WO2017175514A1 - シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品 - Google Patents

シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品 Download PDF

Info

Publication number
WO2017175514A1
WO2017175514A1 PCT/JP2017/007634 JP2017007634W WO2017175514A1 WO 2017175514 A1 WO2017175514 A1 WO 2017175514A1 JP 2017007634 W JP2017007634 W JP 2017007634W WO 2017175514 A1 WO2017175514 A1 WO 2017175514A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass wool
molded product
molded article
extrusion
product
Prior art date
Application number
PCT/JP2017/007634
Other languages
English (en)
French (fr)
Inventor
鉦則 藤田
リー ハン,ウー
Original Assignee
鉦則 藤田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鉦則 藤田 filed Critical 鉦則 藤田
Priority to JP2018509638A priority Critical patent/JP6342102B2/ja
Priority to KR1020187028496A priority patent/KR20180119650A/ko
Priority to CN201780021168.2A priority patent/CN109070424A/zh
Publication of WO2017175514A1 publication Critical patent/WO2017175514A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials

Definitions

  • the present invention relates to a method for manufacturing a molded product on which a wrinkle pattern is formed, and a molded product on which a wrinkle pattern is formed.
  • Molded products obtained by extruding materials such as thermoplastic resins and thermoplastic elastomers into sheets or films are used for various purposes for construction, civil engineering, daily necessities, and agriculture. Moreover, the molded product extruded into the cylindrical body is used for a tube or the like for filling a garbage bag, cosmetics, food, or the like. These molded articles can be produced by extruding a molten thermoplastic resin, thermoplastic elastomer, or other material from the discharge port of the extrusion mold.
  • thermoplastic resins and thermoplastic elastomers have a problem that, depending on the type, there is a blocking phenomenon that adheres to each other when they are stacked and cannot be easily peeled off. Therefore, a natural organic material having at least one selected from silk powder, wool powder and chitin powder and having an average particle size of 30 ⁇ m or less and a water content of 10 wt% or less as a material such as a thermoplastic resin or a thermoplastic elastomer.
  • a method of containing 1 to 40 wt% of fine powder and 5 wt% or less of a heat stabilizer is known (see Patent Document 1).
  • a method of forming a texture pattern on a molded product is known in which a thermoplastic resin film after extrusion is pressed with a pair of rollers, at least one of which is a textured roller (see Patent Document 2).
  • the method of pressing with a wrinkled roller described in Patent Document 2 can be suitably used for a planar molded product extruded by the T-die method.
  • a molded product is manufactured by an inflation method, the molded product is extruded into a cylindrical shape. Therefore, when the molded product extruded into a cylindrical shape is pressed with a roller with a texture, there is a problem that the molded product is bonded.
  • the T-die method when the thickness of the extruded molded product is different, it is necessary to adjust the interval between the wrinkled rollers according to the thickness. Moreover, when a part of the embossed roller is worn or missing, it is necessary to replace the entire roller. A simpler production method is also required in the production of a molded product on which a texture pattern is formed by the T-die method.
  • the present invention has been made to solve the above-mentioned problems, and as a result of extensive research, when glass wool is added to a melt-kneaded product for extrusion molding, it is surprisingly pressed with a roller with a texture.
  • a texture pattern is formed on the surface of an extruded molded product without performing a process such as the following (hereinafter, a process of forming a conventional texture pattern may be referred to as “texture processing”). Newly found.
  • an object of the present invention is to provide a method for producing a molded product on which a wrinkle pattern is formed and a molded product on which a wrinkle pattern is formed without performing wrinkle processing.
  • the present invention relates to a method for producing a molded product on which a wrinkle pattern is formed, and a molded product on which a wrinkle pattern is formed, as shown below.
  • a melting step for producing a melt-kneaded material including at least a thermoplastic resin and / or a thermoplastic elastomer and glass wool Extrusion process for producing the molded product by extruding the melt-kneaded product from the discharge port of the extrusion mold by an extrusion molding method, A cooling step for cooling the molded product extruded in the extrusion step, The manufacturing method of the molded article in which the wrinkle pattern was formed including this.
  • the glass wool content is 1 to 20% by weight.
  • the manufacturing method of the molded article in which the wrinkle pattern as described in said (1) was formed.
  • the extrusion molding method is an inflation method or a T-die method, and the molded product is a film, a sheet, or a cylindrical body.
  • the extrusion molding method is a coextrusion method,
  • the molded product is formed as a laminated multilayer product, At least one of the outer layers of the multilayer article is a layer formed by extruding a melt-kneaded material containing at least the thermoplastic resin and / or thermoplastic elastomer and glass wool.
  • the extrusion molding method is coextrusion by an inflation method or coextrusion by a T-die method,
  • the molded product is formed as a multilayer product, At least one of the outer layers of the multilayer article is a layer formed by extruding a melt-kneaded material containing at least the thermoplastic resin and / or thermoplastic elastomer and glass wool.
  • the glass wool content is 1 to 20% by weight.
  • the molded product is a film, a sheet, or a cylindrical body.
  • the molded product is a multilayer product, At least one of the outer layers of the multilayer article is a layer containing at least the thermoplastic resin and / or thermoplastic elastomer and glass wool.
  • the thickness of the molded product is 3 ⁇ m to 300 ⁇ m.
  • a texture pattern is formed on the surface of an extruded molded article simply by adding glass wool to the melt-kneaded product for extrusion molding. Therefore, since the embossing process is not necessary, a molded product on which the embossed pattern is formed can be manufactured by various extrusion methods including the inflation method.
  • FIG. 1 is a drawing substitute photograph
  • FIG. 1 (A) is a photograph of glass wool
  • FIG. 1 (B) is a photograph of glass fiber
  • FIG. 2 is a drawing-substituting photograph
  • FIG. 2 (A) is a photograph of the bag produced in Example 1
  • FIG. 2 (B) is a photograph of the bag produced in Comparative Example 1.
  • FIG. 3 is a photograph substituted for a drawing and a photograph of the bag produced in Example 2.
  • FIG. 4 is a drawing-substituting photograph
  • FIG. 4 (A) is a photograph of the layer side containing glass wool of the two-layer film produced in Example 3
  • FIG. 4 (B) is a photograph of the layer side not containing glass wool.
  • FIG. 4 is a drawing-substituting photograph
  • FIG. 4 (A) is a photograph of the layer side containing glass wool of the two-layer film produced in Example 3
  • FIG. 4 (B) is a photograph of the layer side not containing
  • FIG. 5 is a drawing-substituting photograph
  • FIG. 5 (A) is a photograph of the layer side containing glass wool of the two-layer film produced in Example 4
  • FIG. 5 (B) is a photograph of the layer side not containing glass wool.
  • FIG. 6 is a drawing-substituting photograph
  • FIG. 6 (A) is a photograph of the film produced in Example 5
  • FIG. 6 (B) is a photograph of the film produced in Comparative Example 2.
  • FIG. 7 is a drawing-substituting photograph
  • FIG. 7 (A) is a photograph of the tubular body produced in Example 6
  • FIG. 7 (B) is a photograph of the tubular body after printing
  • FIG. 7 (C) is a drawing-substituting photograph
  • FIG. 8A is an X-ray transmission image of the film produced in Example 1
  • FIG. 8B is an X-ray transmission image of the film produced in Example 5.
  • a method for producing a molded article on which a texture pattern of the present invention is formed (hereinafter sometimes simply referred to as “manufacturing method”) and a molded article on which a texture pattern is formed (hereinafter simply referred to as “molded article”). Will be described in detail.).
  • the production method of the present invention includes a thermoplastic resin and / or a thermoplastic elastomer (hereinafter sometimes referred to as “resin etc.”) and a melting step for producing a melt-kneaded material containing at least glass wool, At least an extrusion process for producing a molded product by extrusion from a discharge port of an extrusion mold, and a cooling process for cooling the molded product extruded in the extrusion process.
  • a texture pattern can be formed on a molded product by a melting step, an extrusion step, and a cooling step.
  • the manufacturing method may include other processes as required, such as a printing process for printing on the surface of the molded product after the cooling process. Other steps such as a printing step may be performed by a known method.
  • thermoplastic resin is not particularly limited as long as it can be mixed with glass wool.
  • conventionally used thermoplastic resins such as general-purpose plastics, engineering plastics, and super engineering plastics can be mentioned.
  • general-purpose plastic polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene (PS), polyvinyl acetate (PVAc), polytetrafluoroethylene (PTFE) , Acrylonitrile butadiene styrene resin (ABS resin), styrene acrylonitrile copolymer (AS resin), acrylic resin (PMMA), and the like.
  • ABS resin Acrylonitrile butadiene styrene resin
  • AS resin styrene acrylonitrile copolymer
  • acrylic resin PMMA
  • Engineering plastics include polyamide (PA), polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE, PPO), polybutylene terephthalate (PBT), polyethylene terephthalate (typified by nylon) PET), syndiotactic polystyrene (SPS), cyclic polyolefin (COP) and the like.
  • Super engineering plastics include polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), polyetheretherketone (PEEK), Examples thereof include thermoplastic polyimide (PI) and polyamideimide (PAI). These resins may be used alone or in combination of two or more.
  • thermoplastic elastomer is not particularly limited as long as it can be mixed with glass wool.
  • an ethylene-propylene copolymer, an ethylene-propylene-diene copolymer, a styrene-diene block copolymer, a styrene-diene-styrene block copolymer, and a hydrogenated product thereof can be used together. It is also possible to do. It is also possible to use the above thermoplastic resin and a thermoplastic elastomer in combination.
  • glass wool means a glass fiber having a fiber diameter of about 1 to 7 ⁇ m in the form of cotton.
  • FIG. 1A is a photograph of glass wool.
  • glass fibers (long glass fibers) having a fiber diameter of 10 to 18 ⁇ m are also known as reinforcing materials added to thermoplastic resins and the like (see FIG. 1B).
  • Glass fibers are generally used as chopped strands in which 50 to 200 fibers are collected and cut to a predetermined length. As shown in FIGS. 1A and 1B, glass wool and glass fiber are completely different in production method and purpose of use.
  • Glass wool is manufactured by rotating a spinner having a large number of small holes of about 1 mm around it and jetting molten glass. This production process is generally called a centrifugal method, and fine glass wool of about 1 to 7 ⁇ m can be economically produced by adjusting the viscosity and rotation speed of molten glass. Glass wool can be produced by the above method, but a commercially available product may be used.
  • glass wool may be added to molten resin or the like to prepare a melt-kneaded product, but a master batch pellet containing a large amount of glass wool is prepared in advance, and the master batch pellet and a pellet not containing glass wool are mixed. May be.
  • Master batch pellets containing glass wool may be produced by a known method.
  • Glass wool is an inorganic material, while resin or the like is an organic material. Therefore, simply bonding glass wool to resin or the like weakens the adhesiveness between glass wool and resin or the like. Therefore, glass wool may be surface-treated with a silane coupling agent and then added to a resin or the like.
  • the silane coupling agent is not particularly limited as long as it is conventionally used, and may be determined in consideration of reactivity with a resin and the like, thermal stability, and the like.
  • Examples thereof include silane coupling agents such as aminosilane, epoxysilane, allylsilane, and vinylsilane.
  • silane coupling agents such as aminosilane, epoxysilane, allylsilane, and vinylsilane.
  • commercially available products such as Z series manufactured by Toray Dow Corning, KBM series manufactured by Shin-Etsu Chemical Co., Ltd., KBE series, and JNC manufactured may be used.
  • the surface treatment of glass wool can be performed by dissolving the above silane coupling agent in a solvent and spraying and drying the glass wool.
  • the weight percentage of the silane coupling agent with respect to the glass wool is 0.1 to 2.0 wt%, preferably 0.15 to 0.4 wt%, and more preferably 0.24 wt%.
  • Glass wool may be surface treated with a lubricant.
  • the lubricant is not particularly limited as long as the glass wool is kneaded into a resin or the like so that the glass wool can be easily slipped and easily filled into the resin, and a conventionally used lubricant such as silicon oil is used.
  • a conventionally used lubricant such as silicon oil is used.
  • calixarene is particularly preferred. Since silicon is an oil, it has poor affinity with resins, etc., but calixarene is a phenolic resin, which improves slipping of glass wool, while having excellent affinity with resins, etc. The resin can be filled while maintaining the length.
  • the surface treatment of glass wool is performed by spraying and drying a solution in which calixarene is dissolved on glass wool.
  • the solution in which the calixarene is dissolved can be produced by a known production method, but for example, a plastic modifier nanodaX (registered trademark) manufactured by Nanodax Corporation may be used.
  • the weight percentage of the plastic modifier nanodaX (registered trademark) with respect to glass wool is preferably 0.001 to 0.5 wt%, more preferably 0.01 to 0.3 wt%.
  • Glass wool may be treated with the above silane coupling agent or lubricant, or may be treated with a silane coupling agent and a lubricant.
  • glass wool is surfaced with a known film forming agent such as epoxy resin, vinyl acetate resin, vinyl acetate copolymer resin, urethane resin, acrylic resin, etc. It may be processed.
  • film forming agents can be used alone or in admixture of two or more kinds, and the weight percentage of the film forming agent is preferably 5 to 15 times that of the silane coupling agent.
  • melt kneader such as a single-screw or multi-screw extruder, a kneader, a mixing roller, a Banbury mixer, etc. What is necessary is just to melt-knead at a temperature of ⁇ 400 ° C.
  • the glass wool content is preferably 1 to 20% by weight, more preferably 1 to 10% by weight, and particularly preferably 2 to 5% by weight.
  • the glass wool content is less than 1% by weight, it is difficult to form a texture pattern.
  • the content of glass wool exceeds 20% by weight, the strength of the molded product is unfavorable.
  • the “glass wool content” means the weight of glass wool / (weight of thermoplastic resin and / or thermoplastic elastomer).
  • the extrusion step is not particularly limited as long as it is a method capable of producing a molded product by extruding the melt-kneaded material produced in the melting step from the discharge port of the extrusion die by an extrusion molding method.
  • a slightly thick cylindrical shaped product can be extruded by extruding the melt-kneaded product from an annular discharge port. This manufacturing method is useful for tubes filled with cosmetics, foods, and the like.
  • a molded product may be produced by extruding the melt-kneaded product from the annular discharge port by an inflation method.
  • the molded product manufactured by the inflation method may be cut into one end before winding to form a flat film, or may be a cylindrical body.
  • the cylindrical body is pressed with a roller with a crimp, the thin film constituting the cylindrical body is bonded, and conventionally, a cylindrical body with a crimp cannot be manufactured by an inflation method.
  • a texture pattern is formed on the molded product without performing texture processing by adding glass wool to a resin or the like, it is particularly useful for producing a cylindrical body by an inflation method.
  • a garbage bag or the like is manufactured from a cylindrical body, since the texture pattern is formed on the surface, the bag can be easily opened.
  • a die in which a die having a linear discharge port called a T-die is installed at the tip of the extruder and the material is continuously extruded to produce a molded product. Also good.
  • the film is cooled through a mirror-finished cooling roller (chilled roller), and the width of the film is adjusted by cutting off the end part until it is finally wound.
  • a texture pattern is formed by using a part of the roller as a textured roller.
  • a grain pattern is formed on the surface of the film by adding glass wool to a resin or the like, and therefore it is not necessary to use a roller with a grain.
  • the film on which the texture pattern is formed may be further pressed with a roller with a texture.
  • the molded product may be a single layer or multiple layers.
  • coextrusion which is a technique of extruding a plurality of materials at a time and stacking them at the time of the extrusion process, may be performed.
  • the inflation method a die pre-lamination method in which each molten resin is contacted in a feed block in front of the mold, an in-die laminating method in which the molten resin is contacted by a route inside the mold, and discharge contact from a plurality of concentric discharge ports And die outer lamination method.
  • a single manifold method and a multi-manifold method in which a feed block is installed immediately before the die and a plurality of extruders are connected thereto through an adapter can be mentioned.
  • a resin is contacted in a feed block and then a film is formed through a die.
  • the number of layers can be set by changing the adapter, and a multilayer film can be obtained relatively easily.
  • a T die having a plurality of manifolds is used, and the resins supplied from a plurality of extruders are brought into contact with each other immediately before the discharge port and laminated.
  • a material having a large physical property difference such as a viscosity difference can be coextruded, and the thickness of each layer can be easily adjusted.
  • the above-described coextrusion of the inflation method and the T-die method is a typical example of a method for producing a laminated molded product. If a final laminated product such as a laminating method is obtained, another production method may be used. It may be.
  • a molded product is produced by an extrusion molding method, the physical properties of the molded product often differ between the extrusion direction and the vertical direction. However, as shown in the examples described later, the molded product of the present invention has an effect that the difference in physical properties between the extrusion direction and the vertical direction can be reduced by adding glass wool.
  • the molded product is a laminated multilayer product
  • at least one of the outer layers of the multilayer product is a layer obtained by extruding a melt kneaded product of resin or the like and glass wool.
  • glass wool By adding glass wool, a texture pattern is formed on the outer layer, which gives a high-class feeling and prevents the molded product from sticking.
  • a layer obtained by extruding a melt-kneaded product of resin or the like and glass wool may be formed as an internal layer of the multilayer product.
  • the specific surface area is increased by the embossed pattern, so the adhesion with the upper and lower layers is improved.
  • the cooling step may be performed by cooling the extruded melt-kneaded product by a known method, for example, by air cooling.
  • the shape of the molded product is preferably a film, a sheet, or a cylindrical body.
  • film is “a plastic film having a thickness of less than 250 ⁇ m”
  • sheet is “a thin plastic plate having a thickness of 250 ⁇ m or more”.
  • the thickness of the molded product (film, sheet, cylindrical body) is not particularly limited as long as it is thicker than the diameter of glass wool to be added and can be formed by an extrusion molding method, but is preferably about 3 ⁇ m to 300 ⁇ m. About 5 ⁇ m to 275 ⁇ m is more preferable, and about 8 ⁇ m to 250 ⁇ m is more preferable.
  • the thickness is about 3 ⁇ m or less, the molded product is too thin and easily broken.
  • the thickness is about 300 ⁇ m or more, there is less merit that a texture pattern is formed and the film is difficult to adhere and the difference in physical properties between the extrusion direction and the vertical direction of the molded product can be reduced.
  • the “molded product” means a product obtained by extruding a melt-kneaded product by an extrusion molding method, regardless of whether it is a single layer or a multilayer. Therefore, the thickness of the molded product of about 3 ⁇ m to 300 ⁇ m means the thickness of the sheet, film, or cylinder itself produced by the extrusion molding method, and the thickness of the product obtained by attaching them to a plate or the like. It doesn't mean.
  • the present inventor has filed a patent application for a composite forming material in which glass wool is filled in a thermoplastic resin (see Japanese Patent No. 5220934).
  • the composite forming material described in Japanese Patent No. 5220934 is an invention for increasing the fiber length of glass wool to be filled in a thermoplastic resin and increasing the filling amount of glass wool. Only the pellets and injection-molded products are described.
  • the molded product of the present invention is formed by extrusion from the discharge port of the extrusion mold. In the case of injection molding, since the composite forming material is injected into a mold, a texture pattern is not formed on the molded product. Therefore, the manufacturing method of the molded product on which the embossed pattern is formed and the molded product on which the embossed pattern is formed are different from the manufacturing method and the injection molded product described in Japanese Patent No. 5220934.
  • Applications of the molded article of the present invention include waterproof sheets, concrete molded waterproof materials, roof base materials, decorative decorative materials for decorative boards, underfloor waterproof materials, etc .; for civil engineering such as waterproof sheets and pipe protective materials; For vehicles such as wood and interior materials; for marine products such as waterproof sheets and interior materials; for cosmetics bottles, product bottles, shopping handbags, shopping bags, garbage bags, etc .; for multi-film / vinyl houses, fertilizer bags, rice bags, food For agriculture such as bags, etc. What is necessary is just to process a molded article for various uses by cutting, heat sealing, etc. as needed.
  • thermoplastic resin Polypropylene (PP, AZ564 manufactured by Sumitomo Chemical Co., Ltd.) was used as the thermoplastic resin. Glass wool was produced by centrifugation, and the average fiber diameter was about 3.6 ⁇ m.
  • the surface treatment of glass wool was performed by spraying a solution containing a silane coupling agent from a binder nozzle onto glass wool fiberized from a spinner.
  • a silane coupling agent aminosilane coupling agent S330 (manufactured by JNC) was used.
  • the weight percentage with respect to glass wool was 0.24 wt% for the silane coupling agent.
  • the glass wool was dried at 150 ° C. for 1 hour, and then crushed to an average fiber length of 850 ⁇ m by a cutter mill.
  • a gravimetric screw feeder S210 manufactured by K-Tron
  • Glass wool was added and kneaded so that the content of glass wool was 40% by weight.
  • the kneading conditions were as follows: screw rotation speed 150 rpm, resin pressure 0.6 Mpa, current 26-27 A, feed amount 12 kg / hr.
  • the resin temperature of polypropylene during kneading was 190 to 280 ° C., and glass wool was heated to 100 ° C. for addition.
  • master batch pellets were prepared.
  • Example 1 As an inflation device, CO-MP manufactured by Sumitomo Heavy Industries Modern Co., Ltd. was used. First, a master mixture pellet and high density polyethylene (HDPE; HI-ZEX7000F manufactured by PRIME POLYMER) were blended so that the glass wool content was 4.5% by weight to prepare a resin mixture. Next, the resin mixture was melted and kneaded at 180 ° C. to 230 ° C. to prepare a melt-kneaded product. Next, a cylindrical body (molded product) was produced by extruding the melt-kneaded material from the annular discharge port. Next, the cylindrical body was cut into an appropriate size, and a part of the cut cylindrical body was heat sealed to prepare a bag. The bag thickness was about 35 ⁇ m. 2A is a photograph of the bag produced in Example 1. FIG.
  • FIG. 2 (B) is a photograph of the bag produced in Comparative Example 1.
  • Example 1 had a wrinkle pattern formed on the entire surface.
  • the surface of the bag produced in Comparative Example 1 was smooth.
  • Example 2 Instead of the high-density polyethylene of Example 1, low-density polyethylene (LDPE; Sumikasen F200-0 manufactured by Sumitomo Chemical Co., Ltd.) was used so that the glass wool content was 2% by weight, and the amount of air blown during inflation was adjusted. By adjusting, a bag was produced in the same procedure as in Example 1 except that the thickness was about 9 ⁇ m.
  • FIG. 3 is a photograph of the bag produced in Example 2. As is apparent from FIG. 3, the bag produced in Example 2 had a wrinkle pattern formed on the entire surface. Moreover, the opening of the bag could be easily opened.
  • LDPE low-density polyethylene
  • a two-layer film was produced by coextrusion by an inflation method.
  • One layer is blended with master batch pellets and low density polyethylene (LDPE; Sumikasen F200-0 manufactured by Sumitomo Chemical) so that the glass wool content is 10% by weight, and the resin mixture is melted and kneaded at 210 ° C.
  • LDPE low density polyethylene
  • a melt-kneaded product was produced.
  • a melt-kneaded material was prepared in the same procedure as that for one layer except that the master batch pellet was not added.
  • CO-RD die rotating method in-die lamination method in which contact is made by a route inside the mold manufactured by Sumitomo Heavy Industries Modern Co., Ltd.
  • a cylindrical laminated film was produced. The thickness of each layer was 75 ⁇ m.
  • FIG. 4A is a photograph of the layer side containing glass wool
  • FIG. 4B is a photograph of the layer side not containing glass wool.
  • the layer to which glass wool was added had a texture pattern on the entire surface.
  • the surface of the layer to which glass wool was not added was smooth.
  • each layer was firmly bonded without peeling.
  • Example 4> 2 in the same manner as in Example 3 except that butyl rubber (Butyl 065 manufactured by JSR Corporation), which is a thermoplastic elastomer, was used instead of the low density polyethylene of Example 3 and the content of glass wool in one layer was 2% by weight. A laminated film of layers was produced. The thickness of each layer was 75 ⁇ m.
  • butyl rubber butyl 065 manufactured by JSR Corporation
  • FIG. 5A is a photograph of the layer side containing glass wool
  • FIG. 5B is a photograph of the layer side not containing glass wool.
  • the layer to which glass wool was added had a texture pattern on the entire surface.
  • the surface of the layer to which glass wool was not added was smooth.
  • each layer was firmly bonded without peeling.
  • Example 5 An SPS7000 manufactured by Sumitomo Heavy Industries Modern Co., Ltd. was used as the T-die device. First, a master mixture pellet and high-density polyethylene (HDPE; HI-ZEX7000F manufactured by PRIME POLYMER) were blended so that the glass wool content was 4% by weight to prepare a resin mixture. Next, the resin mixture was melted and kneaded at 230 ° C. to prepare a melt-kneaded product. Next, a film was produced by extruding the melt-kneaded material from a T die. The thickness of the film was 30 ⁇ m.
  • FIG. 6A is a photograph of the film produced in Example 5.
  • FIG. 6B is a photograph of the film produced in Comparative Example 2.
  • Example 6 As the extrusion device, a tube device P-50 manufactured by Mars Seiki Co., Ltd. was used. First, a master mixture pellet and high-density polyethylene (HDPE; HI-ZEX5000SF manufactured by PRIME POLYMER) were blended so that the glass wool content was 2.5% by weight to prepare a resin mixture. Next, the resin mixture was melted and kneaded at 235 ° C. to prepare a melt-kneaded product. Next, a cylindrical body was produced by extruding the melt-kneaded material from an extruded circular die.
  • HDPE high-density polyethylene
  • Example 6 does not send compressed air when extruding the melt-kneaded material.
  • the thickness of the cylindrical body was 60 ⁇ m.
  • FIG. 7A is a photograph of the extruded cylindrical body. As is apparent from FIG. 7A, a texture pattern was formed on the surface of the produced cylindrical body.
  • Fig. 7 (B) is a photograph of the cylindrical body after printing.
  • the surface of the cylindrical body produced by the extrusion method is mirror-like, it is difficult to print directly on the extruded cylindrical body, and thus the printed seal is pasted on the cylindrical body.
  • a textured pattern is formed on the surface of the cylindrical body, so that it is possible to print directly on the cylindrical body.
  • FIG. 7C is a photograph in which a spiral for tightening the cap is formed on the cylindrical body by a heat press. By filling the contents such as cosmetics and then heat-sealing, a cylindrical molded product can be produced.
  • Example 7 [Tensile properties of film produced by inflation method] ⁇ Example 7> One layer is mixed with masterbatch pellets, butyl rubber (Butyl065 manufactured by JSR Corporation), and HDPE (HI-ZEX7000F manufactured by PRIME POLYMER) so that the glass wool content is 2% by weight. A two-layer laminated film is produced in the same procedure as in Example 3, except that master batch pellets and high-density polyethylene (HDPE; HI-ZEX7000F manufactured by PRIME POLYMER) are mixed so that the glass wool content is 2% by weight. did. The thickness of each layer was 75 ⁇ m.
  • HDPE high-density polyethylene
  • One layer is only high density polyethylene (HDPE; HI-ZEX7000F manufactured by PRIME POLYMER), and the other layer is high density polyethylene (HDPE; HI-ZEX7000F manufactured by PRIME POLYMER) and LDPE (NEO-ZEX2006H manufactured by PRIME POLYMER).
  • HDPE high density polyethylene
  • HDPE high density polyethylene
  • HI-ZEX7000F manufactured by PRIME POLYMER high density polyethylene
  • LDPE NEO-ZEX2006H manufactured by PRIME POLYMER
  • Example 7 the tensile strength of the films produced in Example 7 and Comparative Example 3 was examined.
  • the tensile tester was KS D 3001: 2001 made by Galdavini under the experimental conditions of KSM4394. The test results are shown in Table 1.
  • the film added with the glass wool of Example 7 had almost the same strength in the extrusion direction and in the vertical direction.
  • the film to which the glass wool of Comparative Example 3 was not added had different strengths in the extrusion direction and the vertical direction.
  • the inflation method is a method that can form a large number of films and sheets at a low cost, and it has been cited as one of the problems that the strengths in the vertical and horizontal directions of the produced films and sheets are different. However, it has become clear that this problem can be solved by adding glass wool to a resin or the like.
  • [X-ray transmission image of the produced film] X-ray transmission images of the film produced by the inflation method in Example 1 and the film produced by the T-die method in Example 5 were taken. X-ray transmission images were taken using a HITACHI CS-SEMCS 4800 under the condition of 30 kV 180 ⁇ A. 8A is an X-ray transmission image of the film produced in Example 1, and FIG. 8B is an X-ray transmission image of the film produced in Example 5. As apparent from FIG. 8A, it was confirmed that the glass wool was dispersed in a random direction in the film. In Example 7 above, it was confirmed that the difference in strength between the longitudinal direction and the lateral direction of the produced film or sheet can be reduced by adding glass wool to the resin or the like.
  • the glass wool was dispersed in a random direction even in the film produced by the T-die method. Therefore, the molded product produced by the T-die method can also reduce the difference in strength between the vertical direction and the horizontal direction.
  • a molded product with a texture pattern can be manufactured using a conventionally used apparatus and without performing the texture processing. . Therefore, it is useful for the production of films, sheets, cylindrical bodies and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

シボ加工する工程を実施しなくても、シボ模様が形成された成形品を製造する方法を提供することを課題とする。 熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む溶融混練物を作製する溶融工程、前記溶融混練物を押出成形法により、押出金型の吐出口から押し出して成形品を作製する押出工程、前記押出工程で押し出された成形品を冷却する冷却工程を含むシボ模様が形成された成形品の製造方法により、課題を解決できる。

Description

シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品
 本発明は、シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品に関する。
 熱可塑性樹脂、熱可塑性エラストマー等の材料をシートまたはフィルム状に押し出した成形品は、建築用、土木用、日用品、農業用の多様な目的で使用されている。また、筒状体に押し出した成形品は、ごみ袋や化粧品・食品等を充填するチューブ等に使用されている。これら成形品は、溶融した熱可塑性樹脂、熱可塑性エラストマー等の材料を、押出金型の吐出口から押し出すことで製造することができる。
 しかしながら、熱可塑性樹脂、熱可塑性エラストマー等の材料は、種類によっては重ねた際に互いに付着して容易には剥離できなくなるブロッキング現象が生じるという問題がある。そのため、熱可塑性樹脂、熱可塑性エラストマー等の材料に、シルク粉末、ウール粉末及びキチン粉末より選ばれた1種以上であって、平均粒径が30μm以下でかつ含有水分量10wt%以下の天然有機物微粉末を1~40wt%含有するとともに、熱安定剤を5wt%以下含有させる方法が知られている(特許文献1参照)。
 また、成形品にシボ(凹凸)模様を形成することで見た目を高級にするとともに、ごみ袋等の薄いフィルム状の成型物の場合は、フィルム同士を剥し易くする役割をすることも知られている。成形品へのシボ模様の形成は、押出した後の熱可塑性樹脂フィルムを、少なくとも一方がシボ付ローラーである一対のローラーで押圧する方法が知られている(特許文献2参照)。
特許第3014585号公報 特開平5-309730号公報
 特許文献2に記載されているシボ付ローラーで押圧する方法は、Tダイ法により押し出された平面状の成形品に好適に用いることができる。しかしながら、インフレーション法により成形品を製造する場合、成形品は筒状に押し出される。そのため、筒状に押し出された成形品をシボ付ローラーで押圧すると、成形品が接着してしまうという問題がある。現在のところ、インフレーション法で押し出した成形品にシボ模様を形成する方法は知られていない。
 一方、Tダイ法では、押出した成形品の厚さが異なる場合、厚さに応じてシボ付ローラーの間隔を調整する必要がある。また、シボ付ローラーのシボの一部が摩耗や欠損した場合はローラー全体を取り換える必要がある。Tダイ法によるシボ模様が形成された成形品の製造においても、より簡便な製造方法が求められている。
 本発明は、上記問題点を解決するためになされたものであり、鋭意研究を行ったところ、押出成形するための溶融混練物中にグラスウールを添加すると、驚くべきことに、シボ付ローラーで押圧等の工程(以下、従来のシボ模様を形成する工程を「シボ加工」と記載することがある。)を実施することなく、押出成形した成形品の表面にシボ模様が形成されること、を新たに見出した。
 すなわち、本発明の目的は、シボ加工を実施することなく、シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品を提供することである。
 本発明は、以下に示す、シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品に関する。
(1)熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む溶融混練物を作製する溶融工程、
 前記溶融混練物を押出成形法により、押出金型の吐出口から押し出して成形品を作製する押出工程、
 前記押出工程で押し出された成形品を冷却する冷却工程、
を含む、シボ模様が形成された成形品の製造方法。
(2)前記グラスウールの含有量が、1~20重量%である、
上記(1)に記載のシボ模様が形成された成形品の製造方法。
(3)前記押出成形法がインフレーション法又はTダイ法で、前記成形品がフィルム、シート、または筒状体である、
上記(1)又は(2)に記載のシボ模様が形成された成形品の製造方法。
(4)前記押出成形法が、共押出法であり、
 前記成形品が、積層した多層品として形成され、
 前記多層品の外側の層の少なくとも一方の層が、前記熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む溶融混練物を押し出すことで形成された層である、
上記(1)又は(2)に記載のシボ模様が形成された成形品の製造方法。
(5)前記押出成形法が、インフレーション法による共押出又はTダイ法による共押出であり、
 前記成形品が、多層品として形成され、
 前記多層品の外側の層の少なくとも一方の層が、前記熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む溶融混練物を押し出すことで形成された層である、
上記(3)に記載のシボ模様が形成された成形品の製造方法。
(6)熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む、
シボ模様が形成された成形品。
(7)前記グラスウールの含有量が、1~20重量%である、
上記(6)に記載のシボ模様が形成された成形品。
(8)前記成形品がフィルム、シート、または筒状体である、
上記(6)又は(7)に記載のシボ模様が形成された成形品。
(9)前記成形品が、多層品であり、
 前記多層品の外側の層の少なくとも一方の層が、前記熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む層である、
上記(6)~(8)の何れか一に記載のシボ模様が形成された成形品。
(10)前記成形品の厚さが、3μm~300μmである、
上記(8)又は(9)に記載のシボ模様が形成された成形品。
 本発明では、押出成形するための溶融混練物中にグラスウールを添加するのみで、押出成形した成形品の表面にシボ模様が形成される。したがって、シボ加工の実施が不要であることから、インフレーション法をはじめ様々な押出方法により、シボ模様が形成された成形品を製造することができる。
図1は、図面代用写真で、図1(A)はグラスウールの写真、図1(B)はグラスファイバーの写真である。 図2は、図面代用写真で、図2(A)は実施例1で作製した袋の写真、図2(B)は比較例1で作製した袋の写真である。 図3は、図面代用写真で、実施例2で作製した袋の写真である。 図4は、図面代用写真で、図4(A)は実施例3で作製した2層フィルムのグラスウールを含む層側の写真、図4(B)はグラスウールを含まない層側の写真である。 図5は、図面代用写真で、図5(A)は実施例4で作製した2層フィルムのグラスウールを含む層側の写真、図5(B)はグラスウールを含まない層側の写真である。 図6は、図面代用写真で、図6(A)は実施例5で作製したフィルムの写真、図6(B)は比較例2で作製したフィルムの写真である。 図7は、図面代用写真で、図7(A)は実施例6で作製した筒状体の写真、図7(B)は印刷を施した後の筒状体の写真、図7(C)は筒状体にキャップを締めるための螺旋を形成した写真である。 図8は、図面代用写真で、図8(A)は実施例1で作製したフィルムのX線透過像、図8(B)は実施例5で作製したフィルムのX線透過像である。
 以下に、本発明のシボ模様が形成された成形品の製造方法(以下、単に「製造方法」と記載することがある。)、及びシボ模様が形成された成形品(以下、単に「成形品」と記載することがある。)について詳しく説明する。
 本発明の製造方法は、熱可塑性樹脂及び/または熱可塑性エラストマー(以下、「樹脂等」と記載することがある。)、並びにグラスウールを少なくとも含む溶融混練物を作製する溶融工程、前記溶融混練物を押出成形法により、押出金型の吐出口から押し出して成形品を作製する押出工程、前記押出工程で押し出された成形品を冷却する冷却工程、を少なくとも含んでいる。溶融工程、押出工程、及び冷却工程により、成形品にシボ模様を形成することができる。また、製造方法は、冷却工程の後に成形品の表面に印刷をする印刷工程等、必要に応じてその他の工程を含んでいてもよい。印刷工程等のその他の工程は、公知の方法により実施すれば良い。
 熱可塑性樹脂は、グラスウールと混合できるものであれば、特に限定されない。例えば、汎用プラスチック、エンジニアリング・プラスチック、スーパーエンジニアリングプラスチック等、従来から使用されている熱可塑性樹脂が挙げられる。具体的には、汎用プラスチックとしては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリテトラフルオロエチレン(PTFE)、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、スチレンアクリロニトリルコポリマー(AS樹脂)、アクリル樹脂(PMMA)等が挙げられる。エンジニアリング・プラスチックとしては、ナイロンに代表されるポリアミド(PA)、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、シンジオタクチックポリスチレン(SPS)、環状ポリオレフィン(COP)等が挙げられる。スーパーエンジニアリングプラスチックとしては、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)等が挙げられる。これら樹脂は、1種或いは2種以上を組み合わせて用いてもよい。
 熱可塑性エラストマーは、グラスウールと混合できるものであれば、特に限定されない。例えば、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体、スチレン-ジエンブロック共重合体、スチレン-ジエン-スチレンブロック共重合体及びこれらを水素添加したもの等を使用でき、これらを併用することも可能である。また、上記の熱可塑性樹脂と熱可塑性エラストマーを併用することも可能である。
 本発明において、グラスウールとは、繊維径が約1~7μmのガラス繊維が綿状になったものを意味する。図1(A)は、グラスウールの写真である。一方、熱可塑性樹脂等に添加する補強材として、繊維径10~18μmのグラスファイバー(ガラス長繊維)も知られている(図1(B)参照。)。グラスファイバーは、繊維を50~200本集めて所定の長さに切断したチョップドストランドとして一般的に用いられている。図1(A)及び(B)に示すとおり、グラスウールとグラスファイバーは、製造方式も使用目的も全く異なるものである。なお、樹脂等にグラスファイバーを添加した場合は、インフレーション法で押し出すことができず、Tダイ法で押し出したとしても、グラスファイバーがシート等の成形品表面から突き出てしまうことから、簡単に破れてしまう。一方、グラスウールを添加した場合は、後述する実施例に示すとおり、成形品の表面にシボ模様を形成することができる。
 グラスウールは、周囲に1mm程度の小孔を多数設けたスピナを高速回転させて溶融したガラスを噴出することにより製造される。この製造プロセスは一般に遠心法と呼ばれ、溶融したガラスの粘度及び回転スピードを調整することで、1~7μm程度の細いグラスウールを経済的に製造することができる。なお、グラスウールは、上記の方法で製造することもできるが、市販品を用いてもよい。
 溶融工程では、溶融した樹脂等にグラスウールを添加して溶融混練物を作製してもよいが、予めグラスウールを多く含むマスターバッチペレットを作製し、該マスターバッチペレットとグラスウールを含まないペレットとを混合してもよい。
 グラスウールを含むマスターバッチペレットは、公知の方法で作製すればよい。なお、グラスウールは無機材料であり、一方、樹脂等は有機材料であるため、グラスウールを単に樹脂等に充填させるのみでは、グラスウールと樹脂等の接着性が弱くなる。そのため、グラスウールをシランカップリング剤で表面処理してから、樹脂等に添加してもよい。
 シランカップリング剤としては、従来から用いられているものであれば特に限定されず、樹脂等との反応性、熱安定性等を考慮しながら決めればよい。例えば、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系等のシランカップリング剤が挙げられる。これらのシランカップリング剤は、東レ・ダウコーニング社製のZシリーズ、信越化学工業社製のKBMシリーズ、KBEシリーズ、JNC社製等の市販品を用いればよい。
 上記シランカップリング剤は、溶媒に溶解し、グラスウールに噴霧・乾燥することで、グラスウールの表面処理をすることができる。前記グラスウールに対するシランカップリング剤の重量百分率は、0.1~2.0wt%、好ましくは0.15~0.4wt%、さらに好ましくは0.24wt%である。
 グラスウールは、潤滑剤で表面処理してもよい。潤滑剤は、グラスウールを樹脂等に混練する際に、グラスウールの滑りがよくなり樹脂等に充填し易くなるものであれば特に制限は無く、シリコンオイル等、従来から用いられている潤滑剤を使用することができるが、カリックスアレーンが特に好ましい。シリコンはオイルであるため樹脂等との親和性に乏しいが、カリックスアレーンはフェノール樹脂であるので、グラスウールの滑りを向上する一方で、樹脂等との親和性に優れていることから、グラスウールの繊維長を維持したまま、樹脂等に充填することができる。
 グラスウールの表面処理は、カリックスアレーンを溶解した溶液を、グラスウールに噴霧・乾燥することで行われる。上記カリックスアレーンを溶解した溶液は、公知の製法により製造することもできるが、例えば、ナノダックス社製のプラスチック改質剤nanodaX(登録商標)を用いてもよい。グラスウールに対するプラスチック改質剤nanodaX(登録商標)の重量百分率は、0.001~0.5wt%が好ましくは、0.01~0.3wt%がより好ましい。
 グラスウールは、上記シランカップリング剤又は潤滑剤で処理されてもよいし、シランカップリング剤及び潤滑剤で処理されてもよい。
 また、グラスウールは、上記のシランカップリング剤及び/又は潤滑剤による表面処理に加え、エポキシ樹脂、酢酸ビニル樹脂、酢酸ビニル共重合体樹脂、ウレタン樹脂、アクリル樹脂等の公知の皮膜形成剤で表面処理してもよい。これら皮膜形成剤は単独あるいは2種類以上を混合して使用でき、皮膜形成剤の重量百分率はシランカップリング剤に対して5~15倍であることが好ましい。
 溶融工程では、樹脂等、グラスウール、並びに必要に応じて添加される各種添加剤を、単軸又は多軸の押出機、ニーダー、ミキシングローラー、バンバリーミキサー等の公知の溶融混練機を用いて、200~400℃の温度で溶融混練すればよい。
 グラスウールの含有量は、1~20重量%が好ましく、1~10重量%がより好ましく、2~5重量%が特に好ましい。グラスウールの含有量が1重量%より少なくなると、シボ模様が形成され難くなる。一方、グラスウールの含有量が20重量%を超えると、成形品の強度が落ちるので好ましくない。なお、本発明において「グラスウールの含有量」とは、グラスウールの重量/(熱可塑性樹脂及び/または熱可塑性エラストマーの重量)を意味する。
 また、溶融工程では、本発明の目的を損なわない範囲で、公知の紫外線吸収剤、安定剤、酸化防止剤、可塑剤、着色剤、整色剤、難燃剤、帯電防止剤、蛍光増白剤、つや消し剤、衝撃強度改良剤等の添加剤を配合することもできる。
 押出工程は、溶融工程で作製した溶融混練物を押出成形法により、押出金型の吐出口から押し出して成形品を製造できる方法であれば特に制限はない。例えば、環状の吐出口から溶融混練物を押し出すことで、やや肉厚の筒状の成形品を押し出すことができる。この製造方法は、化粧品や食品等を充填するチューブ等に有用である。
 また、環状の吐出口からインフレーション法により溶融混練物を押し出して成形品を製造してもよい。インフレーション法により製造した成形品は、巻き取る前に一端を切り開いて平らなフィルムとしてもよいが、筒状体としてもよい。筒状体をシボ付ローラーで押圧すると、筒状体を構成する薄膜が接着してしまうため、従来は、インフレーション法によりシボ付の筒状体を製造することはできなかった。しかしながら、本発明では、グラスウールを樹脂等に添加することで成形品にシボ加工を実施することなくシボ模様が形成されるので、インフレーション法による筒状体の製造に特に有用である。筒状体からゴミ袋等を製造した場合、表面にシボ模様が形成されていることから、袋を簡単に開封することができる。
 また、押出工程では、押出機の先端にTダイと呼ばれる直線状の吐出口を持つ金型を設置し、平たく材料を押し出して連続的に成形品を製造する方法(Tダイ法)を用いてもよい。Tダイ法では、フィルムは鏡面処理された冷却ローラー(チルドローラー)を通して冷却し、最終的に巻き取られるまでの過程で端部の切り落としなどを行いフィルムの幅を調整する。従来は、ローラーの一部をシボ付ローラーとすることで、シボ模様を形成していた。しかしながら、本発明では、樹脂等にグラスウールを添加することで、フィルムの表面にシボ模様が形成されるので、シボ付ローラーを用いなくてもよい。なお、シボ(凹凸)の深さをより形成したい場合には、シボ模様が形成されたフィルムを、更にシボ付ローラーで押圧してもよい。
 成形品は、単層でも良いし多層であってもよい。多層にする場合は、押出工程の際に、複数の素材を一度に押し出して重ねる手法である共押出を行えばよい。例えば、インフレーション法の場合、各溶融樹脂を金型手前のフィードブロック内で接触させるダイ前積層法、金型内部の経路で接触させるダイ内積層法、同心円状の複数の吐出口から吐出し接触させるダイ外積層法が挙げられる。
 また、Tダイ法の場合、ダイの直前にフィードブロックを設置し、そこにアダプターを介して複数の押出機を接続するシングルマニホールド法、マルチマニホールド法が挙げられる。シングルマニホールド法は、フィードブロック内で樹脂等を接触させてからダイを通してフィルムを成型する。層の数はアダプターを交換することで設定でき、比較的簡単に多層のフィルムを得られる。マルチマニホールド法は、内部に複数のマニホールドを持つTダイを使用し、複数の押出機から供給された樹脂を吐出口の直前で接触させ積層する。粘度差などの物性差が大きな材料を共押し出しできる上、各層の厚みを調整することも容易である。
 なお、上記のインフレーション法及びTダイ法の共押出は、積層した成形品の製造方法の代表的な例であり、ラミネート法等、最終的に積層した成形品が得られれば、他の製造方法であってもよい。また、一般的に、押出成形法により成形品を製造すると、押出方向と垂直方向とでは、成形品の物性が異なることが多い。しかしながら、後述する実施例に示すとおり、本発明の成形品は、グラスウールを添加することで、押出方向と垂直方向との物性の差を小さくできるという効果も生じる。
 成形品が、積層した多層品の場合、多層品の外側の層の少なくとも一方の層が、樹脂等及びグラスウールの溶融混練物を押し出した層であることが好ましい。グラスウールを添加することで、外側の層にはシボ模様が形成されるので、高級感を与えると共に、成形品の密着を防止できる。なお、多層品の場合、樹脂等及びグラスウールの溶融混練物を押し出した層を多層品の内部の層として形成してもよい。内部の層として形成する場合、シボ模様により比表面積が大きくなるので、上下の層との接着性が向上する。
 冷却工程は、押出された溶融混練物を公知の方法で冷却すればよく、例えば空冷等により冷却すればよい。
 成形品の形状は、フィルム、シート、または筒状体が好ましい。なお、本発明では、JIS(日本工業規格)に基づき、「フィルム」は「厚さが250μm未満のプラスチックの膜状のもの」、「シート」は「厚さ250μm以上のプラスチックの薄い板状のもの」を意味するものとする。成形品(フィルム、シート、筒状体)の厚さは、添加するグラスウールの直径よりは厚く、且つ押出成形法で形成できる範囲であれば特に制限はないが、約3μm~300μm程度が好ましく、約5μm~275μm程度がより好ましく、約8μm~250μm程度が更に好ましい。約3μm以下であると、成形品が薄すぎて破れやすくなる。また、約300μm以上であると、シボ模様が形成されフィルムが密着し難くなる及び成形品の押出方向と垂直方向との物性の差を小さくできるというメリットが少なくなる。
 なお、本発明において、「成形品」とは単層、多層にかかわらず、押出成形法により溶融混練物を押し出し、冷却したものを意味する。したがって、成形品の厚さが約3μm~300μmとは、押出成形法により製造したシート、フィルム、又は筒状体自体の厚さを意味し、それらを、板等に張り付けた製品の厚さを意味するのではない。
 ところで、本発明者は、熱可塑性樹脂にグラスウールを充填した複合形成材料の特許出願を行っている(特許第5220934号公報参照)。しかしながら、特許第5220934号公報に記載された複合形成材料は、熱可塑性樹脂に充填するグラスウールの繊維長を長くし且つグラスウールの充填量を多くするための発明で、物としての形態は、射出成型用のペレット及び射出成形品が記載されているのみである。一方、本発明の成形品は、押出金型の吐出口から押し出して形成されたものである。射出成型する場合は、金型の中に複合形成材料を射出することから、成形品にはシボ模様は形成されない。したがって、本発明のシボ模様が形成された成形品の製造方法及びシボ模様が形成された成形品は、特許第5220934号に記載されている製造方法及び射出成形品と異なる。
 本発明の成形品の用途としては、防水シート、コンクリート成形防水材、屋根下地材、化粧板加飾材、床下防水材等の建築用;防水シート、パイプ保護材等の土木用;表層加飾材、内装材等の車両用;防水シート、内装材等の船舶用;化粧品ボトル、商品ボトル、ショッピング手提げ袋、レジ袋、ごみ袋等の日用品用;マルチフィルム・ビニールハウス、肥料袋、米袋、食品袋等の農業用;等が挙げられる。必要に応じて、成形品を各種用途用に切断、ヒートシール等により加工すればよい。
 以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。
[マスターバッチペレットの作製]
 熱可塑性樹脂としてポリプロピレン(PP、住友化学社製AZ564)を使用した。グラスウールは遠心法により製造され、平均繊維径は約3.6μmであった。
 グラスウールの表面処理は、スピナから繊維化されたグラスウールに、バインダノズルよりシランカップリング剤を含む溶液を噴霧することにより行った。シランカップリング剤はアミノシランカップリング剤S330(JNC社製)を用いた。グラスウールに対する重量百分率は、シランカップリング剤が0.24wt%であった。
 この後、グラスウールを150℃で1時間乾燥させた後、カッタミルで平均繊維長850μmに解砕処理した。押出成型器として同方向二軸混練押出機ZE40A((φ43 L/D=40)、ベルストルフ社製)、計量装置として重量式スクリューフィーダS210(K-トロン社製)を用い、溶融したポリプロピレンに、グラスウールの含有量が40重量%となるようにグラスウールを添加し混練した。混練条件は、スクリュー回転数150rpm、樹脂圧力0.6Mpa、電流26~27A、フィード量12Kg/hrで行った。また、混練時のポリプロピレンの樹脂温度は190~280℃、グラスウールは100℃に加熱して添加した。混練後は、マスターバッチペレットを作製した。
[インフレーション法による袋の作製]
<実施例1>
 インフレーション装置として、住友重機械モダン株式会社製CO-MPを用いた。先ず、グラスウールの含有量が4.5重量%となるよう、マスターバッチペレット及び高密度ポリエチレン(HDPE;PRIME POLYMER製 HI-ZEX7000F)をブレンドして樹脂混合物を作製した。次に、180℃~230℃で樹脂混合物を溶融・混練して溶融混練物を作製した。次に、環状の吐出口から溶融混練物を押し出すことで筒状体(成形品)を作製した。次いで、筒状体を適当な大きさにカットし、カットした筒状体の一部をヒートシールすることで、袋を作製した。袋の厚さは、約35μmであった。図2(A)は実施例1で作製した袋の写真である。
<比較例1>
 マスターバッチペレットを加えなかった以外は、実施例1と同様の手順で袋を作製した。袋の厚さは、約28μmであった。図2(B)は比較例1で作製した袋の写真である。
 図2(A)及び(B)から明らかなように、実施例1で作製した袋は、表面全体にシボ模様が形成されていた。一方、比較例1で作製した袋の表面は滑らかであった。
<実施例2>
 実施例1の高密度ポリエチレンに代え、低密度ポリエチレン(LDPE;住友化学製スミカセンF200-0)を用い、グラスウールの含有量が2重量%となるように配合し、インフレーションの際に吹き込む空気量を調整することで、厚さを約9μmとした以外は、実施例1と同様の手順で袋を作製した。図3は実施例2で作製した袋の写真である。図3から明らかなように、実施例2で作製した袋は、表面全体にシボ模様が形成されていた。また、袋の開口部は簡単に開くことができた。
<実施例3>
 次に、インフレーション法による共押出により2層フィルムを作製した。一方の層は、グラスウールの含有量が10重量%となるように、マスターバッチペレット及び低密度ポリエチレン(LDPE;住友化学製スミカセンF200-0)をブレンドし、210℃で樹脂混合物を溶融・混練して溶融混練物を作製した。他方の層は、マスターバッチペレットを添加しなかった以外は、一方の層と同様の手順で溶融混練物を作製した。次に、住友重機械モダン株式会社製CO-RDダイ回転式(金型内部の経路で接触させるダイ内積層法)を用い、環状の吐出口から溶融混練物を共押出すことで2層の筒状の積層フィルムを作製した。各層の厚さは75μmであった。
 図4(A)はグラスウールを含む層側の写真、図4(B)はグラスウールを含まない層側の写真である。図4(A)及び(B)から明らかなように、グラスウールを添加した層は、表面全体にシボ模様が形成されていた。一方、グラスウールを添加しなかった層の表面は滑らかであった。また、各層は剥離することなく、強固に接着していた。
<実施例4>
 実施例3の低密度ポリエチレンに代え、熱可塑性エラストマーであるブチルゴム(JSR株式会社製Butyl065)を用い、一方の層のグラスウールの含有量が2重量%とした以外は、実施例3と同様に2層の積層フィルムを作製した。各層の厚さは75μmであった。
 図5(A)はグラスウールを含む層側の写真、図5(B)はグラスウールを含まない層側の写真である。図5(A)及び(B)から明らかなように、グラスウールを添加した層は、表面全体にシボ模様が形成されていた。一方、グラスウールを添加しなかった層の表面は滑らかであった。また、各層は剥離することなく、強固に接着していた。
 以上の結果より、インフレーション法により成形品を製造する際に、熱可塑性樹脂及び/または熱可塑性エラストマーにグラスウールを添加することで、特段の工程を追加することなく、表面にシボ模様が形成された成形品を製造できることが明らかとなった。
[Tダイ法によるフィルムの作製]
<実施例5>
 Tダイ装置は、住友重機械モダン株式会社製SPS7000を用いた。先ず、グラスウールの含有量が4重量%となるように、マスターバッチペレット及び高密度ポリエチレン(HDPE;PRIME POLYMER製 HI-ZEX7000F)をブレンドして樹脂混合物を作製した。次に、230℃で樹脂混合物を溶融・混練して溶融混練物を作製した。次に、Tダイから溶融混練物を押し出すことでフィルムを作製した。フィルムの厚さは、30μmであった。図6(A)は、実施例5で作製したフィルムの写真である。
<比較例2>
 マスターバッチペレットを加えなかった以外は、実施例5と同様の手順でフィルムを作製した。フィルムの厚さは、約23μmであった。図6(B)は比較例2で作製したフィルムの写真である。
 図6(A)及び(B)から明らかなように、実施例5で作製したフィルムの表面にはシボ模様が形成された。一方、比較例2で作製したフィルムの表面は滑らかであった。以上の結果より、熱可塑性樹脂及び/または熱可塑性エラストマーにグラスウールを添加することで、Tダイ法においても、特段の工程を追加することなく、表面にシボ模様が形成された成形品を製造できることが明らかとなった。したがって、シボ付ローラーが配置されていないTダイ装置においても、シボ模様が形成された成形品を作製することができる。
[押出法による筒状体の作製]
<実施例6>
 押出装置は、株式会社マース精機製のチューブ装置P-50を用いた。先ず、グラスウールの含有量が2.5重量%となるよう、マスターバッチペレット及び高密度ポリエチレン(HDPE;PRIME POLYMER製 HI-ZEX5000SF)をブレンドして樹脂混合物を作製した。次に、235℃で樹脂混合物を溶融・混練して溶融混練物を作製した。次に、押出し円形ダイから溶融混練物を押し出すことで筒状体を作製した。なお、実施例6の方法は、インフレーション法と異なり、溶融混練物を押し出す際に圧搾空気を送り込んでいない。なお、筒状体の厚さは、60μmであった。図7(A)は押し出した筒状体の写真である。図7(A)から明らかなように、作製した筒状体の表面にはシボ模様が形成されていた。
 図7(B)は、印刷を施した後の筒状体の写真である。従来法では、押出法により作製した筒状体の表面は鏡面状になることから、押し出した筒状体に直接印刷することは困難であったため、印刷したシールを筒状体に貼っていた。樹脂等にグラスウールを添加することで、筒状体の表面にはシボ模様が形成されるため、筒状体に直接印刷することが可能である。
 図7(C)は、加熱プレスにより、筒状体にキャップを締めるための螺旋を形成した写真である。化粧料等の内容物を充填した後にヒートシールすることで、筒状体の成形品を作製することができる。
[インフレーション法による作製したフィルムの引張特性]
<実施例7>
 一方の層は、グラスウールの含有量が2重量%となるように、マスターバッチペレット、ブチルゴム(JSR株式会社製Butyl065)、及びHDPE(PRIME POLYMER製 HI-ZEX7000F)を混合し、他方の層は、グラスウールの含有量が2重量%となるよう、マスターバッチペレット、高密度ポリエチレン(HDPE;PRIME POLYMER製 HI-ZEX7000F)を混合した以外は、実施例3と同様の手順で2層の積層フィルムを作製した。各層の厚さは75μmであった。
<比較例3>
 一方の層は、高密度ポリエチレン(HDPE;PRIME POLYMER製 HI-ZEX7000F)のみとし、他方の層は、高密度ポリエチレン(HDPE;PRIME POLYMER製 HI-ZEX7000F)及びLDPE(PRIME POLYMER製NEO-ZEX2006H)を混合した以外は、実施例3と同様の手順で2層の積層フィルムを作製した。各層の厚さは75μmであった。
 次に、実施例7及び比較例3で作製したフィルムの引張強度を調べた。引張試験機はGaldavini社製のKS D 3001:2001を用いて、KSM4394の実験条件で行った。試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例7のグラスウールを添加したフィルムは、押出方向と垂直方向の強度はほぼ同じであった。一方、比較例3のグラスウールを添加しなかったフィルムは、押出方向と垂直方向の強度が異なっていた。インフレーション法は、安価で大量にフィルムやシートを形成できる方法であるが、作製したフィルムやシートの縦方向と横方向の強度が異なることが問題の一つとして挙げられていた。しかしながら、樹脂等にグラスウールを添加することで、この問題を解決できることが明らかとなった。
[作製したフィルムのX線透過像]
 上記実施例1でインフレーション法により作製したフィルム、及び実施例5でTダイ法により作製したフィルムのX線透過像を撮像した。X線透過像の撮影には、HITACHI CS-SEMCS4800を用い、30kV 180μAの条件で行った。図8(A)は実施例1で作製したフィルムのX線透過像、図8(B)は実施例5で作製したフィルムのX線透過像である。図8(A)から明らかなように、グラスウールはフィルム中でランダム方向に分散していることを確認した。上記実施例7において、樹脂等にグラスウールを添加することで、作製したフィルムやシートの縦方向と横方向の強度の差を小さくできることを確認したが、その理由として、グラスウールがフィルム中でランダム方向に分散しているためと考えられる。また、図8(B)から明らかなように、Tダイ法で作製したフィルムにおいても、グラスウールはランダム方向に分散していた。したがって、Tダイ法により作製した成形品も、縦方向及び横方向の強度の差を小さくできる。
 本発明のシボ模様が形成された成形品の製造方法により、従来から使用されている装置を用い、且つシボ加工を実施しなくても、シボ模様が形成された成形品を製造することができる。したがって、フィルム、シート、筒状体等の製造に有用である。

Claims (10)

  1.  熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む溶融混練物を作製する溶融工程、
     前記溶融混練物を押出成形法により、押出金型の吐出口から押し出して成形品を作製する押出工程、
     前記押出工程で押し出された成形品を冷却する冷却工程、
    を含む、シボ模様が形成された成形品の製造方法。
  2.  前記グラスウールの含有量が、1~20重量%である、
    請求項1に記載のシボ模様が形成された成形品の製造方法。
  3.  前記押出成形法がインフレーション法又はTダイ法で、前記成形品がフィルム、シート、または筒状体である、
    請求項1又は2に記載のシボ模様が形成された成形品の製造方法。
  4.  前記押出成形法が、共押出法であり、
     前記成形品が、積層した多層品として形成され、
     前記多層品の外側の層の少なくとも一方の層が、前記熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む溶融混練物を押し出すことで形成された層である、
    請求項1又は2に記載のシボ模様が形成された成形品の製造方法。
  5.  前記押出成形法が、インフレーション法による共押出又はTダイ法による共押出であり、
     前記成形品が、多層品として形成され、
     前記多層品の外側の層の少なくとも一方の層が、前記熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む溶融混練物を押し出すことで形成された層である、
    請求項3に記載のシボ模様が形成された成形品の製造方法。
  6.  熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む、
    シボ模様が形成された成形品。
  7.  前記グラスウールの含有量が、1~20重量%である、
    請求項6に記載のシボ模様が形成された成形品。
  8.  前記成形品がフィルム、シート、または筒状体である、
    請求項6又は7に記載のシボ模様が形成された成形品。
  9.  前記成形品が、多層品であり、
     前記多層品の外側の層の少なくとも一方の層が、前記熱可塑性樹脂及び/または熱可塑性エラストマー、並びにグラスウールを少なくとも含む層である、
    請求項6~8の何れか一項に記載のシボ模様が形成された成形品。
  10.  前記成形品の厚さが、3μm~300μmである、
    請求項8又は9に記載のシボ模様が形成された成形品。
PCT/JP2017/007634 2016-04-03 2017-02-28 シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品 WO2017175514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018509638A JP6342102B2 (ja) 2016-04-03 2017-02-28 シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品
KR1020187028496A KR20180119650A (ko) 2016-04-03 2017-02-28 그레인 패턴이 형성된 성형품의 제조 방법 및 그레인 패턴이 형성된 성형품
CN201780021168.2A CN109070424A (zh) 2016-04-03 2017-02-28 形成有皱褶模样的成形品的制造方法及形成有皱褶模样的成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016074819 2016-04-03
JP2016-074819 2016-04-03

Publications (1)

Publication Number Publication Date
WO2017175514A1 true WO2017175514A1 (ja) 2017-10-12

Family

ID=60001087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007634 WO2017175514A1 (ja) 2016-04-03 2017-02-28 シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品

Country Status (5)

Country Link
JP (1) JP6342102B2 (ja)
KR (1) KR20180119650A (ja)
CN (1) CN109070424A (ja)
TW (1) TW201739597A (ja)
WO (1) WO2017175514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396121B2 (en) 2018-08-20 2022-07-26 N.E.W. Plastics Corp. Extruded variegated plastic profile and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337744A (ja) * 1997-06-09 1998-12-22 Mitsubishi Eng Plast Kk 繊維強化熱可塑性樹脂成形品の製造方法および成形品
JP2011224897A (ja) * 2010-04-21 2011-11-10 Kyoraku Co Ltd 表皮付きパネルの成形方法、表皮付きパネル
JP2012020579A (ja) * 2010-06-18 2012-02-02 Nitto Denko Corp 有孔中空管の製造方法および有孔中空管製造用型枠
JP2012176604A (ja) * 2011-01-31 2012-09-13 Kyoraku Co Ltd 樹脂成形品の成形方法
WO2013035705A1 (ja) * 2011-09-06 2013-03-14 帝人株式会社 繊維強化複合材料から構成される表面意匠性が優れた成形体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1140216B (it) * 1981-10-09 1986-09-24 Macoplast M R Srl Procedimento per la produzione di lastre antiriflettenti di policarbonato e lastre ottenute mediante tale procedimento
JPH07258426A (ja) * 1994-03-25 1995-10-09 Mitsubishi Gas Chem Co Inc 高光沢成形品
JP5252791B2 (ja) * 2006-08-17 2013-07-31 旭化成ケミカルズ株式会社 低線膨張押出シート
KR101321651B1 (ko) * 2006-11-22 2013-10-23 후쿠이 켄 열가소성 수지 복합 재료 성형품의 성형 방법
WO2012077473A1 (ja) * 2010-12-07 2012-06-14 三菱瓦斯化学株式会社 ポリアミド樹脂フィルム及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337744A (ja) * 1997-06-09 1998-12-22 Mitsubishi Eng Plast Kk 繊維強化熱可塑性樹脂成形品の製造方法および成形品
JP2011224897A (ja) * 2010-04-21 2011-11-10 Kyoraku Co Ltd 表皮付きパネルの成形方法、表皮付きパネル
JP2012020579A (ja) * 2010-06-18 2012-02-02 Nitto Denko Corp 有孔中空管の製造方法および有孔中空管製造用型枠
JP2012176604A (ja) * 2011-01-31 2012-09-13 Kyoraku Co Ltd 樹脂成形品の成形方法
WO2013035705A1 (ja) * 2011-09-06 2013-03-14 帝人株式会社 繊維強化複合材料から構成される表面意匠性が優れた成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396121B2 (en) 2018-08-20 2022-07-26 N.E.W. Plastics Corp. Extruded variegated plastic profile and method

Also Published As

Publication number Publication date
JP6342102B2 (ja) 2018-06-13
KR20180119650A (ko) 2018-11-02
CN109070424A (zh) 2018-12-21
JPWO2017175514A1 (ja) 2018-06-07
TW201739597A (zh) 2017-11-16

Similar Documents

Publication Publication Date Title
EP2406313B2 (en) Machine direction oriented film for labels
EP0470760B1 (en) Composite plastics film or sheet
CN102350794B (zh) 制备聚烯烃基阻隔材料制品的方法
CN102118929B (zh) 用于电子装置外壳的模制品以及用于制备该模制品的方法
CN102774110B (zh) 一种双向拉伸聚乙烯收缩膜及其生产工艺
US8734710B2 (en) Synergistic biopolymer blown film extrusion system and method
EP2740599A2 (en) Method for making multi-layer print media by extrusion coating
EP1118452A1 (en) A process for producing a three layers co-extrusion biaxially oriented polypropylene synthetic paper of thickness 25-250 My m
CN111727224A (zh) 聚乙烯膜组合物,层压体,及其制造方法
CN109927358B (zh) 一种高阻隔耐挤压全塑软管用片材及其制备方法
CN103182821A (zh) 一种改性聚酰胺复合薄膜及其制备方法
CN112724499A (zh) 一种功能性pe基淋膜专用料及其制备方法和应用
CN107584820A (zh) 覆盖带与其制造工艺方法
JP6342102B2 (ja) シボ模様が形成された成形品の製造方法、及びシボ模様が形成された成形品
CN201587630U (zh) 消光阻隔五层共挤复合膜
CN103358560A (zh) 一种多层共挤低温收缩聚烯烃热收缩膜的生产方法
EP1118453A1 (en) A process using single screw extruder for producing a three layer co-extrusion biaxially oriented polypropylene synthetic paper of thickness 25-250um
CN114311906B (zh) 聚乙烯复合包装袋及其加工工艺
CN112848588B (zh) 抗介质低迁移的易撕聚烯烃膜、制备方法、易撕包装结构
CN103862768B (zh) 用于轮胎生产中重复使用的聚乙烯隔离膜及其制备方法
CN202123761U (zh) 多功能双向拉伸聚丙烯热封薄膜
CN112812708A (zh) 一种阻隔型塑料软管用粘接树脂及其制备方法
CN109719858B (zh) 一种多层功能性共挤膜的回收方法
CN115122738B (zh) 一种橡胶密炼包装膜及其制备方法
TW201111168A (en) Polymer composite film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509638

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187028496

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778893

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778893

Country of ref document: EP

Kind code of ref document: A1