WO2017177862A1 - 具有定向敷设电力传输导体的围护结构及敷设方法 - Google Patents

具有定向敷设电力传输导体的围护结构及敷设方法 Download PDF

Info

Publication number
WO2017177862A1
WO2017177862A1 PCT/CN2017/079736 CN2017079736W WO2017177862A1 WO 2017177862 A1 WO2017177862 A1 WO 2017177862A1 CN 2017079736 W CN2017079736 W CN 2017079736W WO 2017177862 A1 WO2017177862 A1 WO 2017177862A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
laying
transmission conductor
heat transfer
transfer coefficient
Prior art date
Application number
PCT/CN2017/079736
Other languages
English (en)
French (fr)
Inventor
马盛骏
马万顺
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to AU2017250071A priority Critical patent/AU2017250071B2/en
Priority to EP17781838.2A priority patent/EP3285345B1/en
Priority to KR1020177035918A priority patent/KR102074563B1/ko
Priority to US15/579,542 priority patent/US10465665B2/en
Publication of WO2017177862A1 publication Critical patent/WO2017177862A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/82Arrangement of components within nacelles or towers of electrical components
    • F03D80/85Cabling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/03Cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/30Installations of cables or lines on walls, floors or ceilings
    • H02G3/32Installations of cables or lines on walls, floors or ceilings using mounting clamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to the field of heat dissipation technology, and in particular to a retaining structure and a laying method for directional laying of a power transmission conductor.
  • FIG. 1-1 is a schematic structural view of a wind turbine tower in the prior art, showing the internal power transmission cable;
  • FIG. 1-2 is FIG. Schematic diagram of the laying of the medium power transmission cable;
  • Figure 1-3 is a schematic diagram of the structure of the power transmission cable in Figure 1-2.
  • a plurality of power transmission cables 30 are disposed inside the wind turbine tower, and the power transmission cable 30 enters the top reference plane of the tower from the generator switch cabinet through the base platform through the base of the nacelle, and the nacelle 20 and its interior There is a yaw motion as a whole, and the power transmission cable 30 also has a reciprocating torsion motion. Therefore, a saddle-shaped bracket is arranged inside the tower, and the cable portions below the saddle-shaped bracket are grouped and fixed near the tower wall 10, and the whole is substantially vertical. status.
  • FIGS. 1-4 and 1-5 are schematic diagrams showing the composition of the integrated temperature outside the tower in the prior art
  • FIG. 1-5 are the combined temperatures of the different orientations of the tower in the prior art.
  • Figures 1-4 and 1-5 are based on the actual monitoring of a certain tower in China's northern hemisphere.
  • the integrated temperature of the tower is formed by the combination of solar radiation and outdoor air temperature, that is, curve 1 (combined temperature outside the tower) is from curve 2 (outside the tower air temperature), 3 (solar radiation equivalent temperature). ) Superimposed formation.
  • curve 1 is the integrated temperature in the horizontal direction of the tower (ie, the temperature at the top of the tower), curve 2 is the combined temperature of the east-facing vertical plane, and curve 3 is the combined temperature of the west-facing vertical plane.
  • the overall temperature of the top of the nacelle is continuously higher than the eastward vertical plane and the westward vertical plane of the outer protective structure of the tower and the engine room 20 from 8:00 to 14:00, with 12 points as the symmetry point, and the outer surface environment of the nacelle 20 continues to be at a high level. In the temperature environment.
  • the temperature of the westward vertical plane of the tower tower and the outer guard structure of the nacelle 20 is higher than the temperature of the eastward vertical plane after a delay of 8 hours.
  • the size of the heat storage coefficient corresponds to the length of time during which the high temperature in the enclosure is delayed.
  • the geographical position determines that the wind will always rise after 18:00, causing the wind turbines to continue to generate full power until the next morning. This means that the heat generated by the heat source inside the wind turbine continues to “go up”, and the decrease in the external ambient temperature does not immediately affect the internal ambient temperature of the unit.
  • the internal temperature of the tower is often in a high temperature state, especially in summer. At this time, the excessive internal temperature causes the power transmission cable 30 to be difficult to dissipate heat, even higher in temperature, affecting its service life and the safety of the entire power transmission system. .
  • the present invention provides a retaining structure and a laying method with a directional laying power transmission conductor, which can enable the power transmission conductor in the enclosure structure to dissipate heat more efficiently and improve power transmission.
  • the load of the conductor extends its service life and increases the safety of the entire power transmission system.
  • a power transmission conductor is placed at the target laying position.
  • the step of acquiring a change in the heat transfer coefficient of the surface comprises: obtaining a corresponding Reynolds number according to an air flow parameter of the outside, and establishing a change of a surface heat transfer coefficient of the outer surface of the shady side under different Reynolds numbers;
  • the step of determining the target laying position specifically includes: determining the target laying position according to an inner position of the shading side corresponding to the surface heat transfer coefficient at the highest Reynolds number.
  • the position of the shady side with the highest surface heat transfer coefficient under different Reynolds numbers is recorded as the target laying angle, and the target laying angle is defined as: the upwind direction and the normal vector of the outer wall contact surface of the enclosure, to the enclosure structure The angle formed by the position where the surface heat transfer coefficient is the highest;
  • the target laying position is between the minimum target laying angle and the maximum target laying angle at different Reynolds numbers.
  • the surface heat transfer coefficient of the outer surface of the back side of the enclosure in contact with the upwind flow is specifically reflected in the Nusselt number.
  • the shady side is defined as a range from 45° clockwise to 45° counterclockwise.
  • the step of acquiring a change in surface heat transfer coefficient specifically includes: obtaining a surface heat transfer coefficient change of a circumferential position of the shadow-side outer surface corresponding to the height position according to a Reynolds number corresponding to a height position of the enclosure structure.
  • the inner position is: an inner position corresponding to a surface heat transfer coefficient of the circumferential position
  • the step of determining the target laying position specifically includes: using the upper and lower extension lines corresponding to the inner position as a reference laying line for laying the power transmission conductor; and determining the basis according to the Reynolds number change of the height position of the surrounding structure
  • the laying line is rotated clockwise or counterclockwise by a predetermined angle, and the rotated position is used as the target laying position.
  • the step of acquiring a change in the heat transfer coefficient of the surface comprises: selecting a height position in the upper section and the lower section of the enclosure structure, and obtaining a shade corresponding to the two height positions according to Reynolds numbers of the two height positions.
  • the inner position is an inner position corresponding to a surface heat transfer coefficient at a circumferential position corresponding to the two height positions;
  • the step of determining the target laying position specifically includes: connecting the connecting line corresponding to the inner position of the two-way positional surface heat transfer coefficient as the target laying position.
  • the step of acquiring a change in the heat transfer coefficient of the surface comprises: selecting a height position in the upper section and the lower section of the enclosure structure, and obtaining a shade corresponding to the two height positions according to Reynolds numbers of the two height positions.
  • the inner position is an inner position corresponding to a surface heat transfer coefficient at a circumferential position corresponding to the two height positions;
  • the step of determining the target laying position specifically includes: connecting the connecting line corresponding to the inner position of the two-way positional surface heat transfer coefficient as the reference laying line; and changing the highest position of the heat transfer coefficient according to the two circumferential positional surfaces; , the reference laying line is rotated by a predetermined angle, and the rotated position is used as the target laying position.
  • the upwind flow is a main wind direction obtained according to a meteorological wind rose diagram of the location of the enclosure structure.
  • the meteorological wind rose diagram is selected as a meteorological wind rose diagram of a high temperature season where the enclosure structure is located.
  • the power transmission conductor is bent to be projected on an inner surface of the enclosure, and the power transmission conductor is reciprocally bent.
  • the power transmission conductor is further bent to achieve a reciprocal change of a vertical distance between the power transmission conductor and an inner surface of the enclosure.
  • the present invention also provides a retaining structure having a directional laying power transmission conductor, the power transmission conductor being disposed inside the enclosure structure, the power transmission conductor being laid in the laying method according to any one of the above The interior of the enclosure.
  • the target laying position of the power transmission conductor is at an angle of between 110° and 125° with the upward wind flow.
  • the upwind flow is in a southwest or southeast direction.
  • the power transmission conductor reciprocates Bent laying.
  • the vertical distance of the power transmission conductor from the inner surface of the enclosure changes reciprocally.
  • the unit structure of the reciprocating bending is in a fold line shape, or a trapezoidal shape, or an S shape; the fold line shape is directly bent or the bent position is curved.
  • the power transmission conductor as a whole has a curvature corresponding to an arcuate inner surface of the enclosure structure in a circumferential direction of the inner surface of the enclosure structure.
  • the power transmission conductor is obliquely disposed from the top to the bottom with respect to the vertical direction, and is adapted to an inclination angle of the inner surface of the enclosure.
  • the enclosure has a thermal insulation layer on the male side and/or a back side of the enclosure structure, and is provided with a heat conductive layer.
  • the heat insulation layer includes an inner surface heat insulation layer and an outer surface heat insulation layer of the male surface, and the outer surface heat insulation layer is disposed to have at least low infrared absorption rate, high reflectance, and high infrared emissivity.
  • the inner surface heat insulation layer is provided to have at least one of low infrared emissivity, low infrared absorption rate, and low thermal conductivity.
  • the heat conducting layer comprises an inner surface heat conducting layer and an outer surface heat conducting layer on the back side, the outer surface heat conducting layer being disposed to have at least one of high reflectivity and low infrared absorption rate;
  • the surface heat conducting layer is provided to have at least one of low reflectance, high infrared absorptivity, and high infrared emissivity.
  • the thermal insulation layer is disposed in a high temperature region of the male surface, and the high temperature region is determined according to actual monitored thermal radiation data.
  • the high temperature region is determined according to heat radiation data monitored in summer, and is limited It is 90°-100° from south to west.
  • the outer surface of the power transmission conductor is coated with a coating of high infrared emissivity.
  • the enclosure structure is specifically a wind turbine tower.
  • the present invention also provides a retaining structure having a directional laying power transmission conductor, the power transmission conductor being disposed inside the enclosure structure, wherein the power transmission conductor is laid on the shade of the enclosure structure a side of the power transmission conductor at the target laying position on the shady side, which is determined by an inner position of the shading side corresponding to the heat transfer coefficient of the shady side surface, and the surface heat transfer coefficient is upward flow Surface heat transfer coefficient of the contacted dorsal side outer surface.
  • the target laying position is inclined with respect to an upper and lower extension line of the inner side of the shading side, and the angle of the inclination is determined by a change of the Reynolds number corresponding to the upward wind flow at different heights of the shading side.
  • the target laying position of the power transmission conductor is at an angle of between 110° and 125° with the upward wind flow.
  • the upwind flow is in a southwest or southeast direction.
  • the upwind flow is a main wind direction obtained according to a meteorological wind rose diagram of the location of the enclosure structure.
  • the meteorological wind rose diagram is selected as a meteorological wind rose diagram of a high temperature season where the enclosure structure is located.
  • the invention provides the conductor of the enclosure structure on the shady side, which makes full use of the "cold source” on the shady side to exchange heat with the "heat source” inside the tower cylinder, reduce the internal temperature, prevent overheating, and strengthen the support structure. Improve the heat exchange rate to the shady side and the natural environment, increase the load of the power transmission conductor, extend the service life of the conductor and even other internal components, and improve the system safety of power transmission.
  • the solution of the present invention not only lays the conductor on the back side of the tower wall, but also uses the cold source on the lower temperature side to dissipate heat, and it is particularly important to accurately position the position laid on the shady side. That is, the present invention specifically places the power transmission conductor at a specific position on the shady side (actually, the position of the spoiler off-body and the surface heat transfer coefficient is the highest), thereby making more efficient use of the "cold source”. ", further achieve the effect of reducing the internal temperature.
  • 1-1 is a schematic structural view of a wind turbine tower in the prior art
  • Figure 1-2 is a schematic view showing the laying of the power transmission cable of Figure 1-1;
  • FIG. 1-3 is a schematic structural diagram of a power transmission cable in FIG. 1-2;
  • 1-4 are schematic diagrams showing the composition of the integrated temperature outside the summer tower in the prior art
  • Figure 1-5 shows the combined temperatures of different orientations of the tower in the prior art
  • FIG. 2 is a flow chart of a specific embodiment of a method for laying a power transmission conductor 300 according to the present invention
  • Figure 3 is a schematic view showing the range of the wind turbine tower in the summer direction toward the solar radiation and the direction of high temperature and heavy rain;
  • Figure 4-1 is a schematic diagram of the boundary layer formed when the upwind winds outwardly sweeping the tower;
  • Figure 4-2 is a schematic view showing the occurrence of spoiler release in Figure 4-1;
  • Figure 5 is a graph showing the variation of the Nusselt number Nu and the angle of the partial surface of the tower under the three Reynolds number Re when the air stream is swept away from the tower;
  • Figure 6-1 is a wind rose diagram of a wind farm at a height of 10 meters in summer (6-8) months;
  • Figure 6-2 is a wind rose diagram of the wind farm in Figure 6-1 at a height of 70 meters in summer (6-8) months;
  • 6-3 is a first embodiment of laying the power transmission conductor 300 according to the stroke rose diagram of FIG. 6-1. Schematic diagram of the example.
  • Figure 7-1 is a wind rose diagram of a wind farm at a height of 10 meters in summer (6-8) months;
  • Figure 7-2 is a wind rose diagram of the wind farm in Figure 7-1 at a height of 70 meters in summer (6-8) months;
  • FIG. 7-3 is a schematic view showing a second embodiment of laying a power transmission conductor 300 according to the stroke rose diagram of FIG. 7-1;
  • 8-1 is a first schematic view showing a setting direction according to the wind rose diagram auxiliary conductor 300;
  • Figure 8-2 is a second schematic view showing the orientation of the auxiliary conductor 300 according to the wind rose diagram
  • Figure 8-3 is a third schematic view showing the setting direction of the auxiliary conductor according to the wind rose diagram
  • Figure 8-4 is a fourth schematic view of the setting direction of the auxiliary conductor according to the wind rose diagram
  • 9-1 is a first specific structural diagram of laying a power transmission conductor 300 in a tower of a wind turbine according to the present invention.
  • 9-2 is a schematic diagram of heat transfer of the tower sidewall and the power transmission conductor 300 in FIG. 9-1;
