WO2017178752A1 - Dispositif de conversion de puissance electrique continu-alternatif pour moteur a vitesse variable et moteur a haute vitesse - Google Patents

Dispositif de conversion de puissance electrique continu-alternatif pour moteur a vitesse variable et moteur a haute vitesse Download PDF

Info

Publication number
WO2017178752A1
WO2017178752A1 PCT/FR2017/050871 FR2017050871W WO2017178752A1 WO 2017178752 A1 WO2017178752 A1 WO 2017178752A1 FR 2017050871 W FR2017050871 W FR 2017050871W WO 2017178752 A1 WO2017178752 A1 WO 2017178752A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical
motor
voltage
inverter
conversion device
Prior art date
Application number
PCT/FR2017/050871
Other languages
English (en)
Inventor
Guillaume Boulet
Wenceslas Bourse
Pascal Rollin
Jérémy CUENOT
Régis Bernard Albert MEURET
Original Assignee
Safran Electrical & Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electrical & Power filed Critical Safran Electrical & Power
Priority to EP17722094.4A priority Critical patent/EP3443650A1/fr
Priority to US16/093,080 priority patent/US10658948B2/en
Priority to CN201780023363.9A priority patent/CN109075695B/zh
Publication of WO2017178752A1 publication Critical patent/WO2017178752A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a device for converting continuous AC power (DC / AC) optimized for variable speed or very high speed motors for use in aeronautical compressor type applications but also for aeronautical ventilation type applications.
  • a sinusoidally controlled pulse width modulated inverter (DC / AC converter) is used to control the current in a variable speed motor.
  • This control requires a switching frequency much higher than the electric frequency of the motor, such as for example a switching frequency corresponding to 10 to 25 times the electric frequency of the motor.
  • the electrical frequency is the product of the mechanical frequency of the motor by the number of pairs of poles of the motor.
  • An alternative to sinusoidal control is to control the inverter with a command called "120 °", which allows to divide by six the number of switches on each switch while keeping the same switching frequency. This is because a single switch during cutting / 6th of the electric period.
  • This control improves the switching losses in the power components but degrades the quality of the current supplied to the motor, in particular by the presence of strong harmonics, and generates other constraints such as:
  • Such power conversion circuits allow operation in full wave of the inverter which has the advantage of reducing your losses in the conversion circuit, and in particular in the inverter.
  • the circuit makes it possible to dissociate the voltage-lowering function of the stator frequency generating function proportional to the mechanical frequency of the motor.
  • the role of the DC / DC converter is to impose a mean voltage at the output of the conversion device, and thus, when the device is connected to a motor, to impose an average voltage across the motor to set its speed. Adjusting the output voltage of the DC / DC switch-mode converter thus makes it possible to control the speed of the motor
  • the inverter, DC / AQ converter makes it possible to ensure the routing of the currents in the phases of the motor to the electrical frequency of the motor. It does not change the average amplitude of the motor voltage.
  • the device when the conversion device is connected to an electric motor, the device makes it possible to have a switching frequency of the DC / DC converter independent of the electric frequency of the motor to which the conversion device is coupled.
  • the inverter works with an input voltage controlled by the DC / DC converter and no longer directly suffers voltage variations in the electrical network. This makes it possible to optimize the power component nonconverter, the percents in power semiconductors.
  • the invention aims to provide an electric power conversion device DC / AC converter which His switching frequency is decoupled from ia electrical frequency of the motor to which the device is intended to be electrically connected and for removing a significant portion of harmonics disturbing the operation of an electrical machine coupled to the output of the device.
  • a DC-AC power conversion device comprising input terminals intended to be electrically connected to a DC power supply network, output terminals intended to be electrically connected to an electric motor, a converter switching power supply coupled to the input terminals and an electric inverter cut between the decoupling electrical converter and the output terminals.
  • the power conversion device further comprises a control unit of the inverter configured to operate in pre-calculated pulse width modulation with switching times of the controlled switches of 3 ⁇ 4ndu! pre-slag fixed electric irrespective of the frequency of rotation of the motor and the voltage of the electrical network to be connected to said device.
  • the power conversion device thus offers a compromise between an impulse modulation modulation command, or "Pulse Amplitude Modulation" in English, which reduces the number of switches but increases the intensity of the current harmonics, and a command sinusoidal type which reduces the intensity of current harmonics but has a very large number of commutations.
  • the inverter works with an input voltage controlled by the DC / DC converter and no longer directly suffers voltage variations of the electrical network, it is possible to control it in pulse width modulation. -calculated and fixed to eliminate certain harmonics of current in the phases of the engine.
  • the operation of the inverter (DC / AC) in pre-calculated pulse width modulation Induces a control of the switching times from pre-calculated fixed times so as to eliminate certain harmonics in the current supplied to the motor. For example, by adding 2 additional switches per switch and over an electrical period at a pre-calculated time, it is possible to remove the harmonics 3, 5 and 7 which would appear with a conventional "120 °" type control.
  • This principle greatly simplifies the design of the voltage converter in the case of high speed synchronous machines, that is, whose speeds are higher than 30000 rpm or electrical frequency greater than 1 kHz.
  • This precontrolled control technique imposes fixed control angles regardless of the rotation frequency of the motor and the voltage of the electrical network intended to be connected to said device,
  • the choice of the harmonic to be rejected makes it possible to optimize the gain of the input filtering of the power conversion device, to gain in terms of motor efficiency, to reduce the generated torque ripple, and to eliminate critical frequencies. on the mechanical parts of the motor coupled to the output of the power conversion device such as the rotor and the bearings.
  • the implementation of the so-called pre-calculated command is easier to implement than a sinus type control on a single inverter because the necessary hardware resources are less.
  • the necessary hardware resources must usually ensure the Park and Concordia or Clark transforms, as well as the need to have two current sensors, and a continuous information of the rotor position.
  • a single current sensor is necessary for a simple calculation unit to calculate the switching moments and a discretionary information. (ex every 60 ° electric).
  • the power conversion device Compared to a sinusoidal control, the power conversion device according to the invention has the following advantages:
  • the speed of rotation of the motor is less restrictive for the electronic power section, which makes it possible to connect motors having a greater number of pairs of electrical poles;
  • the electric motor is subjected to a less chopped voltage, which reduces the iron losses in the motor and the common-mode current drained by the capacitances of the stator as well as the risk of partial discharge;
  • the power conversion device has the following advantages:
  • the power conversion device also has the following advantages both with respect to a "120 °" type control and with respect to a sinusoidal control;
  • the power switches of the electrical converter and the inverter can be optimized separately, which makes it possible to have a better compromise between speed, loss, voltage withstand and robustness;
