WO2017177853A1 - 一种极低污染物排放的催化无焰燃烧装置及燃烧方法 - Google Patents

一种极低污染物排放的催化无焰燃烧装置及燃烧方法 Download PDF

Info

Publication number
WO2017177853A1
WO2017177853A1 PCT/CN2017/079511 CN2017079511W WO2017177853A1 WO 2017177853 A1 WO2017177853 A1 WO 2017177853A1 CN 2017079511 W CN2017079511 W CN 2017079511W WO 2017177853 A1 WO2017177853 A1 WO 2017177853A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion chamber
flameless combustion
chamber
inlet
Prior art date
Application number
PCT/CN2017/079511
Other languages
English (en)
French (fr)
Inventor
李为臻
陈志强
张景才
吴春田
张涛
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US16/093,932 priority Critical patent/US10859261B2/en
Priority to CA3021148A priority patent/CA3021148C/en
Priority to JP2018554030A priority patent/JP6674045B2/ja
Priority to KR1020187032035A priority patent/KR102232434B1/ko
Priority to RU2018139863A priority patent/RU2721077C2/ru
Priority to EP17781829.1A priority patent/EP3444530A4/en
Publication of WO2017177853A1 publication Critical patent/WO2017177853A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/02Apparatus in which combustion takes place in the presence of catalytic material characterised by arrangements for starting the operation, e.g. for heating the catalytic material to operating temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/08Apparatus in which combustion takes place in the presence of catalytic material characterised by the catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/18Radiant burners using catalysis for flameless combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2700/00Special arrangements for combustion apparatus using fluent fuel
    • F23C2700/02Combustion apparatus using liquid fuel
    • F23C2700/023Combustion apparatus using liquid fuel without pre-vaporising means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2700/00Special arrangements for combustion apparatus using fluent fuel
    • F23C2700/04Combustion apparatus using gaseous fuel
    • F23C2700/046Combustion apparatus using gaseous fuel generating heat by heating radiant bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/13001Details of catalytic combustors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/102Flame diffusing means using perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/103Flame diffusing means using screens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/104Grids, e.g. honeycomb grids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/105Porous plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a fuel combustion apparatus and a combustion method, and more particularly to a fuel flameless combustion apparatus and a combustion method for extremely low nitrogen oxide emissions.
  • Air pollutants are mainly derived from the burning of various fossil fuels. Compared with coal and fuel oil, natural gas combustion process produces significantly lower pollutants such as dust and sulfur dioxide, which is a cleaner fuel, but emits carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx). The amount is still on the same order of magnitude.
  • CO carbon monoxide
  • HC hydrocarbons
  • NOx nitrogen oxides
  • the existing gas boilers are all equipped with conventional burners. According to the results of sample surveys conducted by relevant departments, more than 85% of the gas boilers have a NOx value of 150 mg/m3 or more.
  • China's environmental protection regulations have higher and higher requirements for the emission standards of these pollutants.
  • Combustion can be divided into two categories based on the presence or absence of visible flames: flame combustion and flameless combustion.
  • Flame combustion is essentially an oxidation reaction of gas under the participation of free radicals. This combustion method naturally has the following two problems: 1) Incomplete combustion produces formaldehyde, carbon monoxide (CO) and other toxic and harmful gases, and fuel utilization rate. Low; 2) Combustion under high temperature and rich oxygen conditions leads to a large amount of thermal NOx formation.
  • Flame combustion technology mainly includes traditional diffusion combustion technology, staged combustion technology (also known as rich and light combustion technology), flue gas recycling technology, and lean burn premixed combustion technology. Conventional diffusion combustion produces a distinct flame surface. The temperature is too high, and a large amount of NOx is generated.
  • the temperature gradient is large, the combustion is uneven, and the incomplete combustion products are many.
  • the staged combustion is divided into fuel classification and air classification to form a low-temperature flame. Surface, can reduce NOx formation, small temperature gradient, less incomplete combustion products; flue gas recirculation is to re-enter external flue gas or internal flue gas into the combustion area, use flue gas to absorb heat and reduce oxygen concentration, so that burning speed and furnace.
  • the internal temperature is lowered to reduce the NOx formation, but the excessive flue gas increases the heat loss of the exhaust gas; the lean-burn premixed combustion completely mixes a large amount of air with a small amount of gas at the molecular level before ignition, and organizes the swirling combustion process, the flame temperature Relatively low, the amount of NOx generated is small.
  • Flameless combustion includes catalytic combustion technology and high temperature air combustion technology.
  • Catalytic combustion refers to the addition of a catalyst at the inlet of the burner to cause the fuel molecules and oxidant molecules to react on the surface of the catalyst. It is often used for the combustion purification process of combustibles below the ignition concentration of the fuel, rather than the combustion of high concentration gas to heat; high temperature air Combustion means that the reactants exceed the autoignition temperature by preheating the air, and the combustion reaction is dispersed in a wide area without a local high temperature zone, so the NOx emissions are low.
  • the catalytic burner generally adopts a downstream structure, that is, the catalytic combustion reaction occurs when the fuel gas and the combustion gas flow through the catalyst layer, and then does not return after flowing through the catalyst layer; the flameless burner used in the high-temperature air combustion technology is also adopted.
  • Flow-type structure high-temperature premixed gas spontaneously ignites in a wide hollow combustion chamber, and the gas flows downstream after combustion discharge.
  • This downstream structure tends to cause lateral diffusion of gas molecules to be limited by the degree of gas premixing and gas flow rate, and higher concentrations of various contaminants are still present in the combustion products.
  • the object of the present invention is to provide a catalytic flameless combustion device and a combustion method with extremely low pollutant emission, which realizes catalytic flameless combustion of various gas or vaporized fuels at kilowatt and megawatt power, high combustion efficiency and pollutant emission.
  • the concentration is as low as 1 ppm or less.
  • the catalytic flameless combustion device of the present invention comprises a hollow cylinder sealed at the lower end of the upper end opening, and at least one gas inlet and at least one fuel inlet are provided at the lower or bottom end of the cylinder, and the gas is assisted in the middle and lower portions of the cylinder.
  • a gas premixer is arranged above the inlet and the fuel inlet, and a combustion plate is arranged above the gas premixer, a gap is formed between the bottom end of the cylinder body and the combustion plate to form a gas premixing chamber, and the gas premixer is placed in the gas premixing chamber
  • An igniter is disposed above the combustion plate, and a gas deflector is disposed at an upper open end of the cylinder, and the gas deflector is a hollow cylindrical conduit open at the upper and lower ends, and the lower open end of the tubular conduit and the hollow cylinder
  • the upper open end is hermetically connected, and a flameless combustion chamber is arranged above the gas deflector, and the flameless combustion chamber is a hollow container sealed at the upper end of the lower end opening, and the upper open end of the gas deflector and the lower open end of the flameless combustion chamber Relatively disposed, that is, the upper open end of the gas deflector is placed below the lower open end of the flameless combustion chamber, in the same
  • the gas is uniformly mixed in the premixing chamber, and the burning plate is a plate-like structure provided with pores or through holes penetrating the upper and lower surfaces of the plate body through which the premixed gas passes, and the holes or through holes may be round and square.
  • the igniter may be an ignition needle and/or an electric heating wire; the gas premixer and the combustion plate are both fixed to the inner wall surface of the hollow cylinder, the catalyst is placed in the flameless combustion chamber, and the inner wall of the flameless combustion chamber is Support on the upper bracket The catalyst can fill part or all of the flameless combustion chamber, and can fully contact the gas that completely enters the flameless combustion chamber through the outlet of the gas deflector. The open end of the gas deflector is connected to the upper open end of the gas premixing chamber, and the gas is diverted.
  • the area of the upper open end of the device as the outlet may be greater than, equal to or smaller than the area of the gas premixing chamber as the upper open end of the outlet, and the gas deflector outlet may be one or more of a circular shape, a square shape or the like.
  • the gas deflector outlet may be one or two or more through holes, and the gas deflector outlet direction is opposite to the flameless combustion chamber as the lower open end of the inlet, and the gas deflector outlet size is smaller than the flameless in any direction.
  • the inlet size of the combustion chamber, the gas deflector outlet and the inlet of the flameless combustion chamber are projected along any plane in the direction of the gas flow, and the projection of the outlet of the gas deflector is located in the projection area of the inlet of the flameless combustion chamber, and the cross sectional area of the inlet of the flameless combustion chamber (the cross-sectional area perpendicular to the direction of the inlet gas flow) is 1.01-20 times the cross-sectional area of the outlet of the deflector 7 (the cross-sectional area perpendicular to the direction of the outlet gas flow), and the gas deflector outlet can Extend into the inlet of the flameless combustion chamber, or it can be flush with it or leave a distance away.
  • the distance to leave must ensure that the gas flowing out from the gas deflector outlet can completely enter the inlet of the flameless combustion chamber, and the gas deflector outlet section can be Is a flat or non-planar, flameless combustion chamber is a cavity open at one end, the cavity may be a hemispherical or arbitrarily shaped cavity with only one end open, and the flameless combustion chamber as a lower open end of the inlet may be circular or One or more of his shapes, the inlet of the flameless combustion chamber may be one or two or more through holes, and the size of the opening in either direction is larger than the size of the outlet of the gas deflector in the same direction, that is, no