  • 9-3 is a second specific structural diagram of laying a power transmission conductor 300 in a tower of a wind turbine according to the present invention.
  • 9-4 is a schematic view showing a third specific structure of the power transmission conductor 300 in the tower of the wind turbine according to the present invention.
  • 10-1 is a schematic structural view of a specific embodiment of a wind turbine tower provided by the present invention.
  • Figure 10-2 is a heat transfer analysis diagram of the natural convection of the conductor 300 of Figure 10-1;
  • Figure 10-3 is a view showing the orientation relationship between the conductor 300 and its air boundary layer and the tower wall 100 in Figure 10-1;
  • Figure 10-4 is a boundary layer growth analysis diagram of the conductor 300 of Figure 10-2;
  • Figure 10-5 is a boundary layer growth analysis diagram of another view of the conductor 300 of Figure 10-1;
  • FIGS. 10-4 and 10-5 are schematic diagrams showing the growth of the boundary layer in FIGS. 10-4 and 10-5;
  • Figure 11-1 is a partial cross-sectional view of the side wall of the sunscreen of the wind turbine tower provided by the present invention.
  • 11-2 is a schematic diagram of radiation heat exchange between the inner conductor 300 of the wind turbine tower and the sidewall of the shady side provided by the present invention
  • Figure 11-3 is a schematic diagram of the three-dimensional heat transfer in Figure 11-2;
  • Figure 12 is a schematic view showing the structure in which a row of conductors are arranged side by side in the present invention.
  • 300 conductor 300' reference laying line, 301 straight line segment, 302 arc segment, 300a crescent boundary layer, 300a' boundary layer overlapping region;
  • the tower is used as a retaining structure for illustrative purposes. It is obvious that other similar retaining structures have a need to prevent overheating as long as they are provided with a power transmission conductor 300 (bus bar or power conductor). TV tower), this scheme can be adopted, the principle is the same, and will not be described again.
  • the overall description of the laying method and the internal power transmission conductor 300 (different from the communication conductor inside the unit, hereinafter referred to as the conductor) is generally described.
  • the beneficial effects are not repeated. Similar to the conductors of the prior art, in the tower of the wind turbine, the conductors below the saddle-shaped bracket are laid as follows, and the conductor above the saddle-shaped bracket is twisted, which is not the object of the laying method in the present scheme.
  • FIG. 2 is a flow chart of a specific embodiment of a power transmission conductor laying method according to the present invention.
  • the laying method is as follows:
  • the intentional guide 300 is laid inside the tower wall 100. Therefore, the position of the inner surface can be used as a reference to determine the specific laying position of the conductor 300, and the conductor 300 is not limited to be attached to the inner surface position. As can be seen from the embodiments described later, the conductor 300 may have a predetermined distance from the inner surface of the tower wall 100.
  • FIG. 3 is a schematic diagram showing the range of the wind turbine tower in the summer direction and the direction of high temperature and heavy rain (top view of the tower).
  • the figure is based on the natural environmental meteorological data of an actual wind turbine tower, and the daily variation of the daily solar radiation in the outer ring of the tower is measured.
  • the variation of the daily radiation amount is shown by the broken line in Fig. 3, and the magnitude (length and length) of the radial amplitude along the different directions represents the radiation intensity of the solar field immediately projected to the tower wall 100 during the corresponding tower direction.
  • the north side of the geographical location does not directly receive solar radiation. Only the local surface radiation and atmospheric radiation, that is, the environmental radiation, the amplitude of the performance is very weak.
  • the north side of the figure is also the shady side mentioned in the present invention.
  • the shaded side refers to a region of the tower that has almost no sunshine.
  • the area where the sun can directly shoot is mainly the area between the north and south tropics, that is, between 23.5 degrees south latitude and 23.5 degrees north latitude. Outside of this, the sunlight is mainly oblique.
  • the flux (heat flux) the driving force (temperature and pressure) / resistance (thermal resistance) of the material migration process.
  • an organic group converter and its reactors and transformers including transformers for supplying electricity to the unit and transformers for outputting power to the grid
  • conductors 300 which are heat sources, are externally arranged. The temperature will be much higher than the temperature on the back side of the tower wall 100.
  • the shady side (generally 5-10 ° C lower than the sun), and the lower temperature near the outer surface of the tower wall 100 is also a large “capacitive” “cold source.” “Capacity” here refers to the ability to accommodate and load heat. “Cold source” and “heat source” are the terminology in the field of physics heat. Conductor 300 and electrical equipment are “heat source” and “heat source” to “heat source” The cold source “can spontaneously transfer heat.
  • the conductor 300 is placed on the shady side, which is to make full use of the "cold source” on the shady side, and the tower
  • the internal “heat source” performs heat exchange, reduces internal temperature, prevents overheating, prolongs the service life of internal components such as the conductor 300, and improves system safety of power transmission.
  • Figure 4-1 is a schematic diagram of the boundary layer formed when the upwind direction flows outwardly from the tower;
  • Figure 4-2 shows Figure 4- A schematic diagram of the spoiler release in 1 occurs.
  • the velocity gradient of the air flow on the curved wall of the tower will tend to zero at a certain position on the wall, ie As shown in Figure 4-2, at the starting point of the dotted line I, the air flow on the wall of the tower wall 100 stops moving forward, and then goes to the right (x direction) along the curved surface. Flowing in the opposite direction forms the reflow shown in Figure 4-1.
  • the starting point of the dotted line I on the wall in Figure 4-2 is called the starting point of the flow around the body (or the separation point, as shown in Figure 4-1).
  • the boundary layer separation point from which the countercurrent flow occurs in the boundary layer, forming a vortex, so that the normal boundary layer flow is destroyed. That is to say, the position where the heat exchange efficiency is the greatest is not actually the position of the upwind direction flowing toward the tower wall 100, but appears on both sides of the tower wall 100, and accordingly, the heat transfer here should be The most efficient location.
  • the corresponding position of the tower wall 100 can be obtained by external air flow parameters.
  • the surface heat transfer coefficient changes to the position of the feedback heat transfer efficiency. In fact, it can be understood that the position at which the obtained surface heat transfer coefficient is the highest is actually the position of the spoiler.
  • the surface heat transfer coefficient can be specifically passed through Nusselt number Nu ( L is the geometric characteristic length of the heat transfer surface, which is expressed as the diameter of the tower, h is the surface heat transfer coefficient of the wall surface of the tower corresponding to the air flow contacting the tower wall, and k is the thermal conductivity of the stationary fluid)
  • Nusselt number Nu is a dimensionless number that can indirectly reflect the heat transfer coefficient of the surface of the tower.
  • the surface heat transfer coefficient is determined by a number of parameters. According to the heat transfer principle, the Nusselt number Nu can simplify the acquisition of the surface heat transfer coefficient.
  • the corresponding Reynolds number Re may be obtained according to the external air flow parameter. ⁇ -air flow density, ⁇ -air flow viscosity coefficient, d-column wall 100 diameter, u-air flow rate), and then establish different Reynolds number Re, the back side of the tower wall 100 is in contact with the air flow to form a convective surface The change in thermal coefficient.
  • FIG. 5 is a graph showing the variation of the Nusselt number Nu and the angle of the partial surface of the tower under the three Reynolds number Re when the air stream is swept away from the tower.
  • the partial surface here is specifically the normal vector position from the upwind direction and the tower wall 100 contact, and is 180 degrees to the north side.
  • the angle corresponding to the above "peak” is the key point of the present invention, and the solution of the present invention also selects the angle corresponding to the "peak” as the target laying angle, and the position corresponding to the target laying angle is also the conductor.
  • the position of the peak obviously corresponds to the spoiler removal position mentioned in the above theoretical analysis.
  • the position that is, the position where the heat transfer effect is optimal
  • the graph of Fig. 5 actually verifies the boundary layer turbulence phenomenon mentioned in Figs. 4-1 and 4-2.
  • the target laying position can be obtained.
  • the target laying angle is the normal vector of the wind flow direction on the air flow and the contact surface of the tower wall 100, and the angle to the highest position of the surface heat transfer coefficient, which can be understood by referring to FIGS. 6-3 and 7-3.
  • the present embodiment not only lays the conductor 300 on the back side of the tower wall 100, but also uses the cold source on the lower temperature side to dissipate heat, which is particularly important, and is also applied to the shady side.
  • the position is precisely positioned. That is, in the present embodiment, the power transmission conductor 300 is specifically disposed at a specific position on the shady side (actually, the position where the spoiler is released and the surface heat transfer coefficient is the highest), thereby making more efficient use of " The cold source” further achieves the effect of lowering the internal temperature.
  • the parameters for obtaining the Nusselt number Nu or the Reynolds number Re air flow can be obtained according to the meteorological wind rose diagram of the tower location.
  • Figure 6-1 shows the wind rose diagram of a wind farm at 10 meters in summer (6-8) months.
  • Figure 6-2 shows the wind farm in Figure 6-1.
  • Figure 6-3 is a summer rose (June-August) wind rose diagram based on the location of the wind farm in Figure 6-1, and the first part of the power transmission conductor 300 is laid.
  • the main wind direction of the air flow is in the southwest direction (SW direction), which is characterized by high wind speed (from June to August in summer, also high temperature).
  • SW direction southwest direction
  • the main wind direction flow is selected as the upwind direction flow, and the surface heat transfer coefficient of the corresponding shady side outer surface is obtained, and the main wind direction shown in the wind rose diagram flows, and the wind speed is the highest in the wind direction.
  • the wind direction also has the highest frequency. It is obvious that the main wind direction has the most obvious effect of the turbulence, so that the obtained target placement position can achieve the highest efficiency of heat transfer, and is also the main value of the wind rose diagram.
  • the wind rose diagram is used to select the most upwind flow (ie, the main wind direction) to ensure that the final target placement position is optimal.
  • the wind rose diagram selected here is the wind rose diagram from June to August in summer.
  • the selected is the meteorological wind rose diagram in the hot season. It can be understood that the temperature rise inside the tower is more obvious during the high temperature season. The need for heat transfer to cool the 300 is also the most urgent.
  • the wind rose diagram from June to August is selected.
  • the wind rose diagram corresponding to the month can also be selected according to the hot season of the actual geographical location.
  • the target laying angle can be determined, and the range is 115°-125° as shown in Fig. 6-3, the general power transmission cable conductor 300 is a plurality of roots, substantially corresponding to the middle of the selected target laying angle, that is, equivalent to laying the conductor 300 at the target laying position.
  • Figure 7-1 shows the wind rose at a height of 10 meters in a summer (6-8) month for a wind farm
  • Figure 7-2 shows the wind power in Figure 7-1.
  • Fig. 7-3 is a schematic view showing a second embodiment of laying the power transmission conductor 300 according to the stroke rose diagram of Fig. 7-1.
  • FIG. 8-1 is a first schematic diagram of the setting direction of the auxiliary conductor according to the wind rose diagram
  • FIG. 8-2 is a second schematic diagram of the setting direction of the auxiliary conductor according to the wind rose diagram.
  • the wind rose diagram of the tower 10m and 70m high position is selected to obtain the corresponding Nusselt number Nu and the Reynolds number Re. It can be understood that, ideally, the Reynolds number Re of different tower heights should be obtained as much as possible, the corresponding Nusselt number Nu and the angle curve should be established, and then the direction in which the conductor 300 is laid can be determined.
  • the Reynolds number Re changes at different heights of the towers, which shows a certain regularity, because with the increase of the height, the air flow rate and the diameter of the tower will change relatively regularly.
  • the target laying position is actually a range value, as mentioned above in the range of 110°-125°, and it is assumed that the selected position is 120°, in fact, the conductor 300 At this time, it is at a position where the heat exchange efficiency to be pursued is high, but in order to make the laying position of the conductor 300 more precise, it is possible to make finer adjustment according to the variation law of the Reynolds number Re.
  • the Reynolds number Re corresponding to the height of the tower may gradually increase or decrease from the bottom to the top, and correspondingly, the corresponding Nusselt number Nu also has a corresponding numerical change, and the conductor 300 can be laid at the selected target laying position, and then the conductor 300 is rotated clockwise or counterclockwise by a predetermined angle according to the variation law of the Reynolds number Re.
  • the Reynolds number Re and the Nusselt number Nu and the angle curve of the circumferential position corresponding to the height position are obtained, and the curve can be obtained.
  • a reference laying line 300' is obtained according to a certain position, and then fine-tuned according to the changing rule.
  • Figure 8-3 is a third schematic diagram of the direction of the auxiliary conductor placement according to the wind rose diagram.
  • the path of the target laying position is extended along O1 to O2.
  • Figure 8-4 is a fourth schematic diagram of the direction of the auxiliary conductor placement according to the wind rose diagram.
  • the line 300' is laid for the reference, and then the corresponding angle ⁇ is twisted according to the change trend of O1 and O2 to obtain the path of the target laying position. It is also possible to directly use the laying path in Fig. 8-3 as a reference laying line, and then to make a certain angle of twist according to the change trend of O1 and O2. It is possible to make the laid conductor substantially at a position where the surface heat transfer coefficient is large.
  • the above selection of 10m and 70m respectively represents the characteristics of the upper and lower towers, and the tower below 10m Some may receive interference from other infrastructure structures and are not easy to obtain an effective surface heat transfer coefficient.
  • the position above 70 m is not greatly changed with respect to the air flow pattern of 70 m, so for the conventional tower in the prior art,
  • the selection of 10m and 70m is representative and can be used as a better reference point for the target laying position.
  • the Reynolds number Re is adopted in the above embodiment, and the target laying position is obtained according to the change relationship between the Nusselt number Nu and the angle according to different Reynolds numbers Re. That is, the key of the present invention is that the position with the highest surface heat transfer coefficient can be obtained according to the external air flow environment parameter, but the plurality of air flow parameters tend to change continuously, and the surface heat transfer in a certain season or even a certain period of time is calculated. When the coefficients are obtained, the process of acquisition will be more complicated.
  • the premise is that the conductor 300 is laid on the shady side, and the shady side is preferably limited to a range of 45° clockwise from the north to 45° counterclockwise, if obtained in the above manner.
  • the acquisition step should be checked to ensure that the target laying angle is within the range.
  • FIG. 9-1 is a power transmission conductor 300 in the wind turbine tower of the present invention.
  • FIG. 9-2 is a schematic diagram of the heat transfer of the side wall of the tower and the power transmission conductor 300 of FIG. 9-1.
  • the power transmission conductor 300 is reciprocally bent and projected from the perspective of the inner surface of the tower, specifically in the zigzag shape shown in Figure 9-1, which is equivalent to the angle of Figure 9-1.
  • the power transmission conductor 300 swings back and forth in a reciprocating manner, which is different from the vertical laying method in the prior art.