  • the switching electric converter comprises a topology of the type of voltage-reducing (or "buck" in English).
  • the switching power converter has a voltage boost type topology (or "boost" in English).
  • the switching power converter comprises a topology of step-down type (or "buck-boost" in English).
  • the topology of the converter is chosen in accordance with the level of the supply network to which the device is intended to be connected and according to the speed necessary for the operation of the electric motor to which the device is intended to be connected.
  • a motorization system comprising a continuous power supply network, an electric motor, and a DC-AC electrical power conversion device electrically connected between the power supply network and the electric motor.
  • the electric motor may be a fuel cell compressor.
  • FIG. 1 is a schematic representation of a motorization system comprising a power conversion device according to one embodiment of the invention
  • FIG. 2 shows an exemplary voltage waveform provided by the conversion device of FIG. 1 to the motor to which it is coupled;
  • FIGS. 3 and 4 respectively represent a simnla voltage signal of the inverter as part of a conventional 180 ° control, and an example of a simple voltage signal of the inverter as part of a control at 180 * according to the invention;
  • FIGS. 5 and 6 respectively represent the spectral content of the simple voltage of FIG. 3, and the spectral content of the modified probe of FIG.
  • FIG. 1 diagrammatically shows a motorization system comprising a power conversion device according to an embodiment of the invention.
  • the motorization system 3 comprises a continuous power supply network 2, such as an on-board power supply network on board an aircraft for example, a rotary electrical machine 3 corresponding here by a high-speed three-phase electric motor, and an electrical device 4 for DC-AC power conversion.
  • the conversion device 4 comprises two input terminals 5a and 5b electrically connected to the two connection terminals 2a and 2b of the DC supply network 2, and three output terminals 6 electrically coupled to the three coupling terminals of the electric motor 3.
  • the device 4 further comprises a filter stage 7, a switching voltage step-down stage 8, and an inverter stage 9.
  • the voltage step-down stage 8 is input-coupled to the input terminals 5 of the conversion device 4 via the filtering stage 7 is thus coupled between the input terminals 5a and 5b and the voltage step-down stage 8.
  • the inverter stage 9 is, on the one hand, coupled to the output terminals. the output device 6 of the conversion device and on the other hand, input at the output of the voltage step-down stage 8.
  • the voltage step-down stage 8 is therefore cut electrically between the filter stage 7 at its input and the Inverter stage 9 at its output.
  • the filtering stage 7 comprises an assembly called "LC" comprising a filtering coil 10 and a filtering capacitor 11.
  • La filtering capacitor 11 is coupled between the first output terminal 73 of the output stage 7 and the second input and output terminals 72 and 74 of the output stage 7 which are coupled together to the second connection terminal 2b of the continuous supply network 2 via an input terminal 5b of the conversion device 4 and to a second input terminal 82 of the voltage step-down stage 8.
  • the buck stage 8 comprises a controlled switch 12 which may be MOSFET technology, IGBT or bipolar, a transistor 13 which may be a diode as shown in the example illustrated in Figure l f an inductor 14 and a bus 15 having a capacity C.
  • the us 15 is coupled between a first and a second output terminal 83 and 84 of the voltage resistor stage 8, the second output terminal 84 being coupled to its ground, i.e. at the second terminal of connection 2b of the DC power supply network 2, and thus at the second input terminal 82.
  • the controlled switch 12 and the inductor 14 are coupled in series between the first input terminal 81 and the first output terminal 83 of the voltage step-down stage 8, the controlled switch being directly connected to the first terminal input 81 and the inductor being directly connected to the first output terminal 83.
  • a first terminal of the diode 13 is connected to the connection node 85 coupling the controlled switch 12 to the inductor 14, and a second terminal of the diode 13 is connected to the second input 82 and the second output 84 of the voltage-reducing stage ".
  • the inverter stage 9 comprises three branches 15 each connected between a first input terminal 91 of the inverter stage 9 connected to the first output terminal 83 of the voltage resistor stage 8 and a second input terminal 92 coupled at the second output terminal 84 of the voltage step-down stage 8 and therefore to ground.
  • Each branch 15 includes two controlled switches 16 coupled in series and an output terminal f 9a 9b or 9c of the inverter stage 9 connected to an output terminal 6 of the conversion device 4.
  • the output terminal a, 9b or 9c the inverter stage S of each branch 15 corresponds to the connection node of the two controlled switches 16 of the branch.
  • the conversion device 4 further comprises a control unit 17 coupled to the inverter stage 9 to control you.
  • the control unit 17 comprises a memory and is configured to operate in pre-calculated pulse width modulation with pre-calibrated fixed switching times and stored in the memory regardless of the rotation frequency of the motor 3 and the mains voltage 2 connected to the conversion device 4 "
  • the conversion device 4 thus makes it possible to output a voltage signal Vdcjink whose amplitude has been lowered relative to the amplitude of the voltage vdc delivered by the power supply network 2 thanks to the voltage step-down stage 8, and the shape of which is modulated in dimmingion width by the inverter stage 9.
  • the reference t represents the time on the graph.
  • Figures 3 and 4 are respectively shown a simple voltage signal of the inverter part of a control vector at 180 °, and a free of a simple voltage signal of the inverter I in connection with a 180 ° control according to HnventtoR, that is to say with the addition of commutations.
  • switches are added in order to eliminate certain troublesome harmonics, such as harmonics 5, 7, 11, 13, etc.
  • the instant of these additional commutations, ai and a2 that is to say the angle at which these additional commutations occur, will make it possible to eliminate certain components of the spectrum of the voltage.
  • the number of switches added depends on the number of harmonics to minimize or delete. In the case illustrated in Figure 4. we try to remove the harmonics 5 and 7, 1! then at least two additional switching angles, ⁇ 1 and ⁇ 2 with ⁇ 1 ⁇ 32, are required to achieve this deletion. If in the course of the calculations, two switching angles are not enough "we must add more, for example four, and see if that is enough. The goal is to minimize the number of commutations.
  • the harmonics 5 and 6 are removed from the spectrum of the single machine voltage, however the higher order harmonics are increased.
  • the invention thus makes it possible to provide a device for converting DC / AC electrical power whose switching frequency of the converter is decoupled from the electrical frequency of the motor to which the device is electrically connected and making it possible to eliminate a large part of the disturbing harmonics on the operation of an electrical machine cut at the output of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Un dispositif (4) de conversion de puissance électrique continu-alternatif comprenant des bornes d'entrées (5) destinées è être électriquement raccordées à un réseau d'alimentation électrique continu (2), des bornes de sortie (6) destinées à être électriquement raccordées à un moteur électrique (3); un convertisseur électrique à découpage (8) couplé auxdites bornes d'entrée (5) et un onduleur électrique (9) couplé entre le convertisseur électrique à découplage (5) et lesdites bornes de sortie (6). Le dispositif de conversion comprend une unité de commande (17) de l'onduleur électrique (9) configurée pour fonctionner en modulation par largeur d'impulsion pré-calculée avec des instants de commutation des commutateurs commandés (16) de l'onduleur électrique (9) fixes pré-calculés quelles que soient la fréquence de rotation du moteur (3) et la tension (Vdc) du réseau électrique (2) destinés è être raccordés audit dispositif (4).