  • the projection of the flame combustion chamber inlet in the direction of the airflow completely covers the projection of the gas deflector outlet in the direction, and the inlet section of the flameless combustion chamber may be planar or non-planar, and further includes a plenum, and the plenum is a hollow container having an exhaust port thereon, the gas collecting chamber en
  • the outer wall surface of the hollow container is tightly connected; the flameless combustion chamber is located in the gas collecting chamber, and a gap is left between the wall of the gas collecting chamber and the outer wall surface of the flameless combustion chamber, and the cross-sectional area of the gap is 1 of the cross-sectional area of the gas deflector outlet. More than double, the exhaust gas after combustion can be collected and discharged through the exhaust port, the exhaust port can be installed at any position of the gas collection chamber, or more than two or more can be installed in more than two locations of the gas collection chamber.
  • the exhaust port and the cross-sectional area of the exhaust port are more than 1 times the cross-sectional area of the gas deflector outlet (the cross-sectional area perpendicular to the direction of the outlet gas flow), and are in the flameless combustion chamber and on the outer wall surface of the flameless combustion chamber.
  • a heat exchange device may be installed at one or more locations in the gas collection chamber and the gas collection outdoor wall surface, and the heat exchange device may be one of a shell-and-tube type, a fin type or a plate heat exchanger or the like. Two or more.
  • the combustion method of the present invention comprises controlling the air-fuel ratio of the gas and the combustion-gas premixed into the gas premixing chamber through the fuel inlet and the assist gas inlet to be 1.01-2.5, which is used according to those known to those skilled in the art.
  • the tempering line speed of the fuel and the speed of the misfiring line, the line speed of the premixed gas is adjusted between the tempering line speed and the line speed of the igniting line.
  • the flameless combustion chamber and the catalyst filled therein are heated to red heat or Above 600 degrees, then increase the premixed gas line speed to above the defibrillation line speed to extinguish the flame, and let the premixed gas continue to flameless combustion on the flameless combustion chamber and the catalyst filled therein, and the airflow reaches the bottom of the combustion chamber.
  • the high-temperature exhaust gas is collected by the gas collection chamber, and after being exchanged by the heat exchanger, it is discharged from the exhaust port, and the combustion products are carbon dioxide and/or water vapor, harmful substances such as carbon monoxide (CO) and hydrocarbon.
  • the compound (HC) and nitrogen oxide (NOx) emission concentrations are less than 1 ppm, respectively, and the gas introduced into the combustion gas inlet is air, oxygen, and other oxygen content other than air is 1-99.9 vol%.
  • the oxygen-containing gas mixture, the gas introduced into the fuel inlet is a gaseous fuel, a misty liquid fuel, and one or more of non-combustible gases such as air and nitrogen are diluted to a final concentration of 0.1-99.9 vol% of the above gaseous state.
  • a fuel and a misty liquid fuel is one or more of natural gas, liquefied petroleum gas, and the like
  • the misty liquid fuel is one or more of gasoline, diesel, and the like.
  • the catalyst comprises a porous refractory material and a metal oxide active component
  • the porous refractory material may be one or more of ceramic, quartz, and spinel in a fibrous, granular, honeycomb or other gas permeable shape.
  • the metal oxide active component may be aluminum oxide, cerium oxide, magnesium oxide, cerium oxide, titanium oxide, iron oxide, manganese oxide, silicon oxide,
  • the present invention describes a method for a catalytic flameless combustion apparatus for initiating very low pollutant emissions, comprising initially heating a flameless combustion chamber and a catalyst filled therein with low power flame combustion, and then increasing the flow rate to a large Power catalyzed flameless combustion.
  • the catalytic flameless combustion device disclosed by the invention can be used for the combustion and heat extraction process of non-solid fuels such as various gaseous and misty liquids, and according to the combustion method, the flameless combustion can be catalyzed under the power of kilowatts and megawatts, and the beneficial effects are obtained.
  • the fuel is completely burned, the combustion efficiency is high, and the emissions of hydrocarbons, carbon monoxide and nitrogen oxides in the combustion exhaust gas are all less than 1ppm. It is characterized by high efficiency, energy saving, environmental protection, safety, simple structure and good stability.
  • FIG. 1 is a schematic view of a catalytic flameless combustion apparatus in accordance with an embodiment of the present invention.
  • the single dashed arrow in the figure represents the air flow direction
  • the single solid arrow represents the gas flow direction
  • the double dashed arrow represents the premixed airflow direction
  • the double solid arrow represents the smoke flow direction.
  • FIG. 2 is a schematic diagram of a catalytic flameless combustion apparatus with a heat exchanger in accordance with an embodiment of the present invention.
  • the single dashed arrow in the figure represents the air flow direction
  • the single solid arrow represents the gas flow direction
  • the double dashed arrow represents the premixed airflow direction
  • the double solid arrow represents the smoke flow direction.
  • Embodiment 1 as shown in FIG. 1, a catalytic flameless combustion apparatus comprising a hollow cylindrical body sealed at a lower end of an upper end opening, the bottom end of the cylindrical body being provided with a gas-assisting gas inlet 1 and a fuel inlet 2
  • a gas premixer 3 is disposed above the middle and lower combustion gas inlets 1 and 2 of the cylinder body, and a combustion plate 5 is disposed above the gas premixer 3, and a gap is formed between the bottom end of the cylinder body and the combustion plate 5.
  • the gas premixing chamber 4, the gas premixer 3 is placed in the gas premixing chamber 4, and an igniter 6 is arranged above the burning plate 5, and the upper end of the cylindrical body is provided with a gas deflector 7, a gas deflector 7 a hollow cylindrical conduit opening at the upper and lower ends, the lower open end of the cylindrical conduit is tightly connected to the upper open end of the hollow cylinder, and the flameless combustion chamber 8 is disposed above the gas deflector 7, and the flameless combustion is performed.
  • the cavity 8 is a hollow cylindrical container whose upper end is closed at the lower end, and the upper open end of the gas deflector 7 is disposed opposite to the lower open end of the flameless combustion chamber 8, and the upper open end of the gas deflector 7 is from the flameless combustion chamber 8
  • the lower open end extends into the flameless combustion chamber 8, and is filled in the upper middle portion of the flameless combustion chamber 8
  • the flammable combustion chamber 8 is fixedly connected to the hollow container of the plenum 11 through the fixing bracket 10.
  • the plenum 11 is a hollow container, and the exhaust port 12 is disposed thereon, and the plenum 11 is flameless.
  • the lower open end of the combustion chamber 8 is wrapped inside the hollow chamber therein.
  • the hollow cylinder has a diameter of 100 mm
  • the combustion gas inlet 1 enters the air
  • the fuel inlet 2 enters the natural gas
  • the gas premixer 3 is a cordierite ceramic having a mesh size of 200 mesh, and has a thickness of 25.4 mm, so that the gas is premixed.
  • the chamber 4 is uniformly mixed
  • the combustion plate 5 is a cordierite ceramic having a mesh size of 400 mesh.
  • the thickness of the combustion plate is 25.4 mm.
  • the igniter 6 can ignite the premixed gas passing through the combustion plate 5, and the outlet of the gas deflector 7 is round.
  • the outlet direction of the gas deflector 7 is opposite to the inlet of the flameless combustion chamber 8, the diameter of the outlet of the gas deflector 7 is 60 mm, and the cross-sectional area of the inlet of the flameless combustion chamber 8 is 1.8 times the cross-sectional area of the outlet of the deflector 7.
  • the outlet of the deflector 7 extends into the inlet of the flameless combustion chamber 8 by 10 mm, the outlet of the gas deflector 7 is a flat section, and the flameless combustion chamber 8 is a cylindrical cavity open at one end, the depth is 60 mm, and the flameless combustion chamber 8
  • the inlet is a circle with a diameter of 80 mm, and the catalyst 9 is placed at no
  • the flame combustion chamber 8 is supported by a bracket on the inner wall of the flameless combustion chamber 8.
  • the catalyst is filled with a 70% flameless combustion chamber volume, and is in full contact with the gas that completely enters the flameless combustion chamber 8 through the outlet of the gas deflector 7.
  • the catalyst 9 comprises a porous ceramic material and a metal oxide active component having a mass fraction of 40%
  • the fixing bracket 10 fixes the flameless combustion chamber 8 at a position near the outlet of the deflector 7, and can be connected with the plenum 11 or the diversion Other parts such as a premixing chamber are connected, and the plenum 11 collects the exhaust gas after combustion and discharges through the exhaust port 12, and the exhaust port 12 can be installed at the top of the plenum 11 with a cross-sectional area of the exhaust gas.
  • the outlet 7 is 2 times the cross-sectional area of the outlet.
  • the combustion gas is flushed with the gas stream after the fuel gas inlet 1 enters and the fuel gas enters the fuel inlet 2 to increase the mixing effect of the combustion gas and the fuel gas stream in the premixing chamber 4 after passing through the premixer 3,
  • the combustion plate 5 has a gas hole of 1 mm
  • the igniter 6 is an ignition needle
  • the flow guiding port 7 extends into the flameless combustion chamber 8 by 15 mm
  • the gap area between the flow guiding port 7 and the flameless combustion chamber 8 is 2.2 of the cross-sectional area of the air guiding port 7.
  • the gap area between the gas collecting chamber and the flameless combustion chamber 8 is 2.5 times the cross-sectional area of the air guiding port 7.
  • a catalytic flameless combustion apparatus with a heat exchanger comprising a hollow cylindrical body sealed at the lower end of the upper end opening, the bottom end of the cylindrical body is provided with a gas-injecting inlet 1 and a fuel inlet 2 is provided with a gas premixer 3 above the middle and lower combustion gas inlet 1 and the fuel inlet 2 of the cylinder body, and a combustion plate 5 is arranged above the gas premixer 3, and the bottom end of the cylinder body and the combustion plate 5 A gap is formed between the gas premixing chamber 4, and the gas premixer 3 is placed in the gas premixing chamber 4.
  • An igniter 6 is disposed above the combustion plate 5, and a gas deflector 7 is disposed at the upper open end of the cylinder.
  • the gas deflector 7 is a hollow cylindrical conduit that is open at the upper and lower ends. The lower open end of the cylindrical conduit is hermetically connected to the upper open end of the hollow cylinder, and flameless combustion is provided above the gas deflector 7.
  • the cavity 8, the flameless combustion chamber 8 is a hollow hemispherical container whose upper end is closed at the lower end, and the upper open end of the gas deflector 7 is disposed opposite to the lower open end of the flameless combustion chamber 8, and the upper open end of the gas deflector 7 Extending from the lower open end of the flameless combustion chamber 8 into the flameless combustion chamber 8, in the flameless combustion chamber 8