  • the length of the power transmission conductor 300 is actually increased in the circumferential direction of the tower, so that more cold air of the boundary layer of the tower wall 100 is disturbed, and the cold air that is involved in the heat exchange is increased.
  • conductors 300 arranged vertically in the technology, the length in the circumferential direction is limited, the range of influence is limited, and the cooling capacity of the "cold source” is still large, which is not fully utilized, and the arrangement of the reciprocating bending of the present scheme is obviously more fully utilized.
  • the "cold source” near the tower wall 100 is combined with the above-described application setting to make the use of "cold source” more efficient and active.
  • the actual length increment of the conductor 300 is not substantially large as the circumferential length of the conductor 300 on the tower wall 100 is increased to drive more cold air into the heat exchange.
  • is the angle between the conductor 300 and the vertical.
  • the length L1 of the actual conductor 300 is approximately equal to L2/cos ⁇ . It can be seen that even if the bending angle reaches 10°, the total length will only increase by about 1.6%, and it is obviously unnecessary to consider the cost of the growth of the conductor 300. However, in the case where the length of the conductor 300 is limited, the area of the heat exchange area can be greatly increased.
  • the circumferential length can be increased by nearly two times or more, and after a large area of cold air is driven, the large amount of cold air is driven.
  • Natural convection heat transfer with the tower wall 100 on the shady side in a larger area according to the Newtonian cooling formula: (h is the convective surface heat transfer coefficient of the substance, A is the heat transfer contact area, and t f -t w is the temperature difference).
  • h is the convective surface heat transfer coefficient of the substance
  • A is the heat transfer contact area
  • t f -t w is the temperature difference
  • this embodiment does not simply increase the heat exchange efficiency by merely increasing the circumferential length of the conductor 300 corresponding to the tower wall 100, please continue to refer to Figures 9-1, 9-2.
  • the conductor 300 is a heat source whose heat has an upward floating force. When it rises, the lower area is supplemented by denser cold air to form a cold sinking and heat rising area as shown in Figure 9-1. , that is, a region similar to a triangle formed by a bending unit, with its bending position
  • the horizontal extension line is the boundary line, and the part above the boundary line is basically a cold sinking area.
  • the part below the boundary line is basically a hot rising area, and the cold downdraft airflow and the hot updraft flow meet at the boundary line, thereby preventing the hot updraft from further rise.
  • the conductor 300 when the conductor 300 is laid, the conductor 300 does not need to be vertically perpendicular to the ground, but may be laid along the tower wall 100 from top to bottom. Since the inner diameter of the tower is gradually reduced from the bottom to the top, when the conductor 300 is viewed from above, The bending units do not overlap, so that the overlapping hot air current of the lower conductor 300 has less overlap with the upper conductor 300, further reducing the adverse effect around the package, and the rising hot air of the conductor 300 can be directly washed upwards accordingly. Go to the tower wall 100 to further increase the heat exchange efficiency with the cold air.
  • the conductor 300 may be laid substantially along the curved wall surface of the tower wall 100 to increase the convective heat exchange area with the tower wall 100 as much as possible. That is, from the entirety of the conductor 300, in the circumferential direction, the arc is substantially close to the inner surface of the tower wall 100, and is substantially inclined to the tower wall 100 in the extending direction from the upper and lower sides.
  • FIG. 9-3 is a second specific structural diagram of the power transmission conductor 300 in the wind turbine tower of the present invention
  • FIG. 9-4 is a wind turbine tower according to the present invention.
  • a third specific structural diagram of the inner power transmission conductor 300 is laid, obviously, the partial tower shown in Figures 9-1 to 9-4
  • the barrel wall 100 belongs to the shady side.
  • the conductor 300 is not directly bent when it is laid, and the bent position actually transitions with the straight line segment 301, and the distance h of the straight line segment 301 can be adjusted, so that the bending unit has a trapezoidal structure.
  • the bending position is curved
  • the bending position is the arc segment 302
  • the other segments in the bending unit are straight segments.
  • the position of the bend can be fixed by the clamp 200, and the conductor segments other than the bend. If the length is long, a plurality of splints 200 can be added, and the position and the number of the splint 200 are necessary for reliable fastening.
  • the transition section (trapezoidal, S-shaped, curved bending position)
  • the upper and lower conductor segments in the bending unit can be pulled apart by a certain distance, thereby reducing the lower conductor to the upper conductor based on the bending.
  • the design is S-shaped or only the bending position is set as an arc segment, which is advantageous for the thermal expansion and contraction of the bending position compared to the trapezoid.
  • the above embodiment precisely positions the laying position of the conductor 300, and also bends the structure of the conductor 300, so that a better cooling heat transfer effect can be obtained, but the present invention further makes the structure of the conductor 300 further. improvement of.
  • FIG. 10-1 is a schematic structural view of a specific embodiment of a wind turbine tower provided by the present invention.
  • the figure shows the entire fan, including the tower and the nacelle 400.
  • the conductor 300 has a reciprocating tendency along the extending direction of the conductor 300 from the inner surface of the tower wall 100, that is, the conductor 300 is from top to bottom and the tower wall 100.
  • the vertical distance of the surface, according to the increase and then decrease, then increase, and then reduce the reciprocating trend change of ..., may also be the trend of first reducing and then increasing ..., the distance reciprocating change may be an equal period change or a non- For equal period changes, the distance peaks in each period may be equal or unequal.
  • Conductor 300 and inner surface of tower wall 100 When the vertical distance changes reciprocally and appears as a structural bending, it can also be realized by a splint, a bracket, or the like.
  • the conductor 300 when the conductor 300 reciprocally changes perpendicularly to the inner surface of the tower wall 100, the conductor 300 is on the longitudinal section (the radial section) of the tower.
  • the projection is also embodied as a reciprocating bend of the fold line, as shown in Figure 10-1.
  • the bend is not limited to the bend of the straight line segment, but also an arc or other curve.
  • the conductor 300 is laid down on the tower wall 100, and the power transmission conductor 300 is reciprocally bent; in the longitudinal section of the tower, it is also reciprocally bent, and the entire conductor 300 is twisted.
  • FIG. 10-2 is a heat transfer analysis diagram of the natural convection of the conductor 300 in FIG. 10-1.
  • la is the thickness of the airflow boundary (vertical laying) that can drive the air near the inner surface of the tower to participate in heat exchange in the prior art
  • lb is the boundary thickness of the airflow that can be driven in this scheme.
  • the analysis is similar to the above-mentioned circumferential reciprocating bending principle, which is capable of driving more cold air into the heat exchange to improve the cooling efficiency.
  • the approximate triangular region formed by the bending can also form a cold sinking region (cooling as shown in the drawing) and a heat rising region, thereby preventing the hot rising airflow of the lower conductor 300 from wrapping the upper conductor 300 upward.
  • the extending direction of the conductor 300 is substantially the same as that of the tower wall 100 and does not overlap in the up and down direction, the influence of the "around wrapping" can be further reduced from the radial section, and the hot air flow can be partially Direct flow to the tower wall 100 enhances heat transfer.
  • the conductor 300 reciprocally changes perpendicularly to the inner surface of the tower wall 100, and is also reciprocally bent in the circumferential direction of the tower wall 100, so that the conductor 300 is laid in a twisted manner.
  • the earth improves the heat transfer effect. It is particularly important that the arrangement of the conductor 300 and the inner surface of the tower wall 100 reciprocally change not only to further improve the heat exchange effect.
  • Figures 10-3 to 10-4 is the orientation relationship between the conductor 300 and its air boundary layer and the tower wall 100 in Figure 10-1;
  • Figure 10-4 shows the conductor 300 in Figure 10-2. Analysis of the boundary layer growth analysis.
  • Figure 10-4 also takes the angle of Figure 10-1 or 10-2 as the angle of view (the black ring below Figure 10-4 is a top view of the tower). Due to the reciprocal change from the vertical distance from the inner surface of the tower wall 100, the longitudinal section of the tower wall 100 is reciprocally bent, and the boundary layer of the conductor 300 also periodically changes.
  • the hot gas flow rises near the arc DAB (northwest east) to form the crescent-shaped boundary layer 300a shown in the figure; when it is located in the UT section, the boundary layer of the arc DAB stops due to the convergence of the hot and cold regions It grows into a cold zone, and its opposite arc DCB (southwest east) starts to grow in the crescent-shaped boundary layer 300a, so that it alternates from the bottom to the top.
  • the conductor 300 has a phenomenon in which the alternating heat and the outside alternately from the viewpoint of FIG. 10-4.
  • the boundary layer growth analysis diagram of the other view of the conductor 300 in FIG. 10-1 is shown as the circumferential wall direction of the tower.
  • Figure 10-4 Also schematically illustrated in the orientation of Figure 10-3, the principle of Figure 10-4 is the same.
  • the arc ADC (north southwest) and arc ABC (north southeast) of conductor 300 in Figure 10-5 also alternately occur in the boundary layer.
  • the phenomenon of growth and stop growth, the conductor 300 also has a phenomenon in which the hot and cold surfaces alternate, but the hot and cold surface just has an angular deviation of 90 degrees from that in Fig. 10-4.
  • FIG. 10-6 shows a schematic diagram of the boundary layer growth stacking in FIGS. 10-4 and 10-5.
  • the boundary layer overlap region 300a' appears as a temperature transition region of the two semi-curved surfaces.
  • Figures 10-6 show only the overlap of the ADC and the DAB. In fact, the boundary layer overlap region 300a' may appear in the northeast, northwest, southwest, and southeast of Figures 10-6.
  • the periodic variation of the conductor 300 in two directions is not required to be uniform, that is, a bending unit in the circumferential direction of the tower wall 100 does not necessarily correspond to the bending unit in the radial direction.
  • the heat inside the tower not only comes from the running heat of the heat source component itself, but also mostly based on the influence of external temperature, especially the high temperature in summer, which is also an important cause of overheating inside the tower.
  • the side wall of the tower's male side (opposite the shady side, ie the side with the sun) may be provided with a heat insulating layer, and/or the back side of the tower, with a heat conducting layer.
  • the heat insulation layer on the sun side can prevent the heat insulation from transmitting to the inside, and the heat conduction layer on the back side helps the convective heat exchange between the hot air flow inside the tower and the cold air outside the cathode side of the tower to improve the cooling effect.
  • the thermal layer When the thermal layer is set, it actually acts as a "two-pronged" cooling and anti-overheating effect.
  • the heat insulation layer may include a male inner surface heat insulation layer 100b and an outer surface heat insulation layer 100a
  • the outer surface heat insulation layer 100a is provided to have at least low infrared absorption rate and high reflectance (multiple reflection, correspondingly Reduced heat absorption), high infrared emissivity, one of the three, internal surface insulation
  • the layer 100b is provided to have at least one of low infrared emissivity, low infrared absorption, and low thermal conductivity to prevent it from emitting heat rays to the inner space of the tower.
  • the above performance is the best solution, but it can be set according to the actual cooling demand and cost.
  • the inner surface insulation layer 100b can adopt the following scheme:
  • Option 1 using a low infrared emissivity coating
  • Solution 2 a layer of low emissivity aluminum foil 102 is adhered to prevent heat radiation from being emitted from the surface, and a layer of thermal insulation board 101 is disposed between the aluminum foil 102 and the tower wall 100, as shown in FIG. 6-3;
  • Option 3 Introduce the use of a new nano-intelligent thermal insulation coating.
  • the thermal insulation component of this coating is Hydro-NM-Oxide, with ultra-low thermal conductivity.
  • Option 4 Apply heat-insulating and refractory materials to the inner surface.
  • the insulation board 101 in the scheme 2 and the heat insulation and refractory materials in the scheme 4 can be made of the materials shown in the following table:
  • FIG. 11-1 is a partial cross-sectional view of the side wall of the wind turbine tower provided by the present invention, and the lower part of FIG. 11-1 is the radiation equivalent heat of the 100 micro-body of the tower tower wall. Resistance.
  • a 1 is the coating area of the outer surface of the tower; T 1 is the coating temperature of the outer surface of the tower; ⁇ 1 is the emissivity of the outer surface of the tower; ⁇ 1 is the reflectivity of the outer surface of the tower; ⁇ 1 absorption tower of a surface coating of the outer cylinder; q r heat radiation surface coating within the tower; A 4 coating the inside surface area of the column; T 4 surface coating temperature within the tower; ⁇ 4 of the outer surface of the coating tower emission Rate; ⁇ 4 is the reflectivity of the coating on the outer surface of the tower; the absorption rate of the coating on the outer surface of the ⁇ 4 tower.
  • Figure 11-1 is equivalent to taking a "micro-element" on the sunny side of the tower wall 100.
  • the radial sides of the micro-body are respectively the outer surface thermal insulation layer 100a and the inner surface thermal insulation layer 100b of the tower.
  • the middle and lower part of 11-1 is the radiation equivalent thermal resistance of the micro-body. Reducing the infrared emissivity of the inner surface of the tower inner surface of the thermal insulation layer, that is, increasing the thermal resistance of the radiation surface, by using a material with a low infrared emissivity, for example, the emissivity is reduced from 0.8 to 0.1, and the surface resistance is increased to 36. Double, greatly reducing the effective radiation intensity of the coating surface.
  • FIG. 11-2 is a schematic diagram of radiation heat exchange between the inner conductor 300 of the wind turbine tower and the sidewall of the shady side provided by the present invention, and the bottom of the tower is shaded in the lower part of FIG.
  • Figure 11-3 is a schematic diagram of the three-dimensional heat transfer of the heat in Figure 11-2.
  • q rN is the radiant heat flow of the outer surface of the tower cathode side
  • q updraft power transmission cable The heat flow obtained by the surrounding air.
  • the thermally conductive layer on the female side may specifically include an inner surface heat conducting layer 103 and an outer surface heat conducting layer on the back side, and the outer surface heat conducting layer is disposed to have at least one of high reflectivity and low infrared absorption rate; the inner surface heat conducting layer 103 is set to At least one of low reflectivity, high infrared absorption, and high infrared emissivity.
  • the specific choice is consistent with the insulation layer, and the combination is based on the heat dissipation requirements and cost.
  • an infrared high emissivity coating may be applied on the surface of the conductor 300 to match the low reflectivity, high infrared absorption rate, and high infrared emissivity inner surface of the back side of the tower wall 100.
  • the heat conductive layer accelerates heat dissipation of the conductor 300.
  • FIG. 12 is a schematic structural view of a row of conductors arranged side by side in the present invention. In fact, FIG. 6-3. 7-3 is also indicated by this setting.
  • the spacing between the conductors 300 of the conductors 300 may be appropriately increased, or the conductors 300 may be staggered to reduce the spatial radiant heat resistance between the conductors 300, thereby increasing the conductor 300 to the shady side.
  • the radiant heat flow rate released by the inner surface heat conducting layer improves the heat dissipation effect.
  • the laying range of the thermal conductive layer on the shady side can be comprehensively set according to the laying position of the conductor 300, the distribution of the surrounding cold air, the storm direction, and the like.
  • the heat conducting layers on the shading side are all disposed in the north direction. It is 30° west and 45° east to north.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wind Motors (AREA)
  • Building Environments (AREA)