Description

i
Dispositif de conversion de puiisancs électrique continu- alternatif pour moteur à vitesse variable t meteur à haute vitesse Arrière-pian de l'invention
L'invention concerne un dispositif de conversion de puissance continu alternatif (DC/AC) optimisé pour les moteurs à vitesse variable ou à très haute vitesse pour une utilisation dans des applications de type compresseur aéronautique mais aussi pour des applications de type ventilation aéronautique.
L'utilisation de moteurs à très haute vitesse, tels que des moteurs fonctionnant à plus de 100 000 tours par minute, permet une réduction significative de i 'encombrement et de la masse du moteur ce qui facilita son intégration dans l'équipement.
Cependant l'utilisation, de ce type de moteur impose des contraintes importantes sur le convertisseur électronique DC/AC contrôlant te moteur, contraintes que les structures classiques de commande ne peuvent que difficilement relever dans un environnement aéronautique.
Traditionnellement,, un onduleur à commande sinusoïdale commandé en modulation de largeur d'impulsion (convertisseur DC/AC) est utilisé pour contrôler le courant dans un moteur à vitesse variable. Cette commande nécessite une fréquence de découpage très supérieure à la fréquence électrique du moteur, comme par exemple une fréquence de découpage correspondant â 10 à 25 fois la fréquence électrique du moteur. La fréquence électrique est le produit de la fréquence mécanique du moteur par le nombre de paires de pôles du moteur.
Piloter des machines à haute vitesse en commande sinusoïdale nécessite alors d'utiliser un convertisseur de puissance, ou onduleur, ayant une fréquence de découpage très élevée ce qui engendre un grand nombre de défis technique à relever concernant notamment :
- une très forte augmentation des pertes dans les semiconducteurs de puissance,
- un moyen de refroidissement traditionnel pius adapté, qui implique du coup une difficulté supplémentaire d'intégration du convertisseur DC/AC, et - une rupture technologique nécessaire par rapport à la technologie actuelle, étant donné qu'un composant semiconducteur à grand gap est nécessaire et que les transistors bipolaires à grille isolée (IGBT) sont inadaptés.
Une alternative à la commande sinusoïdale est de piloter l'onduleur avec une commande dite « 120° », ce qui permet de diviser par six le nombre de commutations sur chaque interrupteur tout en gardant ia même fréquence de découpage. Ceci est dû au fait qu'un seul Interrupteur découpe durant l/6e de la période électrique.
Cette commande améliore les pertes par commutations dans les composants de puissance mais dégrade la qualité du courant fourni au moteur,- notamment par la présence de fortes harmoniques, et engendre d'autres contraintes tels que :
une puisation ou couple moteur plus importante, un risque d'excitation des modes propres (ligne d'arbre..,},
- une dégradation du facteur de puissance et l'apparition d'harmonique en entrée de l'équipement et
- un risque d'augmentation du volume des filtres et dé renforcement des pièces mécaniques sur la iigne d'arbre En outre, même avec une commande de type « 120° », le choix de la fréquence de découpage reste toujours lié à la fréquence électrique du moteur.
Il est connu de l'état de la technique des circuits de conversion de puissance comprenant un onduieur couplé en avai d'un convertisseur DC/DC à redressement synchrone, qu'on nomme également en anglais PAM pour « Puise Amplitude Modulation », qui peut être de type abaisseur de tension (ou « buck » en anglais), élévateur de tension (ou « boost » en anglais), ou abaisseur-élévateur de tension (ou « buck-boost » en anglais).
De tels circuits de conversion de puissance permettent un fonctionnement en pleine, onde de l'onduleur qui présente l'avantage de diminuer tes pertes dans le circuit de conversion, et notamment dans l 'onduleur.
Le circuit permet de dissocier ia fonction abaisseur de tension de la fonction générateur de fréquence statorique proportionnelle à la fréquence mécanique du moteur. Le rôle du convertisseur DC/DC est d'imposer une tension moyenne en sortie du dispositif de conversion, et ainsi, lorsque ie dispositif est raccordé à un moteur, d'imposer une tension moyenne aux bornes du moteur pour fixer sa vitesse. Le réglage de la tension de sortie du convertisseur DC/DC abaisseur à découpage permet donc de contrôler la vitesse du moteur
L'onduleur, convertisseur DC/AQ permet d'assurer l'aiguillage des courants dans les phases du moteur à la fréquence électrique du moteur. Il ne modifie pas l'amplitude moyenne de ia tension du moteur.
Ainsi, lorsque le dispositif de conversion est raccordé à un moteur électrique, le dispositif permet d'avoir une fréquence de découpage du convertisseur DC/DC indépendante de la fréquence électrique du moteur auquel te dispositif de conversion est couplé.
L'onduleur travaille avec une tension d'entrée contrôlée par Se convertisseur DC/DC et ne subît plus directement les variations de tension du réseau électrique. Ceci permet d'optimiser le cnoix des composante de puissance de l'onduieur, les perces dans les semi-conducteurs de puissance.
Cependant de tels circuits de conversion génèrent des harmoniques supplémentaires dans Se moteur et donc de Sa pulsation de couple. Cette génération d'harmoniques supplémentaires est susceptible d'exciter des modes propres et de générer des contraintes mécaniques supplémentaires. Objet et résume de l'invention