  • the upper portion is filled with a catalyst 9, and the flameless combustion chamber 8 is fixedly connected to the hollow container where the plenum 11 is located through the fixing bracket 10.
  • the plenum 11 is a hollow container, and the exhaust port 12 is disposed thereon, and the plenum 11 will be
  • the lower open end of the flameless combustion chamber 8 is wrapped inside the hollow cavity, and a fin-type heat exchange device is installed above the flameless combustion chamber 8 in the plenum 11 and on the outer wall surface of the plenum 11 by using water
  • the heat transfer fluid causes water to enter from the heat transfer fluid inlet 14 and exits from the heat transfer fluid outlet 15 after heat exchange by the finned heat exchanger.
  • the hollow cylinder has a diameter of 80 mm
  • the combustion gas inlet 1 is in the air
  • the fuel inlet 2 is in the natural gas
  • the gas premixer 3 is a cordierite ceramic having a mesh size of 200 mm, and the thickness is 12 mm, so that the gas is in the premixing chamber. 4 is uniformly mixed
  • the combustion plate 5 is a cordierite ceramic with a mesh number of 300 mesh
  • the thickness of the combustion plate is 20 mm.
  • the igniter 6 can ignite the premixed gas passing through the combustion plate 5, and the outlet of the gas deflector 7 is circular.
  • the outlet direction of the gas deflector 7 is opposite to the inlet of the flameless combustion chamber 8, the diameter of the outlet of the gas deflector 7 is 50 mm, and the cross-sectional area of the inlet of the flameless combustion chamber 8 is 1.5 times the cross-sectional area of the outlet of the deflector 7.
  • the outlet of the flow device 7 extends into the inlet of the flameless combustion chamber 8 by 5 mm, the outlet of the gas deflector 7 is a flat surface, and the flameless combustion chamber 8 is a hemispherical cavity with an open end, the depth is 40 mm, and the inlet of the flameless combustion chamber 8 is
  • the catalyst has a diameter of 70 mm and the catalyst 9 is placed in the flameless combustion chamber 8 and is fixed by the bracket on the inner wall of the flameless combustion chamber 8.
  • the catalyst is filled with a 60% flameless combustion chamber volume, and the gas deflector 7 can be used.
  • the gas exiting the flameless combustion chamber 8 is fully contacted, and the catalyst 9 contains The porous ceramic material and the metal oxide active component having a mass fraction of 30%, the fixing bracket 10 fixes the flameless combustion chamber 8 at a position near the outlet of the deflector 7, and can be premixed with the plenum 11 or the deflector
  • the chamber and other parts are connected, and the plenum 11 collects the exhaust gas after combustion, flows through the finned heat exchanger 13, and is exchanged by the heat transfer fluid entering and exiting through the heat transfer fluid inlet 14 and the outlet 15, and then discharged through the exhaust port 12.
  • the exhaust port 12 may be installed at the top of the plenum 11 with a cross-sectional area twice the cross-sectional area of the outlet of the gas deflector 7.
  • Embodiment 3 a kilowatt-class natural gas catalytic flameless combustion device with a rated thermal power of 20 KW, adopting the structure shown in FIG. 2, the diameter of the hollow cylinder is 70 mm, and the gas inlet 1 is a stainless steel tube with an inner diameter of 40 mm, and the gas is assisted.
  • the gas inlet 2 is not 9 mm inside diameter.
  • the rust steel pipe the gas is a gas flow controlled natural gas (methane) controlled by a solenoid valve
  • the gas premixer 3 is a cordierite ceramic having a mesh size of 200 mesh, and has a thickness of 12 mm, so that the gas is uniformly mixed in the premixing chamber 4, and the burning plate 5 is a cordierite ceramic with a mesh number of 300 mesh, the thickness of the burning plate is 20 mm
  • the premixing chamber 4 is a stainless steel tube having an inner diameter of 65 mm
  • the gas deflector 7 is a ring connected to the inner wall of the premixing chamber 4, and the upward tilting angle is 75 degrees
  • the outlet diameter is 50mm
  • the outlet of the deflector 7 extends into the inlet of the flameless combustion chamber 8 5mm
  • the outlet of the gas deflector 7 is a plane
  • the flameless combustion chamber 8 is a hemispherical cavity with one end open, the depth is 40mm
  • the inlet of the flameless combustion chamber 8 is
  • the catalyst 9 contains a porous ceramic material and a metal oxide active component having a mass fraction of 30%, and the heat exchanger 13 is placed in the set.
  • the upper part of the gas chamber 11, the heat transfer fluid is water, row A stainless steel tube having an inner diameter opening of 70mm.
  • the methane flow rate is controlled at 7 L/min during ignition, the air is 80 L/min, that is, the air coefficient is 1.20, the linear velocity is 0.5 m/s, and the thermal power is about 4.6 KW, in which the low-power flame is burned.
  • the CO, HC and NOx emission values are all 0 (detector resolution is 1ppm).
  • the combustion chamber and the catalyst can reach red heat.
  • the air coefficient is kept at 1.20, and the methane flow rate is increased within 1 minute.
  • the air is increased to 345L/min, that is, the linear velocity is 2.0m/s, and the thermal power reaches 20KW.
  • the CO, HC and NOx emission values are all 0 (detection)
  • the resolution is 1ppm
  • continuous combustion for 3 hours CO, HC and NOx emissions are always 0.
  • the beneficial effects can be achieved that the fuel is completely combusted, the heat exchange efficiency is more than 95%, and the pollutant CO, HC and NOx emission values are obtained. It is 0 (less than 1 ppm).
  • Embodiment 4 a kilowatt-class natural gas catalytic flameless combustion device with a rated thermal power of 80 KW, adopting the structure shown in FIG. 2, the hollow cylinder has a diameter of 150 mm, and the combustion gas inlet 1 is a stainless steel pipe with an inner diameter of 100 mm, and the gas is assisted.
  • the gas inlet 2 is a stainless steel tube with an inner diameter of 30 mm
  • the gas is a gas flow controlled natural gas (methane) controlled by a solenoid valve
  • the gas premixer 3 has a mesh number of 200.
  • the cordierite ceramics have a thickness of 25.4 mm, so that the gas is uniformly mixed in the premixing chamber 4.
  • the burning plate 5 is a cordierite ceramic with a mesh number of 300 mesh, the thickness of the burning plate is 40 mm, and the premixing chamber 4 is a stainless steel having an inner diameter of 150 mm.
  • Tube the gas deflector 7 is a ring connected to the inner wall of the premixing chamber 4, the upward inclination angle is 75 degrees, the outlet diameter is 100 mm, and the outlet of the deflector 7 extends into the inlet of the flameless combustion chamber 8 20 mm, gas guiding
  • the outlet section of the device 7 is a flat surface, and the flameless combustion chamber 8 is a hemispherical cavity with an opening at a depth of 60 mm.
  • the inlet of the flameless combustion chamber 8 is a circular shape having a diameter of 160 mm, and the catalyst 9 is placed in the flameless combustion chamber 8. And by the inner wall of the flameless combustion chamber 8 The support is fixed, and the catalyst is filled with a 70% flameless combustion chamber volume, which can be in full contact with the gas completely entering the flameless combustion chamber 8 through the outlet of the gas deflector 7.
  • the catalyst 9 contains a porous ceramic material and a mass fraction of 50%.
  • the metal oxide active component, the heat exchanger 13 is placed in the upper half of the gas collection chamber 11, the heat transfer fluid is water, and the exhaust port is a stainless steel tube having an inner diameter of 120 mm.
  • the methane flow rate is 14 L/min when the ignition is performed, the air is 160 L/min, that is, the air coefficient is 1.20, the linear velocity is 0.35 m/s, and the thermal power is about 9.3 KW, under the low-power flame combustion condition.
  • the CO, HC and NOx emission values are all 0 (detector resolution is 1ppm).
  • the combustion chamber and the catalyst can reach red heat.
  • the air coefficient is kept at 1.20, and the methane flow rate is increased within 1 minute.
  • the air is increased to 1380L/min, that is, the linear velocity is 3.2m/s, and the thermal power reaches 80KW.
  • the CO, HC and NOx emission values are all 0 (detection)
  • the resolution is 1ppm
  • continuous combustion for 2 hours CO, HC and NOx emissions are always 0.
  • the beneficial effects can be achieved that the fuel is completely burned, the heat exchange efficiency is more than 95%, and the pollutant CO, HC and NOx emission values are obtained. It is 0 (less than 1 ppm).
  • Embodiment 5 a megawatt natural gas catalytic flameless combustion device with a rated thermal power of 1.2 megawatts, consisting of 15 The individual 80 kW catalytic flameless burners described in Group Example 4 were combined.
  • Embodiment 6 is a megawatt-class natural gas catalytic flameless combustion device with a rated thermal power of 2.1 MW.
  • the structure shown in FIG. 2 is adopted, the diameter of the hollow cylinder is 400 mm, and the gas inlet 1 is a stainless steel tube having an inner diameter of 200 mm.
  • the gas is the air with adjustable air volume provided by the continuously variable blower.
  • the gas inlet 2 is a stainless steel tube with an inner diameter of 60 mm, the gas is a gas flow controlled natural gas (methane) controlled by a solenoid valve, and the gas premixer 3 is a mesh.
  • the cordierite ceramic with a number of 200 mesh has a thickness of 50 mm, so that the gas is uniformly mixed in the premixing chamber 4.
  • the burning plate 5 is a cordierite ceramic having a mesh size of 400 mesh, the thickness of the burning plate is 60 mm, and the inner diameter of the premixing chamber 4 is 400 mm.
  • the stainless steel tube, the gas deflector 7 is a ring connected to the inner wall of the premixing chamber 4, the upward inclination angle is 75 degrees, the outlet diameter is 350 mm, and the outlet of the deflector 7 extends into the inlet of the flameless combustion chamber 8 by 100 mm, the gas
  • the outlet section of the deflector 7 is a flat surface, and the flameless combustion chamber 8 is a hemispherical cavity open at one end with a depth of 360 mm, the inlet of the flameless combustion chamber 8 is a circular shape having a diameter of 550 mm, and the catalyst 9 is placed in the flameless combustion chamber 8 Inside and by the flameless combustion chamber 8
  • the upper bracket is fixed and the catalyst is filled with a 60% flameless combustion chamber volume, which can be in full contact with the gas completely entering the flameless
  • the catalyst 9 contains a porous ceramic material and has a mass fraction of 50%.
  • the metal oxide active component, the heat exchanger 13 is placed in the upper half of the gas collection chamber 11, the heat transfer fluid is water, and the exhaust port is a stainless steel tube having an inner diameter of 240 mm.
  • the terms “length”, “width”, “thickness”, “upper”, “lower”, “top”, “bottom”, “inside”, “outer”, “flow direction” The orientation or positional relationship of the instructions is based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the invention and the simplified description, and does not indicate or imply that the device or component referred to has a specific orientation. The specific orientation and operation are not to be construed as limiting the invention.

