WO2017177720A1 - 图像显示系统以及图像显示方法 - Google Patents

图像显示系统以及图像显示方法 Download PDF

Info

Publication number
WO2017177720A1
WO2017177720A1 PCT/CN2017/000014 CN2017000014W WO2017177720A1 WO 2017177720 A1 WO2017177720 A1 WO 2017177720A1 CN 2017000014 W CN2017000014 W CN 2017000014W WO 2017177720 A1 WO2017177720 A1 WO 2017177720A1
Authority
WO
WIPO (PCT)
Prior art keywords
holographic
image
light
scene
information
Prior art date
Application number
PCT/CN2017/000014
Other languages
English (en)
French (fr)
Inventor
张玉欣
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/538,310 priority Critical patent/US10663922B2/en
Publication of WO2017177720A1 publication Critical patent/WO2017177720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H1/265Angle multiplexing; Multichannel holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0088Adaptation of holography to specific applications for video-holography, i.e. integrating hologram acquisition, transmission and display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0216Optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0445Off-axis recording arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0452Digital holography, i.e. recording holograms with digital recording means arranged to record an image of the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/221Element having optical power, e.g. field lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H2001/2244Means for detecting or recording the holobject
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/16Infra Red [IR]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/30Details of photosensitive recording material not otherwise provided for
    • G03H2260/35Rewritable material allowing several record and erase cycles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/50Reactivity or recording processes
    • G03H2260/54Photorefractive reactivity wherein light induces photo-generation, redistribution and trapping of charges then a modification of refractive index, e.g. photorefractive polymer