L'invention vise à fournir un dispositif de conversion de puissance électrique DC/AC dont Sa fréquence de découpage du convertisseur est découplée de ia fréquence électrique du moteur auquel le dispositif est destiné à être électriquement raccordé et permettant d'éliminer une part importante des harmoniques perturbants le fonctionnement d'une machine électrique couplée en sortie du dispositif.
Dans un premier objet de l'invention, ït est proposé un dispositif de conversion de puissance électrique continu-alternatif comprenant des bornes d'entrées destinées à être électriquement raccordées à un réseau d'alimentation électrique continu, des bornes de sortie destinées à être électriquement raccordées à un moteur électrique, un convertisseur électrique à découpage couplé auxdîtes bornes d'entrée et un onduleur électrique coupié entre le convertisseur électrique à découplage et lesdîtes bornes de sortie.
Selon une caractéristique générale de l'invention le dispositif de conversion de puissance comprend en outre une unité de commande de l'onduleur configurée pour fonctionner en modulation par largeur d'impulsion pré-calculée avec des instants de commutation des commutateurs commandés de !¾ndu!eur électrique fixes pré-caiculés quelles que soient la fréquence de rotation du moteur et la tension du réseau électrique destinés à être raccordés audit dispositif.
Le dispositif de conversion de puissance offre ainsi un compromis entre une commande en modulation d'amplitude d'Impulsion, ou « Puise Amplitude Modulation » en anglais, qui réduit le nombre de commutations mais augmentent l'intensité des harmoniques de courants, et une commande de type sinusoïdale qui réduit l'intensité des harmoniques de courant mais présente un nombre très important de commutations.
En effet, du fait que l'onduleur travaille avec une tension d'entrée contrôlée par le convertisseur DC/DC et ne subisse pius directement les variations de tension du réseau électrique, Il est possible de le commander en modulation de largeur d'impulsion pré-calculée et fixe pour éliminer certaines harmoniques de courant dans les phases du moteur.
Le fonctionnement de l'onduleur (DC/AC) en modulation par largeur d'impulsion pré-calculée Induit une commande des instants de commutations à partir d'instants fixes pré-calcuiés de sorte à éliminer certaines harmoniques dans le courant fourni au moteur. Par exempte, en rajoutant 2 commutations supplémentaires par interrupteur et sur une période électrique à un instant pré-calculé, ii est possible de supprimer les harmoniques 3, 5 et 7 qui apparaîtraient avec une commande de type « 120° » classique.
Ce principe simplifie considérablement la conception du convertisseur de tension dans le cas des machines synchrones à haute vitesse, c'est-à-dire dont les vitesses sont supérieures à 30000 tr/min ou fréquence électrique supérieure â 1 kHz. Cette technique de commande pré-caîculée impose des angles de commande fixes quelles que soient la fréquence de rotation du moteur et la tension du réseau électrique destinés à être raccordés audit dispositif,
Le choix de l'harmonique à rejeter permet d'optimiser le gain du filtrage d'entrée du dispositif de conversion de puissance, de gagner en terme de rendement du moteur, de réduire l'ondulation de couple générée, et de supprimer des fréquences critiques sur les parties mécaniques du moteur couplé en sortie du dispositif de conversion de puissance telles que le rotor et ies roulements.
En outre, la mise en œuvre de la commande dite pré-calcuiée est plus facile à implémenter qu'une commande de type sinus sur un onduleur seul car les ressources matérielles nécessaires sont moindres. En effet dans ie cas d'une commande de type sinus, les ressources matérielles nécessaires doivent assurer usuellement tes transformées de Park et Concordia ou Clark, ainsi que la nécessité d'avoir deux capteurs de courant moteur, et une information continue de la position rotorique. Par contre dans ie cas d'une commande pré-calculée, un seul capteur de courant est nécessaire une unité de calcul simple pour calculer les moments de commutation et une information discréûsée. (ex tous les 60° électrique).
Par rapport à une commande sinusoïdale, le dispositif de conversion de puissance selon l'invention présente les avantages suivants :
- la vitesse de rotation du moteur est moins contraignante pour la partie électronique de puissance ce qui offre la possibilité de raccorder des moteurs présentant un plus grand nombre de paires de pôles électriques ;
- le moteur électrique est soumis à une tension moins hachée, ce qui réduit les pertes fer dans ie moteur et le courant de mode commun drainées par les capacités du stator ainsi que le risque de décharge partielle ;
- la commande est simple car elle ne nécessite pas de calcul en temps réel vu qu'elle est pré-calcuiée lors de la conception du dispositif de conversion de puissance et stockée dans l'unité de commande. Par rapport à une commande de type « 120° », le dispositif de conversion de puissance selon l'invention présente Ses avantages suivants :
- la suppression des principales harmoniques de courant dans Se moteur (3, 5, 7..,) ;
- un gain sur le filtrage du courant d'entrée
- une diminution des risques de résonance mécanique ;
- une réduction des pertes grâce à l'abaissement du nombre de commutations si on se contente d'éliminer les harmoniques 3, 5 et 7.
Le dispositif de conversion de puissance selon l'Invention présente en outre les avantages suivants aussi bien par rapport à une commande de type « 120° » que par rapport à une commande sinusoïdale ;
