WO2017177582A1 - 实现运动设备速度测量的方法和装置 - Google Patents

实现运动设备速度测量的方法和装置 Download PDF

Info

Publication number
WO2017177582A1
WO2017177582A1 PCT/CN2016/093073 CN2016093073W WO2017177582A1 WO 2017177582 A1 WO2017177582 A1 WO 2017177582A1 CN 2016093073 W CN2016093073 W CN 2016093073W WO 2017177582 A1 WO2017177582 A1 WO 2017177582A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion
speed
axis acceleration
linear
motion data
Prior art date
Application number
PCT/CN2016/093073
Other languages
English (en)
French (fr)
Inventor
宋志聪
陈辉
Original Assignee
深圳市酷浪云计算有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市酷浪云计算有限公司 filed Critical 深圳市酷浪云计算有限公司
Publication of WO2017177582A1 publication Critical patent/WO2017177582A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P7/00Measuring speed by integrating acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/46Measurement devices associated with golf clubs, bats, rackets or the like for measuring physical parameters relating to sporting activity, e.g. baseball bats with impact indicators or bracelets for measuring the golf swing
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0003Analysing the course of a movement or motion sequences during an exercise or trainings sequence, e.g. swing for golf or tennis
    • A63B24/0006Computerised comparison for qualitative assessment of motion sequences or the course of a movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • A63B60/06Handles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C1/00Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people
    • G07C1/22Registering, indicating or recording the time of events or elapsed time, e.g. time-recorders for work people in connection with sports or games
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/02Tennis
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/04Badminton
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/32Golf
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/30Speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Definitions

