生させる倍力制御を実行する。具体的には、検出されたペダルストロークに基づき、所定の倍力比、すなわちペダルストロークと運転者の要求ブレーキ液圧(運転者が要求する車両減速度)との間の理想の関係特性を実現する目標ホイルシリンダ液圧を算出する。ポンプ7を作動させ、遮断弁81を閉方向に、連通弁83を開方向に制御する。ポンプ7を所定回転数で作動させたまま調圧弁84を制御してポンプ7からホイルシリンダ101へ供給されるブレーキ液量を調整することで、目標ホイルシリンダ液圧を実現する。すなわち、ブレーキシステム1は、エンジン負圧ブースタに代えて第2ユニット1Bのポンプ7を作動させることで、ブレーキ操作力を補助する倍力機能を発揮する。また、ECU90は、回生協調ブレーキ制御時には、回生制動力との関係で目標ホイルシリンダ液圧を算出する。例えば、車両の回生制動装置のコントロールユニットから入力される回生制動力と目標ホイルシリンダ液圧に相当する液圧制動力との和が、運転者の要求する車両減速度を充足するような目標ホイルシリンダ液圧を算出する。なお、運動制御時には、例えば検出された車両運動状態量(横加速度等)に基づき、所望の車両運動状態を実現するよう、各車輪FL~RRの目標ホイルシリンダ液圧を算出する。 For example, the ECU 90 creates a wheel cylinder hydraulic pressure higher than the master cylinder pressure using the discharge pressure of the pump 7 as a hydraulic pressure source when the driver operates the brake, and generates a hydraulic braking force that is insufficient for the driver's brake operating force. The generated boost control is executed. Specifically, based on the detected pedal stroke, a desired boost ratio, that is, the ideal relationship between the pedal stroke and the driver's required brake fluid pressure (vehicle deceleration requested by the driver) is achieved. The target wheel cylinder hydraulic pressure is calculated. The pump 7 is operated to control the shut-off valve 81 in the closing direction and the communication valve 83 in the opening direction. The target wheel cylinder hydraulic pressure is realized by adjusting the amount of brake fluid supplied from the pump 7 to the wheel cylinder 101 by controlling the pressure regulating valve 84 while operating the pump 7 at a predetermined rotational speed. That is, the brake system 1 exhibits a boost function that assists the brake operation force by operating the pump 7 of the second unit 1B instead of the engine negative pressure booster. Further, the ECU 90 calculates the target wheel cylinder hydraulic pressure in relation to the regenerative braking force during regenerative cooperative brake control. For example, the target wheel cylinder in which the sum of the regenerative braking force input from the control unit of the regenerative braking device of the vehicle and the hydraulic braking force corresponding to the target wheel cylinder hydraulic pressure satisfies the vehicle deceleration required by the driver. Calculate fluid pressure. At the time of motion control, for example, the target wheel cylinder hydraulic pressure of each wheel FL to RR is calculated so as to realize a desired vehicle motion state based on the detected vehicle motion state amount (lateral acceleration or the like).
 SS/V OUT88とSS/V IN87及びチェック弁870とは、背圧ポート674から背圧配管10Xを介してハウジング6に流入したブレーキ液の流れを調整する。これらの弁88等は、背圧ポート674からハウジング6に流入したブレーキ液がいずれかの低圧部(第1液溜め室63やホイルシリンダ101)へ向けて流れることを許容または禁止することで、マスタシリンダ4からストロークシミュレータ5(正圧室501)内へのブレーキ液の流入を許可または禁止する。これによりストロークシミュレータ5の作動が調整される。また、これらの弁88等は、背圧ポート674からハウジング6(背圧液路16)に流入したブレーキ液の供給先(流出先)を、第1液溜め室63とホイルシリンダ101との間で切換える切換え部として機能する。例えば、ECU90は、ブレーキ操作状態が所定の急ブレーキ操作状態であると判断すると、ポンプ7を作動させ、遮断弁81を閉方向に制御すると共に、SS/V IN87を開方向に、SS/V OUT88を閉方向に制御する。これにより、ポンプ7が十分に高いホイルシリンダ圧を発生可能になるまでの間、ストロークシミュレータ5の背圧室502から流出するブレーキ液を用いてホイルシリンダ液圧を創生する第2の踏力ブレーキを実現する。これにより、ホイルシリンダ液圧の昇圧応答性を確保できる。ポンプ7が十分に高いホイルシリンダ圧を発生可能になると、倍力制御等に切換える。 ¡SS / V OUT88, SS / VIN87 and check valve 870 adjust the flow of brake fluid flowing from the back pressure port 674 into the housing 6 through the back pressure pipe 10X. These valves 88 and the like allow or prohibit the brake fluid flowing into the housing 6 from the back pressure port 674 from flowing toward any low pressure part (the first liquid reservoir chamber 63 or the wheel cylinder 101), Allow or prohibit the flow of brake fluid from the master cylinder 4 into the stroke simulator 5 (positive pressure chamber 501). Thereby, the operation of the stroke simulator 5 is adjusted. Further, these valves 88 and the like provide a supply destination (outflow destination) of the brake fluid flowing into the housing 6 (back pressure fluid passage 16) from the back pressure port 674 between the first fluid reservoir chamber 63 and the wheel cylinder 101. It functions as a switching unit that switches at. For example, when the ECU 90 determines that the brake operation state is a predetermined sudden brake operation state, the ECU 90 operates the pump 7, controls the shut-off valve 81 in the closing direction, and sets SS / V IN87 in the opening direction, and the SS / V Controls OUT88 in the closing direction. Thus, the second pedal force brake that creates the wheel cylinder hydraulic pressure using the brake fluid flowing out from the back pressure chamber 502 of the stroke simulator 5 until the pump 7 can generate a sufficiently high wheel cylinder pressure. Is realized. Thereby, the pressurization responsiveness of wheel cylinder hydraulic pressure is securable. When the pump 7 can generate a sufficiently high wheel cylinder pressure, it switches to boost control or the like.
 次に、図2を参照しつつ、第2ユニット1Bのハウジング6について説明する。図2で、説明の便宜上、X軸、Y軸、Z軸を有する三次元直交座標系を設ける。第2ユニット1Bが車両に搭載された状態で、Z軸方向が鉛直方向となり、Z軸正方向側が鉛直方向上側となる。X軸方向が車両の前後方向となり、X軸正方向側が車両前方側となる。Y軸方向が車両の横方向となる。なお、実際の使用においてはハウジング6の配置は何ら規制されるものではなく、車両レイアウト等に合わせて任意の位置・向きに、ハウジング6を配置することができる。図2では、ハウジング6をX軸正方向側かつY軸負方向側かつZ軸正方向側から見る。ハウジング6は、アルミ合金を材料として形成される略直方体状のブロックである。ハウジング6の外表面は、正面601と、背面と、下面603と、上面604と、左側面605と、右側面606とを有する。正面601および背面は、比較的面積が広い平面であり、Y軸に対し直交する。下面603および上面604は、正面601及び背面に接続する平面であり、Z軸に対し直交する。左側面605および右側面606は、正面601、背面、下面603、及び上面604に接続する平面であり、X軸に対し直交する。 Next, the housing 6 of the second unit 1B will be described with reference to FIG. In FIG. 2, a three-dimensional orthogonal coordinate system having an X axis, a Y axis, and a Z axis is provided for convenience of explanation. When the second unit 1B is mounted on the vehicle, the Z-axis direction is the vertical direction, and the Z-axis positive direction side is the vertical direction upper side. The X-axis direction is the vehicle front-rear direction, and the X-axis positive direction side is the vehicle front side. The Y-axis direction is the lateral direction of the vehicle. In actual use, the arrangement of the housing 6 is not restricted at all, and the housing 6 can be arranged at an arbitrary position and orientation in accordance with the vehicle layout and the like. In FIG. 2, the housing 6 is viewed from the X axis positive direction side, the Y axis negative direction side, and the Z axis positive direction side. The housing 6 is a substantially rectangular parallelepiped block formed of an aluminum alloy. The outer surface of the housing 6 has a front surface 601, a back surface, a lower surface 603, an upper surface 604, a left side surface 605, and a right side surface 606. The front surface 601 and the back surface are planes having a relatively large area and are orthogonal to the Y axis. The lower surface 603 and the upper surface 604 are planes connected to the front surface 601 and the back surface, and are orthogonal to the Z axis. The left side surface 605 and the right side surface 606 are planes connected to the front surface 601, the back surface, the lower surface 603, and the upper surface 604, and are orthogonal to the X axis.
 ハウジング6における正面601の側かつ上面604の側の角部には、凹部60がある。すなわち、正面601と上面604と右側面606とにより形成される頂点、および、正面601と上面604と左側面605とにより形成される頂点は、切り欠かれた形状であり、それぞれ第1,第2凹部60a,60bを有する。第1凹部60aは、正面601、上面604、及び左側面605に開放される(開口する)。第2凹部60bは、正面601、上面604、及び右側面606に開放される。ハウジング6は、カム収容孔61と、複数(5個)のシリンダ収容孔62A~62Eと、第1液溜め室63と、第2液溜め室64と、複数の固定孔65と、複数の弁収容孔と、複数のセンサ収容孔と、電源孔66と、複数のポート67と、複数の液路11等とを有する。これらの孔やポートはドリル等により形成される。カム収容孔61は、Y軸方向に延びる軸心Oを有する有底円筒状であって、正面601の略中央に開口する。 There is a recess 60 at the corner of the housing 6 on the front 601 side and the upper surface 604 side. That is, the apex formed by the front 601, the upper surface 604 and the right side 606, and the apex formed by the front 601, the upper surface 604 and the left side 605 are cut out shapes, respectively, Two recesses 60a and 60b are provided. The first recess 60a is opened (opened) to the front surface 601, the upper surface 604, and the left side surface 605. The second recess 60b is opened to the front surface 601, the upper surface 604, and the right side surface 606. The housing 6 includes a cam accommodating hole 61, a plurality (five) of cylinder accommodating holes 62A to 62E, a first liquid reservoir chamber 63, a second liquid reservoir chamber 64, a plurality of fixing holes 65, and a plurality of valves. It has an accommodation hole, a plurality of sensor accommodation holes, a power supply hole 66, a plurality of ports 67, a plurality of liquid passages 11 and the like. These holes and ports are formed by a drill or the like. The cam accommodation hole 61 has a bottomed cylindrical shape having an axis O extending in the Y-axis direction, and opens in the approximate center of the front surface 601.
 シリンダ収容孔62は、カム収容孔61の径方向(軸心Oを中心とする放射方向)に延びる軸心Qを有する段付きの円筒状である。複数の孔62は軸心Oを中心として放射状に設けられる。孔62A~62Eは、軸心Oの周り方向で均等(等間隔)に配置される。軸心Oの周り方向で隣り合う孔62の軸心Qがなす角度は72°である。孔62A~62EはY軸方向に沿って単列であり、ハウジング6のY軸負方向側に配置される。孔62A~62Eの軸心Qは、軸心Oに対して直交する同一の平面内にある。図3は、この平面で切った第2ユニット1Bの断面を示す。孔62は、カム収容孔61に近い側から遠い側へ順に、最小径部621、小径部622、中径部623、大径部624、および最大径部625を有する。これら各部は円筒状であり、同じ軸心Qを有する。中径部623と大径部624との間には、孔62の軸心Qに対し直交する方向(軸直方向)に広がる平面部626がある。中径部623において、小径部622に近い側の部分623aは、他の部分よりも若干大径である。各孔62A~62Eの部分623aは、吸入液路12により互いに接続されると共に第1液溜め室63に接続し、ポンプ部7A~7Eの吸入ポートとして機能する。各孔62A~62Eの大径部624において、中径部623に近い側の部分624aは、吐出液路13により互いに接続され、ポンプ部7A~7Eの吐出ポートとして機能する。 The cylinder accommodation hole 62 has a stepped cylindrical shape having an axis Q extending in the radial direction of the cam accommodation hole 61 (radial direction centered on the axis O). The plurality of holes 62 are provided radially about the axis O. The holes 62A to 62E are evenly (equally spaced) in the direction around the axis O. The angle formed by the axis Q of the holes 62 adjacent in the direction around the axis O is 72 °. The holes 62A to 62E are in a single row along the Y-axis direction and are arranged on the Y-axis negative direction side of the housing 6. The axial centers Q of the holes 62A to 62E are in the same plane orthogonal to the axial center O. FIG. 3 shows a cross section of the second unit 1B cut along this plane. The hole 62 has a minimum diameter portion 621, a small diameter portion 622, a medium diameter portion 623, a large diameter portion 624, and a maximum diameter portion 625 in order from the side closer to the cam housing hole 61 to the side farther from the cam accommodation hole 61. Each of these parts is cylindrical and has the same axis Q. Between the medium-diameter portion 623 and the large-diameter portion 624, there is a flat portion 626 that extends in a direction (axial direction) orthogonal to the axis Q of the hole 62. In the medium diameter portion 623, a portion 623a closer to the small diameter portion 622 has a slightly larger diameter than the other portions. The portions 623a of the holes 62A to 62E are connected to each other by the suction liquid passage 12 and to the first liquid reservoir chamber 63, and function as suction ports for the pump portions 7A to 7E. In the large diameter portion 624 of each hole 62A to 62E, the portion 624a on the side close to the medium diameter portion 623 is connected to each other by the discharge liquid passage 13, and functions as a discharge port of the pump portions 7A to 7E.
 各孔62A~62Eは以下のようにハウジング6の内部に配置される。孔62Aは、下面603からZ軸正方向側に延びる。孔62Bは、左側面605における、軸心Oに対しZ軸負方向下側に位置する部分から、X軸正方向側かつZ軸正方向側に延びる。孔62Cは、第1凹部60aからX軸正方向側かつZ軸負方向側に延びる。孔62Dは、第2凹部60bからX軸負方向側かつZ軸負方向側に延びる。孔62Eは、右側面606における、軸心Oに対しZ軸負方向下側に位置する部分から、X軸負方向側かつZ軸正方向側に延びる。軸心Oに対しZ軸負方向側で、孔62Aは軸心Oと同じX軸方向位置にあり、孔62B,62Eは、軸心O(孔62A)を挟んでX軸方向両側に配置される。軸心Oに対しZ軸正方向側で、孔62C,62Dは、軸心Oを挟んでX軸方向両側に配置される。各孔62A~62Eの最小径部621はカム収容孔61の内周面に開口する。孔62Aの最大径部625は下面603のX軸方向略中央かつY軸負方向側に開口する。孔62Bの最大径部625は左側面605のY軸負方向側かつZ軸負方向側に開口する。孔62Eの最大径部625は右側面606のY軸負方向側かつZ軸負方向側に開口する。孔62C,62Dの最大径部625はそれぞれ第1,第2凹部60a,60bに開口する。 The holes 62A to 62E are arranged inside the housing 6 as follows. The hole 62A extends from the lower surface 603 to the Z axis positive direction side. The hole 62B extends from the portion of the left side surface 605 located on the lower side in the Z-axis negative direction with respect to the axis O to the X-axis positive direction side and the Z-axis positive direction side. The hole 62C extends from the first recess 60a to the X axis positive direction side and the Z axis negative direction side. The hole 62D extends from the second recess 60b to the X-axis negative direction side and the Z-axis negative direction side. The hole 62E extends from the portion of the right side surface 606 located on the lower side in the Z-axis negative direction with respect to the axis O to the X-axis negative direction side and the Z-axis positive direction side. The hole 62A is at the same X-axis position as the axis O on the Z-axis negative direction side with respect to the axis O, and the holes 62B and 62E are arranged on both sides in the X-axis direction with the axis O (hole 62A) in between. The The holes 62C and 62D are arranged on both sides in the X-axis direction with the axis O in between on the Z-axis positive direction side with respect to the axis O. The minimum diameter portion 621 of each of the holes 62A to 62E opens on the inner peripheral surface of the cam accommodating hole 61. The maximum diameter portion 625 of the hole 62A opens to the approximate center of the lower surface 603 in the X-axis direction and the negative Y-axis side. The maximum diameter portion 625 of the hole 62B opens on the Y axis negative direction side and the Z axis negative direction side of the left side surface 605. The maximum diameter portion 625 of the hole 62E opens on the Y axis negative direction side and the Z axis negative direction side of the right side surface 606. The maximum diameter portions 625 of the holes 62C and 62D open to the first and second recesses 60a and 60b, respectively.
 第1液溜め室63は、その軸心がZ軸方向に延びる有底円筒状であって、上面604におけるX軸方向略中央かつY軸負方向寄りに開口する。第2液溜め室64は、その軸心がZ軸方向に延びる有底円筒状であって、下面603におけるX軸負方向側かつY軸負方向寄りに開口する。カム収容孔61と第2液溜め室64はドレン液路19により接続される。複数の弁収容孔およびセンサ収容孔は、Y軸方向に延びて背面に開口する。これらの孔はY軸方向に沿って単列であり、ハウジング6のY軸正方向側に配置される。Y軸方向から見て、シリンダ収容孔62と弁収容孔等は少なくとも部分的に重なる。各弁収容孔には電磁弁の弁部が嵌合し、弁体が収容される。各センサ収容孔には液圧センサ92等の感圧部が収容される。電源孔66は、隣り合うシリンダ収容孔62C,62Dの間の領域に配置され、ハウジング6(正面601と背面との間)をY軸方向に貫通する。吸入ポート673は、上面604における第1液溜め室63の開口部である。マスタシリンダポート671は、その軸心がY軸方向に延びる有底円筒状であって、正面601におけるZ軸正方向側の端部であって凹部60a,60bに挟まれた部位に開口する。ホイルシリンダポート672は、その軸心がZ軸方向に延びる有底円筒状であって、上面604のY軸正方向側に開口する。ポート672a~872dは、X軸方向に1列に並ぶ。背圧ポート674は、その軸心がX軸方向に延びる有底円筒状であって、右側面606のZ軸負方向側に開口する。複数の液路11等は、ポート67と、液溜め室63,64と、シリンダ収容孔62と、弁収容孔と、液圧センサ収容孔とを接続する。 The first liquid reservoir chamber 63 has a bottomed cylindrical shape whose axial center extends in the Z-axis direction, and opens toward the approximate center in the X-axis direction on the upper surface 604 and closer to the negative Y-axis direction. The second liquid reservoir chamber 64 has a bottomed cylindrical shape whose axis extends in the Z-axis direction, and opens toward the X-axis negative direction side and the Y-axis negative direction side of the lower surface 603. The cam housing hole 61 and the second liquid reservoir chamber 64 are connected by a drain liquid passage 19. The plurality of valve accommodation holes and sensor accommodation holes extend in the Y-axis direction and open on the back surface. These holes are in a single row along the Y-axis direction, and are disposed on the Y-axis positive direction side of the housing 6. When viewed from the Y-axis direction, the cylinder accommodation hole 62 and the valve accommodation hole and the like overlap at least partially. The valve portion of the electromagnetic valve is fitted in each valve accommodation hole, and the valve body is accommodated. Each sensor accommodation hole accommodates a pressure sensitive part such as the hydraulic pressure sensor 92. The power supply hole 66 is disposed in a region between adjacent cylinder accommodation holes 62C and 62D, and penetrates the housing 6 (between the front surface 601 and the back surface) in the Y-axis direction. The suction port 673 is an opening of the first liquid reservoir chamber 63 on the upper surface 604. The master cylinder port 671 has a bottomed cylindrical shape whose axial center extends in the Y-axis direction, and opens at a portion of the front 601 on the Z-axis positive direction side and sandwiched between the recesses 60a and 60b. The wheel cylinder port 672 has a bottomed cylindrical shape whose axis extends in the Z-axis direction, and opens on the Y axis positive direction side of the upper surface 604. Ports 672a to 872d are arranged in a line in the X-axis direction. The back pressure port 674 has a bottomed cylindrical shape whose axial center extends in the X-axis direction, and opens to the Z-axis negative direction side of the right side surface 606. The plurality of liquid passages 11 and the like connect the port 67, the liquid reservoir chambers 63 and 64, the cylinder accommodation hole 62, the valve accommodation hole, and the hydraulic pressure sensor accommodation hole.
 複数の固定孔65は、モータ固定用のボルト孔651と、ECU固定用のボルト孔と、ハウジング固定用のボルト孔652及びピン孔と、を有する。ハウジング6の正面601にはモータ7aが配置され、孔651にモータハウジングがボルトで取り付けられる。(ポンプ7を収容する)ハウジング6とモータ7aは第2ユニット1Bとして一体化され、第2ユニット1Bはポンプ装置として機能する。モータ7aのロータにはブラシを介して導電部材(電源コネクタ)が接続される。導電部材は電源孔66に収容される。ハウジング6の背面には、ECU90が配置される。すなわち、ECU90はハウジング6に一体的に備えられ、ECU90とハウジング6は第2ユニット1Bとして一体化される。ハウジング6はモータ7aとECU90に挟まれる。すなわち、モータ7aの軸方向に沿って、モータ7aとハウジング6とECU90とがこの順に並んで配置される。ECU90は、制御基板とハウジング(ケース)を有する。制御基板はケースに収容され、背面と平行に配置される。ケースはハウジング6の背面に取付けられる。背面からは、電磁弁81等のソレノイドの端子や、液圧センサ92等の端子や、モータ7aからの導電部材が突出する。上記端子や導電部材はY軸正方向側へ延びて制御基板に直接接続される。外部の電源(バッテリ)から制御基板へ給電される。導電部材は、制御基板とモータ7a(のロータ)とを電気的に接続する接続部として機能し、制御基板から導電部材を介してモータ7a(のロータ)への給電が行われる。なお、車両の運動状態を検出する各種センサ、例えば車両の加速度を検出する加速度センサや車両の角速度(ヨーレイト)を検出する角速度センサを、制御基板に搭載してもよい。車体側には台座(マウント部材)が固定される。ハウジング6の孔652にボルトやピンが固定される。このボルト等は、インシュレータ(振動を抑制するための弾性部材)を介して、ハウジング6を台座に固定する。 The plurality of fixing holes 65 include a bolt hole 651 for fixing the motor, a bolt hole for fixing the ECU, a bolt hole 652 for fixing the housing, and a pin hole. A motor 7a is disposed on the front surface 601 of the housing 6, and the motor housing is attached to the hole 651 with a bolt. The housing 6 (accommodating the pump 7) and the motor 7a are integrated as a second unit 1B, and the second unit 1B functions as a pump device. A conductive member (power connector) is connected to the rotor of the motor 7a via a brush. The conductive member is accommodated in the power supply hole 66. An ECU 90 is disposed on the back surface of the housing 6. That is, the ECU 90 is provided integrally with the housing 6, and the ECU 90 and the housing 6 are integrated as the second unit 1B. The housing 6 is sandwiched between the motor 7a and the ECU 90. That is, the motor 7a, the housing 6, and the ECU 90 are arranged in this order along the axial direction of the motor 7a. The ECU 90 has a control board and a housing (case). The control board is accommodated in the case and arranged in parallel with the back surface. The case is attached to the back surface of the housing 6. From the back, a solenoid terminal such as the electromagnetic valve 81, a terminal such as the hydraulic pressure sensor 92, and a conductive member from the motor 7a protrude. The terminals and conductive members extend to the Y axis positive direction side and are directly connected to the control board. Power is supplied to the control board from an external power source (battery). The conductive member functions as a connecting portion that electrically connects the control board and the motor 7a (rotor), and power is supplied from the control board to the motor 7a (rotor) via the conductive member. Various sensors for detecting the motion state of the vehicle, for example, an acceleration sensor for detecting the acceleration of the vehicle and an angular velocity sensor for detecting the angular velocity (yaw rate) of the vehicle may be mounted on the control board. A pedestal (mounting member) is fixed to the vehicle body side. Bolts and pins are fixed in the holes 652 of the housing 6. The bolts and the like fix the housing 6 to the base via an insulator (an elastic member for suppressing vibration).