- les interrupteurs de puissance du convertisseur électrique I découpage et de l'onduleur peuvent être optimisés séparément ce qui permet d'avoir un meilleur compromis entre rapidité, perte, tenue en tension et robustesse ;
- l'absence de découpage au niveau da l'onduleur facilite i'impiémeniation d'une commande sans capteur de position roiorique.
Selon un aspect du dispositif de conversion de puissance, le convertisseur électrique à découpage comporte une topologie de type abaisseur de tension (ou « buck » en anglais).
Dans une première variante, le convertisseur électrique à découpage comporte une topologie de type élévateur de tension (ou « boost » en anglais).
Dans une seconde variante, le convertisseur électrique à découpage comporte une topologie de type abaisseur-élévateur de tension (ou « buck-boost » en anglais).
La topologie du convertisseur est choisie en rônction du niveau du réseau d'alimentation auquel le dispositif est destiné à être connecté et en fonction de la vitesse nécessaire pour le fonctionnement du moteur électrique auquel ie dispositif est destiné à être connecté,
Dans un second objet de l'invention, il est proposé un système de motorisation comprenant un réseau d'alimentation électrique continu, un moteur électrique, et un dispositif de conversion de puissance électrique continu-alternatif électriquement raccordé entre ie réseau d'alimentation électrique et le moteur électrique.
Selon un aspect du système de motorisation, le moteur électrique peut être un compresseur à pile à combustible.
Brève description des dessins.
L'invention sera mieux comprise à ia lecture faite ci-après, à titre Indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- ia figure i es une représentation schématique d'un système de motorisation comprenant un dispositif de conversion de puissance selon un mode de réalisation de l'invention ;
la figure 2 présente un exemple de forme d'onde de tension fournie par le dispositif de conversion de la figure 1 au moteur auquel il est couplé ;
- les figures 3 et 4 représentent respectivement un signal de tension simnla de l'onduleur dans le cadre d'une commande à 180° classique, et un exemple d'un signai de tension simple de l'onduleur dans le cadre d'une commande à 180* selon ilnventlon ;
- les figures 5 et 6 représentent respectivement le contenu spectrale de la tension simple de la figure 3, et le contenu spectrale de Tonde modifiée de la figure 4,
Description détaillée de modes de réalisation
Sur ia figure 1 est représenté schématiquement un système de motorisation comprenant un dispositif de conversion de puissance selon un mode de réalisation de Ilnventlon.
Le système de motorisation 3 comprend un réseau d'alimentation électrique continu 2, tel qu'un réseau d'alimentation embarqué à bord d'un aéronef par exemple, une machine électrique tournante 3 correspondant ici par un moteur électrique triphasé à haute vitesse, et un dispositif électrique 4 de conversion de puissance continu- alternatif. Le dispositif 4 de conversion comprend deux bornes d'entrée sa et 5b électriquement raccordées aux deux bornes de raccordement 2a et 2b du réseau d'alimentation continu 2, et trois bornes de sortie 6 électriquement couplées aux trois bornes de couplage du moteur électrique 3.
Le dispositif 4 comprend en outra un étage de filtrage 7, un étage 8 abaisseur de tension à découpage, et un étage onduleur 9. L'étage abaisseur de tension 8 est couplé en entrée aux bornes d'entrée 5 du dispositif de conversion 4 via l'étage de filtrage 7, L'étage de filtrage 7 est donc couplé entre les bornes d'entrée 5a et 5b et l'étage abaisseur de tension 8. L'étage onduleur 9 est d'une part, couplé en sortie aux bornes de sortie 6 du dispositif de conversion et d'autre part, en entrée à la sortie de l'étage abaisseur de tension 8. L'étage abaisseur de tension 8 est donc coupié électriquement entre l'étage de filtrage 7 à son entrée et l'étage onduleur 9 à sa sortie.
L'étage de filtrage 7 comprend un montage dit « LC » comportant une bobine de filtrage 10 et une capacité de filtrage 11.
La bobine de filtrage 10 est couplée entre une première borne d'entrée 71 et une première borne de sortie 73 de l'étage de filtrage 7f la première borne d'entrée 71 de l'étage de filtrage 7 étant couplée à la première borne de raccordement 2a du réseau d'alimentation via la première borne de raccordement 5a, et la première borne de sortie 73 de l'étage de filtrage 7 étant couplée à une première borne d'entrée 81 de l'étage abaisseur de tension 8= La capacité de filtrage 11 est couplée entre la première borne de sortie 73 de l'étage de sortie 7 et les secondes bornes d'entrée et de sortie 72 et 74 de l'étage de sortie 7 qui sont couplées ensemble à la seconde borne de raccordement 2b du réseau d'aiimentation continu 2 via une borne d'entrée 5b du dispositif de conversion 4 et à une seconde borne d'entrée 82 de l'étage abaisseur de tension 8.
L'étage abaisseur de tension 8 comprend un interrupteur commandé 12 qui peut être de technologie MOSFET, IGBT OU Bipolaire, un transistor 13 qui peut être une diode comme cela est représenté dans l'exemple illustré sur la figure lf une inductance 14 et un bus 15 possédant une capacité C. Le us 15 est couplé entre une première et une seconde bornes de sortie 83 et 84 de l'étage abalsseur de tension 8, la seconde borne de sortie 84 étant couplée à Sa masse, c'est-à-dire à îa seconde borne de raccordement 2b du réseau d'alimentation continu 2, et donc à ia seconda borne d'entrée 82.
L'interrupteur commandé 12 et l'inductance 14 sont couplés en série entre la première borne d'entrée 81 et la première borne de sortie 83 de l'étage abaisseur de tension 8, l'interrupteur commandé étant directement raccordé à la première borne d'entrée 81 et l'inductance étant directement raccordée à ia première borne de sortie 83.
Une première borne de la diode 13 est raccordée au nœud de raccordement 85 couplant l'interrupteur commandé 12 à l'inductance 14, et une seconde borne de ia diode 13 est raccordée à la seconde entrée 82 et à la seconde sortie 84 de l'étage abaisseur de tension ».
L'étage onduleur 9 comprend trois branches 15 raccordées chacune entre une première borne d'entrée 91 de l'étage onduleur 9 raccordée à ia première borne de sortie 83 de l'étage abalsseur de tension 8 et une seconde borne d'entrée 92 couplée à la seconde borne de sortie 84 de l'étage abaisseur de tension 8 et donc à la masse. Chaque branche 15 comporte deux commutateurs commandés 16 couplés en série et une borne de sortie 9af 9b ou 9c de l'étage onduleur 9 raccordée à une des bornes de sortie 6 du dispositif de conversion 4. La borne de sortie a, 9b ou 9c de l'étage onduleur S de chaque branche 15 correspond au nœud de raccordement des deux commutateurs commandés 16 de ia brancha.
Le dispositif de conversion 4 comprend en outre une unité de commande 17 couplée à l'étage onduleur 9 pour te commander. L'unité de commande 17 comporte une mémoire et est configurée pour fonctionner en modulation par largeur d'impulsion pré-calcuiée avec des instants de commutations fixes pré-caleuSés et enregistrés dans la mémoire quelles que soient la fréquence de rotation du moteur 3 et la tension du réseau électrique 2 raccordés au dispositif de conversion 4«
Comme ceia est illustré sur la figure 2 qui présente un exemple de forme d'onde de la tension fournie par le dispositif de conversion 4 de la figure 1 au moteur 3 auquel il est couplé, se dispositif de conversion 4 permet ainsi de fournir en sortie un signal de tension Vdcjink dont l'amplitude a été abaissée par rapport à l'amplitude de la tension vdc délivrée par le réseau d'alimentation électrique 2 grâce à l'étage abaisseur de tension 8, et dont la forme est modulée en largeur dimputsion par l'étage onduleur 9. La référence t représente ie temps sur le graphique.
Sur les figures 3 et 4 sont représentées respectivement un signai de tension simple de l'onduleur dans le cadre d'une commande à 180° classique, et un exempte d'un signal de tension simple de l'onduleur dans Je cadre d'une commande à 180° selon HnventtoR, c'est-à-dire avec l'ajout de commutations.
En partant de la forme d'onde de !a tension simple onduleur, des commutations sont ajoutées dans le but d'éliminer certaines harmoniques gênantes, comme par exemple les harmoniques 5, 7, 11, 13, etc. L'instant de ces commutations supplémentaires, ai et a2 c'est-à-dire l'angle auquel ces commutations supplémentaires interviennent, va permettre d'éliminer certaines composantes du spectre de la tension.
Le nombre de commutations ajoutées dépend du nombre d'harmoniques à minimiser ou supprimer. Dans te cas illustré sur figure 4. on cherche à supprimer les harmoniques 5 et 7, 1! faut alors au moins deux angles de commutations supplémentaires, al et a2 avec al < 32. pour réaliser cette suppression. Si dans la suite des calculs, deux angles de commutations ne s'avère pas suffisant» il faut en ajouter davantage, par exemple quatre, et voir si cela suffit. Le but étant de minimiser le nombre de commutations.
La suite du calcul va consister à déterminer les valeurs des angles al et a2 pour supprimer les harmoniques 5 et 7.
La décomposition en série de Fourîer du signal de tension illustré sur la flqure 4 donne*
4 .
an - — (1 - Z cQsimj! ) 4· 2 na-> S j
wti
Figure imgf000012_0001
On désire supprimer aS et ? , ceia donne deux équations non linéaires à résoudre pour trouver les anales al et a2,
4
a5 = o = ^--(1 - 2 cosCS x) + 2 cos(5c2) )
4
-, = 0 = — il ~ 2 cos(7a,l - 2 cos(7c)
7 π
Si on com ara te contenu spectrate de ia tension simple machine de départ, illustrée sur la figure 3, et de l'onde modifiée, illustrée sur ta figure 4, on obtient les deux graphiques des figures 5 et 6. Sur ces graphiques sont représentées les amplitudes des harmoniques en pourcentage de l'harmonique fondamentale.
Comme cela apparaît à la lecture des figures 5 et 6, et notamment dans les parties entourées, les harmoniques 5 et ? sont supprimées du spectre de la tension simple machine, cependant les harmoniques d'ordre supérieures sont augmentées.
La valeur du fondamental passe de ^ = 0,63 vdc à
¾(1 + 2(cos(a2) - cos( lj)) = 0.59 Vdc.
Ce point n'est pas contraignant dans le cas de la PAN car Pamplitude du fondamental est ajustée avec le convertisseur DC/DC et au- delà d'une certaine vitesse, il est possible d'enlever ces commutations supplémentaires pour profiter de la pleine tension de bus.
Dans ie cas d'une commande 120°, le principe reste le même et la démarche présentée ici reste applicable.
L'invention permet ainsi de fournir un dispositif de conversion de puissance électrique DC/AC dont la fréquence de découpage du convertisseur est découplée de ia fréquence éiectrique du moteur auquel ie dispositif est électriquement raccordé et permettant d'éliminer une part importante des harmoniques perturbants le fonctionnement d'une machine électrique coupiée en sortie du dispositif.

Claims

REVENDICATIONS
1. Dispositif (4) de conversion de puissance électrique continu-alternatif comprenant des bornes d'entrées (5) destinées à être
5 électriquement raccordées à un réseeu d'alimentation électrique continu (2), des bornes de sortie (6) destinées à être électriquement raccordées i un moteur électrique (3), un convertisseur électrique à découpage (8) couplé auxdites bornes d'entrée (5) et un onduleur électrique (9) couplé entre Se convertisseur électrique â découpage (8) et iesdites bornes de0 sortie (6),
caractérisé en ce qu'il comprend une unité de commande (17) de l'onduleur électrique (9) configurée pour fonctionner en modulation par largeur d'impulsion pré-caîcuiée avec des instants de commutation des commutateurs commandés (16) de l'onduleur électrique (9) fixes pré-5 calculés quelles que soient la fréquence de rotation du moteur (3) et ia tension (Vdc) du réseau électrique (2) destinés à être raccordés audit dispositif (4).
2. Dispositif (4) selon la revendication 1, dans lequel le0 convertisseur électrique à découpage (8) comporte une topologie de type abaisseur de tension.
3. Dispositif (4) selon ie revendication 1, dans lequel ie convertisseur électrique à découpage comporte une topologie de type5 élévateur de tension.
4. Dispositif (4) selon la revendication 1, dans lequel le convertisseur électrique à découpage comporte une topologie de type abaisseur-ëlévateur de tension,
Û
5. Système de motorisation (1) comprenant un réseau d'alimentation électrique continu (2) et un moteur électrique (3)f caractérisé en ce qull comprend en outre un dispositif (4) de conversion de puissance électrique continu-alternatif selon l'une des revendications 15 à 4 électriquement raccordé entre ie réseau d'alimentation électrique (2) et îe moteur électrique (3).
6. Système de motorisation (1) selon la revendication 5f dans lequel le moteur électrique (3) est un compresseur à pile à combustible,
7. Système de motorisation (1) selon a revendication 5, dans lequel le moteur électrique (3) est un moteur de ventilateur.
PCT/FR2017/050871 2016-04-12 2017-04-11 Dispositif de conversion de puissance electrique continu-alternatif pour moteur a vitesse variable et moteur a haute vitesse WO2017178752A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17722094.4A EP3443650A1 (fr) 2016-04-12 2017-04-11 Dispositif de conversion de puissance electrique continu-alternatif pour moteur a vitesse variable et moteur a haute vitesse
US16/093,080 US10658948B2 (en) 2016-04-12 2017-04-11 DC/AC electrical power converter device for a variable-speed motor and a high-speed motor
CN201780023363.9A CN109075695B (zh) 2016-04-12 2017-04-11 用于变速电动机和高速电动机的dc到ac电力转换装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1653217 2016-04-12
FR1653217A FR3050083B1 (fr) 2016-04-12 2016-04-12 Dispositif de conversion de puissance electrique continu-alternatif pour moteur a vitesse variable et moteur a haute vitesse

Publications (1)

Publication Number Publication Date
WO2017178752A1 true WO2017178752A1 (fr) 2017-10-19

Family

ID=57348751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/050871 WO2017178752A1 (fr) 2016-04-12 2017-04-11 Dispositif de conversion de puissance electrique continu-alternatif pour moteur a vitesse variable et moteur a haute vitesse

Country Status (5)

Country Link
US (1) US10658948B2 (fr)
EP (1) EP3443650A1 (fr)
CN (1) CN109075695B (fr)
FR (1) FR3050083B1 (fr)
WO (1) WO2017178752A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3086474A1 (fr) 2018-09-26 2020-03-27 Safran Electrical & Power Procede de demarrage d'un moteur electrique synchrone a aimants permanents