Abstract

一种具有定向敷设电力传输导体的围护结构及敷设方法,该方法包括下述步骤:根据围护结构(100)外界的空气流参数,获取与上风向来流接触的围护结构(100)背阴侧外表面的表面传热系数变化情况;根据表面传热系数最高时所对应的背阴侧位置,确定目标敷设位置;将电力传输导体(300)敷设于目标敷设位置。该方法不仅仅将导体敷设于围护结构(100)的背阴侧,以利用较低温度侧的冷源散热,尤为重要是的,还对敷设于背阴侧具体的位置进行精准定位,将电力传输导体(300)置于背阴侧扰流脱体位置、围护结构(100)外表面的表面传热系数最高处所对应的位置,从而更为高效地利用围护结构背阴侧这个冷源,强化借助围护结构背阴侧及自然环境的换热速率,提高电力传输导体的负载。

Description

具有定向敷设电力传输导体的围护结构及敷设方法
本申请要求于2016年04月15日提交中国专利局、申请号为201610238242.3、发明名称为“具有定向敷设电力传输导体的围护结构及敷设方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及散热技术领域,具体涉及一种具有定向敷设电力传输导体的围护结构及敷设方法。
背景技术
请参考图1-1、1-2、1-3,图1-1为现有技术中风力机塔筒的结构示意图,示出其内部的电力传输电缆;图1-2为图1-1中电力传输电缆的敷设示意图;图1-3为图1-2中电力传输电缆的结构示意图。
从上图可看出,风力机塔筒内部敷设有较多的电力传输电缆30,电力传输电缆30自发电机开关柜经由机舱底部穿过底座平台进入塔筒顶部基准面,机舱20及其内部整体存在偏航运动,导致电力传输电缆30也存在往复扭转运动,故塔筒内部设有马鞍形支架,马鞍形支架以下的电缆部分成组靠近塔筒壁10附近下落固定,整体大致呈竖直的状态。
再请继续参考图1-4、1-5,图1-4为现有技术中夏季塔筒外综合温度的组成示意图;图1-5为现有技术中塔筒不同朝向的综合温度。图1-4、1-5均是根据实际中北半球的我国境内某一塔筒为监测对象获取。
图1-4中,塔筒的综合温度由太阳辐射和室外气温两者共同作用形成,即曲线1(塔筒外综合温度)由曲线2(塔筒外空气温度)、3(太阳辐射当量温度)叠加形成。
图1-5中,曲线1为塔筒水平面方向的综合温度(即塔顶的温度),曲线2为东向垂直面的综合温度,曲线3为西向垂直面的综合温度。
上图反映出:
①机舱顶部综合温度自8点至14点持续高于塔筒、机舱20外围护结构的东向垂直面、西向垂直面,以12点为对称点,机舱20顶部外表环境持续处于高的综合温度环境之中。
②塔筒、机舱20外围护结构的西向垂直面温度在推迟8个小时后高于东向垂直面温度。
③西向垂直面在16点达到最高温度值后,考虑温度波传递到塔筒、机舱20内表面会推迟大约半个小时,推迟的时间长短与塔筒、机舱材质及涂层材料的蓄热系数有关,蓄热系数大小对应围护结构内高温推迟的时间长短。在新疆天山南坡哈密地区夏季,地理位置决定18点以后时常起风,致使风力发电机组持续满功率发电至第二天凌晨以后。这意味着风力发电机组内部热源产热持续“走高”,外部环境温度的降低并不会立刻影响机组内部环境温度。
也就是说,塔筒内部温度经常处于高温状态,尤其是夏季,此时,过高的内部温度导致电力传输电缆30难以散热,甚至温度更高,影响其使用寿命和整个电力传输系统的安全性。
发明内容
为解决上述技术问题,本发明提供一种具有定向敷设电力传输导体的围护结构及敷设方法,该定向敷设的方法可使围护结构内的电力传输导体能够更为高效地散热,提高电力传输导体的负载,延长其使用寿命,并提高整个电力传输系统的安全性。
本方案提供的电力传输导体的敷设方法,电力传输导体敷设于围护结构内,包括下述步骤:
根据围护结构外界的空气流参数,获取与上风向来流接触的围护结构背阴侧外表面的表面传热系数变化情况;
根据所述表面传热系数最高时所对应的背阴侧的内侧位置,确定目标敷设位置;
将电力传输导体敷设于所述目标敷设位置。
可选地,所述的获取表面传热系数变化情况的步骤具体包括:根据外界的空气流参数获取对应的雷诺数,建立不同雷诺数下,背阴侧外表面的表面传热系数变化情况;
所述的确定目标敷设位置的步骤具体包括:根据不同雷诺数下表面传热系数最高时所对应的背阴侧的内侧位置,确定所述目标敷设位置。
可选地,不同雷诺数下表面传热系数最高的背阴侧位置记录为目标敷设角,目标敷设角定义为:上风向来流和围护结构外壁接触面的法向量,至围护结构上所述表面传热系数最高的位置所形成的夹角;
目标敷设位置介于不同雷诺数下最小目标敷设角和最大目标敷设角之间。
可选地,与上风向来流接触的围护结构背阴侧外表面的表面传热系数 变化情况具体通过努谢尔特数反映。
可选地,所述背阴侧限定为从正北方向顺时针45°至逆时针45°的范围。
可选地,所述的获取表面传热系数变化情况的步骤具体包括:根据围护结构一高度位置对应的雷诺数,获取该高度位置对应的背阴侧外表面周向位置的表面传热系数变化情况;
所述内侧位置为:该周向位置的表面传热系数最高时所对应的内侧位置;
所述的确定目标敷设位置的步骤具体包括:将所述内侧位置所对应的上下延伸线,作为电力传输导体敷设的基准敷设线;根据所述围护结构不同高度位置的雷诺数变化,将基准敷设线顺时针或逆时针转动预定角度,并将转动后的位置作为所述目标敷设位置。
可选地,所述的获取表面传热系数变化情况的步骤具体包括:在所述围护结构的上段、下段分别选取一高度位置,根据两高度位置的雷诺数,获取两高度位置对应的背阴侧外表面周向位置对应的表面传热系数变化情况;
所述内侧位置为:两所述高度位置所对应的周向位置的表面传热系数最高时所对应的内侧位置;
所述的确定目标敷设位置的步骤具体包括:将两周向位置表面传热系数最高时所对应的内侧位置的连线作为目标敷设位置。
可选地,所述的获取表面传热系数变化情况的步骤具体包括:在所述围护结构的上段、下段分别选取一高度位置,根据两高度位置的雷诺数,获取两高度位置对应的背阴侧外表面周向位置对应的表面传热系数变化情 况;
所述内侧位置为:两所述高度位置所对应的周向位置的表面传热系数最高时所对应的内侧位置;
所述的确定目标敷设位置的步骤具体包括:将两周向位置表面传热系数最高时所对应的内侧位置的连线作为基准敷设线;根据两周向位置表面传热系数最高位置的变化情况,将基准敷设线转动预定角度,并将转动后的位置作为目标敷设位置。
可选地,所述上风向来流为根据围护结构所在地的气象风玫瑰图获取的主风向来流。
可选地,所述气象风玫瑰图选取为围护结构所在地的高温季节的气象风玫瑰图。
可选地,将所述电力传输导体作折弯处理,实现投射在所述围护结构的内表面上,所述电力传输导体呈往复折弯。
可选地,对所述电力传输导体作进一步折弯处理,实现所述电力传输导体与所述围护结构内表面的垂直距离往复变化。
本发明还提供一种具有定向敷设电力传输导体的围护结构,所述电力传输导体设置于所述围护结构的内部,所述电力传输导体根据上述任一项所述的敷设方法敷设于所述围护结构的内部。
可选地,所述电力传输导体的目标敷设位置,与上风向来流的夹角处于110°~125°之间。
可选地,所述上风向来流为西南或东南方向。
可选地,投射在所述围护结构的内表面上,所述电力传输导体往复折 弯敷设。
可选地,所述电力传输导体与所述围护结构内表面的垂直距离往复变化。
可选地,往复折弯敷设的单元结构呈折线形,或梯形,或S形;所述折线形直接弯折或者弯折位置呈弧形。
可选地,所述电力传输导体整体在所述围护结构内表面的周向上,具有与所述围护结构的弧形内表面相适配的弧度。
可选地,所述电力传输导体由上至下的延伸方向,相对于竖直方向倾斜设置,与所述围护结构的内表面倾斜角度相适配。
可选地,所述围护结构阳面设置有隔热层,和/或所述围护结构背阴侧,设置有导热层。
可选地,所述隔热层包括所述阳面的内表面隔热层和外表面隔热层,所述外表面隔热层设置为至少具备低红外吸收率、高反射率、高红外发射率三者之一;所述内表面隔热层设置为至少具备低红外发射率、低红外吸收率、低导热系数三者之一。
可选地,所述导热层包括所述背阴侧的内表面导热层和外表面导热层,所述外表面导热层设置为至少具备高反射率、低红外吸收率二者之一;所述内表面导热层设置为至少具备低反射率、高红外吸收率、高红外发射率三者之一。
可选地,所述隔热层设置于所述阳面的高温区域,所述高温区域根据实际监测的热辐射数据确定。
可选地,所述高温区域具体根据夏季监测的热辐射数据确定,并限定 为自正南向西90°-100°。
可选地,所述电力传输导体的外表面涂覆有高红外发射率的涂层。
可选地,所述围护结构具体为风力机塔筒。
本发明还提供一种具有定向敷设电力传输导体的围护结构,所述电力传输导体设置于所述围护结构的内部,其特征在于,所述电力传输导体敷设于所述围护结构的背阴侧;所述电力传输导体在所述背阴侧的目标敷设位置,由所述背阴侧表面传热系数最高时所对应的背阴侧的内侧位置确定,所述表面传热系数为与上风向来流接触的背阴侧外表面的表面传热系数。
可选地,所述目标敷设位置相对于所述背阴侧内侧的上下延伸线倾斜,倾斜的角度由所述背阴侧不同高度下所述上风向来流对应的雷诺数的变化情况确定。
可选地,所述电力传输导体的目标敷设位置,与上风向来流的夹角处于110°~125°之间。
可选地,所述上风向来流为西南或东南方向。
可选地,所述上风向来流为根据围护结构所在地的气象风玫瑰图获取的主风向来流。
可选地,所述气象风玫瑰图选取为围护结构所在地的高温季节的气象风玫瑰图。
本发明将围护结构的导体设置于背阴侧,正是充分利用背阴侧的“冷源”,以与塔筒内部的“热源”进行换热,降低内部温度,防止过热,强化借助围护结构,提高向背阴侧及自然环境换热速率,提高电力传输导体的负载,延长导体甚至其他内部构件的使用寿命,提高电力传输的系统安全性。
而且,本发明方案不仅仅将导体敷设于塔筒壁的背阴侧,以利用较低温度侧的冷源散热,尤为重要是的,还对敷设于背阴侧具体的位置进行了精准定位。即,本发明是有针对性地将电力传输导体置于背阴侧的某一特定位置(实际上就是扰流脱体位置、表面传热系数最高的位置),从而更为高效地利用“冷源”,进一步地达到降低内部温度的效果。
附图说明
图1-1为现有技术中风力机塔筒的结构示意图;
图1-2为图1-1中电力传输电缆的敷设示意图;
图1-3为图1-2中电力传输电缆的结构示意图;
图1-4为现有技术中夏季塔筒外综合温度的组成示意图;
图1-5为现有技术中塔筒不同朝向的综合温度;
图2为本发明所提供电力传输导体300敷设方法一种具体实施例的流程图;
图3为风力机塔筒在夏季时各朝向太阳辐射以及出现高温和暴雨方向的范围示意图;
图4-1为上风向来流外掠塔筒时形成的边界层示意图;
图4-2为图4-1中出现扰流脱体的示意图;
图5为空气流外掠塔筒时,三种雷诺数Re下,塔筒局部表面努谢尔特数Nu与角度的变化曲线图;
图6-1为某风电场夏季(6-8)月10米高度的风玫瑰图;
图6-2为图6-1中风电场夏季(6-8)月70米高度的风玫瑰图;
图6-3为根据图6-1中风玫瑰图,而敷设电力传输导体300的第一实 施例示意图。
图7-1为某风电场夏季(6-8)月10米高度的风玫瑰图;
图7-2为图7-1中风电场夏季(6-8)月70米高度的风玫瑰图;
图7-3为根据图7-1中风玫瑰图,而敷设电力传输导体300的第二实施例示意图;
图8-1为根据风玫瑰图辅助导体300敷设定向的第一示意图;
图8-2为根据风玫瑰图辅助导体300敷设定向的第二示意图;
图8-3为根据风玫瑰图辅助导体敷设定向的第三示意图;
图8-4为根据风玫瑰图辅助导体敷设定向的第四示意图;
图9-1为本发明中风力机塔筒内电力传输导体300敷设的第一种具体结构示意图;
图9-2为图9-1中的塔筒侧壁与电力传输导体300的传热原理图;
图9-3为本发明中风力机塔筒内电力传输导体300敷设的第二种具体结构示意图;
图9-4为本发明中风力机塔筒内电力传输导体300敷设的第三种具体结构示意图;
图10-1为本发明所提供风力机塔筒一种具体实施例的结构示意图;
图10-2为图10-1中导体300自然对流的传热分析图;
图10-3为图10-1中导体300及其空气边界层与塔筒壁100的方位关系图;
图10-4为图10-2中导体300的边界层生长分析图;
图10-5为图10-1中导体300另一视角的边界层生长分析图;
图10-6将图10-4、10-5中的边界层生长叠合示意图;
图11-1为本发明所提供风力机塔筒阳面侧壁的局部剖视图;
图11-2为本发明所提供风力机塔筒内导体300与背阴侧的侧壁的辐射换热示意图;
图11-3为图11-2中立体的传递热流示意图;
图12为本发明中导体一排并列设置的结构示意图。
图1-1~1-5中的附图标记说明如下:
10塔筒壁、20机舱、30电力传输电缆、40塔筒门;
图2~图12中:
100塔筒壁、101保温板、102铝箔、100a外表面隔热层、100b内表面隔热层、103内表面导热层;
200夹板;
300导体、300’基准敷设线、301直线段、302弧线段、300a月牙形边界层、300a’边界层重叠区域;
400机舱。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。下述实施例中,将塔筒作为围护结构,进行示例性说明,显然其他类似的围护结构,只要其内部设有电力传输导体300(母线或动力导体),具有防止过热的需求(例如电视塔),均可以采用本方案,原理相同,不再赘述。
另外,为了便于理解和简洁描述,结合围护结构及其内部电力传输导体300(区别于机组内部的通信导体,下文简称导体)敷设方法整体描述, 有益效果也不再重复论述。与背景技术中的导体类似,在风力机塔筒内,马鞍形支架以下的导体按照下述方式进行敷设,马鞍形支架以上的导体,会扭转,不作为本方案中敷设方式的对象。
请参考图2,图2为本发明所提供电力传输导体敷设方法一种具体实施例的流程图。敷设方法如下:
S1、根据塔筒外界的空气流参数,获取与上风向来流接触的塔筒壁100背阴侧的表面传热系数(即流固耦合表面传热系数)变化情况;
S2、根据表面传热系数最高时所对应的背阴侧的内侧位置,确定目标敷设位置;
这里根据内侧位置,意指导体300敷设于塔筒壁100的内部,因此,可由内表面位置作为参考以确定导体300的具体敷设位置,并不是限定导体300贴附于内表面位置。从后述的实施例中可看出,导体300与塔筒壁100内表面之间可以具有预设的距离。