 以下、図3~図7を参照し、ポンプ7の詳細を説明する。図5では、ポンプ部7Aの断面を、X軸負方向側かつY軸負方向側かつZ軸負方向側から見る。図6では、シリンダ71、ピストン75、弁ケース76、第1ボール771、第3ばね783、および第3シール部材793を分解して同軸上に並べたものを斜めから見る。図7では、ピストン75、弁ケース76、第1ボール771、第1ばね781、および第3シール部材793を分解して同軸上に並べたものを斜めから見る。図3に示すように、カム収容孔61(ハウジング6の内部)には、ポンプ7の回転軸であり駆動軸である回転駆動軸700と、カム機構70が収容される。回転駆動軸700は、ポンプ7の駆動軸である。回転駆動軸700は、モータ7aの回転軸に連結固定され、モータ7aにより回転駆動される。回転駆動軸700(モータ7aの回転軸)の軸心(軸線)は、カム収容孔61の軸心Oと実質的に(各部材の公差の範囲内で。以下同じ。)一致する。回転駆動軸700は、軸心Oの周りを、モータ7aの回転軸と一体に回転する。カム機構70は、回転駆動軸700の外周に設けられており、カム(偏心部)70aと駆動ユニット70bを有する。カム機構70は、カム70aを用いてピストン75を駆動する機構である。カム70aは円柱状の偏心カムであり、回転駆動軸700の軸心Oに対して偏心する軸心Pを有する。軸心Pは軸心Oに対し実質的に平行に延びる。カム70aは、回転駆動軸700と一体に軸心Oの周りを回転しつつ揺動(軸心Pが軸心Oに対して回転運動)する。駆動ユニット70bは円筒状であり、カム70aの外周側に配置される。駆動ユニット70bの軸心は軸心Pと一致する。駆動ユニット70bは、複数の転動体701と保持器702と駆動部材703とを1つの組立体として有する。この組立体は、所謂シェル形の針状ころ軸受と同様の構成である。転動体701は針状ころであり、回転駆動軸700の軸心方向に延びる。保持器702は、円筒状であり、その周方向における略一定間隔の位置で、各転動体701を互いに独立して回転自在に保持する。駆動部材703は、転がり軸受の外輪と同様の構成であり、保持器702の外周側に配置される。駆動部材703は軸心Pの周りをカム70aに対して回転可能である。複数の転動体701は、カム70aの外周面と駆動部材703の内周面との間に配置される。 Hereinafter, the details of the pump 7 will be described with reference to FIGS. In FIG. 5, the cross section of the pump portion 7A is viewed from the X-axis negative direction side, the Y-axis negative direction side, and the Z-axis negative direction side. In FIG. 6, the cylinder 71, the piston 75, the valve case 76, the first ball 771, the third spring 783, and the third seal member 793 that are disassembled and arranged coaxially are viewed obliquely. In FIG. 7, the piston 75, the valve case 76, the first ball 771, the first spring 781, and the third seal member 793 disassembled and arranged coaxially are viewed obliquely. As shown in FIG. 3, the cam housing hole 61 (inside the housing 6) accommodates a rotation drive shaft 700 that is a rotation shaft and a drive shaft of the pump 7, and a cam mechanism 70. The rotational drive shaft 700 is a drive shaft of the pump 7. The rotational drive shaft 700 is connected and fixed to the rotational shaft of the motor 7a, and is rotationally driven by the motor 7a. The axis (axis) of the rotation drive shaft 700 (the rotation axis of the motor 7a) substantially coincides with the axis O of the cam accommodation hole 61 (within the tolerance of each member, the same applies hereinafter). The rotation drive shaft 700 rotates around the axis O together with the rotation shaft of the motor 7a. The cam mechanism 70 is provided on the outer periphery of the rotary drive shaft 700, and includes a cam (eccentric part) 70a and a drive unit 70b. The cam mechanism 70 is a mechanism for driving the piston 75 using the cam 70a. The cam 70a is a cylindrical eccentric cam, and has an axis P that is eccentric with respect to the axis O of the rotary drive shaft 700. The axis P extends substantially parallel to the axis O. The cam 70a oscillates (the shaft center P rotates relative to the shaft center O) while rotating around the shaft center O integrally with the rotation drive shaft 700. The drive unit 70b is cylindrical and is disposed on the outer peripheral side of the cam 70a. The axis of the drive unit 70b coincides with the axis P. The drive unit 70b includes a plurality of rolling elements 701, a holder 702, and a drive member 703 as one assembly. This assembly has the same configuration as a so-called shell-shaped needle roller bearing. The rolling element 701 is a needle roller and extends in the axial direction of the rotation drive shaft 700. The cage 702 has a cylindrical shape, and holds the rolling elements 701 in a rotatable manner independently of each other at substantially constant intervals in the circumferential direction. The drive member 703 has the same configuration as the outer ring of the rolling bearing, and is disposed on the outer peripheral side of the cage 702. The drive member 703 can rotate around the axis P with respect to the cam 70a. The plurality of rolling elements 701 are disposed between the outer peripheral surface of the cam 70a and the inner peripheral surface of the drive member 703.
 ポンプ7は、固定シリンダ形のラジアルプランジャポンプであり、ハウジング6と、回転駆動軸700と、カム機構70と、複数(5個)のポンプ部7A~7Eとを備える。各ポンプ部7A~7Eの構成を互いに区別する場合、その符号に添字A~Eを付す。ポンプ部7A~7Eは、往復ポンプとしてのプランジャポンプ(ピストンポンプ)であり、回転駆動軸700の回転により作動する。ピストン(プランジャ)75の往復運動に伴い、作動液としてのブレーキ液の吸入と吐出を行う。各ポンプ部7A~7Eは、カム機構70の周りに配置され、それぞれシリンダ収容孔62に収容される。ピストン75の軸心は、シリンダ収容孔62の軸心Qと(ピストン75の円滑な作動を許容する幅内で)実質的に一致し、回転駆動軸700の径方向に延びる。言換えると、ピストン75は、シリンダ収容孔62の数(5個)だけ設けられ、軸心Oに対し放射方向に延びる。ピストン75A~75Eは、回転駆動軸700の周り方向(以下、単に周方向という。)すなわち回転駆動軸700の回転方向で均等に(等間隔に)配置されている。ピストン75A~75Eの軸心Qは同一平面内にある。ピストン75A~75Eは、同一の回転駆動軸700および同一のカム機構70により駆動される。各ポンプ部7A~7Eは、シリンダ71と、栓部材72aと、ストッパ72bと、フィルタ部材73と、ガイド74と、ピストン75と、弁ケース76と、第1ボール771と、第2ボール772と、第1ばね781と、第2ばね782と、第3ばね783と、第1シール部材791と、第2シール部材792と、第3シール部材793とを有する。以下、図4~図6を参照しつつ、ポンプ部7Aを例にとって説明する。他のポンプ部7B~7Eも同じ構成である。 The pump 7 is a fixed cylinder type radial plunger pump, and includes a housing 6, a rotary drive shaft 700, a cam mechanism 70, and a plurality (five) of pump units 7A to 7E. When the configurations of the pump units 7A to 7E are distinguished from each other, suffixes A to E are added to the reference numerals. The pump units 7A to 7E are plunger pumps (piston pumps) as reciprocating pumps, and operate by rotation of the rotary drive shaft 700. As the piston (plunger) 75 reciprocates, the brake fluid is sucked and discharged as hydraulic fluid. The pump portions 7A to 7E are arranged around the cam mechanism 70 and are received in the cylinder receiving holes 62, respectively. The axial center of the piston 75 substantially coincides with the axial center Q of the cylinder accommodation hole 62 (within a width that allows smooth operation of the piston 75), and extends in the radial direction of the rotary drive shaft 700. In other words, the pistons 75 are provided in the number corresponding to the number of the cylinder accommodation holes 62 (five), and extend in the radial direction with respect to the axis O. The pistons 75A to 75E are arranged evenly (at equal intervals) in the direction around the rotational drive shaft 700 (hereinafter simply referred to as the circumferential direction), that is, in the rotational direction of the rotational drive shaft 700. The axes Q of the pistons 75A to 75E are in the same plane. The pistons 75A to 75E are driven by the same rotation drive shaft 700 and the same cam mechanism 70. Each pump portion 7A to 7E includes a cylinder 71, a plug member 72a, a stopper 72b, a filter member 73, a guide 74, a piston 75, a valve case 76, a first ball 771, and a second ball 772. The first spring 781, the second spring 782, the third spring 783, the first seal member 791, the second seal member 792, and the third seal member 793 are provided. Hereinafter, the pump unit 7A will be described as an example with reference to FIGS. The other pump units 7B to 7E have the same configuration.
 シリンダ(シリンダスリーブ)71は、有底円筒状であり、円筒状の内周717と底部710を有する。底部710には第1孔711と第2孔712がある。両孔711,712はシリンダ71の軸心上を軸方向に延びる。第1孔711は有底円筒状の凹部であり、底部710の軸方向一方側(Z軸正方向側。以下同じ。)の面に開口する。第2孔712は、第1孔711よりも小径である。第2孔712は、底部710を貫通して、第1孔711の底面及び底部710の軸方向他方側(Z軸負方向側。以下同じ。)の面に開口する。底部710の軸方向他方側の面716は、シリンダ71の軸直方向に広がる平面状である。面716における第2孔712の開口部の周囲は、円錐面である。シリンダ71の外周側は、本体部71aと、第1端部71bと、第2端部71cとを有する。本体部71aは円筒状であり、その径は、シリンダ収容孔62の中径部623の径と実質的に等しい。第1端部71bは、本体部71aと同軸の円筒状であり、本体部71aに対し軸方向一方側にあり、本体部71aよりも小径である。本体部71aと第1端部71bとの間には、本体部71aの側から第1端部71bの側へ向うにつれて徐々に径が小さくなるテーパ部71dがある。第2端部71cは、本体部71aに対し軸方向他方側にあり、本体部71aと同軸の円筒状であって、本体部71aよりも大径である。第2端部71cは、第1フランジ部71c1と第2フランジ部71c2を有する。第1フランジ部71c1は、第2端部71cの軸方向一方側の端から径方向外側に突出する。本体部71aにおける第1フランジ部71c1に接続する部位には、周方向に延びる溝713がある。第1フランジ部71c1の軸方向一方側は、シリンダ71の軸直方向に広がる平面部714を有する。第1フランジ部71c1の軸方向他方側は、軸方向他方側へ向うにつれて徐々に径が小さくなるテーパ部715を有する。第1フランジ部71c1(平面部714)の径は、シリンダ収容孔62の中径部623の径より大きく、大径部624の径より小さい。第2フランジ部71c2は、第2端部71cの軸方向他方側の端から径方向外側に突出し、第1フランジ部71c1よりも小径である。シリンダ71はシリンダ収容孔62に収容され、孔62に対し例えば圧入により固定される。本体部71aが孔62の中径部623に対し固定される。シリンダ71の軸心はシリンダ収容孔62の軸心Qと実質的に一致する。第1フランジ部71c1の平面部714が孔62の平面部626に接触することで、孔62に対するシリンダ71の軸方向位置が規制される。第1端部71bは孔62の中径部623(吸入ポート623a)に配置され、第2端部71c(および底部710)は孔62の大径部624(吐出ポート624a)に配置される。 The cylinder (cylinder sleeve) 71 has a bottomed cylindrical shape, and has a cylindrical inner periphery 717 and a bottom portion 710. The bottom 710 has a first hole 711 and a second hole 712. Both holes 711 and 712 extend in the axial direction on the axial center of the cylinder 71. The first hole 711 is a bottomed cylindrical recess and opens on the surface of one side of the bottom 710 in the axial direction (Z-axis positive direction side, the same applies hereinafter). The second hole 712 has a smaller diameter than the first hole 711. The second hole 712 passes through the bottom portion 710 and opens to the bottom surface of the first hole 711 and the other surface in the axial direction of the bottom portion 710 (the Z-axis negative direction side, the same applies hereinafter). A surface 716 on the other side in the axial direction of the bottom portion 710 has a planar shape extending in a direction perpendicular to the axis of the cylinder 71. The periphery of the opening of the second hole 712 in the surface 716 is a conical surface. The outer peripheral side of the cylinder 71 has a main body portion 71a, a first end portion 71b, and a second end portion 71c. The main body 71a has a cylindrical shape, and its diameter is substantially equal to the diameter of the middle diameter portion 623 of the cylinder accommodation hole 62. The first end portion 71b has a cylindrical shape coaxial with the main body portion 71a, is on one side in the axial direction with respect to the main body portion 71a, and has a smaller diameter than the main body portion 71a. Between the main body portion 71a and the first end portion 71b, there is a tapered portion 71d whose diameter gradually decreases from the main body portion 71a side toward the first end portion 71b side. The second end 71c is on the other side in the axial direction with respect to the main body 71a, has a cylindrical shape coaxial with the main body 71a, and has a larger diameter than the main body 71a. The second end portion 71c has a first flange portion 71c1 and a second flange portion 71c2. The first flange portion 71c1 protrudes radially outward from the end on the one axial side of the second end portion 71c. A portion connected to the first flange portion 71c1 in the main body portion 71a has a groove 713 extending in the circumferential direction. One axial direction side of the first flange portion 71c1 has a flat surface portion 714 that extends in the direction perpendicular to the axial direction of the cylinder 71. The other axial side of the first flange portion 71c1 has a tapered portion 715 that gradually decreases in diameter toward the other axial side. The diameter of the first flange portion 71c1 (plane portion 714) is larger than the diameter of the medium diameter portion 623 of the cylinder accommodation hole 62 and smaller than the diameter of the large diameter portion 624. The second flange portion 71c2 protrudes radially outward from the other axial end of the second end portion 71c and has a smaller diameter than the first flange portion 71c1. The cylinder 71 is accommodated in the cylinder accommodation hole 62 and is fixed to the hole 62 by, for example, press fitting. The main body portion 71a is fixed to the middle diameter portion 623 of the hole 62. The axis of the cylinder 71 substantially coincides with the axis Q of the cylinder accommodation hole 62. When the flat surface portion 714 of the first flange portion 71c1 contacts the flat surface portion 626 of the hole 62, the axial position of the cylinder 71 with respect to the hole 62 is restricted. The first end portion 71b is disposed in the middle diameter portion 623 (suction port 623a) of the hole 62, and the second end portion 71c (and bottom portion 710) is disposed in the large diameter portion 624 (discharge port 624a) of the hole 62.
 栓部材72aは、円柱状の本体部72a1と円柱状の凸部72a2を同軸に有する。本体部72a1の径は、シリンダ収容孔62の大径部624の径より僅かに小さい。本体部72a1の外周は、周方向に延びる溝720を有する。本体部72a1の軸方向一方側は、第1孔721と、第2孔722と、複数の溝723とを有する。両孔721,722は本体部72a1の軸心上を軸方向に延びる。第1孔721は有底円筒状の凹部である。第1孔721の径は、シリンダ71の第2フランジ部71c2の径よりも僅かに大きい。第1孔721の底面724は、本体部72a1の軸直方向に広がる平面状である。第2孔722は、底面724に開口する有底円筒状の凹部である。第2孔722の径は、第1孔721の径よりも小さく、シリンダ71の第2孔712の径よりも大きい。溝723は、底面724に所定の深さまで設けられ、第2孔722から径方向に延びて本体部72a1の外周に開口する。凸部72a2は、本体部72a1の軸方向他方側の面から突出する。栓部材72aは、シリンダ収容孔62の大径部624に収容され、ハウジング6の外周面におけるシリンダ収容孔62の開口を閉塞する。栓部材72aの軸心は、シリンダ収容孔62及びシリンダ71の軸心Qと実質的に一致する。栓部材72aの軸方向一方側は、シリンダ71の底部710に設置される。栓部材72aの第1孔721にシリンダ71の第2フランジ部71c2が収容され、底部710の面716が第1孔721の底面724に接触する。溝723と面716との間に、通路が形成される。シリンダ71の第2孔712は、栓部材72aの第2孔722に接続する。 The plug member 72a has a columnar main body 72a1 and a columnar projection 72a2 coaxially. The diameter of the main body portion 72a1 is slightly smaller than the diameter of the large diameter portion 624 of the cylinder accommodation hole 62. The outer periphery of the main body 72a1 has a groove 720 extending in the circumferential direction. One side of the main body portion 72a1 in the axial direction has a first hole 721, a second hole 722, and a plurality of grooves 723. Both holes 721 and 722 extend in the axial direction on the axial center of the main body 72a1. The first hole 721 is a bottomed cylindrical recess. The diameter of the first hole 721 is slightly larger than the diameter of the second flange portion 71c2 of the cylinder 71. The bottom surface 724 of the first hole 721 has a planar shape that extends in the direction perpendicular to the axis of the main body 72a1. The second hole 722 is a bottomed cylindrical recess that opens to the bottom surface 724. The diameter of the second hole 722 is smaller than the diameter of the first hole 721 and larger than the diameter of the second hole 712 of the cylinder 71. The groove 723 is provided in the bottom surface 724 to a predetermined depth, extends in the radial direction from the second hole 722, and opens to the outer periphery of the main body 72a1. The convex portion 72a2 protrudes from the surface on the other side in the axial direction of the main body portion 72a1. The plug member 72 a is accommodated in the large diameter portion 624 of the cylinder accommodation hole 62 and closes the opening of the cylinder accommodation hole 62 on the outer peripheral surface of the housing 6. The axial center of the plug member 72a substantially coincides with the axial center Q of the cylinder accommodation hole 62 and the cylinder 71. One side of the plug member 72a in the axial direction is installed at the bottom 710 of the cylinder 71. The second flange portion 71c2 of the cylinder 71 is accommodated in the first hole 721 of the plug member 72a, and the surface 716 of the bottom portion 710 contacts the bottom surface 724 of the first hole 721. A passage is formed between the groove 723 and the surface 716. The second hole 712 of the cylinder 71 is connected to the second hole 722 of the plug member 72a.
 ストッパ72bは、円環状である。ストッパ72bの外径は、シリンダ収容孔62の最大径部625の径と実質的に同じである。ストッパ72bの軸方向一方側の端部は、有底円筒状の凹部725を有する。凹部725の底面726は、ストッパ72bの軸直方向に広がる平面状である。凹部725の径は、栓部材72aの本体部72a1の径よりも僅かに大きい。ストッパ72bは第1孔727と第2孔728を有する。両孔727, 728はストッパ72bを軸方向に貫通し、面726に開口する。第1孔727はストッパ72bの軸心上を延び、第2孔728は第1孔727を囲んで周方向に複数並ぶ。第1孔727の径は、栓部材72aの凸部72a2の径よりも僅かに大きい。ストッパ72bは、シリンダ収容孔62の最大径部625に収容される。ストッパ72bの外周は最大径部625に固定される。第1孔727に栓部材72aの凸部72a2が収容され、凹部725に栓部材72aの本体部72a1の軸方向他方側が収容される。凹部725の底面726が本体部72a1の軸方向他方側の面に接触することで、孔62に対する栓部材72aの軸方向位置が規制される。 The stopper 72b has an annular shape. The outer diameter of the stopper 72b is substantially the same as the diameter of the maximum diameter portion 625 of the cylinder accommodation hole 62. One end of the stopper 72b in the axial direction has a bottomed cylindrical recess 725. The bottom surface 726 of the recess 725 has a planar shape extending in the direction perpendicular to the axis of the stopper 72b. The diameter of the recess 725 is slightly larger than the diameter of the main body 72a1 of the plug member 72a. The stopper 72b has a first hole 727 and a second hole 728. Both holes 727 and 728 penetrate the stopper 72b in the axial direction and open on the surface 726. The first hole 727 extends on the axis of the stopper 72b, and a plurality of second holes 728 are arranged in the circumferential direction so as to surround the first hole 727. The diameter of the first hole 727 is slightly larger than the diameter of the convex portion 72a2 of the plug member 72a. The stopper 72b is accommodated in the maximum diameter portion 625 of the cylinder accommodation hole 62. The outer periphery of the stopper 72b is fixed to the maximum diameter portion 625. The convex part 72a2 of the plug member 72a is accommodated in the first hole 727, and the other axial side of the main body part 72a1 of the plug member 72a is accommodated in the concave part 725. The axial position of the plug member 72a with respect to the hole 62 is regulated by the bottom surface 726 of the recess 725 coming into contact with the surface on the other axial side of the main body 72a1.
 フィルタ部材73は略円筒状である。フィルタ部材73の内周側は、大径部73a1と、小径部73a2と、第1テーパ部73a3と、第2テーパ部73a4とを有する。大径部73a1は有底円筒状であり、フィルタ部材73の軸方向他方側の端面に開口する。大径部73a1の径は、シリンダ71の第1端部71bの径と実質的に同じである。小径部73a2はフィルタ部材73の軸方向一方側にある。小径部73a2は、大径部73a1と同軸の円筒状であり、フィルタ部材73の軸方向一方側の端面に開口する。小径部73a2は、大径部73a1よりも小径である。第1テーパ部73a3は、大径部73a1の底部に開口し、大径部73a1の側から小径部73a2の側へ向うにつれて徐々に径が小さくなる。第2テーパ部73a4は、第1テーパ部73a3と小径部73a2との間にあり、第1テーパ部73a3の側から小径部73a2の側へ向うにつれて徐々に(第1テーパ部73a3よりも緩やかな勾配で)径が小さくなる。フィルタ部材73の外周側は、大径部73b1と小径部73b2を有する。大径部73b1は円筒状であり、フィルタ部材73の軸方向他方側にある。大径部73b1の径は、シリンダ収容孔62の中径部623の径より小さく、小径部622の径より大きい。小径部73b2はフィルタ部材73の軸方向一方側にある。小径部73b2は大径部73b1と同軸の円筒状であり、大径部73b1よりも小径である。小径部73b2の径は、シリンダ収容孔62の小径部622の径より若干小さい。フィルタ部材73には、複数の孔が径方向に貫通する。これらの孔は、フィルタ部材73の内周側で第1テーパ部73a3に開口し、フィルタ部材73の外周側で大径部73b1に開口する。フィルタが各孔を覆う。フィルタ部材73は、シリンダ71の第1端部71bに固定される。フィルタ部材73の内周側の大径部73a1に第1端部71bが嵌合する。フィルタ部材73の軸心はシリンダ71の軸心と実質的に一致する。フィルタ部材73の外周側の大径部73b1はシリンダ収容孔62の中径部623の軸方向一方側に収容され、小径部73b2の一部はシリンダ収容孔62の小径部622の軸方向他方側に収容される。フィルタ部材73の外周側には、(上記孔が開口する)大径部73b1とシリンダ収容孔62の中径部623(吸入ポート623a)との間に隙間がある。 The filter member 73 is substantially cylindrical. The inner peripheral side of the filter member 73 has a large diameter portion 73a1, a small diameter portion 73a2, a first taper portion 73a3, and a second taper portion 73a4. The large-diameter portion 73a1 has a bottomed cylindrical shape, and opens on the end surface on the other axial side of the filter member 73. The diameter of the large diameter portion 73a1 is substantially the same as the diameter of the first end portion 71b of the cylinder 71. The small diameter portion 73a2 is on one side of the filter member 73 in the axial direction. The small-diameter portion 73a2 has a cylindrical shape that is coaxial with the large-diameter portion 73a1, and opens on the end surface on one axial side of the filter member 73. The small diameter portion 73a2 has a smaller diameter than the large diameter portion 73a1. The first taper portion 73a3 opens at the bottom of the large diameter portion 73a1, and the diameter gradually decreases from the large diameter portion 73a1 side toward the small diameter portion 73a2. The second taper portion 73a4 is between the first taper portion 73a3 and the small diameter portion 73a2, and gradually (from the first taper portion 73a3 side toward the small diameter portion 73a2 side (slower than the first taper portion 73a3) The diameter becomes smaller (with a gradient). The outer peripheral side of the filter member 73 has a large diameter portion 73b1 and a small diameter portion 73b2. The large diameter portion 73b1 is cylindrical and is on the other side in the axial direction of the filter member 73. The diameter of the large diameter portion 73b1 is smaller than the diameter of the medium diameter portion 623 of the cylinder accommodation hole 62 and larger than the diameter of the small diameter portion 622. The small diameter portion 73b2 is on one side of the filter member 73 in the axial direction. The small diameter portion 73b2 has a cylindrical shape coaxial with the large diameter portion 73b1, and has a smaller diameter than the large diameter portion 73b1. The diameter of the small diameter portion 73b2 is slightly smaller than the diameter of the small diameter portion 622 of the cylinder accommodation hole 62. A plurality of holes penetrates the filter member 73 in the radial direction. These holes open to the first tapered portion 73a3 on the inner peripheral side of the filter member 73, and open to the large diameter portion 73b1 on the outer peripheral side of the filter member 73. A filter covers each hole. The filter member 73 is fixed to the first end 71b of the cylinder 71. The first end 71b is fitted into the large diameter portion 73a1 on the inner peripheral side of the filter member 73. The axis of the filter member 73 substantially coincides with the axis of the cylinder 71. The large-diameter portion 73b1 on the outer peripheral side of the filter member 73 is accommodated on one axial side of the medium-diameter portion 623 of the cylinder accommodation hole 62, and a part of the small-diameter portion 73b2 is the other axial side of the small-diameter portion 622 of the cylinder accommodation hole 62 Is housed in. On the outer peripheral side of the filter member 73, there is a gap between the large diameter portion 73b1 (where the hole is opened) and the medium diameter portion 623 (suction port 623a) of the cylinder accommodation hole 62.