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900015860A1 (it) * 2019-09-09 2021-03-09 Torino Politecnico Velivolo aeronautico dotato di almeno un motore Brushless DC
IT201900015857A1 (it) * 2019-09-09 2021-03-09 Torino Politecnico Dispositivo e metodo di alimentazione e controllo di un motore Brushless DC
FR3114200A1 (fr) * 2020-09-11 2022-03-18 Universite De Lorraine Dispositif de pilotage comprenant un correcteur harmonique
FR3142631A1 (fr) * 2022-11-29 2024-05-31 IFP Energies Nouvelles Procédé de commande d’une machine électrique pilotée par un onduleur commandé par un calculateur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887680A2 (fr) * 2006-08-11 2008-02-13 Kabushiki Kaisha Toshiba Appareil de commande pour convertisseur de puissance semi-conducteur
US20100157632A1 (en) * 2008-12-20 2010-06-24 Azuray Technologies, Inc. Energy Conversion Systems With Power Control
WO2015060000A1 (fr) * 2013-10-25 2015-04-30 株式会社東芝 Dispositif de conversion d'énergie pour locomotive électrique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003903787A0 (en) * 2003-07-22 2003-08-07 Sergio Adolfo Maiocchi A system for operating a dc motor
CN104300771B (zh) * 2006-06-06 2018-10-30 威廉·亚历山大 通用功率变换器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887680A2 (fr) * 2006-08-11 2008-02-13 Kabushiki Kaisha Toshiba Appareil de commande pour convertisseur de puissance semi-conducteur
US20100157632A1 (en) * 2008-12-20 2010-06-24 Azuray Technologies, Inc. Energy Conversion Systems With Power Control
WO2015060000A1 (fr) * 2013-10-25 2015-04-30 株式会社東芝 Dispositif de conversion d'énergie pour locomotive électrique
US20160285380A1 (en) * 2013-10-25 2016-09-29 Kabushiki Kaisha Toshiba Power converter for electric locomotive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3086474A1 (fr) 2018-09-26 2020-03-27 Safran Electrical & Power Procede de demarrage d'un moteur electrique synchrone a aimants permanents
WO2020064695A1 (fr) 2018-09-26 2020-04-02 Safran Electrical & Power Procede de demarrage d'un moteur electrique synchrone a aimants permanents
CN112805914A (zh) * 2018-09-26 2021-05-14 赛峰电气与电源公司 永磁同步电动机的启动方法和飞机压气机
US11411517B2 (en) 2018-09-26 2022-08-09 Safran Electrical & Power Method for starting a permanent magnet synchronous electric motor
CN112805914B (zh) * 2018-09-26 2023-12-26 赛峰电气与电源公司 永磁同步电动机的启动方法和飞机压气机

Also Published As

Publication number Publication date
CN109075695B (zh) 2021-02-23
US10658948B2 (en) 2020-05-19
FR3050083A1 (fr) 2017-10-13
FR3050083B1 (fr) 2020-02-21
US20190165694A1 (en) 2019-05-30
EP3443650A1 (fr) 2019-02-20
CN109075695A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
EP3443650A1 (fr) Dispositif de conversion de puissance electrique continu-alternatif pour moteur a vitesse variable et moteur a haute vitesse
EP2142397B1 (fr) Dispositif et procede de commande d&#39;un circuit de derivation de puissance, vehicule hybride l&#39;ayant
EP3044858B1 (fr) Ensemble electronique pour machine electrique tournante pour vehicule automobile
EP3044856B1 (fr) Capot de protection pour machine electrique tournante pour vehicule automobile
EP2901540B1 (fr) Système de charge d&#39;une batterie d&#39;un véhicule automobile
EP3381114B1 (fr) Systeme modulaire de conversion d&#39;une puissance electrique continue en puissance electrique triphasee
WO2020025884A1 (fr) Machine electrique polyphasee a electronique de puissance integree et a circuit de refroidissement integre
FR2917917A1 (fr) Detection de position d&#39;un rotor a l&#39;arret et a vitesse reduite
EP2546976B1 (fr) Méthode de branchement à chaud d&#39;un moteur sur un variateur de vitesse
FR2921211A1 (fr) Systeme de redressement actif ameliore a correction du facteur de puissance.
EP3369166B1 (fr) Système de conversion d&#39;une puissance électrique continue en puissance électrique alternative avec module récuperateur d&#39;énergie
EP3381113B1 (fr) Circuit amortisseur undeland régénerative pour demi-bras d&#39;un onduleur
EP2822800B1 (fr) Procede de decharge d&#39;au moins un condensateur d&#39;un circuit electrique
WO2012089966A1 (fr) Circuit de compensation d&#39;energie reactive et procede mis en oeuvre dans un tel circuit
WO2012084389A2 (fr) Convertisseur de puissance équipé en sortie d&#39;un dispositif de filtrage
EP3476034B1 (fr) Systeme et procede de conversion d&#39;une puissance electrique continue en puissance electrique alternative triphasee avec moyens de filtrage
EP3917301A1 (fr) Dispositif onduleur
EP3476036B1 (fr) Système et procédé de conversion d&#39;une puissance électrique continue en puissance électrique alternative triphasee avec radiateur a air
EP2638632B1 (fr) Circuit d&#39;alimentation pour un aeronef incluant une machine asynchrone
EP3095171A1 (fr) Procede de commande d&#39;un module electronique de puissance apte a fonctionner en redresseur synchrone, dispositif de commande correspondant et machine electrique tournante de vehicule electrique comprenant un tel dispositif
WO2020183102A1 (fr) Système configuré pour délivrer un courant polyphasé de fréquence constante à partir d&#39;une génératrice synchrone
FR2897211A1 (fr) Dispositif de commande de moteur de vehicule automobile
FR3134928A1 (fr) Dispositif formant bus de tension continue pour un systeme electrique polyphase, vehicule automobile comprenant un tel dispositif
EP2815501B1 (fr) Module de régénération d&#39;énergie électrique pour variateur de vitesse
FR3076122A1 (fr) Circuit de controle pour transistor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017722094

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017722094

Country of ref document: EP

Effective date: 20181112

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17722094

Country of ref document: EP

Kind code of ref document: A1