Abstract

一种极低污染物排放的催化无焰燃烧装置及燃烧方法,该装置包括一上端开口下端密闭的中空圆筒体,圆筒体的底端设有一个助燃气进口(1)和一个燃料进口(2),圆筒体的中下部设有气体预混器(3),气体预混器(3)上方设有燃烧板(5),圆筒体底端与燃烧板(5)之间留有空隙形成气体预混腔(4),圆筒体的上开口端密闭连接有气体导流器(7),气体导流器(7)为上下二端开口的中空圆筒状导管,气体导流器(7)的上方设有无焰燃烧腔(8),无焰燃烧腔(8)为下端开口上端密闭的中空圆柱形容器,气体导流器(7)的上开口端从无焰燃烧腔(8)的下开口端伸入至无焰燃烧腔(8)内,无焰燃烧腔(8)内的中上部填充有催化剂(9),无焰燃烧腔(8)通过固定支架(10)固定连接于集气室(11)所在中空容器上,集气室(11)上设有排气口(12)。该方法包括:控制分别经燃料进口(2)和助燃气进口(1)通入气体预混腔(4)内的燃气和助燃气预混后过量空气系数为1.01-2.5,调节预混气的线速度介于回火线速度与脱火线速度之间,开启点火器(6)点火后,加热无焰燃烧腔(8)及填充于其中的催化剂(9)至红热或600摄氏度以上,然后增加预混气线速度到脱火线速度以上,使火焰熄灭,同时令预混气继续在无焰燃烧腔(8)及填充于其中的催化剂(9)上发生无焰燃烧,高温尾气经集气室(11)收束,经换热器换热后自排气口(12)排出。该无焰燃烧装置及方法燃料燃烧完全,燃烧效率高,燃烧尾气中碳氢化合物、一氧化碳和氮氧化物的排放量低。