Definitions

  • At least one embodiment of the present disclosure is directed to an image display system and an image display method.
  • holographic display commercial performances have been implemented in a holographic manner, such as by using a projector or other display method to refract a light source at 45 degrees onto a phantom imaging film (eg, a holographic film).
  • a projector or other display method to refract a light source at 45 degrees onto a phantom imaging film (eg, a holographic film).
  • this approach unlike true holography, is achieved using a film that has both high transmission and high reflectivity.
  • this kind of holographic display technology can make people feel a certain space effect, it is not a real hologram. When viewing the virtual image of the image from some angles, the viewer still can't feel the display effect of the same holographic image as the actual scene.
  • an image display system comprising: at least one holographic image obtaining device each configured to obtain holographic image information of one scene; and an image synthesizing device configured to be based on the at least one hologram At least a portion of the holographic image information obtained by the image obtaining means generates holographic image synthesis information; and the image reproducing means is configured to reproduce the holographic composite image based on the holographic image synthesis information.
  • one of the holographic image obtaining devices includes a light source assembly, an optical assembly, and an image acquisition device.
  • the light source assembly is configured to emit a first beam of light and a second beam of light that illuminates the scene, the second beam of light being directed by the optical component to the scene, light emerging from the scene and the first light beam
  • the beam interferes with the image acquisition device, and the image acquisition device converts the interference information formed by the interference into an electrical signal to obtain the holographic image information, and transmits the image to the image synthesis device.
  • the light source assembly includes a first laser, the optical assembly including a beam splitting device that splits an initial beam emitted by the first laser into the first beam and the second beam.
  • the holographic image obtaining device further includes: a holographic storage material, the light source assembly Positioning a first light beam and a second light beam illuminating the scene, the second light beam being guided by the optical component to the scene, and light emitted from the scene interferes with the first light beam and is illuminated Storing the holographic image information therein; the light source assembly is further configured to emit a third light beam, the third light beam illuminating the holographic storage material, thereby generating an exit from the holographic storage material An imaging beam that is illuminated to the image acquisition device, the image acquisition device generating an electrical signal to obtain the holographic image information and transmitting to the image synthesis device.
  • the light source assembly includes a first laser
  • the optical assembly includes a light splitting device that divides an initial light beam emitted by the first laser into the first light beam, the second light beam, and the first Three beams.
  • the light source assembly includes a first laser and a second laser
  • the optical assembly includes a beam splitting device that splits an initial beam emitted by the first laser into the first beam and the second beam The second laser emits the third light beam.
  • one of the holographic image obtaining devices includes: a light source assembly, an image acquiring device, and a holographic storage material, wherein the holographic storage material stores an optical image of the scene, the light source assembly emits a fourth light beam, A fourth beam illuminates the holographic storage material, thereby generating an imaging beam emerging from the holographic storage material, the imaging beam illuminating the image acquisition device, the image acquisition device generating an electrical signal to obtain the holographic image The information is sent to the image synthesizing device.
  • the holographic storage material comprises a photorefractive crystal, a photochromic material, or a photopolymer.
  • the holographic storage material is disposed on a mobile device that configures a beam of light that is capable of projecting different locations of the holographic storage material toward it.
  • the mobile device is a turntable.
  • the method further includes: an edit data input device configured to input edit data, wherein the image synthesizing device is further configured to edit at least a portion of the holographic image information using the edit data to generate the hologram image synthesis information.
  • the image acquisition device includes a CCD or CMOS imaging device.
  • the image reproducing apparatus includes: a light source configured to emit a reproduction light beam; a spatial light modulator configured to receive the holographic image synthesis information, and capable of synthesizing the holographic image when illuminated by the reproduction light beam Converted to an optical signal, an imaging device configured to present the optical signal as the holographic composite image.
  • the light source comprises a laser.
  • the spatial light modulator comprises a liquid crystal light valve, a MEMS spatial light modulator, a digital micromirror device, or an acousto-optic modulator.
  • the holographic image obtaining device, the image synthesizing device, and the image reproducing device are connected by a network.
  • an image display method comprising: obtaining holographic image information of at least one scene; generating holographic image synthesis information based on at least a portion of holographic image information of the at least one scene And reproducing a holographic composite image based on the holographic image synthesis information.
  • the step of obtaining holographic image information of at least one scene includes: emitting a first light beam and a second light beam illuminating the scene, the second light beam being directed to the scene, the light emitted from the scene and The first light beam is interfered with and then irradiated to an image acquiring device that converts the interference information formed by the interference into an electrical signal to obtain the holographic image information.
  • the step of obtaining holographic image information of at least one scene comprises: emitting a first light beam and a second light beam illuminating the scene, the second light beam being directed to the scene, reflecting light emitted from the scene Interfering with the first light beam, illuminating onto a holographic storage material to store the holographic image information therein; emitting a third light beam, the third light beam illuminating the holographic storage material, thereby being generated from the holographic An imaging beam exiting the storage material, the imaging beam being illuminated to an image acquisition device, the image acquisition device generating an electrical signal to obtain the holographic image information.
  • the step of obtaining holographic image information of at least one scene comprises: pre-storing an optical image of the scene in a holographic storage material, emitting a fourth light beam, the fourth light beam illuminating the holographic storage material, thereby generating An imaging beam emerging from the holographic storage material, the imaging beam being illuminated to an image acquisition device, the image acquisition device generating an electrical signal to obtain the holographic image information.
  • the holographic storage material is disposed on a mobile device that configures a beam of light that is capable of projecting different locations of the holographic storage material toward it.
  • the mobile device is a turntable.
  • the method further comprising: receiving the input edit data; the holographic image information based on the at least one scene
  • At least a portion of the step of generating holographic image synthesis information includes: editing at least a portion of the holographic image information with the edit data to generate The holographic image synthesizes information.
  • the step of reproducing the holographic composite image based on the holographic image synthesis information includes: transmitting a reproduction light beam; receiving the holography image synthesis information, and being capable of converting the hologram image synthesis information into light when illuminated by the reproduction light beam A signal that presents the optical signal as the holographic composite image.
  • the holographic image information can be synthesized, thereby synthesizing several holographic three-dimensional display scenes into one holographic three-dimensional scene, and synthesizing the holographic three-dimensional images in different geographical locations or different data sources into the same scene, thereby The user can feel almost the same display effect as the actual scene, and improve the user experience.
  • FIG. 1 is a block diagram showing the structure of an image display system according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing a first example of a holographic image obtaining device according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram showing a second example of a holographic image obtaining device according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic structural view of a third example of a holographic image obtaining device according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram showing the structure of an image reproducing apparatus according to an embodiment of the present disclosure.
  • FIG. 6 shows a flow chart of an image display method according to an embodiment of the present disclosure.
  • 100 image display system 110 holographic image acquisition device, 111 light source assembly, 1111 first laser, 1112 second laser, 112 optical component, 1121 first slit, 1122 splitter, 1123 filter, 1124 first beam collimation , 1125 mirror, 1126 first lens, 1127 second slit, 1128 second beam expander collimator, 1129 second lens, 113 holographic storage material, 114 image acquisition device 115 moving device, 120 image synthesizing device, 130 Image reproducing device, 131 light source, 1311 third laser, 132 spatial light modulator, 133 imaging device, 1331 third slit, 1332 third beam expander collimator 140 editing data input device
  • FIG. 1 shows a schematic structural view of an image display system according to an embodiment of the present disclosure.
  • an image display system 100 includes at least one holographic image obtaining device 110, an image synthesizing device 120, and an image reproducing device 130.
  • the holographic image obtaining device 110 may be one or more, and each holographic image obtaining device 110 is configured to obtain holographic image information of a scene such as a stage or the like.
  • the image synthesizing device 120 is configured to generate holographic image synthesizing information based on at least a portion of the holographic image information obtained by the at least one holographic image obtaining device 110.
  • the image reproducing device 130 is configured to reproduce a holographic composite image based on the holographic image synthesis information.
  • the holographic image obtaining device 110 is for obtaining holographic image information of one scene. If there are a plurality of holographic image obtaining means 110, each holographic image obtaining means 110 can obtain holographic image information of one scene.
  • FIG. 2 shows a first example of a holographic image obtaining device 110 according to an embodiment of the present disclosure. As shown in FIG. 2, in this example, the holographic image obtaining device 110 may include a light source assembly 111, an optical assembly 112, and an image acquisition device 114.
  • the light source assembly 111 is configured to emit a first light beam and a second light beam that illuminates the scene, the second light beam being directed by the optical component to the scene, from the scene.
  • the emitted light interferes with the first light beam and is irradiated to the image acquiring device 114, and the image capturing device 114 converts the interference information formed by the interference into an electrical signal to obtain holographic image information, and transmits it to the image synthesizing device 120.
  • the light source unit 111 is for emitting light as a light source capable of realizing holographic recording.
  • a light source capable of realizing holographic recording.
  • Light source assembly 111 can be implemented, for example, by one or more lasers, one or more infrared generators, or a combination thereof.
  • the light source assembly 111 can also be other light sources capable of realizing holographic recording, such as a white light source or the like.
  • the light source assembly 111 can be implemented by a near-infrared tunable fiber laser, an infrared emission tube.
  • the infrared emitting tube is composed of an infrared light emitting diode matrix to form an illuminant.
  • the infrared emitting diode is made of a material with high infrared radiation efficiency, and a forward bias is applied to inject a current into the PN junction to excite infrared light.
  • the light source assembly 111 may emit a first light beam and a second light beam.
  • the light source assembly 111 includes a first laser 1111, and the initial beam emitted by the first laser 1111 is split into a first beam and a second beam by a beam splitting device, wherein the first beam is an object beam and the second beam is a reference beam.
  • the second light beam illuminates the scene, for example, a stage scene, a scene containing an object, a scene containing a character, and the like.
  • the second beam may illuminate the scene directly or may be directed by the optical component 112 to the scene.
  • the light emitted from the scene interferes with the first light beam and is irradiated onto the image acquiring device 114.
  • the image acquiring device 114 directly converts the interference information into an electrical signal to obtain holographic image information, and the image acquiring device 114 can holographically
  • the image information is directly transmitted to the nearby image synthesizing device 120 through the data line, or transmitted to the remote image synthesizing device 120 through the network.
  • optical component 112 is used to perform operations such as light guiding, spectroscopic filtering, filtering, and the like in the holographic image obtaining device.