S3、将电力传输导体300敷设于目标敷设位置。
首先,请参考图3,图3为风力机塔筒在夏季时各朝向太阳辐射以及出现高温和暴雨方向的范围示意图(塔筒的俯视图)。
该图是以某一实际风力机塔筒所处的自然环境气象数据为背景,测量绘制出塔筒外部环周夏季日辐射量日变化情况。日辐射量变化如图3中虚线所示,沿着不同方位的径向幅值大小(长短)代表相应塔筒方向时段太阳即时投射到塔筒壁100的辐射强度。
可以看出:由南向西顺时针方向60°左右是开始出现高温的方位,一直持续到正西侧,之后才开始降低辐射强度(即:日常所说的“西晒”)。该 地理位置处的正北侧不会直接得到太阳辐射,只有当地地表辐射和大气辐射,即环境辐射,表现幅值非常弱小,图中的正北侧也是本发明所提到的背阴侧,图3仅是一具体实施例,背阴侧通指塔筒几乎无日照的范围区域。实际上,太阳能够直射的区域主要是南北回归线之间的区域,也就是南纬23.5度到北纬23.5度之间,在这之外的地方,太阳光主要是斜射下来。中国处于北半球,太阳自南方照射过来,所以图3中的背阴侧处于北侧;对于南半球国家的风力机塔筒,阳光自北面照射过来,此时的背阴侧自然是在塔筒的南面,本文实施例的附图多以背阴侧处于北面为例进行示例性说明,显然并不对本发明的保护范围进行限制。
同时,从该图中反应的暴风雨信息,背阴侧的外表面实际上还会被暴风雨冲刷,极弱的太阳辐射连同定向的暴风雨(具有规律性)致使塔筒壁100正北侧的背阴侧及向右区域外侧温度较低。
而依据物质迁移规律,通量(热流量)=物质迁移过程的推动力(温压)/阻力(热阻)。在塔筒内,尤其是底部设置有机组变流器及其电抗器、变压器(包括给机组供给厂用电的变压器和连接电网输出电能的变压器),还有导体300,它们都是热源,外表温度都会远远高于塔筒壁100背阴侧的温度。
背阴侧(一般会比阳面低5-10℃),而且塔筒壁100外表面附近温度较低的空气也是个大“容性”“冷源”。这里的“容性”是指具有容纳和装载热量的本领,“冷源”和“热源”均是物理学热学领域的专业名词术语,导体300和电气设备是“热源”,“热源”向“冷源”能够自发地传递热量。
将导体300设置于背阴侧,正是充分利用背阴侧的“冷源”,以与塔筒 内部的“热源”进行换热,降低内部温度,防止过热,延长导体300等内部构件的使用寿命,提高电力传输的系统安全性。
在背阴侧敷设导体300的基础上,请继续参考图4-1、4-2,图4-1为上风向来流外掠塔筒时形成的边界层示意图;图4-2为图4-1中出现扰流脱体的示意图。
如图4-1所示,当上风向来流绕流塔筒壁100时,边界层内空气流的压强、流速、以及流向都将沿着塔筒壁100弯曲面发生很大变化,从而影响换热。由于流动界面的变化,空气流的压强大约在塔筒圆筒壁的前半部递降,即
Figure PCTCN2017079736-appb-000001
而后又趋回升,即
Figure PCTCN2017079736-appb-000002
特别要注意的是:塔筒壁100的壁面边界层内的空气流在持续向前流动时,它的动能将逐渐变小,其速度较边界层外低,相应的动能也较小,由于动能的消耗,空气流在塔筒弯曲壁面上的速度梯度将在壁面的某一位置趋于零,即
Figure PCTCN2017079736-appb-000003
如图4-2所示,在虚线I起点位置,塔筒壁100壁面的空气流停止向前流动,并随即因沿着曲面向右(x方向)
Figure PCTCN2017079736-appb-000004
而向相反的方向流动,形成图4-1中所示的回流,图4-2虚线I在壁面上的起点称为绕流脱体的起点(或称分离点,如图4-1所示的边界层分离点),自此边界层中出现逆流向流动,形成漩涡,从而使正常边界层流动被破坏。也就是说,换热效率最大的位置实际上并非是上风向来流正对塔筒壁100的位置,而是出现在塔筒壁100的两侧位置,相应地,此处才应当是换热效率最高的位置。
本实施例中,通过外界的空气流参数可以获取塔筒壁100相应位置的 表面传热系数变化,以反馈换热效率的高低位置,实际上,可以理解,获取的表面传热系数最高的位置,实际上正是扰流脱体的位置。
表面传热系数具体可以通过努谢尔特数Nu(
Figure PCTCN2017079736-appb-000005
L为传热面的几何特征长度,表现为塔筒的直径,h为空气流接触塔筒壁时所对应的塔筒壁表面的表面传热系数,k为静止流体的导热系数)来间接反应,努谢尔特数Nu为能够间接反应塔筒表面传热系数大小的无量纲数。表面传热系数由多个参数确定,根据传热学原理,努谢尔特数Nu可以简化表面传热系数的获取。
本实施例中,获取努谢尔特数Nu时,可以先根据外界的空气流参数获取对应的雷诺数Re(
Figure PCTCN2017079736-appb-000006
ρ-空气流密度,μ-空气流粘性系数,d-塔筒壁100直径,u-空气流速),再建立不同雷诺数Re下,塔筒壁100背阴侧与空气流接触形成对流的表面传热系数的变化情况。
请继续参考图5,图5为空气流外掠塔筒时,三种雷诺数Re下,塔筒局部表面努谢尔特数Nu与角度的变化曲线图。此处的局部表面,具体为自上风向来流和塔筒壁100接触的法向量位置,向北侧180度的范围。
该图中,示出三组连续曲线,分别对应三个雷诺数Re,其中由下至上,对应的雷诺数Re逐渐增大,其中竖轴为努谢尔特数Nu,横轴为角度。从图中可看出,三组曲线中能反应表面传热系数的努谢尔特数Nu的三个峰值大约出现在110°-125°的位置,即随着雷诺数Re的增加,努谢尔特数Nu的峰值也在逐渐增大。本发明中,上述“峰值”所对应的角度正是本发明的关键所在,本发明方案也正是将该“峰值”所对应的角度选取为目标敷设角,目标敷设角对应的位置也就是导体300的目标敷设位置。
可以理解,峰值的位置显然对应于上述理论分析中提到的扰流脱体位 置,也就是换热效果最佳的位置,图5的曲线图实际上也验证了图4-1、4-2中提到的边界层扰流脱体现象。经过试验数据获取图5的曲线图后,即可获取目标敷设位置。显然,目标敷设角即为空气流上风向来流和塔筒壁100接触面的法向量,至表面传热系数最高位置的夹角,具体可以参考图6-3、7-3理解。
从以上的分析可以看出,本实施例不仅仅将导体300敷设于塔筒壁100的背阴侧,以利用较低温度侧的冷源散热,尤为重要是的,还对敷设于背阴侧具体的位置进行了精准定位。即,本实施例是有针对性地将电力传输导体300设置于背阴侧的某一特定位置(实际上就是扰流脱体位置、表面传热系数最高的位置),从而更为高效地利用“冷源”,进一步地达到降低内部温度的效果。
具体地,本方案中,用来获取努谢尔特数Nu或是雷诺数Re空气流参数均可以根据塔筒所在地的气象风玫瑰图获取。
请参考图6-1、6-2、6-3,图6-1为某风电场夏季(6-8)月10米高度的风玫瑰图;图6-2为图6-1中风电场夏季(6-8)月70米高度的风玫瑰图;图6-3为根据图6-1中风电场所在地点的夏季(6-8月)风玫瑰图,而敷设电力传输导体300的第一实施例示意图。
从图6-1、6-2中风玫瑰图可看出,空气流的主风向来流在于西南方向(SW向),表现为高风速(夏季6-8月,也是高温)。这里在获取目标敷设位置时,将主风向来流选取为上风向来流,获取相应的背阴侧外表面的表面传热系数,风玫瑰图中显示的主风向来流,该风向上的风速最高、该风向出现的频率也最高,显然该主风向的扰流影响也最为明显,这样获取的目标敷设位置最能实现传热的高效,也是风玫瑰图的主要价值所在。即 在气象多变,继而上风向来流多变的情况下,通过风玫瑰图选取最值得被利用的上风向来流(即主风向来流),以确保最终获取的目标敷设位置为最佳的敷设位置。另外,这里选用的风玫瑰图为夏季6-8月的风玫瑰图,选取的实际上是高温季节的气象风玫瑰图,可以理解,高温季节塔筒内部的温升现象更为明显,对导体300进行换热降温的需求也最为迫切。这里选取6-8月的风玫瑰图,显然,根据地理环境的变化,也可以根据实际地理位置的高温季节选用对应月份的风玫瑰图。
结合风玫瑰图,获取如图5的努谢尔特数Nu与角度的曲线图后,可确定目标敷设角,范围是图6-3中所示的115°-125°,一般电力传输电缆导体300为若干根,大致使其中部对应于选定的目标敷设角,即相当于将导体300敷设于目标敷设位置。
请继续参考图7-1、7-2、7-3,图7-1为某风电场夏季(6-8)月10米高度的风玫瑰图;图7-2为图7-1中风电场夏季(6-8)月70米高度的风玫瑰图;图7-3为根据图7-1中风玫瑰图,而敷设电力传输导体300的第二实施例示意图。
从图7-1、7-2中风玫瑰图可看出,空气流的主风向来流在于东南方向(SE向),表现为高风速(夏季6-8月,也是高温)。该实施例同样采用主风向来流作为对象获取努谢尔特数Nu,原理如上。结合风玫瑰图,同样获取如图5的努谢尔特数Nu与角度的曲线图后,可确定目标敷设角,角度范围仍是115°-125°。
请继续参考图8-1、图8-2,图8-1为根据风玫瑰图辅助导体敷设定向的第一示意图;图8-2为根据风玫瑰图辅助导体敷设定向的第二示意图。
上述实施例中选取了塔筒10m、70m高位置的风玫瑰图,以获取对应的努谢尔特数Nu和雷诺数Re。可以理解,理想情况下,应当尽可能多地获取不同的塔筒高度的雷诺数Re,建立对应的努谢尔特数Nu和角度的曲线,继而确定导体300的敷设延伸方向。
但是对于同一地点的塔筒而言,塔筒不同高度的雷诺数Re变化呈现出一定的规律,因为,随着高度的上升,空气流速以及塔筒直径等均会出现相对规律的变化。而根据不同雷诺数Re下的表面传热系数变化,实际上目标敷设位置是一范围值,如上提到的110°-125°范围,此时假设选定的位置为120°,实际上导体300此时也就处于所要追求的换热效率较高的位置,但是为了使导体300的敷设位置更加精确,可以根据雷诺数Re的变化规律作更细微的调整。
如图8-1、8-2所示,根据塔筒所在地的气候环境,塔筒不同高度对应的雷诺数Re有可能自下向上逐渐增加或者减小,相应地,对应的努谢尔特数Nu也会发生相应的数值变化,则可以将导体300敷设于选定的目标敷设位置,然后根据雷诺数Re的变化规律,将导体300顺时针或逆时针转动预定的角度。此时,实际上只需要选定一高度位置(图中示出高度H),获取该高度位置所对应的周向位置的雷诺数Re以及努谢尔特数Nu与角度的曲线,即可获取该周向位置上表面传热系数最高的位置,该位置对应的塔筒壁100的内侧位置为图中所示的O位置,将该位置的上下延伸线作为基准敷设线300’,然后根据该点上下的雷诺数Re的变化规律(反映的也是表面传热系数的变化规律)作微调(顺时针或逆时针旋转一定的角度)即可获取实际所需的目标敷设位置,而无需计算多个雷诺数Re下的努谢 尔特数Nu,从而简化目标敷设位置的获取过程,又能够保证导体300敷设位置的精准性。
上述实施例是根据某一位置获取一基准敷设线300’,然后根据变化规律再微调,实际上,还可以有其他多种方式能够实现目标敷设位置的高效获取,且又能相对保证目标敷设位置的选取较为精准。
比如图8-3所示,图8-3为根据风玫瑰图辅助导体敷设定向的第三示意图。
仍以上述10m、70m的风玫瑰图为例,可以分别获取高度H1=10m、H2=70m所对应的周向位置的表面传热系数最高位置,最高位置对应的塔筒壁100的内侧位置分别为图中所示的O1、O2,目标敷设位置的路径就是沿O1延伸至O2。
再比如图8-4所示,图8-4为根据风玫瑰图辅助导体敷设定向的第四示意图。
仍以上述10m、70m的风玫瑰图为例,可以分别获取H1=10m、H2=70m所对应的周向位置的表面传热系数最高位置,最高位置所对应的塔筒壁100内侧位置分别为图中所示的O1、O2(表现为敷设角),然后取平均值(O3对应的敷设角),在中部位置(如图中所示的H3=40m)按照平均值位置对应的上下延伸线为基准敷设线300’,然后按照O1、O2的变化趋势作相应角度α的扭转,得到目标敷设位置的路径。也可以直接将图8-3中的敷设路径作为基准敷设线,然后根据O1、O2变化趋势作一定角度的扭转即可。均可以使敷设后的导体能够基本处于表面传热系数较大的位置。
上述10m、70m的选取分别代表了塔筒上、下的特征,10m以下塔筒 部分可能收到其他基建结构的干扰而不易获取有效的表面传热系数,70m以上的位置相对于70m的空气流形态,并无较大变化,所以对于现有技术中一般的塔筒而言,10m、70m的选取具有一定代表性,可以作为目标敷设位置的较佳参考点。
可以理解,在表面传热系数最高位置的获取过程中,上述实施例中采用了雷诺数Re,根据不同雷诺数Re下努谢尔特数Nu与角度的变化关系,获取目标敷设位置。即本发明的关键在于根据外界的空气流环境参数,获取表面传热系数最高的位置即可,但多个空气流参数往往会不断发生变化,计算某一季节甚至某一时间段的表面传热系数时,获取的过程都将较为复杂。而以雷诺数Re作为参考维度,进行表面传热系数获取时,由于同一雷诺数Re下的空气流具有同一流动形态,对应的表面传热系数也就大致为同一水准,继而无需因为空气流参数的多变而计算多组数据(比如,以上述四种空气流参数,一天可能需要统计无数组数据组合,而以雷诺数Re统计,可能仅需要几组数据),简化目标敷设位置获取的进程。
需要说明的是,为了利用背阴侧的冷源,前提是将导体300敷设于背阴侧,背阴侧最好限定为从正北方向顺时针45°至逆时针45°的范围,如果按照上述方式获取的目标敷设角未处于该范围内时,应当对获取步骤进行查验,以确保目标敷设角位于该范围内。
以上实施例中,着重体现如何对背阴侧的电力传输导体300敷设定位,以最为高效地利用背阴侧的“冷源”,下述实施例在此基础上将进一步提高对背阴侧“冷源”的高效利用。
请参考图9-1、9-2,图9-1为本发明中风力机塔筒内电力传输导体300 敷设的第一种具体结构示意图;图9-2为图9-1中的塔筒侧壁与电力传输导体300的传热原理图。
从图中可看出,以投射在塔筒的内表面为视角,电力传输导体300往复折弯敷设,具体呈图9-1中所示的锯齿形,以图9-1为视角,相当于电力传输导体300往复地左右摆动,区别于现有技术中的竖直敷设方式。