 ガイド74は円環状であり、その軸心を通る平面で切った断面が略矩形状である。ガイド74の外径は、シリンダ収容孔62の小径部622の径と実質的に等しい。ガイド74は、小径部622の軸方向一方側に収容される。ガイド74の外周は圧入等により小径部622に固定される。ガイド74(の内外周)の軸心はシリンダ収容孔62の軸心Qと実質的に一致する。 The guide 74 has an annular shape, and has a substantially rectangular cross section cut by a plane passing through its axis. The outer diameter of the guide 74 is substantially equal to the diameter of the small diameter portion 622 of the cylinder accommodation hole 62. The guide 74 is accommodated on one side of the small diameter portion 622 in the axial direction. The outer periphery of the guide 74 is fixed to the small diameter portion 622 by press fitting or the like. The axis of the guide 74 (inner and outer periphery) substantially coincides with the axis Q of the cylinder accommodation hole 62.
 ピストン75は、円柱状であり、本体部75aと、端部75bと、フランジ部75cとを有する。本体部75aの外周は円筒状である。本体部75aの外径は、フィルタ部材73の内周側の小径部73a2の径より若干小さく、ガイド74の内径よりも僅かに小さい。本体部75aの軸方向一方側の端面(以下、ピストン端面という。)750は、ピストン75の軸心に対し直交する方向に広がる平面状であり、この軸心を中心とする円形状である。フランジ部75cは、本体部75aの軸方向他方側から径方向外側に突出する。フランジ部75cの外周は、本体部75aの外周と同軸の円筒状である。フランジ部75cの外径は、シリンダ71の内周717の径(内径)よりも僅かに小さい。フランジ部75cの軸方向他方側の面754は、ピストン75の軸心を中心とする円環状であり、軸直方向に広がる平面状である。端部75bは、フランジ部75cよりも軸方向他方側の本体部75a1の先端にあり、その外周は円筒状である。端部75bの外径は、本体部75a1の外径よりも小さい。ピストン75の外周には、本体部75a1と端部75bとの間に、テーパ部75dがある。テーパ部75dは、本体部75a1の側から端部75bの側へ向うにつれて徐々に径が小さくなる。ピストン75は、その内部に、第1孔751と第2孔752を有する。第1孔751は、本体部75aにおいて、フランジ部75cに対し軸方向一方側に隣接する部位を、ピストン75の径方向に貫通する。第1孔751は円筒状であり、その軸心はピストン75の軸心を横切る。第2孔752は、ピストン75の軸心上を軸方向に延びる円筒状であり、第2孔752の一端は、第1孔751の軸方向中央部に接続する。第2孔752の他端は、ピストン75の軸方向他方側の端面753に開口する。面753における第2孔752の開口部の周囲は、円錐面である。 The piston 75 has a columnar shape and has a main body portion 75a, an end portion 75b, and a flange portion 75c. The outer periphery of the main body 75a is cylindrical. The outer diameter of the main body 75a is slightly smaller than the diameter of the small diameter portion 73a2 on the inner peripheral side of the filter member 73 and slightly smaller than the inner diameter of the guide 74. An end surface (hereinafter referred to as a piston end surface) 750 in the axial direction of the main body 75a is a flat surface extending in a direction orthogonal to the axial center of the piston 75, and has a circular shape centering on this axial center. The flange portion 75c protrudes radially outward from the other axial side of the main body portion 75a. The outer periphery of the flange portion 75c has a cylindrical shape that is coaxial with the outer periphery of the main body portion 75a. The outer diameter of the flange portion 75c is slightly smaller than the diameter (inner diameter) of the inner periphery 717 of the cylinder 71. The surface 754 on the other axial side of the flange portion 75c is an annular shape centering on the axial center of the piston 75, and has a planar shape extending in the direction perpendicular to the axis. The end portion 75b is at the tip of the main body portion 75a1 on the other side in the axial direction from the flange portion 75c, and the outer periphery thereof is cylindrical. The outer diameter of the end portion 75b is smaller than the outer diameter of the main body portion 75a1. On the outer periphery of the piston 75, there is a tapered portion 75d between the main body portion 75a1 and the end portion 75b. The diameter of the tapered portion 75d gradually decreases from the main body portion 75a1 side toward the end portion 75b side. The piston 75 has a first hole 751 and a second hole 752 therein. The first hole 751 penetrates a portion of the main body 75a adjacent to one side in the axial direction with respect to the flange 75c in the radial direction of the piston 75. The first hole 751 has a cylindrical shape, and its axis crosses the axis of the piston 75. The second hole 752 has a cylindrical shape extending in the axial direction on the axial center of the piston 75, and one end of the second hole 752 is connected to the central part in the axial direction of the first hole 751. The other end of the second hole 752 opens in the end surface 753 on the other axial side of the piston 75. The periphery of the opening of the second hole 752 in the surface 753 is a conical surface.
 弁ケース76は、薄板からなる有底円筒状であり、底部76a、側壁部76bおよびフランジ部76cを有する。底部76aは円板状であり、その中央に第1孔761が貫通する。側壁部76bは円筒状であり、底部76aに近い側に小径部76b1を有し、底部から遠い側に大径部76b2を有する。大径部76b2の内径は、ピストン75の本体部75aの外径よりも小さく、ピストン75の端部75bの外径よりも若干大きい。側壁部76bには第2孔762が貫通する。第2孔762は、弁ケース76の周方向に複数(3つ)あり、弁ケース76の軸方向に延びる。第2孔762の周方向寸法(幅)は、小径部76b1におけるよりも大径部76b2における方が大きい。フランジ部76cは、側壁部76b(大径部76b2)の開口側の端部から径方向外側に広がる。フランジ部76cは、側壁部76bの軸直方向に広がる平面状であり、側壁部76bの軸心を中心とする円環状である。フランジ部76cの外径はシリンダ71の内径よりも若干小さい。フランジ部76cには第3孔763が貫通する。第3孔763は、弁ケース76の周方向に複数(3つ)あり、弁ケース76の径方向に延びてフランジ部76cの内外周に開口する。第3孔763は第2孔762に連続する。言換えると、弁ケース76は、孔762,763により周方向で3箇所切れており、底部76aで1つにつながっている。弁ケース76は、ピストン75の端部75bに設置される。側壁部76b(大径部76b2)の開口側の内周に端部75bの外周が嵌合する。 The valve case 76 has a bottomed cylindrical shape made of a thin plate, and includes a bottom portion 76a, a side wall portion 76b, and a flange portion 76c. The bottom 76a has a disk shape, and the first hole 761 passes through the center of the bottom 76a. The side wall part 76b is cylindrical, has a small diameter part 76b1 on the side close to the bottom part 76a, and has a large diameter part 76b2 on the side far from the bottom part. The inner diameter of the large diameter portion 76b2 is smaller than the outer diameter of the main body portion 75a of the piston 75 and slightly larger than the outer diameter of the end portion 75b of the piston 75. The second hole 762 passes through the side wall portion 76b. A plurality (three) of the second holes 762 are provided in the circumferential direction of the valve case 76 and extend in the axial direction of the valve case 76. The circumferential dimension (width) of the second hole 762 is larger in the large diameter portion 76b2 than in the small diameter portion 76b1. The flange portion 76c extends radially outward from the opening end of the side wall portion 76b (large diameter portion 76b2). The flange portion 76c has a planar shape extending in the direction perpendicular to the side wall portion 76b, and has an annular shape centered on the axis of the side wall portion 76b. The outer diameter of the flange portion 76c is slightly smaller than the inner diameter of the cylinder 71. A third hole 763 passes through the flange portion 76c. The third hole 763 is plural (three) in the circumferential direction of the valve case 76, extends in the radial direction of the valve case 76, and opens to the inner and outer circumferences of the flange portion 76c. The third hole 763 is continuous with the second hole 762. In other words, the valve case 76 is cut at three locations in the circumferential direction by the holes 762 and 763 and connected to one at the bottom 76a. The valve case 76 is installed at the end 75b of the piston 75. The outer periphery of the end portion 75b is fitted to the inner periphery on the opening side of the side wall portion 76b (large diameter portion 76b2).
 第1ボール771の径は、ピストン75の第2孔752の径よりも大きく、弁ケース76(大径部76b2)の内径よりも小さい。第1ボール771は、弁ケース76の内周側であって底部76aとピストン75の端部75bとの間にある。第1ばね781は、圧縮コイルばねであり、その内径は第1ボール771の径より小さい。第1ばね781は、弁ケース76の内周側であって底部76aと第1ボール771との間に、押し縮められた状態である。第1ばね781の一端は底部76a(における第1孔761の開口部の周囲)に接触し、第1ばね781の他端は第1ボール771(の外表面)に接触する。第1ボール771と第1ばね781は吸入弁77aを構成する要素である。第1ボール771は弁体として機能し、第1ばね781は戻しばねとして機能する。ピストン75の端面753における第2孔752の開口部の周囲は弁座として機能する。第1ボール771が上記弁座に着座することで第2孔752が閉塞される。第1ばね781は、弁ケース76(ピストン75)に対し第1ボール771を上記弁座の側へ常に付勢する。 The diameter of the first ball 771 is larger than the diameter of the second hole 752 of the piston 75 and smaller than the inner diameter of the valve case 76 (large diameter portion 76b2). The first ball 771 is on the inner peripheral side of the valve case 76 and between the bottom 76a and the end 75b of the piston 75. The first spring 781 is a compression coil spring, and the inner diameter thereof is smaller than the diameter of the first ball 771. The first spring 781 is in the compressed state between the bottom 76a and the first ball 771 on the inner peripheral side of the valve case 76. One end of the first spring 781 is in contact with the bottom 76a (around the opening of the first hole 761), and the other end of the first spring 781 is in contact with the first ball 771 (the outer surface thereof). The first ball 771 and the first spring 781 are elements constituting the suction valve 77a. The first ball 771 functions as a valve body, and the first spring 781 functions as a return spring. The periphery of the opening of the second hole 752 in the end surface 753 of the piston 75 functions as a valve seat. When the first ball 771 is seated on the valve seat, the second hole 752 is closed. The first spring 781 always urges the first ball 771 toward the valve seat with respect to the valve case 76 (piston 75).
 第2ボール772の径は、シリンダ71の底部710の第2孔712の径よりも大きく、栓部材72aの第2孔722の径よりも小さい。第2ボール772は、第2孔722の内周側であって栓部材72aと底部710との間にある。第2ばね782は、圧縮コイルばねであり、その内径は第2ボール772の径より小さい。第2ばね782は、栓部材72aの孔において、孔の底部と第2ボール772との間に押し縮められた状態である。第2ボール772と第2ばね782は吐出弁77bを構成する要素である。第2ボール772は弁体として機能し、第2ばね782は戻しばねとして機能する。シリンダ71の面716における第2孔712の開口部の周囲は弁座として機能する。第2ボール772が上記弁座に着座することで第2孔712が閉塞される。第2ばね782は、栓部材72aに対し第2ボール772を上記弁座の側へ常に付勢する。 The diameter of the second ball 772 is larger than the diameter of the second hole 712 of the bottom portion 710 of the cylinder 71 and smaller than the diameter of the second hole 722 of the plug member 72a. The second ball 772 is on the inner peripheral side of the second hole 722 and between the plug member 72a and the bottom portion 710. The second spring 782 is a compression coil spring, and the inner diameter thereof is smaller than the diameter of the second ball 772. The second spring 782 is in a state of being compressed between the bottom of the hole and the second ball 772 in the hole of the plug member 72a. The second ball 772 and the second spring 782 are elements constituting the discharge valve 77b. The second ball 772 functions as a valve body, and the second spring 782 functions as a return spring. The periphery of the opening of the second hole 712 in the surface 716 of the cylinder 71 functions as a valve seat. The second hole 712 is closed when the second ball 772 is seated on the valve seat. The second spring 782 always urges the second ball 772 toward the valve seat with respect to the plug member 72a.
 第3ばね783は、圧縮コイルばねであり、その内径は、弁ケース76の側壁部76b(大径部76b2)の外径より若干大きくフランジ部76cの外径より小さい。第3ばね783は、第1ばね781よりも、線径およびばね定数が大きい。第3ばね783の外径は、シリンダ71の内径より小さい。第3ばね783は、シリンダ71の内周側であって底部710とピストン75との間に押し縮められた状態である。第3ばね783の一端は底部310(における第1孔711の開口部の周囲)に接触し、第3ばね783の他端は弁ケース76のフランジ部76cに接触する。第3ばね783は、シリンダ71(シリンダ収容孔62)に対し弁ケース76(ピストン75)をカム収容孔61の側へ常に付勢する。 The third spring 783 is a compression coil spring, and the inner diameter thereof is slightly larger than the outer diameter of the side wall portion 76b (large diameter portion 76b2) of the valve case 76 and smaller than the outer diameter of the flange portion 76c. The third spring 783 has a larger wire diameter and spring constant than the first spring 781. The outer diameter of the third spring 783 is smaller than the inner diameter of the cylinder 71. The third spring 783 is on the inner peripheral side of the cylinder 71 and is compressed between the bottom 710 and the piston 75. One end of the third spring 783 is in contact with the bottom portion 310 (around the opening of the first hole 711), and the other end of the third spring 783 is in contact with the flange portion 76c of the valve case 76. The third spring 783 always biases the valve case 76 (piston 75) toward the cam housing hole 61 with respect to the cylinder 71 (cylinder housing hole 62).
 第1シール部材791は、固定用(静止)シールであり、例えばゴムガスケットである。第1シール部材791は、環状であり、その軸心を通る平面で切った断面形状が略D字状のDリングである。第1シール部材791は、栓部材72aの溝720に収容される。第2シール部材792は、接触式の往復運動用シールであり、例えばスクイーズパッキンである。第2シール部材792は、環状であり、その軸心を通る平面で切った断面形状がX字状ないし四隅が外側に膨らんだ矩形状(略正方形)である。第2シール部材792は、シリンダ収容孔62(小径部622)におけるガイド74とフィルタ部材73との間にある。 The first seal member 791 is a fixing (stationary) seal, for example, a rubber gasket. The first seal member 791 has an annular shape, and is a D-ring having a substantially D-shaped cross section cut along a plane passing through its axis. The first seal member 791 is accommodated in the groove 720 of the plug member 72a. The second seal member 792 is a contact-type reciprocating seal, for example, a squeeze packing. The second seal member 792 has an annular shape, and has a cross-sectional shape cut along a plane passing through the axial center of the second seal member 792 having an X shape or a rectangular shape (substantially square) with four corners bulging outward. The second seal member 792 is located between the guide 74 and the filter member 73 in the cylinder accommodation hole 62 (small diameter portion 622).
 第3シール部材793は、接触式の往復運動用シールであり、樹脂等の非金属材料から形成される弾性部材である。上記樹脂は例えばポリアミド系である。第3シール部材793の材料の少なくとも一部は、例えばポリテトラフルオロエチレンPTFEである。図8および図9を参照し、第3シール部材793の詳細を説明する。図8は、第3シール部材793が組付けられたピストン75とこれらを収容するシリンダ71とを、軸心Qに対し直交する平面で、第3シール部材793を通るように切った断面を示す。図9は、第3シール部材793が組付けられたピストン75を、その軸心に対し直交する平面で、第3シール部材793を通るように切った断面を示す。第3シール部材793は、環状であり、その軸心を通る平面で切った断面形状が矩形状(正方形状)である。上記断面の各頂点(角部)にはカーブ(アール)がついている。なお、上記断面は例えば円形状でもよい。第3シール部材793は、軸方向一方側の端面79aと、軸方向他方側の端面79bと、内周(面)79cと、外周(面)79dとを有する。面79a,79bは、第3シール部材793の軸直方向に広がる平面状である。内周79cは、第3シール部材793の軸方向から見て、多角形である。具体的には、6つの辺を有する正六角形である。言換えると、内周79cは、正六角形の底面を有する直角柱の(長方形の)各側面79c1であり、これら各側面79c1は第3シール部材793の軸方向に延びる。上記正六角形の各頂点、言換えると周方向で隣接する側面79c1の境界線(接続部位)79c2のそれぞれには、カーブ(アール)がついている。第3シール部材793の軸心から各辺(側面)79c1までの(最短)距離は、ピストン75の軸心から本体部75a1の外周までの距離(本体部75a1の半径)よりも、僅かに短い。第3シール部材793の軸心から各頂点(境界線)79c2までの(最短)距離は、本体部75a1の半径よりも長い。内周79cの軸方向寸法は、本体部75a1の軸方向寸法よりも若干大きい。外周79dは、円筒状であり、その径はシリンダ71の内径と実質的に同じであるか又は僅かに大きい。第3シール部材793は、本体部75a1を取り囲むように、弁ケース76のフランジ部76cとピストン75のフランジ部75cとの間に設置される。内周79cは、本体部75a1の外周に対面する。第3シール部材793の軸心は、ピストン75の軸心と実質的に一致する。 The third seal member 793 is a contact-type reciprocating seal, and is an elastic member formed from a non-metallic material such as resin. The resin is, for example, a polyamide system. At least a part of the material of the third seal member 793 is, for example, polytetrafluoroethylene PTFE. Details of the third seal member 793 will be described with reference to FIGS. FIG. 8 shows a cross section of the piston 75 assembled with the third seal member 793 and the cylinder 71 that accommodates the piston 75 in a plane perpendicular to the axis Q so as to pass through the third seal member 793. . FIG. 9 shows a cross section of the piston 75, to which the third seal member 793 is assembled, cut so as to pass through the third seal member 793 in a plane orthogonal to the axial center thereof. The third seal member 793 has an annular shape, and has a rectangular (square) cross-sectional shape cut along a plane passing through the axis. Each vertex (corner) of the cross section has a curve (R). The cross section may be circular, for example. The third seal member 793 has an end surface 79a on one axial side, an end surface 79b on the other axial side, an inner periphery (surface) 79c, and an outer periphery (surface) 79d. The surfaces 79a and 79b have a planar shape extending in the direction perpendicular to the axis of the third seal member 793. The inner periphery 79c is polygonal when viewed from the axial direction of the third seal member 793. Specifically, it is a regular hexagon having six sides. In other words, the inner circumference 79 c is a rectangular rectangular (rectangular) side surface 79 c 1 having a regular hexagonal bottom surface, and each side surface 79 c 1 extends in the axial direction of the third seal member 793. Each vertex of the regular hexagon, in other words, each boundary line (connection part) 79c2 of the side surface 79c1 adjacent in the circumferential direction has a curve (R). The (shortest) distance from the axis of the third seal member 793 to each side (side surface) 79c1 is slightly shorter than the distance from the axis of the piston 75 to the outer periphery of the main body 75a1 (radius of the main body 75a1). . The (shortest) distance from the axial center of the third seal member 793 to each vertex (boundary line) 79c2 is longer than the radius of the main body 75a1. The axial dimension of the inner periphery 79c is slightly larger than the axial dimension of the main body 75a1. The outer periphery 79d is cylindrical, and its diameter is substantially the same as or slightly larger than the inner diameter of the cylinder 71. The third seal member 793 is installed between the flange portion 76c of the valve case 76 and the flange portion 75c of the piston 75 so as to surround the main body portion 75a1. The inner periphery 79c faces the outer periphery of the main body portion 75a1. The axis of the third seal member 793 substantially coincides with the axis of the piston 75.