  • optical assembly 112 can include a beam splitting device 1122 (eg, a beam splitter) for splitting first laser 1111 in light source assembly 111 into a first beam and a second beam.
  • a beam splitting device 1122 eg, a beam splitter
  • the optical component 112 can also include a filter for filtering the light.
  • filter 1123 in Figure 2 is used to filter the second beam.
  • the optical assembly 112 can also include a beam expanding device.
  • the optical assembly 112 can also include a collimating device.
  • the first beam expander collimator 1124 of Figure 2 can perform the functions of beam expansion and collimation.
  • the optical component 112 may also include one or more lenses, mirrors or mirrors, or any combination thereof, depending on the optical path guiding needs.
  • the mirror 1125 and the first lens 1126 shown in FIG. 2 are respectively used to implement a light reflection or light convergence function.
  • the optical component 112 can also use a slit at the emitting end of the light source assembly 111 to set a suitable gap.
  • the slit may have a maximum width of 2 millimeters (mm).
  • the slit is the main component of the spectrometer, and a slit suitable for the light source assembly 111 can be designed by a spectrometer.
  • the first slit 1121 may be disposed at the emitting end of the first laser 1111.
  • the optical component 112 such as an optical component such as a lens group or a mirror, may be added or reduced according to actual application requirements to achieve, for example, adjustment of a light direction or a divergence angle.
  • the image acquisition device 114 is for converting the interference information formed by the interference into an electrical signal to obtain holographic image information, and transmitting it to the image synthesis device 120.
  • the image acquisition device 114 can be implemented, for example, by a charge coupled device (CCD) or a metal oxide semiconductor device (CMOS) imaging device. Both CCD and CMOS sense light and convert optical signals into digital signals.
  • CCD charge coupled device
  • CMOS metal oxide semiconductor device
  • the process of generating an image by the holographic image obtaining device 110 may be, for example, the following manner.
  • the light source assembly 111 emits a first light beam and a second light beam that illuminates the scene 150, the second light beam is directed by the optical component 112 to the scene 150, the second light beam illuminates the scene 150, and the light reflected from the scene 150 interferes with the first light beam and illuminates
  • the image acquisition device 114 converts the interference information into an electrical signal, thereby obtaining holographic image information of the scene. Thereafter, the image acquisition device 114 can transmit the data to the image synthesis device 120.
  • the process of generating an image by the holographic image obtaining device 110 may be, for example, the following manner.
  • the light emitted by the first laser 1111 passes through the first slit 1121 and is split into a first beam and a second beam by the spectroscopic device 1122.
  • the first beam can be used as a reference beam and the second beam can be used as an object beam.
  • the second beam is filtered by filter 1123 and then expanded and collimated by first beam expander collimator 1124, then reflected by first mirror 1125 to scene 150 and, for example, diffusely reflected.
  • the image acquisition device 114 converts the interference information into an electrical signal, thereby obtaining holographic image information of the scene.
  • the image acquisition device 114 can This data is sent to the image synthesizing device 120.
  • FIG. 3 illustrates a second example of a holographic image obtaining device 110 in accordance with an embodiment of the present disclosure.
  • the holographic image obtaining device 110 may include a light source assembly 111, an optical assembly 112, a holographic storage material 113, and an image acquisition device 114.
  • the light source unit 111 is for emitting light as a light source capable of realizing holographic recording.
  • a light source capable of realizing holographic recording.
  • Light source assembly 111 can be implemented, for example, by one or more lasers, one or more infrared generators, or a combination thereof.
  • the light source assembly 111 can also be other light sources capable of realizing holographic recording, such as a white light source or the like.
  • the light source assembly 111 can be implemented by a near-infrared tunable fiber laser, an infrared emission tube.
  • the infrared emitting tube is composed of an infrared light emitting diode matrix to form an illuminant.
  • the infrared emitting diode is made of a material with high infrared radiation efficiency, and a forward bias is applied to inject a current into the PN junction to excite infrared light.
  • the light source assembly 111 may emit a first light beam and a second light beam. Wherein the second light beam illuminates the scene.
  • the second beam may illuminate the scene directly or may be directed by the optical component 112 to the scene.
  • the light reflected from the scene interferes with the first light beam and is irradiated onto the holographic storage material 113 to store the holographic image information of the scene in the holographic storage material 113.
  • the light source assembly 111 may emit a third light beam in addition to the first light beam and the second light beam.
  • a third beam of light is used to illuminate the holographic storage material, whereby an imaging beam emerging from the holographic storage material can be generated that is illuminated into image acquisition device 114 to convert the optical signal into an electrical signal.
  • the light source assembly 111 includes a first laser 1111 and a second laser 1112.
  • the first laser 1111 is for emitting the aforementioned first beam and the second beam; and the second laser 1112 is for emitting the aforementioned third beam.
  • the light beam emitted by the first laser 1111 is split into a first beam and a second beam by a spectroscopic device.
  • the light source assembly 111 may also include three lasers that respectively emit the aforementioned first beam, second beam, and third beam.
  • the light source assembly may further include only the first laser 1111, and the initial light beam emitted from the first laser 1111 is split into the first light beam, the second light beam, and the third light beam by the light splitting means.
  • optical assembly 112 is used to perform light directing, splitting, filtering, etc. operations in the holographic medical device.
  • optical assembly 112 can include a beam splitting device 1122 (eg, a beam splitter) for splitting first laser 1111 in light source assembly 111 into a first beam and a second beam.
  • a beam splitting device 1122 eg, a beam splitter
  • the optical component 112 can also include a filter for filtering the light.
  • filter 1123 in Figure 2 is used to filter the first beam.
  • the optical assembly 112 can also include a beam expanding device.
  • the optical assembly 112 can also include a collimating device.
  • the first beam expander collimator 1124 and the second beam expander collimator 1128 of FIG. 3 can perform the functions of beam expansion and collimation.
  • the optical component 112 may also include one or more lenses, mirrors or mirrors, or any combination thereof, depending on the optical path guiding needs.
  • the mirror 1125, the first lens 1126, and the second lens 1129 shown in FIG. 3 are respectively used to implement a light reflection or light convergence function.
  • the optical component 112 can also use a slit at the emitting end of the light source assembly 111 to set a suitable gap.
  • the slit may have a maximum width of 2 millimeters (mm).
  • the slit is the main component of the spectrometer, and a slit suitable for the light source assembly 111 can be designed by a spectrometer.
  • the first slits 1121 and the second slits 1127 may be disposed at the emitting ends of the first laser 1111 and the second laser 1112, respectively.
  • the optical component 112 such as a lens group, a mirror, or the like, may be added or reduced according to actual application requirements, such as a light direction or a divergence angle. Adjustment.
  • the holographic storage material 113 is used to store optical information, as shown in FIG. 3, in one example of the present disclosure, the holographic storage material 113 stores interference information of the first beam and the second beam.
  • the holographic storage material 113 may include a photorefractive crystal, a photochromic material, a photopolymer, or the like. Among them, the photorefractive crystal stores a hologram by a photorefractive effect, that is, when subjected to a non-uniform light intensity, the change in the local refractive index of the photorefractive crystal is proportional to the incident light intensity. Photorefractive crystals have the advantages of large dynamic range, long storage durability, and can be fixed and the growth process is mature.
  • the photorefractive crystal is, for example, iron-doped lithium niobate crystal (KiNbO3:Fe), strontium ruthenate (SNB) and barium titanate (BaTiO3), etc.;
  • the organic photopolymer is, for example, PMMA: DTNB: C60 and PQ/PMMA Wait.
  • Image acquisition device 114 is operative to generate data corresponding to the holographic image information, such as converting light into electrical signals. As shown in FIG. 3, in one example of an embodiment of the present disclosure, the image acquisition device 114 converts a third light beam transmitted from the holographic storage material 113 into electrical information.
  • the image acquisition device 114 can be, for example, a charge coupled device (CCD) or a metal. It is realized by an oxide semiconductor device (Complementary Metal-Oxide Semiconductor, CMOS) imaging device. Both CCD and CMOS sense light and convert optical signals into digital signals.
  • CCD Charge coupled device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the process of generating an image by the holographic image obtaining device 110 may be, for example, the following manner.
  • the light source assembly 111 emits a first light beam and a second light beam that illuminates the scene 150, the second light beam is directed by the optical component 112 to the scene 150, the second light beam illuminates the scene 150, and the light reflected from the scene 150 interferes with the first light beam and illuminates
  • the holographic storage material 113 is placed to store holographic image information therein.
  • the light source assembly 111 can also emit a third light beam that illuminates the holographic storage material 113, thereby generating an imaging beam emerging from the holographic storage material 113, the imaging beam is illuminated to the image acquisition device 114, and the image acquisition device 114 is based on the imaging beam. , generating electrical signal data corresponding to the holographic image information. This data can then be sent to the image synthesis device.
  • the process of generating an image by the holographic image obtaining device 110 may be, for example, the following manner.
  • the light emitted from the first laser 1111 passes through the first slit 1121 and is split into a first beam and a second beam by the spectroscopic device 1122.
  • the first beam can be used as a reference beam and the second beam can be used as an object beam.
  • the second beam is filtered by filter 1123 and then expanded and collimated by first beam expander collimator 1124, then reflected by first mirror 1125 to scene 150 and, for example, diffusely reflected.
  • the light reflected from the scene 150 is concentrated by the first lens 1126 to be irradiated onto the holographic storage material 113.
  • the first light beam is directly incident into or introduced into the holographic storage material 113.
  • the first beam and the second beam are superimposed to generate interference, and the interference information is stored by the holographic storage material 113.
  • the second laser 1112 which is subjected to beam expansion and collimation by the second slit 1127 and the second beam expanding collimator 1128.
  • Holographic storage material 113 The light emitted from the holographic storage material 113 passes through the second lens 1129 and is incident on the image capturing device 114, thereby converting the information stored in the holographic storage material 113 into an electrical signal for reading.
  • the holographic storage material 113 may be disposed on a mobile device 115.
  • the mobile device 115 can move the holographic storage material 113 to record the light reflected from the scene 150 at different angles and different positions with the first The information after the beam interferes, and the holographic storage material 113 is illuminated by the third beam, and the data is read out in real time.
  • the emission position of the third light beam may be transformed around the holographic storage material 113.
  • the second laser 1112 is disposed on a moving optical platform that can move the second laser 1112 around the holographic storage material 113 such that the emission position of the third beam can be transformed around the holographic storage material 113.
  • the mobile device 115 is a turntable.
  • the turntable is, for example, a single-axis turntable, a two-axis turntable, or a three-axis and above multi-axis turntable.
  • the multi-axis turntable is advantageous for improving the accuracy of the turntable and the holographic storage material 113 disposed thereon, and is advantageous for storage and reading of the holographic image.
  • FIG. 4 shows a third example of the holographic image obtaining device 110 according to an embodiment of the present disclosure.
  • the holographic image obtaining device 110 may include a light source assembly 111, a holographic storage material 113, and an image acquisition device 114.
  • An optical image of the scene is pre-stored in the holographic storage material 113, the light source assembly 111 emits a fourth light beam, and the fourth light beam illuminates the holographic storage material 113, thereby generating an imaging light beam emitted from the holographic storage material 113, and the imaging light beam is irradiated to the image acquiring device 114.
  • the image acquisition device 114 generates an electrical signal to obtain holographic image information and transmits it to the image synthesis device 120.
  • the light source unit 111 is for emitting light as a light source capable of realizing holographic recording.
  • a light source capable of realizing holographic recording.