如此,电力传输导体300实际上在塔筒周向上的长度在增加,从而让更多的塔筒壁100边界层的冷空气受到扰动,带动起来参与换热的冷空气也就得以增加,而现有技术中竖直布置的导体300,周向上的长度有限,影响范围有限,“冷源”储存的冷量依然较大,没有得到充分利用,本方案往复折弯的布置方式显然更加充分地利用了塔筒壁100附近的“冷源”,并且结合上述的敷设定位,以使“冷源”的利用更加高效、活跃。
另外,在增加导体300在塔筒壁100上的周向长度,以带动更多冷空气参与换热时,导体300的实际长度增量实际上并不大。
请参考下表:
θ 10°
Cosθ 0.996 0.994 0.992 0.990 0.987 0.984
结合图9-1理解,θ为导体300与竖向的夹角。实际导体300长度L1近似等于L2/cosθ,可见,即便折弯角度达到10°,总长也只会增加约1.6%,显然不必考虑导体300增长的费用。而,在导体300长度增加很有限的情况下,却可以大幅增加换热区域的面积。
再请查阅下表,假设导体300上下转折处相距L2=5000mm,导体300组原始周向长度L=600mm。
Figure PCTCN2017079736-appb-000007
可见,该实施例中就参与换热的冷却区域而言,周向的长度可以增加至近两倍或两倍以上,而大面积冷空气被带动运动起来后,这些被带动起来的大量的冷空气在较大的面积区域与背阴侧的塔筒壁100进行自然对流换热,根据牛顿冷却公式:
Figure PCTCN2017079736-appb-000008
(h为物质的对流表面传热系数、A为传热接触面积、tf-tw为温差),显然可以间接借助大面积冷空气吸收的导体300热量,以自然对流换热形式传给大面积的塔筒壁100,从而大大提高换热速率,加快导体300的散热,相应地也就加快了其他热源部件的散热。
值得注意的是,本实施例并非简单地仅通过增加导体300对应于塔筒壁100的周向长度而提高换热效率,请继续参考图9-1、9-2。
导体300为热源,其热量具有向上的浮升力,当其浮升时,其下方区域将被密度更大的冷空气予以补充,从而形成如图9-1所示的冷下沉和热上升区域,即对于一折弯单元形成的近似于三角形的区域,以其折弯位置 的水平延伸线为分界线,分界线以上的部分基本为冷下沉区域,分界线以下部分基本为热上升区域,冷下沉气流与热上升气流在分界线处交汇,从而阻止热上升气流进一步上升。
现有技术中竖直布置时,下段导体300表面被加热的空气不断向上聚集,从而对上段的导体300产生“围绕包裹”的现象,影响上段导体300周边冷空气介入对流冷却。而如上所述的往复折弯敷设,从以上分析可知,下段浮升的热空气实际上会被其上方下沉的冷空气截断,从而避免下段热空气对上段形成包裹,提高整根导体300的换热效果,增强换热均匀性。
另外,在敷设导体300时,导体300并不需要竖直垂直于地面,而是可以自上至下沿着塔筒壁100敷设,由于塔筒的内径自下向上逐渐缩小,故俯视导体300时,各折弯单元并不重叠,使得下段导体300的上升热气流对上段导体300冲刷的重叠度较小,进一步降低围绕包裹的不利影响,并且导体300上升的热气流相应地就可以向上直接冲刷到塔筒壁100,从而进一步提高与冷空气的换热效率。
另外,导体300敷设时也可大致沿塔筒壁100的弧形壁面敷设,从而尽可能多地增加与塔筒壁100的对流换热面积。即从导体300的整体来看,在周向上,大致呈与塔筒壁100内表面相近的弧度,在由上之下的延伸方向上,则大致呈与塔筒壁100相近的倾斜度。
往复折弯敷设的单元结构形式有多种,并不限于图9-1的折弯结构。如图9-3、9-4所示,图9-3为本发明中风力机塔筒内电力传输导体300敷设的第二种具体结构示意图;图9-4为本发明中风力机塔筒内电力传输导体300敷设的第三种具体结构示意图,显然,图9-1~9-4中示出的局部塔 筒壁100均属于背阴侧。
从图9-3可看出,导体300敷设时并非直接折弯,其折弯的位置实际上过渡有直线段301,直线段301的距离h可以作调整,从而使折弯单元呈梯形结构。图9-4中,则折弯位置呈弧形设计,折弯位置为弧形段302,折弯单元中其他段为直线段,可以理解,呈S形折弯也是可行的。折弯的位置可以通过夹板200固定,折弯以外的导体段,如果长度较长时,也可以增设若干夹板200,夹板200的设置位置和数量以可靠的紧固为必要。
相较于直接折弯,具有过渡段(梯形、S形、弧形折弯位置),可以使折弯单元中上、下导体段拉开一定的距离,从而降低下段导体对上段导体基于折弯夹角而造成的近距离辐射影响。而设计为S形或是仅折弯位置设置为弧形段,相较于梯形,则又可有利于折弯位置的热胀伸缩。
上述实施例对导体300的敷设位置进行了精确定位,还对导体300的结构进行了折弯处理,已经可以取得较好的冷却换热效果,但本发明还对导体300的结构作出了更进一步的改进。
请继续参考图10-1,图10-1为本发明所提供风力机塔筒一种具体实施例的结构示意图。
该图示出风机整体,包括塔筒和机舱400。从图中(U为风速)可看出,该导体300沿其延伸方向,与塔筒壁100内表面的垂直距离,呈往复变化的趋势,即导体300自上至下与塔筒壁100内表面的垂直距离,按照先增大再减小,再增大,再减小…的往复趋势变化,也可以是先减小再增大…的趋势,距离往复变化可以是等周期变化也可以是非等周期变化,每个周期内的距离峰值可以相等也可以不等。导体300与塔筒壁100内表面 垂直距离往复变化而表现为结构上的弯折时,也可以通过夹板、支架等实现。
不考虑导体300在塔筒壁100内表面的投影弯折影响,当导体300与塔筒壁100内表面垂直距离往复变化时,导体300在塔筒的纵向剖面(沿径向的剖面)上的投影,具体也体现为折线往复弯折,如图10-1所示,显然弯折并不限于直线段的弯折,也可以是弧线或是其他曲线。
可以理解,此时的导体300敷设方案为:投射在塔筒壁100上,电力传输导体300往复弯折;在塔筒的纵向剖面上,也往复弯折,整个导体300呈扭曲的形态。
请参考图10-2,图10-2为图10-1中导体300自然对流的传热分析图。
从图10-2中可看出,la为现有技术中能够带动塔筒内表面附近空气参与换热的气流边界厚度(竖直敷设),lb为本方案中能够带动的气流边界厚度,此处分析与上述的沿周向往复弯折原理类似,均是能够带动更多的冷空气参与到换热中来,以提高冷却效率。
另外,弯折所形成的近似三角区域,同样是可以形成冷下沉区域(图中所示的冷却)和热上升区域,进而阻止下段导体300的热上升气流向上包裹上段的导体300。再者,基于导体300的延伸方向与塔筒壁100大体保持一致,在上下方向上不重叠,故从径向剖面这个角度,同样可以进一步降低“围绕包裹”的影响,并且热气流可以有一部分直接流向塔筒壁100,加强换热效果。
显然,本方案中导体300与塔筒壁100内表面垂直距离往复变化,同时在塔筒壁100周向上也往复折弯,使得导体300呈扭曲的方式敷设,极 大地提高了换热效果。尤为重要的是,导体300与塔筒壁100内表面距离往复变化的设置方式,不仅仅是进一步提高换热效果。
请继续参考图10-3~10-4,10-3为图10-1中导体300及其空气边界层与塔筒壁100的方位关系图;图10-4为图10-2中导体300的边界层生长分析图。
图10-4同样以图10-1或10-2的角度为视角(图10-4下方的黑环为塔筒的俯视示意图)。由于与塔筒壁100内表面垂直距离往复变化,表现为在塔筒壁100纵向剖面往复弯折,导体300的边界层也发生周期性的变化。对于导体300的VU段,其热气流上升于弧DAB(西北东)附近,形成图中示出的月牙形边界层300a;位于UT段时,由于冷热区域的汇合,弧DAB的边界层停止生长,成为冷区,其相对面的弧DCB(西南东)开始月牙形边界层300a生长,如此由下之上,交替变化。
也就是说,导体300从图10-4的视角,实际上存在冷热交替变化的现象。
再请继续参考图10-5,为图10-1中导体300另一视角的边界层生长分析图,该分析图体现为塔筒的周向壁面方向。
同样以图10-3中的方位示意说明,与图10-4的原理相同,图10-5中导体300的弧ADC(北西南)和弧ABC(北东南)也会交替发生边界层的重新生长和停止生长现象,导体300也存在冷热面交替变化的现象,但该冷热面恰好与图10-4中存在90度的角度偏差。
仅将导体300按照投射在塔筒壁100上呈往复折弯敷设时,冷热交替变化单一地出现在导体300的两个相对的半弧面,而将导体300与塔筒壁 100内表面距离作周期性变化设置后(相当于径向距离周期性调整),则冷热交替会出现在另外两个相对的半弧面,从而使得任一半弧面与相对的半弧面之间会存在温度过渡,而不至于温差变化过大,从而达到保护导体300的目的。可以结合图10-6理解,图10-6将图10-4、10-5中的边界层生长叠合示意图,可见,由于北半弧面DAC和南半弧面DCB之间对应边界层会部分重叠,出现了边界层重叠区域300a’,成为两个半弧面的温度过渡区域。图10-6仅示出ADC和DAB重叠,实际上图10-6中东北、北西、西南、南东均可以出现边界层重叠区域300a’。
需要说明的是,导体300在两个方向上的周期性变化并不要求一致,即在塔筒壁100周向上的一折弯单元并不必然对应于径向上的折弯单元。
针对上述各实施例,还可以作出进一步改进。应当知晓,塔筒内部的热量不仅来自于热源部件自身的运转发热,大部分还是基于外部温度的影响,尤其是夏季高温的影响,这也是引起塔筒内部过热的重要原因。
为了从源头上降低过热的影响,可以将塔筒阳面(与背阴侧相反,即具有日照的一面)的侧壁设置有隔热层,和/或塔筒的背阴侧,设置有导热层。阳面设置隔热层可以阻隔热量向内部传递,而背阴侧设置导热层有助于塔筒内部热气流与塔筒背阴侧外部冷空气的对流换热,提高冷却效果,当既设置隔热层又设置导热层时,实际上是起到了“双管齐下”的降温防过热作用。
具体地,隔热层可以包括阳面的内表面隔热层100b和外表面隔热层100a,外表面隔热层100a设置为至少具备低红外吸收率、高反射率(多反射,相应地也就减少了热量的吸收)、高红外发射率三者之一,内表面隔热 层100b设置为至少具备低红外发射率、低红外吸收率、低导热系数三者之一,以阻止其对塔筒内部空间发射热射线。显然,以上的性能均具备为最佳的方案,但是可以根据实际散热需求并兼顾成本进行设置。
内表面隔热层100b可以采取下述方案:
方案1:采用低红外发射率涂层;
方案2:粘覆一层低发射率铝箔102,阻止表面发射热射线,铝箔102和塔筒壁100之间再设置一层保温板101,如图6-3所示;
方案3:引入使用新型纳米智能保温涂料,该种涂料隔热保温成分是Hydro-NM-Oxide,超低导热系数。
方案4:在内表面粘贴隔热、耐火材料。
方案2中的保温板101,方案4中的隔热、耐火材料,均可以采用如下表所示的材料:
表1 几种隔热、轻质材料的热扩散率
Figure PCTCN2017079736-appb-000009
表2 几种隔热、耐火材料的热导率
材料名称 超细玻璃棉毡 水泥珍珠岩制品 微孔硅酸钙 矿渣棉
热导率λ(w/m·k) 0.033 0.0651 0.044 0.0674
请继续参考图11-1,图11-1为本发明所提供风力机塔筒阳面侧壁的局部剖视图,图11-1中下方为塔筒阳面塔筒壁100微元体的辐射等效热阻。其中,A1为塔筒外表面涂层面积;T1为塔筒外表面涂层温度;ε1为塔筒外表面涂层发射率;ρ1为塔筒外表面涂层反射率;α1塔筒外表面涂层吸收率; qr塔筒内表面涂层辐射热流;A4塔筒内表面涂层面积;T4塔筒内表面涂层温度;ε4为塔筒外表面涂层发射率;ρ4为塔筒外表面涂层反射率;α4塔筒外表面涂层吸收率。
图11-1相当于在塔筒壁100的阳面取一“微元体”,“微元体”径向两侧分别是塔筒的外表面隔热层100a、内表面隔热层100b,图11-1中下方为该为微元体的辐射等效热阻。降低塔筒阳面内表面隔热层的红外发射率,即增大辐射表面热阻,可借助选用低红外发射率的材料,例如:发射率由0.8降至0.1,表面阻力即增加为原来的36倍,大大降低涂层表面有效辐射强度。
请继续参考图11-2、11-3,图11-2为本发明所提供风力机塔筒内导体300与背阴侧的侧壁的辐射换热示意图,图11-2中下方为塔筒背阴侧塔筒壁100微元体的辐射等效热阻;图11-3为图11-2中立体的传递热流示意图。其中,q1,3电力传输电缆与塔筒辐射热交换率;qrN为塔筒背阴侧外表面辐射热流;qconv塔筒背阴侧外表面与空气对流换热率;q上升气流电力传输电缆周围空气获取的热流量。
背阴侧的导热层具体可以包括背阴侧的内表面导热层103和外表面导热层,外表面导热层设置为至少具备高反射率、低红外吸收率二者之一;内表面导热层103设置为至少具备低反射率、高红外吸收率、高红外发射率三者之一。具体选择与隔热层一致,根据散热需求和成本进行组合搭配。
为了更进一步利于电力传输导体300的散热,还可以在导体300表面涂红外高发射率涂层,以配合塔筒壁100背阴侧的低反射率、高红外吸收率、高红外发射率的内表面导热层,加快导体300的散热。
图10-1中导体300是分两排设置,也可以一排并列设置,如图12所示,图12为本发明中导体一排并列设置的结构示意图,实际上,图6-3、 7-3也是以该设置方式示意。
为进一步提高散热需求,可以适当地拉大导体300组各导体300之间的间距、或使各导体300交错布置,降低导体300之间的空间辐射热阻,也就增大导体300向背阴侧内表面导热层释放的辐射热流速率,提高散热效果。
最后,再请参考图3,阳面的高温区域实际上出现在正南向西60°的方位,一直持续到正西侧才开始降低辐射强度,即可以根据实际的热辐射数据确定最为明显的高温区域。本方案中,鉴于上述导体300敷设于背阴侧的位置得以精准定位、且导体300扭曲设置,使得导体300的散热得到很大的改善,相应地其内部其他热源构件的散热性能也得以提升,故此时只需要在塔筒壁100高温方位设置隔热层即可,而无须在整个南半面设置隔热层,从而节省成本。图6-3、7-3中,均将隔热层设置于正南至正西的位置,即90°范围铺设,可以理解,铺设范围略大或略小均是可以的,根据实际的工况确定即可。
背阴侧导热层的铺设范围,可以根据导体300的铺设位置,以及周围冷空气的分布、暴风雨向等因素综合设定,图6-3、7-3中,背阴侧导热层均设置于正北向西30°、正北向东45°左右的范围。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (28)