Description

一种极低污染物排放的催化无焰燃烧装置及燃烧方法 技术领域
本发明涉及一种燃料燃烧装置及燃烧方法,特别是关于一种极低氮氧化物排放的燃料无焰燃烧装置及燃烧方法。
背景技术
近年来,大气污染成为我国主要的环境问题之一。大气污染物主要来源于各种化石燃料的燃烧。相比于燃煤和燃油,天然气燃烧过程产生的粉尘、二氧化硫等污染物显著降低,是更为清洁的燃料,但一氧化碳(CO),碳氢化合物(HC)和氮氧化物(NOx)的排放量仍在同一个量级。以北京市为例,现有燃气锅炉配置的都是传统燃烧机,根据有关部门抽样调查的结果,其中85%以上的燃气锅炉NOx值在150毫克/立方米以上。面对严峻的大气污染防治形势,我国环保法规对这些污染物的排放标准要求也越来越高,如2015年出台了《北京市锅炉大气污染污染物排放标准》(DB11/139-2015),要求到2017年4月1日,北京地区新建燃气锅炉氮氧化物排放浓度要降至30毫克/立方米以下,现有燃气锅炉要降低至80毫克/立方米以下。目前一般采用改进燃烧技术减少污染物生成或通过尾气净化技术消除产生的污染物。CO和HC可通过增加空气与燃料的比例形成贫燃燃烧而大幅降低,也可通过在尾气中加装氧化催化剂实现氧化消除。但目前低NOx排放燃烧技术仍不能满足排放法规要求,需要加装尿素或者氨法催化选择还原脱硝装置,成本高,覆盖率低,大量分布式或小型的燃烧器仍需在燃烧技术上寻求突破。
燃烧根据有无可见火焰可分为两类:火焰燃烧和无焰燃烧。火焰燃烧实质上是燃气在自由基参与下发生的氧化反应,这种燃烧方式天然的具有如下两方面问题:1)燃烧不完全会产生甲醛,一氧化碳(CO)等有毒有害气体,且燃料利用率低;2)高温富氧条件下燃烧会导致热力型NOx的大量生成。火焰燃烧技术主要有传统扩散燃烧技术、分级燃烧技术(又称浓淡燃烧技术)、烟气再循环技术、贫燃预混燃烧技术等。传统扩散燃烧会产生明显的火焰面,温度太高,会产生大量NOx,温度梯度大,燃烧不均匀,不完全燃烧产物多;分级燃烧分为燃料分级和空气分级,形成温度较低的浓淡火焰面,可降低NOx生成,温度梯度小,不完全燃烧产物少;烟气再循环是将外部烟气或内部烟气重新进入燃烧区域,利用烟气吸热并降低氧浓度,使燃烧速度和炉内温度降低从而降低NOx生成,但过量烟气使得排烟热损失增大;贫燃预混燃烧是将大量空气与少量燃气在点燃之前在分子层面完全混合,并组织旋流燃烧过程,火焰温度相对较低,NOx生成量小,由于氧气充足且燃料与氧气混合均匀,碳烟和CO生成量较小,但存在排烟热损失和风机能耗过大的问题。无焰燃烧包含催化燃烧技术和高温空气燃烧技术。催化燃烧指在燃烧器入口处添加催化剂,使燃料分子和氧化剂分子在催化剂表面进行反应,常用于低于燃料点火浓度情况下可燃物的燃烧净化过程,而非高浓度燃气燃烧取热;高温空气燃烧是指通过预热空气使反应物超过自燃温度,燃烧反应弥散在一个宽广的区域,无局部高温区,因此NOx排放低。
目前催化燃烧器普遍采用顺流式结构,即燃料气与助燃气流经催化剂层时发生催化燃烧反应,然后流过催化剂层后不再返回;高温空气燃烧技术采用的无焰燃烧器也都采用顺流式结构,高温预混气在一个宽广的中空的燃烧腔内自燃,燃烧后气体顺流 排出。这种顺流式结构往往导致气体分子横向扩散受限于气体预混程度以及气体流速,燃烧产物中仍存在较高浓度的各种污染物。
当前不同功率的燃烧器通常是应用其中的一种技术,降氮效果有限,不能满足日益严格的环保标准要求,且常伴随CO排放增加和热效率降低。
发明内容
本发明的目的是提供一种极低污染物排放的催化无焰燃烧装置以及燃烧方法,实现多种燃气或汽化燃料在千瓦及兆瓦级功率下催化无焰燃烧,燃烧效率高,污染物排放浓度低至1ppm以下。
为达此目的,本发明采用以下技术方案:
本发明所述的催化无焰燃烧装置,包括一上端开口下端密闭的中空筒体,筒体的下部或底端设有至少一个助燃气进口和至少一个燃料进口,于筒体的中下部助燃气进口和燃料进口上方设有气体预混器,气体预混器上方设有燃烧板,筒体底端与燃烧板之间留有空隙形成气体预混腔,气体预混器置于气体预混腔内,于燃烧板上方设有点火器,筒体的上开口端设有气体导流器,气体导流器为上下二端开口的中空筒状导管,筒状导管的下开口端与中空筒体的上开口端密闭连接,于气体导流器的上方设有无焰燃烧腔,无焰燃烧腔为下端开口上端密闭的中空容器,气体导流器的上开口端与无焰燃烧腔的下开口端相对设置,即气体导流器的上开口端置于无焰燃烧腔的下开口端下方、处于同一平面内或从无焰燃烧腔的下开口端伸入至无焰燃烧腔内,于无焰燃烧腔内的中上部填充有催化剂,气体预混器为1个以上固接于气体预混腔内壁上的片状、棒状、蜂窝状或其他形状的器件中的一种或二种以上,所述器件内部或器件间留有空隙,使预混腔内的气体可由助燃气进口和燃料进口向燃烧板流动,同时气体预混器又可于其内部的部分区域改变助燃气和燃料气的射流方向,形成湍流,使气体在预混腔内混合均匀,燃烧板为一板状结构,其上设有允许预混气通过的贯穿板体上下表面的孔隙或通孔,孔隙或通孔可为圆形、方形、狭缝或其他无规则形状中的一种或二种以上,通孔直径或狭缝宽度为0.01-10mm,燃烧板厚度为0.1-1000mm,点火器可将通过燃烧板的预混气引燃,所述点火器可以是点火针和/或电加热丝;气体预混器和燃烧板均与中空筒体的内壁面固接,催化剂放置于无焰燃烧腔内,并由无焰燃烧腔内壁上支架托住固定,催化剂可填充部分或全部无焰燃烧腔,可与经气体导流器出口完全进入无焰燃烧腔的气体充分接触,气体导流器下开口端连接气体预混腔的上开口端,气体导流器的上开口端作为出口的面积可大于、等于或小于气体预混腔作为出口的上开口端的面积,气体导流器出口可为圆形、方形或其他形状中的一种或二种以上,气体导流器出口可为一个或两个及以上通孔,气体导流器出口方向与无焰燃烧腔作为进口的下开口端相向设置,气体导流器出口尺寸在任何方向上都小于无焰燃烧腔进口尺寸,气体导流器出口和无焰燃烧腔进口沿气流方向上任一平面投影,气体导流器出口的投影位于无焰燃烧腔进口的投影区域内,无焰燃烧腔进口横截面积(垂直于入口气流方向的截面积)是导流器7出口横截面积(垂直于出口气流方向的截面积)的1.01-20倍,气体导流器出口可以伸进无焰燃烧腔进口内,也可与之平齐或离开一段距离,离开的距离需保证自气体导流器出口流出的气体能够完全进入无焰燃烧腔进口,气体导流器出口截面可以是平面或非平面,无焰燃烧腔为一端开口的腔体,腔体可以是半球形或任意形状的只有一端开口的空腔,无焰燃烧腔作为进口的下开口端可为圆形或其 他形状中的一种或二种以上,无焰燃烧腔进口可为一个或两个及以上通孔,开口处任一方向的口径尺寸都大于气体导流器出口在相同方向上尺寸,即无焰燃烧腔进口在沿气流方向上的投影能完全覆盖气体导流器出口在该方向上的投影,无焰燃烧腔进口截面可以是平面或非平面,还包括一集气室,集气室为一中空容器,其上设有排气口,集气室将无焰燃烧腔的下开口端包裹在其中空的容腔内部,还包括一固定支架,固定支架将无焰燃烧腔固定在气体导流器出口附近位置,固定支架可与集气室或气体导流器或气体预混腔所在中空容器固定连接,集气室下端设有开口,开口的周边与气体导流器或气体预混腔所在中空容器外壁面密闭连接;无焰燃烧腔位于集气室内,集气室内壁面与无焰燃烧腔外壁面间留有空隙,该空隙的截面积为气体导流器出口截面积的1倍以上,可将燃烧后尾气收集,并经排气口排出,排气口可以安装在集气室的任意位置,也可在集气室的两个以上的多个位置安装两个以上的多个排气口,排气口截面积之和为气体导流器出口横截面积(垂直于出口气流方向的截面积)的1倍以上,于无焰燃烧腔内、无焰燃烧腔外壁面上、集气室内、集气室外壁面上中的一个或两个以上位置处可安装换热装置,所述换热装置可以是管壳式、翅片式或板式换热器等中的一种或两种以上。
本发明所述的燃烧方法,包括控制分别经燃料进口和助燃气进口通入气体预混腔内的燃气和助燃气预混后空气系数为1.01-2.5,根据本领域普通技术人员已知的所用燃料的回火线速度与脱火线速度,调节预混气的线速度介于回火线速度与脱火线速度之间,开启点火器点火后,加热无焰燃烧腔及填充于其中的催化剂至红热或600度以上,然后增加预混气线速度到脱火线速度以上,使火焰熄灭,同时令预混气继续在无焰燃烧腔及填充于其中的催化剂上发生无焰燃烧,气流到达燃烧腔底部后返回并带走大部分热量,高温尾气经集气室收束,经换热器换热后,自排气口排出,燃烧产物为二氧化碳和/或水蒸汽,有害物质一氧化碳(CO)、碳氢化合物(HC)和氮氧化物(NOx)排放浓度分别低于1ppm,助燃气进口通入的气体为空气、氧气以及其他除空气之外的含氧量为1-99.9vol%的含氧混合气,燃料进口通入的气体为气态燃料、雾状液体燃料、以及以空气、氮气等非可燃气体中的一种或二种以上稀释至终浓度为0.1-99.9vol%的上述气态燃料和雾状液体燃料中的一种或二种以上;气态燃料为天然气、液化石油气等中的一种或二种以上,雾状液体燃料为汽油、柴油等中的一种或二种以上,催化剂含有多孔隙耐火材料和金属氧化物活性组分,所述多孔隙耐火材料可以是纤维状、颗粒状、蜂窝状或其他透气形状中的一种或两种以上的陶瓷、石英、尖晶石、碳化硅及不锈钢等中的一种或两种以上,所述金属氧化物活性组分可以是氧化铝、氧化铈、氧化镁、氧化镧、氧化钛、氧化铁、氧化锰、氧化硅、氧化钠、氧化铜、氧化镍、氧化钴、氧化铂、氧化钯、氧化钌、氧化铑、氧化银等中的一种或两种以上,所述金属氧化物活性组分的质量分数可以为0.1%-85%。
本发明的有益效果为:
本发明描述了一种用于起动极低污染物排放的催化无焰燃烧装置的方法,其包括初始利用小功率火焰燃烧加热无焰燃烧腔及填充于其中的催化剂,然后增大流速切换为大功率催化无焰燃烧。
本发明公开的催化无焰燃烧装置可用于各种气态及雾状液体等非固体燃料燃烧取热过程,依据所述的燃烧方法,可在千瓦及兆瓦级功率下催化无焰燃烧,有益效果 是:燃料燃烧完全,燃烧效率高,燃烧尾气中碳氢化合物、一氧化碳和氮氧化物的排放量都低于1ppm,具备高效、节能、环保、安全、结构简单、稳定性好等特点。
附图说明
图1是根据本发明实施例的催化无焰燃烧装置示意图。
附图标记:
助燃气进口(1),燃料进口(2),气体预混器(3),气体预混腔(4),燃烧板(5),点火器(6),气体导流器(7),无焰燃烧腔(8),催化剂(9),固定支架(10),集气室(11)及排气口(12)。
图中单虚线箭头代表空气流向,单实线箭头代表燃气流向,双虚线箭头代表预混气流向,双实线箭头代表烟气流向。
图2是根据本发明实施例的一种带有换热器的催化无焰燃烧装置的示意图。
附图标记:
助燃气进口(1),燃料进口(2),气体预混器(3),气体预混腔(4),燃烧板(5),点火器(6),气体导流器(7),无焰燃烧腔(8),催化剂(9),固定支架(10),集气室(11)及排气口(12)翅片式换热器(13),导热流体入口(14),导热流体出口(15)。
图中单虚线箭头代表空气流向,单实线箭头代表燃气流向,双虚线箭头代表预混气流向,双实线箭头代表烟气流向。
具体实施方式
下面详细描述发明的实施例,所述实施例的实例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面结合附图1和附图2具体描述本发明催化无焰燃烧装置的实施例。
实施例1,如图1所示,一种催化无焰燃烧装置,包括一上端开口下端密闭的中空圆筒体,圆筒体的底端设有一个助燃气进口1和一个燃料进口2,于圆筒体的中下部助燃气进口1和燃料进口2上方设有气体预混器3,气体预混器3上方设有燃烧板5,圆筒体底端与燃烧板5之间留有空隙形成气体预混腔4,气体预混器3置于气体预混腔4内,于燃烧板5上方设有点火器6,圆筒体的上开口端设有气体导流器7,气体导流器7为上下二端开口的中空圆筒状导管,圆筒状导管的下开口端与中空筒体的上开口端密闭连接,于气体导流器7的上方设有无焰燃烧腔8,无焰燃烧腔8为下端开口上端密闭的中空圆柱形容器,气体导流器7的上开口端与无焰燃烧腔8的下开口端相对设置,气体导流器7的上开口端从无焰燃烧腔8的下开口端伸入至无焰燃烧腔8内,于无焰燃烧腔8内的中上部填充有催化剂9,无焰燃烧腔8通过固定支架10固定连接于集气室11所在中空容器上,集气室11为一中空容器,其上设有排气口12,集气室11将无焰燃烧腔8的下开口端包裹在其中空的容腔内部。
可选地,中空圆筒体直径为100mm,助燃气进口1进空气,燃料进口2进天然气,气体预混器3是目数为200目的堇青石陶瓷,厚度为25.4mm,使气体在预混腔4内混合均匀,燃烧板5是目数为400目的堇青石陶瓷,燃烧板厚度为25.4mm,点火器6可将通过燃烧板5的预混气引燃,气体导流器7出口为圆形,气体导流器7出口方向与无焰燃烧腔8进口相向设置,气体导流器7出口直径为60mm,无焰燃烧腔8进口横截面积是导流器7出口横截面积的1.8倍,导流器7出口伸进无焰燃烧腔8进口内10mm,气体导流器7出口截面为平面,无焰燃烧腔8为一端开口的圆柱形空腔,深度为60mm,无焰燃烧腔8进口为直径为80mm的圆形,催化剂9放置于无 焰燃烧腔8内,并由无焰燃烧腔8内壁上支架托住固定,催化剂填充70%无焰燃烧腔体积,可与经气体导流器7出口完全进入无焰燃烧腔8的气体充分接触,催化剂9含有多孔隙陶瓷材料和质量分数为40%的金属氧化物活性组分,固定支架10将无焰燃烧腔8固定在导流器7出口附近位置,可与集气室11或导流器或预混腔等其他部位连接,集气室11可将燃烧后尾气收集,并经排气口12排出,排气口12可以安装在集气室11的顶部,排气口截面积为气体导流器7出口横截面积的2倍。
有利地,使助燃气经助燃气进口1进入后与燃料气经燃料进口2进入后的气流互相对冲,以增加助燃气与燃料气流经预混器3后在预混腔4中的混合效果,燃烧板5气孔为1mm,点火器6为点火针,导流口7伸进无焰燃烧腔8内15mm,导流口7与无焰燃烧腔8间空隙面积为导流口7截面积的2.2倍,集气室与无焰燃烧腔8间空隙面积为导流口7截面积的2.5倍。
实施例2,如图2所示,一种带有换热器的催化无焰燃烧装置,包括一上端开口下端密闭的中空圆筒体,圆筒体的底端设有一个助燃气进口1和一个燃料进口2,于圆筒体的中下部助燃气进口1和燃料进口2上方设有气体预混器3,气体预混器3上方设有燃烧板5,圆筒体底端与燃烧板5之间留有空隙形成气体预混腔4,气体预混器3置于气体预混腔4内,于燃烧板5上方设有点火器6,圆筒体的上开口端设有气体导流器7,气体导流器7为上下二端开口的中空圆筒状导管,圆筒状导管的下开口端与中空筒体的上开口端密闭连接,于气体导流器7的上方设有无焰燃烧腔8,无焰燃烧腔8为下端开口上端密闭的中空半球形容器,气体导流器7的上开口端与无焰燃烧腔8的下开口端相对设置,气体导流器7的上开口端从无焰燃烧腔8的下开口端伸入至无焰燃烧腔8内,于无焰燃烧腔8内的中上部填充有催化剂9,无焰燃烧腔8通过固定支架10固定连接于集气室11所在中空容器上,集气室11为一中空容器,其上设有排气口12,集气室11将无焰燃烧腔8的下开口端包裹在其中空的容腔内部,在集气室11内无焰燃烧腔8的上方以及集气室11外壁面上安装翅片式换热装置,利用水为导热流体,使水从导热流体进口14进入,经过翅片式换热器换热后从导热流体出口15流出。
可选地,中空圆筒体直径为80mm,助燃气进口1进空气,燃料进口2进天然气,气体预混器3是目数为200目的堇青石陶瓷,厚度为12mm,使气体在预混腔4内混合均匀,燃烧板5是目数为300目的堇青石陶瓷,燃烧板厚度为20mm,点火器6可将通过燃烧板5的预混气引燃,气体导流器7出口为圆形,气体导流器7出口方向与无焰燃烧腔8进口相向设置,气体导流器7出口直径为50mm,无焰燃烧腔8进口横截面积是导流器7出口横截面积的1.5倍,导流器7出口伸进无焰燃烧腔8进口内5mm,气体导流器7出口截面为平面,无焰燃烧腔8为一端开口的半球形空腔,深度为40mm,无焰燃烧腔8进口为直径为70mm的圆形,催化剂9放置于无焰燃烧腔8内,并由无焰燃烧腔8内壁上支架托住固定,催化剂填充60%无焰燃烧腔体积,可与经气体导流器7出口完全进入无焰燃烧腔8的气体充分接触,催化剂9含有多孔隙陶瓷材料和质量分数为30%的金属氧化物活性组分,固定支架10将无焰燃烧腔8固定在导流器7出口附近位置,可与集气室11或导流器或预混腔等其他部位连接,集气室11可将燃烧后尾气收集,流经翅片式换热器13,由经导热流体进口14和出口15进出的导热流体换热后,经排气口12排出,排气口12可以安装在集气室11的顶部,排气口截面积为气体导流器7出口横截面积的2倍。
实施例3,一种额定热功率为20KW的千瓦级天然气催化无焰燃烧装置,采取如图2所示结构,中空圆筒体直径为70mm,助燃气进口1为内径为40mm不锈钢管,助燃气为由无级变速鼓风机提供的风量可调的空气,燃气进口2为内径为9mm的不 锈钢管,燃气为电磁阀控制的流量可调的天然气(甲烷),气体预混器3是目数为200目的堇青石陶瓷,厚度为12mm,使气体在预混腔4内混合均匀,燃烧板5是目数为300目的堇青石陶瓷,燃烧板厚度为20mm,预混腔4为内径为65mm的不锈钢管,气体导流器7为连接在预混腔4内壁的圆环,向上倾斜角度为75度,出口直径为50mm,导流器7出口伸进无焰燃烧腔8进口内5mm,气体导流器7出口截面为平面,无焰燃烧腔8为一端开口的半球形空腔,深度为40mm,无焰燃烧腔8进口为直径为70mm的圆形,催化剂9放置于无焰燃烧腔8内,并由无焰燃烧腔8内壁上支架托住固定,催化剂填充60%无焰燃烧腔体积,可与经气体导流器7出口完全进入无焰燃烧腔8的气体充分接触,催化剂9含有多孔隙陶瓷材料和质量分数为30%的金属氧化物活性组分,换热器13置于集气室11上半部,导热流体为水,排气口为内径为70mm的不锈钢管。
采用如下操作方法:点火时控制甲烷流速为7L/min,空气为80L/min,即空气系数为1.20,线速度为0.5m/s,热功率约为4.6KW,在此小功率火焰燃烧状况下,CO、HC和NOx排放值都为0(检测器分辨率为1ppm),燃烧20s后,燃烧腔和催化剂即可达到红热,此时保持空气系数为1.20,1分钟内将甲烷流速增大为30L/min,空气增大为345L/min,即线速度为2.0m/s,热功率达到20KW,在此流量增大过程中以及到达后,CO、HC和NOx排放值都为0(检测器分辨率为1ppm),连续燃烧3小时,CO、HC和NOx排放值都一直为0。利用该实施例额定功率为20KW的千瓦级天然气催化无焰燃烧装置以及上述使用方法,可实现的有益效果是,燃料完全燃烧,换热效率大95%以上,污染物CO、HC和NOx排放值为0(低于1ppm)。
实施例4,一种额定热功率为80KW的千瓦级天然气催化无焰燃烧装置,采取如图2所示结构,中空圆筒体直径为150mm,助燃气进口1为内径为100mm不锈钢管,助燃气为由无级变速鼓风机提供的风量可调的空气,燃气进口2为内径为30mm的不锈钢管,燃气为电磁阀控制的流量可调的天然气(甲烷),气体预混器3是目数为200目的堇青石陶瓷,厚度为25.4mm,使气体在预混腔4内混合均匀,燃烧板5是目数为300目的堇青石陶瓷,燃烧板厚度为40mm,预混腔4为内径为150mm的不锈钢管,气体导流器7为连接在预混腔4内壁的圆环,向上倾斜角度为75度,出口直径为100mm,导流器7出口伸进无焰燃烧腔8进口内20mm,气体导流器7出口截面为平面,无焰燃烧腔8为一端开口的半球形空腔,深度为60mm,无焰燃烧腔8进口为直径为160mm的圆形,催化剂9放置于无焰燃烧腔8内,并由无焰燃烧腔8内壁上支架托住固定,催化剂填充70%无焰燃烧腔体积,可与经气体导流器7出口完全进入无焰燃烧腔8的气体充分接触,催化剂9含有多孔隙陶瓷材料和质量分数为50%的金属氧化物活性组分,换热器13置于集气室11上半部,导热流体为水,排气口为内径为120mm的不锈钢管。
采用如下操作方法:点火时控制甲烷流速为14L/min,空气为160L/min,即空气系数为1.20,线速度为0.35m/s,热功率约为9.3KW,在此小功率火焰燃烧状况下,CO、HC和NOx排放值都为0(检测器分辨率为1ppm),燃烧15s后,燃烧腔和催化剂即可达到红热,此时保持空气系数为1.20,1分钟内将甲烷流速增大为120L/min,空气增大为1380L/min,即线速度为3.2m/s,热功率达到80KW,在此流量增大过程中以及到达后,CO、HC和NOx排放值都为0(检测器分辨率为1ppm),连续燃烧2小时,CO、HC和NOx排放值都一直为0。利用该实施例额定功率为80KW的千瓦级天然气催化无焰燃烧装置以及上述使用方法,可实现的有益效果是,燃料完全燃烧,换热效率大95%以上,污染物CO、HC和NOx排放值为0(低于1ppm)。
实施例5,一种额定热功率为1.2兆瓦的兆瓦级天然气催化无焰燃烧装置,由15 组实施例4中所述的单个80千瓦的催化无焰燃烧器共同组合而成。
实施例6,一种额定热功率为2.1兆瓦的兆瓦级天然气催化无焰燃烧装置,采取如图2所示结构,中空圆筒体直径为400mm,助燃气进口1为内径为200mm不锈钢管,助燃气为由无级变速鼓风机提供的风量可调的空气,燃气进口2为内径为60mm的不锈钢管,燃气为电磁阀控制的流量可调的天然气(甲烷),气体预混器3是目数为200目的堇青石陶瓷,厚度为50mm,使气体在预混腔4内混合均匀,燃烧板5是目数为400目的堇青石陶瓷,燃烧板厚度为60mm,预混腔4为内径为400mm的不锈钢管,气体导流器7为连接在预混腔4内壁的圆环,向上倾斜角度为75度,出口直径为350mm,导流器7出口伸进无焰燃烧腔8进口内100mm,气体导流器7出口截面为平面,无焰燃烧腔8为一端开口的半球形空腔,深度为360mm,无焰燃烧腔8进口为直径为550mm的圆形,催化剂9放置于无焰燃烧腔8内,并由无焰燃烧腔8内壁上支架托住固定,催化剂填充60%无焰燃烧腔体积,可与经气体导流器7出口完全进入无焰燃烧腔8的气体充分接触,催化剂9含有多孔隙陶瓷材料和质量分数为50%的金属氧化物活性组分,换热器13置于集气室11上半部,导热流体为水,排气口为内径为240mm的不锈钢管。在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“厚度”、“上”、“下”、“顶”、“底”“内”、“外”、“流向”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
虽然本文中已参考随附图式详细地揭示本发明之阐释性实施例,但是应了解,本发明不限于精确实施例,且可在本发明中借由熟习此项技术者实现各种改变及修改而不脱离如借由随附申请专利范围及其等效物定义之本发明之范畴。

Claims (10)

  1. 一种极低污染物排放的催化无焰燃烧装置,其特征在于,包括一上端开口下端密闭的中空筒体,筒体的下部或底端设有至少一个助燃气进口(1)和至少一个燃料进口(2),于筒体的中下部助燃气进口(1)和燃料进口(2)上方设有气体预混器(3),气体预混器(3)上方设有燃烧板(5),筒体底端与燃烧板(5)之间留有空隙形成气体预混腔(4),气体预混器(3)置于气体预混腔(4)内,于燃烧板(5)上方设有点火器(6),筒体的上开口端设有气体导流器(7),气体导流器(7)为上下二端开口的中空筒状导管,筒状导管的下开口端与中空筒体的上开口端密闭连接,于气体导流器(7)的上方设有无焰燃烧腔(8),无焰燃烧腔(8)为下端开口上端密闭的中空容器,气体导流器(7)的上开口端与无焰燃烧腔(8)的下开口端相对设置,即气体导流器(7)的上开口端置于无焰燃烧腔(8)的下开口端下方、处于同一平面内或从无焰燃烧腔(8)的下开口端伸入至无焰燃烧腔(8)内,于无焰燃烧腔(8)内的中上部填充有催化剂(9)。
  2. 根据权利要求1所述的催化无焰燃烧装置,其特征在于:气体预混器(3)为1个以上固接于气体预混腔(4)内壁上的片状、棒状、蜂窝状或其他形状的器件中的一种或二种以上,所述器件内部或器件间留有空隙,使预混腔(4)内的气体可由助燃气进口(1)和燃料进口(2)向燃烧板(5)流动,同时气体预混器(3)又可于其内部的部分区域改变助燃气和燃料气的射流方向,形成湍流,使气体在预混腔(4)内混合均匀;
    燃烧板(5)为一板状结构,其上设有允许预混气通过的贯穿板体上下表面的孔隙或通孔,孔隙或通孔可为圆形、方形、狭缝或其他无规则形状中的一种或二种以上,通孔直径或狭缝宽度为0.01-10mm,燃烧板厚度为0.1-1000mm。
  3. 根据权利要求1所述的催化无焰燃烧装置,其特征在于:点火器(6)可将通过燃烧板(5)的预混气引燃,所述点火器可以是点火针和/或电加热丝;气体预混器(3)和燃烧板(5)均与中空筒体的内壁面固接;
    催化剂(9)放置于无焰燃烧腔(8)内,并由无焰燃烧腔(8)内壁上支架托住固定,催化剂可填充部分或全部无焰燃烧腔,可与经气体导流器(7)出口完全进入无焰燃烧腔(8)的气体充分接触。
  4. 根据权利要求1所述的催化无焰燃烧装置,其特征在于:气体导流器(7)下开口端连接气体预混腔(4)的上开口端,气体导流器(7)的上开口端作为出口的面积可大于、等于或小于气体预混腔(4)作为出口的上开口端的面积,气体导流器(7)出口可为圆形、方形或其他形状中的一种或二种以上,气体导流器(7)出口可为一个或两个及以上通孔,气体导流器(7)出口方向与无焰燃烧腔(8)作为进口的下开口端相向设置,气体导流器(7)出口尺寸在任何方向上都小于无焰燃烧腔(8)进口尺寸,气体导流器(7)出口和无焰燃烧腔(8)进口沿气流方向上任一平面投影,气体导流器(7)出口的投影位于无焰燃烧腔(8)进口的投影区域内,无焰燃烧腔(8)进口横截面积(垂直于入口气流方向的截面积)是导流器7出口横截面积(垂直于出口气流方向的截面积)的1.01-20倍,气体导流器(7)出口可以伸进无焰燃烧腔(8)进口内,也可与之平齐或离开一段距离,离开的距离需保证自气体导流器(7)出口流出的气体能够完全进入无焰燃烧腔(8)进口,气体导流器(7)出口截面可以是平面或非平面;
    无焰燃烧腔(8)为一端开口的腔体,腔体可以是半球形或任意形状的只有一端开口的空腔,无焰燃烧腔(8)作为进口的下开口端可为圆形或其他形状中的一种或 二种以上,无焰燃烧腔(8)进口可为一个或两个及以上通孔,开口处任一方向的口径尺寸都大于气体导流器(7)出口在相同方向上尺寸,即无焰燃烧腔(8)进口在沿气流方向上的投影能完全覆盖气体导流器(7)出口在该方向上的投影,无焰燃烧腔(8)进口截面可以是平面或非平面。
  5. 根据权利要求1所述的催化无焰燃烧装置,其特征在于:还包括一集气室(11),集气室(11)为一中空容器,其上设有排气口(12),集气室(11)将(8)的下开口端包裹在其中空的容腔内部。
  6. 根据权利要求1或5所述的催化无焰燃烧装置,其特征在于:还包括一固定支架(10),固定支架(10)将无焰燃烧腔(8)固定在气体导流器(7)出口附近位置,固定支架(10)可与集气室(11)或气体导流器(7)或气体预混腔(4)所在中空容器固定连接。
  7. 根据权利要求5所述的催化无焰燃烧装置,其特征在于:集气室(11)下端设有开口,开口的周边与气体导流器(7)或气体预混腔(4)所在中空容器外壁面密闭连接;无焰燃烧腔(8)位于集气室(11)内,集气室(11)内壁面与无焰燃烧腔(8)外壁面间留有空隙,该空隙的截面积为气体导流器(7)出口截面积的1倍以上,可将燃烧后尾气收集,并经排气口(12)排出,排气口(12)可以安装在集气室(11)的任意位置,也可在集气室(11)的两个以上的多个位置安装两个以上的多个排气口,排气口截面积之和为气体导流器(7)出口横截面积(垂直于出口气流方向的截面积)的1倍以上。
  8. 根据权利要求5所述的催化无焰燃烧装置,其特征在于:于无焰燃烧腔(8)内、无焰燃烧腔(8)外壁面上、集气室(11)内、集气室(11)外壁面上中的一个或两个以上位置处可安装换热装置,所述换热装置可以是管壳式、翅片式或板式换热器等中的一种或两种以上。
  9. 一种用于启动如权利要求1-8中任一项所述的催化无焰燃烧装置的方法,该方法包括:控制分别经燃料进口(2)和助燃气进口(1)通入气体预混腔(4)内的燃气和助燃气预混后过量空气系数为1.01-2.5,根据本领域普通技术人员已知的所用燃料的回火线速度与脱火线速度,调节预混气的线速度介于回火线速度与脱火线速度之间,开启点火器(6)点火后,加热无焰燃烧腔(8)及填充于其中的催化剂(9)至红热或600摄氏度以上,然后增加预混气线速度到脱火线速度以上,使火焰熄灭,同时令预混气继续在无焰燃烧腔(8)及填充于其中的催化剂(9)上发生无焰燃烧,气流到达燃烧腔底部后返回并带走大部分热量,高温尾气经集气室(11)收束,经换热器换热后,自排气口(12)排出,燃烧产物为二氧化碳和/或水蒸汽,有害物质一氧化碳(CO)、碳氢化合物(HC)和氮氧化物(NOx)排放浓度分别低于1ppm。
  10. 根据权利要求9所述的方法,其特征在于:助燃气进口(1)通入的气体为空气、氧气以及其他除空气之外的含氧量为1-99.9vol%的含氧混合气;
    燃料进口(2)通入的气体为气态燃料、雾状液体燃料、以及以空气、氮气等非可燃气体中的一种或二种以上稀释至终浓度为0.1-99.9vol%的上述气态燃料和雾状液体燃料中的一种或二种以上;气态燃料为天然气、煤气、液化石油气等中的一种或二种以上,雾状液体燃料为汽油、柴油、煤油、酒精、甲醇等中的一种或二种以上;
    催化剂(9)含有多孔隙耐火材料和金属氧化物活性组分,所述多孔隙耐火材料可以是纤维状、颗粒状、蜂窝状或其他透气形状中的一种或两种以上的陶瓷、石英、尖晶石、碳化硅及不锈钢等中的一种或两种以上,所述金属氧化物活性组分可以是氧化铝、氧化铈、氧化镁、氧化镧、氧化钛、氧化铁、氧化锰、氧化硅、氧化钠、氧化铜、氧化镍、氧化钴、氧化铂、氧化钯、氧化钌、氧化铑、氧化银等中的一种或两种 以上,所述金属氧化物活性组分的质量分数可以为0.1%-85%。
PCT/CN2017/079511 2016-04-14 2017-04-06 一种极低污染物排放的催化无焰燃烧装置及燃烧方法 WO2017177853A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/093,932 US10859261B2 (en) 2016-04-14 2017-04-06 Catalytic flameless combustion apparatus with extremely low pollutant emission and combustion method
CA3021148A CA3021148C (en) 2016-04-14 2017-04-06 Catalytic flameless combustion apparatus with extremely low polluant emission and combustion method
JP2018554030A JP6674045B2 (ja) 2016-04-14 2017-04-06 汚染物質の排出が1ppmより低い触媒式無炎燃焼装置及び燃焼方法
KR1020187032035A KR102232434B1 (ko) 2016-04-14 2017-04-06 오염물 배출이 최소화된 촉매 무화염 연소장치 및 연소방법
RU2018139863A RU2721077C2 (ru) 2016-04-14 2017-04-06 Устройство для каталитического беспламенного сжигания с чрезвычайно малым выбросом загрязняющих веществ и способ сжигания
EP17781829.1A EP3444530A4 (en) 2016-04-14 2017-04-06 DEVICE FOR FLAME-FREE CATALYSIS COMBUSTION AND COMBUSTION PROCESS WITH EXTREMELY LOW EMISSION OF EMISSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610231516.6A CN107300169B (zh) 2016-04-14 2016-04-14 一种极低污染物排放的催化无焰燃烧装置及燃烧方法
CN201610231516.6 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017177853A1 true WO2017177853A1 (zh) 2017-10-19

Family

ID=60042373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079511 WO2017177853A1 (zh) 2016-04-14 2017-04-06 一种极低污染物排放的催化无焰燃烧装置及燃烧方法

Country Status (8)

Country Link
US (1) US10859261B2 (zh)
EP (1) EP3444530A4 (zh)
JP (1) JP6674045B2 (zh)
KR (1) KR102232434B1 (zh)
CN (1) CN107300169B (zh)
CA (1) CA3021148C (zh)
RU (1) RU2721077C2 (zh)
WO (1) WO2017177853A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195865A (zh) * 2019-05-31 2019-09-03 武汉索克能源科技有限公司 一种气体均布式预混燃烧器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990311A (zh) * 2017-11-10 2018-05-04 张育诚 一种非点火式催化剂制热设备
CN111322611A (zh) * 2018-12-13 2020-06-23 偿丰企业有限公司 热能模块
CN111428955B (zh) * 2019-01-10 2023-09-01 嘉峪关大友嘉能精碳科技股份有限公司 利用煤气天然气混烧模型控制炭黑燃烧温度的方法
CN110118365A (zh) * 2019-06-06 2019-08-13 红热燃烧科技(大连)有限公司 无焰燃气灶
KR102465873B1 (ko) * 2020-09-28 2022-11-11 한국생산기술연구원 무화염 연소 보일러
CN112779059B (zh) * 2021-01-06 2021-09-24 北京清创晋华科技有限公司 一种应用于气流床气化炉的燃烧室
CN113991153B (zh) * 2021-09-30 2023-07-21 上海齐耀动力技术有限公司 一种尾气燃烧器及固体氧化物燃料电池系统
CN114383179A (zh) * 2021-12-13 2022-04-22 中氢新能(北京)新能源技术研究院有限公司 采用无焰燃烧反应器的供热系统
CN114234180B (zh) * 2021-12-24 2023-01-31 华中科技大学 一种高效低氮排放的熔炼炉燃烧明火加热方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0520913A1 (fr) * 1991-06-28 1992-12-30 Application Des Gaz Appareil de chauffage avec brûleur catalytique
DE19724813A1 (de) * 1996-06-10 1997-12-11 Vaillant Joh Gmbh & Co Katalytischer Brenner
GB2347362A (en) * 1998-12-23 2000-09-06 Applic Gaz Sa Catalytic combustion structure in an induced air catalytic burner
CN101929676A (zh) * 2010-08-05 2010-12-29 西安交通大学 一种催化多孔介质燃烧器
US20120282556A1 (en) * 2010-11-18 2012-11-08 Air Products And Chemicals, Inc. Method and Fuel Composition for Catalytic Heater
CN104964281A (zh) * 2015-07-02 2015-10-07 周海波 燃气催化无焰近红外间接加热多孔介质燃烧器
CN205606542U (zh) * 2016-04-14 2016-09-28 中国科学院大连化学物理研究所 一种极低污染物排放的催化无焰燃烧装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784353A (en) * 1972-01-28 1974-01-08 G Chapurin Flameless gas catalytic heater
US4000978A (en) * 1973-03-12 1977-01-04 Rockwell International Corporation Thermal recombiner
JPS5845405A (ja) * 1981-09-11 1983-03-16 Matsushita Electric Ind Co Ltd 触媒燃焼装置
JPS59122807A (ja) * 1982-12-28 1984-07-16 Matsushita Electric Ind Co Ltd 触媒燃焼器
CN87217218U (zh) * 1987-12-26 1988-08-10 中国科学院成都有机化学研究所 灭蚊、取暖两用无焰燃烧加热器
DE19519897A1 (de) * 1994-06-06 1995-12-07 Vaillant Joh Gmbh & Co Zylindrischer Strahlungsbrenner
JP3657675B2 (ja) * 1994-12-06 2005-06-08 松下電器産業株式会社 燃焼装置
EP0716263B1 (en) * 1994-12-06 2002-10-09 Matsushita Electric Industrial Co., Ltd. Combustion apparatus
NL1004051C2 (nl) * 1996-09-17 1998-03-18 Gastec Nv Katalytische stralingsbrander.
JP4226143B2 (ja) 1998-06-05 2009-02-18 パナソニック株式会社 触媒燃焼装置及びその燃焼制御方法
JP3466103B2 (ja) * 1999-03-16 2003-11-10 松下電器産業株式会社 触媒燃焼装置
US6497571B1 (en) * 2001-04-20 2002-12-24 Teledyne Energy Systems, A Division Of Teledyne Durable catalytic burner system
JP4747469B2 (ja) 2001-09-10 2011-08-17 トヨタ自動車株式会社 燃焼装置
US6796789B1 (en) * 2003-01-14 2004-09-28 Petro-Chem Development Co. Inc. Method to facilitate flameless combustion absent catalyst or high temperature oxident
RU2232942C1 (ru) * 2003-05-15 2004-07-20 Институт катализа им. Г.К. Борескова СО РАН Каталитический теплогенератор и способ регулирования его мощности
JP2005083614A (ja) * 2003-09-05 2005-03-31 Denso Corp 触媒反応式加熱装置
RU2306483C1 (ru) * 2006-05-06 2007-09-20 Открытое акционерное общество "Сибирский Агропромышленный Дом" (ОАО "САД") Способ сжигания жидкого или газообразного топлива для получения тепла и воздухонагреватель для его осуществления
CN101796345B (zh) * 2007-07-03 2012-05-16 热传动装置专业有限责任公司 催化加热器
KR20100061445A (ko) * 2007-07-20 2010-06-07 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 무화염 연소 히터
RU2456248C1 (ru) * 2010-12-23 2012-07-20 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Каталитический реактор для переработки осадков сточных вод и способ их переработки (варианты)
CN203656925U (zh) * 2013-09-02 2014-06-18 凤银翠 分段选择性无焰燃烧器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0520913A1 (fr) * 1991-06-28 1992-12-30 Application Des Gaz Appareil de chauffage avec brûleur catalytique
DE19724813A1 (de) * 1996-06-10 1997-12-11 Vaillant Joh Gmbh & Co Katalytischer Brenner
GB2347362A (en) * 1998-12-23 2000-09-06 Applic Gaz Sa Catalytic combustion structure in an induced air catalytic burner
CN101929676A (zh) * 2010-08-05 2010-12-29 西安交通大学 一种催化多孔介质燃烧器
US20120282556A1 (en) * 2010-11-18 2012-11-08 Air Products And Chemicals, Inc. Method and Fuel Composition for Catalytic Heater
CN104964281A (zh) * 2015-07-02 2015-10-07 周海波 燃气催化无焰近红外间接加热多孔介质燃烧器
CN205606542U (zh) * 2016-04-14 2016-09-28 中国科学院大连化学物理研究所 一种极低污染物排放的催化无焰燃烧装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444530A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195865A (zh) * 2019-05-31 2019-09-03 武汉索克能源科技有限公司 一种气体均布式预混燃烧器

Also Published As

Publication number Publication date
RU2018139863A3 (zh) 2020-05-14
EP3444530A1 (en) 2019-02-20
CA3021148A1 (en) 2017-10-19
KR20180133456A (ko) 2018-12-14
US20190107278A1 (en) 2019-04-11
JP2019511696A (ja) 2019-04-25
JP6674045B2 (ja) 2020-04-01
CN107300169A (zh) 2017-10-27
EP3444530A4 (en) 2019-12-11
RU2018139863A (ru) 2020-05-14
RU2721077C2 (ru) 2020-05-15
CN107300169B (zh) 2019-12-27
KR102232434B1 (ko) 2021-03-26
CA3021148C (en) 2021-02-23
US10859261B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2017177853A1 (zh) 一种极低污染物排放的催化无焰燃烧装置及燃烧方法
CN205606542U (zh) 一种极低污染物排放的催化无焰燃烧装置
JP2019511696A5 (zh)
KR102643925B1 (ko) 특히 연소 장치의 배기 배출을 감소시키기 위한, 연료의 점화 특성을 조정하기 위한 방법 및 장치
CN106907712B (zh) 超低氮悬浮式燃烧火焰的燃气喷嘴
CN204213910U (zh) 用于燃烧烃或其它可燃液体和气体的装置
CN101915429B (zh) 烟气再循环系统中的燃烧器助燃风与循环烟气预混合装置
CN207716439U (zh) 一种催化无焰燃烧器
RU129599U1 (ru) Горелочное устройство инфракрасного излучения
US20210033277A1 (en) Carbon-dioxide Supplier Safe and Without Hazardous Exhaust Gas
CN2878940Y (zh) 气体燃料催化燃烧器
CN207648854U (zh) 一种柔和均相催化燃烧器
CN112696676A (zh) 带有换热系统的无焰燃烧器或无焰燃烧器组及应用
CN210532368U (zh) 无焰燃烧机
JPH0222285B2 (zh)
CN114151816B (zh) 一种实现燃气工业锅炉节能和低氮排放的燃烧方法与系统
JP3504777B2 (ja) 液体燃料気化装置
Jeong et al. A study on combustion characteristics of superadiabatic combustor in porous media
CN112393241A (zh) 无焰燃烧机及其控制方法
KR200178228Y1 (ko) 배기가스 사이클론 재연소 장치
CN114321910A (zh) 低氮节能燃烧装置
KR20220120379A (ko) 탄산가스 발생장치
CN117366569A (zh) 一种甲醇多孔介质燃烧器及其工作方法和应用
CN117212794A (zh) 一种水冷型无焰燃烧低氮燃烧器
CN116576463A (zh) 氨燃料的燃烧装置及其燃烧方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018554030

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3021148

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187032035

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017781829

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017781829

Country of ref document: EP

Effective date: 20181114

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781829

Country of ref document: EP

Kind code of ref document: A1