 次に、作用効果を説明する。ピストン75における第1孔751よりも軸方向一方側は、フィルタ部材73の小径部73a2、第2シール部材792、およびガイド74の内周側にあって、これらにより案内・支持される。ピストン75の軸方向一方側の端部(ピストン端面750)は、カム収容孔61の内部に突出する。第3ばね783が弁ケース76(ピストン75)を付勢する力により、ピストン端面750はカム機構70の駆動部材703の外周面に接触する。ピストン75の軸方向他方側はシリンダ71の内周側にあり、フランジ部75cがシリンダ71の内周717により案内・支持される。シリンダ収容孔62の内部において、大径部624(吐出ポート624a)の内周、シリンダ71の第2端部71c、栓部材72aのZ軸正方向側の外周、及び第1シール部材791のZ軸正方向側の面により囲まれる空間が、第1空間121である。第1空間121は、第1シール部材791により、シリンダ収容孔62の最大径部625の側との連通が抑制される。第1シール部材791は、径方向に圧縮弾性変形した状態である。第1シール部材791は、栓部材72aにおける溝720の底面との間、およびシリンダ収容孔62における大径部624との間に、弾性接触による圧力(ないし応力。以下、接触圧力という。)を発生させる。これらの接触圧力により、シリンダ収容孔62の内部における第1シール部材791よりも軸方向一方側(第1空間121の側)と他方側(最大径部625の側)とが液密に区画される。シリンダ収容孔62の内部において、ピストン75のフランジ部75cのZ軸正方向側の面755及び本体部75aの外周、シリンダ71のZ軸正方向側の表面、シリンダ収容孔62の中径部623(吸入ポート623a)の内周、並びに第2シール部材792のZ軸負方向側の面により囲まれる空間が、第2空間122である。第2空間122は、シリンダ71に対するピストン75の往復移動(ストローク)に伴い容積が変化する。第2空間122は、フィルタ部材73の外周側の空間1221と内周側の空間1222を有する。空間1221には吸入液路12が開口し、空間1222にはピストン75の第1孔751が開口する。空間1221は、第2シール部材792により、カム収容孔61の側との連通が抑制される。第2シール部材792は、取付けられた状態で、その内外周の軸方向両端における外側に膨らんだ部分が径方向に圧縮弾性変形し、シリンダ収容孔62における小径部622との間、およびピストン75(本体部75a)の外周との間に接触圧力を発生させる。これらの接触圧力により、シリンダ収容孔62の内部における第2シール部材792よりも軸方向一方側(カム収容孔61の側)と他方側(第2空間122の側)とが液密に区画される。なお、各シリンダ収容孔62からは第2シール部材792を介してブレーキ液がカム収容孔61へ漏れ出うる。例えば、第2空間122から、ピストン75と第2シール部材792との間の隙間を通ってブレーキ液が漏れ出うる。カム収容孔61へ漏れ出たブレーキ液は、ドレン液路19を介して第2液溜め室64へ流入し、室64に貯留される。 Next, the function and effect will be described. One side in the axial direction of the piston 75 from the first hole 751 is on the inner peripheral side of the small diameter portion 73a2, the second seal member 792, and the guide 74 of the filter member 73, and is guided and supported by these. One end of the piston 75 in the axial direction (piston end surface 750) projects into the cam housing hole 61. The piston end surface 750 comes into contact with the outer peripheral surface of the drive member 703 of the cam mechanism 70 by the force with which the third spring 783 biases the valve case 76 (piston 75). The other axial side of the piston 75 is on the inner peripheral side of the cylinder 71, and the flange portion 75 c is guided and supported by the inner periphery 717 of the cylinder 71. Inside the cylinder housing hole 62, the inner periphery of the large diameter portion 624 (discharge port 624a), the second end portion 71c of the cylinder 71, the outer periphery of the plug member 72a on the Z-axis positive direction side, and the Z of the first seal member 791 A space surrounded by the surface in the positive axial direction is the first space 121. The first space 121 is prevented from communicating with the maximum diameter portion 625 side of the cylinder accommodation hole 62 by the first seal member 791. The first seal member 791 is in a state of being compressed and elastically deformed in the radial direction. The first seal member 791 applies pressure (or stress, hereinafter referred to as contact pressure) due to elastic contact between the plug member 72a and the bottom surface of the groove 720 and between the cylinder housing hole 62 and the large diameter portion 624. generate. With these contact pressures, one axial side (the first space 121 side) and the other side (the maximum diameter portion 625 side) of the first seal member 791 inside the cylinder housing hole 62 are liquid-tightly partitioned. The Inside the cylinder housing hole 62, the outer surface of the Z-axis positive direction surface 755 and the main body 75a of the flange portion 75c of the piston 75, the surface of the cylinder 71 on the Z-axis positive direction side, the medium diameter portion 623 of the cylinder housing hole 62 The space surrounded by the inner periphery of (the suction port 623a) and the surface of the second seal member 792 on the Z-axis negative direction side is the second space 122. The volume of the second space 122 changes with the reciprocation (stroke) of the piston 75 with respect to the cylinder 71. The second space 122 has a space 1221 on the outer peripheral side of the filter member 73 and a space 1222 on the inner peripheral side. The suction liquid passage 12 opens in the space 1221, and the first hole 751 of the piston 75 opens in the space 1222. The communication between the space 1221 and the cam housing hole 61 side is suppressed by the second seal member 792. In the attached state, the second seal member 792 is compressed and elastically deformed in the radial direction at the axially opposite ends of the inner and outer peripheries thereof, and between the small diameter portion 622 in the cylinder housing hole 62 and the piston 75. A contact pressure is generated between the outer periphery of (main body portion 75a). Due to these contact pressures, one side in the axial direction (cam housing hole 61 side) and the other side (second space 122 side) of the second sealing member 792 inside the cylinder housing hole 62 are liquid-tightly partitioned. The Note that brake fluid can leak from each cylinder accommodation hole 62 to the cam accommodation hole 61 via the second seal member 792. For example, the brake fluid can leak from the second space 122 through a gap between the piston 75 and the second seal member 792. The brake fluid leaking into the cam accommodation hole 61 flows into the second liquid reservoir chamber 64 via the drain liquid passage 19 and is stored in the chamber 64.
 シリンダ71の内周側において、ピストン75におけるフランジ部75cのZ軸負方向側の面754およびフランジ部75cよりもZ軸負方向側の表面、並びにシリンダ71の内周717により囲まれる空間が、第3空間123である。第3空間123は、ピストン75のストロークに伴い容積が変化する。第3空間123は、第3シール部材793により、第2空間122(1222)との連通が抑制される。第3シール部材793は、スクイーズパッキンと同様、取付けられた状態で加わる一定の圧縮弾性力と密封流体より伝わる圧力により、シリンダ71の内周(壁面)717との接触圧力を発生させる。第3シール部材793の外周79dは、径方向でシリンダ71の内周717に対面する範囲において、シリンダ71の内周717に対して、ピストン75の周方向および軸方向で全体的に接触する。第3シール部材793の軸方向一方側の端面79aは、ピストン75のフランジ部75cに対して、ピストン75の周方向で全体的に接触可能である。第3シール部材793の軸方向他方側の端面79bは、弁ケース76のフランジ部76cに対して、ピストン75の周方向で全体的に接触可能である。取付時に、フランジ部76cとフランジ部75cとの間で第3シール部材793が軸方向で圧縮弾性変形した状態となっている。すなわち、第3シール部材793はフランジ部76cとフランジ部75cとの間に挟まれる。第3ばね783が弁ケース76を付勢する。第3シール部材793の端面79aは、ピストン75の周方向で全体的に、フランジ部75cの面754に対する接触圧力を発生させている。また、第3シール部材793は第3ばね783の付勢力により軸方向で若干圧縮された状態となっている。これにより、第3シール部材793の外周79dは、ピストン75の周方向で全体的に、シリンダ71の内周717に対する接触圧力を発生させている。また、圧力室(第3空間123)の液圧により第3シール部材793が軸方向一方側に付勢されると、第3シール部材793の端面79aは、ピストン75の周方向で全体的に、フランジ部75cの面754に対する(更なる)接触圧力を発生させる。また、第3シール部材793は圧力室(第3空間123)の液圧により軸方向で若干圧縮された状態となる。これによっても、第3シール部材793の外周79dは、ピストン75の周方向で全体的に、シリンダ71の内周717との(更なる)接触圧力を発生させる。なお、取付時に、弁ケース76のフランジ部76cとピストン75のフランジ部75cとの間で第3シール部材793が軸方向で圧縮弾性変形した状態でなくてもよい。例えば、弁ケース76の大径部76b2が圧入等によりピストン75の端部75bに固定されており、第3ばね783が弁ケース76を介して第2シール部材792を付勢しない構造であってもよい。第3シール部材793の端面79aとフランジ部75cの面754との接触圧力、及び、第3シール部材793の外周79dとシリンダ71の内周717との接触圧力により、シリンダ71の内部における第3シール部材793よりも軸方向一方側(第2空間122の側)と他方側(第3空間123の側)とが液密に区画される。このように第3シール部材793は、シリンダ71の内部をピストン75の移動軸方向に隔成し、高圧シールとして機能する。 On the inner peripheral side of the cylinder 71, the space surrounded by the surface 754 of the flange 75c on the negative Z-axis side of the piston 75 and the surface on the negative Z-axis side of the flange 75c, and the inner periphery 717 of the cylinder 71, This is the third space 123. The volume of the third space 123 changes with the stroke of the piston 75. The third space 123 is prevented from communicating with the second space 122 (1222) by the third seal member 793. Similar to the squeeze packing, the third seal member 793 generates a contact pressure with the inner periphery (wall surface) 717 of the cylinder 71 by a certain compression elastic force applied in an attached state and a pressure transmitted from the sealing fluid. The outer periphery 79d of the third seal member 793 is in general contact with the inner periphery 717 of the cylinder 71 in the circumferential direction and the axial direction of the piston 75 in a range facing the inner periphery 717 of the cylinder 71 in the radial direction. The end surface 79a on the one axial side of the third seal member 793 can contact the flange portion 75c of the piston 75 as a whole in the circumferential direction of the piston 75. The end surface 79b on the other axial side of the third seal member 793 can contact the flange portion 76c of the valve case 76 as a whole in the circumferential direction of the piston 75. At the time of attachment, the third seal member 793 is compressed and elastically deformed in the axial direction between the flange portion 76c and the flange portion 75c. That is, the third seal member 793 is sandwiched between the flange portion 76c and the flange portion 75c. A third spring 783 biases the valve case 76. The end surface 79a of the third seal member 793 generates a contact pressure with respect to the surface 754 of the flange portion 75c as a whole in the circumferential direction of the piston 75. Further, the third seal member 793 is slightly compressed in the axial direction by the urging force of the third spring 783. Thus, the outer periphery 79d of the third seal member 793 generates a contact pressure with respect to the inner periphery 717 of the cylinder 71 as a whole in the circumferential direction of the piston 75. Further, when the third seal member 793 is urged to one side in the axial direction by the hydraulic pressure in the pressure chamber (third space 123), the end surface 79a of the third seal member 793 is entirely in the circumferential direction of the piston 75. Then, a (further) contact pressure with respect to the surface 754 of the flange portion 75c is generated. The third seal member 793 is slightly compressed in the axial direction by the hydraulic pressure in the pressure chamber (third space 123). Also by this, the outer periphery 79d of the third seal member 793 generates a (further) contact pressure with the inner periphery 717 of the cylinder 71 in the entire circumferential direction of the piston 75. It should be noted that the third seal member 793 does not have to be in a state of being compressed and elastically deformed in the axial direction between the flange portion 76c of the valve case 76 and the flange portion 75c of the piston 75 at the time of attachment. For example, the large diameter portion 76b2 of the valve case 76 is fixed to the end portion 75b of the piston 75 by press fitting or the like, and the third spring 783 does not bias the second seal member 792 via the valve case 76. Also good. Due to the contact pressure between the end surface 79a of the third seal member 793 and the surface 754 of the flange portion 75c, and the contact pressure between the outer periphery 79d of the third seal member 793 and the inner periphery 717 of the cylinder 71, the third pressure inside the cylinder 71 is increased. One axial side (the second space 122 side) and the other side (the third space 123 side) of the seal member 793 are partitioned liquid-tightly. In this way, the third seal member 793 separates the inside of the cylinder 71 in the direction of the movement axis of the piston 75 and functions as a high pressure seal.
 第2空間122には、ピストン75の第1孔751が開口する。第2孔752は、第1孔751(第2空間122)と第3空間123を接続する通路として機能する。この通路(第2孔752)と第3空間123との間には吸入弁77aがある。吸入弁77aは第2孔752と第3空間123との連通・遮断を切換える。吸入弁77aは常閉弁であり、開弁することにより第2孔752と第3空間123とを連通させる。第1空間121には、溝723(通路)及び吐出液路13が開口する。シリンダ71の孔711,712、栓部材72aの第2孔722及び複数の溝723は、第3空間123と第1空間121を接続する通路として機能する。この通路には吐出弁77bがある。吐出弁77bは孔712(第3空間123の側)と孔722及び複数の溝723(第1空間121の側)との連通・遮断を切換える。吐出弁77bは常閉弁であり、開弁することにより孔712と孔722及び複数の溝723とを連通させる。ピストン75が軸方向一方側(カム収容孔61へ近づく側)に移動すると、第3空間123の容積が増大し、第3空間123の圧力が低下する。吸入弁77aが開弁することで、第2空間122から第3空間123へ作動液としてのブレーキ液が流入する。ピストン75が軸方向他方側(カム収容孔61から離れる側)に移動すると、第2空間122の容積が増大し、第2空間122の圧力が低下する。吸入液路12から第2空間122へ作動液が流入する。また、第3空間123の容積が減少し、第3空間123の圧力が上昇する。第3空間123は、圧縮され、高圧を発生する圧力室として機能する。吐出弁77bが開弁し、第3空間123から第1空間121(吐出液路13)へブレーキ液が流出する。この動作の繰り返しにより、ピストン75の往復移動に伴い、各ポンプ部7A~7Eから吐出液路13へブレーキ液が吐出される。各ポンプ部7A~7Eが吐出するブレーキ液は1つの吐出液路13に集められ、2系統の液圧回路で共通に用いられる。 The first hole 751 of the piston 75 opens in the second space 122. The second hole 752 functions as a passage connecting the first hole 751 (second space 122) and the third space 123. A suction valve 77a is provided between the passage (second hole 752) and the third space 123. The intake valve 77a switches between communication and blocking between the second hole 752 and the third space 123. The suction valve 77a is a normally closed valve, and opens the second hole 752 and the third space 123 in communication with each other. In the first space 121, a groove 723 (passage) and a discharge liquid passage 13 are opened. The holes 711 and 712 of the cylinder 71, the second hole 722 of the plug member 72a, and the plurality of grooves 723 function as a passage connecting the third space 123 and the first space 121. This passage has a discharge valve 77b. The discharge valve 77b switches communication / blocking between the hole 712 (the third space 123 side), the hole 722, and the plurality of grooves 723 (the first space 121 side). The discharge valve 77b is a normally closed valve, and opens the hole 712 to allow the hole 722 and the plurality of grooves 723 to communicate with each other. When the piston 75 moves to one side in the axial direction (side approaching the cam housing hole 61), the volume of the third space 123 increases and the pressure of the third space 123 decreases. Brake fluid as hydraulic fluid flows from the second space 122 into the third space 123 by opening the intake valve 77a. When the piston 75 moves to the other side in the axial direction (side away from the cam housing hole 61), the volume of the second space 122 increases and the pressure of the second space 122 decreases. The working fluid flows into the second space 122 from the suction fluid path 12. Further, the volume of the third space 123 decreases, and the pressure of the third space 123 increases. The third space 123 functions as a pressure chamber that is compressed and generates a high pressure. The discharge valve 77b is opened, and the brake fluid flows from the third space 123 to the first space 121 (discharge fluid passage 13). By repeating this operation, the brake fluid is discharged from the pump portions 7A to 7E to the discharge fluid passage 13 as the piston 75 reciprocates. The brake fluid discharged from each pump unit 7A to 7E is collected in one discharge liquid passage 13, and is used in common in two systems of hydraulic circuits.
 ピストン75の往復運動を行わせる機構は、(偏心)カム機構70である。カム機構70は、回転駆動軸700の回転運動をピストン75の往復運動に変換する。回転駆動軸700が回転すると、カム70aがこれと一体に回転する。カム70aはカム機構70の原動節として機能する。駆動ユニット70b(駆動部材703)は、カム70aの外周側に配置され、カム70aの回転によりカム70a(回転駆動軸700)の回転軸心Oの周りを揺動する。複数の転動体701は、カム70aの外周面に対して転がると共に駆動部材703の内周面に対して転がりながら軸心Oの周りを一方側に移動し、カム70aの揺動を駆動部材703の揺動として伝える。ピストン75は、駆動部材703の周りに配置され、カム機構70の従動節として機能する。駆動部材703の揺動により、各ポンプ部7A~7Eのピストン75は駆動部材703に押されて往復移動する。複数の転動体701は、カム70aと駆動部材703との相対変位(回転)を許容することで、カム70aの回転に伴う駆動部材703の回転を抑制し、ピストン75に対する軸心Oの周り方向における駆動部材703の移動を抑制する。これにより駆動部材703は、理想的な状態では、その姿勢を変えないまま揺動する。駆動部材703は、その内周側ではカム70aに対し相対変位(回転)する。駆動部材703は、その外周側ではピストン75をカム70a(回転駆動軸700)の径方向外側へ押し、ピストン75を駆動する。駆動部材703の各点(例えば外周面731上の各部位)は、軸心Oに直交する平面内で、駆動ユニット70b(駆動部材703)の軸心Pと軸心Oとの間の距離(偏心量)を半径とする小円上を移動する。よって、駆動部材703とピストン75との間の相対変位を上記小円の範囲内に抑制し、両者間の摩擦を低減することができる。回転駆動軸700が1回転する間、駆動部材703の上記各部位は上記小円上を1回転する。よって、この間、上記各部位は、ピストン75の軸方向で偏心量の2倍の距離を往復移動するだけでなく、ピストン75の軸心に対し直交する方向(周方向)で、ピストン75に対して偏心量の2倍の距離を往復移動する。なお、カム70aの輪郭曲線は円形状に限らない。駆動部材703の相対回転を許容するための手段として、転動体701の代わりに、滑り軸受を構成するブッシュ等の部材を設けてもよい。また、軸受を構成する部材を別途設ける代わりに、カム70aと駆動部材703との摺動部位(カム70aの外周面または駆動部材703の内周面)に、低摩擦性の材質や皮膜を設けてもよい。また、駆動ユニット70bを省略し、カム70aが直接的にピストン75を押す構成としてもよい。 The mechanism that causes the piston 75 to reciprocate is a (eccentric) cam mechanism 70. The cam mechanism 70 converts the rotational motion of the rotary drive shaft 700 into the reciprocating motion of the piston 75. When the rotary drive shaft 700 rotates, the cam 70a rotates integrally therewith. The cam 70a functions as a driving node of the cam mechanism 70. The drive unit 70b (drive member 703) is disposed on the outer peripheral side of the cam 70a, and swings around the rotation axis O of the cam 70a (rotation drive shaft 700) by the rotation of the cam 70a. The plurality of rolling elements 701 roll around the axis O while rolling with respect to the outer circumferential surface of the cam 70a and rolling with respect to the inner circumferential surface of the driving member 703, and swing the cam 70a to drive the driving member 703. Communicate as rocking. The piston 75 is disposed around the drive member 703 and functions as a follower of the cam mechanism 70. As the drive member 703 swings, the pistons 75 of the pump portions 7A to 7E are pushed by the drive member 703 and reciprocate. The plurality of rolling elements 701 allow the relative displacement (rotation) between the cam 70a and the drive member 703, thereby suppressing the rotation of the drive member 703 accompanying the rotation of the cam 70a, and the direction around the axis O relative to the piston 75 The movement of the driving member 703 is suppressed. As a result, the drive member 703 swings without changing its posture in an ideal state. The drive member 703 is displaced (rotated) relative to the cam 70a on the inner peripheral side. The drive member 703 drives the piston 75 by pushing the piston 75 radially outward of the cam 70a (rotation drive shaft 700) on the outer peripheral side thereof. Each point (for example, each part on the outer peripheral surface 731) of the drive member 703 is a distance between the axis P and the axis O of the drive unit 70b (drive member 703) in a plane orthogonal to the axis O ( It moves on a small circle whose radius is eccentricity. Therefore, the relative displacement between the drive member 703 and the piston 75 can be suppressed within the range of the small circle, and the friction between them can be reduced. While the rotation drive shaft 700 makes one rotation, the respective portions of the drive member 703 make one rotation on the small circle. Therefore, during this time, each of the above-mentioned parts not only reciprocates a distance twice the eccentric amount in the axial direction of the piston 75, but also in a direction (circumferential direction) perpendicular to the axial center of the piston 75 with respect to the piston 75. Reciprocate twice as much as the eccentric amount. The contour curve of the cam 70a is not limited to a circular shape. As a means for allowing the relative rotation of the drive member 703, a member such as a bush constituting a sliding bearing may be provided instead of the rolling element 701. Also, instead of providing a separate member constituting the bearing, a low friction material or film is provided on the sliding portion of the cam 70a and the drive member 703 (the outer peripheral surface of the cam 70a or the inner peripheral surface of the drive member 703). May be. Further, the drive unit 70b may be omitted, and the cam 70a may directly push the piston 75.
 第3シール部材793の内周79cは、径方向でピストン75の外周に対面する範囲において、ピストン75の外周に対して、ピストン75の周方向で部分的に接触する。第3シール部材793を軸方向から見たときの第3シール部材793の内周79cの六角形の各辺79c1における周方向中央部79c0が、ピストン75に対して接触する部分であり接触部として機能する。言換えると、第3シール部材793は、その内周79cに接触部79c0を有する。接触部79c0は、第3シール部材793の内周79cに複数あり、周方向で互いに一定の間隔で並ぶ。第3シール部材793の内周79cは、各接触部79c0において、軸方向における大部分(径方向でピストン75の外周に対面する範囲)が、ピストン75の外周に対して接触する。ピストン75の本体部75a1の外周は、軸方向における略全体(径方向で第3シール部材793の内周79cに対面する範囲)が、第3シール部材793の各接触部79c0に対して接触する。第3シール部材793が取付けられた状態で、少なくとも接触部79c0およびその近傍が、少なくとも径方向に圧縮弾性変形した状態であり、接触部79c0とピストン75の外周面との間に接触圧力が発生する。接触部79c0の圧縮弾性力は、第3シール部材793の外周79dにおける、接触部79c0を通る径方向直線上の部分79d0およびその近傍とシリンダ71の内周717との間に、追加的な接触圧力を発生させる。第3シール部材793の外周79dにおける、部分79d0に周方向で挟まれる部分79d1とシリンダ71の内周717との間における接触圧力は、部分79d0とシリンダ71の内周717との間における接触圧力よりも、小さい。 The inner circumference 79c of the third seal member 793 partially contacts the outer circumference of the piston 75 in the circumferential direction of the piston 75 in a range facing the outer circumference of the piston 75 in the radial direction. When the third seal member 793 is viewed from the axial direction, the circumferential central portion 79c0 of each hexagonal side 79c1 of the inner periphery 79c of the third seal member 793 is a portion that contacts the piston 75 and serves as a contact portion. Function. In other words, the third seal member 793 has a contact portion 79c0 on its inner periphery 79c. There are a plurality of contact portions 79c0 on the inner periphery 79c of the third seal member 793, and they are arranged at regular intervals in the circumferential direction. The inner periphery 79c of the third seal member 793 is in contact with the outer periphery of the piston 75 at a major portion in the axial direction (range facing the outer periphery of the piston 75 in the radial direction) at each contact portion 79c0. The outer periphery of the main body 75a1 of the piston 75 is in contact with each contact portion 79c0 of the third seal member 793 substantially in the axial direction (range facing the inner periphery 79c of the third seal member 793 in the radial direction). . With the third seal member 793 attached, at least the contact portion 79c0 and its vicinity are in a state of being compressed and elastically deformed at least in the radial direction, and contact pressure is generated between the contact portion 79c0 and the outer peripheral surface of the piston 75. To do. The compressive elastic force of the contact portion 79c0 is an additional contact between the portion 79d0 on the outer periphery 79d of the third seal member 793 on the radial straight line passing through the contact portion 79c0 and its vicinity and the inner periphery 717 of the cylinder 71. Generate pressure. In the outer periphery 79d of the third seal member 793, the contact pressure between the portion 79d1 sandwiched in the circumferential direction by the portion 79d0 and the inner periphery 717 of the cylinder 71 is the contact pressure between the portion 79d0 and the inner periphery 717 of the cylinder 71. Smaller than.
 ピストン75のフランジ部75cの外周とシリンダ71の内周717との間には、若干の隙間がある。この隙間内で、ピストン75のフランジ部75cはシリンダ71に対し径方向に移動しうる。この径方向移動により、ピストン75が振動するおそれがある。駆動ユニット70bは、ピストン75の径方向でピストン75の端面750に対し(往復)移動する。端面750には駆動ユニット70b(駆動部材703)から径方向の力が作用する。これにより、ピストン75がシリンダ71に対して軸方向に往復移動する際、同時に、ピストン75がシリンダ71に対して径方向に(往復)移動し、振れ回る(揺動する)おそれが高くなる。これにより、ポンプ7の振動が発生し、ポンプ7の静粛性が低下するおそれがある。第3シール部材793の内周79cは、ピストン75の外周に対して(部分的にでも)接触する。よって、第3シール部材793の内周79cがピストン75の外周に対して接触しない場合と異なり、ピストン75は、第3シール部材793を介してシリンダ71に保持される。言換えると、シリンダ71の内周717に対するピストン75(フランジ部75c)の外周の径方向位置が、第3シール部材793により規制される。よって、ピストン75の上記径方向移動が抑制されるため、ピストン75の振動が抑制される。 There is a slight gap between the outer periphery of the flange portion 75c of the piston 75 and the inner periphery 717 of the cylinder 71. Within this gap, the flange portion 75 c of the piston 75 can move in the radial direction with respect to the cylinder 71. This radial movement may cause the piston 75 to vibrate. The drive unit 70b moves (reciprocates) relative to the end surface 750 of the piston 75 in the radial direction of the piston 75. A radial force acts on the end surface 750 from the drive unit 70b (drive member 703). As a result, when the piston 75 reciprocates in the axial direction with respect to the cylinder 71, at the same time, the piston 75 moves in the radial direction (reciprocating) with respect to the cylinder 71, and there is a high possibility that the piston 75 swings (oscillates). As a result, vibration of the pump 7 occurs, and the silence of the pump 7 may be reduced. The inner periphery 79c of the third seal member 793 contacts (even partially) the outer periphery of the piston 75. Therefore, unlike the case where the inner periphery 79c of the third seal member 793 does not contact the outer periphery of the piston 75, the piston 75 is held by the cylinder 71 via the third seal member 793. In other words, the radial position of the outer periphery of the piston 75 (flange portion 75c) with respect to the inner periphery 717 of the cylinder 71 is regulated by the third seal member 793. Therefore, since the radial movement of the piston 75 is suppressed, the vibration of the piston 75 is suppressed.