  • the present invention relates to the field of interactive application technologies, and in particular, to a method and apparatus for implementing motion measurement of a motion device.
  • the speed of the motion state is captured during use of the exercise device, thereby enabling speed measurement of the exercise device.
  • the speed measurement of existing sports equipment is to calculate the linear speed of the sports equipment by calculating the ratio of the distance to the time by the stopwatch counter.
  • the distance to the range of motion is first obtained, and then the stopwatch counter is used to calculate the speed, but this method has a higher error due to the stopwatch counter, and correspondingly, the speed measured for the exercise device also exists. Defects with low reliability.
  • a method for achieving speed measurement of a sports device comprising:
  • the linear velocity and the rotational speed are synthesized to obtain the motion speed of the motion device.
  • the method further includes:
  • Wireless transmission is performed between the terminal performing the motion device tracking, and the collected motion data is transmitted to the terminal performing the motion device tracking.
  • the method before the step of calculating the linear velocity and the rotational speed of the motion device according to the triaxial acceleration in the motion data, the method further includes:
  • the noise in the motion data is removed by filtering the motion data.
  • the step of calculating the linear velocity and the rotational speed of the motion device according to the triaxial acceleration in the motion data comprises:
  • the linear motion-related speed calculation and the rotational motion-related speed calculation are respectively performed by the three-axis accelerations in the motion data, and the linear motion-related speed and the rotational speed are obtained;
  • Integrating the speed associated with the linear motion over time results in a linear velocity of the motion device.
  • the exercise device is a badminton racket
  • the three-axis acceleration in the motion data respectively performs a linear motion-related speed operation and a rotational motion-related speed operation to obtain a linear motion-related speed and
  • the steps of rotating speed include:
  • a device for realizing speed measurement of a sports device comprising:
  • Obtaining a module for performing motion device tracking acquiring motion data of the motion device, where the motion data is collected by a sensor at a bottom of the motion device;
  • An operation module configured to calculate a linear speed and a rotation speed of the motion device according to the three-axis acceleration in the motion data
  • a synthesis module for synthesizing the linear velocity and the rotational velocity to obtain a motion speed of the motion device.
  • the apparatus further includes:
  • a sensor for collecting motion data by a sensor placed at the bottom of the exercise device a sensor for collecting motion data by a sensor placed at the bottom of the exercise device
  • a transmission module configured to perform wireless transmission between the terminal for performing motion device tracking, and transmit the collected motion data to the terminal for performing motion device tracking.
  • the apparatus further includes:
  • a filtering module configured to remove noise in the motion data by filtering motion data.
  • the operation module includes:
  • a speed operation unit configured to perform a linear motion-related speed operation and a rotational motion-related speed calculation by three-axis accelerations in the motion data, to obtain a linear motion-related speed and a rotational speed
  • an integrating unit for integrating the linear motion-related speed in time to obtain a linear velocity of the motion device.
  • the exercise device is a badminton racket
  • the speed operation unit includes:
  • a rotation operation subunit configured to obtain a Z-axis acceleration of the badminton racket in a three-dimensional space from the three-axis acceleration in the motion, and obtain a rotation speed corresponding to the badminton racket according to the Z-axis acceleration calculation;
  • a linear operation subunit for obtaining an X-axis acceleration and a Y-axis acceleration of the badminton racket in three-dimensional space from the three-axis acceleration in the motion, and calculating the badminton racket according to the X-axis acceleration and the Y-axis acceleration Corresponding linear motion related speed.
  • the corresponding motion data is acquired by the sensor at the bottom of the motion device, and the linear speed and the rotational speed of the motion device are calculated according to the triaxial acceleration in the motion data, and the motion device can be obtained by synthesizing.
  • the speed of the movement, the speed measurement of the sports equipment combines the linear speed and the rotational speed of the sports equipment, the accuracy is improved, and the reliability of the speed measurement in the sports equipment is also improved accordingly, and the intelligent tracking function of the sports equipment is enhanced.
  • FIG. 1 is a flow chart of a method for implementing motion measurement of a motion device in an embodiment
  • FIG. 2 is a flow chart of a method for implementing motion measurement of a motion device in another embodiment
  • FIG. 3 is a flow chart of a method for implementing motion measurement of a motion device in another embodiment
  • FIG. 4 is a flow chart of the method for calculating the linear speed and the rotational speed of the motion device according to the triaxial acceleration in the motion data in FIG. 1;
  • FIG. 5 is a flow chart of a method for calculating a speed and a rotational speed associated with a linear motion by performing a linear motion-related speed calculation and a rotational motion-related speed calculation by three-axis accelerations in the motion data;
  • FIG. 6 is a schematic structural diagram of an apparatus for realizing speed measurement of a motion device in an embodiment
  • FIG. 7 is a schematic structural diagram of an apparatus for realizing speed measurement of a motion device in another embodiment
  • Figure 8 is a schematic structural view of the acquisition module of Figure 6;
  • Figure 9 is a schematic structural view of the arithmetic module of Figure 6;
  • Figure 10 is a block diagram showing the structure of the speed operation unit of Figure 9.
  • the method for implementing the speed measurement of the motion device is as shown in FIG. 1, and includes:
  • Step 110 Perform motion data tracking of the motion device, and the motion data is collected by a sensor at the bottom of the motion device.
  • Sports equipment is a sports equipment that is used by users to provide athletic functions.
  • the referred sports equipment can be a badminton racket, a tennis racket and a golf club.
  • the tracking of the sports equipment can be performed to know the speed of the sports equipment in motion, which is the speed at which the user controls the sports equipment.
  • the measured speed can be used as the swing speed of the user; for the golf club, the measured speed can be used as the swing speed of the user.
  • a sensor is arranged at the bottom of the exercise device for collecting motion data, which is used to implement speed calculation of the motion device.
  • Step 130 calculating the linear velocity and the rotational speed of the motion device based on the three-axis acceleration in the motion data.
  • the motion data includes three-axis acceleration.
  • the linear velocity and the rotational velocity are calculated by the three-axis acceleration of the motion data after the motion data corresponding to the motion device is obtained.
  • the linear velocity refers to the speed associated with the linear motion in the motion of the motion device
  • the rotational velocity is the velocity associated with the rotational motion in the motion of the motion device.
  • the motion of the motion device can be decomposed into linear motion and rotational motion. Therefore, the calculation of the linear velocity and the rotational speed will facilitate the measurement of the most accurate speed and improve the accuracy of the tracking of the sports equipment.
  • Step 150 synthesizing the linear velocity and the rotational velocity to obtain the motion velocity of the motion device.
  • the combination of the linear speed and the rotational speed is performed according to the preset weight to obtain the speed measured in the currently performed motion device tracking, thereby realizing the state display of the motion of the user using the motion device, for example, outputting the current corresponding swing Speed or swing speed.
  • v represents the measured velocity
  • v 1 represents the linear velocity
  • v n represents the rotational velocity
  • n and m represent the weight
  • n+m 1.
  • the tracking of the motion device can be realized at the speed, the speed change of the motion device is captured, the motion parameter of the user is accurately provided, and the maneuverability of the motion device is improved.
  • step 110 the method as described above is as shown in FIG. 2, and further includes:
  • step 210 motion data acquisition is performed by a sensor placed at the bottom of the exercise device.
  • the sensor placed at the bottom of the exercise device may be an acceleration sensor or a three-axis acceleration sensor.
  • the sensor may be configured according to actual precision requirements.
  • Step 230 Perform wireless transmission with the terminal that performs the motion device tracking, and transmit the collected motion data to the terminal that performs the motion device tracking.
  • the terminal may be a portable device such as a smart phone or a tablet computer.
  • the collected motion data is transmitted to the terminal by wireless transmission, so as to perform the motion device speed measurement.
  • a sensor-based tracker is provided at the bottom of the exercise device and has a wireless transmission function.
  • the terminal for realizing the speed measurement of the motion device is matched with the tracker to realize the speed measurement of the motion device, and then the speed change monitoring is performed in real time.
  • the method as described above is as shown in FIG. 3, and further includes:
  • Step 310 Receive motion data of the exercise device.
  • step 330 the motion data is stored in a preset array to update the motion data stored in the array.
  • the motion data is received, and the received motion data is stored in a preset array for subsequent speed motion.
  • the preset array is used for storing the motion data, and the data in the array is cyclically updated by the motion data received each time. In this way, the resources occupied by the speed measurement of the motion device in the terminal can be saved. , thereby improving processing efficiency.
  • the method as described above further includes the step of removing noise in the motion data by filtering the motion data.
  • the motion data collected by the sensor will have some noise. Therefore, the speed calculation after filtering the motion data can be effectively improved.
  • the filtering of the motion data may be a moving average filtering that removes the maximum and minimum values in a specific implementation.
  • the maximum and minimum values refer to the maximum and minimum values in the motion data.
  • the received motion data is stored in a preset array, and the filtering referred to at this time is performed on the motion data stored in the array.
  • the maximum value and the minimum value are found, and are eliminated, and the remaining motion data is subjected to moving average filtering.
  • the preset array sets the amount of data that can be stored. For example, five motion data can be stored in the array and cyclically updated after being stored.
  • motion data acquisition will be performed at intervals, where The interval time can be 5ms; correspondingly, the motion data received will also be intervald, that is, the motion data is received every 5ms, and the received motion data is stored in the array, and the loop is updated.
  • the interval time can be 5ms; correspondingly, the motion data received will also be intervald, that is, the motion data is received every 5ms, and the received motion data is stored in the array, and the loop is updated.
  • Array can be 5ms
  • a 0 , a 1 , a 2 , a 3 and a 4 are the motion data stored in the array
  • max is the maximum value of the motion data in the array
  • min is the minimum value of the motion data in the array
  • a is the filtering The resulting motion data.
  • the method as described above further comprises: performing linear motion related symmetry processing on the motion data to obtain symmetric motion data.
  • the acceleration related to the linear motion is accumulated from the front and rear ends toward the middle unit direction to find a point, which can make the accumulated values at both ends the same, and the point is the median point.
  • the speed corresponding to the median point is the maximum speed.
  • the median point related to the linear motion is obtained, and the pre-processing of the received motion data is completed, and the speed calculation related to the linear motion can be performed.
  • step 130 is as shown in FIG. 4 and includes:
  • step 131 the linear motion-related speed calculation and the rotational motion-related speed calculation are respectively performed by the three-axis acceleration in the motion data, and the linear motion-related speed and the rotational speed are obtained.
  • the motion data includes three-axis acceleration
  • the linear motion-related acceleration and the centripetal acceleration can be obtained from the motion data
  • the speed and the rotational speed related to the linear motion can be obtained by the calculation.
  • the three-axis acceleration is based on the three-dimensional space constructed by the sensor, so the linear motion phase will be performed in this three-dimensional space.
  • the three-dimensional space includes an X-axis, a Y-axis, and a Z-axis
  • the Z-axis is parallel to a rod direction of the motion device, for example, a club direction of the badminton racket
  • a linear motion-related operation is performed on a plane constructed by the X-axis and the Y-axis
  • the rotation speed is the speed corresponding to the Z axis.
  • the linear motion related operations and the rotational motion related operations performed by the three-axis acceleration in the motion data can accurately evaluate the motion of the exercise device.
  • step 133 the speed associated with the linear motion is integrated over time to obtain the linear velocity of the motion device.
  • the speed is cleared at the beginning of a single motion, so that the subsequent calculations are re-integrated, and then the integral error is cleared, that is, once the sensor is detected to be at a standstill, the integral is cleared.
  • the exercise performed in the exercise device is a short-term exercise, for example, the swing motion of the badminton racket
  • the duration of the single swing action is less than one, so the re-integration at the completion of each swing action will be with the badminton.
  • the characteristics of the motion of the shot are adapted, and in this way, the accuracy of the speed measurement of the exercise equipment is further ensured.
  • the exercise device is a badminton racket
  • step 131 is as shown in FIG. 5, and includes:
  • step 1311 the Z-axis acceleration of the badminton racket in the three-dimensional space is obtained from the three-axis acceleration in motion, and the rotation speed corresponding to the badminton racket is obtained according to the Z-axis acceleration calculation.
  • the triaxial acceleration is acquired by a sensor placed at the bottom of the motion device.
  • a sensor placed at the bottom of the motion device.
  • coordinate conversion is required.
  • the rod direction of the motion device is transformed into a Z-axis by coordinates to obtain an acceleration corresponding to the three-dimensional space, thereby obtaining a Z-axis acceleration in a three-dimensional space, and the Z-axis acceleration is a rotational acceleration.
  • a n is the rotational acceleration
  • v n is the rotational speed
  • R is the radius from the rotational center of the sensor.
  • the three-axis acceleration obtained by the sensor is consistent with the three-dimensional space of the motion device, whereby the rotational acceleration is obtained directly from the motion data.
  • step 1313 the X-axis acceleration and the Y-axis acceleration of the badminton racket in three-dimensional space are obtained from the three-axis acceleration in motion, and the speed related to the linear motion corresponding to the badminton racket is calculated according to the X-axis acceleration and the Y-axis acceleration.
  • the X-axis acceleration and the Y-axis acceleration of the badminton racket in the three-dimensional space are obtained by coordinate conversion or direct acquisition, thereby realizing the speed calculation.
  • the linear motion related acceleration operation is performed according to the X-axis acceleration and the Y-axis acceleration, that is, Where a x is the X-axis acceleration and a x is the Y-axis acceleration.
  • the linear motion is mainly determined by the X-axis acceleration and the Y-axis acceleration. Therefore, the Z-axis acceleration can be ignored to simplify the calculation process and reduce the computational complexity while ensuring the accuracy of the operation.
  • corresponding to the rotational motion is mainly determined by the Z-axis acceleration, and the linear motion of the Z-axis can be ignored.
  • the speed measurement in the exercise device is conveniently and simply performed, and the self-motion parameter can be provided during the user's swing or swing, which enhances the performance of the exercise device without causing High cost.
  • a device for implementing motion device speed measurement is further provided.
  • the device includes an acquisition module 410, an operation module 430, and a synthesis module 450, wherein:
  • the obtaining module 410 is configured to perform motion data tracking of the motion device, and the motion data is collected by a sensor at the bottom of the motion device.
  • the operation module 430 is configured to calculate the linear velocity and the rotational speed of the motion device according to the three-axis acceleration in the motion data.
  • the synthesizing module 450 is configured to synthesize the linear speed and the rotational speed to obtain the motion speed of the motion device.
  • the apparatus as described above further includes a sensor 510 and a transmission module 530, wherein:
  • the sensor 510 is configured to collect motion data by a sensor placed at the bottom of the motion device.
  • the transmission module 530 is configured to perform wireless transmission with the terminal that performs the motion device tracking, and transmit the collected motion data to the terminal that performs the motion device tracking.
  • the acquisition module 410 includes a receiving unit 411 and a data storage unit 413, wherein:
  • the receiving unit 411 is configured to receive motion data of the motion device.
  • the data storage unit 413 is configured to store the motion data in a preset array to update the motion data in the array.
  • the apparatus as described above further includes a filtering module for removing noise in the motion data by filtering the motion data.
  • the operation module 430 includes a speed operation unit 431 and an integration unit 433, wherein:
  • the speed operation unit 431 is configured to perform a linear motion-related speed calculation and a rotational motion-related speed calculation from the three-axis accelerations in the motion data to obtain a linear motion-related speed and a rotational speed.
  • the integrating unit 433 is configured to integrate the linear motion-related speed in time to obtain a linear velocity of the motion device.
  • the exercise device is a badminton racket
  • the speed operation unit 431 includes a rotation operation sub-unit 4311 and a line operation sub-unit 4313 as shown in FIG. 10, wherein:
  • the rotation operation sub-unit 4311 is configured to obtain the Z-axis acceleration of the badminton racket in the three-dimensional space from the three-axis acceleration in motion, and obtain the rotation speed corresponding to the badminton racket according to the Z-axis acceleration calculation.
  • the linear operation sub-unit 4313 is configured to obtain the X-axis acceleration and the Y-axis acceleration of the badminton racket in three-dimensional space from the three-axis acceleration in motion, and calculate the speed related to the linear motion corresponding to the badminton racket according to the X-axis acceleration and the Y-axis acceleration. .
  • the completion of the hardware may also be performed by a program to instruct related hardware.
  • the program may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be a read only memory, a magnetic disk or an optical disk.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种实现运动设备速度测量的方法及装置,该方法包括:在进行的运动设备追踪中,获取所述运动设备的运动数据,所述运动数据由所述运动设备底部的传感器采集得到(110);根据所述运动数据中的三轴加速度运算所述运动设备的线性速度和旋转速度(130);合成所述线性速度和旋转速度得到所述运动设备的运动速度(150)。该方法和装置能够提高运动设备中速度测量的可信度。

Description

实现运动设备速度测量的方法和装置 技术领域
本发明涉及交互应用技术领域,特别涉及一种实现运动设备速度测量的方法和装置。
背景技术
随着各类运动设备的智能化发展,越来越多的运动设备配备了智能装备,以用于实现运动设备的智能追踪功能。例如,在运动设备的使用中捕捉运动状态的速度变化,进而实现运动设备的速度测量。
现有的运动设备的速度测量是通过秒表计数器计算路程和时间的比值来求出运动设备的直线速度。
具体的,首先获取到运动范围的路程,再由秒表计数器来计时,进而计算出速度,但此方式由于秒表计数器存在着较高误差,相应的,为运动设备所测量得到的速度也存在着可信度不高的缺陷。
发明内容
基于此,有必要提供一种实现运动设备速度测量的方法,所述方法能够提高运动设备中速度测量的可信度。
另外,还有必要提供一种实现运动设备速度测量的装置,所述装置能够提高运动设备中速度测量的可信度。
为解决上述技术问题,将采用如下技术方案:
一种实现运动设备速度测量的方法,包括:
进行的运动设备追踪中,获取所述运动设备的运动数据,所述运动数据由所述运动设备底部的传感器采集得到;
根据所述运动数据中的三轴加速度运算所述运动设备的线性速度和旋转速度;
合成所述线性速度和旋转速度得到所述运动设备的运动速度。
在其中一个实施例中,所述进行的运动设备追踪中,获取所述运动设备 的运动数据的步骤之前,所述方法还包括:
通过置于运动设备底部的传感器进行运动数据的采集;
与进行运动设备追踪的终端之间进行无线传输,将采集得到的所述运动数据传输至所述进行运动设备追踪的终端。
在其中一个实施例中,所述根据所述运动数据中的三轴加速度运算所述运动设备的线性速度和旋转速度的步骤之前,所述方法还包括:
通过对运动数据进行滤波,去除所述运动数据中的噪声。
在其中一个实施例中,所述根据所述运动数据中的三轴加速度运算所述运动设备的线性速度和旋转速度的步骤包括:
由所述运动数据中的三轴加速度分别进行直线运动相关的速度运算和旋转运动相关的速度运算,得到直线运动相关的速度和旋转速度;
在时间上对所述直线运动相关的速度进行积分得到所述运动设备的线性速度。
在其中一个实施例中,所述运动设备为羽毛球拍,所述由所述运动数据中的三轴加速度分别进行直线运动相关的速度运算和旋转运动相关的速度运算,得到直线运动相关的速度和旋转速度的步骤包括:
由所述运动中的三轴加速度得到所述羽毛球拍在三维空间中的Z轴加速度,根据所述Z轴加速度运算得到所述羽毛球拍对应的旋转速度;
由所述运动中的三轴加速度得到所述羽毛球拍在三维空间中的X轴加速度和Y轴加速度,根据所述X轴加速度和Y轴加速度运算得到所述羽毛球拍对应的直线运动相关的速度。
一种实现运动设备速度测量的装置,包括:
获取模块,用于进行的运动设备追踪中,获取所述运动设备的运动数据,所述运动数据由所述运动设备底部的传感器采集得到;
运算模块,用于根据所述运动数据中的三轴加速度运算所述运动设备的线性速度和旋转速度;
合成模块,用于合成所述线性速度和旋转速度得到所述运动设备的运动速度。
在其中一个实施例中,所述装置还包括:
传感器,用于通过置于运动设备底部的传感器进行运动数据的采集;
传输模块,用于与进行运动设备追踪的终端之间进行无线传输,将采集得到的所述运动数据传输至所述进行运动设备追踪的终端。
在其中一个实施例中,所述装置还包括:
滤波模块,用于通过对运动数据进行滤波,去除所述运动数据中的噪声。
在其中一个实施例中,所述运算模块包括:
速度运算单元,用于由所述运动数据中的三轴加速度分别进行直线运动相关的速度运算和旋转运动相关的速度运算,得到直线运动相关的速度和旋转速度;
积分单元,用于在时间上对所述直线运动相关的速度进行积分得到所述运动设备的线性速度。
在其中一个实施例中,所述运动设备为羽毛球拍,所述速度运算单元包括:
旋转运算子单元,用于由所述运动中的三轴加速度得到所述羽毛球拍在三维空间中的Z轴加速度,根据所述Z轴加速度运算得到所述羽毛球拍对应的旋转速度;
直线运算子单元,用于由所述运动中的三轴加速度得到所述羽毛球拍在三维空间中的X轴加速度和Y轴加速度,根据所述X轴加速度和Y轴加速度运算得到所述羽毛球拍对应的直线运动相关的速度。
由上述技术方案可知,进行的运动设备追踪中,由运动设备底部的传感器获取相应的运动数据,根据运动数据中的三轴加速度运算运动设备的线性速度和旋转速度,并合成即可得到运动设备的运动速度,此运动设备的速度测量综合了运动设备的线性速度和旋转速度,准确度得到提高,运动设备中速度测量的可信度也得到相应提高,增强了运动设备的智能追踪功能。
附图说明
图1是一个实施例中实现运动设备速度测量的方法流程图;
图2是另一个实施例中实现运动设备速度测量的方法流程图;
图3是另一个实施例中实现运动设备速度测量的方法流程图;
图4是图1中根据运动数据中的三轴加速度运算运动设备的线性速度和旋转速度的方法流程图;
图5是图4中由运动数据中的三轴加速度分别进行直线运动相关的速度运算和旋转运动相关的速度运算,得到直线运动相关的速度和旋转速度的方法流程图;
图6是一个实施例中实现运动设备速度测量的装置的结构示意图;
图7是另一个实施例中实现运动设备速度测量的装置的结构示意图;
图8是图6中获取模块的结构示意图;
图9是图6中运算模块的结构示意图;
图10是图9中速度运算单元的结构示意图。
具体实施方式
体现本发明特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本发明。
在一个实施例中,具体的,该实现运动设备速度测量的方法如图1所示,包括:
步骤110,进行的运动设备追踪中,获取运动设备的运动数据,运动数据由运动设备底部的传感器采集得到。
运动设备是供用户使用,以提供运动功能的运动器材。所指的运动设备可以是羽毛球拍、网球拍和高尔夫球杆。在人们使用运动设备进行运动的过程中,可进行运动设备的追踪,进而获知运动中的运动设备速度,此速度即为用户操控运动设备的速度。
具体的,对于羽毛球拍和网球拍而言,所测量得到的速度即可作为用户的挥拍速度;对于高尔夫球杆而言,所测量得到的速度即可作为用户的挥杆速度。
运动设备底部配置了传感器,该传感器用于进行运动数据的采集,该运动数据用于实现运动设备的速度运算。
步骤130,根据运动数据中的三轴加速度运算运动设备的线性速度和旋转速度。
运动数据包括三轴加速度。在对运动设备进行运动追踪的过程中,在获得到运动设备所对应的运动数据之后,即由运动数据的三轴加速度进行线性速度和旋转速度的运算。
其中,线性速度指的是运动设备的运动中与直线运动相关的速度;旋转速度则是运动设备的运动中与旋转运动相关的速度。运动设备的运动可被分解为直线运动和旋转运动,因此,进行线性速度和旋转速度的运算,将有利于测量得到最为精准的速度,提高运动设备追踪的准确性。
步骤150,合成线性速度和旋转速度得到运动设备的运动速度。
根据预置的权值进行线性速度和旋转速度的合成,以得到当前进行的运动设备追踪中测量得到的速度,进而实现用户使用运动设备进行运动的状态展示,例如,输出当前所对应的挥拍速度或者挥杆速度。
其中,线性速度和旋转速度的合成可由下述公式实现:
v=nv1+mvn
其中,v表示测量得到的速度,v1表示线性速度,vn表示旋转速度,n和m表示权值,并且n+m=1。
通过如上所述的过程,即可在速度上实现运动设备的追踪,捕捉运动设备的速度变化,为用户的运动准确提供自身的运动参数,有得于提高运动设备的可操控性。
在一个实施例中,步骤110之前,如上所述的方法如图2所示,还包括:
步骤210,通过置于运动设备底部的传感器进行运动数据采集。
置于运动设备底部的传感器可以是加速度传感器或者三轴加速度传感器,在具体实现中可根据实际精度的需要进行传感器的配置。
步骤230,与进行运动设备追踪的终端之间进行无线传输,将采集得到的运动数据传输至进行运动设备追踪的终端。
运动设备速度测量的实现将是由终端实现的,例如,该终端可以是智能手机、平板电脑等便携设备。
运动设备侧,在通过置于底部的传感器实现运动数据采集之后,通过无线传输将采集得到的运动数据传输至终端,以便于进行运动设备速度测量。
换而言之,运动设备底部设置了以传感器为主体的追踪器,并具备无线传输功能。相对应的,用于实现运动设备速度测量的终端与追踪器相适配,以实现运动设备的速度测量,进而实时进行速度变化的监测。
进一步的,在本实施例中,步骤230之后,如上所述的方法如图3所示,还包括:
步骤310,接收运动设备的运动数据。
步骤330,将运动数据存入预置的数组中,以更新数组中存放的运动数据。
进行运动设备追踪的终端在与运动设备侧建立连接之后,进行运动数据的接收,并将接收所得到的运动数据存入预置的数组,以供后续进行速度的运动。
所预置的数组用于进行运动数据的存放,并通过每次所进行的运动数据接收,进行数组中数据的循环更新,通过此方式,能够有节省终端中进行运动设备速度测量所占用的资源,进而提高处理效率。
在一个实施例中,步骤130之前,如上所述的方法还包括:通过对运动数据进行滤波,去除运动数据中的噪声的步骤。
传感器采集得到的运动数据会存在一定的噪声,因此,对运动数据进行滤波之后再进行速度的运算将能够有效提高。
对运动数据所进行的滤波在具体实现中,可以是去掉最大值和最小值再进行的滑动平均值滤波。其中,最大值和最小值指的是运动数据中的最大值和最小值。
进一步的,终端中,接收的运动数据被存放于预置的数组,此时所指的滤波是针对数组中存放的运动数据进行的。
具体的,在预置的数组中,找出最大值和最小值,并剔除,对余下的运动数据进行滑动平均值滤波即可。
在优选的实施例中,预置的数组设定了可以存放的数据数量,例如,数组中可存放5个运动数据,并在存放满后循环更新。
例如,在一具体实现中,运动数据采集将是间隔进行的,其中,所预置 的间隔时间可以是5ms;与之相对应的,所进行的运动数据接收也将是间隔进行的,即每隔5ms接收一次运动数据,并将接收到的运动数据存入到数组中,循环更新数组。
在此数组中,找出最大值和最小值,使用余下的3个运动数据求和后求平均,以得到去掉最大值和最小值的滑动平均值滤波。详细运算过程如下述公式所示:
a=(a0+a1+a2+a3+a4-max-min)/3
其中,a0、a1、a2、a3和a4均为数组中存放的运动数据,max则是数组中运动数据的最大值,min是数组中运动数据的最小值,a为滤波所得到的运动数据。
通过此过程,将使得根据运动数据所进地的运算不会受到噪声的影响,进而能够提高运算精度。
在另一个实施例中,步骤130之前,如上所述的方法还包括:对所述运动数据进行直线运动相关的对称处理,以得到对称的运动数据。
在运动设备的实际直线运动过程中,其大都是由静止(速度为0)到运动(速度不为0),再到静止的,因此,实际运动过程一定会有最大速度点,并且所用于进行运算的运动数据应当是对称的,由此方能够与实际运动相符。
具体的,在获得的运动数据中,对直线运动相关的加速,由前后两端向中单位方向累加,以找到一个点,该点能够使得两端累加的数值相同,该点即为中值点,中值点所对应的速度即为最大速度。
通过此过程定位得到直线运动相关的中值点,便完成了接收的运动数据的预处理,进而可进行直线运动相关的速度运算。
在一个实施例中,步骤130如图4所示,包括:
步骤131,由运动数据中的三轴加速度分别进行直线运动相关的速度运算和旋转运动相关的速度运算,得到直线运动相关的速度和旋转速度。
由于运动数据包含三轴加速度,因此,由运动数据即可得到直线运动相关的加速度以及向心加速度,进而由此进行运算得到直线运动相关的速度和旋转速度。
需要特别说明的是,在实现运动设备速度测量的运算中,三轴加速度是以传感器所构建的三维空间基准的,因此将在此三维空间中进行直线运动相 关的运算和旋转运动相关的运算。其中,三维空间包括X轴、Y轴和Z轴,Z轴与运动设备的杆方向平行,例如,羽毛球拍的球杆方向,在X轴和Y轴所构建的平面进行直线运动相关的运算,旋转速度即为Z轴所对应的速度。
通过运动数据中三轴加速度所分别进行的直线运动相关的运算和旋转运动相关的运算,得以为运动设备的的运动进行准确评估。
步骤133,在时间上对直线运动相关的速度进行积分得到运动设备的线性速度。
在运算得到直线运动相关的速度时,需要对此在时间上进行积分,以进一步避免误差的存在,进而提高运算的可靠性。
在此积分过程中,单次运动开始时,都进行速度的清零,以使后续的运算中重新进行积分,进而清除积分误差,即一旦检测到传感器处于静止状态时,积分清零。
并且由于运动设备中进行的运动是短时运动,例如,羽毛球拍的挥拍运动,单次挥拍动作的持续时间小于1稍微,因此在每次挥拍动作完成时重新进行积分将是与羽毛球拍的运动特点相适应的,进而通过此方式进一步保障了运动设备速度测量的精准性。
进一步的,在本实施例中,运动设备为羽毛球拍,步骤131如图5所示,包括:
步骤1311,由运动中的三轴加速度得到羽毛球拍在三维空间中的Z轴加速度,根据Z轴加速度运算得到羽毛球拍对应的旋转速度。
三轴加速度是由置于运动设备底部的传感器采集得到的,对于传感器,如果其三轴加速度所对应的三维空间中Z轴并不与运动设备的杆方向的相符,则需要进行坐标换算,将运动设备的杆方向通过坐标变换为Z轴,以得到与三维空间相符的加速度,进而得到三维空间中的Z轴加速度,Z轴加速度即为旋转加速度。
通过旋转加速度与旋转速度之间的关系即可由获得的旋转加速度运算得到羽毛球拍对应旋转速度,详细的运算过程如下述公式所示:
Figure PCTCN2016093073-appb-000001
其中,an为旋转加速度,vn为旋转速度,R为传感器到旋转中心的半径。
在优选的实施例中,传感器所获得的三轴加速度是与运动设备的三维空间相符的,由此相直接由运动数据获得旋转加速度。
步骤1313,由运动中的三轴加速度得到羽毛球拍在三维空间中的X轴加速度和Y轴加速度,根据X轴加速度和Y轴加速度运算得到羽毛球拍对应的直线运动相关的速度。
与旋转运动相类似的,直线运动所相关的运算中,通过坐标换算或者直接获取的方式得到羽毛球拍在三维空间中的X轴加速度和Y轴加速度,进而实现速度运算。
具体的,首先根据X轴加速度和Y轴加速度进行直线运动相关的加速度运算,即
Figure PCTCN2016093073-appb-000002
其中,ax为X轴加速度,ax为Y轴加速度。
对于羽毛球的挥拍而言,直线运动主要是由X轴加速度和Y轴加速度决定,因此,可忽略Z轴加速度,以在保证运算准确性的同时,简化运算过程,降低运算的复杂度。
另外,与之相对应的,旋转运动主要是由Z轴加速度所决定的,可以忽略Z轴的直线运动。
需要说明的是,对于所进行的直线运动相关的运算和旋转运动相关的运算,即步骤1311和步骤1313的执行可同时进行,也可先后进行,在此不进行限定。
通过如上所述的过程,即可实现羽毛球拍、网球拍和高尔夫球杆等运动设备的速度测量,进而实时获知精准的挥拍速度或者挥杆速度。
通过如上所述的过程,方便简单地进行了运动设备中速度的测量,能够在用户挥拍或者挥杆的过程中提供自身运动参数,增强了运动设备的性能,并且不会由此带来较高成本。
与现有的速度测量的实现相比较,并不会与秒表计数器相类似的,受到较大人为因素的影响,并且操作简单;也不会与陀螺仪所实现的速度测量相类似的,受到高成本和量程限制的影响,通过如上所述的过程,为运动设备提供了精准的速度测量。
在一个实施例中,还相应地提供了一种实现运动设备速度测量的装置,该装置如图6所示,包括获取模块410、运算模块430和合成模块450,其中:
获取模块410,用于进行的运动设备追踪中,获取运动设备的运动数据,运动数据由运动设备底部的传感器采集得到。
运算模块430,用于根据运动数据中的三轴加速度运算运动设备的线性速度和旋转速度。
合成模块450,用于合成线性速度和旋转速度得到运动设备的运动速度。
在一个实施例中,如图7所示,如上所述的装置还包括传感器510和传输模块530,其中:
传感器510,用于通过置于运动设备底部的传感器进行运动数据的采集。
传输模块530,用于与进行运动设备追踪的终端之间进行无线传输,将采集得到的运动数据传输至进行运动设备追踪的终端。
在一个实施例中,获取模块410如图8所示,包括接收单元411和数据存入单元413,其中:
接收单元411,用于接收运动设备的运动数据。
数据存入单元413,用于将运动数据存入预置的数组中,以更新数组中的运动数据。
在另一个实施例中,如上所述的装置还包括滤波模块,该滤波模块用于通过对运动数据进行滤波,去除运动数据中的噪声。
在一个实施例中,运算模块430如图9所示,包括速度运算单元431和积分单元433,其中:
速度运算单元431,用于由运动数据中的三轴加速度分别进行直线运动相关的速度运算和旋转运动相关的速度运算,得到直线运动相关的速度和旋转速度。
积分单元433,用于在时间上对直线运动相关的速度进行积分得到运动设备的线性速度。
进一步的,在本实施例中,运动设备为羽毛球拍,速度运算单元431如图10所示,包括旋转运算子单元4311和直线运算子单元4313,其中:
旋转运算子单元4311,用于由运动中的三轴加速度得到羽毛球拍在三维空间中的Z轴加速度,根据Z轴加速度运算得到羽毛球拍对应的旋转速度。
直线运算子单元4313,用于由运动中的三轴加速度得到羽毛球拍在三维空间中的X轴加速度和Y轴加速度,根据X轴加速度和Y轴加速度运算得到羽毛球拍对应的直线运动相关的速度。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
虽然已参照几个典型实施方式描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (10)

  1. 一种实现运动设备速度测量的方法,其特征在于,包括:
    进行的运动设备追踪中,获取所述运动设备的运动数据,所述运动数据由所述运动设备底部的传感器采集得到;
    根据所述运动数据中的三轴加速度运算所述运动设备的线性速度和旋转速度;
    合成所述线性速度和旋转速度得到所述运动设备的运动速度。
  2. 根据权利要求1所述的方法,其特征在于,所述进行的运动设备追踪中,获取所述运动设备的运动数据的步骤之前,所述方法还包括:
    通过置于运动设备底部的传感器进行运动数据的采集;
    与进行运动设备追踪的终端之间进行无线传输,将采集得到的所述运动数据传输至所述进行运动设备追踪的终端。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述运动数据中的三轴加速度运算所述运动设备的线性速度和旋转速度的步骤之前,所述方法还包括:
    通过对运动数据进行滤波,去除所述运动数据中的噪声。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述运动数据中的三轴加速度运算所述运动设备的线性速度和旋转速度的步骤包括:
    由所述运动数据中的三轴加速度分别进行直线运动相关的速度运算和旋转运动相关的速度运算,得到直线运动相关的速度和旋转速度;
    在时间上对所述直线运动相关的速度进行积分得到所述运动设备的线性速度。
  5. 根据权利要求4所述的方法,其特征在于,所述运动设备为羽毛球拍,所述由所述运动数据中的三轴加速度分别进行直线运动相关的速度运算和旋转运动相关的速度运算,得到直线运动相关的速度和旋转速度的步骤包括:
    由所述运动中的三轴加速度得到所述羽毛球拍在三维空间中的Z轴加速 度,根据所述Z轴加速度运算得到所述羽毛球拍对应的旋转速度;
    由所述运动中的三轴加速度得到所述羽毛球拍在三维空间中的X轴加速度和Y轴加速度,根据所述X轴加速度和Y轴加速度运算得到所述羽毛球拍对应的直线运动相关的速度。
  6. 一种实现运动设备速度测量的装置,其特征在于,包括:
    获取模块,用于进行的运动设备追踪中,获取所述运动设备的运动数据,所述运动数据由所述运动设备底部的传感器采集得到;
    运算模块,用于根据所述运动数据中的三轴加速度运算所述运动设备的线性速度和旋转速度;
    合成模块,用于合成所述线性速度和旋转速度得到所述运动设备的运动速度。
  7. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    传感器,用于通过置于运动设备底部的传感器进行运动数据的采集;
    传输模块,用于与进行运动设备追踪的终端之间进行无线传输,将采集得到的所述运动数据传输至所述进行运动设备追踪的终端。
  8. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    滤波模块,用于通过对运动数据进行滤波,去除所述运动数据中的噪声。
  9. 根据权利要求6所述的装置,其特征在于,所述运算模块包括:
    速度运算单元,用于由所述运动数据中的三轴加速度分别进行直线运动相关的速度运算和旋转运动相关的速度运算,得到直线运动相关的速度和旋转速度;
    积分单元,用于在时间上对所述直线运动相关的速度进行积分得到所述运动设备的线性速度。
  10. 根据权利要求9所述的装置,其特征在于,所述运动设备为羽毛球拍,所述速度运算单元包括:
    旋转运算子单元,用于由所述运动中的三轴加速度得到所述羽毛球拍在 三维空间中的Z轴加速度,根据所述Z轴加速度运算得到所述羽毛球拍对应的旋转速度;
    直线运算子单元,用于由所述运动中的三轴加速度得到所述羽毛球拍在三维空间中的X轴加速度和Y轴加速度,根据所述X轴加速度和Y轴加速度运算得到所述羽毛球拍对应的直线运动相关的速度。
PCT/CN2016/093073 2016-04-11 2016-08-03 实现运动设备速度测量的方法和装置 WO2017177582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610223230.3A CN105664454B (zh) 2016-04-11 2016-04-11 实现运动设备速度测量的方法和装置
CN201610223230.3 2016-04-11

Publications (1)

Publication Number Publication Date
WO2017177582A1 true WO2017177582A1 (zh) 2017-10-19

Family

ID=56308837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093073 WO2017177582A1 (zh) 2016-04-11 2016-08-03 实现运动设备速度测量的方法和装置

Country Status (3)

Country Link
US (1) US10363471B2 (zh)
CN (1) CN105664454B (zh)
WO (1) WO2017177582A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664454B (zh) * 2016-04-11 2019-02-01 深圳市酷浪云计算有限公司 实现运动设备速度测量的方法和装置
CN108152527B (zh) * 2017-12-14 2020-09-25 北京青云航空仪表有限公司 一种基于中值平均滤波的数字测速方法
CN108363053B (zh) * 2017-12-28 2022-07-05 生迪智慧科技有限公司 对象移动的监测方法和装置
CN108888918B (zh) * 2018-05-09 2020-04-17 国家体育总局体育科学研究所 一种用于复杂路径下多目标运动速度测量系统及方法
CN108553870B (zh) * 2018-06-26 2023-04-07 华北理工大学 羽毛球发球训练磁控光电提醒装置
CN108654043B (zh) * 2018-06-26 2023-06-13 华北理工大学 羽毛球发球训练声控辅助装置
EP3872529A1 (fr) * 2020-02-28 2021-09-01 STMicroelectronics (Grenoble 2) SAS Mesures de vitesse

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125499A (ja) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd テニススイング改善支援システム
CN102706301A (zh) * 2012-04-18 2012-10-03 宋子健 一种用于测量球拍六自由度运动数据的方法
CN103591925A (zh) * 2013-11-26 2014-02-19 浙江理工大学 基于三轴加速度传感器的移动平台旋转角度测量方法
CN103721393A (zh) * 2012-10-12 2014-04-16 邓禄普体育用品株式会社 网球挥拍分析装置以及分析方法
JP2015008881A (ja) * 2013-06-28 2015-01-19 カシオ計算機株式会社 状態推定装置、状態推定方法及びプログラム
CN205084344U (zh) * 2015-11-03 2016-03-16 冯建超 羽毛球训练装置
CN105664454A (zh) * 2016-04-11 2016-06-15 深圳市酷浪云计算有限公司 实现运动设备速度测量的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694340A (en) * 1995-04-05 1997-12-02 Kim; Charles Hongchul Method of training physical skills using a digital motion analyzer and an accelerometer
KR20070095407A (ko) * 2005-01-26 2007-09-28 벤틀리 키네틱스 인코포레이티드 운동동작의 분석 및 지도를 위한 방법 및 시스템
US8668595B2 (en) * 2011-04-28 2014-03-11 Nike, Inc. Golf clubs and golf club heads
WO2011003218A1 (zh) * 2009-07-07 2011-01-13 Han Zheng 一种加速度动作识别系统及其方法
EP2592612B1 (en) * 2011-10-14 2018-07-25 Sumitomo Rubber Industries, Ltd. Tennis swing analyzing apparatus, analyzing method, and analyzing program
CN103150036B (zh) * 2013-02-06 2016-01-20 宋子健 一种信息采集系统和方法、人机交互系统和方法及一种鞋
JP2015002912A (ja) * 2013-06-21 2015-01-08 セイコーエプソン株式会社 運動解析装置および運動解析プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125499A (ja) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd テニススイング改善支援システム
CN102706301A (zh) * 2012-04-18 2012-10-03 宋子健 一种用于测量球拍六自由度运动数据的方法
CN103721393A (zh) * 2012-10-12 2014-04-16 邓禄普体育用品株式会社 网球挥拍分析装置以及分析方法
JP2015008881A (ja) * 2013-06-28 2015-01-19 カシオ計算機株式会社 状態推定装置、状態推定方法及びプログラム
CN103591925A (zh) * 2013-11-26 2014-02-19 浙江理工大学 基于三轴加速度传感器的移动平台旋转角度测量方法
CN205084344U (zh) * 2015-11-03 2016-03-16 冯建超 羽毛球训练装置
CN105664454A (zh) * 2016-04-11 2016-06-15 深圳市酷浪云计算有限公司 实现运动设备速度测量的方法和装置

Also Published As

Publication number Publication date
US20170291080A1 (en) 2017-10-12
CN105664454A (zh) 2016-06-15
US10363471B2 (en) 2019-07-30
CN105664454B (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2017177582A1 (zh) 实现运动设备速度测量的方法和装置
AU2020273327B2 (en) Systems and methods of swimming analysis
KR101509472B1 (ko) 운동파라미터 확정방법, 장치와 운동지원방법
US8989441B2 (en) Data acquisition method and device for motion recognition, motion recognition system and computer readable storage medium
US8913134B2 (en) Initializing an inertial sensor using soft constraints and penalty functions
US11896368B2 (en) Systems and methods for determining swimming metrics
Le Sage et al. Embedded programming and real-time signal processing of swimming strokes
JP2021522526A (ja) 泳者のモーションの能力測定基準を系統的に表すためのシステム及び方法
TW201642805A (zh) 可穿戴裝置的失準偵測
WO2015146046A1 (ja) 相関係数補正方法、運動解析方法、相関係数補正装置及びプログラム
WO2017000563A1 (zh) 智能设备的实时定位方法及系统、手机运动姿态的判定方法
JP6024134B2 (ja) 状態検出装置、電子機器、測定システム及びプログラム
CN106730723A (zh) 一种基于智能穿戴设备的兵乓球训练方法和系统
CN107270931A (zh) 一种IOS和android平台通用的步态自相关计步器
WO2015051656A1 (zh) 一种移动智能终端及其计步方法、系统
CN108888918B (zh) 一种用于复杂路径下多目标运动速度测量系统及方法
Le Sage et al. A component based integrated system for signal processing of swimming performance
Le Sage et al. A multi-sensor system for monitoring the performance of elite swimmers
US11222428B2 (en) Determining golf swing characteristics
CN109758737A (zh) 水中运动的姿势矫正装置及方法
CN210078765U (zh) 基于可穿戴传感器的动作捕捉识别与评估装置
CN114602155B (zh) 游泳信息统计方法、计算机可读存储介质和电子设备
WO2016035464A1 (ja) 解析方法、システムおよび解析装置
CN108392805A (zh) 一种高尔夫球挥杆动作分析方法及智能终端
JP6147446B1 (ja) ソフト制約及びペナルティ機能を使用した慣性センサの初期化

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898397

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898397

Country of ref document: EP

Kind code of ref document: A1