  • Light source assembly 111 can be implemented, for example, by one or more lasers, one or more infrared generators, or a combination thereof.
  • the light source assembly 111 is implemented by a second laser 1112.
  • the light source assembly 111 can also be other light sources capable of realizing holographic recording, such as a white light source or the like.
  • the light source assembly 111 can be implemented by a near-infrared tunable fiber laser, an infrared emission tube.
  • the infrared emitting tube is composed of an infrared light emitting diode matrix to form an illuminant.
  • the infrared emitting diode is made of a material with high infrared radiation efficiency, and a forward bias is applied to inject a current into the PN junction to excite infrared light.
  • the holographic image obtaining device 110 may further include an optical component 112.
  • the optical component 112 is used to perform operations such as light guiding, splitting, filtering, and the like in the holographic image obtaining device 110.
  • the optical assembly 112 can also include a beam expanding device.
  • the optical assembly 112 can also include a collimating device.
  • the second beam expander collimator 1128 of Figure 4 can perform the functions of beam expansion and collimation.
  • the optical component 112 may also include one or more lenses, mirrors or mirrors, or any combination thereof, depending on the needs of the light path.
  • the second lens 1129 shown in FIG. 4 is used to implement the light converging function.
  • the optical component 112 can also use a slit at the emitting end of the light source assembly 111 to set a suitable gap.
  • the maximum width of the slit can be 2 millimeters (mm).
  • the slit is the main component of the spectrometer, and a slit suitable for the light source assembly 111 can be designed by a spectrometer.
  • the second slit 1127 may be disposed at the emitting end of the second laser 1112.
  • the optical component 112 such as an optical component such as a lens group or a mirror, may be added or reduced according to actual application requirements, for example, to adjust the light direction or the divergence angle.
  • the holographic storage material 113 may include a photorefractive crystal, a photochromic material, a photopolymer, or the like.
  • the photorefractive crystal stores a hologram by a photorefractive effect, that is, when subjected to a non-uniform light intensity, the change in the local refractive index of the photorefractive crystal is proportional to the incident light intensity.
  • Photorefractive crystals have the advantages of large dynamic range, long storage durability, and can be fixed and the growth process is mature.
  • the photorefractive crystal is, for example, iron-doped lithium niobate crystal (KiNbO3:Fe), strontium ruthenate (SNB) and barium titanate (BaTiO3), etc.;
  • the organic photopolymer is, for example, PMMA: DTNB: C60 and PQ/PMMA Wait.
  • Image acquisition device 114 is operative to generate data corresponding to the holographic image information, such as converting light into electrical signals. As shown in FIG. 4, the image acquisition device 114 converts the light beam transmitted from the holographic storage material 113 into electrical information.
  • the image acquisition device 114 can be implemented, for example, by a charge coupled device (CCD) or a metal oxide semiconductor device (CMOS) imaging device. Both CCD and CMOS sense light and convert optical signals into digital signals.
  • CCD charge coupled device
  • CMOS metal oxide semiconductor device
  • the process of generating an image by the holographic image obtaining device 110 may be, for example, the following manner.
  • the light source assembly 111 emits a fourth light beam, and the fourth light beam is irradiated onto the holographic storage material 113, thereby generating an imaging light beam emerging from the holographic storage material 113, the imaging light beam is irradiated to the image acquisition device 114, and the image acquisition device 114 generates based on the imaging light beam.
  • Electrical signal data corresponding to holographic image information. This data can then be sent to the image synthesizing device 120.
  • the process of obtaining an image by the holographic image obtaining device 110 may be, for example, the following manner.
  • the second laser 1112 emits a fourth light beam, the fourth light
  • the beam is beam expanded by the second slit 1127 and the second beam expander collimator 1128 and directed toward the holographic storage material 113.
  • the light emitted from the holographic storage material 113 passes through the second lens 1129 and is incident on the image acquisition device 114, and the image acquisition device 114 converts the optical signal into electrical signal data based on the incident light. This data can then be sent to the image synthesizing device 120.
  • the holographic storage material 113 may be disposed on a mobile device 115.
  • the mobile device 115 can move the holographic storage material 113 to record information of the light reflected from the scene 150 and the first light beam at different angles and different positions, and illuminate the hologram through the fourth light beam.
  • the material 113 is stored to read data in real time.
  • the emission position of the fourth beam may be transformed around the holographic storage material 113.
  • the second laser 1112 is disposed on a moving optical platform that can move the second laser 1112 around the holographic storage material 113 such that the emission position of the fourth beam can be transformed about the holographic storage material 113.
  • the mobile device 115 is a turntable.
  • the turntable is, for example, a single-axis turntable, a two-axis turntable, or a three-axis and above multi-axis turntable.
  • the multi-axis turntable is advantageous for improving the accuracy of the turntable and the holographic storage material 113 disposed thereon, and is advantageous for storage and reading of the holographic image.
  • the image synthesizing device 120 is configured to generate holographic image synthesizing information based on at least a portion of the holographic image information obtained by the at least one holographic image obtaining device 110.
  • the image synthesizing device 120 can be implemented by software or hardware or firmware. According to an example of the present disclosure, after the plurality of holographic image obtaining devices 110 respectively transmit the obtained holographic image information to the image synthesizing device 120, the image synthesizing device 120 receives a plurality of holographic image information, and then may multiplex the holographic image information Composite into an image.
  • the image display system can also include an edit data input device 140 configured for the user to enter edit data.
  • the image synthesizing device 120 can also edit the received one or more holographic image information by using the edit data, for example, perform image processing operations such as image segmentation, image recognition, image format conversion, and the like on the image information.
  • image processing operations such as image segmentation, image recognition, image format conversion, and the like on the image information.
  • the image synthesizing device 120 can edit or synthesize the received holographic image information, or can only edit or synthesize a part of the holographic image information, for example, first obtain the holographic image information. Part and separate the part, edit or combine only that part In order to generate holographic image synthesis information.
  • the information may be transmitted to the image reproducing device 130 to reproduce the holographic image.
  • the image reproducing device 130 is configured to reproduce a holographic composite image based on the holographic image synthesis information, that is, convert the holographic image information into a holographic image that can be seen by an adult eye.
  • FIG. 5 shows a schematic structural diagram of an image reproducing apparatus according to an embodiment of the present disclosure.
  • the image reproducing apparatus 130 includes a light source 131, a spatial light modulator 132, and an imaging device 133.
  • the light source 131 is configured to emit a reproducing light beam, which may be, for example, a laser, LED light, an infrared generator, or other light source capable of realizing holographic reproduction, such as a white light source or the like. As shown in FIG. 5, the light source 131 is, for example, a third laser 1311.
  • the spatial light modulator 132 is configured to receive holographic image information, and is capable of converting holographic image information into an optical signal when illuminated by the reproducing light beam.
  • the spatial light modulator 132 may be a liquid crystal light valve or a MEMS (Micro-Electro-Mechanical System) spatial light modulator that can be used for holographic reproduction, or may be a digital micromirror device (DMD), acousto-optic modulation. (AOM) and so on.
  • MEMS Micro-Electro-Mechanical System
  • DMD digital micromirror device
  • AOM acousto-optic modulation.
  • the imaging device 133 is configured to present the optical signal as a holographic image.
  • the imaging device 133 can cooperate with the light source 131 and the spatial light modulator 132 to image the optical signal into a holographic image that can be seen by the naked eye using optical elements such as lenses and mirrors.
  • the imaging device 133 includes, for example, a third slit 1331 and a third beam expanding collimator 1332.
  • the third slit 1331 can be implemented by the function of the spectrometer, and the third beam expander collimator 1332 can be realized by a beam expander and a collimator or a combination thereof.
  • the reproducing beam emitted from the third laser 1311 is subjected to beam expansion collimation through the third slit 1331 and the third beam expanding collimator 1332, and is irradiated to the spatial light modulator. 132, thereby reproducing the image of the synthesized scene.
  • the holographic image obtaining device 110, the image synthesizing device 120, and the image reproducing device 130 may be included in one device; or may be located in different geographical locations, respectively, connected by a wired or wireless network.
  • the image display system of the embodiment of the present disclosure can synthesize and reproduce hologram images of different scenes into one scene image. It is also possible to combine three-dimensional images in different geographical locations or different data sources into the same image. For example, using the image display system of the embodiment of the present disclosure, the evening scenes of different cities can be synthesized so that the viewer sees only one party.
  • the image display system of the present disclosure can also synthesize and reproduce people of different geographical locations into one venue, so that the remote Meetings, like on-site meetings, greatly enhance the user experience.
  • FIG. 6 illustrates an image display method 600 according to an embodiment of the present disclosure.
  • the image display method 600 corresponds to the image display system described above.
  • the image display method 600 includes the following steps.
  • step S601 holographic image information of at least one scene is obtained.
  • one way of obtaining holographic image information of a scene may be to emit a first light beam and a second light beam that illuminates the scene, the second light beam being directed to the scene, and the light emerging from the scene is phased with the first light beam
  • an image acquisition device is irradiated, and the image acquisition device converts the interference information formed by the interference into an electrical signal to obtain holographic image information.
  • another way of obtaining holographic image information of the scene is to emit a first light beam and a second light beam that illuminates the scene, the second light beam being directed to the scene, reflected from the scene The light interferes with the first beam and is illuminated onto a holographic storage material to store holographic image information therein.
  • a third beam is emitted, the third beam illuminating the holographic storage material, thereby producing an imaging beam emerging from the holographic storage material, the imaging beam being illuminated to an image acquisition device, the image acquisition device generating an electrical signal to obtain holographic image information.
  • the holographic storage material can be disposed on a mobile device configured to direct different locations of the holographic storage material toward the beam onto which it is projected.
  • the mobile device can for example be a turntable.
  • a third way of obtaining holographic image information of a scene is to store an optical image of the scene in a holographic storage material in advance, emitting a fourth light beam, and the fourth light beam illuminates the holographic storage material
  • an imaging beam emerging from the holographic storage material is generated, the imaging beam is irradiated to an image acquisition device, and the image acquisition device generates an electrical signal to obtain holographic image information.
  • the holographic storage material can be disposed on a mobile device configured to direct different locations of the holographic storage material toward the beam onto which it is projected.
  • the mobile device can for example be a turntable.
  • holographic image synthesis information is generated based on at least a portion of the holographic image information of the at least one scene.
  • the edit data input by the user may be received in advance, and then the hologram image synthesis information is generated by editing at least a portion of the holographic image information with the edit data.
  • step S603 the holographic composite image is reproduced based on the holographic image synthesis information.
  • the process of reproducing a holographic composite image may include transmitting a reproduction beam, receiving the whole The information image is synthesized, and when illuminated by the reproducing beam, the holographic image synthesis information can be converted into an optical signal, and the optical signal can be presented as a holographic composite image.
  • scene images of different positions can be synthesized into one scene image, and display performance is better than that of the prior art holographic-like technology, in telemedicine, teleconference, remote live broadcast, etc.
  • the field can be widely used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Holo Graphy (AREA)

Abstract

一种图像显示系统(100),该图像显示系统(100)包括:至少一个全息图像获得装置(110),每个被配置为获得一个场景的全息图像信息;图像合成装置(120),被配置为基于所述至少一个全息图像获得装置所获得的全息图像信息的至少一部分,生成全息图像合成信息;图像再现装置(130),被配置为根据所述全息图像合成信息再现全息合成图像。该图像显示系统(100)能将全息图像信息进行合成,从而将几种全息三维显示场景合成为一个全息三维场景,使用户可以感受到与实际场景几乎完全相同的显示效果,提高了用户体验。还提供了一种图像显示方法。

Description

图像显示系统以及图像显示方法 技术领域
本公开至少一个实施例涉及一种图像显示系统以及图像显示方法。
背景技术
近几年来,很多全息显示商业演出都是采用类全息的方式实现的,例如利用投影机或者其他显示方法,将光源折射45度成像在幻影成像膜(例如,全息膜)上。
本质上来说,这种方式与真全息不同,是利用一种具有较高的透射率同时也具有较高的反射率的膜来实现的。这种类全息显示技术虽然可以让人感受到一定的空间效果,但并不是真正的全息,从某些角度观看成像的虚像,观众仍然不能感受到与实际场景相同的全息图像的显示效果。
发明内容
根据本公开的一个方面,提供了一种图像显示系统,包括:至少一个全息图像获得装置,每个被配置为获得一个场景的全息图像信息;图像合成装置,被配置为基于所述至少一个全息图像获得装置所获得的全息图像信息的至少一部分,生成全息图像合成信息;图像再现装置,被配置为根据所述全息图像合成信息再现全息合成图像。
例如,所述全息图像获得装置之一包括:光源组件、光学组件、图像获取装置。
例如,所述光源组件配置为发出第一光束和照射所述场景的第二光束,所述第二光束被所述光学组件引导至所述场景,从所述场景出射的光与所述第一光束相干涉后照射到所述图像获取装置,所述图像获取装置将干涉形成的干涉信息转换成电信号以获得所述全息图像信息,并发送给所述图像合成装置。
例如,所述光源组件包括第一激光器,所述光学组件包括分光装置,所述分光装置将所述第一激光器发出的初始光束分为所述第一光束和所述第二光束。
例如,所述全息图像获得装置还包括:全息存储材料,所述光源组件配 置为发出第一光束和照射所述场景的第二光束,所述第二光束被所述光学组件引导至所述场景,从所述场景出射的光与所述第一光束相干涉后照射到所述全息存储材料上以在其中存储所述全息图像信息;所述光源组件还配置为发出第三光束,所述第三光束照射所述全息存储材料,由此产生自所述全息存储材料出射的成像光束,所述成像光束照射到所述图像获取装置,所述图像获取装置产生电信号以获得所述全息图像信息并发送给所述图像合成装置。
例如,所述光源组件包括第一激光器,所述光学组件包括分光装置,所述分光装置将所述第一激光器发出的初始光束分为所述第一光束、所述第二光束和所述第三光束。
例如,所述光源组件包括第一激光器和第二激光器,所述光学组件包括分光装置,所述分光装置将所述第一激光器发出的初始光束分为所述第一光束和所述第二光束,所述第二激光器发出所述第三光束。
例如,所述全息图像获得装置之一包括:光源组件、图像获取装置以及全息存储材料,其中所述全息存储材料中存储有所述场景的光学图像,所述光源组件发出第四光束,所述第四光束照射所述全息存储材料,由此产生自所述全息存储材料出射的成像光束,所述成像光束照射到所述图像获取装置,所述图像获取装置产生电信号以获得所述全息图像信息并发送给所述图像合成装置。
例如,所述全息存储材料包括光折变晶体、光致变色材料或光致聚合物。
例如,所述全息存储材料设置在一个移动装置上,所述移动装置配置能够将所述全息存储材料的不同位置朝向投射到其上的光束。
例如,所述移动装置为转台。
例如,还包括:编辑数据输入装置,配置为供输入编辑数据,其中,所述图像合成装置还配置为利用所述编辑数据编辑所述全息图像信息的至少一部分,生成所述全息图像合成信息。
例如,所述图像获取装置包括CCD或CMOS成像装置。
例如,所述图像再现装置包括:光源,配置为发射再现光束;空间光调制器,配置为接收所述全息图像合成信息,并且在被所述再现光束照射时,能够将所述全息图像合成信息转换为光信号,成像装置,配置为将所述光信号呈现为所述全息合成图像。
例如,所述光源包括激光器。
例如,所述空间光调制器包括液晶光阀、MEMS空间光调制器、数字微镜器件或声光调制器。
例如,所述全息图像获得装置、所述图像合成装置、所述图像再现装置通过网络连接。
根据本公开至少一个实施例,还提供了一种图像显示方法,所述方法包括:获得至少一个场景的全息图像信息;基于所述至少一个场景的全息图像信息的至少一部分,生成全息图像合成信息;根据所述全息图像合成信息再现全息合成图像。
例如,所述获得至少一个场景的全息图像信息的步骤包括:发出第一光束和照射所述场景的第二光束,所述第二光束被引导至所述场景,从所述场景出射的光与所述第一光束相干涉后照射到一图像获取装置,所述图像获取装置将干涉形成的干涉信息转换成电信号以获得所述全息图像信息。
例如,所述获得至少一个场景的全息图像信息的步骤包括:发出第一光束和照射所述场景的第二光束,所述第二光束被引导至所述场景,从所述场景反射出射的光与所述第一光束相干涉后照射到一全息存储材料上以在其中存储所述全息图像信息;发出第三光束,所述第三光束照射所述全息存储材料,由此产生自所述全息存储材料出射的成像光束,所述成像光束照射到一图像获取装置,所述图像获取装置产生电信号以获得所述全息图像信息。
例如,获得至少一个场景的全息图像信息的步骤包括:预先在一全息存储材料中存储所述场景的光学图像,发出第四光束,所述第四光束照射所述全息存储材料,由此产生自所述全息存储材料出射的成像光束,所述成像光束照射到一图像获取装置,所述图像获取装置产生电信号以获得所述全息图像信息。
例如,所述全息存储材料设置在一个移动装置上,所述移动装置配置能够将所述全息存储材料的不同位置朝向投射到其上的光束。
例如,所述移动装置为转台。
例如,基于所述至少一个场景的全息图像信息的至少一部分,生成全息图像合成信息的步骤之前,所述方法还包括:接收输入的编辑数据;所述基于所述至少一个场景的全息图像信息的至少一部分,生成全息图像合成信息的步骤包括:利用所述编辑数据编辑所述全息图像信息的至少一部分,生成 所述全息图像合成信息。
例如,根据所述全息图像合成信息再现全息合成图像的步骤包括:发射再现光束;接收所述全息图像合成信息,并且在被所述再现光束照射时,能够将所述全息图像合成信息转换为光信号,将所述光信号呈现为所述全息合成图像。
通过本公开实施例,能将全息图像信息进行合成,从而将几种全息三维显示场景合成为一个全息三维场景,将处于不同地理位置的或不同数据来源的全息三维图像合成到同一场景中,从而使用户可以感受到与实际场景几乎完全相同的显示效果,提高了用户体验。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1示出了根据本公开实施例的图像显示系统的结构示意图;
图2示出了根据本公开实施例的全息图像获得装置的第一个示例的结构示意图;
图3示出了根据本公开实施例的全息图像获得装置的第二个示例的结构示意图;
图4示出了根据本公开实施例的全息图像获得装置的第三个示例的结构示意图;
图5示出了根据本公开实施例的图像再现装置的结构示意图;
图6示出了根据本公开实施例的图像显示方法的流程图。
附图标记:
100图像显示系统,110全息图像获得装置,111光源组件,1111第一激光器,1112第二激光器,112光学组件,1121第一狭缝、1122分光装置,1123滤波器,1124第一扩束准直器,1125反射镜、1126第一透镜,1127第二狭缝,1128第二扩束准直器,1129第二透镜,113全息存储材料,114图像获取装置115移动装置,120图像合成装置,130图像再现装置,131光源,1311第三激光器,132空间光调制器,133成像装置,1331第三狭缝,1332第三扩束准直器140编辑数据输入装置
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
根据本公开的一个实施例,提供了一种图像显示系统。图1示出了根据本公开实施例的图像显示系统的结构示意图。参见图1,图像显示系统100包括:至少一个全息图像获得装置110、图像合成装置120、图像再现装置130。
根据本公开的一个示例,全息图像获得装置110可以为一个或多个,每个全息图像获得装置110被配置为获得一个场景(例如舞台等)的全息图像信息。图像合成装置120被配置为基于该至少一个全息图像获得装置110所获得的全息图像信息的至少一部分,生成全息图像合成信息。图像再现装置130被配置为根据全息图像合成信息再现全息合成图像。
全息图像获得装置110用于获得一个场景的全息图像信息。如果全息图像获得装置110为多个,每个全息图像获得装置110均能够获得一个场景的全息图像信息。图2示出了根据本公开实施例的全息图像获得装置110的第一个示例。如图2所示,在该示例中,全息图像获得装置110可以包括:光源组件111、光学组件112以及图像获取装置114。光源组件111配置为发出第一光束和照射场景的第二光束,第二光束被光学组件引导至场景,从场景 出射的光与第一光束相干涉后照射到图像获取装置114,图像获取装置114将干涉形成的干涉信息转换成电信号以获得全息图像信息,并发送给图像合成装置120。
如图2所示,光源组件111用于发射光线,为能够实现全息记录的光源。例如激光、LED光、红外光或近红外光、白光等等。光源组件111例如可以通过一个或多个激光器、一个或多个红外发生器或者它们的组合来实现。另外,光源组件111也可为其它能够实现全息记录的光源,例如白光光源等。可选地,光源组件111可以通过近红外可调谐光纤激光器、红外线发射管来实现。红外线发射管由红外发光二级管矩阵组成发光体。红外发射二级管由红外辐射效率高的材料制成PN结,外加正向偏压向PN结注入电流激发红外光。
根据本公开的一个示例,光源组件111可以发出第一光束和第二束光。可选地,光源组件111包括第一激光器1111,通过分光装置将第一激光器1111发出的初始光束分为第一光束、第二光束,其中第一光束是物光束,第二光束是参考光束。第二光束照射所述场景,例如,舞台场景、包含物体的场景、包含人物的场景等等。所述第二光束可以直接照射场景,也可以被光学组件112引导至所述场景。这样,从所述场景出射的光与第一光束相干涉后照射到图像获取装置114上,图像获取装置114将该干涉信息直接转换成电信号以获得全息图像信息,图像获取装置114可以将全息图像信息直接通过数据线发送给附近的图像合成装置120,或者通过网络发送给远程的图像合成装置120。
光学组件112用于在全息图像获得装置中进行导光、分光、滤波等操作。例如,参见图2,光学组件112可以包括分光装置1122(例如分光器),用于将光源组件111中的第一激光器1111分成第一光束和第二光束。
可选地,为了滤掉第一光束中的某个波段的光线,光学组件112还可以包括滤波器,用于对光线进行滤波。例如图2中的滤波器1123用于对第二光束进行滤波。
可选地,为了改变光束的直径和发散角,光学组件112还可以包括扩束装置。为了使光最大效率地耦合进入接收光的器件中,光学组件112还可以包括准直装置。例如,图2中的第一扩束准直器1124能够实现扩束和准直的功能。
可选地,为了调整光路,使光束发散或汇聚后导向场景,光学组件112还可以根据光路导向需要,包括一个或多个透镜、反射镜或平面镜或它们之间的任意组合。例如图2所示的反射镜1125、第一透镜1126分别用于实现光反射或光汇聚功能。
可选地,为了有效确定光谱带宽、决定出射光束强度,光学组件112还可以在光源组件111的发射端使用狭缝,来设定出合适的缝隙。可选地,狭缝的最大宽度可以为2毫米(mm)。狭缝是光谱仪的主要部件,可以通过光谱仪来设计适合光源组件111的狭缝。例如图2所示,第一狭缝1121可以设置在第一激光器1111的发射端。
需要说明的是,在第一光束、第二光束的光路中可根据实际应用需求增加或减少上述光学组件112,例如透镜组、反射镜等光学元件,实现例如光线方向或发散角的调整。
图像获取装置114用于将干涉形成的干涉信息转换成电信号以获得全息图像信息,并发送给图像合成装置120。图像获取装置114例如可以通过电荷耦合元件(Charge Coupled Device,CCD)或金属氧化物半导体元件(Complementary Metal-Oxide Semiconductor,CMOS)成像装置来实现。CCD和CMOS均能感应光线,并将光学信号转变成数字信号。
如图2所示,根据本公开的一个示例,全息图像获得装置110生成图像的过程例如可以是如下方式。光源组件111发出第一光束和照射场景150的第二光束,第二光束被光学组件112引导至场景150,第二光束照射场景150,并且从场景150反射的光与第一光束相干涉后照射到图像获取装置114上,图像获取装置114将干涉信息转换成电信号,从而获得所述场景的全息图像信息。之后,图像获取装置114可以将该数据发送给图像合成装置120。
根据本公开的另一个示例,全息图像获得装置110生成图像的过程例如可以是如下方式。如图2所示,第一激光器1111发出的光通过第一狭缝1121后被分光装置1122分为第一光束和第二光束。第一光束可以作为参考光束,第二光束可以作为物光束。第二光束通过滤波器1123进行滤波,再通过第一扩束准直器1124进行扩束和准直,之后通过第一反射镜1125反射到场景150处并发生例如漫反射。之后,从场景150反射的光线通过第一透镜1126汇聚以被照射到图像获取装置114上,图像获取装置114将干涉信息转换成电信号,从而获得所述场景的全息图像信息。之后,图像获取装置114可以 将该数据发送给图像合成装置120。
图3示出了根据本公开实施例的全息图像获得装置110的第二个示例。如图3所示,在该示例中,全息图像获得装置110可以包括:光源组件111、光学组件112、全息存储材料113以及图像获取装置114。
如图3所示,光源组件111用于发射光线,为能够实现全息记录的光源。例如激光、LED光、红外光或近红外光、白光等等。光源组件111例如可以通过一个或多个激光器、一个或多个红外发生器或者它们的组合来实现。另外,光源组件111也可为其它能够实现全息记录的光源,例如白光光源等。可选地,光源组件111可以通过近红外可调谐光纤激光器、红外线发射管来实现。红外线发射管由红外发光二级管矩阵组成发光体。红外发射二级管由红外辐射效率高的材料制成PN结,外加正向偏压向PN结注入电流激发红外光。
根据本公开的一个示例,光源组件111可以发出第一光束和第二束光。其中,第二光束照射所述场景。所述第二光束可以直接照射场景,也可以被光学组件112引导至所述场景。这样,从所述场景反射的光与第一光束相干涉后照射到全息存储材料113上,以在全息存储材料113中存储场景的全息图像信息。
根据本公开的另一个示例,光源组件111除了发射第一光束和第二光束之外,还可以发出第三光束。第三光束用于照射所述全息存储材料,由此可以产生从所述全息存储材料出射的成像光束,该成像光束照射到图像获取装置114中将光信号转化为电信号。
可替换地,光源组件111包括第一激光器1111和第二激光器1112。第一激光器1111用于发射前述第一光束和第二光束;第二激光器1112用于发射前述的第三光束。例如,第一激光器1111发射的光束通过分光装置分成第一光束和第二光束。当然,可选地,光源组件111也可以包括三个激光器,分别发射前述的第一光束、第二光束和第三光束。
可替换地,光源组件还可以仅包括第一激光器1111,通过分光装置将第一激光器1111发出的初始光束分为第一光束、第二光束和第三光束。
光学组件112用于在全息医疗设备中进行导光、分光、滤波等操作。例如,参见图3,光学组件112可以包括分光装置1122(例如分光器),用于将光源组件111中的第一激光器1111分成第一光束和第二光束。
可选地,为了滤掉第一光束中的某个波段的光线,光学组件112还可以包括滤波器,用于对光线进行滤波。例如图2中的滤波器1123用于对第一光束进行滤波。
可选地,为了改变光束的直径和发散角,光学组件112还可以包括扩束装置。为了使光最大效率地耦合进入接收光的器件中,光学组件112还可以包括准直装置。例如,图3中的第一扩束准直器1124以及第二扩束准直器1128能够实现扩束和准直的功能。
可选地,为了调整光路,使光束发散或汇聚后导向场景,光学组件112还可以根据光路导向需要,包括一个或多个透镜、反射镜或平面镜或它们之间的任意组合。例如图3所示的反射镜1125、第一透镜1126以及第二透镜1129,分别用于实现光反射或光汇聚功能。
可选地,为了有效确定光谱带宽、决定出射光束强度,光学组件112还可以在光源组件111的发射端使用狭缝,来设定出合适的缝隙。可选地,狭缝的最大宽度可以为2毫米(mm)。狭缝是光谱仪的主要部件,可以通过光谱仪来设计适合光源组件111的狭缝。例如图3所示,第一狭缝1121、第二狭缝1127可以分别设置在第一激光器1111和第二激光器1112的发射端。
需要说明的是,在第一光束、第二光束或第三光束的光路中可根据实际应用需求增加或减少上述光学组件112,例如透镜组、反射镜等光学元件,实现例如光线方向或发散角的调整。
全息存储材料113用于存储光信息,如图3所示,在本公开的一个示例中,全息存储材料113存储第一光束和第二光束的干涉信息。全息存储材料113可以包括光折变晶体、光致变色材料或光致聚合物等。其中,光折变晶体通过光折变效应来存储全息图,即当受到非均匀的光强度照射时,光折变晶体局部折射率的变化与入射光强成正比。光折变晶体具有动态范围大、存储持久性长、可以固定以及生长工艺成熟等优点。光折变晶体例如为掺铁铌酸锂晶体(KiNbO3:Fe)、铌酸锶钡(SNB)和钛酸钡(BaTiO3)等;有机光致聚合物例如为PMMA:DTNB:C60和PQ/PMMA等。
图像获取装置114用于产生对应于所述全息图像信息的数据,例如将光线转换成电信号。如图3所示,在本公开实施例的一个示例中,图像获取装置114将从全息存储材料113透射出的第三光束转换成电信息。图像获取装置114例如可以通过电荷耦合元件(Charge Coupled Device,CCD)或金属 氧化物半导体元件(Complementary Metal-Oxide Semiconductor,CMOS)成像装置来实现。CCD和CMOS均能感应光线,并将光学信号转变成数字信号。
如图3所示,根据本公开的一个示例,全息图像获得装置110生成图像的过程例如可以是如下方式。光源组件111发出第一光束和照射场景150的第二光束,第二光束被光学组件112引导至场景150,第二光束照射场景150,并且从场景150反射的光与第一光束相干涉后照射到全息存储材料113上,以在其中存储全息图像信息。
此外,光源组件111还可以发出第三光束,第三光束照射全息存储材料113,由此产生自全息存储材料113出射的成像光束,成像光束照射到图像获取装置114,图像获取装置114基于成像光束,产生对应于全息图像信息的电信号数据。然后,可以将该数据发送给图像合成装置。
根据本公开的另一个示例,全息图像获得装置110生成图像的过程例如可以是如下方式。如图3所示,第一激光器1111发出的光通过第一狭缝1121后被分光装置1122分为第一光束和第二光束。第一光束可以作为参考光束,第二光束可以作为物光束。第二光束通过滤波器1123进行滤波,再通过第一扩束准直器1124进行扩束和准直,之后通过第一反射镜1125反射到场景150处并发生例如漫反射。之后,从场景150反射的光线通过第一透镜1126汇聚以被照射到全息存储材料113上。同时,第一光束直接射入或导入全息存储材料113中。第一光束和第二光束叠加产生干涉,干涉信息被全息存储材料113存储。
此外,为了将全息存储材料113中的光信息读出,可以通过使用第二激光器1112发出光线,该光线通过第二狭缝1127和第二扩束准直器1128进行扩束准直后射向全息存储材料113。从全息存储材料113出射的光线通过第二透镜1129后射入图像获取装置114,从而将全息存储材料113中存储信息转换成电信号而读出。
为了尽可能减少存储的多幅全息图之间的串扰,实现数据的实时记录和读出,每写入一幅全息图像后将全息存储材料113转动一个角度,再写入下一幅全息图像。根据本公开的一个示例,全息存储材料113可以设置在一个移动装置115上。在图像显示系统100工作时,移动装置115能够移动全息存储材料113,使其以不同角度、不同位置记录从场景150反射的光与第一 光束相干涉后的信息,并且通过第三光束照射全息存储材料113,实时读出数据。
可替换地,第三光束的发射位置可绕全息存储材料113变换。例如,第二激光器1112被设置在一个移动光学平台上,该移动光学平台可带动第二激光器1112围绕全息存储材料113运动,从而实现第三光束的发射位置可绕全息存储材料113变换。
可选地,移动装置115为转台。该转台例如为单轴转台、双轴转台或三轴及以上多轴转台。多轴转台有利于提高转台及设置在其上全息存储材料113指向的精度,有利于全息图像的存储和读取。
图4示出了根据本公开实施例的全息图像获得装置110的第三个示例。如图4所示,在该示例中,全息图像获得装置110可以包括:光源组件111、全息存储材料113以及图像获取装置114。全息存储材料113中预先存储有场景的光学图像,光源组件111发出第四光束,第四光束照射全息存储材料113,由此产生自全息存储材料113出射的成像光束,成像光束照射到图像获取装置114,图像获取装置114产生电信号以获得全息图像信息并发送给图像合成装置120。
如图4所示,光源组件111用于发射光线,为能够实现全息记录的光源。例如激光、LED光、红外光或近红外光、白光等等。光源组件111例如可以通过一个或多个激光器、一个或多个红外发生器或者它们的组合来实现。例如,在图4中,光源组件111通过第二激光器1112来实现。另外,光源组件111也可为其它能够实现全息记录的光源,例如白光光源等。可选地,光源组件111可以通过近红外可调谐光纤激光器、红外线发射管来实现。红外线发射管由红外发光二级管矩阵组成发光体。红外发射二级管由红外辐射效率高的材料制成PN结,外加正向偏压向PN结注入电流激发红外光。
可选地,在本示例中,全息图像获得装置110还可以包括光学组件112。光学组件112用于在全息图像获得装置110中进行导光、分光、滤波等操作。可选地,参见图4,为了改变光束的直径和发散角,光学组件112还可以包括扩束装置。为了使光最大效率地耦合进入接收光的器件中,光学组件112还可以包括准直装置。例如,图4中的第二扩束准直器1128能够实现扩束和准直的功能。
可选地,为了调整光路,使光束发散或汇聚后导向场景,光学组件112 还可以根据光路导向需要,包括一个或多个透镜、反射镜或平面镜或它们之间的任意组合。例如图4所示的第二透镜1129,用于实现光汇聚功能。
可选地,为了有效确定光谱带宽、决定出射光束强度,光学组件112还可以在光源组件111的发射端使用狭缝,来设定出合适的缝隙。狭缝的最大宽度可以为2毫米(mm)。狭缝是光谱仪的主要部件,可以通过光谱仪来设计适合光源组件111的狭缝。例如图4所示,第二狭缝1127可以设置在第二激光器1112的发射端。
需要说明的是,在本示例的光路中可根据实际应用需求增加或减少上述光学组件112,例如透镜组、反射镜等光学元件,实现例如光线方向或发散角的调整。
全息存储材料113中预先存储有场景的光信息。如图4所示,全息存储材料113可以包括光折变晶体、光致变色材料或光致聚合物等。其中,光折变晶体通过光折变效应来存储全息图,即当受到非均匀的光强度照射时,光折变晶体局部折射率的变化与入射光强成正比。光折变晶体具有动态范围大、存储持久性长、可以固定以及生长工艺成熟等优点。光折变晶体例如为掺铁铌酸锂晶体(KiNbO3:Fe)、铌酸锶钡(SNB)和钛酸钡(BaTiO3)等;有机光致聚合物例如为PMMA:DTNB:C60和PQ/PMMA等。
图像获取装置114用于产生对应于所述全息图像信息的数据,例如将光线转换成电信号。如图4所示,图像获取装置114将从全息存储材料113透射出的光束转换成电信息。图像获取装置114例如可以通过电荷耦合元件(Charge Coupled Device,CCD)或金属氧化物半导体元件(Complementary Metal-Oxide Semiconductor,CMOS)成像装置来实现。CCD和CMOS均能感应光线,并将光学信号转变成数字信号。
如图4所示,根据本公开的一个示例,全息图像获得装置110生成图像的过程例如可以是如下方式。光源组件111发出第四光束,第四光束照射到全息存储材料113上,由此产生自全息存储材料113出射的成像光束,成像光束照射到图像获取装置114,图像获取装置114基于成像光束,产生对应于全息图像信息的电信号数据。然后,可以将该数据发送给图像合成装置120。
根据本公开的另一个示例,全息图像获得装置110获得图像的过程例如可以是如下方式。如图4所示,第二激光器1112发出第四光束,该第四光 束通过第二狭缝1127和第二扩束准直器1128进行扩束准直后射向全息存储材料113。从全息存储材料113出射的光线通过第二透镜1129后射入图像获取装置114,图像获取装置114基于该入射光,将光信号转换成电信号数据。然后,可以将该数据发送给图像合成装置120。
为了尽可能减少存储的多幅全息图之间的串扰,实现数据的实时记录和读出,每写入一幅全息图像后将全息存储材料113转动一个角度,再写入下一幅全息图像。根据本公开的一个示例,全息存储材料113可以设置在一个移动装置115上。在图像显示系统100工作时,移动装置115能够移动全息存储材料113,使其以不同角度、不同位置记录从场景150反射的光与第一光束相干涉后的信息,并且通过第四光束照射全息存储材料113,实时读出数据。
可替换地,第四光束的发射位置可绕全息存储材料113变换。例如,第二激光器1112被设置在一个移动光学平台上,该移动光学平台可带动第二激光器1112围绕全息存储材料113运动,从而实现第四光束的发射位置可绕全息存储材料113变换。
可选地,移动装置115为转台。转台例如为单轴转台、双轴转台或三轴及以上多轴转台。多轴转台有利于提高转台及设置在其上全息存储材料113指向的精度,有利于全息图像的存储和读取。
图像合成装置120被配置为基于至少一个全息图像获得装置110所获得的全息图像信息的至少一部分,生成全息图像合成信息。图像合成装置120可以通过软件或硬件或固件来实现。根据本公开的一个示例,当多个全息图像获得装置110分别将获得的全息图像信息发送给图像合成装置120之后,图像合成装置120接收到多个全息图像信息,之后可以将多个全息图像信息合成为一个图像。
在一个实施例中,图像显示系统还可以包括:编辑数据输入装置140,配置为供用户输入编辑数据。这样,图像合成装置120还可以利用所述编辑数据对接收到的一个或多个全息图像信息进行编辑,例如,对图像信息进行图像分割、图像识别、图像格式转换等图像处理操作。当然,本领域技术人员能够了解,图像合成装置120可以对接收到的全息图像信息进行编辑或合成,也可以仅对全息图像信息的一部分进行编辑或合成,例如,先从全息图像信息中获取需要的部分并将该部分分离出来,仅对该部分进行编辑或合 成,从而生成全息图像合成信息。图像合成装置120生成全息图像合成信息之后,可以将该信息发送给图像再现装置130来再现全息图像。
图像再现装置130被配置为根据全息图像合成信息再现全息合成图像,即将全息图像信息转换成人眼可以看到的全息图像。图5示出了根据本公开实施例的图像再现装置的结构示意图,参见图5,在本公开的一个示例中,图像再现装置130包括:光源131、空间光调制器132和成像装置133。
光源131被配置为发射再现光束,该光源例如可以是激光器、LED光、红外发生器、或者也可为其它能实现全息再现的光源,例如白光光源等。如图5所示,光源131例如为第三激光器1311。
空间光调制器132被配置为接收全息图像信息,并且在被再现光束照射时,能够将全息图像信息转换为光信号。例如,空间光调制器132可以是可用于全息再现的液晶光阀或MEMS(Micro-Electro-Mechanical System微机电系统)空间光调制器等,还可以为数字微镜器件(DMD)、声光调制器(AOM)等。
成像装置133被配置为将光信号呈现为全息图像。成像装置133可以与光源131以及空间光调制器132配合,使用透镜、反射镜等光学元件,将光信号成像成肉眼可以看到的全息图像。例如,如图5所示,成像装置133例如包括第三狭缝1331和第三扩束准直器1332。第三狭缝1331可以利用光谱仪自带的功能实现,第三扩束准直器1332可以通过扩束镜和准直器或它们的组合来实现。
根据本公开的一个示例,在全息再现装置130中,第三激光器1311发出的再现光束通过第三狭缝1331和第三扩束准直器1332进行扩束准直后,照射到空间光调制器132上,从而使被合成的场景的影像再现出来。
根据本公开的一个示例,全息图像获得装置110、图像合成装置120以及图像再现装置130可以包含在一个设备中;也可以分别位于不同地理位置,通过有线或无线网络进行连接。
这样,本公开实施例的图像显示系统就可以将不同场景的全息图像合成并再现为一个场景图像。也可以将处于不同地理位置或不同数据来源的三维图像合成到同一图像中。例如,使用本公开实施例的图像显示系统,可以将不同城市的晚会现场合成,使得观众如同只看到一场晚会一样。本公开的图像显示系统还可以将不同地理位置的人合成并再现到一个场地中,使得远程 会议如同现场会议一样,极大地提高了用户体验。
根据本公开的另一个方面,还提供了一种图像显示方法,图6示出了根据本公开的一个实施例的图像显示方法600。图像显示方法600与前述的图像显示系统对应,为了说明书的简洁,以下仅作简要描述,具体实现方式请参见前述的图像显示系统。如图6所示,图像显示方法600包括如下步骤。
在步骤S601中,获得至少一个场景的全息图像信息。根据本公开的一个实例,获得场景的全息图像信息的一种方式可以是,发出第一光束和照射场景的第二光束,第二光束被引导至场景,从场景出射的光与第一光束相干涉后照射到一图像获取装置,图像获取装置将干涉形成的干涉信息转换成电信号以获得全息图像信息。
可替换地,根据本公开的另一个实例,获得场景的全息图像信息的另一种方式是,发出第一光束和照射场景的第二光束,第二光束被引导至场景,从场景反射出射的光与第一光束相干涉后照射到一全息存储材料上以在其中存储全息图像信息。发出第三光束,第三光束照射全息存储材料,由此产生自全息存储材料出射的成像光束,成像光束照射到一图像获取装置,图像获取装置产生电信号以获得全息图像信息。可选地,全息存储材料可以设置在一个移动装置上,移动装置配置能够将全息存储材料的不同位置朝向投射到其上的光束。移动装置例如可以是转台。
可替换地,根据本公开的另一个实例,获得场景的全息图像信息的第三种方式是,预先在一全息存储材料中存储场景的光学图像,发出第四光束,第四光束照射全息存储材料,由此产生自全息存储材料出射的成像光束,成像光束照射到一图像获取装置,图像获取装置产生电信号以获得全息图像信息。可选地,全息存储材料可以设置在一个移动装置上,移动装置配置能够将全息存储材料的不同位置朝向投射到其上的光束。移动装置例如可以是转台。
在步骤S602中,基于至少一个场景的全息图像信息的至少一部分,生成全息图像合成信息。根据本公开的一个示例,在生成全息图像合成信息之前,可以预先接收用户输入的编辑数据,然后利用编辑数据编辑全息图像信息的至少一部分,生成全息图像合成信息。
在步骤S603中,根据全息图像合成信息再现全息合成图像。根据本公开的一个示例,再现全息合成图像的过程可以包括,发射再现光束,接收全 息图像合成信息,并且在被再现光束照射时,能够将全息图像合成信息转换为光信号,将光信号呈现为全息合成图像。
通过本公开实施例的图像显示方法,可以将不同位置的场景图像合成为一个场景图像,并且,比之现有技术的类全息技术,显示效果更好,在远程医疗,远程会议以及远程直播等领域均能取得广泛的应用。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
本申请要求于2016年4月14日递交的中国专利申请第201610232300.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (25)

  1. 一种图像显示系统,包括:
    至少一个全息图像获得装置,每个被配置为获得一个场景的全息图像信息;
    图像合成装置,被配置为基于所述至少一个全息图像获得装置所获得的全息图像信息的至少一部分,生成全息图像合成信息;
    图像再现装置,被配置为根据所述全息图像合成信息再现全息合成图像。
  2. 根据权利要求1所述的系统,其中,所述全息图像获得装置之一包括:光源组件、光学组件、图像获取装置。
  3. 根据权利要求2所述的系统,其中,
    所述光源组件配置为发出第一光束和照射所述场景的第二光束,所述第二光束被所述光学组件引导至所述场景,从所述场景出射的光与所述第一光束相干涉后照射到所述图像获取装置,所述图像获取装置将干涉形成的干涉信息转换成电信号以获得所述全息图像信息,并发送给所述图像合成装置。
  4. 根据权利要求2或3所述的系统,其中,所述光源组件包括第一激光器,所述光学组件包括分光装置,所述分光装置将所述第一激光器发出的初始光束分为所述第一光束和所述第二光束。
  5. 根据权利要求2-4任一所述的系统,其中,所述全息图像获得装置还包括:全息存储材料,
    所述光源组件配置为发出第一光束和照射所述场景的第二光束,所述第二光束被所述光学组件引导至所述场景,从所述场景出射的光与所述第一光束相干涉后照射到所述全息存储材料上以在其中存储所述全息图像信息;
    所述光源组件还配置为发出第三光束,所述第三光束照射所述全息存储材料,由此产生自所述全息存储材料出射的成像光束,所述成像光束照射到所述图像获取装置,所述图像获取装置产生电信号以获得所述全息图像信息并发送给所述图像合成装置。
  6. 根据权利要求5所述的系统,其中,所述光源组件包括第一激光器,所述光学组件包括分光装置,所述分光装置将所述第一激光器发出的初始光束分为所述第一光束、所述第二光束和所述第三光束。
  7. 根据权利要求5或6所述的系统,其中,所述光源组件包括第一激 光器和第二激光器,所述光学组件包括分光装置,所述分光装置将所述第一激光器发出的初始光束分为所述第一光束和所述第二光束,所述第二激光器发出所述第三光束。
  8. 根据权利要求1所述的系统,其中,所述全息图像获得装置之一包括:光源组件、图像获取装置以及全息存储材料,
    其中所述全息存储材料中存储有所述场景的光学图像,
    所述光源组件发出第四光束,所述第四光束照射所述全息存储材料,由此产生自所述全息存储材料出射的成像光束,所述成像光束照射到所述图像获取装置,所述图像获取装置产生电信号以获得所述全息图像信息并发送给所述图像合成装置。
  9. 根据权利要求5-8任一所述的系统,其中,所述全息存储材料包括光折变晶体、光致变色材料或光致聚合物。
  10. 根据权利要求9所述的系统,其中,所述全息存储材料设置在一个移动装置上,所述移动装置配置能够将所述全息存储材料的不同位置朝向投射到其上的光束。
  11. 根据权利要求10所述的系统,其中,所述移动装置为转台。
  12. 根据权利要求1-11任一所述的系统,还包括:编辑数据输入装置,配置为供输入编辑数据,其中,所述图像合成装置还配置为利用所述编辑数据编辑所述全息图像信息的至少一部分,生成所述全息图像合成信息。
  13. 根据权利要求2或8所述的系统,其中,所述图像获取装置包括CCD或CMOS成像装置。
  14. 根据权利要求1-13任一所述的系统,其中,
    所述图像再现装置包括:
    光源,配置为发射再现光束;
    空间光调制器,配置为接收所述全息图像合成信息,并且在被所述再现光束照射时,能够将所述全息图像合成信息转换为光信号,
    成像装置,配置为将所述光信号呈现为所述全息合成图像。
  15. 根据权利要求14所述的系统,其中,所述光源包括激光器。
  16. 根据权利要求14或15所述的系统,其中,所述空间光调制器包括液晶光阀、MEMS空间光调制器、数字微镜器件或声光调制器。
  17. 根据权利要求1-16任一所述的系统,其中,所述全息图像获得装 置、所述图像合成装置、所述图像再现装置通过网络连接。
  18. 一种图像显示方法,所述方法包括:
    获得至少一个场景的全息图像信息;
    基于所述至少一个场景的全息图像信息的至少一部分,生成全息图像合成信息;
    根据所述全息图像合成信息再现全息合成图像。
  19. 根据权利要求18所述的方法,其中,
    所述获得至少一个场景的全息图像信息的步骤包括:
    发出第一光束和照射所述场景的第二光束,所述第二光束被引导至所述场景,从所述场景出射的光与所述第一光束相干涉后照射到一图像获取装置,所述图像获取装置将干涉形成的干涉信息转换成电信号以获得所述全息图像信息。
  20. 根据权利要求18所述的方法,其中,
    所述获得至少一个场景的全息图像信息的步骤包括:
    发出第一光束和照射所述场景的第二光束,所述第二光束被引导至所述场景,从所述场景反射出射的光与所述第一光束相干涉后照射到一全息存储材料上以在其中存储所述全息图像信息;
    发出第三光束,所述第三光束照射所述全息存储材料,由此产生自所述全息存储材料出射的成像光束,所述成像光束照射到一图像获取装置,所述图像获取装置产生电信号以获得所述全息图像信息。
  21. 根据权利要求18所述的方法,其中,
    获得至少一个场景的全息图像信息的步骤包括:
    预先在一全息存储材料中存储所述场景的光学图像,
    发出第四光束,所述第四光束照射所述全息存储材料,由此产生自所述全息存储材料出射的成像光束,所述成像光束照射到一图像获取装置,所述图像获取装置产生电信号以获得所述全息图像信息。
  22. 根据权利要求20或21所述的方法,其中,所述全息存储材料设置在一个移动装置上,所述移动装置配置能够将所述全息存储材料的不同位置朝向投射到其上的光束。
  23. 根据权利要求22所述的方法,其中,所述移动装置为转台。
  24. 根据权利要求18-23任一所述的方法,其中,
    基于所述至少一个场景的全息图像信息的至少一部分,生成全息图像合成信息的步骤之前,所述方法还包括:接收输入的编辑数据;
    所述基于所述至少一个场景的全息图像信息的至少一部分,生成全息图像合成信息的步骤包括:
    利用所述编辑数据编辑所述全息图像信息的至少一部分,生成所述全息图像合成信息。
  25. 根据权利要求18-24任一所述的方法,其中,
    根据所述全息图像合成信息再现全息合成图像的步骤包括:
    发射再现光束;
    接收所述全息图像合成信息,并且在被所述再现光束照射时,能够将所述全息图像合成信息转换为光信号,
    将所述光信号呈现为所述全息合成图像。
PCT/CN2017/000014 2016-04-14 2017-01-03 图像显示系统以及图像显示方法 WO2017177720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/538,310 US10663922B2 (en) 2016-04-14 2017-01-03 Image display system and image display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610232300.1 2016-04-14
CN201610232300.1A CN105739281B (zh) 2016-04-14 2016-04-14 图像显示系统以及图像显示方法

Publications (1)

Publication Number Publication Date
WO2017177720A1 true WO2017177720A1 (zh) 2017-10-19

Family

ID=56255581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000014 WO2017177720A1 (zh) 2016-04-14 2017-01-03 图像显示系统以及图像显示方法

Country Status (3)

Country Link
US (1) US10663922B2 (zh)
CN (1) CN105739281B (zh)
WO (1) WO2017177720A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109636895A (zh) * 2018-10-31 2019-04-16 北京航天晨信科技有限责任公司 一种全息显示方法和电子沙盘装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105739281B (zh) * 2016-04-14 2018-12-21 京东方科技集团股份有限公司 图像显示系统以及图像显示方法
CN106580269B (zh) * 2017-01-24 2023-09-01 青岛大学 利用全息膜侧流暗场成像技术探测人体微血管超微结构的装置
CN106919310A (zh) * 2017-03-07 2017-07-04 肖璐瑶 增强现实实现方法
CN108519730B (zh) * 2018-04-17 2019-11-05 京东方科技集团股份有限公司 二维全息投影显示方法及系统
CN108513117A (zh) * 2018-05-09 2018-09-07 北京邦邦共赢网络科技有限公司 一种基于全息投影的影像投射方法及装置
CN108742535A (zh) * 2018-06-12 2018-11-06 郑州大学第三附属医院 一种基于全息投影技术的智能化儿童病房
CN109270686A (zh) * 2018-09-13 2019-01-25 京东方科技集团股份有限公司 一种车载显示系统和车辆
US20230296907A1 (en) * 2020-05-01 2023-09-21 Applied Materials, Inc. Multiplexed hologram interference exposure system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1227635A (zh) * 1996-08-06 1999-09-01 康斯坦丁·罗格兹 全息大图象产生系统
CN101566823A (zh) * 2009-06-05 2009-10-28 上海大学 真彩色三维物体全息显示方法及装置
CN102129211A (zh) * 2011-02-28 2011-07-20 深圳大学反光材料厂 合成全息图的制作方法
CA2727902A1 (en) * 2011-01-14 2012-07-14 Eduard Zvenyhorodskyy Digital holography (dh) system for recording and reconstruction of computer-processed hologram
WO2013080883A1 (ja) * 2011-11-29 2013-06-06 国立大学法人京都工芸繊維大学 3次元ホログラフィック表示システム、及び3dディスプレイ装置
US20130148183A1 (en) * 2011-12-13 2013-06-13 The Arizona Board Of Regents On Behalf Of The Univ Method of reconstructing a holographic image and apparatus therefor
CN105739281A (zh) * 2016-04-14 2016-07-06 京东方科技集团股份有限公司 图像显示系统以及图像显示方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381249A (en) * 1985-10-17 1995-01-10 Burney; Michael Holographic display transmitting device
US5132811A (en) * 1989-08-10 1992-07-21 Seiko Instruments Inc. Holographic operating optical apparatus
GB9203239D0 (en) * 1992-02-14 1992-04-01 Imperial College Holographic imaging
JP4387118B2 (ja) 2003-03-14 2009-12-16 Tdk株式会社 ホログラム記録再生装置
WO2005099386A2 (en) * 2004-04-13 2005-10-27 Board Of Regents, The University Of Texas System Holographic projector
JP4315256B2 (ja) * 2004-07-08 2009-08-19 パイオニア株式会社 ホログラム記録再生装置及び、ホログラム再生装置及び方法、並びにコンピュータプログラム
US8208186B2 (en) * 2008-04-07 2012-06-26 Fuji Xerox Co., Ltd. Polarization-based holographic optical reproducing apparatus including dc modulating element
CA3011108C (en) 2009-09-14 2020-04-28 Memorial Sloan-Kettering Cancer Center Apparatus, system and method for providing laser steering and focusing for incision, excision and ablation of tissue in minimally-invasive surgery
US8295693B2 (en) 2010-07-02 2012-10-23 Intuitive Surgical Operations, Inc. Dual optical path prism and camera in a minimally invasive surgical system
IN2014CN03103A (zh) 2011-10-20 2015-07-03 Koninkl Philips Nv
JP2015510605A (ja) * 2011-12-30 2015-04-09 バイエル・マテリアルサイエンス・リミテッド・ライアビリティ・カンパニーBayer MaterialScience LLC デジタルホログラムの生成のための干渉型空間光変調器
CN104769507B (zh) * 2012-11-15 2017-11-21 英派尔科技开发有限公司 全息图像生成与重构
CN102967367B (zh) 2012-12-05 2014-09-24 钢研纳克检测技术有限公司 一种紫外二维全谱高分辨光学系统
CN203241352U (zh) 2013-05-30 2013-10-16 天津美时资讯科技有限公司 近红外谷物分拣装置
CN103344416A (zh) 2013-06-28 2013-10-09 中国科学院长春光学精密机械与物理研究所 一种体全息透射光栅衍射效率测试仪
CN103365196B (zh) 2013-07-19 2016-12-28 京东方科技集团股份有限公司 全息再现装置和再现方法以及全息实现设备和实现方法
DE102014200915A1 (de) 2014-01-20 2015-07-23 Siemens Aktiengesellschaft Verfahren zum Bereitstellen eines räumlichen anatomischen Modells eines Körperteils eines Patienten
CN103941568B (zh) 2014-03-21 2016-06-22 北京工业大学 多维自动超分辨率数字全息成像装置及方法
CN105444886B (zh) 2015-11-25 2018-03-20 福州大学 一种基于体积相位全息光栅的新型单色仪的实现方法
CN105898217B (zh) * 2016-04-14 2019-08-06 京东方科技集团股份有限公司 全息操作设备及控制设备、全息操作方法及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1227635A (zh) * 1996-08-06 1999-09-01 康斯坦丁·罗格兹 全息大图象产生系统
CN101566823A (zh) * 2009-06-05 2009-10-28 上海大学 真彩色三维物体全息显示方法及装置
CA2727902A1 (en) * 2011-01-14 2012-07-14 Eduard Zvenyhorodskyy Digital holography (dh) system for recording and reconstruction of computer-processed hologram
CN102129211A (zh) * 2011-02-28 2011-07-20 深圳大学反光材料厂 合成全息图的制作方法
WO2013080883A1 (ja) * 2011-11-29 2013-06-06 国立大学法人京都工芸繊維大学 3次元ホログラフィック表示システム、及び3dディスプレイ装置
US20130148183A1 (en) * 2011-12-13 2013-06-13 The Arizona Board Of Regents On Behalf Of The Univ Method of reconstructing a holographic image and apparatus therefor
CN105739281A (zh) * 2016-04-14 2016-07-06 京东方科技集团股份有限公司 图像显示系统以及图像显示方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109636895A (zh) * 2018-10-31 2019-04-16 北京航天晨信科技有限责任公司 一种全息显示方法和电子沙盘装置
CN109636895B (zh) * 2018-10-31 2023-11-17 北京航天晨信科技有限责任公司 一种全息显示方法和电子沙盘装置

Also Published As

Publication number Publication date
CN105739281A (zh) 2016-07-06
US10663922B2 (en) 2020-05-26
CN105739281B (zh) 2018-12-21
US20180203413A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
WO2017177720A1 (zh) 图像显示系统以及图像显示方法
JP7311581B2 (ja) 正しい単眼奥行き手がかりを持つニアアイシーケンシャルライトフィールドプロジェクタ
CN101371204B (zh) 用于景象全息重建的投影装置
JP2022141630A (ja) ウェアラブルヘッドアップディスプレイにおけるアイボックス拡張のためのシステム、機器、及び方法
CN101449214B (zh) 再现场景的全息投射装置
JP7167348B2 (ja) 多焦点平面ディスプレイシステム及び装置
US20110261154A1 (en) Light shift compensation device of image composition device for multicolor holography
US9013641B2 (en) Projection type image display device
JP2003248270A (ja) 照射システム及びこれを備えたプロジェクションディスプレイ装置
WO2017177721A1 (zh) 全息操作设备及控制设备、全息操作方法及控制方法
US10754074B2 (en) Holographic display apparatus for providing expanded viewing window
KR20150033501A (ko) 광시야각 홀로그래픽 디스플레이 장치
JP2024036334A (ja) Rgb照明器のための方法およびシステム
US9581966B1 (en) Systems and methodologies related to 3-D imaging and viewing
JP2001350395A (ja) ホログラフィックステレオグラム露光装置及び方法、並びにホログラフィックステレオグラム作成システム
KR101429493B1 (ko) 디지털 이미지에 기반을 둔 홀로그래픽 스테레오그램의 마스터 홀로그램을 제작하는 시스템
US20150177687A1 (en) Hologram recording apparatus for recording holographic element images on partitioned hologram film
CN218122454U (zh) 投影光机
TWI625552B (zh) 立體影像裝置
JP4894046B2 (ja) カラー電子ホログラフィ表示装置
US20110249097A1 (en) Device for recording, remotely transmitting and reproducing three-dimensional images
CN114121047B (zh) 体全息存储系统和电子设备
KR20170072114A (ko) 내부 전반사 (tir) 구조를 갖는 디지털 홀로그래픽 디스플레이 장치 및 방법
CN118295226A (zh) 一种大视场全息视频显示装置的光路成像系统
JP2023097562A (ja) インコヒーレントデジタルホログラフィ撮像装置および撮像方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15538310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781699

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17781699

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17781699

Country of ref document: EP

Kind code of ref document: A1