 回転駆動軸700が1回転する間、ピストン75には、吐出圧による力と、第3ばね783の付勢力と、シリンダ71に対するピストン75(第3シール部材793を含む。以下、ピストン75等という。)の摩擦力と、の和が作用する。上記摩擦力が増加すると、ピストン75を駆動するための回転駆動軸700のトルク(以下、駆動トルクという。)が増大する。組付けられる各部品の寸法のバラツキや、作動時の温度変化等により、上記摩擦力が増加し、駆動トルクが増大するおそれがある。特に、第3シール部材793を介してピストン75をシリンダ71に保持する場合、第3シール部材793がピストン75の外周との間に接触圧力を発生させる分だけ、第3シール部材793とシリンダ71の内周717との間に、(シール性能を確保するための接触圧力に加えて)追加的な接触圧力が発生する。これにより、上記摩擦力が増加するおそれがある。第3シール部材793の材料が固体潤滑剤を含むことで、第3シール部材793(のうちシリンダ71に摺接する外周79d)が潤滑性を有する。上記摩擦力が減少するため、駆動トルクの増大を抑制できる。なお、この作用効果を得るために、第3シール部材793(のうちシリンダ71に摺接する外周79d)の材料が自己潤滑性のある固体材料であればよく、PTFEに限らない。また、第3シール部材793のうちシリンダ71に摺接する外周79dに潤滑性のある皮膜を設けてもよい。 While the rotation drive shaft 700 makes one rotation, the piston 75 includes a force due to the discharge pressure, an urging force of the third spring 783, and a piston 75 (including a third seal member 793) against the cylinder 71. Hereinafter, referred to as a piston 75 or the like. )) And the frictional force. When the frictional force increases, the torque of the rotary drive shaft 700 for driving the piston 75 (hereinafter referred to as drive torque) increases. The frictional force may increase due to variations in dimensions of parts to be assembled, temperature changes during operation, etc., and drive torque may increase. In particular, when the piston 75 is held in the cylinder 71 via the third seal member 793, the third seal member 793 and the cylinder 71 are equivalent to the amount that the third seal member 793 generates a contact pressure with the outer periphery of the piston 75. An additional contact pressure (in addition to the contact pressure for ensuring the sealing performance) is generated between the inner periphery 717 and the inner periphery 717. Thereby, there exists a possibility that the said friction force may increase. Since the material of the third seal member 793 includes a solid lubricant, the third seal member 793 (outer periphery 79d in sliding contact with the cylinder 71) has lubricity. Since the frictional force is reduced, an increase in driving torque can be suppressed. In order to obtain this function and effect, the material of the third seal member 793 (of which the outer periphery 79d slidably contacting the cylinder 71) may be a solid material having self-lubricating properties, and is not limited to PTFE. Further, a lubricating film may be provided on the outer periphery 79d of the third seal member 793 that is in sliding contact with the cylinder 71.
 第3シール部材793の内周79cは、ピストン75の外周に対して(径方向でピストン75の外周に対面する範囲において)部分的に接触する。よって、第3シール部材793の内周79cがピストン75の外周に対して(径方向でピストン75の外周に対面する範囲において)全体的に接触する場合に比べ、第3シール部材793において圧縮弾性変形量が大きい部分が減る(圧縮弾性変形量が小さい部分が増える)。これにより、第3シール部材793の外周79dにおいて、シリンダ71の内周717に対する接触圧力が大きい(追加的な接触圧力が発生する)部分が減る。言換えると接触圧力(シリンダ71の内周717に対する第3シール部材793の押付け力)が小さい部分が増える。よって、第3シール部材793の外周79dとシリンダ71の内周717との摩擦力が全体として減るため、シリンダ71に対するピストン75等の摩擦力が減少する。各部品の寸法バラツキ等があっても、上記摩擦力の増加が抑制される。これにより駆動トルクの増大が抑制されるため、エネルギー損失の抑制を図ることができる。言換えると、ピストン75の振動の抑制と駆動トルクの増大の抑制との両立を図ることができる。 The inner periphery 79c of the third seal member 793 partially contacts the outer periphery of the piston 75 (in a range facing the outer periphery of the piston 75 in the radial direction). Therefore, the third seal member 793 has a compression elasticity in the third seal member 793 as compared with the case where the inner periphery 79c of the third seal member 793 is in total contact with the outer periphery of the piston 75 (in a range facing the outer periphery of the piston 75 in the radial direction). A portion with a large amount of deformation decreases (a portion with a small amount of compressive elastic deformation increases). As a result, the portion of the outer periphery 79d of the third seal member 793 where the contact pressure with respect to the inner periphery 717 of the cylinder 71 is large (additional contact pressure is generated) is reduced. In other words, the portion where the contact pressure (the pressing force of the third seal member 793 against the inner periphery 717 of the cylinder 71) is small increases. Accordingly, since the frictional force between the outer periphery 79d of the third seal member 793 and the inner periphery 717 of the cylinder 71 is reduced as a whole, the frictional force of the piston 75 and the like against the cylinder 71 is reduced. Even if there is a dimensional variation of each part, the increase in the frictional force is suppressed. As a result, an increase in driving torque is suppressed, so that energy loss can be suppressed. In other words, it is possible to achieve both suppression of vibration of the piston 75 and suppression of increase in drive torque.
 第3シール部材793の内周79cは、ピストン75の外周に対して、(径方向でピストン75の外周に対面する範囲において)ピストン75の周方向で部分的に接触する。よって、より効果的に、ピストン75の振動の抑制と駆動トルクの増大の抑制との両立を図ることができる。 The inner circumference 79c of the third seal member 793 partially contacts the outer circumference of the piston 75 in the circumferential direction of the piston 75 (in a range facing the outer circumference of the piston 75 in the radial direction). Therefore, it is possible to more effectively achieve both suppression of vibration of the piston 75 and suppression of increase in driving torque.
 接触部79c0は、ピストン75の周方向におけるピストン75に対する位置に関わらずピストン75の外周に対して接触する部分であり、シール部材側の接触部79c0である。よって、第3シール部材793が、ピストン75の外周に対して、ピストン75の周方向で部分的に接触するようにするために、ピストン75の周方向における第3シール部材793の内周79cの形状を変化させれば足りる。これにより、少なくとも径方向で第3シール部材793の内周79cに対面する範囲において、ピストン75の外周を周方向で単純な形状(円筒状)とすることができる。よって、ピストン75(ひいてはポンプ7。以下同じ。)の生産性を向上できる。 The contact portion 79c0 is a portion that contacts the outer periphery of the piston 75 regardless of the position of the piston 75 relative to the piston 75 in the circumferential direction, and is the contact portion 79c0 on the seal member side. Therefore, in order for the third seal member 793 to partially contact the outer periphery of the piston 75 in the circumferential direction of the piston 75, the inner periphery 79c of the third seal member 793 in the circumferential direction of the piston 75 Changing the shape is sufficient. As a result, the outer periphery of the piston 75 can have a simple shape (cylindrical shape) in the circumferential direction at least in a range facing the inner periphery 79c of the third seal member 793 in the radial direction. Therefore, the productivity of the piston 75 (and hence the pump 7, the same applies hereinafter) can be improved.
 具体的には、接触部79c0は、第3シール部材793の軸方向(ピストン75の移動軸方向)から見て、六角形の各辺79c1にある。六角形は多角形である。よって、第3シール部材793の内周79cを成形しやすく(例えば型成形でき)、接触部79c0を容易に設けることができる。このため、第3シール部材793(ひいてはポンプ7。以下同じ。)の生産性を向上できる。また、接触部79c0の数が3以上となるため、接触部79c0の数が2以下の場合に比べ、周方向で接触圧力が分散され、接触圧力のバランスが向上する。よって、ピストン75の径方向位置をより安定的に規制し、ピストン保持性能の向上を図ることができると共に、シール性能の安定化を図ることができる。なお、接触部79c0は、六角形に限らず任意の多角形の各辺にあってもよい。これらの多角形の辺は、直線に限らず、第3シール部材793の軸心から離れる方向に凸または第3シール部材793の軸心に近づく方向に凸の曲線であってもよい。これらの場合も、上記辺が接触部79c0として機能しうる。本実施形態では、辺79c1は直線であるため、第3シール部材793の内周79cに辺(側面)79c1を成形しやく、接触部79c0を容易に設けることができる。なお、上記辺が第3シール部材793の軸心に近づく方向に凸の曲線である場合、上記辺はピストン75の外周に対して、より積極的に接触する。よって、より確実に、シリンダ71にピストン75が保持され、シリンダ71に対するピストン75の径方向位置が規制される。したがって、ピストン75の振動がより効果的に抑制される。上記辺が第3シール部材793の軸心から離れる方向に凸の曲線である場合、周方向で隣接する辺の間の角度(多角形の頂点における角度)が大きい。よって、第3シール部材793の外径寸法に上限がある場合でも、径方向における第3シール部材793の最薄部分の厚さ(多角形の頂点を通る径方向直線上の第3シール部材793の寸法。言換えると、第3シール部材793の内周79cの角部から第3シール部材793の外周79dまでの距離。内外径の厚み。)を一定以上とすることが容易である。よって、第3シール部材793の径方向肉厚を、最薄部分であっても多く確保できるため、第3シール部材793の耐久性や成形性(加工性)を向上できる。 Specifically, the contact portion 79c0 is located on each side 79c1 of the hexagon as viewed from the axial direction of the third seal member 793 (the moving axis direction of the piston 75). The hexagon is a polygon. Therefore, the inner periphery 79c of the third seal member 793 can be easily molded (for example, can be molded), and the contact portion 79c0 can be easily provided. For this reason, the productivity of the third seal member 793 (and hence the pump 7, the same applies hereinafter) can be improved. Further, since the number of contact portions 79c0 is three or more, the contact pressure is dispersed in the circumferential direction and the balance of contact pressure is improved as compared with the case where the number of contact portions 79c0 is two or less. Therefore, the radial position of the piston 75 can be regulated more stably, the piston holding performance can be improved, and the sealing performance can be stabilized. The contact portion 79c0 is not limited to a hexagon, and may be on each side of an arbitrary polygon. The sides of these polygons are not limited to straight lines, and may be curves that are convex in the direction away from the axis of the third seal member 793 or convex in the direction of approaching the axis of the third seal member 793. Also in these cases, the side can function as the contact portion 79c0. In the present embodiment, since the side 79c1 is a straight line, it is easy to form the side (side surface) 79c1 on the inner periphery 79c of the third seal member 793, and the contact portion 79c0 can be easily provided. Note that when the side is a convex curve in a direction approaching the axial center of the third seal member 793, the side makes more positive contact with the outer periphery of the piston 75. Therefore, the piston 75 is more securely held in the cylinder 71, and the radial position of the piston 75 with respect to the cylinder 71 is regulated. Therefore, the vibration of the piston 75 is more effectively suppressed. When the side is a convex curve in a direction away from the axis of the third seal member 793, the angle between the sides adjacent in the circumferential direction (angle at the vertex of the polygon) is large. Therefore, even when there is an upper limit on the outer diameter of the third seal member 793, the thickness of the thinnest portion of the third seal member 793 in the radial direction (the third seal member 793 on the radial straight line passing through the apex of the polygon) In other words, the distance from the corner portion of the inner periphery 79c of the third seal member 793 to the outer periphery 79d of the third seal member 793 (the thickness of the inner and outer diameters) can be easily set to a certain value or more. Therefore, since the radial thickness of the third seal member 793 can be ensured even at the thinnest portion, the durability and formability (workability) of the third seal member 793 can be improved.
 本実施形態では、上記多角形は六角形である。よって、上記多角形が例えば五角形である場合に比べ、多角形の隣接する各辺79c1がなす角度(頂点79c2における角度)を大きくできる。したがって、径方向における第3シール部材793の最薄部分の厚さを一定以上とすることが、より容易である。また、上記多角形が例えば五角形である場合に比べ、多角形の辺79c1(接触部79c0)の数が多い。よって、周方向で、接触圧力がより分散され、接触圧力のバランスがより向上する。上記六角形の辺79c1(頂点79c2)の数は6、すなわち偶数である。言換えると、上記六角形は偶数角形である。よって、奇数角形である場合に比べ、第3シール部材793の成形性を向上できる。上記六角形は正六角形である。正六角形は正多角形である。よって、第3シール部材793の上記最薄部分の厚さを均一化できる。これにより、第3シール部材793のシール性能や耐久性の向上を図ることができる。また、第3シール部材793の内周79cの形状が、第3シール部材793の軸心の周り方向で対称となる。言換えると、接触部79c0が第3シール部材793の軸心に関して対称に位置する。これにより、周方向で、接触圧力がより均等に分布し、接触圧力のバランスが向上するため、ピストン保持性能の向上及びシール性能の安定化をより一層図ることができる。 In the present embodiment, the polygon is a hexagon. Therefore, compared with the case where the polygon is a pentagon, for example, the angle formed by each side 79c1 adjacent to the polygon (the angle at the vertex 79c2) can be increased. Therefore, it is easier to set the thickness of the thinnest portion of the third seal member 793 in the radial direction to a certain value or more. In addition, the number of polygon sides 79c1 (contact portions 79c0) is larger than when the polygon is, for example, a pentagon. Therefore, the contact pressure is more dispersed in the circumferential direction, and the balance of the contact pressure is further improved. The number of hexagonal sides 79c1 (vertices 79c2) is 6, that is, an even number. In other words, the hexagon is an even square. Therefore, the moldability of the third seal member 793 can be improved compared to the case of an odd-numbered square. The hexagon is a regular hexagon. A regular hexagon is a regular polygon. Therefore, the thickness of the thinnest portion of the third seal member 793 can be made uniform. Thereby, the sealing performance and durability of the third seal member 793 can be improved. Further, the shape of the inner periphery 79 c of the third seal member 793 is symmetric in the direction around the axis of the third seal member 793. In other words, the contact portion 79c0 is positioned symmetrically with respect to the axis of the third seal member 793. As a result, the contact pressure is more evenly distributed in the circumferential direction and the balance of the contact pressure is improved, so that the piston holding performance and the sealing performance can be further improved.
 なお、ポンプ7の駆動源は、モータ7aに限らず、内燃機関等でもよい。本実施形態では、ポンプ7の駆動源として、他の駆動源よりも静粛性に優れた電動モータ7aを用いることで、ポンプ7の音振性向上の効果が際立つ。また、ポンプ7をブレーキ装置以外の装置に用いてもよい。本実施形態では、ブレーキ装置にポンプ7を用いることで、ポンプ7の作動によりブレーキ制御を行う際の振動や騒音を低減し、運転者に与える違和感を低減できる。 The drive source of the pump 7 is not limited to the motor 7a but may be an internal combustion engine or the like. In the present embodiment, the use of the electric motor 7a, which is more quiet than the other drive sources, as the drive source of the pump 7, makes the effect of improving the sound vibration of the pump 7 stand out. Further, the pump 7 may be used in a device other than the brake device. In the present embodiment, by using the pump 7 in the brake device, vibration and noise when brake control is performed by the operation of the pump 7 can be reduced, and the uncomfortable feeling given to the driver can be reduced.
 [第2実施形態]
  図10および図11を参照し、まず構成を説明する。図10は、本実施形態の第3シール部材793を含む、図7と同様の分解斜視図である。図11は、本実施形態の第3シール部材793を含む、図8と同様の断面図である。第3シール部材793の内周79cは、第3シール部材793の軸方向から見て、正五角形である。言換えると、第3シール部材793の内周79cは、正五角形の底面を有する直角柱の各側面であり、各側面は長方形である。第3シール部材793の軸心から上記正五角形の各辺(側面)79c1までの(最短)距離は、ピストン75の軸心から本体部75a1の外周までの距離(半径)よりも僅かに短い。第3シール部材793の軸心から上記正五角形の各頂点79c2まで、言換えると各側面79c1の境界線(接続部位)79c2までの距離は、本体部75a1の半径よりも長い。第3シール部材793を軸方向から見たときの第3シール部材793の内周79cの五角形の各辺79c1における実質的な中央部が、(シール部材側)接触部79c0として機能する。その他の構成は第1実施形態と同じであるため、第1実施形態と共通する部材については第1実施形態と同じ符号を付して、説明を省略する。
[Second Embodiment]
First, the configuration will be described with reference to FIG. 10 and FIG. FIG. 10 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment. FIG. 11 is a cross-sectional view similar to FIG. 8, including the third seal member 793 of the present embodiment. The inner periphery 79c of the third seal member 793 is a regular pentagon when viewed from the axial direction of the third seal member 793. In other words, the inner circumference 79c of the third seal member 793 is each side surface of a right prism having a regular pentagonal bottom surface, and each side surface is rectangular. The (shortest) distance from the axial center of the third seal member 793 to each side (side surface) 79c1 of the regular pentagon is slightly shorter than the distance (radius) from the axial center of the piston 75 to the outer periphery of the main body 75a1. The distance from the axial center of the third seal member 793 to each vertex 79c2 of the regular pentagon, in other words, the boundary line (connection part) 79c2 of each side surface 79c1 is longer than the radius of the main body 75a1. A substantial center portion of each pentagonal side 79c1 of the inner periphery 79c of the third seal member 793 when the third seal member 793 is viewed from the axial direction functions as the contact portion 79c0 (on the seal member side). Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 次に作用効果を説明する。内周79cは、第3シール部材793の軸方向から見て多角形であり、この多角形は五角形である。よって、接触部79c0が5つとなる。上記多角形が例えば六角形である場合に比べ、接触部79c0の数が少ない。言換えると、第3シール部材793の外周79dにおいて追加的な接触圧力が発生する部位の数が小さい。これにより、シリンダ71に対するピストン75等の摩擦力が減少するため、駆動トルクの増大をより抑制できる。また、上記多角形が三角形や四角形の場合に比べ、第3シール部材793の径方向における最薄部分の厚さを確保できる。その他の作用効果は第1実施形態と同じである。 Next, the operational effects will be described. The inner periphery 79c is a polygon when viewed from the axial direction of the third seal member 793, and this polygon is a pentagon. Therefore, there are five contact portions 79c0. The number of contact portions 79c0 is smaller than when the polygon is a hexagon, for example. In other words, the number of portions where additional contact pressure is generated on the outer periphery 79d of the third seal member 793 is small. As a result, the frictional force of the piston 75 or the like with respect to the cylinder 71 is reduced, so that an increase in driving torque can be further suppressed. In addition, the thickness of the thinnest portion of the third seal member 793 in the radial direction can be ensured as compared with the case where the polygon is a triangle or a rectangle. Other functions and effects are the same as those of the first embodiment.
 [第3実施形態]
  図12および図13を参照し、まず構成を説明する。図12は、本実施形態の第3シール部材793を含む、図7と同様の分解斜視図である。図13は、本実施形態の第3シール部材793を含む、図8と同様の断面図である。第3シール部材793はシール本体と突起79c3を有する。シール本体の内周793cは、第3シール部材793の外周79dと実質的に同心の円筒状である。突起79c3は第3シール部材793の内周79cに複数(8個)あり、第3シール部材793の周方向で等間隔に並ぶ。突起79c3は、シール本体と(1つの部品として)一体化されており、シール本体の内周793cから径方向内側に突出する。突起79c3は、第3シール部材793の軸方向に延びる角柱状であり、周方向に延びる1つの側面79c30と、径方向に延びる2つの側面79c31,79c32とを有する。各側面79c30~79c32は平面状である。突起79c3は第3シール部材793の軸方向全範囲にわたって延びる。突起79c3の軸方向端面は、シール本体の軸方向端面79a,79bと同一の平面を構成する。シール本体の外径はシリンダ71の内径と実質的に同じであるか又は僅かに大きい。シール本体の内径(内周793cの径)はピストン75の本体部75a1の外径よりも若干大きい。第3シール部材793の軸心から、突起79c3の側面79c30までの(最短)距離は、ピストン75の軸心から本体部75a1の外周面までの距離(半径)よりも僅かに短い。その他の構成は第1実施形態と同じであるため、第1実施形態と共通する部材については第1実施形態と同じ符号を付して、説明を省略する。
[Third embodiment]
First, the configuration will be described with reference to FIG. 12 and FIG. FIG. 12 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment. FIG. 13 is a cross-sectional view similar to FIG. 8, including the third seal member 793 of the present embodiment. The third seal member 793 has a seal body and a protrusion 79c3. The inner periphery 793c of the seal body has a cylindrical shape substantially concentric with the outer periphery 79d of the third seal member 793. There are a plurality (eight) protrusions 79c3 on the inner periphery 79c of the third seal member 793, and they are arranged at equal intervals in the circumferential direction of the third seal member 793. The protrusion 79c3 is integrated with the seal body (as one component) and protrudes radially inward from the inner periphery 793c of the seal body. The protrusion 79c3 has a prismatic shape extending in the axial direction of the third seal member 793, and has one side surface 79c30 extending in the circumferential direction and two side surfaces 79c31 and 79c32 extending in the radial direction. Each of the side surfaces 79c30 to 79c32 is planar. The protrusion 79c3 extends over the entire axial range of the third seal member 793. The axial end surface of the protrusion 79c3 constitutes the same plane as the axial end surfaces 79a and 79b of the seal body. The outer diameter of the seal body is substantially the same as or slightly larger than the inner diameter of the cylinder 71. The inner diameter of the seal main body (the diameter of the inner periphery 793c) is slightly larger than the outer diameter of the main body 75a1 of the piston 75. The (shortest) distance from the axial center of the third seal member 793 to the side surface 79c30 of the protrusion 79c3 is slightly shorter than the distance (radius) from the axial center of the piston 75 to the outer peripheral surface of the main body 75a1. Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 次に作用効果を説明する。突起79c3(側面79c30)が、ピストン75の本体部75a1に対して接触する接触部79c0として機能する。第3シール部材793の内周79cは、各突起79c3において、軸方向で略全体的に、かつ、(径方向で本体部75a1の外周に対面する範囲において)ピストン75の周方向で部分的に、ピストン75の外周に対して接触する。第3シール部材793の内周79cは、ピストン75の周方向で隣接する突起79c3に挟まれる凹部において、ピストン75の外周に対して接触しない。接触部79c0は、シール部材側の接触部79c0であり、第3シール部材793の軸心に関して対称に位置する。接触部79c0は、シール本体の内周793 cから径方向内側に突出する突起79c3である。よって、ピストン75の外周に対して第3シール部材793の内周79cが、接触部79c0において、より積極的に接触する。この接触によって、より確実に、シリンダ71にピストン75が保持され、シリンダ71に対するピストン75の径方向位置が規制される。なお、突起79c3の形状は任意であり、例えば角柱状に限らず、その各側面は曲面状であってもよい。また、突起79c3の数は8個に限られない。突起79c3の軸方向における寸法(長さ)、および突起79c3の周方向における幅(または突起79c3同士の間隔)も任意である。突起79c3は第3シール部材793の軸方向で不連続に(複数)設けられていてもよい。突起79c3は、シール本体と一体である。よって、突起79c3がシール本体と別体である場合に比べ、部品点数を削減し、また、第3シール部材793の組付け性を向上できる。その他の作用効果は第1実施形態と同じである。 Next, the operational effects will be described. The protrusion 79c3 (side surface 79c30) functions as a contact portion 79c0 that comes into contact with the main body portion 75a1 of the piston 75. The inner periphery 79c of the third seal member 793 is substantially entirely in the axial direction at each projection 79c3 and partially in the circumferential direction of the piston 75 (in a range facing the outer periphery of the main body 75a1 in the radial direction). The piston 75 comes into contact with the outer periphery. The inner periphery 79c of the third seal member 793 does not contact the outer periphery of the piston 75 in a recess sandwiched between the protrusions 79c3 adjacent in the circumferential direction of the piston 75. The contact portion 79c0 is a contact portion 79c0 on the seal member side, and is positioned symmetrically with respect to the axis of the third seal member 793. The contact portion 79c0 is a protrusion 79c3 that protrudes radially inward from the inner periphery 793 c of the seal body. Therefore, the inner periphery 79c of the third seal member 793 comes into more active contact with the outer periphery of the piston 75 at the contact portion 79c0. By this contact, the piston 75 is more securely held in the cylinder 71, and the radial position of the piston 75 with respect to the cylinder 71 is regulated. Note that the shape of the protrusion 79c3 is arbitrary, and is not limited to a prism shape, for example, and each side surface thereof may be a curved surface. Further, the number of protrusions 79c3 is not limited to eight. The dimension (length) in the axial direction of the protrusion 79c3 and the width in the circumferential direction of the protrusion 79c3 (or the interval between the protrusions 79c3) are also arbitrary. The protrusions 79c3 may be provided discontinuously (plural) in the axial direction of the third seal member 793. The protrusion 79c3 is integral with the seal body. Therefore, the number of parts can be reduced and the assembling property of the third seal member 793 can be improved as compared with the case where the projection 79c3 is separate from the seal body. Other functions and effects are the same as those of the first embodiment.
 [第4実施形態]
  図14および図15を参照し、まず構成を説明する。図14は、本実施形態の第3シール部材793を含む、図7と同様の分解斜視図である。図15は、本実施形態の第3シール部材793を含む、図8と同様の断面図である。第3シール部材793はシール本体と介在部材79c4を有する。シール本体は、第3シール部材793の本体部であり、その内周793cは、第3シール部材793の外周79dと実質的に同心の円筒状である。介在部材79c4は、シール本体から切り離された別部材である。介在部材79c4は、第3シール部材793の内周79cに複数(3個)あり、第3シール部材793の周方向で実質的に等間隔に並ぶように配置される。介在部材79c4は、円柱状であり、第3シール部材793の軸方向に延びるように配置される。介在部材79c4の軸方向寸法はシール本体の軸方向寸法と実質的に同じである。介在部材79c4は、その外周が、第3シール部材793の軸方向全範囲にわたってシール本体の内周793cと接触するように配置される。介在部材79c4は、その軸方向端面が、シール本体の軸方向端面79a,79bと同一の平面を構成するように配置される。シール本体の外径はシリンダ71の内径と実質的に同じであるか又は僅かに大きい。シール本体の内径(内周793cの径)はピストン75の本体部75a1の外径よりも若干大きい。介在部材79c4の径は、ピストン75と第3シール部材793が同軸上にあるときの本体部75a1の外周からシール本体の内周793cまでの距離よりも、僅かに大きい。
[Fourth embodiment]
First, the configuration will be described with reference to FIG. 14 and FIG. FIG. 14 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment. FIG. 15 is a cross-sectional view similar to FIG. 8, including the third seal member 793 of the present embodiment. The third seal member 793 has a seal body and an interposition member 79c4. The seal main body is a main body portion of the third seal member 793, and an inner periphery 793c thereof has a cylindrical shape substantially concentric with the outer periphery 79d of the third seal member 793. The interposed member 79c4 is a separate member separated from the seal body. There are a plurality (three) of interposed members 79c4 on the inner periphery 79c of the third seal member 793, and the interposed members 79c4 are arranged so as to be arranged at substantially equal intervals in the circumferential direction of the third seal member 793. The interposed member 79c4 has a columnar shape and is disposed so as to extend in the axial direction of the third seal member 793. The axial dimension of the interposed member 79c4 is substantially the same as the axial dimension of the seal body. The interposed member 79c4 is disposed such that the outer periphery thereof is in contact with the inner periphery 793c of the seal body over the entire axial range of the third seal member 793. The interposed member 79c4 is disposed such that its axial end surface forms the same plane as the axial end surfaces 79a and 79b of the seal body. The outer diameter of the seal body is substantially the same as or slightly larger than the inner diameter of the cylinder 71. The inner diameter of the seal main body (the diameter of the inner periphery 793c) is slightly larger than the outer diameter of the main body 75a1 of the piston 75. The diameter of the interposed member 79c4 is slightly larger than the distance from the outer periphery of the main body 75a1 to the inner periphery 793c of the seal body when the piston 75 and the third seal member 793 are coaxial.
 シール本体の外周は、シリンダ71の内周717に対して接触する。介在部材79c4の外周は、第3シール部材793の軸心から遠い側ではシール本体の内周793cに対して接触し、第3シール部材793の軸心に近い側ではピストン75の本体部75a1の外周に対して接触する。介在部材79c4(における第3シール部材793の軸心に近い側)が、ピストン75に対して接触する(シール部材側)接触部79c0として機能する。第3シール部材793の内周79cは、各介在部材79c4において、軸方向で略全体的に、かつ、(径方向で本体部75a1の外周に対面する範囲において)ピストン75の周方向で部分的に、ピストン75の外周に対して接触する。第3シール部材793の内周79cは、ピストン75の周方向で隣接する介在部材79c4に挟まれる隙間において、ピストン75の外周に対して接触しない。接触部79c0は、シール部材側の接触部であり、第3シール部材793の軸心に関して実質的に対称に配置される。その他の構成は第1実施形態と同じであるため、第1実施形態と共通する部材については第1実施形態と同じ符号を付して、説明を省略する。 ¡The outer periphery of the seal body contacts the inner periphery 717 of the cylinder 71. The outer periphery of the interposed member 79c4 is in contact with the inner periphery 793c of the seal body on the side far from the axis of the third seal member 793, and on the side close to the axis of the third seal member 793, Contact the outer periphery. The interposition member 79c4 (the side close to the axis of the third seal member 793) functions as a contact portion 79c0 that contacts the piston 75 (on the seal member side). The inner circumference 79c of the third seal member 793 is partly in the circumferential direction of the piston 75 in each interposed member 79c4 substantially in the axial direction and (in the range facing the outer circumference of the main body 75a1 in the radial direction). In addition, it contacts the outer periphery of the piston 75. The inner periphery 79c of the third seal member 793 does not contact the outer periphery of the piston 75 in a gap between the interposed members 79c4 adjacent in the circumferential direction of the piston 75. The contact portion 79c0 is a contact portion on the seal member side, and is disposed substantially symmetrically with respect to the axis of the third seal member 793. Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 次に作用効果を説明する。介在部材79c4は、シール本体の内周793cに対し径方向内側に突出するように配置される。よって、ピストン75の外周に対して第3シール部材793の内周79cが、接触部79c0(介在部材79c4)において、より積極に接触する。なお、介在部材79c4の形状は任意であり、円柱状に限らず、例えば角柱状であってもよい。また、介在部材79c4の数は3個に限られず、介在部材79c4の軸方向における寸法(長さ)、および介在部材79c4の周方向における幅(または介在部材79c4同士の間隔)も任意である。介在部材79c4は第3シール部材793の軸方向で不連続に(複数)設けられていてもよい。介在部材79c4は、シール本体と別体である。よって、介在部材79c4がシール本体と一体である場合に比べ、シール本体の内周793cを周方向で単純な形状(円筒状)とすることができ、シール本体の生産性を向上できる。また、接触部79c0として機能する介在部材79c4の形状や性状の設計自由度を向上できる。例えば、介在部材79c4は、シール本体よりも柔らかい材料(ゴム等)によって形成される。これにより、ピストン75を保持しつつ、第3シール部材793の外周79dにおけるシリンダ71の内周717との追加的な接触圧力を低減できる。その他の作用効果は第1実施形態と同じである。 Next, the operational effects will be described. The interposed member 79c4 is disposed so as to protrude radially inward with respect to the inner periphery 793c of the seal body. Therefore, the inner periphery 79c of the third seal member 793 is more positively brought into contact with the outer periphery of the piston 75 at the contact portion 79c0 (interposition member 79c4). Note that the shape of the interposed member 79c4 is arbitrary, and is not limited to a cylindrical shape, and may be, for example, a prismatic shape. Further, the number of the interposition members 79c4 is not limited to three, and the dimension (length) in the axial direction of the interposition members 79c4 and the width in the circumferential direction of the interposition members 79c4 (or the interval between the interposition members 79c4) are also arbitrary. The interposed member 79c4 may be provided discontinuously (plural) in the axial direction of the third seal member 793. The interposed member 79c4 is a separate body from the seal body. Therefore, compared to the case where the interposition member 79c4 is integrated with the seal body, the inner periphery 793c of the seal body can be formed in a simple shape (cylindrical shape) in the circumferential direction, and the productivity of the seal body can be improved. In addition, the design freedom of the shape and properties of the interposition member 79c4 that functions as the contact portion 79c0 can be improved. For example, the interposition member 79c4 is formed of a softer material (rubber or the like) than the seal body. Thereby, an additional contact pressure with the inner periphery 717 of the cylinder 71 at the outer periphery 79d of the third seal member 793 can be reduced while holding the piston 75. Other functions and effects are the same as those of the first embodiment.
 [第5実施形態]
  図16および図17を参照し、まず構成を説明する。図16は、本実施形態の第3シール部材793を含む、図7と同様の分解斜視図である。図17は、本実施形態の第3シール部材793を含む、図8と同様の断面図である。第3シール部材793の内周79cは、軸方向から見て正六角形である。正六角形の各頂点79c2にはカーブ(アール)がついている。第3シール部材793の内周79cの各辺(側面)79c1と外周79dとの間には、孔(空洞)79eがある。孔79eは軸方向に延びて第3シール部材793を貫通する。すなわち、孔79eは第3シール部材793の軸方向両端面79a,79bに開口する。孔79eは、偏平な形状であり、各側面79c1に対し実質的に平行に広がる。第3シール部材793の周方向において、孔79eの寸法は側面79c1の寸法よりも小さい。周方向において、孔79eの中央は側面79c1の中央と実質的に同じ位置にある。側面79c1の周方向両端側を除く(周方向中央側の)部分の径方向外側に孔79eがある。側面79c1の周方向両端(隣接する側面79c1同士の接続部位)79c2側の径方向外側には孔79eがなく、この部分は中実である。第3シール部材793を軸方向から見たときの内周79cの各辺79c1における周方向中央部が、ピストン75に対して接触する(シール部材側)接触部79c0として機能する。第3シール部材793は、その外周79dと接触部79c0との間に孔79eを有する。その他の構成は第1実施形態と同じであるため、第1実施形態と共通する部材については第1実施形態と同じ符号を付して、説明を省略する。
[Fifth Embodiment]
First, the configuration will be described with reference to FIGS. FIG. 16 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment. FIG. 17 is a cross-sectional view similar to FIG. 8, including the third seal member 793 of the present embodiment. The inner periphery 79c of the third seal member 793 is a regular hexagon when viewed from the axial direction. Each vertex 79c2 of the regular hexagon has a curve (R). Between each side (side surface) 79c1 and the outer periphery 79d of the inner periphery 79c of the third seal member 793, there is a hole (hollow) 79e. The hole 79e extends in the axial direction and penetrates the third seal member 793. That is, the hole 79e opens in both axial end surfaces 79a and 79b of the third seal member 793. The hole 79e has a flat shape and extends substantially parallel to each side surface 79c1. In the circumferential direction of the third seal member 793, the dimension of the hole 79e is smaller than the dimension of the side surface 79c1. In the circumferential direction, the center of the hole 79e is substantially at the same position as the center of the side surface 79c1. There is a hole 79e on the outer side in the radial direction of the side surface 79c1 excluding both ends in the circumferential direction (on the central side in the circumferential direction). There are no holes 79e on the radially outer side of the side surface 79c1 in the circumferential direction at both ends in the circumferential direction (connection portions between adjacent side surfaces 79c1) 79c2, and this portion is solid. When the third seal member 793 is viewed from the axial direction, the central portion in the circumferential direction on each side 79c1 of the inner periphery 79c functions as a contact portion 79c0 that contacts the piston 75 (on the seal member side). The third seal member 793 has a hole 79e between its outer periphery 79d and the contact portion 79c0. Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 次に作用効果を説明する。ピストン75(本体部75a1)の外周との接触による接触部79c0の圧縮弾性変形は、孔79eによって謂わば吸収され、孔79eよりも径方向外側に変形が伝達されにくい。接触部79c0の圧縮弾性力が、第3シール部材793の外周79dにおいて、接触部79c0を通る径方向直線上の部分79d0およびその近傍とシリンダ71の内周717との間に追加的な接触圧力を発生させることは、孔79eにより抑制される。よって、シリンダ71に対するピストン75等の摩擦力が減少するため、駆動トルクの増大をより抑制できる。接触部79c0を通る径方向直線上に孔79eの少なくとも一部があれば、上記作用がより効果的に得られる。なお、孔79eは第3シール部材793を軸方向に貫通しなくてもよく、第3シール部材793の内部において軸方向で第3シール部材793の一部分を占めていてもよい。孔79eの形状は任意であり、軸方向から見て楕円等でもよい。孔79eの数は任意であり、1つの側面79c1に対し孔79eを(周方向又は軸方向に)2個以上配列してもよい。多角形の側面79c1のうち孔79eが配置されない側面があってもよい。第3シール部材793において、接触部79c0を通る径方向直線上の部位に、孔79eを配置する代わりに、他の部位よりも径方向の弾性係数が小さい材料を配置してもよい。その他の作用効果は第1実施形態と同じである。 Next, the operational effects will be described. The compression elastic deformation of the contact portion 79c0 due to the contact with the outer periphery of the piston 75 (main body portion 75a1) is so-called absorbed by the hole 79e, and the deformation is less likely to be transmitted radially outward than the hole 79e. The compression elastic force of the contact portion 79c0 is an additional contact pressure between the portion 79d0 on the radial straight line passing through the contact portion 79c0 and its vicinity and the inner periphery 717 of the cylinder 71 on the outer periphery 79d of the third seal member 793. Generation | occurrence | production of is suppressed by the hole 79e. Accordingly, the frictional force of the piston 75 and the like with respect to the cylinder 71 is reduced, so that an increase in driving torque can be further suppressed. If there is at least a part of the hole 79e on the radial straight line passing through the contact portion 79c0, the above-described operation can be obtained more effectively. The hole 79e may not penetrate the third seal member 793 in the axial direction, and may occupy a part of the third seal member 793 in the axial direction inside the third seal member 793. The shape of the hole 79e is arbitrary, and may be an ellipse or the like when viewed from the axial direction. The number of holes 79e is arbitrary, and two or more holes 79e (in the circumferential direction or the axial direction) may be arranged on one side surface 79c1. There may be a side surface of the polygonal side surface 79c1 where the hole 79e is not disposed. In the third seal member 793, a material having a smaller elastic modulus in the radial direction than other portions may be disposed at a portion on the radial straight line passing through the contact portion 79c0 in place of the hole 79e. Other functions and effects are the same as those of the first embodiment.
 [第6実施形態]
  図18~図20を参照し、まず構成を説明する。図18は、本実施形態の第3シール部材793及びピストン75を含む、図7と同様の分解斜視図である。図19は、本実施形態の、第3シール部材793が組付けられたピストン75とこれらを収容するシリンダ71とを、第3シール部材793の端面79bを含み軸心Qに対し直交する平面で切った断面を示す。図19は、図4のXIX- XIX視断面に相当する。図20は、本実施形態の第3シール部材793及びピストン75を含む、図9と同様の断面図である。ピストン75におけるフランジ部75cよりも軸方向他方側の本体部75a1の外周は、ピストン75の軸方向から見て、多角形である。具体的には、正六角形である。言換えると、ピストン75の上記本体部75a1の外周は、正六角形の底面を有する直角柱の各側面75a2である。第3シール部材793の内周79cは、外周79dと実質的に同心の円筒状である。ピストン75の軸心から各側面(上記正六角形の各辺)75a2までの(最短)距離は、第3シール部材793の軸心から内周79cまでの距離(半径)よりも短い。ピストン75の軸心から上記正六角形の各頂点75a3、言換えると各側面75a2の境界線(接続部位)75a3までの距離は、第3シール部材793の内周79cの半径よりも僅かに長い。その他の構成は第1実施形態と同じであるため、第1実施形態と共通する部材については第1実施形態と同じ符号を付して、説明を省略する。
[Sixth embodiment]
First, the configuration will be described with reference to FIGS. FIG. 18 is an exploded perspective view similar to FIG. 7, including the third seal member 793 and the piston 75 of the present embodiment. FIG. 19 is a plan view of the piston 75 assembled with the third seal member 793 and the cylinder 71 that accommodates the piston 75 including the end surface 79b of the third seal member 793 and perpendicular to the axis Q. A cut section is shown. FIG. 19 corresponds to a cross section taken along line XIX-XIX in FIG. 20 is a cross-sectional view similar to FIG. 9, including the third seal member 793 and the piston 75 of the present embodiment. The outer periphery of the main body 75a1 on the other axial side of the flange 75c of the piston 75 is polygonal when viewed from the axial direction of the piston 75. Specifically, it is a regular hexagon. In other words, the outer periphery of the main body 75a1 of the piston 75 is each side surface 75a2 of a right prism having a regular hexagonal bottom surface. The inner periphery 79c of the third seal member 793 has a cylindrical shape substantially concentric with the outer periphery 79d. The (shortest) distance from the axis of the piston 75 to each side surface (each side of the regular hexagon) 75a2 is shorter than the distance (radius) from the axis of the third seal member 793 to the inner periphery 79c. The distance from the axial center of the piston 75 to each vertex 75a3 of the regular hexagon, in other words, the boundary line (connection part) 75a3 of each side surface 75a2, is slightly longer than the radius of the inner periphery 79c of the third seal member 793. Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 次に作用効果を説明する。第3シール部材793の内周79cは、径方向でピストン75(本体部75a1)の外周に対面する範囲において、ピストン75の外周に対して、ピストン75の周方向で部分的に接触する。ピストン75を軸方向から見たときの本体部75a1の上記六角形の各頂点(各側面75a2の境界線)75a3およびその周方向における近傍(75a0)が、第3シール部材793の内周79cに対して接触する部分であり接触部として機能する。言換えると、ピストン75は、その外周に接触部75a0を有する。接触部75a0は、ピストン75の外周に複数あり、周方向で互いに一定の間隔で並ぶ。各接触部75a0は、軸方向における略全体が、第3シール部材793の内周79cに対して接触する。第3シール部材793が取付けられた状態で、第3シール部材793の内周79cにおいて少なくとも接触部75a0が接触する部位およびその近傍が、少なくとも径方向に圧縮弾性変形した状態であり、第3シール部材793における接触部75a0が接触する上記部位と接触部75a0との間に接触圧力が発生する。上記部位の圧縮弾性力は、第3シール部材793の外周79dにおける、接触部75a0を通る径方向直線上の部分79d0およびその近傍とシリンダ71の内周717との間に、追加的な接触圧力を発生させる。第3シール部材793の外周79dにおける、部分79d0に周方向で挟まれる部分79d1とシリンダ71の内周717との間における接触圧力は、部分79d0とシリンダ71の内周717との間における接触圧力よりも、小さい。 Next, the operational effects will be described. The inner periphery 79c of the third seal member 793 partially contacts the outer periphery of the piston 75 in the circumferential direction of the piston 75 in a range facing the outer periphery of the piston 75 (main body portion 75a1) in the radial direction. When the piston 75 is viewed from the axial direction, each of the hexagonal apexes (boundary lines of the side surfaces 75a2) 75a3 of the main body 75a1 and its vicinity (75a0) in the circumferential direction are located on the inner periphery 79c of the third seal member 793. It is a part which contacts and functions as a contact part. In other words, the piston 75 has a contact portion 75a0 on its outer periphery. There are a plurality of contact portions 75a0 on the outer periphery of the piston 75, and they are arranged at regular intervals in the circumferential direction. Each contact portion 75a0 is substantially in contact with the inner periphery 79c of the third seal member 793 in the axial direction. In a state in which the third seal member 793 is attached, at least a portion of the inner periphery 79c of the third seal member 793 that contacts the contact portion 75a0 and its vicinity are in a state of being compressed and elastically deformed at least in the radial direction. Contact pressure is generated between the contact portion 75a0 of the member 793 and the contact portion 75a0. The compressive elastic force of the above portion is an additional contact pressure between the portion 79d0 on the outer periphery 79d of the third seal member 793 on the radial straight line passing through the contact portion 75a0 and its vicinity and the inner periphery 717 of the cylinder 71. Is generated. In the outer periphery 79d of the third seal member 793, the contact pressure between the portion 79d1 sandwiched in the circumferential direction by the portion 79d0 and the inner periphery 717 of the cylinder 71 is the contact pressure between the portion 79d0 and the inner periphery 717 of the cylinder 71. Smaller than.
 接触部75a0は、ピストン側の接触部であり、ピストン75の周方向における第3シール部材793に対する位置に関わらず第3シール部材793の内周79cに対して接触する部分である。よって、ピストン75が、第3シール部材793の内周79cに対して、ピストン75の周方向で部分的に接触するようにするために、周方向におけるピストン75(本体部75a1)の外周の形状を変化させれば足りる。よって、少なくとも径方向でピストン75の外周に対面する範囲において、第3シール部材793の内周79cを周方向で単純な形状(円筒状)とすることができ、第3シール部材793の生産性を向上できる。 The contact portion 75a0 is a contact portion on the piston side, and is a portion that contacts the inner periphery 79c of the third seal member 793 regardless of the position of the piston 75 in the circumferential direction with respect to the third seal member 793. Therefore, in order to make the piston 75 partially contact with the inner circumference 79c of the third seal member 793 in the circumferential direction of the piston 75, the shape of the outer circumference of the piston 75 (main body portion 75a1) in the circumferential direction. It is enough to change. Therefore, the inner circumference 79c of the third seal member 793 can be a simple shape (cylindrical shape) in the circumferential direction at least in the range facing the outer circumference of the piston 75 in the radial direction, and the productivity of the third seal member 793 is increased. Can be improved.
 具体的には、接触部75a0は、ピストン75の移動軸方向から見て、多角形の各頂点75a3及びその近傍であり、多角形の各頂点75a3を含む。
よって、ピストン75の外周に接触部75a0を成形しやく、接触部75a0を容易に設けることができるため、ピストン75の生産性を向上できる。なお、上記多角形は六角形に限らず、例えば五角形でもよい。ピストン75の外周は、接触部75a0として、ピストン75の軸方向に延びる突起や介在部材を有してもよい。上記多角形の各頂点、言換えると本体部75a1の各側面の境界線(接続部位)には、カーブ(アール)がついていてもよい。その他の作用効果は第1実施形態と同じである。
Specifically, the contact portion 75a0 is a polygonal vertex 75a3 and its vicinity as seen from the moving axis direction of the piston 75, and includes the polygonal vertex 75a3.
Therefore, the contact portion 75a0 can be easily formed on the outer periphery of the piston 75, and the contact portion 75a0 can be easily provided, so that the productivity of the piston 75 can be improved. The polygon is not limited to a hexagon, and may be a pentagon, for example. The outer periphery of the piston 75 may have a protrusion or an interposed member extending in the axial direction of the piston 75 as the contact portion 75a0. Each vertex of the polygon, in other words, a boundary line (connection part) on each side surface of the main body 75a1 may be provided with a curve (R). Other functions and effects are the same as those of the first embodiment.
 [第7実施形態]
  図21~図23を参照し、まず構成を説明する。図21は、本実施形態の第3シール部材793を含む、図7と同様の分解斜視図である。図22は、本実施形態の弁ケース76、第1ボール771、第1ばね781、および第3シール部材793が組付けられたピストン75の端部を、その軸心を含む平面で切った断面を示す。第3シール部材793の内周79cは、軸方向に段差が付いた円筒状である。内周79cは大径部79c5と小径部79c6を有する。大径部79c5と小径部79c6は、第3シール部材793の外周79dと実質的に同芯の円筒状であり、大径部79c5よりも小径部79c6のほうが径が小さい。小径部79c6の径は、ピストン75の本体部75a1の径よりも僅かに小さい。大径部79c5の径は、本体部75a1の径よりも大きい。大径部79c5と小径部79c6の軸方向寸法は同じであるか、又は小径部79c6のほうが大径部79c5よりも軸方向寸法が若干小さい。言換えると、小径部79c6の軸方向寸法は、第3シール部材793の全体の軸方向寸法の半分以下である。小径部79c6の軸方向寸法は、本体部75a1の軸方向寸法よりも小さい。小径部79c6は第3シール部材793の軸方向一方側にあり、第3シール部材793の軸方向一方側の端面79aに開口する。大径部79c5は第3シール部材793の軸方向他方側にあり、第3シール部材793の軸方向他方側の端面79bに開口する。第3シール部材793は、軸方向一方側(小径部79c6)がピストン75のフランジ部75cに近い側にあり、軸方向他方側(大径部79c5)がフランジ部75cから遠い側にあるように、ピストン75に設置される。第3シール部材793の端面79aは、ピストン75の周方向で全体的に、フランジ部75cの面754に対して接触可能である。その他の構成は第1実施形態と同じであるため、第1実施形態と共通する部材については第1実施形態と同じ符号を付して、説明を省略する。
[Seventh embodiment]
First, the configuration will be described with reference to FIGS. FIG. 21 is an exploded perspective view similar to FIG. 7, including the third seal member 793 of the present embodiment. FIG. 22 is a cross-sectional view of the end of the piston 75 assembled with the valve case 76, the first ball 771, the first spring 781, and the third seal member 793 of the present embodiment, cut by a plane including its axis. Indicates. The inner periphery 79c of the third seal member 793 has a cylindrical shape with a step in the axial direction. The inner periphery 79c has a large diameter part 79c5 and a small diameter part 79c6. The large-diameter portion 79c5 and the small-diameter portion 79c6 have a cylindrical shape substantially concentric with the outer periphery 79d of the third seal member 793, and the small-diameter portion 79c6 has a smaller diameter than the large-diameter portion 79c5. The diameter of the small diameter portion 79c6 is slightly smaller than the diameter of the main body portion 75a1 of the piston 75. The diameter of the large diameter part 79c5 is larger than the diameter of the main body part 75a1. The large-diameter portion 79c5 and the small-diameter portion 79c6 have the same axial dimension, or the small-diameter portion 79c6 has a slightly smaller axial dimension than the large-diameter portion 79c5. In other words, the axial dimension of the small diameter portion 79c6 is less than or equal to half of the overall axial dimension of the third seal member 793. The axial dimension of the small diameter part 79c6 is smaller than the axial dimension of the main body part 75a1. The small-diameter portion 79c6 is on one side in the axial direction of the third seal member 793, and opens on the end surface 79a on one side in the axial direction of the third seal member 793. The large diameter portion 79c5 is on the other axial side of the third seal member 793, and opens to the end surface 79b on the other axial side of the third seal member 793. The third seal member 793 is such that one side in the axial direction (small diameter portion 79c6) is on the side close to the flange portion 75c of the piston 75 and the other side in the axial direction (large diameter portion 79c5) is on the side far from the flange portion 75c. The piston 75 is installed. The end surface 79a of the third seal member 793 can contact the surface 754 of the flange portion 75c as a whole in the circumferential direction of the piston 75. Since other configurations are the same as those of the first embodiment, members common to the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.
 次に作用効果を説明する。第3シール部材793の内周79cは、ピストン75の外周に対して、ピストン75の移動軸方向で部分的に接触する。小径部79c6が、ピストン75に対して接触する部分である(シール部材側)接触部79c0として機能する。言換えると、第3シール部材793は、その内周79cに接触部79c0を有する。内周79cは、小径部79c6において、周方向における全ての部分が、ピストン75(本体部75a1)の外周に対して接触する。小径部79c6は、その軸方向全範囲で、ピストン75の外周に対して接触する。ピストン75(本体部75a1)の外周は、その軸方向全範囲で第3シール部材793の内周79cに対面すると共に、軸方向における一部が、小径部79c6に対して接触する。第3シール部材793は、取付けられた状態で、少なくとも小径部79c6およびその近傍が、少なくとも径方向に圧縮弾性変形した状態であり、小径部79c6とピストン75(本体部75a1)の外周との間に接触圧力が発生する。小径部79c6の圧縮弾性力は、第3シール部材793の外周79dとシリンダ71の内周717との間に、追加的な接触圧力を発生させる。一方、第3シール部材793の大径部79c5およびその近傍は、ピストン75の外周に対して接触しないため、この部分の圧縮弾性変形が抑制される。第3シール部材793の外周79dにおける、軸方向で(径方向から見て)小径部79c6に重なる部分79d0とシリンダ71の内周717との間における接触圧力は、軸方向で(径方向から見て)大径部79c5に重なる部分79d1とシリンダ71の内周717との間における接触圧力よりも、小さい。これにより、第3シール部材793の外周79dにおいて、シリンダ71の内周717に対する接触圧力が大きい(追加的な接触圧力が発生する)部分が減るため、第3シール部材793の外周79dとシリンダ71の内周717との摩擦力が全体として減る。よって、シリンダ71に対するピストン75等の摩擦力が減少する。 Next, the operational effects will be described. The inner periphery 79c of the third seal member 793 partially contacts the outer periphery of the piston 75 in the moving axis direction of the piston 75. The small diameter portion 79c6 functions as a contact portion 79c0 that is a portion that contacts the piston 75 (on the seal member side). In other words, the third seal member 793 has a contact portion 79c0 on its inner periphery 79c. The inner circumference 79c is in contact with the outer circumference of the piston 75 (main body 75a1) at the small diameter portion 79c6 in the circumferential direction. The small diameter portion 79c6 contacts the outer periphery of the piston 75 in the entire axial range. The outer periphery of the piston 75 (main body portion 75a1) faces the inner periphery 79c of the third seal member 793 in the entire axial range, and a part in the axial direction contacts the small diameter portion 79c6. The third seal member 793 is in a state in which at least the small diameter portion 79c6 and its vicinity are compressed and elastically deformed at least in the radial direction in the attached state, and between the small diameter portion 79c6 and the outer periphery of the piston 75 (main body portion 75a1). Contact pressure is generated. The compression elastic force of the small diameter part 79c6 generates an additional contact pressure between the outer periphery 79d of the third seal member 793 and the inner periphery 717 of the cylinder 71. On the other hand, the large-diameter portion 79c5 of the third seal member 793 and its vicinity do not contact the outer periphery of the piston 75, so that the compression elastic deformation of this portion is suppressed. The contact pressure between the portion 79d0 that overlaps the small-diameter portion 79c6 in the axial direction (as viewed from the radial direction) and the inner periphery 717 of the cylinder 71 on the outer periphery 79d of the third seal member 793 is axially (as viewed from the radial direction). The contact pressure between the portion 79d1 overlapping the large diameter portion 79c5 and the inner periphery 717 of the cylinder 71 is smaller. This reduces the portion of the outer periphery 79d of the third seal member 793 where the contact pressure with the inner periphery 717 of the cylinder 71 is large (additional contact pressure is generated). As a whole, the frictional force with the inner circumference 717 is reduced. Therefore, the frictional force of the piston 75 etc. against the cylinder 71 is reduced.
 第3シール部材793の内周79cは、径方向でピストン75(本体部75a1)の外周に対面する範囲において、ピストン75の外周に対して、ピストン75の移動軸方向で部分的に接触する。接触部79c0(小径部79c6)の軸方向寸法は、第3シール部材793の軸方向寸法の半分以下である。よって、第3シール部材793の内周79cが、径方向でピストン75(本体部75a1)の外周に対面する範囲において、ピストン75の外周に対して、ピストン75の(移動)軸方向で接触する部分の範囲が、一定程度以下に抑制される。このため、第3シール部材793の外周79dにおいて、シリンダ71の内周717に対する接触圧力が大きい(追加的な接触圧力が発生する)部分79d0の範囲が、一定程度以下になる。よって、シリンダ71に対するピストン75等の摩擦力がより効果的に減少する。 The inner periphery 79c of the third seal member 793 partially contacts the outer periphery of the piston 75 in the moving axis direction of the piston 75 in a range facing the outer periphery of the piston 75 (main body portion 75a1) in the radial direction. The axial dimension of the contact part 79c0 (small diameter part 79c6) is less than or equal to half the axial dimension of the third seal member 793. Therefore, the inner periphery 79c of the third seal member 793 contacts the outer periphery of the piston 75 in the (moving) axial direction of the piston 75 in a range in which the inner periphery 79c faces the outer periphery of the piston 75 (main body portion 75a1) in the radial direction. The range of the portion is suppressed to a certain level or less. For this reason, in the outer periphery 79d of the third seal member 793, the range of the portion 79d0 where the contact pressure with respect to the inner periphery 717 of the cylinder 71 is large (additional contact pressure is generated) becomes a certain level or less. Therefore, the frictional force of the piston 75 etc. against the cylinder 71 is more effectively reduced.
 なお、第3シール部材793の内周79cは、ピストン75の外周に対し、軸方向で部分的に接触するだけでなく、周方向で部分的に接触してもよい。例えば、第3シール部材793の小径部79c6に相当する部分が、多角柱状であったり、軸方向に延びる(第3シール部材793と一体の)突起や凹凸または(第3シール部材793と別体の)介在部材を有していたりして、ピストン75の外周に対し、周方向で部分的に接触しない領域を有してもよい。本実施形態では、第3シール部材793の内周79cは、接触部79c0(小径部79c6)において、ピストン75(本体部75a1)の外周に対して、ピストン75の周方向で全体的に接触する。接触部79c0の圧縮弾性力は、シリンダ71の内周717との間における追加的な接触圧力を、第3シール部材793の外周79d(部分79d0)における周方向全範囲で発生させる。したがって、第3シール部材793のシール性能が向上する。また、第3シール部材793の内周79cの形状を、周方向全範囲で均等とすることができる。少なくとも小径部79c6の内周79cを周方向で単純な形状(円環状)とすることができる。よって、第3シール部材793の生産性を向上できる。なお、第3シール部材793の内周79cにおいてピストン75の外周に接触しない部分(大径部79c5)の形状は任意である。本実施形態では、この部分(大径部79c5)の形状も単純な形状(円筒状)である。よって、第3シール部材793の生産性を向上できる。 Note that the inner periphery 79c of the third seal member 793 may not only partially contact the outer periphery of the piston 75 in the axial direction but also partially contact in the circumferential direction. For example, the portion corresponding to the small-diameter portion 79c6 of the third seal member 793 is a polygonal column shape, or a protrusion or unevenness (integrated with the third seal member 793) extending in the axial direction or separate from the third seal member 793. Or an intervening member, and may have a region that does not partially contact the outer periphery of the piston 75 in the circumferential direction. In the present embodiment, the inner periphery 79c of the third seal member 793 contacts the outer periphery of the piston 75 (main body portion 75a1) in the circumferential direction of the piston 75 at the contact portion 79c0 (small diameter portion 79c6). . The compression elastic force of the contact portion 79c0 generates an additional contact pressure with the inner periphery 717 of the cylinder 71 in the entire circumferential range of the outer periphery 79d (part 79d0) of the third seal member 793. Therefore, the sealing performance of the third seal member 793 is improved. Further, the shape of the inner periphery 79c of the third seal member 793 can be made uniform over the entire circumferential range. At least the inner periphery 79c of the small-diameter portion 79c6 can have a simple shape (annular shape) in the circumferential direction. Therefore, the productivity of the third seal member 793 can be improved. The shape of the portion (large diameter portion 79c5) that does not contact the outer periphery of the piston 75 on the inner periphery 79c of the third seal member 793 is arbitrary. In the present embodiment, the shape of this portion (large diameter portion 79c5) is also a simple shape (cylindrical shape). Therefore, the productivity of the third seal member 793 can be improved.
 なお、第3シール部材793の内周79cは、ピストン75との接触部79c0(小径部79c6)または非接触部(大径部79c5)を軸方向に複数有してもよい。第3シール部材793の軸心を通る平面で切った小径部79c6の内周の形状は、第3シール部材793の軸心から離れる方向に凸または第3シール部材793の軸心に近づく方向に凸の曲線であってもよい。言換えると、第3シール部材793の内周79cが、軸方向で部分的に、周方向に延びる凹凸を有してもよい。これらの場合も、第3シール部材793の内周79cにおいて軸心に最も近い部位が、ピストン75の外周に対して、ピストン75の移動軸方向で部分的に接触する接触部79c0として機能しうる。また、第3シール部材793の内周79cは、接触部79c0として、周方向に延びる(第3シール部材793と一体の)突起や(第3シール部材793と別体の)介在部材を、軸方向で部分的に有してもよい。 The inner periphery 79c of the third seal member 793 may have a plurality of contact portions 79c0 (small diameter portions 79c6) or non-contact portions (large diameter portions 79c5) with the piston 75 in the axial direction. The shape of the inner periphery of the small diameter portion 79c6 cut by a plane passing through the axis of the third seal member 793 is convex in a direction away from the axis of the third seal member 793 or in a direction approaching the axis of the third seal member 793. It may be a convex curve. In other words, the inner periphery 79c of the third seal member 793 may have irregularities extending partially in the axial direction in the circumferential direction. Also in these cases, the portion closest to the axial center on the inner periphery 79c of the third seal member 793 can function as a contact portion 79c0 that partially contacts the outer periphery of the piston 75 in the moving axis direction of the piston 75. . In addition, the inner periphery 79c of the third seal member 793 has, as a contact portion 79c0, a protrusion (integrated with the third seal member 793) extending in the circumferential direction or an interposition member (separate from the third seal member 793) as a shaft. You may have partial in direction.
 接触部79c0は、ピストン75の移動軸方向におけるピストン75に対する位置に関わらずピストン75の外周に対して接触する部分であり、シール部材側の接触部である。このため、第3シール部材793が、ピストン75の外周に対して、ピストン75の移動軸方向で部分的に接触するようにするためには、第3シール部材793の軸方向で第3シール部材793の内周79cの形状を変化させれば足りる。よって、少なくとも径方向で第3シール部材793の内周79cに対面する範囲において、ピストン75(本体部75a1)の外周を軸方向で単純な形状(ピストン75の軸心を通る平面で切ったとき直線状)とすることができ、ピストン75の生産性を向上できる。本実施形態では、接触部79c0(小径部79c6)は、周方向で単純な形状(円環状)である。よって、接触部79c0に対し周方向で全体的に接触する本体部75a1の外周を、軸方向で単純な形状(ピストン75の軸心を通る平面で切ったとき直線状)とすることができる。なお、ピストン75の外周が、第3シール部材793の内周79cに対して、ピストン75の移動軸方向で部分的に接触する接触部を有してもよい。この接触部は、ピストン75の移動軸方向における第3シール部材793に対する位置に関わらず第3シール部材793の内周79cに対して接触する部分であり、ピストン側接触部である。例えば、本体部75a1の外周が、異径の段差や(周方向に延びる)凹凸または突起を有してもよいし、周方向に延びる介在部材を(本体部75a1の一部として)有してもよい。これらの場合、少なくとも径方向で本体部75a1の外周に対面する範囲において、内周79cを軸方向で単純な形状(第3シール部材793の軸心を通る平面で切ったとき直線状)とすることができる。 The contact portion 79c0 is a portion that contacts the outer periphery of the piston 75 regardless of the position of the piston 75 relative to the piston 75 in the movement axis direction, and is a contact portion on the seal member side. Therefore, in order for the third seal member 793 to partially contact the outer periphery of the piston 75 in the moving axis direction of the piston 75, the third seal member in the axial direction of the third seal member 793 is used. It is sufficient to change the shape of the inner periphery 79c of 793. Therefore, when the outer periphery of the piston 75 (main body portion 75a1) is cut in a simple shape in the axial direction (at a plane passing through the axial center of the piston 75) at least in the range facing the inner periphery 79c of the third seal member 793 in the radial direction. Linear), and the productivity of the piston 75 can be improved. In the present embodiment, the contact portion 79c0 (small diameter portion 79c6) has a simple shape (annular shape) in the circumferential direction. Therefore, the outer periphery of the main body portion 75a1 that is in general contact with the contact portion 79c0 in the circumferential direction can have a simple shape in the axial direction (linear shape when cut by a plane passing through the axis of the piston 75). The outer periphery of the piston 75 may have a contact portion that partially contacts the inner periphery 79c of the third seal member 793 in the moving axis direction of the piston 75. This contact portion is a portion that contacts the inner periphery 79c of the third seal member 793 regardless of the position of the piston 75 in the movement axis direction with respect to the third seal member 793, and is a piston-side contact portion. For example, the outer periphery of the main body portion 75a1 may have a step having a different diameter, an unevenness or a protrusion (extending in the circumferential direction), or an interposition member extending in the circumferential direction (as a part of the main body portion 75a1). Also good. In these cases, the inner periphery 79c has a simple shape in the axial direction (straight when cut by a plane passing through the axial center of the third seal member 793) at least in a range facing the outer periphery of the main body 75a1 in the radial direction. be able to.
 小径部79c6はフランジ部75cに近い側にある。よって、小径部79c6がフランジ部75cから遠い側にある場合と異なり、小径部79c6の軸方向における全範囲がピストン75(本体部75a1)の外周に接触しうる。このため、上記場合に比べ、第3シール部材793の外周79dにおいて、小径部79c6の圧縮弾性力によりシリンダ71の内周717との間に追加的な接触圧力が発生する範囲が広い。よって、第3シール部材793のシール性能が向上する。また、圧力室(第3空間123)の液圧により第3シール部材793が軸方向一方側に付勢されると、第3シール部材793の軸方向一方側の端面79aは、フランジ部75cの面754に対する(更なる)接触圧力を発生させる。ここで小径部79c6は端面79aに開口する。よって、大径部79c5が端面79aに開口する場合に比べ、面754に接触する端面79aの面積が広いため、液圧による上記接触圧力が発生する範囲が広い。よって、第3シール部材793のシール性能が向上する。なお、第3シール部材793の小径部79c6と端面79aとの境界(角部)には曲面(アール)がある。このため、小径部79c6が端面79aに開口する場合でも、小径部79c6と本体部75a1の外周との間、及び端面79aとフランジ部75c(面754)との間の密着度が向上する。第3シール部材793の小径部79c6と端面79aが、謂わば一続きの(切れ目のない)シール面として機能する。よって、第3シール部材793のシール性能が向上する。その他の作用効果は第1実施形態と同じである。 The small diameter part 79c6 is on the side close to the flange part 75c. Therefore, unlike the case where the small diameter portion 79c6 is on the side far from the flange portion 75c, the entire range in the axial direction of the small diameter portion 79c6 can contact the outer periphery of the piston 75 (main body portion 75a1). For this reason, compared with the above case, the range in which additional contact pressure is generated between the outer periphery 79d of the third seal member 793 and the inner periphery 717 of the cylinder 71 due to the compression elastic force of the small diameter portion 79c6 is wide. Therefore, the sealing performance of the third seal member 793 is improved. Further, when the third seal member 793 is urged in one axial direction by the hydraulic pressure in the pressure chamber (the third space 123), the end surface 79a on the one axial side of the third seal member 793 is formed on the flange portion 75c. A (further) contact pressure against surface 754 is generated. Here, the small diameter portion 79c6 opens in the end face 79a. Therefore, compared with the case where the large-diameter portion 79c5 opens to the end surface 79a, the area of the end surface 79a that contacts the surface 754 is large, so the range in which the contact pressure due to the hydraulic pressure is generated is wide. Therefore, the sealing performance of the third seal member 793 is improved. The boundary (corner portion) between the small diameter portion 79c6 and the end surface 79a of the third seal member 793 has a curved surface (R). For this reason, even when the small diameter portion 79c6 opens in the end surface 79a, the degree of adhesion between the small diameter portion 79c6 and the outer periphery of the main body portion 75a1 and between the end surface 79a and the flange portion 75c (surface 754) is improved. The small diameter portion 79c6 and the end surface 79a of the third seal member 793 function as a so-called continuous (unbroken) seal surface. Therefore, the sealing performance of the third seal member 793 is improved. Other functions and effects are the same as those of the first embodiment.
 [第8実施形態]
  図24~図26を参照し、まず構成を説明する。図24は、本実施形態の第3シール部材793を含む、図6と同様の分解斜視図である。なお、第1ばね781の図示を省略する。第3シール部材793は、1つの部品794として、弁ケース76と一体化されている。この部品794は、例えばポリアミド系の樹脂等により形成される。よって、部品点数を削減し、また、組付け性を向上できる。その他の構成及び作用効果は第1実施形態と同じである。なお、第2、第3、第5、第7実施形態の第3シール部材793や第4実施形態における第3シール部材793のシール本体を、弁ケース76と一体化してもよい。また、第6実施形態の第3シール部材793を弁ケース76と一体化し、ピストン75の本体部75a1を第6実施形態のものとしてもよい。
[Eighth embodiment]
First, the configuration will be described with reference to FIGS. FIG. 24 is an exploded perspective view similar to FIG. 6, including the third seal member 793 of the present embodiment. The illustration of the first spring 781 is omitted. The third seal member 793 is integrated with the valve case 76 as one part 794. The component 794 is made of, for example, a polyamide-based resin. Therefore, the number of parts can be reduced and the assembling property can be improved. Other configurations and operational effects are the same as those of the first embodiment. The seal body of the third seal member 793 of the second, third, fifth, and seventh embodiments and the third seal member 793 of the fourth embodiment may be integrated with the valve case 76. Further, the third seal member 793 of the sixth embodiment may be integrated with the valve case 76, and the main body 75a1 of the piston 75 may be the one of the sixth embodiment.
 [他の実施形態]
  以上、本発明を実施するための形態を、図面に基づき説明したが、本発明の具体的な構成は、実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、第1ユニット1Aや第2ユニット1Bの具体的な構造は実施形態のものに限らない。ポンプ7は、シリンダの内部をピストンの移動軸方向に隔成するシール部材を備えたプランジャポンプであればよく、その具体的構成は本実施形態のものに限らない。ピストン(ポンプ部)の数は任意である。ピストンを駆動する部材は偏心カムに限らず、斜板等でもよい。ピストンの配列形式はラジアル形に限らず、アキシアル形等でもよい。シリンダは固定されていているもの(固定シリンダ形)に限らず、ピストンと共に回転してもよい(回転シリンダ形)。第3シール部材793の外周は、実施形態ではシリンダ71の内周に対し全面的に接触可能な円筒状であるが、VパッキンやUパッキンの外周のようにシリンダ71の内周に対し部分的に接触する形状であってもよい。圧力室(第3空間123)に面する第3シール部材793の軸方向他方側の形状を、VパッキンやUパッキンのような凹状としてもよい。第3シール部材793は、実施形態ではピストン75に装着されシリンダ71の内周に対し摺動するピストンシールであるが、シリンダ71に装着されピストン75の外周がこれに対し摺動するロッドシールであってもよい。この場合、シリンダ71の内周に対して第3シール部材793の外周が部分的に接触する構造であれば、第3シール部材793を介してシリンダ71に対するピストン75の径方向位置が規制されると共に、(第3シール部材793を含む)シリンダ71に対するピストン75の摩擦力が減少する。要は、シール部材が装着される部材の表面に対して径方向でシール部材が対向する範囲において、部分的に、シール部材が上記表面に接触する構成であればよい。
[Other Embodiments]
As mentioned above, although the form for implementing this invention was demonstrated based on drawing, the specific structure of this invention is not limited to embodiment, The design change etc. of the range which does not deviate from the summary of invention are included. Even if it exists, it is included in this invention. For example, the specific structures of the first unit 1A and the second unit 1B are not limited to those in the embodiment. The pump 7 may be a plunger pump provided with a seal member that separates the inside of the cylinder in the direction of the movement axis of the piston, and its specific configuration is not limited to that of this embodiment. The number of pistons (pump parts) is arbitrary. The member that drives the piston is not limited to the eccentric cam, and may be a swash plate or the like. The arrangement form of the pistons is not limited to the radial type, but may be an axial type. The cylinder is not limited to a fixed one (fixed cylinder type), and may rotate with the piston (rotary cylinder type). In the embodiment, the outer periphery of the third seal member 793 has a cylindrical shape that can come into full contact with the inner periphery of the cylinder 71. The shape may be in contact with The shape of the third seal member 793 facing the pressure chamber (third space 123) on the other side in the axial direction may be a concave shape such as V packing or U packing. In the embodiment, the third seal member 793 is a piston seal that is attached to the piston 75 and slides against the inner periphery of the cylinder 71, but is a rod seal that is attached to the cylinder 71 and the outer periphery of the piston 75 slides relative thereto. There may be. In this case, if the outer periphery of the third seal member 793 is in partial contact with the inner periphery of the cylinder 71, the radial position of the piston 75 relative to the cylinder 71 is regulated via the third seal member 793. At the same time, the frictional force of the piston 75 against the cylinder 71 (including the third seal member 793) decreases. The point is that the seal member may be configured to partially contact the surface in a range where the seal member is opposed to the surface of the member to which the seal member is mounted in the radial direction.
 [実施形態から把握しうる技術的思想]
  以上説明した実施形態から把握しうる技術的思想(または技術的解決策。以下同じ。)について、以下に記載する。
(1) 本技術的思想のブレーキ装置は、その1つの態様において、
  内部に液路と孔を有するハウジングと、
  前記孔に収容されたシリンダ、前記シリンダの内部に移動可能に収容されたピストン、および、前記シリンダの内部を前記ピストンの移動軸方向に隔成し、前記ピストンの外周に対して内周が部分的に接触するシール部材を有し、前記液路に接続するプランジャポンプと、
  を備える。
(2) より好ましい態様では、前記態様において、
  前記シール部材の内周は、前記ピストンの外周に対して、前記ピストンの周方向で部分的に接触する。
(3) 別の好ましい態様では、前記態様のいずれかにおいて、
  前記シール部材は、その内周に、前記ピストンの周方向における前記ピストンに対する位置に関わらず前記ピストンの外周に対して接触する部分であるシール部材側接触部を有する。
(4) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記シール部材側接触部は、前記ピストンの移動軸方向から見て、多角形の各辺にある。
(5) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記多角形は六角形である。
(6) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記多角形は五角形である。
(7) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記シール部材は、その外周面と前記シール部材側接触部との間に孔を有する。
(8) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記シール部材側接触部は、前記シール部材の径方向内側に突出する突起である。
(9) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記ピストンは、その外周に、前記ピストンの周方向における前記シール部材に対する位置に関わらず前記シール部材の内周に対して接触する部分であるピストン側接触部を有する。(10) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記ピストン側接触部は、前記ピストンの移動軸方向から見て、多角形の各頂点を含む。
(11) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記シール部材は、前記シリンダの内周に対して接触する本体部と、前記本体部の内周および前記ピストンの外周に対して接触する介在部材とを有する。
(12) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記シール部材の内周は、前記ピストンの外周に対して、前記ピストンの移動軸方向で部分的に接触する。
(13) 本技術的思想のブレーキ装置は、他の1つの態様において、
  内部に液路と孔が形成されたハウジングと、
  前記孔に収容されたシリンダ、前記シリンダの内部に移動可能に収容されたピストン、および、前記シリンダの内部を前記ピストンの移動軸方向に隔成し、前記ピストンの外周に対して内周が部分的に接触するシール部材を有し、前記液路にブレーキ液を吐出可能なプランジャポンプと、
  前記ピストンの移動軸方向一方側の端面に接触し、前記ピストンを移動させるカム機構と、
  前記カム機構が外周に設けられた回転駆動軸と、
  前記回転駆動軸を回転させる電動モータと、
  を備える。
(14) より好ましい態様では、前記態様において、
  前記シール部材の内周は、前記ピストンの移動軸方向から見て、多角形である。
(15) また、他の観点から、本技術的思想のプランジャポンプは、その1つの態様において、
  シリンダと、
  前記シリンダの内部に移動可能に収容されたピストンと、
  前記シリンダの内部を前記ピストンの移動軸方向で隔成し、前記ピストンの外周に対して内周が部分的に接触するシール部材と、
  を備える。
(16) より好ましい態様では、前記態様において、
  前記シール部材の内周は、前記ピストンの外周に対して、前記ピストンの周方向で部分的に接触する。
(17) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記シール部材は、その内周に、前記ピストンの周方向における前記シール部材の前記ピストンに対する位置に関わらず前記ピストンの外周に対して接触する部分であるシール部材側接触部を有する。
(18) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記シール部材側接触部は、前記ピストンの移動軸方向から見て、多角形の各辺にある。
(19) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記シール部材側接触部は、前記シール部材の径方向内側に突出する突起である。
(20) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記ピストンは、その外周に、前記ピストンの周方向における前記シール部材に対する位置に関わらず前記シール部材の内周に対して接触する部分であるピストン側接触部を有する。
[Technical ideas that can be grasped from the embodiment]
The technical idea (or technical solution, the same applies hereinafter) that can be understood from the embodiment described above will be described below.
(1) The brake device of the present technical idea is, in one aspect thereof,
A housing having a liquid passage and a hole therein;
A cylinder housed in the hole, a piston housed in the cylinder so as to be movable, and the inside of the cylinder is separated in a direction of a movement axis of the piston, and an inner circumference is a part of an outer circumference of the piston A plunger pump connected to the liquid path,
Is provided.
(2) In a more preferred embodiment, in the above embodiment,
The inner periphery of the seal member partially contacts the outer periphery of the piston in the circumferential direction of the piston.
(3) In another preferred embodiment, in any of the above embodiments,
The seal member has, on its inner periphery, a seal member side contact portion that is a portion that contacts the outer periphery of the piston regardless of the position of the piston in the circumferential direction with respect to the piston.
(4) In still another preferred embodiment, in any of the above embodiments,
The seal member side contact portion is on each side of the polygon as viewed from the moving axis direction of the piston.
(5) In still another preferred embodiment, in any of the above embodiments,
The polygon is a hexagon.
(6) In still another preferred embodiment, in any of the above embodiments,
The polygon is a pentagon.
(7) In still another preferred embodiment, in any of the above embodiments,
The seal member has a hole between an outer peripheral surface thereof and the seal member side contact portion.
(8) In still another preferred embodiment, in any of the above embodiments,
The seal member side contact portion is a protrusion protruding inward in the radial direction of the seal member.
(9) In still another preferred embodiment, in any of the above embodiments,
The piston has a piston side contact portion on the outer periphery thereof, which is a portion that contacts the inner periphery of the seal member regardless of the position of the piston in the circumferential direction with respect to the seal member. (10) In still another preferred embodiment, in any of the above embodiments,
The piston-side contact portion includes each vertex of a polygon as viewed from the moving axis direction of the piston.
(11) In still another preferred embodiment, in any of the above embodiments,
The seal member includes a main body portion that contacts the inner periphery of the cylinder, and an interposition member that contacts the inner periphery of the main body portion and the outer periphery of the piston.
(12) In still another preferred embodiment, in any of the above embodiments,
The inner periphery of the seal member partially contacts the outer periphery of the piston in the direction of the movement axis of the piston.
(13) In another aspect, the brake device of the present technical idea,
A housing having a liquid passage and a hole formed therein;
A cylinder housed in the hole, a piston housed in the cylinder so as to be movable, and the inside of the cylinder is separated in a direction of a movement axis of the piston, and an inner circumference is a part of an outer circumference of the piston A plunger pump having a sealing member that comes into contact with each other, and capable of discharging brake fluid into the fluid path;
A cam mechanism for moving the piston in contact with an end surface on one side in the movement axis direction of the piston;
A rotary drive shaft provided on the outer periphery with the cam mechanism;
An electric motor for rotating the rotary drive shaft;
Is provided.
(14) In a more preferred embodiment, in the above embodiment,
The inner periphery of the seal member is polygonal when viewed from the moving axis direction of the piston.
(15) From another viewpoint, the plunger pump of the present technical idea is
A cylinder,
A piston movably accommodated within the cylinder;
A seal member that divides the inside of the cylinder in the direction of the movement axis of the piston, and the inner periphery partially contacts the outer periphery of the piston;
Is provided.
(16) In a more preferred embodiment, in the above embodiment,
The inner periphery of the seal member partially contacts the outer periphery of the piston in the circumferential direction of the piston.
(17) In still another preferred embodiment, in any of the above embodiments,
The seal member has, on its inner periphery, a seal member side contact portion that is a portion that contacts the outer periphery of the piston regardless of the position of the seal member with respect to the piston in the circumferential direction of the piston.
(18) In still another preferred embodiment, in any of the above embodiments,
The seal member side contact portion is on each side of the polygon as viewed from the moving axis direction of the piston.
(19) In still another preferred embodiment, in any of the above embodiments,
The seal member side contact portion is a protrusion protruding inward in the radial direction of the seal member.
(20) In still another preferred embodiment, in any of the above embodiments,
The piston has, on its outer periphery, a piston-side contact portion that is a portion that contacts the inner periphery of the seal member regardless of the position of the piston in the circumferential direction with respect to the seal member.
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。上記実施形態を任意に組み合わせても良い。 Although only a few embodiments of the present invention have been described above, various modifications or improvements can be made to the illustrated embodiments without substantially departing from the novel teachings and advantages of the present invention. Will be easily understood by those skilled in the art. Therefore, it is intended that the embodiment added with such changes or improvements is also included in the technical scope of the present invention. You may combine the said embodiment arbitrarily.
 本願は、2016年4月14日付出願の日本国特許出願第2016-081087号に基づく優先権を主張する。2016年4月14日付出願の日本国特許出願第2016-081087号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-081087 filed on Apr. 14, 2016. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-081087 filed on April 14, 2016 is incorporated herein by reference in its entirety.
1B  第2ユニット(ブレーキ装置)13  吐出液路6   ハウジング62  シリンダ収容孔7   プランジャポンプ7a  電動モータ70  カム機構700 回転駆動軸71  シリンダ75  ピストン793 第3シール部材 1B Second unit (brake device) 13 Discharge liquid path 6 Housing 62 Cylinder housing hole 7 Plunger pump 7a Electric motor 70 Cam mechanism 700 Rotation drive shaft 71 Cylinder 75 Piston 793 Third seal member

Claims (20)

  1.  ブレーキ装置であって、該ブレーキ装置は、
     内部に液路と孔を有するハウジングと、
     前記液路に接続するプランジャポンプとを備え、該プランジャポンプは、
     前記孔に収容されたシリンダと、
     前記シリンダの内部に移動可能に収容されたピストンと、
     前記シリンダの内部を前記ピストンの移動軸方向に隔成し、前記ピストンの外周に対してシール部材の内周が部分的に接触する前記シール部材とを有する、ブレーキ装置。
    A brake device, the brake device comprising:
    A housing having a liquid passage and a hole therein;
    A plunger pump connected to the liquid path, the plunger pump comprising:
    A cylinder housed in the hole;
    A piston movably accommodated within the cylinder;
    A brake device comprising: the seal member that divides the inside of the cylinder in a direction of a movement axis of the piston, and the inner periphery of the seal member partially contacts the outer periphery of the piston.
  2.  請求項1に記載のブレーキ装置において、
     前記シール部材の内周は、前記ピストンの外周に対して、前記ピストンの周方向で部分的に接触する、ブレーキ装置。
    The brake device according to claim 1, wherein
    The brake device, wherein an inner periphery of the seal member partially contacts an outer periphery of the piston in a circumferential direction of the piston.
  3.  請求項2に記載のブレーキ装置において、
     前記シール部材は、該シール部材の内周に、前記ピストンの周方向における前記ピストンに対する位置に関わらず前記ピストンの外周に対して接触する部分であるシール部材側接触部を有する、ブレーキ装置。
    The brake device according to claim 2,
    The said sealing member is a brake device which has a sealing member side contact part which is a part which contacts with respect to the outer periphery of the said piston irrespective of the position with respect to the said piston in the circumferential direction of the said piston at the inner periphery of this sealing member.
  4.  請求項3に記載のブレーキ装置において、
     前記シール部材側接触部は、前記ピストンの移動軸方向から見て、多角形の各辺にある、ブレーキ装置。
    The brake device according to claim 3,
    The said sealing member side contact part is a brake device which exists in each polygonal side seeing from the moving-axis direction of the said piston.
  5.  請求項4に記載のブレーキ装置において、
     前記多角形は六角形である、ブレーキ装置。
    The brake device according to claim 4,
    The brake device, wherein the polygon is a hexagon.
  6.  請求項4に記載のブレーキ装置において、
     前記多角形は五角形である、ブレーキ装置。
    The brake device according to claim 4,
    The brake device, wherein the polygon is a pentagon.
  7.  請求項4に記載のブレーキ装置において、
     前記シール部材は、該シール部材の外周面と前記シール部材側接触部との間に孔を有する、ブレーキ装置。
    The brake device according to claim 4,
    The said sealing member is a brake device which has a hole between the outer peripheral surface of this sealing member, and the said sealing member side contact part.
  8.  請求項3に記載のブレーキ装置において、
     前記シール部材側接触部は、前記シール部材の径方向内側に突出する突起である、ブレーキ装置。
    The brake device according to claim 3,
    The seal member-side contact portion is a brake device that is a protrusion protruding radially inward of the seal member.
  9.  請求項2に記載のブレーキ装置において、
     前記ピストンは、該ピストンの外周に、前記ピストンの周方向における前記シール部材に対する位置に関わらず前記シール部材の内周に対して接触する部分であるピストン側接触部を有する、ブレーキ装置。
    The brake device according to claim 2,
    The said piston has a piston side contact part which is a part which contacts with respect to the inner periphery of the said sealing member regardless of the position with respect to the said sealing member in the circumferential direction of the said piston on the outer periphery of this piston.
  10.  請求項9に記載のブレーキ装置において、
     前記ピストン側接触部は、前記ピストンの移動軸方向から見て、多角形の各頂点を含む、ブレーキ装置。
    The brake device according to claim 9,
    The said piston side contact part is a brake device containing each vertex of a polygon seeing from the moving-axis direction of the said piston.
  11.  請求項1に記載のブレーキ装置において、
     前記シール部材は、前記シリンダの内周に対して接触する本体部と、前記本体部の内周および前記ピストンの外周に対して接触する介在部材とを有する、ブレーキ装置。
    The brake device according to claim 1, wherein
    The said sealing member is a brake device which has a main-body part which contacts with respect to the inner periphery of the said cylinder, and the interposition member which contacts with respect to the inner periphery of the said main-body part, and the outer periphery of the said piston.
  12.  請求項1に記載のブレーキ装置において、
     前記シール部材の内周は、前記ピストンの外周に対して、前記ピストンの移動軸方向で部分的に接触する、ブレーキ装置。
    The brake device according to claim 1, wherein
    The brake device, wherein an inner periphery of the seal member is partially in contact with an outer periphery of the piston in a moving axis direction of the piston.
  13.  ブレーキ装置であって、該ブレーキ装置は、
     内部に液路と孔が形成されたハウジングと、
     前記液路にブレーキ液を吐出可能なプランジャポンプとを備え、
     該プランジャポンプは、
     前記孔に収容されたシリンダと、
     前記シリンダの内部に移動可能に収容されたピストンと、
     前記シリンダの内部を前記ピストンの移動軸方向に隔成し、前記ピストンの外周に対してシール部材の内周が部分的に接触する該シール部材とを有しており、
     前記ブレーキ装置は、さらに、 前記ピストンの移動軸方向一方側の端面に接触し、前記ピストンを移動させるカム機構と、
     前記カム機構が外周に設けられた回転駆動軸と、
     前記回転駆動軸を回転させる電動モータと、
    を備えるブレーキ装置。
    A brake device, the brake device comprising:
    A housing having a liquid passage and a hole formed therein;
    A plunger pump capable of discharging brake fluid into the fluid path;
    The plunger pump
    A cylinder housed in the hole;
    A piston movably accommodated within the cylinder;
    The inside of the cylinder is separated in the direction of the movement axis of the piston, and the seal member has an inner periphery partly in contact with the outer periphery of the piston,
    The brake device is further in contact with an end surface on one side in the movement axis direction of the piston, and a cam mechanism for moving the piston;
    A rotary drive shaft provided on the outer periphery with the cam mechanism;
    An electric motor for rotating the rotary drive shaft;
    A brake device comprising:
  14.  請求項13に記載のブレーキ装置において、
     前記シール部材の内周は、前記ピストンの移動軸方向から見て、多角形である、ブレーキ装置。
    The brake device according to claim 13,
    The brake device according to claim 1, wherein an inner periphery of the seal member is polygonal when viewed from a moving axis direction of the piston.
  15.  プランジャポンプであって、該プランジャポンプは、
     シリンダと、
     前記シリンダの内部に移動可能に収容されたピストンと、
     前記シリンダの内部を前記ピストンの移動軸方向で隔成し、前記ピストンの外周に対してシール部材の内周が部分的に接触する該シール部材と、
    を備えるプランジャポンプ。
    A plunger pump, the plunger pump comprising:
    A cylinder,
    A piston movably accommodated within the cylinder;
    The seal member that divides the inside of the cylinder in the direction of the movement axis of the piston, and the inner periphery of the seal member partially contacts the outer periphery of the piston;
    A plunger pump comprising:
  16.  請求項15に記載のプランジャポンプにおいて、
     前記シール部材の内周は、前記ピストンの外周に対して、前記ピストンの周方向で部分的に接触する、プランジャポンプ。
    The plunger pump according to claim 15,
    The plunger pump, wherein an inner periphery of the seal member is partially in contact with an outer periphery of the piston in a circumferential direction of the piston.
  17.  請求項16に記載のプランジャポンプにおいて、
     前記シール部材は、該シール部材の内周に、前記ピストンの周方向における前記ピストンに対する位置に関わらず前記ピストンの外周に対して接触する部分であるシール部材側接触部を有する、プランジャポンプ。
    The plunger pump according to claim 16,
    The said seal member is a plunger pump which has a seal member side contact part which is a part which contacts with respect to the outer periphery of the said piston irrespective of the position with respect to the said piston in the circumferential direction of the said piston at the inner periphery of this seal member.
  18.  請求項17に記載のプランジャポンプにおいて、
     前記シール部材側接触部は、前記ピストンの移動軸方向から見て、多角形の各辺にある、プランジャポンプ。
    The plunger pump according to claim 17,
    The said seal member side contact part is a plunger pump which exists in each polygonal side seeing from the moving-axis direction of the said piston.
  19.  請求項17に記載のプランジャポンプにおいて、
     前記シール部材側接触部は、前記シール部材の径方向内側に突出する突起である、プランジャポンプ。
    The plunger pump according to claim 17,
    The seal member-side contact portion is a plunger pump that is a protrusion that protrudes radially inward of the seal member.
  20.  請求項16に記載のプランジャポンプにおいて、
     前記ピストンは、該ピストンの外周に、前記ピストンの周方向における前記シール部材に対する位置に関わらず前記シール部材の内周に対して接触する部分であるピストン側接触部を有する、プランジャポンプ。
    The plunger pump according to claim 16,
    The said piston has a piston side contact part which is a part which contacts with respect to the inner periphery of the said sealing member regardless of the position with respect to the said sealing member in the circumferential direction of the said piston on the outer periphery of this piston.
PCT/JP2017/014443 2016-04-14 2017-04-07 Brake device and plunger pump WO2017179496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-081087 2016-04-14
JP2016081087A JP2017190066A (en) 2016-04-14 2016-04-14 Brake device and plunger pump

Publications (1)

Publication Number Publication Date
WO2017179496A1 true WO2017179496A1 (en) 2017-10-19

Family

ID=60042444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014443 WO2017179496A1 (en) 2016-04-14 2017-04-07 Brake device and plunger pump

Country Status (2)

Country Link
JP (1) JP2017190066A (en)
WO (1) WO2017179496A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247490B2 (en) * 2018-08-29 2023-03-29 株式会社アドヴィックス vehicle braking controller
JP7100599B2 (en) * 2019-03-08 2022-07-13 日立Astemo株式会社 Brake control device
WO2023055134A1 (en) * 2021-09-29 2023-04-06 주식회사 만도 Pedal simulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520886A (en) * 2004-11-24 2008-06-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Piston pump and piston ring
JP2010174716A (en) * 2009-01-29 2010-08-12 Hitachi Automotive Systems Ltd Plunger pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520886A (en) * 2004-11-24 2008-06-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Piston pump and piston ring
JP2010174716A (en) * 2009-01-29 2010-08-12 Hitachi Automotive Systems Ltd Plunger pump

Also Published As

Publication number Publication date
JP2017190066A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6521309B2 (en) Brake device and brake system
KR101985156B1 (en) Hydraulic Controls And Brake Systems
KR102003174B1 (en) Hydraulic control device and brake system
JP6493758B2 (en) Pump device and brake system
JP6593688B2 (en) Brake device and brake system
WO2017179496A1 (en) Brake device and plunger pump
KR20180037029A (en) Solenoid valve, hydraulic pressure control device and brake device
US11767002B2 (en) Brake hydraulic pressure controller
WO2018056027A1 (en) Plunger pump and brake device
WO2018070187A1 (en) Pump device and brake apparatus
JPWO2019145820A1 (en) Brake fluid pressure control device
WO2017217488A1 (en) Hydraulic control device and brake system
WO2016189991A1 (en) Piston pump or pump for brake device
US20220176929A1 (en) Brake hydraulic pressure control apparatus
JP6873013B2 (en) Pump device and brake device
JP2018062187A (en) Brake control system and plunger pump
JP2017025872A (en) Pump device and vehicle brake device including the same
JP2017025871A (en) Pump device and vehicular brake device including the same
KR20070060824A (en) Pump for anti-lock brake system
JP2017025874A (en) Pump device and vehicular brake device including the same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782312

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782312

Country of ref document: EP

Kind code of ref document: A1