WO2017175511A1 - Film capacitor, film for capacitor, and method for producing film capacitor - Google Patents

Film capacitor, film for capacitor, and method for producing film capacitor Download PDF

Info

Publication number
WO2017175511A1
WO2017175511A1 PCT/JP2017/007315 JP2017007315W WO2017175511A1 WO 2017175511 A1 WO2017175511 A1 WO 2017175511A1 JP 2017007315 W JP2017007315 W JP 2017007315W WO 2017175511 A1 WO2017175511 A1 WO 2017175511A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
organic material
capacitor
dielectric
counter electrode
Prior art date
Application number
PCT/JP2017/007315
Other languages
French (fr)
Japanese (ja)
Inventor
智道 市川
智生 稲倉
小林 真一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to DE212017000044.9U priority Critical patent/DE212017000044U1/en
Priority to JP2018510267A priority patent/JP6627969B2/en
Publication of WO2017175511A1 publication Critical patent/WO2017175511A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/58Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/725Combination of polyisocyanates of C08G18/78 with other polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Definitions

  • the present invention relates to a film capacitor, a capacitor film, and a method for manufacturing a film capacitor.
  • the film for capacitors of the present invention specifically relates to a film used as a dielectric resin film of a film capacitor.
  • a film capacitor having a structure in which a first counter electrode and a second counter electrode facing each other with a resin film interposed therebetween are arranged while using a flexible resin film as a dielectric.
  • the film capacitor usually has a substantially cylindrical shape formed by winding a resin film as a dielectric, and a first external terminal is provided on each of the first end surface and the second end surface facing each other of the column. An electrode and a second external terminal electrode are formed.
  • the first counter electrode is electrically connected to the first external terminal electrode
  • the second counter electrode is electrically connected to the second external terminal electrode.
  • Patent Document 1 describes using a dielectric resin film made of a thermosetting resin.
  • the resin composition constituting the dielectric resin film described in Patent Document 1 includes a first atom containing at least one functional group having a relatively low molar polarizability selected from a methylene group, an aromatic ring, and an ether group.
  • a second atomic group including at least one functional group having a relatively high molar polarizability selected from a hydroxyl group, an amino group, and a carbonyl group, and having an absorption band strength of the first atomic group
  • the condition that the value represented by (sum) / (sum of absorption band intensities of the second atomic group) is 1.0 or more is satisfied.
  • the resin composition is a cured product obtained by reacting at least two kinds of organic materials including a first organic material such as a phenoxy resin and a second organic material such as an isocyanate compound. It is described that it is preferable.
  • the film capacitor can be used at a high frequency without any problem. Furthermore, when the resin composition is a cured product obtained by reaction of at least two kinds of organic materials, the glass transition point can be set to 130 ° C. or higher, and thus the heat resistance of the dielectric resin film is increased. Has been.
  • the withstand voltage that is, the withstand voltage strength at a specific temperature is studied. It wasn't.
  • An object of the present invention is to provide a film capacitor including a capacitor film having high dielectric breakdown strength and excellent voltage resistance, a capacitor film, and a method for manufacturing the film capacitor.
  • the film capacitor of the present invention is a film capacitor comprising a dielectric resin film and a first counter electrode and a second counter electrode facing each other across the dielectric resin film, wherein the dielectric resin film It is the film for capacitors of the invention.
  • the capacitor film of the present invention is a capacitor film comprising a cross-linked product of a first organic material and a second organic material, wherein the second organic material is a polyisocyanate having a plurality of isocyanate groups, One organic material has a plurality of hydroxyl groups and has a branched structure.
  • the capacitor film of the present invention comprises a cross-linked product of a first organic material and a second organic material. That is, the capacitor film of the present invention is a cured product obtained by the reaction of the first organic material and the second organic material, and the hydroxyl group of the first organic material reacts with the isocyanate group of the second organic material. It has a crosslinked structure formed as described above. Therefore, as in Patent Document 1, the heat resistance of the film can be increased.
  • the capacitor film of the present invention is characterized by using a first organic material having a branched structure, whereby a film having high dielectric breakdown strength and excellent voltage resistance can be obtained.
  • a film obtained by crosslinking the first organic material and the second organic material is formed as compared with the case where the first organic material having a linear structure is used.
  • Molecular chains are intricately intertwined. Therefore, when a voltage is applied to the film from the outside, it is considered that stress is not concentrated locally and the film is hardly broken.
  • Patent Document 1 in the experimental example, a high molecular weight bisphenol A type epoxy resin having an epoxy group at the terminal is used as the first organic material, and tolylene diisocyanate (TDI) or diphenylmethane diisocyanate is used as the second organic material. A cured product obtained by reacting these using (MDI) is described.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • MDI diphenylmethane diisocyanate
  • the capacitor film of the present invention has high dielectric breakdown strength and excellent voltage resistance. Therefore, in the film capacitor of the present invention, the thickness of the dielectric resin film can be reduced while maintaining a predetermined dielectric breakdown strength. As a result, the film capacitor can be reduced in size.
  • the method for producing a film capacitor of the present invention includes a step of forming a dielectric resin film by forming a resin solution into a film shape and curing, a first counter electrode facing each other with the dielectric resin film interposed therebetween, and And a step of forming a second counter electrode, wherein the resin solution includes a first organic material and a second organic material, and the second organic material has a plurality of isocyanate groups.
  • Polyisocyanate wherein the first organic material has a plurality of hydroxyl groups and has a branched structure.
  • the dielectric breakdown strength is high and can provide the film capacitor provided with the film for capacitors which is excellent in withstand voltage property, the film for capacitors, and the manufacturing method of a film capacitor.
  • FIG. 1 is a cross-sectional view schematically showing an example of a film capacitor including the capacitor film of the present invention.
  • the film for capacitors of the present invention and the film capacitor including the film will be described.
  • the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
  • a combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of a film capacitor including the capacitor film of the present invention.
  • a film capacitor 1 shown in FIG. 1 is a wound type film capacitor, and includes a first dielectric resin film 11 and a second dielectric resin film 12 in a wound state, and a first dielectric resin film 11 or a second dielectric.
  • a first external terminal electrode that includes a first counter electrode 21 and a second counter electrode 22 that face each other with the body resin film 12 interposed therebetween, and that is electrically connected to the first counter electrode 21 and the second counter electrode 22, respectively. 31 and a second external terminal electrode 32 are provided.
  • the first counter electrode 21 is formed on the first dielectric resin film 11, and the second counter electrode 22 is formed on the second dielectric resin film 12.
  • the first counter electrode 21 is formed so as to reach one side edge of the first dielectric resin film 11 but not to the other side edge.
  • the second counter electrode 22 is formed so as not to reach one side edge of the second dielectric resin film 12 but to the other side edge.
  • the first counter electrode 21 and the second counter electrode 22 are made of, for example, an aluminum film.
  • the first dielectric resin film 11 and the second dielectric resin film 12 are in a stacked state by being wound. As shown in FIG. 1, the end of the first counter electrode 21 that reaches the side edge of the first dielectric resin film 11, and the side of the second dielectric resin film 12 in the second counter electrode 22 The first dielectric resin film 11 and the second dielectric resin film 12 are shifted from each other in the width direction so that both ends reaching the edge are exposed. Then, the first dielectric resin film 11 and the second dielectric resin film 12 are wound to obtain a substantially cylindrical capacitor body.
  • each of the first dielectric resin film 11 and the second dielectric resin film 12 is arranged so that the second dielectric resin film 12 is outside the first dielectric resin film 11. Is wound so that each of the first counter electrode 21 and the second counter electrode 22 faces inward.
  • the first external terminal electrode 31 and the second external terminal electrode 32 are formed by spraying, for example, zinc on each end face of the substantially cylindrical capacitor body obtained as described above.
  • the first external terminal electrode 31 is in contact with the exposed end portion of the first counter electrode 21, thereby being electrically connected to the first counter electrode 21.
  • the second external terminal electrode 32 is in contact with the exposed end of the second counter electrode 22, thereby being electrically connected to the second counter electrode 22.
  • the film capacitor may have a cylindrical winding shaft.
  • the winding axis is disposed on the central axis of the first dielectric resin film and the second dielectric resin film in the wound state, and the first dielectric resin film and the second dielectric resin film are wound around the winding axis. It becomes the winding axis when doing.
  • the wound body of the first dielectric resin film 11 and the second dielectric resin film 12 is like an ellipse or an ellipse. May be crushed so as to have a cross-sectional shape, resulting in a more compact shape.
  • the capacitor film of the present invention is used as the dielectric resin film provided in the film capacitor.
  • the capacitor film of the present invention comprises a cross-linked product of a first organic material and a second organic material. That is, the capacitor film of the present invention is a cured product obtained by the reaction of the first organic material and the second organic material, and the hydroxyl group of the first organic material reacts with the isocyanate group of the second organic material. It has a crosslinked structure formed as described above. In the capacitor film of the present invention, it is not necessary for all of the hydroxyl groups of the first organic material and the isocyanate groups of the second organic material to react, and some of the hydroxyl groups and isocyanate groups may remain. . In particular, it is preferable that the hydroxyl group residue is larger than the isocyanate group residue.
  • the hydroxyl group can be confirmed from a peak at 3400 to 3700 cm ⁇ 1
  • the isocyanate group can be confirmed from a peak at 2000 to 2400 cm ⁇ 1 .
  • the first organic material has a plurality of hydroxyl groups (OH groups) and has a branched structure. That is, the first organic material is composed of a plurality of molecular chains and has a plurality of hydroxyl groups as a whole molecule. As long as the first organic material has a plurality of hydroxyl groups as a whole molecule, the number of hydroxyl groups in each molecular chain is not limited, and the number of hydroxyl groups in each molecular chain may be different. Moreover, a molecular chain having no hydroxyl group may exist. Among them, it is preferable that all the molecular chains constituting the first organic material have one or more hydroxyl groups.
  • the first organic material preferably has an epoxy group.
  • the first organic material is preferably a phenoxy resin, and more preferably a high molecular weight bisphenol A type epoxy resin having an epoxy group at a terminal and a branched structure.
  • the first organic material may be a polyol such as a polyether polyol or a polyester polyol.
  • the molecular weight of the first organic material is preferably 20,000 or more from the viewpoint of obtaining the flexibility of the film.
  • the molecular weight of the first organic material means a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) and calculated based on a polystyrene standard sample.
  • two or more organic materials having a plurality of hydroxyl groups and having a branched structure may be used in combination as the first organic material.
  • the second organic material is a polyisocyanate having a plurality of isocyanate groups (NCO groups).
  • the second organic material functions as a curing agent that cures the film by reacting with the hydroxyl group of the first organic material to form a crosslinked structure.
  • the polyisocyanate preferably has 2 or more and 6 or less isocyanate groups, and more preferably 2 or more and 3 or less isocyanate groups.
  • polyisocyanate examples include aromatic polyisocyanates such as diphenylmethane diisocyanate (MDI) and tolylene diisocyanate (TDI), and aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI).
  • aromatic polyisocyanate is preferable, MDI or TDI is more preferable, and MDI is more preferable.
  • the weight ratio between the first organic material and the second organic material is not particularly limited, but is preferably 10/90 or more, and more preferably 20/80 or more. More preferably, 30/70 or more is more preferable, 90/10 or less is preferable, 80/20 or less is more preferable, and 70/30 or less is more preferable.
  • the weight ratio of the first organic material is preferably higher than the weight ratio of the second organic material.
  • the capacitor film of the present invention can also contain additives for adding other functions.
  • smoothness can be imparted by adding a leveling agent.
  • the additive is more preferably a material that has a functional group that reacts with a hydroxyl group and / or an isocyanate group and forms a part of the crosslinked structure of the cured product.
  • a material include a resin having at least one functional group selected from the group consisting of an epoxy group, a silanol group, and a carboxyl group.
  • the capacitor film of the present invention is preferably obtained by forming a resin solution containing the first organic material and the second organic material into a film, and then heat-treating the resin solution.
  • the capacitor film of the present invention thus obtained is excellent in voltage resistance.
  • the dielectric breakdown strength of the capacitor film of the present invention is preferably 300 V / ⁇ m or more, and more preferably 340 V / ⁇ m or more.
  • the capacitor film of the present invention is also excellent in heat resistance.
  • the glass transition point (Tg) of the capacitor film of the present invention is preferably 130 ° C. or higher, more preferably 160 ° C. or higher, and further preferably 169 ° C. or higher.
  • Example 1 A phenoxy resin having a branched structure was prepared as the first organic material, and MDI (diphenylmethane diisocyanate) was prepared as the second organic material.
  • a high molecular weight bisphenol A type epoxy resin (molecular weight: 50,000) having an epoxy group at a terminal and having a branched structure was used. Specifically, 400 parts by weight of bisphenol A diglycidyl ether, 224 parts by weight of bisphenol A, 6 parts by weight of ⁇ , ⁇ -bis (4-hydroxyphenyl) -4- (4-hydroxy- ⁇ , ⁇ -dimethylbenzyl) -ethylbenzene Part, 1.48 parts by weight of tetramethylammonium hydroxide aqueous solution and 210 parts by weight of toluene are put into a pressure-resistant reaction vessel and subjected to a polymerization reaction at 135 ° C. for 6 hours in a nitrogen gas atmosphere to obtain the desired bisphenol A type. An epoxy resin was obtained.
  • the first organic material and the second organic material were mixed at a weight ratio shown in Table 1 to obtain a resin solution.
  • the phenoxy resin was dissolved in a methyl ethyl ketone solvent, and MDI dissolved in methyl ethyl ketone was mixed with the phenoxy resin solution.
  • the obtained resin solution was molded on a PET film by a doctor blade coater to obtain an uncured film having a thickness of 3 ⁇ m.
  • the film of Example 1 was obtained by heat-curing the film by heat treatment for 2 hours in a hot air oven set at 150 ° C.
  • Example 2 A film was prepared in the same manner as in Example 1 except that the molecular weight of the first organic material was changed to 40,000, and the film of Example 2 was obtained.
  • Example 3 A film was prepared in the same manner as in Example 1 except that the molecular weight of the first organic material was changed to 30,000, and the film of Example 3 was obtained.
  • Comparative Example 1 A film was produced in the same manner as in Example 1 except that a phenoxy resin having a linear structure was used as the first organic material, and a film of Comparative Example 1 was obtained.
  • a phenoxy resin having the above linear structure a high molecular weight bisphenol A type epoxy resin (molecular weight: 50,000) having an epoxy group at the terminal and having a linear structure was used.
  • the glass transition point (Tg) was measured by DMA (Dynamic viscoelasticity measuring apparatus, "RSA-III” manufactured by TA INSTRUMENTS). Measurement conditions were as follows: the temperature was raised from room temperature to 250 ° C. at a rate of temperature rise of 10 ° C./min, the wave number was 10 rad / sec, the strain was 0.1%, and the temperature at which the loss tangent (tan ⁇ ) showed the maximum peak value was determined . Table 1 shows the Tg of each film.
  • DMA Dynamic viscoelasticity measuring apparatus, "RSA-III” manufactured by TA INSTRUMENTS. Measurement conditions were as follows: the temperature was raised from room temperature to 250 ° C. at a rate of temperature rise of 10 ° C./min, the wave number was 10 rad / sec, the strain was 0.1%, and the temperature at which the loss tangent (tan ⁇ ) showed the maximum peak value was determined . Table 1 shows the Tg of each film.
  • the dielectric breakdown strength of each film after thermosetting was measured by the following method. Capacitance decreases due to film breakage under an electric field application method in which each electrode film is formed with vapor deposition electrodes on both surfaces and used as an evaluation sample, and the electric field intensity is maintained at 25 V / ⁇ m increments and each electric field intensity is maintained for 10 minutes. The electric field strength that was 0% of the initial value was defined as the dielectric breakdown strength. The measurement temperature was 125 ° C. In this measurement, the number of samples for evaluation was set to 5 for each film, and the value at which the failure frequency was 50% in the Weibull distribution was adopted as the average value of the dielectric breakdown strength. The dielectric breakdown strength of each film is shown in Table 1.
  • the molecular weight of the first organic material means a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) and calculated based on a polystyrene standard sample.
  • the glass transition point Tg was 165 ° C. and the dielectric breakdown strength was 250 V / ⁇ m.
  • the glass transition point Tg was about 170 ° C., and the dielectric breakdown strength was 340 V / ⁇ m or more. From the above results, it was confirmed that not only heat resistance but also voltage resistance can be increased by using a phenoxy resin having a branched structure as the first organic material.

Abstract

This film capacitor is provided with a dielectric resin film, and first and second counter electrodes that face each other with the dielectric resin interposed therebetween, wherein the film capacitor is characterized in that the dielectric resin film is a capacitor film comprising a crosslinked substance of a first organic material and a second organic material, the second organic material being a polyisocyanate having a plurality of isocyanate groups, and the first organic material having a plurality of hydroxyl groups and having a branched structure.

Description

フィルムコンデンサ、コンデンサ用フィルム、及び、フィルムコンデンサの製造方法Film capacitor, capacitor film, and film capacitor manufacturing method
本発明は、フィルムコンデンサ、コンデンサ用フィルム、及び、フィルムコンデンサの製造方法に関する。本発明のコンデンサ用フィルムは、詳しくは、フィルムコンデンサの誘電体樹脂フィルムとして用いられるフィルムに関する。 The present invention relates to a film capacitor, a capacitor film, and a method for manufacturing a film capacitor. The film for capacitors of the present invention specifically relates to a film used as a dielectric resin film of a film capacitor.
コンデンサの一種として、可撓性のある樹脂フィルムを誘電体として用いながら、樹脂フィルムを挟んで互いに対向する第1対向電極及び第2対向電極を配置した構造のフィルムコンデンサがある。フィルムコンデンサは、通常、誘電体としての樹脂フィルムを巻回してなる略円柱状の形態をなしており、当該円柱の互いに対向する第1端面及び第2端面上には、それぞれ、第1外部端子電極及び第2外部端子電極が形成されている。そして、第1対向電極は第1外部端子電極と電気的に接続され、第2対向電極は第2外部端子電極と電気的に接続されている。 As one type of capacitor, there is a film capacitor having a structure in which a first counter electrode and a second counter electrode facing each other with a resin film interposed therebetween are arranged while using a flexible resin film as a dielectric. The film capacitor usually has a substantially cylindrical shape formed by winding a resin film as a dielectric, and a first external terminal is provided on each of the first end surface and the second end surface facing each other of the column. An electrode and a second external terminal electrode are formed. The first counter electrode is electrically connected to the first external terminal electrode, and the second counter electrode is electrically connected to the second external terminal electrode.
フィルムコンデンサ用の誘電体樹脂フィルムとして、例えば、特許文献1には、熱硬化性樹脂からなる誘電体樹脂フィルムを用いることが記載されている。特許文献1に記載の誘電体樹脂フィルムを構成する樹脂組成物は、メチレン基、芳香環及びエーテル基から選ばれる、モル分極率の比較的小さい少なくとも1種の官能基を含む、第1の原子団と、水酸基、アミノ基及びカルボニル基から選ばれる、モル分極率の比較的大きい少なくとも1種の官能基を含む、第2の原子団とを備え、(第1の原子団の吸収帯強度の総和)/(第2の原子団の吸収帯強度の総和)で表わされる値が1.0以上であるという条件を満たしている。さらに、特許文献1には、上記樹脂組成物が、フェノキシ樹脂等の第1有機材料とイソシアネート化合物等の第2有機材料とを含む少なくとも2種類の有機材料が反応して得られた硬化物であることが好ましいと記載されている。 As a dielectric resin film for a film capacitor, for example, Patent Document 1 describes using a dielectric resin film made of a thermosetting resin. The resin composition constituting the dielectric resin film described in Patent Document 1 includes a first atom containing at least one functional group having a relatively low molar polarizability selected from a methylene group, an aromatic ring, and an ether group. And a second atomic group including at least one functional group having a relatively high molar polarizability selected from a hydroxyl group, an amino group, and a carbonyl group, and having an absorption band strength of the first atomic group The condition that the value represented by (sum) / (sum of absorption band intensities of the second atomic group) is 1.0 or more is satisfied. Further, in Patent Document 1, the resin composition is a cured product obtained by reacting at least two kinds of organic materials including a first organic material such as a phenoxy resin and a second organic material such as an isocyanate compound. It is described that it is preferable.
国際公開第2013/128726号International Publication No. 2013/128726
特許文献1に記載の樹脂組成物によれば、誘電正接を低くすることができるため、フィルムコンデンサを高周波で問題なく使用することが可能となるとされている。さらに、上記樹脂組成物が少なくとも2種類の有機材料が反応して得られた硬化物であると、ガラス転移点を130℃以上とすることができるため、誘電体樹脂フィルムの耐熱性が高くなるとされている。 According to the resin composition described in Patent Document 1, since the dielectric loss tangent can be lowered, the film capacitor can be used at a high frequency without any problem. Furthermore, when the resin composition is a cured product obtained by reaction of at least two kinds of organic materials, the glass transition point can be set to 130 ° C. or higher, and thus the heat resistance of the dielectric resin film is increased. Has been.
このように、特許文献1に記載の樹脂組成物からなる誘電体樹脂フィルムでは、誘電正接及び耐熱性については検討されているものの、耐電圧性、すなわち、特定温度における耐電圧強度については検討されていなかった。 As described above, in the dielectric resin film made of the resin composition described in Patent Document 1, although the dielectric loss tangent and the heat resistance are studied, the withstand voltage, that is, the withstand voltage strength at a specific temperature is studied. It wasn't.
本発明は、絶縁破壊強度が高く、耐電圧性に優れるコンデンサ用フィルムを備えるフィルムコンデンサ、コンデンサ用フィルム、及び、フィルムコンデンサの製造方法を提供することを目的とする。 An object of the present invention is to provide a film capacitor including a capacitor film having high dielectric breakdown strength and excellent voltage resistance, a capacitor film, and a method for manufacturing the film capacitor.
本発明のフィルムコンデンサは、誘電体樹脂フィルムと、上記誘電体樹脂フィルムを挟んで互いに対向する第1対向電極及び第2対向電極とを備えるフィルムコンデンサであって、上記誘電体樹脂フィルムは、本発明のコンデンサ用フィルムであることを特徴とする。 The film capacitor of the present invention is a film capacitor comprising a dielectric resin film and a first counter electrode and a second counter electrode facing each other across the dielectric resin film, wherein the dielectric resin film It is the film for capacitors of the invention.
本発明のコンデンサ用フィルムは、第1有機材料と第2有機材料との架橋物からなるコンデンサ用フィルムであって、上記第2有機材料は、複数のイソシアネート基を有するポリイソシアネートであり、上記第1有機材料は、複数の水酸基を有し、かつ、分岐構造を持つことを特徴とする。 The capacitor film of the present invention is a capacitor film comprising a cross-linked product of a first organic material and a second organic material, wherein the second organic material is a polyisocyanate having a plurality of isocyanate groups, One organic material has a plurality of hydroxyl groups and has a branched structure.
本発明のコンデンサ用フィルムは、第1有機材料と第2有機材料との架橋物からなる。すなわち、本発明のコンデンサ用フィルムは、第1有機材料と第2有機材料とが反応して得られる硬化物であり、第1有機材料が有する水酸基と第2有機材料が有するイソシアネート基とが反応して形成される架橋構造を有している。したがって、特許文献1と同様、フィルムの耐熱性を高くすることができる。 The capacitor film of the present invention comprises a cross-linked product of a first organic material and a second organic material. That is, the capacitor film of the present invention is a cured product obtained by the reaction of the first organic material and the second organic material, and the hydroxyl group of the first organic material reacts with the isocyanate group of the second organic material. It has a crosslinked structure formed as described above. Therefore, as in Patent Document 1, the heat resistance of the film can be increased.
さらに、本発明のコンデンサ用フィルムでは、分岐構造を持つ第1有機材料を用いることを特徴としており、これにより、絶縁破壊強度が高く、耐電圧性に優れたフィルムにすることができる。分岐構造を持つ第1有機材料を用いる場合には、直鎖構造を持つ第1有機材料を用いる場合に比べて、第1有機材料と第2有機材料とを架橋させて得られるフィルムを構成する分子鎖が複雑に絡み合うことになる。そのため、外部からフィルムに電圧が印加された際、応力が局所的に集中せず、フィルムが破壊されにくくなると考えられる。 Furthermore, the capacitor film of the present invention is characterized by using a first organic material having a branched structure, whereby a film having high dielectric breakdown strength and excellent voltage resistance can be obtained. When the first organic material having a branched structure is used, a film obtained by crosslinking the first organic material and the second organic material is formed as compared with the case where the first organic material having a linear structure is used. Molecular chains are intricately intertwined. Therefore, when a voltage is applied to the film from the outside, it is considered that stress is not concentrated locally and the film is hardly broken.
なお、特許文献1には、実験例において、第1有機材料として、末端にエポキシ基を有する高分子量のビスフェノールA型エポキシ樹脂を用い、第2有機材料として、トリレンジイソシアネート(TDI)又はジフェニルメタンジイソシアネート(MDI)を用い、これらを反応させて得られた硬化物が記載されている。
しかし、末端にエポキシ基を有する高分子量のビスフェノールA型エポキシ樹脂の中で、分岐構造を持つものはこれまで知られていなかった。そのため、特許文献1の実験例で用いられているフェノキシ樹脂の構造は、分岐構造ではなく、直鎖構造であると言える。
In Patent Document 1, in the experimental example, a high molecular weight bisphenol A type epoxy resin having an epoxy group at the terminal is used as the first organic material, and tolylene diisocyanate (TDI) or diphenylmethane diisocyanate is used as the second organic material. A cured product obtained by reacting these using (MDI) is described.
However, a high molecular weight bisphenol A type epoxy resin having an epoxy group at the terminal has not been known so far. Therefore, it can be said that the structure of the phenoxy resin used in the experimental example of Patent Document 1 is not a branched structure but a linear structure.
上述のとおり、本発明のコンデンサ用フィルムは、高い絶縁破壊強度を有しており、耐電圧性に優れている。そのため、本発明のフィルムコンデンサでは、所定の絶縁破壊強度を維持しながら誘電体樹脂フィルムの厚みを薄くすることができ、その結果、フィルムコンデンサの小型化を図ることができる。 As described above, the capacitor film of the present invention has high dielectric breakdown strength and excellent voltage resistance. Therefore, in the film capacitor of the present invention, the thickness of the dielectric resin film can be reduced while maintaining a predetermined dielectric breakdown strength. As a result, the film capacitor can be reduced in size.
本発明のフィルムコンデンサの製造方法は、樹脂溶液をフィルム状に成形し、硬化させることによって、誘電体樹脂フィルムを作製する工程と、上記誘電体樹脂フィルムを挟んで互いに対向する第1対向電極及び第2対向電極を形成する工程とを備えるフィルムコンデンサの製造方法であって、上記樹脂溶液は、第1有機材料及び第2有機材料を含み、上記第2有機材料は、複数のイソシアネート基を有するポリイソシアネートであり、上記第1有機材料は、複数の水酸基を有し、かつ、分岐構造を持つことを特徴とする。 The method for producing a film capacitor of the present invention includes a step of forming a dielectric resin film by forming a resin solution into a film shape and curing, a first counter electrode facing each other with the dielectric resin film interposed therebetween, and And a step of forming a second counter electrode, wherein the resin solution includes a first organic material and a second organic material, and the second organic material has a plurality of isocyanate groups. Polyisocyanate, wherein the first organic material has a plurality of hydroxyl groups and has a branched structure.
本発明によれば、絶縁破壊強度が高く、耐電圧性に優れるコンデンサ用フィルムを備えるフィルムコンデンサ、コンデンサ用フィルム、及び、フィルムコンデンサの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the dielectric breakdown strength is high and can provide the film capacitor provided with the film for capacitors which is excellent in withstand voltage property, the film for capacitors, and the manufacturing method of a film capacitor.
図1は、本発明のコンデンサ用フィルムを備えるフィルムコンデンサの一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a film capacitor including the capacitor film of the present invention.
以下、本発明のコンデンサ用フィルム及び該フィルムを備えるフィルムコンデンサについて説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the film for capacitors of the present invention and the film capacitor including the film will be described.
However, the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
A combination of two or more of the individual desirable configurations of the present invention described below is also the present invention.
[フィルムコンデンサ]
図1は、本発明のコンデンサ用フィルムを備えるフィルムコンデンサの一例を模式的に示す断面図である。
図1に示すフィルムコンデンサ1は、巻回型のフィルムコンデンサであり、巻回状態の第1誘電体樹脂フィルム11及び第2誘電体樹脂フィルム12と、第1誘電体樹脂フィルム11又は第2誘電体樹脂フィルム12を挟んで互いに対向する第1対向電極21及び第2対向電極22とを備えるとともに、第1対向電極21及び第2対向電極22にそれぞれ電気的に接続される第1外部端子電極31及び第2外部端子電極32を備えている。
[Film capacitor]
FIG. 1 is a cross-sectional view schematically showing an example of a film capacitor including the capacitor film of the present invention.
A film capacitor 1 shown in FIG. 1 is a wound type film capacitor, and includes a first dielectric resin film 11 and a second dielectric resin film 12 in a wound state, and a first dielectric resin film 11 or a second dielectric. A first external terminal electrode that includes a first counter electrode 21 and a second counter electrode 22 that face each other with the body resin film 12 interposed therebetween, and that is electrically connected to the first counter electrode 21 and the second counter electrode 22, respectively. 31 and a second external terminal electrode 32 are provided.
第1対向電極21は第1誘電体樹脂フィルム11上に形成され、第2対向電極22は第2誘電体樹脂フィルム12上に形成される。第1対向電極21は、第1誘電体樹脂フィルム11の一方側縁にまで届くが、他方側縁にまで届かないように形成される。他方、第2対向電極22は、第2誘電体樹脂フィルム12の一方側縁にまで届かないが、他方側縁にまで届くように形成される。第1対向電極21及び第2対向電極22は、例えばアルミニウム膜から構成される。 The first counter electrode 21 is formed on the first dielectric resin film 11, and the second counter electrode 22 is formed on the second dielectric resin film 12. The first counter electrode 21 is formed so as to reach one side edge of the first dielectric resin film 11 but not to the other side edge. On the other hand, the second counter electrode 22 is formed so as not to reach one side edge of the second dielectric resin film 12 but to the other side edge. The first counter electrode 21 and the second counter electrode 22 are made of, for example, an aluminum film.
第1誘電体樹脂フィルム11及び第2誘電体樹脂フィルム12は、巻回されることによって、積み重なった状態とされる。図1に示すように、第1対向電極21における第1誘電体樹脂フィルム11の側縁にまで届いている側の端部、及び、第2対向電極22における第2誘電体樹脂フィルム12の側縁にまで届いている側の端部がともに露出するように、第1誘電体樹脂フィルム11と第2誘電体樹脂フィルム12とが互いに幅方向にずらされる。そして、第1誘電体樹脂フィルム11及び第2誘電体樹脂フィルム12が巻回されることによって、実質的に円柱状のコンデンサ本体が得られる。 The first dielectric resin film 11 and the second dielectric resin film 12 are in a stacked state by being wound. As shown in FIG. 1, the end of the first counter electrode 21 that reaches the side edge of the first dielectric resin film 11, and the side of the second dielectric resin film 12 in the second counter electrode 22 The first dielectric resin film 11 and the second dielectric resin film 12 are shifted from each other in the width direction so that both ends reaching the edge are exposed. Then, the first dielectric resin film 11 and the second dielectric resin film 12 are wound to obtain a substantially cylindrical capacitor body.
図1に示すフィルムコンデンサ1では、第2誘電体樹脂フィルム12が第1誘電体樹脂フィルム11の外側になるように、かつ、第1誘電体樹脂フィルム11及び第2誘電体樹脂フィルム12の各々について、第1対向電極21及び第2対向電極22の各々が内方に向くように巻回されている。 In the film capacitor 1 shown in FIG. 1, each of the first dielectric resin film 11 and the second dielectric resin film 12 is arranged so that the second dielectric resin film 12 is outside the first dielectric resin film 11. Is wound so that each of the first counter electrode 21 and the second counter electrode 22 faces inward.
第1外部端子電極31及び第2外部端子電極32は、上述のようにして得られた実質的に円柱状のコンデンサ本体の各端面上に、例えば亜鉛を溶射することによって形成される。第1外部端子電極31は、第1対向電極21の露出端部と接触し、それによって第1対向電極21と電気的に接続される。他方、第2外部端子電極32は、第2対向電極22の露出端部と接触し、それによって第2対向電極22と電気的に接続される。 The first external terminal electrode 31 and the second external terminal electrode 32 are formed by spraying, for example, zinc on each end face of the substantially cylindrical capacitor body obtained as described above. The first external terminal electrode 31 is in contact with the exposed end portion of the first counter electrode 21, thereby being electrically connected to the first counter electrode 21. On the other hand, the second external terminal electrode 32 is in contact with the exposed end of the second counter electrode 22, thereby being electrically connected to the second counter electrode 22.
フィルムコンデンサは、円柱状の巻回軸を備えていてもよい。巻回軸は、巻回状態の第1誘電体樹脂フィルム及び第2誘電体樹脂フィルムの中心軸線上に配置されるものであり、第1誘電体樹脂フィルム及び第2誘電体樹脂フィルムを巻回する際の巻軸となるものである。なお、図1に示すフィルムコンデンサ1のように、巻回軸を備えない場合には、第1誘電体樹脂フィルム11及び第2誘電体樹脂フィルム12の巻回体は、楕円又は長円のような断面形状となるように押しつぶされ、よりコンパクトな形状とされることがある。 The film capacitor may have a cylindrical winding shaft. The winding axis is disposed on the central axis of the first dielectric resin film and the second dielectric resin film in the wound state, and the first dielectric resin film and the second dielectric resin film are wound around the winding axis. It becomes the winding axis when doing. In the case where the winding axis is not provided as in the film capacitor 1 shown in FIG. 1, the wound body of the first dielectric resin film 11 and the second dielectric resin film 12 is like an ellipse or an ellipse. May be crushed so as to have a cross-sectional shape, resulting in a more compact shape.
上記フィルムコンデンサが備える誘電体樹脂フィルムとして、本発明のコンデンサ用フィルムが用いられる。 As the dielectric resin film provided in the film capacitor, the capacitor film of the present invention is used.
[コンデンサ用フィルム]
本発明のコンデンサ用フィルムは、第1有機材料と第2有機材料との架橋物からなる。すなわち、本発明のコンデンサ用フィルムは、第1有機材料と第2有機材料とが反応して得られる硬化物であり、第1有機材料が有する水酸基と第2有機材料が有するイソシアネート基とが反応して形成される架橋構造を有している。
なお、本発明のコンデンサ用フィルムでは、第1有機材料が有する水酸基及び第2有機材料が有するイソシアネート基のすべてが反応している必要はなく、水酸基及びイソシアネート基の一部が残っていてもよい。特に、水酸基の残留物が、イソシアネート基の残留物よりも多いことが好ましい。この場合、イソシアネート基の残留物が存在しなくてもよい。水酸基の残留物がイソシアネート基の残留物よりも多いことは、フーリエ変換赤外分光光度計(FT-IR)を用いて、赤外線吸収スペクトルを減衰全反射法(ATR:attenuated total reflection)により測定することで確認することができる。具体的には、水酸基は3400~3700cm-1におけるピーク、イソシアネート基は2000~2400cm-1におけるピークから確認することができる。
[Capacitor film]
The capacitor film of the present invention comprises a cross-linked product of a first organic material and a second organic material. That is, the capacitor film of the present invention is a cured product obtained by the reaction of the first organic material and the second organic material, and the hydroxyl group of the first organic material reacts with the isocyanate group of the second organic material. It has a crosslinked structure formed as described above.
In the capacitor film of the present invention, it is not necessary for all of the hydroxyl groups of the first organic material and the isocyanate groups of the second organic material to react, and some of the hydroxyl groups and isocyanate groups may remain. . In particular, it is preferable that the hydroxyl group residue is larger than the isocyanate group residue. In this case, there may be no isocyanate group residue. The fact that there are more hydroxyl group residues than isocyanate group residues is measured by an attenuated total reflection (ATR) method using a Fourier transform infrared spectrophotometer (FT-IR). This can be confirmed. Specifically, the hydroxyl group can be confirmed from a peak at 3400 to 3700 cm −1 , and the isocyanate group can be confirmed from a peak at 2000 to 2400 cm −1 .
第1有機材料は、複数の水酸基(OH基)を有し、かつ、分岐構造を持っている。すなわち、第1有機材料は、複数の分子鎖から構成され、分子全体として複数の水酸基を有している。第1有機材料が分子全体として複数の水酸基を有している限り、それぞれの分子鎖が有する水酸基の個数は限定されず、それぞれの分子鎖が有する水酸基の個数が異なっていてもよい。また、水酸基を有しない分子鎖が存在してもよい。中でも、第1有機材料を構成する全ての分子鎖が1個以上の水酸基を有することが好ましい。 The first organic material has a plurality of hydroxyl groups (OH groups) and has a branched structure. That is, the first organic material is composed of a plurality of molecular chains and has a plurality of hydroxyl groups as a whole molecule. As long as the first organic material has a plurality of hydroxyl groups as a whole molecule, the number of hydroxyl groups in each molecular chain is not limited, and the number of hydroxyl groups in each molecular chain may be different. Moreover, a molecular chain having no hydroxyl group may exist. Among them, it is preferable that all the molecular chains constituting the first organic material have one or more hydroxyl groups.
第1有機材料は、エポキシ基を有することが好ましい。特に、第1有機材料は、フェノキシ樹脂であることが好ましく、末端にエポキシ基を有し、分岐構造を持つ高分子量のビスフェノールA型エポキシ樹脂であることがより好ましい。また、第1有機材料は、ポリエーテルポリオール、ポリエステルポリオール等のポリオールであってもよい。 The first organic material preferably has an epoxy group. In particular, the first organic material is preferably a phenoxy resin, and more preferably a high molecular weight bisphenol A type epoxy resin having an epoxy group at a terminal and a branched structure. The first organic material may be a polyol such as a polyether polyol or a polyester polyol.
第1有機材料の分子量は、フィルムの可とう性を得る観点から、20,000以上であることが好ましい。
なお、第1有機材料の分子量とは、ゲル浸透クロマトグラフィー(GPC)により測定し、ポリスチレン標準試料を基準として算出した重量平均分子量(Mw)を意味する。
The molecular weight of the first organic material is preferably 20,000 or more from the viewpoint of obtaining the flexibility of the film.
The molecular weight of the first organic material means a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) and calculated based on a polystyrene standard sample.
なお、第1有機材料として、複数の水酸基を有し、かつ、分岐構造を持つ有機材料を2種以上併用してもよい。 Note that two or more organic materials having a plurality of hydroxyl groups and having a branched structure may be used in combination as the first organic material.
第2有機材料は、複数のイソシアネート基(NCO基)を有するポリイソシアネートである。第2有機材料は、第1有機材料が有する水酸基と反応して架橋構造を形成することで、フィルムを硬化させる硬化剤として機能する。 The second organic material is a polyisocyanate having a plurality of isocyanate groups (NCO groups). The second organic material functions as a curing agent that cures the film by reacting with the hydroxyl group of the first organic material to form a crosslinked structure.
ポリイソシアネートは、2個以上6個以下のイソシアネート基を有することが好ましく、2個以上3個以下のイソシアネート基を有することがより好ましい。 The polyisocyanate preferably has 2 or more and 6 or less isocyanate groups, and more preferably 2 or more and 3 or less isocyanate groups.
ポリイソシアネートとしては、例えば、ジフェニルメタンジイソシアネート(MDI)及びトリレンジイソシアネート(TDI)等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HDI)等の脂肪族ポリイソシアネート等が挙げられる。これらのポリイソシアネートの変性体、例えば、カルボジイミド又はウレタン等を有する変性体であってもよい。中でも、芳香族ポリイソシアネートが好ましく、MDI又はTDIがより好ましく、MDIがさらに好ましい。なお、第2有機材料として、2種以上のポリイソシアネートを併用してもよい。 Examples of the polyisocyanate include aromatic polyisocyanates such as diphenylmethane diisocyanate (MDI) and tolylene diisocyanate (TDI), and aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI). A modified product of these polyisocyanates, for example, a modified product having carbodiimide or urethane may be used. Among them, aromatic polyisocyanate is preferable, MDI or TDI is more preferable, and MDI is more preferable. In addition, you may use together 2 or more types of polyisocyanate as a 2nd organic material.
本発明のコンデンサ用フィルムにおいて、第1有機材料と第2有機材料との重量比率(第1有機材料/第2有機材料)は特に限定されないが、10/90以上が好ましく、20/80以上がより好ましく、30/70以上がさらに好ましく、また、90/10以下が好ましく、80/20以下がより好ましく、70/30以下がさらに好ましい。特に、第1有機材料の重量比率が、第2有機材料の重量比率よりも高いことが好ましい。 In the capacitor film of the present invention, the weight ratio between the first organic material and the second organic material (first organic material / second organic material) is not particularly limited, but is preferably 10/90 or more, and more preferably 20/80 or more. More preferably, 30/70 or more is more preferable, 90/10 or less is preferable, 80/20 or less is more preferable, and 70/30 or less is more preferable. In particular, the weight ratio of the first organic material is preferably higher than the weight ratio of the second organic material.
本発明のコンデンサ用フィルムは、他の機能を付加するための添加剤を含むこともできる。例えば、レベリング剤を添加することで平滑性を付与することができる。添加剤は、水酸基及び/又はイソシアネート基と反応する官能基を有し、硬化物の架橋構造の一部を形成する材料であることがより好ましい。このような材料としては、例えば、エポキシ基、シラノール基及びカルボキシル基からなる群より選択される少なくとも1種の官能基を有する樹脂等が挙げられる。 The capacitor film of the present invention can also contain additives for adding other functions. For example, smoothness can be imparted by adding a leveling agent. The additive is more preferably a material that has a functional group that reacts with a hydroxyl group and / or an isocyanate group and forms a part of the crosslinked structure of the cured product. Examples of such a material include a resin having at least one functional group selected from the group consisting of an epoxy group, a silanol group, and a carboxyl group.
本発明のコンデンサ用フィルムは、好ましくは、第1有機材料及び第2有機材料を含む樹脂溶液をフィルム状に成形し、次いで、熱処理して硬化させることによって得られる。 The capacitor film of the present invention is preferably obtained by forming a resin solution containing the first organic material and the second organic material into a film, and then heat-treating the resin solution.
このようにして得られる本発明のコンデンサ用フィルムは、耐電圧性に優れている。本発明のコンデンサ用フィルムの絶縁破壊強度は、300V/μm以上が好ましく、340V/μm以上がより好ましい。 The capacitor film of the present invention thus obtained is excellent in voltage resistance. The dielectric breakdown strength of the capacitor film of the present invention is preferably 300 V / μm or more, and more preferably 340 V / μm or more.
また、本発明のコンデンサ用フィルムは、耐熱性にも優れている。本発明のコンデンサ用フィルムのガラス転移点(Tg)は、130℃以上が好ましく、160℃以上がより好ましく、169℃以上であることがさらに好ましい。 The capacitor film of the present invention is also excellent in heat resistance. The glass transition point (Tg) of the capacitor film of the present invention is preferably 130 ° C. or higher, more preferably 160 ° C. or higher, and further preferably 169 ° C. or higher.
以下、本発明のコンデンサ用フィルムをより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。 Hereinafter, the Example which disclosed the film for capacitors of the present invention more concretely is shown. In addition, this invention is not limited only to these Examples.
[フィルムの作製]
(実施例1)
第1有機材料として、分岐構造を持つフェノキシ樹脂を用意し、第2有機材料として、MDI(ジフェニルメタンジイソシアネート)を用意した。
[Production of film]
Example 1
A phenoxy resin having a branched structure was prepared as the first organic material, and MDI (diphenylmethane diisocyanate) was prepared as the second organic material.
上記分岐構造を持つフェノキシ樹脂としては、末端にエポキシ基を有し、分岐構造を持つ高分子量のビスフェノールA型エポキシ樹脂(分子量:50,000)を用いた。
具体的には、ビスフェノールAジグリシジルエーテル 400重量部、ビスフェノールA 224重量部、α,α-ビス(4-ヒドロキシフェニル)-4-(4-ヒドロキシ―α,α-ジメチルベンジル)-エチルベンゼン 6重量部、水酸化テトラメチルアンモニウム27%水溶液 1.48重量部、トルエン 210重量部を耐圧反応容器に入れ、窒素ガス雰囲気下135℃で6時間、重合反応を行うことにより、目的とするビスフェノールA型エポキシ樹脂を得た。
As the phenoxy resin having a branched structure, a high molecular weight bisphenol A type epoxy resin (molecular weight: 50,000) having an epoxy group at a terminal and having a branched structure was used.
Specifically, 400 parts by weight of bisphenol A diglycidyl ether, 224 parts by weight of bisphenol A, 6 parts by weight of α, α-bis (4-hydroxyphenyl) -4- (4-hydroxy-α, α-dimethylbenzyl) -ethylbenzene Part, 1.48 parts by weight of tetramethylammonium hydroxide aqueous solution and 210 parts by weight of toluene are put into a pressure-resistant reaction vessel and subjected to a polymerization reaction at 135 ° C. for 6 hours in a nitrogen gas atmosphere to obtain the desired bisphenol A type. An epoxy resin was obtained.
上記MDIとしては、4,4’-ジフェニルメタンジイソシアネートとそのカルボジイミド変性体の混合物(重量比率70:30)を用いた。 As the MDI, a mixture (weight ratio 70:30) of 4,4'-diphenylmethane diisocyanate and a modified carbodiimide thereof was used.
第1有機材料と第2有機材料とを表1に示す重量比率で混合し、樹脂溶液を得た。樹脂溶液を得るにあたって、フェノキシ樹脂をメチルエチルケトン溶剤に溶解し、メチルエチルケトンに溶解したMDIをフェノキシ樹脂溶液に混合した。 The first organic material and the second organic material were mixed at a weight ratio shown in Table 1 to obtain a resin solution. In obtaining the resin solution, the phenoxy resin was dissolved in a methyl ethyl ketone solvent, and MDI dissolved in methyl ethyl ketone was mixed with the phenoxy resin solution.
得られた樹脂溶液を、ドクターブレードコーターにより、PETフィルム上で成形し、厚みが3μmの未硬化フィルムを得た。次いで、このフィルムを、150℃に設定された熱風式オーブンにて、2時間、熱処理して熱硬化させることにより、実施例1のフィルムを得た。 The obtained resin solution was molded on a PET film by a doctor blade coater to obtain an uncured film having a thickness of 3 μm. Next, the film of Example 1 was obtained by heat-curing the film by heat treatment for 2 hours in a hot air oven set at 150 ° C.
(実施例2)
第1有機材料の分子量を40,000に変更した他は、実施例1と同様にフィルムを作製し、実施例2のフィルムを得た。
(Example 2)
A film was prepared in the same manner as in Example 1 except that the molecular weight of the first organic material was changed to 40,000, and the film of Example 2 was obtained.
(実施例3)
第1有機材料の分子量を30,000に変更した他は、実施例1と同様にフィルムを作製し、実施例3のフィルムを得た。
(Example 3)
A film was prepared in the same manner as in Example 1 except that the molecular weight of the first organic material was changed to 30,000, and the film of Example 3 was obtained.
(比較例1)
第1有機材料として、直鎖構造を持つフェノキシ樹脂を用いた他は、実施例1と同様にフィルムを作製し、比較例1のフィルムを得た。
上記直鎖構造を持つフェノキシ樹脂としては、末端にエポキシ基を有し、直鎖構造を持つ高分子量のビスフェノールA型エポキシ樹脂(分子量:50,000)を用いた。
(Comparative Example 1)
A film was produced in the same manner as in Example 1 except that a phenoxy resin having a linear structure was used as the first organic material, and a film of Comparative Example 1 was obtained.
As the phenoxy resin having the above linear structure, a high molecular weight bisphenol A type epoxy resin (molecular weight: 50,000) having an epoxy group at the terminal and having a linear structure was used.
[ガラス転移点の測定]
熱硬化後の各フィルムについて、DMA(動的粘弾性測定装置、TA INSTRUMENTS社製「RSA-III」)によりガラス転移点(Tg)を測定した。測定条件は、昇温速度10℃/分で室温から250℃まで昇温し、波数を10rad/秒、Strainを0.1%とし、損失正接(tanδ)が最大ピーク値を示す温度を求めた。各フィルムのTgを表1に示す。
[Measurement of glass transition point]
About each film after thermosetting, the glass transition point (Tg) was measured by DMA (Dynamic viscoelasticity measuring apparatus, "RSA-III" manufactured by TA INSTRUMENTS). Measurement conditions were as follows: the temperature was raised from room temperature to 250 ° C. at a rate of temperature rise of 10 ° C./min, the wave number was 10 rad / sec, the strain was 0.1%, and the temperature at which the loss tangent (tan δ) showed the maximum peak value was determined . Table 1 shows the Tg of each film.
[絶縁破壊強度の測定]
以下の方法により、熱硬化後の各フィルムの絶縁破壊強度を測定した。各フィルムの両面に蒸着電極を形成したものを評価用試料とし、電界強度25V/μm刻みで、各電界強度を10分間保持する電界印加方法の下で、フィルムの破壊によって静電容量が低下して初期値の0%となった電界強度を絶縁破壊強度と定義した。なお、測定温度は125℃とした。この測定では、各フィルムについて評価用試料の数を5個とし、ワイブル分布で故障頻度50%となる値を絶縁破壊強度の平均値として採用した。各フィルムの絶縁破壊強度を表1に示す。
[Measurement of dielectric breakdown strength]
The dielectric breakdown strength of each film after thermosetting was measured by the following method. Capacitance decreases due to film breakage under an electric field application method in which each electrode film is formed with vapor deposition electrodes on both surfaces and used as an evaluation sample, and the electric field intensity is maintained at 25 V / μm increments and each electric field intensity is maintained for 10 minutes. The electric field strength that was 0% of the initial value was defined as the dielectric breakdown strength. The measurement temperature was 125 ° C. In this measurement, the number of samples for evaluation was set to 5 for each film, and the value at which the failure frequency was 50% in the Weibull distribution was adopted as the average value of the dielectric breakdown strength. The dielectric breakdown strength of each film is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1中、第1有機材料の分子量とは、ゲル浸透クロマトグラフィー(GPC)により測定し、ポリスチレン標準試料を基準として算出した重量平均分子量(Mw)を意味する。 In Table 1, the molecular weight of the first organic material means a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) and calculated based on a polystyrene standard sample.
第1有機材料として直鎖構造を持つフェノキシ樹脂を用いた比較例1のフィルムでは、ガラス転移点Tgが165℃であり、絶縁破壊強度が250V/μmであった。一方、第1有機材料として分岐構造を持つフェノキシ樹脂を用いた実施例1~実施例3のフィルムでは、ガラス転移点Tgが170℃程度であり、絶縁破壊強度が340V/μm以上であった。
以上の結果から、第1有機材料として分岐構造を持つフェノキシ樹脂を用いることにより、耐熱性だけでなく、耐電圧性も高くすることできることが確認された。
In the film of Comparative Example 1 using a phenoxy resin having a linear structure as the first organic material, the glass transition point Tg was 165 ° C. and the dielectric breakdown strength was 250 V / μm. On the other hand, in the films of Examples 1 to 3 using a phenoxy resin having a branched structure as the first organic material, the glass transition point Tg was about 170 ° C., and the dielectric breakdown strength was 340 V / μm or more.
From the above results, it was confirmed that not only heat resistance but also voltage resistance can be increased by using a phenoxy resin having a branched structure as the first organic material.
1  フィルムコンデンサ
11 第1誘電体樹脂フィルム
12 第2誘電体樹脂フィルム
21 第1対向電極
22 第2対向電極
31 第1外部端子電極
32 第2外部端子電極
DESCRIPTION OF SYMBOLS 1 Film capacitor 11 1st dielectric resin film 12 2nd dielectric resin film 21 1st counter electrode 22 2nd counter electrode 31 1st external terminal electrode 32 2nd external terminal electrode

Claims (16)

  1. 誘電体樹脂フィルムと、
    前記誘電体樹脂フィルムを挟んで互いに対向する第1対向電極及び第2対向電極とを備えるフィルムコンデンサであって、
    前記誘電体樹脂フィルムは、第1有機材料と第2有機材料との架橋物からなるコンデンサ用フィルムであって、
    前記第2有機材料は、複数のイソシアネート基を有するポリイソシアネートであり、
    前記第1有機材料は、複数の水酸基を有し、かつ、分岐構造を持つことを特徴とするフィルムコンデンサ。
    A dielectric resin film;
    A film capacitor comprising a first counter electrode and a second counter electrode facing each other across the dielectric resin film,
    The dielectric resin film is a capacitor film comprising a cross-linked product of a first organic material and a second organic material,
    The second organic material is a polyisocyanate having a plurality of isocyanate groups,
    The first organic material has a plurality of hydroxyl groups and has a branched structure.
  2. 前記第1有機材料の重量比率は、前記第2有機材料の重量比率よりも高い請求項1に記載のフィルムコンデンサ。 The film capacitor according to claim 1, wherein a weight ratio of the first organic material is higher than a weight ratio of the second organic material.
  3. 前記水酸基の残留物が、前記イソシアネート基の残留物よりも多い請求項1又は2に記載のフィルムコンデンサ。 The film capacitor according to claim 1, wherein a residue of the hydroxyl group is larger than a residue of the isocyanate group.
  4. 前記コンデンサ用フィルムのガラス転移点は、169℃以上である請求項1~3のいずれか1項に記載のフィルムコンデンサ。 The film capacitor according to any one of claims 1 to 3, wherein a glass transition point of the capacitor film is 169 ° C or higher.
  5. 前記コンデンサ用フィルムの絶縁破壊強度は、300V/μm以上である請求項1~4のいずれか1項に記載のフィルムコンデンサ。 The film capacitor according to any one of claims 1 to 4, wherein the dielectric breakdown strength of the capacitor film is 300 V / µm or more.
  6. 前記第1有機材料は、エポキシ基を有する請求項1~5のいずれか1項に記載のフィルムコンデンサ。 The film capacitor according to any one of claims 1 to 5, wherein the first organic material has an epoxy group.
  7. 前記第1有機材料は、フェノキシ樹脂である請求項6に記載のフィルムコンデンサ。 The film capacitor according to claim 6, wherein the first organic material is a phenoxy resin.
  8. 前記第2有機材料は、ジフェニルメタンジイソシアネート又はトリレンジイソシアネートである請求項6又は7に記載のフィルムコンデンサ。 The film capacitor according to claim 6 or 7, wherein the second organic material is diphenylmethane diisocyanate or tolylene diisocyanate.
  9. 第1有機材料と第2有機材料との架橋物からなるコンデンサ用フィルムであって、
    前記第2有機材料は、複数のイソシアネート基を有するポリイソシアネートであり、
    前記第1有機材料は、複数の水酸基を有し、かつ、分岐構造を持つことを特徴とするコンデンサ用フィルム。
    A capacitor film comprising a cross-linked product of a first organic material and a second organic material,
    The second organic material is a polyisocyanate having a plurality of isocyanate groups,
    The capacitor film, wherein the first organic material has a plurality of hydroxyl groups and has a branched structure.
  10. 前記第1有機材料の重量比率は、前記第2有機材料の重量比率よりも高い請求項9に記載のコンデンサ用フィルム。 The capacitor film according to claim 9, wherein a weight ratio of the first organic material is higher than a weight ratio of the second organic material.
  11. 前記水酸基の残留物が、前記イソシアネート基の残留物よりも多い請求項9又は10に記載のコンデンサ用フィルム。 The capacitor film according to claim 9 or 10, wherein a residue of the hydroxyl group is larger than a residue of the isocyanate group.
  12. 樹脂溶液をフィルム状に成形し、硬化させることによって、誘電体樹脂フィルムを作製する工程と、
    前記誘電体樹脂フィルムを挟んで互いに対向する第1対向電極及び第2対向電極を形成する工程とを備えるフィルムコンデンサの製造方法であって、
    前記樹脂溶液は、第1有機材料及び第2有機材料を含み、
    前記第2有機材料は、複数のイソシアネート基を有するポリイソシアネートであり、
    前記第1有機材料は、複数の水酸基を有し、かつ、分岐構造を持つことを特徴とするフィルムコンデンサの製造方法。
    Forming a dielectric resin film by molding a resin solution into a film and curing; and
    Forming a first counter electrode and a second counter electrode facing each other across the dielectric resin film, and a method of manufacturing a film capacitor,
    The resin solution includes a first organic material and a second organic material,
    The second organic material is a polyisocyanate having a plurality of isocyanate groups,
    The method of manufacturing a film capacitor, wherein the first organic material has a plurality of hydroxyl groups and has a branched structure.
  13. 前記第1有機材料の重量比率は、前記第2有機材料の重量比率よりも高い請求項12に記載のフィルムコンデンサの製造方法。 The film capacitor manufacturing method according to claim 12, wherein a weight ratio of the first organic material is higher than a weight ratio of the second organic material.
  14. 前記第1有機材料は、エポキシ基を有する請求項12又は13に記載のフィルムコンデンサの製造方法。 The film capacitor manufacturing method according to claim 12, wherein the first organic material has an epoxy group.
  15. 前記第1有機材料は、フェノキシ樹脂である請求項14に記載のフィルムコンデンサの製造方法。 The method of manufacturing a film capacitor according to claim 14, wherein the first organic material is a phenoxy resin.
  16. 前記第2有機材料は、ジフェニルメタンジイソシアネート又はトリレンジイソシアネートである請求項14又は15に記載のフィルムコンデンサの製造方法。 The method of manufacturing a film capacitor according to claim 14 or 15, wherein the second organic material is diphenylmethane diisocyanate or tolylene diisocyanate.
PCT/JP2017/007315 2016-04-06 2017-02-27 Film capacitor, film for capacitor, and method for producing film capacitor WO2017175511A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212017000044.9U DE212017000044U1 (en) 2016-04-06 2017-02-27 Film capacitor and film for capacitor
JP2018510267A JP6627969B2 (en) 2016-04-06 2017-02-27 Film capacitor, film for capacitor, and method of manufacturing film capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016076334 2016-04-06
JP2016-076334 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017175511A1 true WO2017175511A1 (en) 2017-10-12

Family

ID=60000749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007315 WO2017175511A1 (en) 2016-04-06 2017-02-27 Film capacitor, film for capacitor, and method for producing film capacitor

Country Status (3)

Country Link
JP (1) JP6627969B2 (en)
DE (1) DE212017000044U1 (en)
WO (1) WO2017175511A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009924A (en) * 2019-07-01 2021-01-28 株式会社村田製作所 Film for film capacitor, film manufacturing method for film capacitor, film capacitor, and film capacitor manufacturing method
WO2021131235A1 (en) 2019-12-27 2021-07-01 株式会社村田製作所 Film capacitor, and film for film capacitors
WO2021241151A1 (en) * 2020-05-25 2021-12-02 株式会社村田製作所 Film capacitor and film for film capacitors
WO2022054615A1 (en) * 2020-09-10 2022-03-17 日鉄ケミカル&マテリアル株式会社 Phenoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and method for producing phenoxy resin
WO2022065295A1 (en) * 2020-09-23 2022-03-31 株式会社指月電機製作所 Film capacitor
WO2022075359A1 (en) * 2020-10-09 2022-04-14 株式会社村田製作所 Film capacitor, film, and metallized film
WO2022075357A1 (en) * 2020-10-09 2022-04-14 株式会社村田製作所 Film capacitor, film, and metallized film
WO2022075362A1 (en) * 2020-10-09 2022-04-14 株式会社村田製作所 Film capacitor, film, and metallized film
WO2023105931A1 (en) * 2021-12-07 2023-06-15 株式会社村田製作所 Film capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268727A (en) * 1987-04-24 1988-11-07 Matsushita Electric Works Ltd Epoxy resin composition
JPH03246813A (en) * 1990-02-23 1991-11-05 Toshiba Chem Corp Resin composition for film capacitor
WO2013128726A1 (en) * 2012-02-29 2013-09-06 株式会社村田製作所 Dielectric resin composition for film capacitor, and film capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893396B2 (en) * 2007-03-16 2012-03-07 株式会社村田製作所 Dielectric film and electronic component using the same
EP2214716B1 (en) * 2007-10-23 2021-11-17 Nektar Therapeutics Hydroxyapatite-targeting multiarm polymers and conjugates made therefrom
JP5945480B2 (en) * 2012-09-07 2016-07-05 ナミックス株式会社 Silver paste composition and method for producing the same
JP6664147B2 (en) * 2013-04-02 2020-03-13 国立大学法人大阪大学 Anisotropic conductive film and anisotropic conductive connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268727A (en) * 1987-04-24 1988-11-07 Matsushita Electric Works Ltd Epoxy resin composition
JPH03246813A (en) * 1990-02-23 1991-11-05 Toshiba Chem Corp Resin composition for film capacitor
WO2013128726A1 (en) * 2012-02-29 2013-09-06 株式会社村田製作所 Dielectric resin composition for film capacitor, and film capacitor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021009924A (en) * 2019-07-01 2021-01-28 株式会社村田製作所 Film for film capacitor, film manufacturing method for film capacitor, film capacitor, and film capacitor manufacturing method
JP7234831B2 (en) 2019-07-01 2023-03-08 株式会社村田製作所 Film for film capacitor, method for manufacturing film for film capacitor, film capacitor, and method for manufacturing film capacitor
WO2021131235A1 (en) 2019-12-27 2021-07-01 株式会社村田製作所 Film capacitor, and film for film capacitors
JPWO2021131235A1 (en) * 2019-12-27 2021-07-01
JP7348960B2 (en) 2019-12-27 2023-09-21 株式会社村田製作所 Film capacitors and films for film capacitors
CN114902360B (en) * 2019-12-27 2024-03-19 株式会社村田制作所 Film capacitor and film for film capacitor
CN114902360A (en) * 2019-12-27 2022-08-12 株式会社村田制作所 Film capacitor and film for film capacitor
US11948748B2 (en) 2019-12-27 2024-04-02 Murata Manufacturing Co., Ltd. Film capacitor, and film for film capacitors
WO2021241151A1 (en) * 2020-05-25 2021-12-02 株式会社村田製作所 Film capacitor and film for film capacitors
WO2022054615A1 (en) * 2020-09-10 2022-03-17 日鉄ケミカル&マテリアル株式会社 Phenoxy resin, resin composition, cured product, laminate for electric/electronic circuits, and method for producing phenoxy resin
JP7463539B2 (en) 2020-09-23 2024-04-08 株式会社指月電機製作所 Film capacitor
WO2022065295A1 (en) * 2020-09-23 2022-03-31 株式会社指月電機製作所 Film capacitor
DE112021004211T5 (en) 2020-09-23 2023-06-01 Murata Manufacturing Co., Ltd. film capacitor
WO2022075362A1 (en) * 2020-10-09 2022-04-14 株式会社村田製作所 Film capacitor, film, and metallized film
WO2022075357A1 (en) * 2020-10-09 2022-04-14 株式会社村田製作所 Film capacitor, film, and metallized film
WO2022075359A1 (en) * 2020-10-09 2022-04-14 株式会社村田製作所 Film capacitor, film, and metallized film
WO2023105931A1 (en) * 2021-12-07 2023-06-15 株式会社村田製作所 Film capacitor

Also Published As

Publication number Publication date
DE212017000044U1 (en) 2018-09-17
JPWO2017175511A1 (en) 2018-09-20
JP6627969B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2017175511A1 (en) Film capacitor, film for capacitor, and method for producing film capacitor
JP6194927B2 (en) Film capacitor
JP6677358B2 (en) Film capacitors and films for film capacitors
CN106560485B (en) Composition containing polyrotaxane and use thereof
JP7234831B2 (en) Film for film capacitor, method for manufacturing film for film capacitor, film capacitor, and method for manufacturing film capacitor
JPWO2019097753A1 (en) Film capacitor
JP7180699B2 (en) Film capacitors and dielectric resin films for film capacitors
JPWO2018142922A1 (en) Film capacitor, film capacitor manufacturing method, dielectric resin film, and dielectric resin film manufacturing method
US11875944B2 (en) Film capacitor and film for film capacitor
EP3671780A1 (en) Film capacitor and metalized film
CN219998058U (en) Film capacitor and film for film capacitor
WO2023105990A1 (en) Film capacitor and resin film
WO2021132257A1 (en) Film capacitor and film for film capacitors
WO2023105931A1 (en) Film capacitor
WO2022065295A1 (en) Film capacitor
WO2021131235A1 (en) Film capacitor, and film for film capacitors
CN117264174A (en) Solvent type low-temperature quick-curing polyurethane curing agent and preparation method thereof
JP2021175564A (en) Method for producing resin sheet and method for producing film capacitor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018510267

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 212017000044

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778890

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17778890

Country of ref document: EP

Kind code of ref document: A1