  1. 一种电力传输导体的敷设方法,电力传输导体敷设于围护结构内,其特征在于,包括下述步骤:
    根据围护结构外界的空气流参数,获取与上风向来流接触的围护结构背阴侧外表面的表面传热系数变化情况;
    根据所述表面传热系数最高时所对应的背阴侧的内侧位置,确定目标敷设位置;
    将电力传输导体敷设于所述目标敷设位置。
  2. 如权利要求1所述的电力传输导体的敷设方法,其特征在于,所述的获取表面传热系数变化情况的步骤具体包括:根据外界的空气流参数获取对应的雷诺数,建立不同雷诺数下,背阴侧外表面的表面传热系数变化情况;
    所述的确定目标敷设位置的步骤具体包括:根据不同雷诺数下表面传热系数最高时所对应的背阴侧的内侧位置,确定所述目标敷设位置。
  3. 如权利要求2所述的电力传输导体的敷设方法,其特征在于,不同雷诺数下表面传热系数最高的背阴侧位置记录为目标敷设角,目标敷设角定义为:上风向来流和围护结构外壁接触面的法向量,至围护结构上所述表面传热系数最高的位置所形成的夹角;
    目标敷设位置介于不同雷诺数下最小目标敷设角和最大目标敷设角之间。
  4. 如权利要求2所述的电力传输导体的敷设方法,其特征在于,与上风向来流接触的围护结构背阴侧外表面的表面传热系数变化情况具体通过 努谢尔特数反映。
  5. 如权利要求1所述的电力传输导体的敷设方法,其特征在于,所述背阴侧限定为从正北方向顺时针45°至逆时针45°的范围。
  6. 如权利要求1所述的电力传输导体的敷设方法,其特征在于,所述的获取表面传热系数变化情况的步骤具体包括:根据围护结构一高度位置对应的雷诺数,获取该高度位置对应的背阴侧外表面周向位置的表面传热系数变化情况;
    所述内侧位置为:该周向位置的表面传热系数最高时所对应的内侧位置;
    所述的确定目标敷设位置的步骤具体包括:将所述内侧位置所对应的上下延伸线,作为电力传输导体敷设的基准敷设线;根据所述围护结构不同高度位置的雷诺数变化,将基准敷设线顺时针或逆时针转动预定角度,并将转动后的位置作为所述目标敷设位置。
  7. 如权利要求1所述的电力传输导体的敷设方法,其特征在于,所述的获取表面传热系数变化情况的步骤具体包括:在所述围护结构的上段、下段分别选取一高度位置,根据两高度位置的雷诺数,获取两高度位置对应的背阴侧外表面周向位置对应的表面传热系数变化情况;
    所述内侧位置为:两所述高度位置所对应的周向位置的表面传热系数最高时所对应的内侧位置;
    所述的确定目标敷设位置的步骤具体包括:将两周向位置表面传热系数最高时所对应的内侧位置的连线作为目标敷设位置。
  8. 如权利要求1所述的电力传输导体的敷设方法,其特征在于,所述 的获取表面传热系数变化情况的步骤具体包括:在所述围护结构的上段、下段分别选取一高度位置,根据两高度位置的雷诺数,获取两高度位置对应的背阴侧外表面周向位置对应的表面传热系数变化情况;
    所述内侧位置为:两所述高度位置所对应的周向位置的表面传热系数最高时所对应的内侧位置;
    所述的确定目标敷设位置的步骤具体包括:将两周向位置表面传热系数最高时所对应的内侧位置的连线作为基准敷设线;根据两周向位置表面传热系数最高位置的变化情况,将基准敷设线转动预定角度,并将转动后的位置作为目标敷设位置。
  9. 如权利要求1-8任一项所述的电力传输导体的敷设方法,其特征在于,所述上风向来流为根据围护结构所在地的气象风玫瑰图获取的主风向来流。
  10. 如权利要求9所述的电力传输导体的敷设方法,其特征在于,所述气象风玫瑰图选取为围护结构所在地的高温季节的气象风玫瑰图。
  11. 如权利要求1-8任一项所述的电力传输导体的敷设方法,其特征在于,将所述电力传输导体作折弯处理,实现投射在所述围护结构的内表面上,所述电力传输导体呈往复折弯。
  12. 如权利要求11所述的电力传输导体的敷设方法,其特征在于,对所述电力传输导体作进一步折弯处理,实现所述电力传输导体与所述围护结构内表面的垂直距离往复变化。
  13. 一种具有定向敷设电力传输导体的围护结构,所述电力传输导体设置于所述围护结构的内部,其特征在于,所述电力传输导体根据权利要 求1-12任一项所述的敷设方法敷设于所述围护结构的内部。
  14. 如权利要求13所述的围护结构,其特征在于,所述电力传输导体的目标敷设位置,与上风向来流的夹角处于110°~125°之间。
  15. 如权利要求14所述的围护结构,其特征在于,所述上风向来流为西南或东南方向。
  16. 如权利要求13所述的围护结构,其特征在于,投射在所述围护结构的内表面上,所述电力传输导体往复折弯敷设。
  17. 如权利要求16所述的围护结构,其特征在于,所述电力传输导体与所述围护结构内表面的垂直距离往复变化。
  18. 如权利要求16或17所述的围护结构,其特征在于,往复折弯敷设的单元结构呈折线形,或梯形,或S形;所述折线形直接弯折或者弯折位置呈弧形。
  19. 如权利要求13-17任一项所述的围护结构,其特征在于,所述电力传输导体整体在所述围护结构内表面的周向上,具有与所述围护结构的弧形内表面相适配的弧度。
  20. 如权利要求13-17任一项所述的围护结构,其特征在于,所述电力传输导体由上至下的延伸方向,相对于竖直方向倾斜设置,与所述围护结构的内表面倾斜角度相适配。
  21. 如权利要求13-17任一项所述的围护结构,其特征在于,所述围护结构阳面设置有隔热层,和/或所述围护结构背阴侧,设置有导热层。
  22. 如权利要求21所述的围护结构,其特征在于,所述隔热层包括所述阳面的内表面隔热层和外表面隔热层,所述外表面隔热层设置为至少具 备低红外吸收率、高反射率、高红外发射率三者之一;所述内表面隔热层设置为至少具备低红外发射率、低红外吸收率、低导热系数三者之一;
    和/或,
    所述导热层包括所述背阴侧的内表面导热层和外表面导热层,所述外表面导热层设置为至少具备高反射率、低红外吸收率二者之一;所述内表面导热层设置为至少具备低反射率、高红外吸收率、高红外发射率三者之一。
  23. 如权利要求21所述的围护结构,其特征在于,所述隔热层设置于所述阳面的高温区域,所述高温区域具体根据夏季监测的热辐射数据确定,并限定为自正南向西90°-100°。
  24. 如权利要求13-17任一项所述的围护结构,其特征在于,所述电力传输导体的外表面涂覆有高红外发射率的涂层,和/或,所述围护结构具体为风力机塔筒。
  25. 一种具有定向敷设电力传输导体的围护结构,所述电力传输导体设置于所述围护结构的内部,其特征在于,所述电力传输导体敷设于所述围护结构的背阴侧;所述电力传输导体在所述背阴侧的目标敷设位置,由所述背阴侧表面传热系数最高时所对应的背阴侧的内侧位置确定,所述表面传热系数为与上风向来流接触的背阴侧外表面的表面传热系数。
  26. 如权利要求25所述的具有定向敷设电力传输导体的围护结构,其特征在于,所述目标敷设位置相对于所述背阴侧内侧的上下延伸线倾斜,倾斜的角度由所述背阴侧不同高度下所述上风向来流对应的雷诺数的变化情况确定。
  27. 如权利要求25所述的围护结构,其特征在于,所述电力传输导体的目标敷设位置,与上风向来流的夹角处于110°~125°之间。
  28. 如权利要25-27任一项所述的具有定向敷设电力传输导体的围护结构,其特征在于,所述上风向来流为根据围护结构所在地的气象风玫瑰图获取的主风向来流。
PCT/CN2017/079736 2016-04-15 2017-04-07 具有定向敷设电力传输导体的围护结构及敷设方法 WO2017177862A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2017250071A AU2017250071B2 (en) 2016-04-15 2017-04-07 Enclosure structure provided with directionally-laid power transmission conductors, and laying method
EP17781838.2A EP3285345B1 (en) 2016-04-15 2017-04-07 Enclosure structure provided with directionally-laid power transmission conductors, and laying method
KR1020177035918A KR102074563B1 (ko) 2016-04-15 2017-04-07 지향적으로-배치된 전력 전송 도체를 구비한 외장 구조물, 및 배치 방법
US15/579,542 US10465665B2 (en) 2016-04-15 2017-04-07 Enclosure structure provided with directionally-laid power transmission conductors, and laying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610238242.3 2016-04-15
CN201610238242.3A CN105736259B (zh) 2016-04-15 2016-04-15 具有定向敷设电力传输导体的围护结构及敷设方法

Publications (1)

Publication Number Publication Date
WO2017177862A1 true WO2017177862A1 (zh) 2017-10-19

Family

ID=56255426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079736 WO2017177862A1 (zh) 2016-04-15 2017-04-07 具有定向敷设电力传输导体的围护结构及敷设方法

Country Status (6)

Country Link
US (1) US10465665B2 (zh)
EP (1) EP3285345B1 (zh)
KR (1) KR102074563B1 (zh)
CN (1) CN105736259B (zh)
AU (1) AU2017250071B2 (zh)
WO (1) WO2017177862A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105736259B (zh) 2016-04-15 2019-01-22 新疆金风科技股份有限公司 具有定向敷设电力传输导体的围护结构及敷设方法
CN106655025B (zh) * 2016-12-29 2019-10-29 北京金风科创风电设备有限公司 围护结构内动态散热布局的驱动系统
CN106602482B (zh) * 2016-12-29 2019-05-03 北京金风科创风电设备有限公司 围护结构及其内部的热源的动态散热方法、动态散热系统
CN107956650B (zh) * 2017-11-21 2020-02-11 北京金风科创风电设备有限公司 具有抑制振动功能的围护结构及抑制围护结构振动的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939538A (zh) * 2009-03-24 2011-01-05 美国超导威德泰克有限公司 新的塔架布线的发展
CN201705585U (zh) * 2010-06-17 2011-01-12 沈阳瑞祥风能设备有限公司 风力发电机的机舱内布局设置结构
CN201852702U (zh) * 2010-10-21 2011-06-01 中国电力科学研究院 一种符合iec61400-13标准的风电机组载荷测试系统
CN204720903U (zh) * 2015-07-10 2015-10-21 新疆金风科技股份有限公司 基于围护结构的传热散热系统和风力发电机组
CN204755196U (zh) * 2015-07-10 2015-11-11 北京金风科创风电设备有限公司 用于产热设备的散热围护结构和风力发电机组
CN105098670A (zh) * 2015-07-10 2015-11-25 新疆金风科技股份有限公司 基于围护结构的传热散热系统和风力发电机组
CN105736259A (zh) * 2016-04-15 2016-07-06 新疆金风科技股份有限公司 具有定向敷设电力传输导体的围护结构及敷设方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058742B2 (en) * 2006-03-25 2011-11-15 Clipper Windpower, Inc. Thermal management system for wind turbine
IT1391939B1 (it) * 2008-11-12 2012-02-02 Rolic Invest Sarl Generatore eolico
CA2693766C (en) * 2010-02-08 2013-10-22 Mitsubishi Heavy Industries, Ltd. Wind generator
WO2011114423A1 (ja) * 2010-03-15 2011-09-22 三菱重工業株式会社 風力発電装置及びそれに用いられるケーブル支持構造
KR101291177B1 (ko) * 2011-09-19 2013-07-31 삼성중공업 주식회사 풍력발전기
DE102013210532A1 (de) * 2013-06-06 2014-12-11 Siemens Aktiengesellschaft Kabelanschlusskasten
CN105089941B (zh) * 2015-07-10 2017-09-22 北京金风科创风电设备有限公司 用于产热设备的散热围护结构和风力发电机组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939538A (zh) * 2009-03-24 2011-01-05 美国超导威德泰克有限公司 新的塔架布线的发展
CN201705585U (zh) * 2010-06-17 2011-01-12 沈阳瑞祥风能设备有限公司 风力发电机的机舱内布局设置结构
CN201852702U (zh) * 2010-10-21 2011-06-01 中国电力科学研究院 一种符合iec61400-13标准的风电机组载荷测试系统
CN204720903U (zh) * 2015-07-10 2015-10-21 新疆金风科技股份有限公司 基于围护结构的传热散热系统和风力发电机组
CN204755196U (zh) * 2015-07-10 2015-11-11 北京金风科创风电设备有限公司 用于产热设备的散热围护结构和风力发电机组
CN105098670A (zh) * 2015-07-10 2015-11-25 新疆金风科技股份有限公司 基于围护结构的传热散热系统和风力发电机组
CN105736259A (zh) * 2016-04-15 2016-07-06 新疆金风科技股份有限公司 具有定向敷设电力传输导体的围护结构及敷设方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3285345A4 *

Also Published As

Publication number Publication date
EP3285345A1 (en) 2018-02-21
AU2017250071A1 (en) 2017-12-21
CN105736259A (zh) 2016-07-06
EP3285345B1 (en) 2022-05-11
KR20180008615A (ko) 2018-01-24
EP3285345A4 (en) 2019-02-20
US20190063408A1 (en) 2019-02-28
CN105736259B (zh) 2019-01-22
US10465665B2 (en) 2019-11-05
KR102074563B1 (ko) 2020-02-06
AU2017250071B2 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017177862A1 (zh) 具有定向敷设电力传输导体的围护结构及敷设方法
CN105957912B (zh) 一种多功能的光谱选择性封装材料
WO2017008714A1 (zh) 用于产热设备的散热围护结构、安装方法和风力发电机组
ES2881378T3 (es) Turbina eólica de eje vertical
US20130098354A1 (en) Solar collectors
WO2018120922A1 (zh) 围护结构及其内部的热源的动态散热方法、动态散热系统
EP2167883A2 (en) Solar collector with angled cooling fins
US20130008488A1 (en) Use of rotating photovoltaic cells and assemblies for concentrated and non-concentrated solar systems
JP2022513430A (ja) 風力発電機
AU2020367314B2 (en) Heat receiver for urban concentrated solar power
CN204720903U (zh) 基于围护结构的传热散热系统和风力发电机组
JP2022529386A (ja) 風力発電設備の中空構造要素
CN202419967U (zh) 一种塔式太阳能热发电站接收器
CN206514378U (zh) 一种烟囱管风扇
JP3193625U (ja) 地球温暖化抑制の為のエネルギー地球外放出装置
CN105634404A (zh) 单片式太阳能光伏电池板温控集成块
US20160281685A1 (en) Wind farm
CN108507002B (zh) 固体电蓄热散热器及供暖设备
CN202382441U (zh) 一种用于太阳能热发电系统的非等高定日镜场
CN117439176A (zh) 自然环境条件下确定架空输电导线动态允许载流量的方法
CN201875365U (zh) 软管保温装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177035918

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017250071

Country of ref document: AU

Date of ref document: 20170407

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE