WO2017173988A1 - 一种v2v通信方法、设备及系统 - Google Patents

一种v2v通信方法、设备及系统 Download PDF

Info

Publication number
WO2017173988A1
WO2017173988A1 PCT/CN2017/079479 CN2017079479W WO2017173988A1 WO 2017173988 A1 WO2017173988 A1 WO 2017173988A1 CN 2017079479 W CN2017079479 W CN 2017079479W WO 2017173988 A1 WO2017173988 A1 WO 2017173988A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle terminal
sps
base station
information
control information
Prior art date
Application number
PCT/CN2017/079479
Other languages
English (en)
French (fr)
Inventor
孙继忠
陈亮
岳瑞
闫辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17778652.2A priority Critical patent/EP3425932B1/en
Publication of WO2017173988A1 publication Critical patent/WO2017173988A1/zh
Priority to US16/153,455 priority patent/US10735927B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a vehicle to vehicle (V2V) communication method, device, and system.
  • V2V vehicle to vehicle
  • vehicles can obtain road condition information or receive information services in time through V2V communication.
  • V2V information such as its own speed, driving direction, specific position, and whether emergency brakes are stepped on.
  • the vehicle enables the driver of the surrounding vehicle to better perceive the traffic condition outside the line of sight based on the acquired information, thereby pre-judge the dangerous situation and take corresponding avoidance measures, thereby reducing the frequency of occurrence of the above problem.
  • the V2V communication between the vehicle and the vehicle can be implemented by using a relatively mature Device to Device (D2D) communication technology, that is, the receiving base station delivers The physical downlink control channel (PDCCH) information is sent to the peer vehicle on the resource indicated by the PDCCH information.
  • D2D Device to Device
  • the base station since V2V communication between the vehicle and the vehicle is relatively frequent, if the existing D2D communication method is used, the base station is required to frequently transmit PDCCH information to the vehicle, and thus, the scheduling overhead of the PDCCH information is increased.
  • a main object of the present invention is to provide a V2V communication method, device, and system, which solves the problem of large scheduling overhead of PDCCH information in existing V2V communication.
  • an embodiment of the present invention provides a vehicle-to-vehicle V2V communication method, where the method may include:
  • the first vehicle terminal receives the first semi-persistent scheduling SPS configuration parameter sent by the base station;
  • the first SPS configuration parameter includes: a first SPS period;
  • the first vehicle terminal receives the first scheduling control information sent by the base station, and sends a V2V data packet to the second vehicle terminal according to the first SPS period; the first scheduling control information is used to indicate the first vehicle
  • the terminal performs SPS activation.
  • the semi-static scheduling activation of the first vehicle terminal by the base station causes the first vehicle terminal to periodically transmit the V2V data packet to the second vehicle terminal according to the SPS cycle;
  • the PDCCH information sent by the base station is received before the communication, and the overhead of scheduling the PDCCH information by the base station is reduced.
  • the first vehicle terminal may determine that the first vehicle terminal meets an SPS activation condition, and send, to the base station, the indication that the first vehicle terminal is satisfied. After the first indication information of the SPS activation condition, the first scheduling control information sent by the base station is received; or the base station itself sends the first scheduling control information directly to the first vehicle terminal after determining that the first vehicle terminal satisfies the SPS activation condition;
  • the first vehicle terminal and the base station if the first vehicle terminal continuously receives or transmits N data packets, and the N data packets are V2V data packets, any of the N data packets The receiving or transmitting time interval between the two adjacent data packets meets the preset time interval, and then determining that the first vehicle terminal meets the SPS activation condition; wherein the N is greater than or equal to the first threshold.
  • the method may further include:
  • the first vehicle terminal determines that the first vehicle terminal satisfies an SPS reactivation condition
  • the first vehicle terminal sends second indication information to the base station, where the second indication information is used to indicate that the first vehicle terminal satisfies an SPS reactivation condition;
  • a second SPS configuration parameter receives, by the base station, a second SPS configuration parameter, where the second SPS configuration parameter includes: a second SPS period;
  • a V2V data packet is transmitted to the second vehicle terminal in accordance with the second SPS cycle.
  • the method may further include:
  • the first vehicle terminal determines that the first vehicle terminal satisfies an SPS reactivation condition
  • the first vehicle terminal sends second indication information to the base station, where the second indication information is used to indicate that the first vehicle terminal satisfies an SPS reactivation condition;
  • the third SPS cycle is configured by the first vehicle terminal.
  • the determining that the first vehicle terminal meets the SPS reactivation condition may include:
  • the M is an integer greater than or equal to 1.
  • the method may further include:
  • the determining that the first vehicle terminal meets the SPS deactivation condition may include:
  • the Q is an integer greater than or equal to 1.
  • the first indication information, the second indication information, and the third indication information in the foregoing process may be carried in any one of the following information and reported to the base station, so that the base station knows that it can go to the first
  • the vehicle terminal triggers SPS activation, SPS reactivation or SPS deactivation process:
  • BSR information MAC CE information, radio link control RRC information, physical uplink control channel PUCCH information.
  • the MAC CE information may include: a MAC subframe header; the MAC subframe header includes: a first field and a second field; and the first field is used to indicate that the first SPS period is increased or decreased.
  • the first SPS period may not need to reconfigure the first SPS period; the second field is used to indicate indication information.
  • the MAC CE information may include: a control field, where the control field includes: a first subfield, a second subfield, and a third subfield; the first subfield is used to indicate indication information; The subfield is used to indicate the size of the first SPS period; the third subfield is used to indicate the size of the data packet sent in the first SPS period.
  • the base station may trigger the SPS activation, the SPS reactivation, or the SPS deactivation process, that is, the first scheduling control information, or the second scheduling, by using the PDCCH information to the first vehicle terminal according to the indication information.
  • the control information, or the third scheduling control information, or the fourth scheduling control information, or the fifth scheduling control information is carried in the physical downlink control channel PDCCH information and sent to the first vehicle terminal;
  • the PDCCH information includes format information used to indicate the PDCCH information transmission format; the format information includes: a third field, where the third field is used to indicate a scheduling control signal. interest.
  • an embodiment of the present invention provides a vehicle-to-vehicle V2V communication method, where the method may include:
  • the base station sends a first semi-persistent scheduling SPS configuration parameter to the first vehicle terminal;
  • the first SPS configuration parameter includes: a first SPS period;
  • the base station sends first scheduling control information to the first vehicle terminal, so that the first vehicle terminal sends a V2V data packet to the second vehicle terminal according to the first SPS cycle; Instructing the first vehicle terminal to perform SPS activation.
  • the semi-static scheduling activation of the first vehicle terminal by the base station enables the first vehicle terminal to periodically transmit the V2V data packet to the second vehicle terminal according to the SPS cycle; it is not required to receive the base station issued before each V2V communication.
  • the PDCCH information reduces the overhead of the base station scheduling PDCCH information.
  • the first vehicle terminal may determine that the first vehicle terminal meets an SPS activation condition, and send, to the base station, the indication that the first vehicle terminal is satisfied. After the first indication information of the SPS activation condition, the first scheduling control information sent by the base station is received; or, after the base station itself determines that the first vehicle terminal satisfies the SPS activation condition, the first scheduling control information is directly sent to the first vehicle terminal.
  • the time-frequency resource size that is, in the second implementation manner of the second aspect, after the base station sends the first scheduling control information to the first vehicle terminal, the method may further include:
  • the base station receives the second indication information sent by the first vehicle terminal, where the second indication information is used to indicate that the first vehicle terminal satisfies an SPS reactivation condition.
  • the base station sends second scheduling control information to the first vehicle terminal; the second scheduling control information is used to instruct the first vehicle terminal to perform SPS deactivation;
  • the base station sends a second SPS configuration parameter to the first vehicle terminal;
  • the second SPS configuration parameter includes: a second SPS period;
  • the base station Sending, by the base station, third scheduling control information to the first vehicle terminal, so that the first vehicle terminal sends a V2V data packet to the second vehicle terminal according to the second SPS cycle; the third scheduling control The information is used to instruct the first vehicle terminal to perform SPS activation.
  • the method may further include:
  • the fourth scheduling control information is used to indicate that the first vehicle terminal performs SPS reactivation; and the third SPS period is configured by the first vehicle terminal.
  • the method may further include:
  • the base station sends fifth scheduling control information to the first vehicle terminal, so that the first vehicle terminal stops transmitting V2V data packets to the second vehicle terminal according to the first SPS cycle;
  • the control information is used to instruct the first vehicle terminal to perform SPS deactivation.
  • the first indication information, the second indication information, and the third indication information in the foregoing process may be carried in any one of the following information and reported to the base station, so that the base station knows that it can go to the first
  • the vehicle terminal triggers SPS activation, SPS reactivation or SPS deactivation process:
  • BSR information MAC CE information, radio link control RRC information, physical uplink control channel PUCCH information.
  • the MAC CE information may include: a MAC subframe header; the MAC subframe header includes: a first field and a second field; and the first field is used to indicate that the first SPS period is increased or decreased.
  • the first SPS period may not need to reconfigure the first SPS period; the second field is used to indicate indication information.
  • the MAC CE information may include: a control field, where the control field includes: a first subfield, a second subfield, and a third subfield; the first subfield is used to indicate indication information; The subfield is used to indicate the size of the first SPS period; the third subfield is used to indicate the size of the data packet sent in the first SPS period.
  • the base station may trigger the SPS activation, the SPS reactivation, or the SPS deactivation process, that is, the first scheduling control information, or the second scheduling, by using the PDCCH information to the first vehicle terminal according to the indication information.
  • the control information, or the third scheduling control information, or the fourth scheduling control information, or the fifth scheduling control information is carried in the physical downlink control channel PDCCH information and sent to the first vehicle terminal;
  • the PDCCH information includes format information used to indicate the PDCCH information transmission format; the format information includes: a third field, where the third field is used to indicate scheduling control information.
  • an embodiment of the present invention provides a vehicle terminal, where the vehicle terminal may include:
  • a receiving unit configured to receive a first semi-persistent scheduling SPS configuration parameter sent by the base station;
  • the first SPS configuration parameter includes: a first SPS period;
  • the receiving unit is further configured to receive first scheduling control information that is sent by the base station, where the first scheduling control information is used to instruct the vehicle terminal to perform SPS activation;
  • a sending unit configured to send the V2V data packet to the second vehicle terminal according to the first SPS period.
  • each functional unit in the third aspect may refer to the function of the behavior of the first vehicle terminal in the method provided by the first aspect.
  • an embodiment of the present invention provides a base station, where the base station may include:
  • a sending unit configured to send a first semi-persistent scheduling SPS configuration parameter to the first vehicle terminal;
  • the first SPS configuration parameter includes: a first SPS period;
  • the first scheduling control information is used for Instructing the first vehicle terminal to perform SPS activation.
  • each functional unit in the fourth aspect may refer to the function of the behavior of the base station in the method provided by the second aspect.
  • the functional modules described in the foregoing third and fourth aspects may be implemented by hardware, or may be implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the receiver is used to complete the function of the receiving unit
  • the transmitter is used to complete the function of the transmitting unit
  • the processor is used to complete the function of the processing unit
  • the processor, the transmitter, the receiver, and the memory are connected through the bus and complete each other. Communication.
  • an embodiment of the present invention provides a vehicle terminal, where the vehicle terminal may include:
  • a communication unit configured to receive a first semi-persistent scheduling SPS configuration parameter sent by the base station; the first SPS configuration parameter includes: a first SPS period;
  • a V2V data packet is transmitted to the second vehicle terminal in accordance with the first SPS period.
  • the implementation manner of the communication unit in the fifth aspect may refer to the implementation manner of the sending unit and the receiving unit in the third aspect.
  • an embodiment of the present invention provides a base station, where the base station may include:
  • a communication unit configured to send a first semi-persistent scheduling SPS configuration parameter to the first vehicle terminal;
  • the first SPS configuration parameter includes: a first SPS period;
  • the first scheduling control information is used for Instructing the first vehicle terminal to perform SPS activation.
  • implementation manner of the communication unit in the sixth aspect may refer to the implementation manner of the sending unit in the fourth aspect.
  • the seventh aspect the embodiment of the present invention provides a V2V communication system, including the vehicle terminal according to the third aspect, and the base station according to the fourth aspect;
  • an embodiment of the present invention provides a V2V communication method, device, and system, where a base station sends a first SPS configuration parameter including a first SPS period to a first vehicle terminal, where the first vehicle terminal receives the After instructing the first vehicle terminal to perform the SPS activation of the first scheduling control information, sending the V2V data packet to the second vehicle terminal according to the first SPS cycle; thus, periodically transmitting the V2V data packet by using the semi-persistent scheduling of the base station
  • the PDCCH information sent by the base station is not required to be received before the V2V communication, which not only reduces the overhead of scheduling the PDCCH information by the base station, but also increases the network capacity and reduces the service processing delay of the V2V communication.
  • FIG. 1 is a schematic structural diagram of a system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of V2V communication according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a MAC CE message format according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of another MAC CE message format according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a vehicle terminal according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a base station according to an embodiment of the present invention.
  • the present invention mainly adopts a semi-static scheduling scheme to implement vehicle-to-vehicle (V2V) communication, and the base station first passes the PDCCH. Instructing the current scheduling information of the vehicle. After the vehicle identification is semi-statically scheduled, the current scheduling information is saved, and the V2V service data is transmitted or received at the same time-frequency resource location every fixed period, that is, by one PDCCH authorization. The V2V data packet is periodically transmitted, and the PDCCH information sent by the base station is not required to be received before the V2V communication. Therefore, the overhead of scheduling the PDCCH information by the base station is reduced, and the network capacity is increased, and the service processing delay of the V2V communication is reduced. .
  • V2V vehicle-to-vehicle
  • the system architecture can include a base station 10 and at least one Vehicle User Equipment (VUE) 20, wherein the VUE 20 is at a base station.
  • VUE Vehicle User Equipment
  • the base station 10 may perform Semi-Persistent Scheduling (SPS) on any of the VUEs 20 in the coverage area, and the VUE 20 scheduled by the receiving base station 10 may periodically perform V2V communication with other VUEs at regular intervals.
  • SPS Semi-Persistent Scheduling
  • the base station 10 may include: a communication unit 1011, a processor 1012, a memory 1013, and at least one communication bus 1014 for implementing connection and mutual communication between the devices;
  • the VUE 20 may include a communication unit 2011, a processor 2012, a memory 2013 and at least one communication bus 2014 for implementing connections and mutual communication between these devices;
  • the communication unit 1011 and the communication unit 2011 can be used for data interaction with an external network element.
  • the communication unit 1011 of the base station 10 can perform data interaction with the VUE 20
  • the communication unit 2011 of the VUE 20 can perform data interaction with the base station 10.
  • the processor 1012 and the processor 2012 may be a central processing unit (CPU), may be an Application Specific Integrated Circuit (ASIC), or be configured to implement an embodiment of the present invention. Or a plurality of integrated circuits, such as one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 1013 and the memory 2013 may be a volatile memory such as a random-access memory (RAM) or a non-volatile memory such as a read-only memory (read- Only memory,ROM), fast A flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); or a combination of the above types of memories.
  • RAM random-access memory
  • ROM read- Only memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the communication bus 1015 and the communication bus 2015 can be divided into an address bus, a data bus, a control bus, etc., and can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an extended industry standard. Architecture (Extended Industry Standard Architecture, EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the communication bus of Figure 2 is represented by only one thick line, but does not indicate that there is only one bus or one type of bus.
  • the communication unit 1011 of the base station 10 first transmits a first SPS configuration parameter including a first SPS period to the communication unit 2011 of the vehicle terminal 20;
  • the SPS scheduling flow is triggered by communication.
  • the unit 1011 transmits scheduling control information for instructing the vehicle terminal 20 to perform SPS activation to the communication unit 2011 of the vehicle terminal;
  • the controller 2012 of the vehicle terminal 20 controls the communication unit 2011 to transmit a V2V data packet to other vehicle terminals in accordance with the first SPS cycle.
  • the vehicle terminal is semi-statically scheduled by the base station, so that the vehicle terminal periodically transmits the V2V data packet to other vehicle terminals according to the SPS cycle; the PDCCH information sent by the base station is not required to be received before each V2V communication, and the base station is reduced.
  • the overhead of scheduling PDCCH information is not required to be received before each V2V communication, and the base station is reduced.
  • embodiment 1 shows and describes in detail the V2V communication method in the present invention, wherein the steps shown may also be other than the devices in the system architecture shown in FIG.
  • the set of executable instructions is executed in a computer system, and in addition, although the logical order is shown in the figures, in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 3 is a flowchart of a V2V communication method according to an embodiment of the present invention.
  • the method may be performed by a base station in the system architecture shown in FIG. 1 and a first vehicle terminal, and the first vehicle terminal may be the system shown in FIG. Any vehicle terminal under the architecture, as shown in FIG. 3, the method may include the following steps:
  • the base station sends a first SPS configuration parameter to the first vehicle terminal, where the first SPS configuration parameter includes: a first SPS period.
  • SC scheduling control
  • the base station may be added in a semi-persistent scheduling configuration (SPS-Config) in Radio Resource Control (RRC) reconfiguration (RRCConnection Reconfiguration).
  • SPS-ConfigV2V Radio Resource Control
  • the semi-persistent scheduling configuration (SPS-ConfigV2V) of the V2V service is added, so that the base station uniformly configures the RRC parameters, and the first SPS configuration parameter is sent to the first vehicle terminal through the configured RRC information; that is, the SPS-ConfigV2V is added in the SPS-Config.
  • the signaling can be performed, so that the base station notifies the first vehicle terminal of the SPS period, and the specific implementation is as follows:
  • the first SPS configuration parameter sent by the base station to the first vehicle terminal needs to include at least Two SPS periods; for example, if VUE1 periodically transmits a first type of message to VUE2 at intervals of 100s for a period of time, and periodically transmits a second type of message to VUE2 at intervals of 500s, the base station needs to send a message to VUE1.
  • the first vehicle terminal receives the first scheduling control information sent by the base station, where the first scheduling control information is used to instruct the first vehicle terminal to perform SPS activation.
  • the first vehicle terminal may receive the base station after determining that the first vehicle terminal satisfies an SPS activation condition, and sending, to the base station, first indication information that is used to indicate that the first vehicle terminal meets an SPS activation condition. Transmitting the first scheduling control information; or, by the base station itself, after determining that the first vehicle terminal satisfies the SPS activation condition, transmitting the first scheduling control information directly to the first vehicle terminal; wherein, for the first vehicle terminal and the base station, How to determine that the first vehicle terminal satisfies the SPS activation condition may be the same, and the specific implementation is as follows:
  • the time interval of receiving or transmitting between any two adjacent data packets in the N data packets is satisfied.
  • the preset time interval determines that the first vehicle terminal satisfies an SPS activation condition, and the N is greater than or equal to a first threshold.
  • the preset time interval may be a security message sending period, and the first threshold may be set as needed, which is not limited in this embodiment of the present invention.
  • the first threshold may be set to 4.
  • the first vehicle terminal sends the V2V data packet to the second vehicle terminal according to the first SPS period.
  • the second vehicle terminal is any vehicle terminal that performs V2V communication with the first vehicle terminal; optionally, the first vehicle terminal may periodically transmit the V2V data packet to the second vehicle terminal according to the first SPS cycle; for example, If the first SPS is 100 s, the first vehicle terminal periodically transmits a V2V data packet to the second vehicle terminal at intervals of 100 s.
  • the time-frequency resource for transmitting the V2V data packet in the SPS period and the scheduling allocation need to be allocated.
  • the time-frequency resource in which the scheduling (Scheduling Allocation, SA) is located the SA is used to indicate the time-frequency resource for transmitting the V2V data packet, and then, the SA and V2V data packets are sent to the second vehicle terminal on the allocated time-frequency resource, so that After receiving the SA, the second vehicle terminal acquires the V2V data packet according to the indication of the SA.
  • the first vehicle terminal may allocate the time-frequency resource and the V2V data packet where the SA is located in the Mth first SPS period in the following manner. Time and frequency resources:
  • the SFNstart time is a start frame
  • the subframe start time is a start subframe.
  • the SFNstart time and the subframe start time may be included in the first scheduling control information and sent to the first vehicle terminal, where the first scheduling control information may be a PDCCH message.
  • the base station may request the SPS scheduling and the transmission and transmission V2V data by using a scheduling request (Scheduling Requst, SR) message or a Buffer Status Reporting (BSR) message.
  • SR scheduling Requst
  • BSR Buffer Status Reporting
  • the time-frequency resource of the packet after receiving the SR or BSR message, the base station may initiate SPS scheduling to the first vehicle terminal by using the PDCCH message, and allocate a start frame and a subframe number to the first vehicle terminal; wherein, in order to reduce the V2V data packet
  • the transmission delay should be such that the time difference between the time when the first vehicle terminal generates the V2V data packet and the time when the base station sends the PDCCH message should be the smallest, and preferably the phase difference delay does not exceed one SC period.
  • the base station may infer, by using the received SR or BSR information, the time at which the first vehicle terminal generates the V2V data packet, and determine the delivery of the first scheduling control information according to the time and the first SPS period. time. For example, if the base station determines the time T of the first indication information by the first vehicle terminal by reporting the SR or the BSR information by the first vehicle terminal, the base station can send the time period of the (SemiPersistSchedInterval_Vue+T) ms time and the previous SC period.
  • the first scheduling control information is used to schedule SPS in the next SC cycle of the SC period in which semiPersistSchedInterval_Vue+Tms is located, wherein semiPersistSchedInterval_Vue is an SPS cycle.
  • the first vehicle terminal can also act as a receiver, receive SA and V2V data packets sent by other vehicle terminals, determine time-frequency resource information of the V2V data packet according to the received SA message, and demodulate. Out of V2V packets.
  • the semi-static scheduling activation of the first vehicle terminal by the base station causes the first vehicle terminal to press
  • the V2V data packet is periodically transmitted to the second vehicle terminal according to the SPS cycle; the PDCCH information sent by the base station is not required to be received before the V2V communication, and the overhead of scheduling the PDCCH information by the base station is reduced.
  • the first vehicle terminal if the first vehicle terminal does not receive the first scheduling control information sent by the base station, the first vehicle terminal sends the V2V data packet to the second vehicle terminal according to the dynamic scheduling procedure;
  • the base station does not perform any processing
  • the base station sets a timer. If the first indication information is not received before the timer expires, but the base station and the first vehicle terminal are in an RRC connection, the base station clears the timer.
  • the transmission period of the vehicle terminal or the size of the transmission data packet changes in practical applications, in order to adapt to these changes, it is also necessary to perform SPS reactivation on the first vehicle terminal to change the SPS period or transmit the V2V data packet.
  • the time-frequency resource size; specifically, after the V2V data packet is sent to the second vehicle terminal according to the first SPS period, the SPS reactivation may be performed by using the following scheme 1 or scheme 2:
  • the first vehicle terminal determines that the first vehicle terminal satisfies an SPS reactivation condition
  • the first vehicle terminal sends second indication information to the base station, where the second indication information is used to indicate that the first vehicle terminal satisfies the SPS Reactivation condition
  • the first vehicle terminal receives the second scheduling control information sent by the base station; the second scheduling control information is used to instruct the first vehicle terminal to perform SPS deactivation;
  • the first vehicle terminal receives the second SPS configuration parameter sent by the base station;
  • the second SPS configuration parameter includes: a second SPS period;
  • the first vehicle terminal receives the third scheduling control information sent by the base station; the third scheduling control information is used to instruct the first vehicle terminal to perform SPS activation;
  • the first vehicle terminal transmits a V2V data packet to the second vehicle terminal in accordance with the second SPS cycle.
  • the first vehicle terminal determines that the first vehicle terminal satisfies an SPS reactivation condition
  • the first vehicle terminal sends second indication information to the base station, where the second indication information is used to indicate that the first vehicle terminal satisfies the SPS Reactivation condition
  • the first vehicle terminal receives the fourth scheduling control information sent by the base station; the fourth scheduling control information is used to instruct the first vehicle terminal to perform SPS reactivation;
  • the first vehicle terminal transmits a V2V data packet to the second vehicle terminal in accordance with a third SPS cycle; the third SPS cycle is configured by the first vehicle terminal.
  • the determining, by the first vehicle terminal, that the first vehicle terminal meets the SPS reactivation condition may include:
  • the M is an integer greater than or equal to 1.
  • the second threshold may be set as needed.
  • the embodiment of the present invention does not limit this.
  • the setting is performed.
  • the first SPS period is too small, and a large SPS period needs to be reconfigured; when the ratio of the number of first SPS periods in which data is not transmitted to the M is less than a second threshold, and the first SPS period in which data is transmitted is described.
  • the first vehicle terminal loses the V2V data packet, it indicates that the set first SPS period is too large, and it is necessary to reconfigure the small SPS period.
  • the first vehicle terminal does not receive the scheduling control information sent by the base station, or the base station does not receive or receives the indication reported by the first vehicle terminal before the timer expires, The information is determined to be a failure of the re-activation process.
  • the first vehicle terminal and the base station may be processed by using the processing measures when the SPS activation fails, and details are not described herein again.
  • the method may further include:
  • the first vehicle terminal sends third indication information to the base station, where the third indication information is used to indicate that the first vehicle terminal satisfies an SPS deactivation condition;
  • the base station sends fifth scheduling control information to the first vehicle terminal; the fifth scheduling control information is used to instruct the first vehicle terminal to perform SPS deactivation;
  • the first vehicle terminal stops transmitting the V2V data packet to the second vehicle terminal in accordance with the first SPS cycle.
  • the determining, by the first vehicle terminal, that the first vehicle terminal meets the SPS deactivation condition may include:
  • the Q is an integer greater than or equal to 1.
  • the third threshold and the fourth threshold may be set as needed, which is not limited by the embodiment of the present invention.
  • the first vehicle terminal and the base station can be deactivated by implicit SPS for the following special scenarios:
  • the first vehicle terminal detects that it is moving from within the coverage of the base station to outside the coverage of the base station, then the first vehicle terminal is deactivated using implicit SPS.
  • the base station determines that the first vehicle terminal is not in the cell that it is serving or does not detect the first vehicle terminal, the base station actively releases the semi-static resources allocated to the first vehicle terminal.
  • the first indication information, the second indication information, and the third indication information in the foregoing process may be carried in any one of the following information and reported to the base station, so that the base station knows that it can go to the first
  • the vehicle terminal triggers SPS activation, SPS reactivation or SPS deactivation process:
  • BSR Buffer Status Reporting
  • MAC CE Medium Access Control Control Elements
  • RRC Radio Resource Control
  • PUCCH Physical Uplink Control Channel
  • the following two forms of MAC CE may be used to report the indication information to the base station:
  • the MAC CE information may add a MAC subframe header;
  • the MAC subframe header may include: a first field and a second field;
  • the first field may be used to indicate that the first SPS period is increased or the first SPS period is decreased or the first SPS period is not required to be reconfigured; the second field may be used to indicate indication information.
  • MAC CE subframe header in the form of a fixed size R/R/E/LCID as shown in FIG. 4 may be added, and the SPS activation, SPS deactivation, and SPS reactivation are indicated by the subframe header;
  • the logical channel identification may use the bits 01100 to 10101 reserved in the 3GPP TS 36.321 protocol to indicate SPS activation, SPS deactivation, and SPS reactivation.
  • 01110 may indicate SPS activation or SPS.
  • 01111 can indicate SPS deactivation;
  • R/R/E where E is a reserved bit, filled in according to the protocol, usually filled with 0; in order to indicate whether the existing SPS period needs to be increased or decreased, when R/R is 0/0, it is not required.
  • Re-allocation SPS period when R/R is 1/1, the SPS period needs to be increased; when R/R is 1/0, the SPS period needs to be reduced.
  • the number of bits filled in the MAC CE subframe header as shown in FIG. 4 is: 1/1/0/01110, it indicates that SPS activation is performed, and it is necessary to increase the existing SPS period.
  • control field including the first subfield, the second subfield, and the third subfield may be added to the existing MAC CE, and the indication information is reported to the base station by using a new MAC CE format, where the first subfield is For indicating the indication information; the second subfield is used to indicate the size of the first SPS period; and the third subfield is used to indicate the size of the data packet sent in the first SPS period,
  • a field including three subfields of AD/P/T as shown in FIG. 5 may be added, where the field may occupy 8 bits;
  • AD is 2 bits and is used to indicate SPS activation, SPS reactivation, and SPS deactivation. For example, when AD is 01, it can indicate SPS activation or SPS deactivation. When AD is 10, it can indicate SPS deactivation.
  • P is 3 bits, indicating the period of the SPS, which can be any bit in the range of 000 to 111.
  • the value should be 0 to 7, where 1 to 7 respectively indicate periods of 100, 200, ..., 700, where 0 represents 50 and the unit is ms;
  • the base station may trigger the SPS activation, the SPS reactivation, or the SPS deactivation process to the first vehicle terminal by using the physical downlink control channel (PDCCH) information according to the indication information, that is, the foregoing
  • the first scheduling control information, the second scheduling control information, the third scheduling control information, the fourth scheduling control information, and the fifth scheduling control information may be carried in the PDCCH information and sent to the first vehicle terminal;
  • a third field may be added in the format information used to indicate the PDCCH information transmission format in the PDCCH information, and the scheduling control information is represented by the third field;
  • a new 2-bit SPS activation flag may be added in the DCI5 format of the PDCCH information, and dynamic scheduling is indicated by 00; 01 indicates SPS activation and the resource block and the frequency hopping resource allocation Bit bitmap in the DCI5 bit are set to 0; 10 indicates that the SPS is heavy. The bit map of the resource block and the frequency hopping resource allocation bit in the DCI 5 bit bit is set to 0; 11 indicates that the SPS is deactivated and the resource block and the frequency hopping resource allocation bit bitmap in the DCI 5 bit bit are set to 1.
  • an embodiment of the present invention provides a V2V communication method, where a base station sends a first SPS configuration parameter including a first SPS period to a first vehicle terminal, where the first vehicle terminal receives a After the first scheduling control information of the SPS is activated by the vehicle terminal, the V2V data packet is sent to the second vehicle terminal according to the first SPS cycle; thus, the V2V data packet is periodically sent through the semi-static scheduling of the base station, and the The PDCCH information sent by the base station is received before the V2V communication, which not only reduces the overhead of scheduling the PDCCH information by the base station, but also increases the network capacity and reduces the service processing delay of the V2V communication.
  • the present invention further provides a vehicle terminal and a base station, which are preferably used to implement the method in the foregoing method embodiment.
  • FIG. 6 is a structural diagram of a vehicle terminal 30 according to an embodiment of the present invention, for performing the action performed by the first vehicle terminal in the first embodiment.
  • the vehicle terminal 30 may include:
  • the receiving unit 301 is configured to receive a first semi-persistent scheduling SPS configuration parameter sent by the base station, where the first SPS configuration parameter includes: a first SPS period.
  • SC scheduling Control
  • the receiving unit 301 is further configured to receive first scheduling control information that is sent by the base station, where the first scheduling control information is used to instruct the vehicle terminal to perform SPS activation.
  • the sending unit 302 is configured to send the V2V data packet to the second vehicle terminal according to the first SPS period.
  • the vehicle terminal may receive scheduling control information sent by the base station after determining that the vehicle terminal satisfies an SPS activation condition, and sending, to the base station, indication information that is used to indicate that the vehicle terminal meets an SPS activation condition; or After the base station itself determines that the vehicle terminal meets the SPS activation condition, it directly sends the scheduling control information to the vehicle terminal.
  • the vehicle terminal may further include:
  • the determining unit 303 is configured to determine, after the receiving unit 301 receives the first semi-persistent scheduling SPS configuration parameter sent by the base station, before receiving the first scheduling control information sent by the base station, determining that the vehicle terminal meets an SPS activation condition;
  • the sending unit 302 is further configured to: after the determining unit 303 determines that the vehicle terminal meets the SPS activation condition, send the first indication information to the base station; where the first indication information is used to indicate that the vehicle terminal meets SPS activation conditions.
  • the determining unit 303 is specifically configured to:
  • the receiving or sending time interval between any two adjacent data packets in the N data packets meets a preset. a time interval, determining that the vehicle terminal satisfies an SPS activation condition;
  • the N is greater than or equal to the first threshold, and the preset time interval may be a security message sending period.
  • the first threshold may be set as needed, which is not limited in the embodiment of the present invention. Preferably, the first threshold may be set. Is 4.
  • the vehicle terminal 30 can also serve as a receiving party to receive SA and V2V data packets sent by other vehicle terminals.
  • the receiving unit 301 can also be used to: receive SA and V2V sent by other vehicle terminals. data pack,
  • the determining unit 303 is further configured to determine time-frequency resource information of the V2V data packet according to the received SA message, and demodulate the V2V data packet.
  • the time-frequency resource size; specifically, the determining unit 303 is further configured to:
  • the sending unit 302 After the sending unit 302 sends the V2V data packet to the second vehicle terminal according to the first SPS period, determining that the vehicle terminal satisfies an SPS reactivation condition;
  • the sending unit 302 is further configured to: after the determining unit 303 determines that the vehicle terminal meets the SPS reactivation condition, send the second indication information to the base station, where the second indication information is used to indicate the The vehicle terminal satisfies the SPS reactivation condition;
  • the receiving unit 301 is further configured to: after the sending unit 302 sends the second indication information to the base station, receive second scheduling control information sent by the base station; the second scheduling control information is used to indicate the Vehicle terminal performs SPS deactivation;
  • the sending unit 302 is further configured to send a V2V data packet to the second vehicle terminal according to the second SPS period.
  • the receiving unit 301 is further configured to: after the sending unit 302 sends the second indication information to the base station, receive fourth scheduling control information sent by the base station; and the fourth scheduling control information is used to indicate The vehicle terminal performs SPS reactivation;
  • the sending unit 302 is further configured to send a V2V data packet to the second vehicle terminal according to a third SPS cycle; the third SPS cycle is configured by the vehicle terminal.
  • the determining unit 303 is specifically configured to determine whether the vehicle terminal satisfies an SPS reactivation condition by using the following method:
  • the M is an integer greater than or equal to 1.
  • the second threshold may be set as needed.
  • the embodiment of the present invention does not limit this.
  • the setting is performed.
  • the first SPS period is too small, and a large SPS period needs to be reconfigured; when the ratio of the number of first SPS periods in which data is not transmitted to the M is less than a second threshold, and the first SPS period in which data is transmitted is described.
  • the first vehicle terminal loses the V2V data packet, it indicates that the set first SPS period is too large, and it is necessary to reconfigure the small SPS period.
  • the determining unit 303 is further configured to: after the sending unit 302 sends the V2V data packet to the second vehicle terminal according to the first SPS period, determine that the vehicle terminal satisfies an SPS deactivation condition;
  • the sending unit 302 is further configured to: after the determining unit 303 determines that the vehicle terminal meets the SPS deactivation condition, send the third indication information to the base station, where the third indication information is used to indicate the The vehicle terminal satisfies the SPS deactivation condition;
  • the receiving unit 301 is further configured to receive fifth scheduling control information that is sent by the base station, where the fifth scheduling control information is used to instruct the vehicle terminal to perform SPS deactivation;
  • the sending unit 302 is further configured to stop sending the V2V data packet to the second vehicle terminal according to the first SPS period.
  • the determining unit 303 may be specifically configured to determine that the vehicle terminal meets the SPS deactivation condition by:
  • the Q is an integer greater than or equal to 1.
  • the third threshold and the fourth threshold may be set as needed, which is not limited by the embodiment of the present invention.
  • vehicle terminal and the base station can be deactivated by implicit SPS for the following special scenarios:
  • the vehicle terminal If the vehicle terminal detects that it is moving from the coverage of the base station to the coverage of the base station, the vehicle terminal is deactivated using implicit SPS.
  • the base station When the base station determines that the vehicle terminal is not in the cell that it is serving or does not detect the vehicle terminal, the base station actively releases the semi-static resource allocated to the first vehicle terminal.
  • the first indication information, the second indication information, and the third indication information in the foregoing process may be carried in any one of the following information and reported to the base station, so that the base station knows that it can go to the first
  • the vehicle terminal triggers SPS activation, SPS reactivation or SPS deactivation process:
  • BSR information BSR information, MAC CE information, RRC information, and Physical Uplink Control Channel (PUCCH) information.
  • PUCCH Physical Uplink Control Channel
  • the following two forms of MAC CE may be used to report the indication information to the base station:
  • the MAC CE information may add a MAC subframe header;
  • the MAC subframe header may include: a first field and a second field;
  • the first field may be used to indicate that the first SPS period is increased or the first SPS period is decreased or the first SPS period is not required to be reconfigured; the second field may be used to indicate indication information.
  • MAC CE subframe header in the form of a fixed size R/R/E/LCID as shown in FIG. 4 may be added, and the SPS activation, SPS deactivation, and SPS reactivation are indicated by the subframe header;
  • the LCID may use the bits 01100 to 10101 reserved in the 36.321 protocol to indicate SPS activation, SPS deactivation, SPS reactivation, for example: 01110 may indicate SPS activation or SPS deactivation; 01111 may indicate SPS deactivation;
  • R/R/E where E is a reserved bit, filled in according to the protocol, usually filled with 0; in order to indicate whether the existing SPS period needs to be increased or decreased, when R/R is 0/0, it is not required.
  • Re-allocation SPS period when R/R is 1/1, the SPS period needs to be increased; when R/R is 1/0, the SPS period needs to be reduced.
  • the number of bits filled in the MAC CE subframe header as shown in FIG. 4 is: 1/1/0/01110, it indicates that SPS activation is performed, and it is necessary to increase the existing SPS period.
  • a control field including a first subfield, a second subfield, and a third subfield may be added to the existing MAC CE, and the indication information is reported to the base station by using a new MAC CE format, where The first subfield is used to indicate the indication information; the second subfield is used to indicate the size of the first SPS period; and the third subfield is used to indicate the data packet sent in the first SPS period. size,
  • a field including three subfields of AD/P/T as shown in FIG. 5 may be added, where the field may occupy 8 bits;
  • AD is 2 bits and is used to indicate SPS activation, SPS reactivation, and SPS deactivation. For example, when AD is 01, it can indicate SPS activation or SPS deactivation. When AD is 10, it can indicate SPS deactivation.
  • P is 3 bits, which indicates the period of the SPS. It can be any bit in the range of 000 to 111. The corresponding value is 0 to 7. The values of 1 to 7 indicate that the periods are 100, 200, ..., 700, respectively. 50, the unit is ms;
  • the base station may trigger the SPS activation, the SPS reactivation, or the SPS deactivation process to the first vehicle terminal by using the physical downlink control channel (PDCCH) information according to the indication information, that is, the foregoing
  • the first scheduling control information, the second scheduling control information, the third scheduling control information, the fourth scheduling control information, and the fifth scheduling control information may be carried in the PDCCH information and sent to the first vehicle terminal;
  • a third field may be added in the format information used to indicate the PDCCH information transmission format in the PDCCH information, and the scheduling control information is represented by the third field.
  • the receiving unit 301 and the transmitting unit 302 in the vehicle terminal 30 shown in FIG. 6 of the present invention may be the communication unit 2011 in the vehicle terminal 20 shown in FIG. 2;
  • the determining unit 303 may be a separately set processor, It can be implemented in a certain processor of the vehicle terminal.
  • it can also be stored in the memory of the vehicle terminal in the form of program code, and the function of the above knowledge base construction can be called and executed by a certain processor of the vehicle terminal.
  • the processor described herein may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement embodiments of the present invention. Circuit.
  • an embodiment of the present invention provides a vehicle terminal, which receives a first SPS configuration parameter that is sent by a base station and includes a first SPS period, and receives a signal sent by the base station to indicate that the first vehicle terminal performs SPS activation.
  • the V2V data packet is sent to the second vehicle terminal according to the first SPS cycle; thus, the V2V data packet is periodically sent by the semi-persistent scheduling of the base station, and does not need to be received before each V2V communication.
  • the PDCCH information sent by the base station not only reduces the overhead of scheduling PDCCH information by the base station, but also increases the network capacity and reduces the service processing delay of the V2V communication.
  • FIG. 7 is a structural diagram of a base station 40 according to an embodiment of the present invention, which is used to perform the operations performed by a base station in the first embodiment.
  • the base station 40 may include:
  • the sending unit 401 is configured to send a first semi-persistent scheduling SPS configuration parameter to the first vehicle terminal, where the first SPS configuration parameter includes: a first SPS period.
  • the first scheduling control information is used for Instructing the first vehicle terminal to perform SPS activation.
  • SC scheduling control
  • the vehicle terminal may receive scheduling control information sent by the base station after determining that the vehicle terminal satisfies an SPS activation condition, and sending, to the base station, indication information that is used to indicate that the vehicle terminal meets an SPS activation condition; or After the base station itself determines that the vehicle terminal satisfies the SPS activation condition, it directly sends the scheduling control information to the vehicle terminal.
  • the base station 40 may further include:
  • the receiving unit 402 receives the first indication information sent by the first vehicle terminal before the sending unit 401 sends the first scheduling control information to the first vehicle terminal, where the first indication information is used to indicate The first vehicle terminal satisfies an SPS activation condition;
  • the base station may further include:
  • a determining unit 403 configured to determine, before the sending unit 401 sends the first scheduling control information to the first vehicle terminal, that there is an idle resource allocated to the first vehicle terminal, and determining that the first vehicle terminal meets the SPS Activation condition.
  • the determining unit 403 is further configured to: after the receiving unit 402 receives the first indication information sent by the first vehicle terminal, determine a sending moment of the first vehicle terminal to send the first indication information;
  • the sending unit 401 is specifically configured to send the first scheduling control information to the first vehicle terminal at the first moment.
  • the determining unit 403 is specifically configured to:
  • the time interval of receiving or transmitting between any two adjacent data packets in the N data packets Satisfying the preset time interval, determining that the first vehicle terminal satisfies an SPS activation condition
  • the receiving unit 402 is further configured to: after the sending unit 401 sends the first scheduling control information to the first vehicle terminal, receive the second indication information sent by the first vehicle terminal, where the second indication The information is used to indicate that the first vehicle terminal satisfies an SPS reactivation condition.
  • the sending unit 401 is further configured to send second scheduling control information to the first vehicle terminal, where the second scheduling control information is used to instruct the first vehicle terminal to perform SPS deactivation;
  • the second SPS configuration parameter includes: a second SPS cycle
  • the receiving unit 402 may be configured to receive second indication information sent by the first vehicle terminal after the sending unit 401 sends the first scheduling control information to the first vehicle terminal, where The second indication information is used to indicate that the first vehicle terminal satisfies an SPS reactivation condition;
  • the sending unit 401 is configured to send fourth scheduling control information to the first vehicle terminal, so that the first vehicle terminal sends a V2V data packet to the second vehicle terminal according to a third SPS cycle;
  • the fourth scheduling control information is used to indicate that the first vehicle terminal performs SPS reactivation; and the third SPS period is configured by the first vehicle terminal.
  • the receiving unit 402 may be configured to: after the sending unit 401 sends the first scheduling control information to the first vehicle terminal, receive the third indication information sent by the first vehicle terminal, where The third indication information is used to indicate that the first vehicle terminal satisfies an SPS deactivation condition;
  • the sending unit 401 is further configured to send fifth scheduling control information to the first vehicle terminal, so that the first vehicle terminal stops sending V2V data packets to the second vehicle terminal according to the first SPS period.
  • the fifth scheduling control information is used to instruct the first vehicle terminal to perform SPS deactivation.
  • the first indication information, the second indication information, and the third indication information in the foregoing process may be carried in any one of the following information and reported to the base station, so that the base station knows that it can go to the first
  • the vehicle terminal triggers SPS activation, SPS reactivation or SPS deactivation process:
  • BSR information BSR information, MAC CE information, RRC information, and Physical Uplink Control Channel (PUCCH) information.
  • PUCCH Physical Uplink Control Channel
  • the following two forms of MAC CE may be used to report the indication information to the base station:
  • the MAC CE information may add a MAC subframe header;
  • the MAC subframe header may include: a first field and a second field;
  • the first field may be used to indicate that the first SPS period is increased or the first SPS period is decreased or the first SPS period is not required to be reconfigured; the second field may be used to indicate indication information.
  • MAC CE subframe header in the form of a fixed size R/R/E/LCID as shown in FIG. 4 may be added, and the SPS activation, SPS deactivation, and SPS reactivation are indicated by the subframe header;
  • the LCID may use the bits 01100 to 10101 reserved in the 36.321 protocol to indicate SPS activation, SPS deactivation, SPS reactivation, for example: 01110 may indicate SPS activation or SPS deactivation; 01111 may indicate SPS deactivation;
  • R/R/E where E is a reserved bit, filled in according to the protocol, usually filled with 0; in order to indicate whether the existing SPS period needs to be increased or decreased, when R/R is 0/0, it is not required.
  • Re-allocation SPS period when R/R is 1/1, the SPS period needs to be increased; when R/R is 1/0, the SPS period needs to be reduced.
  • the number of bits filled in the MAC CE subframe header as shown in FIG. 4 is: 1/1/0/01110, it indicates that SPS activation is performed, and it is necessary to increase the existing SPS period.
  • control field including the first subfield, the second subfield, and the third subfield may be added to the existing MAC CE, and the indication information is reported to the base station by using a new MAC CE format, where the first subfield is For indicating the indication information; the second subfield is used to indicate the size of the first SPS period; and the third subfield is used to indicate the size of the data packet sent in the first SPS period,
  • a field including three subfields of AD/P/T as shown in FIG. 5 may be added, where the field may occupy 8 bits;
  • AD is 2 bits and is used to indicate SPS activation, SPS reactivation, and SPS deactivation. For example, when AD is 01, it can indicate SPS activation or SPS deactivation. When AD is 10, it can indicate SPS deactivation.
  • P is 3 bits, which indicates the period of the SPS. It can be any bit in the range of 000 to 111. The corresponding value is 0 to 7. The values of 1 to 7 indicate that the periods are 100, 200, ..., 700, respectively. 50, the unit is ms;
  • the base station may trigger the SPS activation, the SPS reactivation, or the SPS deactivation process to the first vehicle terminal by using the physical downlink control channel (PDCCH) information according to the indication information, that is, the foregoing
  • the first scheduling control information, the second scheduling control information, the third scheduling control information, the fourth scheduling control information, and the fifth scheduling control information may be carried in the PDCCH information and sent to the first vehicle terminal;
  • a third field may be added in the format information used to indicate the PDCCH information transmission format in the PDCCH information, and the scheduling control information is represented by the third field.
  • the sending unit 401 and the receiving unit 402 in the base station shown in FIG. 7 of the present invention may be the communication unit 1011 in the base station 10 shown in FIG. 2;
  • the determining unit 403 may be a separately set processor, or may be integrated in the It is implemented in a certain processor of the base station, and may also be stored in the memory of the base station in the form of program code, and is called by one of the base stations and performs the function of the above knowledge base construction.
  • the processor described herein may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement embodiments of the present invention. Circuit.
  • the present invention further provides a base station, which is preferably used to implement the method in the foregoing method embodiment.
  • an embodiment of the present invention provides a base station, to send, to a first vehicle terminal, a first SPS configuration parameter that includes a first SPS period, so that when the first vehicle terminal receives a first vehicle that is sent by the base station to indicate the first vehicle
  • the V2V data packet is sent to the second vehicle terminal according to the first SPS period; thus, the V2V data packet is periodically sent through the semi-persistent scheduling of the base station, and does not need to be performed every time.
  • the PDCCH information sent by the base station is received before the V2V communication, which not only reduces the overhead of scheduling the PDCCH information by the base station, but also increases the network capacity and reduces the service processing delay of the V2V communication.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically separate, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), and a random access memory.
  • the storage medium may include a read only memory, a random access memory, a magnetic disk or an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种V2V通信方法、设备及系统,涉及通信技术领域,以解决现有V2V通信中PDCCH信息的调度开销较大的问题。所述方法包括:第一车辆终端在接收基站发送的包含第一SPS周期的第一SPS配置参数后,接收到所述基站发送的用于指示所述第一车辆终端进行SPS激活的第一调度控制信息,按照所述第一SPS周期向第二车辆终端发送V2V数据包。

Description

一种V2V通信方法、设备及系统
本申请要求于2016年04月08日提交中国专利局、申请号为201610219028.3、发明名称为“一种V2V通信方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种车辆到车辆(Vehicle to Vehicle,V2V)通信方法、设备及系统。
背景技术
随着社会的不断发展,汽车的普及程度越来越高,驾驶出行在给人们带来便利的同时也给人类社会带来一定的负面影响,如:车辆数量迅速增加引起了交通拥堵、交通事故频发等一系列问题。为避免这些问题的发生,车辆之间可以通过V2V通信来及时获取路况信息或接收信息服务,如:车辆可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等V2V信息广播给周围车辆,使周围车辆的驾驶员根据获取到的信息更好的感知视距外的交通状况,从而对危险状况提前预判并采取相应的避让措施,以此降低上述问题的发生频率。
目前,在长期演进(Long Term Evolution,LTE)通信网络中,车辆与车辆之间的V2V通信可以采用较成熟的设备到设备(Device to Device,D2D)通信技术来实现,即接收基站下发的物理下行控制信道(Physical Downlink Control Channel,PDCCH)信息,在PDCCH信息指示的资源上向对端车辆发送业务信息。但是,由于车辆与车辆间的V2V通信比较频繁,若按照现有D2D通信方法,则需要基站频繁地向车辆发送PDCCH信息,如此,则会加大PDCCH信息的调度开销。
发明内容
本发明的主要目的,在于提供一种V2V通信方法、设备及系统,以解决现有V2V通信中PDCCH信息的调度开销较大的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种车辆到车辆V2V通信方法,所述方法可以包括:
第一车辆终端接收基站发送的第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
所述第一车辆终端接收所述基站发送的第一调度控制信息,按照所述第一SPS周期向第二车辆终端发送V2V数据包;所述第一调度控制信息用于指示所述第一车辆终端进行SPS激活。
如此,通过基站对第一车辆终端的半静态调度激活,使第一车辆终端按照SPS周期周期性的向第二车辆终端发送V2V数据包;不需要在每次V2V 通信前都接收基站下发的PDCCH信息,减少了基站调度PDCCH信息的开销。
可选的,在第一方面的一种可实现方式中,第一车辆终端可以在确定所述第一车辆终端满足SPS激活条件,并向所述基站发送用于指示所述第一车辆终端满足SPS激活条件的第一指示信息后,接收基站发送的第一调度控制信息;或者,由基站自身在确定第一车辆终端满足SPS激活条件后,直接向第一车辆终端发送第一调度控制信息;
其中,对于第一车辆终端和基站而言,若所述第一车辆终端连续接收或发送N个数据包,且所述N个数据包均为V2V数据包,所述N个数据包中任意相邻两个数据包间的接收或发送时间间隔满足预设时间间隔,则确定所述第一车辆终端满足SPS激活条件;其中,所述N大于等于第一阈值。
进一步的,由于在实际应用中,车辆终端的发送周期或者发送数据包大小会发生改变,为了适应这些变化,还需要对第一车辆终端进行SPS重激活,以更改SPS周期或者发送V2V数据包的时频资源大小;即在第一方面的第二种可实现方式中,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,所述方法还可以包括:
所述第一车辆终端确定所述第一车辆终端满足SPS重激活条件;
所述第一车辆终端向所述基站发送第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
接收所述基站发送的第二调度控制信息;所述第二调度控制信息用于指示所述第一车辆终端进行SPS去激活;
接收所述基站发送的第二SPS配置参数;所述第二SPS配置参数包含:第二SPS周期;
接收所述基站发送的第三调度控制信息;所述第三调度控制信息用于指示所述第一车辆终端进行SPS激活;
按照所述第二SPS周期向所述第二车辆终端发送V2V数据包。
或者,在第一方面的第三种可实现方式中,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,所述方法还可以包括:
所述第一车辆终端确定所述第一车辆终端满足SPS重激活条件;
所述第一车辆终端向所述基站发送第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
接收所述基站发送的第四调度控制信息;所述第四调度控制信息用于指示所述第一车辆终端进行SPS重激活;
按照第三SPS周期向所述第二车辆终端发送V2V数据包;
所述第三SPS周期由所述第一车辆终端进行配置。
其中,所述确定所述第一车辆终端满足SPS重激活条件可以包括:
若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率大于等于第二阈值,则确定所述第一车辆终端满足SPS重激活条件;
或者,若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率小于第二阈值,且在发送数据的第一SPS周期内所述第一车辆终端丢失V2V数据包,则确定所述第一车辆终端满足SPS重激活条件;
所述M为大于等于1的整数。
进一步的,在第一方面的第四种可实现方式中,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,所述方法还可以包括:
确定所述第一车辆终端满足SPS去激活条件;
向所述基站发送第三指示信息,其中,所述第三指示信息用于指示所述第一车辆终端满足SPS去激活条件;
接收所述基站发送的第五调度控制信息;所述第五调度控制信息用于指示所述第一车辆终端进行SPS去激活;
停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包。
其中,所述确定所述第一车辆终端满足SPS去激活条件可以包括:
若在时间连续的Q个第一SPS周期内均未发送数据,所述Q大于等于第三阈值,则确定所述第一车辆终端满足SPS去激活条件;
或者,在时间连续的Q个第一SPS周期内发送数据包的大小均小于第四阈值,则确定所述第一车辆终端满足SPS去激活条件;
所述Q为大于等于1的整数。
需要说明的是,在本发明实施例中,可以将上述过程中的第一指示信息、第二指示信息、第三指示信息携带在下述任一信息中上报给基站,以便基站知道可以向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程:
BSR信息、MAC CE信息、无线链路控制RRC信息、物理上行控制信道PUCCH信息。
其中,所述MAC CE信息可以包含:MAC子帧头;所述MAC子帧头包含:第一字段和第二字段;所述第一字段用于表示增大所述第一SPS周期或减小所述第一SPS周期或不需重配置所述第一SPS周期;所述第二字段用于表示指示信息。
或者,所述MAC CE信息可以包含:控制字段,所述控制字段包含:第一子字段、第二子字段和第三子字段;所述第一子字段用于表示指示信息;所述第二子字段用于表示所述第一SPS周期的大小;所述第三子字段用于表示所述第一SPS周期内发送的数据包的大小。
相应的,当基站接收到指示信息后,基站可以根据指示信息通过PDCCH信息向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程,即第一调度控制信息、或所述第二调度控制信息、或所述第三调度控制信息、或所述第四调度控制信息、或所述第五调度控制信息携带在物理下行控制信道PDCCH信息中向所述第一车辆终端发送;
具体的,所述PDCCH信息包含用于指示所述PDCCH信息传输格式的格式信息;所述格式信息包含:第三字段,所述第三字段用于表示调度控制信 息。
第二方面,本发明实施例提供一种车辆到车辆V2V通信方法,所述方法可以包括:
基站向第一车辆终端发送第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
所述基站向所述第一车辆终端发送第一调度控制信息,以使得所述第一车辆终端按照所述第一SPS周期向第二车辆终端发送V2V数据包;所述第一调度控制信息用于指示所述第一车辆终端进行SPS激活。
如此,通过基站对第一车辆终端的半静态调度激活,使第一车辆终端按照SPS周期周期性的向第二车辆终端发送V2V数据包;不需要在每次V2V通信前都接收基站下发的PDCCH信息,减少了基站调度PDCCH信息的开销。
可选的,在第二方面的一种可实现方式中,第一车辆终端可以在确定所述第一车辆终端满足SPS激活条件,并向所述基站发送用于指示所述第一车辆终端满足SPS激活条件的第一指示信息后,接收基站发送的第一调度控制信息;或者,由基站自身在确定第一车辆终端满足SPS激活条件后,直接向第一车辆终端发送第一调度控制信息。
进一步的,由于在实际应用中,车辆终端的发送周期或者发送数据包大小会发生改变,为了适应这些变化,还需要对第一车辆终端进行SPS重激活,以更改SPS周期或者发送V2V数据包的时频资源大小;即在第二方面的第二种可实现方式中,在所述基站向所述第一车辆终端发送第一调度控制信息之后,所述方法还可以包括:
所述基站接收所述第一车辆终端发送的第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件。
所述基站向所述第一车辆终端发送第二调度控制信息;所述第二调度控制信息用于指示所述第一车辆终端进行SPS去激活;
所述基站向所述第一车辆终端发送第二SPS配置参数;所述第二SPS配置参数包含:第二SPS周期;
所述基站向所述第一车辆终端发送第三调度控制信息,以使得所述第一车辆终端按照所述第二SPS周期向所述第二车辆终端发送V2V数据包;所述第三调度控制信息用于指示所述第一车辆终端进行SPS激活。
或者,在第二方面的第三种可实现方式中,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,所述方法还可以包括:
所述基站接收所述第一车辆终端发送的第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
所述基站向所述第一车辆终端发送第四调度控制信息,以使得所述第一车辆终端按照第三SPS周期向所述第二车辆终端发送V2V数据包;
其中,所述第四调度控制信息用于指示所述第一车辆终端进行SPS重激活;所述第三SPS周期由所述第一车辆终端进行配置。
进一步的,在第二方面的第四种可实现方式中,在所述基站向所述第一车辆终端发送第一调度控制信息之后,所述方法还可以包括:
所述基站接收所述第一车辆终端发送的第三指示信息,其中,所述第三指示信息用于指示所述第一车辆终端满足SPS去激活条件;
所述基站向所述第一车辆终端发送第五调度控制信息,以使得所述第一车辆终端停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包;所述第五调度控制信息用于指示所述第一车辆终端进行SPS去激活。
需要说明的是,在本发明实施例中,可以将上述过程中的第一指示信息、第二指示信息、第三指示信息携带在下述任一信息中上报给基站,以便基站知道可以向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程:
BSR信息、MAC CE信息、无线链路控制RRC信息、物理上行控制信道PUCCH信息。
其中,所述MAC CE信息可以包含:MAC子帧头;所述MAC子帧头包含:第一字段和第二字段;所述第一字段用于表示增大所述第一SPS周期或减小所述第一SPS周期或不需重配置所述第一SPS周期;所述第二字段用于表示指示信息。
或者,所述MAC CE信息可以包含:控制字段,所述控制字段包含:第一子字段、第二子字段和第三子字段;所述第一子字段用于表示指示信息;所述第二子字段用于表示所述第一SPS周期的大小;所述第三子字段用于表示所述第一SPS周期内发送的数据包的大小。
相应的,当基站接收到指示信息后,基站可以根据指示信息通过PDCCH信息向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程,即第一调度控制信息、或所述第二调度控制信息、或所述第三调度控制信息、或所述第四调度控制信息、或所述第五调度控制信息携带在物理下行控制信道PDCCH信息中向所述第一车辆终端发送;
具体的,所述PDCCH信息包含用于指示所述PDCCH信息传输格式的格式信息;所述格式信息包含:第三字段,所述第三字段用于表示调度控制信息。
第三方面,本发明实施例提供一种车辆终端,所述车辆终端可以包括:
接收单元,用于接收基站发送的第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
所述接收单元,还用于接收所述基站发送的第一调度控制信息,所述第一调度控制信息用于指示所述车辆终端进行SPS激活;
发送单元,用于按照所述第一SPS周期向第二车辆终端发送V2V数据包。
具体的,第三方面中各功能单元的实现方式可以参考第一方面提供的方法中第一车辆终端的行为的功能。
第四方面,本发明实施例提供一种基站,所述基站可以包括:
发送单元,用于向第一车辆终端发送第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
以及,向所述第一车辆终端发送第一调度控制信息,以使得所述第一车辆终端按照所述第一SPS周期向第二车辆终端发送V2V数据包;所述第一调度控制信息用于指示所述第一车辆终端进行SPS激活。
具体的,第四方面中各功能单元的实现方式可以参考第二方面提供的方法中基站的行为的功能。
需要说明的是,上述第三方面和第四方面所述功能模块可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如,接收机用于完成接收单元的功能,发送机用于完成发送单元的功能,处理器,用于完成处理单元的功能,处理器、发送机、接收机和存储器通过总线连接并完成相互间的通信。具体实现如下:
第五方面,本发明实施例提供一种车辆终端,所述车辆终端可以包括:
通信单元,用于接收基站发送的第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
以及,接收所述基站发送的第一调度控制信息,所述第一调度控制信息用于指示所述车辆终端进行SPS激活;
按照所述第一SPS周期向第二车辆终端发送V2V数据包。
具体的,第五方面中通信单元的实现方式可参考第三方面中发送单元、接收单元的实现方式。
第六方面,本发明实施例提供一种基站,所述基站可以包括:
通信单元,用于向第一车辆终端发送第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
以及,向所述第一车辆终端发送第一调度控制信息,以使得所述第一车辆终端按照所述第一SPS周期向第二车辆终端发送V2V数据包;所述第一调度控制信息用于指示所述第一车辆终端进行SPS激活。
具体的,第六方面中通信单元的实现方式可参考第四方面中发送单元的实现方式。
第七方面,本发明实施例提供一种V2V通信系统,包括如第三方面所述的车辆终端、以及如第四方面所述的基站;
或者,包括:如第五方面所述的车辆终端、以及如第六方面所述的基站。
由上可知,本发明实施例提供一种V2V通信方法、设备及系统,基站向第一车辆终端发送包含第一SPS周期的第一SPS配置参数,当第一车辆终端接收到基站发送的用于指示所述第一车辆终端进行SPS激活的第一调度控制信息后,按照所述第一SPS周期向第二车辆终端发送V2V数据包;如此,通过基站的半静态调度,实现周期发送V2V数据包,不需要在每次V2V通信前都接收基站下发的PDCCH信息,不仅减少了基站调度PDCCH信息的开销,而且增加了网络容量,减少了V2V通信的业务处理时延。
附图说明
图1为本发明实施例提供的系统架构示意图;
图2为本发明实施例提供的系统架构示意图;
图3为本发明实施例提供的V2V通信的流程图;
图4为本发明实施例提供一种的MAC CE消息格式的结构图;
图5为本发明实施例提供另一种的MAC CE消息格式的结构图;
图6为本发明实施例提供的车辆终端的结构图;
图7为本发明实施例提供的基站的结构图。
具体实施方式
由于车辆间发送消息通常呈一定规律,如:按照特定周期发送一定大小的安全消息,鉴于此,本发明主要采用半静态调度方案实现车辆到车辆(Vehicle to Vehicle,V2V)通信,基站先通过PDCCH指示车辆当前的调度信息,车辆识别是半静态调度后,保存当前的调度信息,每隔固定的周期在相同的时频资源位置上进行V2V业务数据的发送或接收,即通过一次PDCCH授权,实现周期发送V2V数据包,不需要在每次V2V通信前都接收基站下发的PDCCH信息,如此,不仅减少了基站调度PDCCH信息的开销,而且增加了网络容量,减少了V2V通信的业务处理时延。
图1示出了可以应用于本发明的系统架构的简化示意图,参见图1,所述系统架构可以包括:基站10以及至少一个车辆终端(Vehicle User Equipment,VUE)20,其中,VUE20处于基站的覆盖范围内,基站10可以对其覆盖范围内的任一VUE20进行半静态调度(Semi-Persistent Scheduling,SPS),接收基站10调度的VUE20可以按照固定间隔周期性地与其他VUE之间进行V2V通信。
其中,如图2所示,所述基站10可以包括:通信单元1011、处理器1012、存储器1013以及至少一个通信总线1014,用于实现这些装置之间的连接和相互通信;所述VUE20可以包括:通信单元2011、处理器2012、存储器2013以及至少一个通信总线2014,用于实现这些装置之间的连接和相互通信;
通信单元1011、通信单元2011可用于与外部网元之间进行数据交互,如:基站10的通信单元1011可以与VUE20进行数据交互,VUE20的通信单元2011可以与基站10进行数据交互。
处理器1012、处理器2012可能是一个中央处理器(central processing unit,简称为CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
存储器1013、存储器2013可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快 闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);或者上述种类的存储器的组合。
通信总线1015、通信总线2015可以分为地址总线、数据总线、控制总线等,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。为便于表示,图2的通信总线仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
具体的,基站10的通信单元1011先向车辆终端20的通信单元2011发送包含第一SPS周期的第一SPS配置参数;
随后,在通信单元1011接收到通信单元2011发送的用于指示车辆终端20需要进行SPS调度的指示信息或者基站10的控制器1012确定车辆终端满足SPS调度的情况下,触发SPS调度流程,通过通信单元1011向车辆终端的通信单元2011发送用于指示车辆终端20进行SPS激活的调度控制信息;
当车辆终端20的通信单元2011接收到通信单元1011发送的调度控制信息后,由车辆终端20的控制器2012控制通信单元2011按照所述第一SPS周期向其他车辆终端发送V2V数据包。
如此,通过基站对车辆终端进行半静态调度,使车辆终端按照SPS周期周期性的向其他车辆终端发送V2V数据包;不需要在每次V2V通信前都接收基站下发的PDCCH信息,减少了基站调度PDCCH信息的开销。
为了便于描述,以下实施例一以步骤的形式示出并详细描述了本发明中的V2V通信方法,其中,示出的步骤也可以在除图1所示的系统架构中的设备之外的诸如一组可执行指令的计算机系统中执行,此外,虽然在图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一
图3为本发明实施例提供的一种V2V通信方法的流程图,所述方法可由图1所示系统架构中的基站和第一车辆终端交互执行,第一车辆终端可以为图1所示系统架构下的任一车辆终端,如图3所示,所述方法可以包括以下步骤:
S101:基站向第一车辆终端发送第一SPS配置参数;所述第一SPS配置参数包含:第一SPS周期。
其中,第一SPS周期可以根据第一车辆终端向其他车辆终端发送消息的时间规律进行设置,即可以根据V2V业务模型发包规律进行设置;所述第一SPS周期可以包含至少一个调度控制(Scheduling Control,SC)周期,通常情况下,半静态调度周期semiPersistSchedInterval_Vue=min((V2V业务周期/SC周期)*SC周期,N*SC周期)。
可选的,基站可以在无线资源控制(Radio Resource Control,RRC)重配(RRCConnectionReconfiguration)中的半静态调度配置(SPS-Config)中增 加V2V业务的半静态调度配置(SPS-ConfigV2V),以便基站统一配置RRC参数,通过配置后RRC信息向第一车辆终端发送第一SPS配置参数;即在SPS-Config中新增SPS-ConfigV2V使能信令,以便基站向第一车辆终端通知SPS周期,具体实现如下:
Figure PCTCN2017079479-appb-000001
可理解的是,若后续根据V2V业务模型的发展需要,车辆与车辆间按照至少两个不同周期发送不同大小的数据包,则基站向第一车辆终端发送的第一SPS配置参数中需要包含至少两个SPS周期;例如,若VUE1在一段时间内以100s为间隔周期性地向VUE2发送第一类消息,以500s为间隔周期性地向VUE2发送第二类消息,则基站需要向VUE1发送包含100s和500s两个SPS周期的SPS配置参数。
S102:第一车辆终端接收基站发送的第一调度控制信息,所述第一调度控制信息用于指示所述第一车辆终端进行SPS激活。
可选的,第一车辆终端可以在确定所述第一车辆终端满足SPS激活条件,并向所述基站发送用于指示所述第一车辆终端满足SPS激活条件的第一指示信息后,接收基站发送的第一调度控制信息;或者,由基站自身在确定第一车辆终端满足SPS激活条件后,直接向第一车辆终端发送第一调度控制信息;其中,对于第一车辆终端和基站而言,如何确定所述第一车辆终端满足SPS激活条件的方式可以是相同的,具体实现如下:
获取一段时间内第一车辆终端接收或发送数据包的情况;
若所述第一车辆终端连续接收或发送N个数据包,且所述N个数据包均为V2V数据包,所述N个数据包中任意相邻两个数据包间的接收或发送时间间隔满足预设时间间隔,则确定所述第一车辆终端满足SPS激活条件,所述N大于等于第一阈值。
其中,预设时间间隔可以为安全消息发送周期,第一阈值可以根据需要进行设置,本发明实施例对此不进行限定,优选的,可以将第一阈值设置为 4。
S103:第一车辆终端按照所述第一SPS周期向第二车辆终端发送V2V数据包。
其中,第二车辆终端为与第一车辆终端进行V2V通信的任一车辆终端;可选的,第一车辆终端可以按照第一SPS周期周期性地向第二车辆终端发送V2V数据包;例如,若第一SPS为100s,则第一车辆终端以100s为间隔周期性地向第二车辆终端发送V2V数据包。
其中,对于任意第一SPS周期而言,第一车辆终端在该SPS周期内向第二车辆终端发送V2V数据包之前,需要分配好该SPS周期内发送该V2V数据包的时频资源、以及调度分配(Scheduling Allocation,SA)所在的时频资源,所述SA用于指示发送V2V数据包的时频资源,然后,在分配好的时频资源上向第二车辆终端发送SA和V2V数据包,以便第二车辆终端在接收到SA后,根据SA的指示获取V2V数据包;具体的,第一车辆终端可以采用下述方式分配第M个第一SPS周期内SA所在的时频资源和V2V数据包所在的时频资源:
(10*SFN+subframe)=[(10*SFNstart time+subframestart time)+M*semiPersistSchedInterval_Vue]modulo 10240
其中,SFNstart time为起始帧,subframestart time为起始子帧,SFNstart time和subframestart time可以包含在第一调度控制信息中发送给第一车辆终端,第一调度控制信息可以为PDCCH消息。
如:第一车辆终端生成满足V2V通信的V2V数据包后,可以通过调度请求(Scheduling Requst,SR)消息或缓存状态请求(Buffer Status Reporting,BSR)消息向基站请求进行SPS调度以及分配传输V2V数据包的时频资源,基站接收到SR或BSR消息后,可以通过PDCCH消息向第一车辆终端发起SPS调度,以及为第一车辆终端分配起始帧和子帧号;其中,为了使缩小V2V数据包的传输时延,应尽可能使第一车辆终端产生V2V数据包的时刻与基站下发PDCCH消息的时刻差最小,最好相差时延不超过一个SC周期。
具体的,在本发明实施例中,基站可以通过接收到的SR或者BSR信息,推断第一车辆终端产生V2V数据包的时刻,根据该时刻和第一SPS周期确定第一调度控制信息的下发时刻。例如,若基站通过第一车辆终端上报SR或者BSR信息,确定第一车辆终端上报第一指示信息的时刻T,则可以在(semiPersistSchedInterval_Vue+T)ms时刻所在SC周期以及之前的SC周期内下发第一调度控制信息,在semiPersistSchedInterval_Vue+Tms所在SC周期的下一个SC周期内进行SPS的调度,其中,semiPersistSchedInterval_Vue为SPS周期。
当然了,在V2V通信过程中,第一车辆终端还可以作为接收方,接收其他车辆终端发送的SA和V2V数据包,根据接收到的SA消息确定V2V数据包所在的时频资源信息,解调出V2V数据包。
如此,通过基站对第一车辆终端的半静态调度激活,使第一车辆终端按 照SPS周期周期性的向第二车辆终端发送V2V数据包;不需要在每次V2V通信前都接收基站下发的PDCCH信息,减少了基站调度PDCCH信息的开销。
进一步的,在上述SPS激活的过程中,若第一车辆终端未收到基站发送的第一调度控制信息,则第一车辆终端按照动态调度流程向第二车辆终端发送V2V数据包;
或者,在第一车辆终端确定自身满足SPS调度,并向基站发送第一指示信息后,若基站未收到第一指示信息,则基站不做任何处理;
或者,基站设置定时器,若在定时器超时之前未收到第一指示信息,但基站和第一车辆终端处于RRC连接,则基站清除定时器。
进一步的,由于在实际应用中,车辆终端的发送周期或者发送数据包大小会发生改变,为了适应这些变化,还需要对第一车辆终端进行SPS重激活,以更改SPS周期或者发送V2V数据包的时频资源大小;具体的,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,可以采用下述方案一或方案二进行SPS重激活:
方案一:
若第一车辆终端确定所述第一车辆终端满足SPS重激活条件,则第一车辆终端向基站发送第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
第一车辆终端接收所述基站发送的第二调度控制信息;所述第二调度控制信息用于指示所述第一车辆终端进行SPS去激活;
第一车辆终端接收所述基站发送的第二SPS配置参数;所述第二SPS配置参数包含:第二SPS周期;
第一车辆终端接收所述基站发送的第三调度控制信息;所述第三调度控制信息用于指示所述第一车辆终端进行SPS激活;
第一车辆终端按照所述第二SPS周期向所述第二车辆终端发送V2V数据包。
方案二:
若第一车辆终端确定所述第一车辆终端满足SPS重激活条件,则第一车辆终端向基站发送第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
第一车辆终端接收所述基站发送的第四调度控制信息;所述第四调度控制信息用于指示所述第一车辆终端进行SPS重激活;
第一车辆终端按照第三SPS周期向所述第二车辆终端发送V2V数据包;所述第三SPS周期由所述第一车辆终端进行配置。
示例性的,第一车辆终端确定所述第一车辆终端满足SPS重激活条件可以包括:
若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率大于等于第二阈值,则确定所述第一车辆终端满足SPS重激活条 件;
或者,若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率小于第二阈值,且在发送数据的第一SPS周期内所述第一车辆终端丢失V2V数据包,则确定所述第一车辆终端满足SPS重激活条件;所述M为大于等于1的整数。
其中,第二阈值可以根据需要进行设置,本发明实施例对此不进行限定,当未发送数据的第一SPS周期的个数与所述M的比率大于等于第二阈值时,则表示设置的第一SPS周期过小,需要重新配置大的SPS周期;当未发送数据的第一SPS周期的个数与所述M的比率小于第二阈值,且在发送数据的第一SPS周期内所述第一车辆终端丢失V2V数据包时,则表示设置的第一SPS周期过大,需要重新配置小的SPS周期。
需要说明的是,在上述SPS重激活的过程中,若第一车辆终端未收到基站发送的调度控制信息,或者基站未收到或在定时器超时前未收到第一车辆终端上报的指示信息,则确定重激活流程失败,此时,第一车辆终端和基站可以采用SPS激活失败时的处理措施进行处理,在此不再详细赘述。
进一步的,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,所述方法还可以包括:
第一车辆终端确定所述第一车辆终端满足SPS去激活条件;
第一车辆终端向所述基站发送第三指示信息,其中,所述第三指示信息用于指示所述第一车辆终端满足SPS去激活条件;
所述基站向第一车辆终端发送第五调度控制信息;所述第五调度控制信息用于指示所述第一车辆终端进行SPS去激活;
第一车辆终端停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包。
示例性的,所述第一车辆终端确定所述第一车辆终端满足SPS去激活条件可以包括:
若在时间连续的Q个第一SPS周期内均未发送数据,所述Q大于等于第三阈值,则确定所述第一车辆终端满足SPS去激活条件;
或者,在时间连续的Q个第一SPS周期内发送数据包的大小均小于第四阈值,则确定所述第一车辆终端满足SPS去激活条件;所述Q为大于等于1的整数。
其中,所述第三阈值和第四阈值可以根据需要进行设置,本发明实施例对此不进行限定。
此外,可理解的是,对于下述特殊场景,第一车辆终端和基站可以采用隐式SPS去激活:
1)若第一车辆终端检测到自身从基站的覆盖范围内移动到基站的覆盖范围外,则第一车辆终端采用隐式SPS去激活。
2)当基站判断第一车辆终端不在自身服务的小区内或检测不到第一车辆终端时,基站主动去释放分配给第一车辆终端的半静态资源。
需要说明的是,在本发明实施例中,可以将上述过程中的第一指示信息、第二指示信息、第三指示信息携带在下述任一信息中上报给基站,以便基站知道可以向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程:
缓冲状态报告(Buffer Status Reporting,BSR)信息、媒体访问控制单元(Medium Access Control Control Elements,MAC CE)信息、RRC信息、物理上行控制信道(Physical Uplink Control Channel,PUCCH)信息。
其中,当将指示信息携带在MAC CE中上报给基站时,可以采用下述两种形式的MAC CE向基站上报指示信息:
一、通过MAC CE子帧头向基站上报指示信息
如:MAC CE信息可以新增MAC子帧头;所述MAC子帧头可以包含:第一字段和第二字段;
所述第一字段可以用于表示增大所述第一SPS周期或减小所述第一SPS周期或不需重配置所述第一SPS周期;所述第二字段可以用于表示指示信息。
具体的,可以增加如图4所示的固定大小的R/R/E/LCID形式的MAC CE子帧头,通过该子帧头来表示SPS激活、SPS去激活、SPS重激活;
其中,逻辑信道标识(Logical Channel Identification,LCID)可以利用3GPP TS 36.321协议中预留的01100~10101的比特来表示SPS激活、SPS去激活、SPS重激活,例如:01110可以表示SPS激活或者SPS去激活;01111可以表示SPS去激活;
R/R/E,其中E为预留比特,根据协议进行填写,通常情况下填0;为了表示现有的SPS周期需要增大还是缩小,R/R取值为0/0时,不需要重配值SPS周期;R/R取值为1/1时,需要增大SPS周期;R/R取值为1/0时,需要减少SPS周期。
例如:若如图4所示的MAC CE子帧头中填充的比特数为:1/1/0/01110,则表示进行SPS激活,且需要增大现有的SPS周期。
二、通过新增的MAC CE格式向基站上报指示信息
如:可以在现有MAC CE中增加包含:第一子字段、第二子字段和第三子字段的控制字段,通过新的MAC CE格式向基站上报指示信息,其中,所述第一子字段用于表示指示信息;所述第二子字段用于表示所述第一SPS周期的大小;所述第三子字段用于表示所述第一SPS周期内发送的数据包的大小,
具体的,可以新增如图5所示的包含AD/P/T三个子字段的一个字段,其中,该字段可以占用8bits;
AD为2bit,用来表示SPS激活、SPS重激活、SPS去激活;例如,AD为01时,可以表示SPS激活或SPS去激活,AD为10时,可以表示SPS去激活;
P为3bit,表示SPS的周期大小,可以为000~111范围内的任意比特,对 应取值为0~7,其中1~7分别表示周期分别为:100,200,…,700,其中0表示50,单位为ms;
T为3bit,表示SPS周期内发送的数据包的大小(通常为资源块(Resource Block,RB)的大小),可以分为4个等级,例如,000表示不大于RB=3;001表示不大于RB=5且大于3;010表示不大于RB=10且大于5;100表示不大于RB=15且大于10;011表示不大于RB=20且大于15;101表示不大于RB=25且大于20;110表示大于RB=25且大于20;110表示大于RB=40且大于30。
相应的,当基站接收到指示信息后,基站可以根据指示信息通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)信息向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程,即上述第一调度控制信息、第二调度控制信息、第三调度控制信息、第四调度控制信息、第五调度控制信息可以携带在PDCCH信息中向所述第一车辆终端发送;
具体的,可以在PDCCH信息中用于指示PDCCH信息传输格式的格式信息中新增第三字段,用第三字段表示调度控制信息;
如:可以在PDCCH信息的DCI5格式中新增加2bit的SPS activation Flag,用00表示动态调度;01表示SPS激活且DCI5bit位中资源块和跳频资源分配Bit位图设置为0;10表示SPS重激活且DCI5bit位中资源块和跳频资源分配Bit位图设置为0;11表示SPS去激活且DCI5bit位中资源块和跳频资源分配Bit位图设置为1。
由上可知,本发明实施例提供一种V2V通信方法,基站向第一车辆终端发送包含第一SPS周期的第一SPS配置参数,当第一车辆终端接收到基站发送的用于指示所述第一车辆终端进行SPS激活的第一调度控制信息后,按照所述第一SPS周期向第二车辆终端发送V2V数据包;如此,通过基站的半静态调度,实现周期发送V2V数据包,不需要在每次V2V通信前都接收基站下发的PDCCH信息,不仅减少了基站调度PDCCH信息的开销,而且增加了网络容量,减少了V2V通信的业务处理时延。
具体的,如实施例二和实施例三所述,本发明还提供了一种车辆终端和基站,优选地用于实现上述方法实施例中的方法。
实施例二
图6为本发明实施例提供的一种车辆终端30的结构图,用于执行实施例一中第一车辆终端所执行的动作,如图6所示,所述车辆终端30可以包括:
接收单元301,用于接收基站发送的第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期。
其中,第一SPS周期可以根据车辆终端向其他车辆终端发送消息的时间规律进行设置,即可以根据V2V业务模型发包规律进行设置;所述第一SPS周期可以包含至少一个调度控制(Scheduling Control,SC)周期,通常情况下,半静态调度周期semiPersistSchedInterval_Vue=min((V2V业务周期/SC周期)*SC周期,N*SC周期)。
所述接收单元301,还用于接收所述基站发送的第一调度控制信息,所述第一调度控制信息用于指示所述车辆终端进行SPS激活。
发送单元302,用于按照所述第一SPS周期向第二车辆终端发送V2V数据包。
可选的,车辆终端可以在确定所述车辆终端满足SPS激活条件,并向所述基站发送用于指示所述车辆终端满足SPS激活条件的指示信息后,接收基站发送的调度控制信息;或者,由基站自身在确定车辆终端满足SPS激活条件后,直接向车辆终端发送调度控制信息;具体的,如图6所示,所述车辆终端还可以包括:
确定单元303,用于在接收单元301接收基站发送的第一半静态调度SPS配置参数之后,接收所述基站发送的第一调度控制信息之前,确定所述车辆终端满足SPS激活条件;
所述发送单元302,还用于在所述确定单元303确定车辆终端满足SPS激活条件后,向所述基站发送第一指示信息;其中,所述第一指示信息用于指示所述车辆终端满足SPS激活条件。
可选的,所述确定单元303,具体可以用于:
若所述车辆终端连续接收或发送N个数据包,且所述N个数据包均为V2V数据包,所述N个数据包中任意相邻两个数据包间的接收或发送时间间隔满足预设时间间隔,则确定所述车辆终端满足SPS激活条件;
其中,所述N大于等于第一阈值,预设时间间隔可以为安全消息发送周期,第一阈值可以根据需要进行设置,本发明实施例对此不进行限定,优选的,可以将第一阈值设置为4。
当然了,在V2V通信过程中,车辆终端30还可以作为接收方,接收其他车辆终端发送的SA和V2V数据包,具体的,接收单元301还可以用于:接收其他车辆终端发送的SA和V2V数据包,
所述确定单元303,还用于根据接收到的SA消息确定V2V数据包所在的时频资源信息,解调出V2V数据包。
进一步的,由于在实际应用中,车辆终端的发送周期或者发送数据包大小会发生改变,为了适应这些变化,还需要对第一车辆终端进行SPS重激活,以更改SPS周期或者发送V2V数据包的时频资源大小;具体的,所述确定单元303,还用于:
在所述发送单元302按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,确定所述车辆终端满足SPS重激活条件;
所述发送单元302,还用于在所述确定单元303确定所述车辆终端满足SPS重激活条件后,向所述基站发送第二指示信息,其中,所述第二指示信息用于指示所述车辆终端满足SPS重激活条件;
所述接收单元301,还用于在所述发送单元302向所述基站发送第二指示信息之后,接收所述基站发送的第二调度控制信息;所述第二调度控制信息用于指示所述车辆终端进行SPS去激活;
以及,接收所述基站发送的第二SPS配置参数;所述第二SPS配置参数包含:第二SPS周期;
接收所述基站发送的第三调度控制信息;所述第三调度控制信息用于指示所述车辆终端进行SPS激活;
所述发送单元302,还用于按照所述第二SPS周期向所述第二车辆终端发送V2V数据包。
或者,所述接收单元301,还用于在所述发送单元302向所述基站发送第二指示信息之后,接收所述基站发送的第四调度控制信息;所述第四调度控制信息用于指示所述车辆终端进行SPS重激活;
所述发送单元302,还用于按照第三SPS周期向所述第二车辆终端发送V2V数据包;所述第三SPS周期由所述车辆终端进行配置。
可选的,所述确定单元303,具体可以用于通过下述方法确定车辆终端是否满足SPS重激活条件:
若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率大于等于第二阈值,则确定所述车辆终端满足SPS重激活条件;
或者,若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率小于第二阈值,且在发送数据的第一SPS周期内所述车辆终端丢失V2V数据包,则确定所述车辆终端满足SPS重激活条件;
所述M为大于等于1的整数。
其中,第二阈值可以根据需要进行设置,本发明实施例对此不进行限定,当未发送数据的第一SPS周期的个数与所述M的比率大于等于第二阈值时,则表示设置的第一SPS周期过小,需要重新配置大的SPS周期;当未发送数据的第一SPS周期的个数与所述M的比率小于第二阈值,且在发送数据的第一SPS周期内所述第一车辆终端丢失V2V数据包时,则表示设置的第一SPS周期过大,需要重新配置小的SPS周期。
进一步的,所述确定单元303,还用于在所述发送单元302按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,确定所述车辆终端满足SPS去激活条件;
所述发送单元302,还用于在所述确定单元303确定所述车辆终端满足SPS去激活条件后,向所述基站发送第三指示信息,其中,所述第三指示信息用于指示所述车辆终端满足SPS去激活条件;
所述接收单元301,还用于接收所述基站发送的第五调度控制信息;所述第五调度控制信息用于指示所述车辆终端进行SPS去激活;
所述发送单元302,还用于停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包。
可选的,所述确定单元303,具体可以用于采用下述方式确定车辆终端满足SPS去激活条件:
若在时间连续的Q个第一SPS周期内均未发送数据,所述Q大于等于第三阈值,则确定所述车辆终端满足SPS去激活条件;
或者,在时间连续的Q个第一SPS周期内发送数据包的大小均小于第四阈值,则确定所述车辆终端满足SPS去激活条件;
所述Q为大于等于1的整数。
其中,所述第三阈值和第四阈值可以根据需要进行设置,本发明实施例对此不进行限定。
此外,可理解的是,对于下述特殊场景,车辆终端和基站可以采用隐式SPS去激活:
1)若车辆终端检测到自身从基站的覆盖范围内移动到基站的覆盖范围外,则车辆终端采用隐式SPS去激活。
2)当基站判断车辆终端不在自身服务的小区内或检测不到车辆终端时,基站主动去释放分配给第一车辆终端的半静态资源。
需要说明的是,在本发明实施例中,可以将上述过程中的第一指示信息、第二指示信息、第三指示信息携带在下述任一信息中上报给基站,以便基站知道可以向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程:
BSR信息、MAC CE信息、RRC信息、物理上行控制信道(Physical Uplink Control Channel,PUCCH)信息。
其中,当将指示信息携带在MAC CE中上报给基站时,可以采用下述两种形式的MAC CE向基站上报指示信息:
一、通过MAC CE子帧头向基站上报指示信息
如:MAC CE信息可以新增MAC子帧头;所述MAC子帧头可以包含:第一字段和第二字段;
所述第一字段可以用于表示增大所述第一SPS周期或减小所述第一SPS周期或不需重配置所述第一SPS周期;所述第二字段可以用于表示指示信息。
具体的,可以增加如图4所示的固定大小的R/R/E/LCID形式的MAC CE子帧头,通过该子帧头来表示SPS激活、SPS去激活、SPS重激活;
其中LCID可以利用36.321协议中预留的01100~10101的比特来表示SPS激活、SPS去激活、SPS重激活,例如:01110可以表示SPS激活或者SPS去激活;01111可以表示SPS去激活;
R/R/E,其中E为预留比特,根据协议进行填写,通常情况下填0;为了表示现有的SPS周期需要增大还是缩小,R/R取值为0/0时,不需要重配值SPS周期;R/R取值为1/1时,需要增大SPS周期;R/R取值为1/0时,需要减少SPS周期。
例如:若如图4所示的MAC CE子帧头中填充的比特数为:1/1/0/01110,则表示进行SPS激活,且需要增大现有的SPS周期。
二、通过新增的MAC CE格式向基站上报指示信息
如:可以在现有MAC CE中增加包含:第一子字段、第二子字段和第三子字段的控制字段,通过新的MAC CE格式向基站上报指示信息,其中,所 述第一子字段用于表示指示信息;所述第二子字段用于表示所述第一SPS周期的大小;所述第三子字段用于表示所述第一SPS周期内发送的数据包的大小,
具体的,可以新增如图5所示的包含AD/P/T三个子字段的一个字段,其中,该字段可以占用8bits;
AD为2bit,用来表示SPS激活、SPS重激活、SPS去激活;例如,AD为01时,可以表示SPS激活或SPS去激活,AD为10时,可以表示SPS去激活;
P为3bit,表示SPS的周期大小,可以为000~111范围内的任意比特,对应取值为0~7,其中1~7分别表示周期分别为:100,200,…,700,其中0表示50,单位为ms;
T为3bit,表示SPS周期内发送的数据包的大小(通常为资源块(Resource Block,RB)的大小),可以分为4个等级,例如,000表示不大于RB=3;001表示不大于RB=5且大于3;010表示不大于RB=10且大于5;100表示不大于RB=15且大于10;011表示不大于RB=20且大于15;101表示不大于RB=25且大于20;110表示大于RB=25且大于20;110表示大于RB=40且大于30。
相应的,当基站接收到指示信息后,基站可以根据指示信息通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)信息向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程,即上述第一调度控制信息、第二调度控制信息、第三调度控制信息、第四调度控制信息、第五调度控制信息可以携带在PDCCH信息中向所述第一车辆终端发送;
具体的,可以在PDCCH信息中用于指示PDCCH信息传输格式的格式信息中新增第三字段,用第三字段表示调度控制信息。
需要说明的是,本发明图6所示车辆终端30中的接收单元301、发送单元302可以为图2所示车辆终端20中的通信单元2011;确定单元303可以为单独设立的处理器,也可以集成在车辆终端的某一个处理器中实现,此外,也可以以程序代码的形式存储于车辆终端的存储器中,由车辆终端的某一个处理器调用并执行以上知识库构建的功能。这里所述的处理器可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
由上可知,本发明实施例提供一种车辆终端,接收基站发送的包含第一SPS周期的第一SPS配置参数,并在接收到基站发送的用于指示所述第一车辆终端进行SPS激活的第一调度控制信息后,按照所述第一SPS周期向第二车辆终端发送V2V数据包;如此,通过基站的半静态调度,实现周期发送V2V数据包,不需要在每次V2V通信前都接收基站下发的PDCCH信息,不仅减少了基站调度PDCCH信息的开销,而且增加了网络容量,减少了V2V通信的业务处理时延。
实施例三
图7为本发明实施例提供的一种基站40的结构图,用于执行实施例一中基站所执行的动作,如图7所示,所述基站40可以包括:
发送单元401,用于向第一车辆终端发送第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期。
以及,向所述第一车辆终端发送第一调度控制信息,以使得所述第一车辆终端按照所述第一SPS周期向第二车辆终端发送V2V数据包;所述第一调度控制信息用于指示所述第一车辆终端进行SPS激活。
其中,第一SPS周期可以根据第一车辆终端向其他车辆终端发送消息的时间规律进行设置,即可以根据V2V业务模型发包规律进行设置;所述第一SPS周期可以包含至少一个调度控制(Scheduling Control,SC)周期,通常情况下,半静态调度周期semiPersistSchedInterval_Vue=min((V2V业务周期/SC周期)*SC周期,N*SC周期)。
可选的,车辆终端可以在确定所述车辆终端满足SPS激活条件,并向所述基站发送用于指示所述车辆终端满足SPS激活条件的指示信息后,接收基站发送的调度控制信息;或者,由基站自身在确定车辆终端满足SPS激活条件后,直接向车辆终端发送调度控制信息;具体的,如图7所示,所述基站40还可以包括:
接收单元402,在所述发送单元401向所述第一车辆终端发送第一调度控制信息之前,接收所述第一车辆终端发送的第一指示信息;其中,所述第一指示信息用于指示所述第一车辆终端满足SPS激活条件;
或者,所述基站还可以包括:
确定单元403,用于在所述发送单元401向所述第一车辆终端发送第一调度控制信息之前,确定存在空闲资源分配给所述第一车辆终端、以及确定所述第一车辆终端满足SPS激活条件。
其中,所述确定单元403,还用于在所述接收单元402接收所述第一车辆终端发送的第一指示信息之后,确定所述第一车辆终端发送所述第一指示信息的发送时刻;
以及,根据所述第一指示信息的发送时刻和所述第一SPS周期确定第一时刻;
所述发送单元401,具体用于在所述第一时刻向所述第一车辆终端发送所述第一调度控制信息。
可选的,所述确定单元403,具体可以用于:
收集所述第一车辆终端接收或发送的数据包;
若所述第一车辆终端连续接收或发送的N个数据包,且所述N个数据包均为V2V数据包,所述N个数据包中任意相邻两个数据包间的接收或发送时间间隔满足预设时间间隔,则确定所述第一车辆终端满足SPS激活条件;
进一步的,由于在实际应用中,车辆终端的发送周期或者发送数据包大小会发生改变,为了适应这些变化,还需要对第一车辆终端进行SPS重激 活,以更改SPS周期或者发送V2V数据包的时频资源大小;具体的,
接收单元402,还可以用于在所述发送单元401向所述第一车辆终端发送第一调度控制信息之后,接收所述第一车辆终端发送的第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件。
所述发送单元401,还用于向所述第一车辆终端发送第二调度控制信息;所述第二调度控制信息用于指示所述第一车辆终端进行SPS去激活;
以及,向所述第一车辆终端发送第二SPS配置参数;所述第二SPS配置参数包含:第二SPS周期;
向所述第一车辆终端发送第三调度控制信息,以使得所述第一车辆终端按照所述第二SPS周期向所述第二车辆终端发送V2V数据包;所述第三调度控制信息用于指示所述第一车辆终端进行SPS激活。
或者,所述接收单元402,可以用于在所述发送单元401向所述第一车辆终端发送第一调度控制信息之后,接收所述第一车辆终端发送的第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
所述发送单元401,用于向所述第一车辆终端发送第四调度控制信息,以使得所述第一车辆终端按照第三SPS周期向所述第二车辆终端发送V2V数据包;
其中,所述第四调度控制信息用于指示所述第一车辆终端进行SPS重激活;所述第三SPS周期由所述第一车辆终端进行配置。
进一步的,所述接收单元402,可以用于在所述发送单元401向所述第一车辆终端发送第一调度控制信息之后,接收所述第一车辆终端发送的第三指示信息,其中,所述第三指示信息用于指示所述第一车辆终端满足SPS去激活条件;
所述发送单元401,还用于向所述第一车辆终端发送第五调度控制信息,以使得所述第一车辆终端停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包;所述第五调度控制信息用于指示所述第一车辆终端进行SPS去激活。
需要说明的是,在本发明实施例中,可以将上述过程中的第一指示信息、第二指示信息、第三指示信息携带在下述任一信息中上报给基站,以便基站知道可以向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程:
BSR信息、MAC CE信息、RRC信息、物理上行控制信道(Physical Uplink Control Channel,PUCCH)信息。
其中,当将指示信息携带在MAC CE中上报给基站时,可以采用下述两种形式的MAC CE向基站上报指示信息:
一、通过MAC CE子帧头向基站上报指示信息
如:MAC CE信息可以新增MAC子帧头;所述MAC子帧头可以包含:第一字段和第二字段;
所述第一字段可以用于表示增大所述第一SPS周期或减小所述第一SPS周期或不需重配置所述第一SPS周期;所述第二字段可以用于表示指示信息。
具体的,可以增加如图4所示的固定大小的R/R/E/LCID形式的MAC CE子帧头,通过该子帧头来表示SPS激活、SPS去激活、SPS重激活;
其中LCID可以利用36.321协议中预留的01100~10101的比特来表示SPS激活、SPS去激活、SPS重激活,例如:01110可以表示SPS激活或者SPS去激活;01111可以表示SPS去激活;
R/R/E,其中E为预留比特,根据协议进行填写,通常情况下填0;为了表示现有的SPS周期需要增大还是缩小,R/R取值为0/0时,不需要重配值SPS周期;R/R取值为1/1时,需要增大SPS周期;R/R取值为1/0时,需要减少SPS周期。
例如:若如图4所示的MAC CE子帧头中填充的比特数为:1/1/0/01110,则表示进行SPS激活,且需要增大现有的SPS周期。
二、通过新增的MAC CE格式向基站上报指示信息
如:可以在现有MAC CE中增加包含:第一子字段、第二子字段和第三子字段的控制字段,通过新的MAC CE格式向基站上报指示信息,其中,所述第一子字段用于表示指示信息;所述第二子字段用于表示所述第一SPS周期的大小;所述第三子字段用于表示所述第一SPS周期内发送的数据包的大小,
具体的,可以新增如图5所示的包含AD/P/T三个子字段的一个字段,其中,该字段可以占用8bits;
AD为2bit,用来表示SPS激活、SPS重激活、SPS去激活;例如,AD为01时,可以表示SPS激活或SPS去激活,AD为10时,可以表示SPS去激活;
P为3bit,表示SPS的周期大小,可以为000~111范围内的任意比特,对应取值为0~7,其中1~7分别表示周期分别为:100,200,…,700,其中0表示50,单位为ms;
T为3bit,表示SPS周期内发送的数据包的大小(通常为资源块(Resource Block,RB)的大小),可以分为4个等级,例如,000表示不大于RB=3;001表示不大于RB=5且大于3;010表示不大于RB=10且大于5;100表示不大于RB=15且大于10;011表示不大于RB=20且大于15;101表示不大于RB=25且大于20;110表示大于RB=25且大于20;110表示大于RB=40且大于30。
相应的,当基站接收到指示信息后,基站可以根据指示信息通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)信息向第一车辆终端触发SPS激活、SPS重激活或者SPS去激活流程,即上述第一调度控制信息、第二调度控制信息、第三调度控制信息、第四调度控制信息、第五调度控制信息可以携带在PDCCH信息中向所述第一车辆终端发送;
具体的,可以在PDCCH信息中用于指示PDCCH信息传输格式的格式信息中新增第三字段,用第三字段表示调度控制信息。
需要说明的是,本发明图7所示基站中的发送单元401、接收单元402可以为图2所示基站10中的通信单元1011;确定单元403可以为单独设立的处理器,也可以集成在基站的某一个处理器中实现,此外,也可以以程序代码的形式存储于基站的存储器中,由基站的某一个处理器调用并执行以上知识库构建的功能。这里所述的处理器可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。具体的,如实施例二所述,本发明还提供了一种基站,优选地用于实现上述方法实施例中的方法。
由上可知,本发明实施例提供一种基站,向第一车辆终端发送包含第一SPS周期的第一SPS配置参数,以便当第一车辆终端接收到基站发送的用于指示所述第一车辆终端进行SPS激活的第一调度控制信息后,按照所述第一SPS周期向第二车辆终端发送V2V数据包;如此,通过基站的半静态调度,实现周期发送V2V数据包,不需要在每次V2V通信前都接收基站下发的PDCCH信息,不仅减少了基站调度PDCCH信息的开销,而且增加了网络容量,减少了V2V通信的业务处理时延。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的单元和系统的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存 储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件(例如处理器)来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (53)

  1. 一种车辆到车辆V2V通信方法,其特征在于,所述方法包括:
    第一车辆终端接收基站发送的第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
    所述第一车辆终端接收所述基站发送的第一调度控制信息,按照所述第一SPS周期向第二车辆终端发送V2V数据包;所述第一调度控制信息用于指示所述第一车辆终端进行SPS激活。
  2. 根据权利要求1所述的方法,其特征在于,在接收基站发送的第一半静态调度SPS配置参数之后,接收所述基站发送的第一调度控制信息之前,所述方法还包括:
    所述第一车辆终端确定所述第一车辆终端满足SPS激活条件;
    所述第一车辆终端向所述基站发送第一指示信息;其中,所述第一指示信息用于指示所述第一车辆终端满足SPS激活条件。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述第一车辆终端满足SPS激活条件包括:
    若所述第一车辆终端连续接收或发送N个数据包,且所述N个数据包均为V2V数据包,所述N个数据包中任意相邻两个数据包间的接收或发送时间间隔满足预设时间间隔,则确定所述第一车辆终端满足SPS激活条件;
    其中,所述N大于等于第一阈值。
  4. 根据权利要求1所述的方法,其特征在于,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,所述方法还包括:
    所述第一车辆终端确定所述第一车辆终端满足SPS重激活条件;
    所述第一车辆终端向所述基站发送第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件。
  5. 根据权利要求4所述的方法,其特征在于,所述确定所述第一车辆终端满足SPS重激活条件包括:
    若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率大于等于第二阈值,则确定所述第一车辆终端满足SPS重激活条件;
    或者,若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率小于第二阈值,且在发送数据的第一SPS周期内所述第一车辆终端丢失V2V数据包,则确定所述第一车辆终端满足SPS重激活条件;
    所述M为大于等于1的整数。
  6. 根据权利要求4或5所述的方法,其特征在于,在向所述基站发送第二指示信息之后,所述方法还包括:
    接收所述基站发送的第二调度控制信息;所述第二调度控制信息用于指示所述第一车辆终端进行SPS去激活;
    接收所述基站发送的第二SPS配置参数;所述第二SPS配置参数包含:第二SPS周期;
    接收所述基站发送的第三调度控制信息;所述第三调度控制信息用于指示所述第一车辆终端进行SPS激活;
    按照所述第二SPS周期向所述第二车辆终端发送V2V数据包。
  7. 根据权利要求4或5所述的方法,其特征在于,在向所述基站发送第二指示信息之后,所述方法还包括:
    接收所述基站发送的第四调度控制信息;所述第四调度控制信息用于指示所述第一车辆终端进行SPS重激活;
    按照第三SPS周期向所述第二车辆终端发送V2V数据包;
    所述第三SPS周期由所述第一车辆终端进行配置。
  8. 根据权利要求1所述的方法,其特征在于,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,所述方法还包括:
    确定所述第一车辆终端满足SPS去激活条件;
    向所述基站发送第三指示信息,其中,所述第三指示信息用于指示所述第一车辆终端满足SPS去激活条件;
    接收所述基站发送的第五调度控制信息;所述第五调度控制信息用于指示所述第一车辆终端进行SPS去激活;
    停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包。
  9. 根据权利要求8所述的方法,其特征在于,所述确定所述第一车辆终端满足SPS去激活条件包括:
    若在时间连续的Q个第一SPS周期内均未发送数据,所述Q大于等于第三阈值,则确定所述第一车辆终端满足SPS去激活条件;
    或者,在时间连续的Q个第一SPS周期内发送数据包的大小均小于第四阈值,则确定所述第一车辆终端满足SPS去激活条件;
    所述Q为大于等于1的整数。
  10. 根据权利要求2或4或8任一项所述的方法,其特征在于,各个指示信息携带在下述任一信息中向所述基站发送:
    BSR信息、MAC CE信息、无线链路控制RRC信息、物理上行控制信道PUCCH信息。
  11. 根据权利要求10所述的方法,其特征在于,所述MAC CE信息包含:MAC子帧头;所述MAC子帧头包含:第一字段和第二字段;
    所述第一字段用于表示增大所述第一SPS周期或减小所述第一SPS周期或不需重配置所述第一SPS周期;
    所述第二字段用于表示指示信息。
  12. 根据权利要求10所述的方法,其特征在于,所述MAC CE信息包含:控制字段,所述控制字段包含:第一子字段、第二子字段和第三子字段;
    所述第一子字段用于表示指示信息;
    所述第二子字段用于表示所述第一SPS周期的大小;
    所述第三子字段用于表示所述第一SPS周期内发送的数据包的大小。
  13. 根据权利要求1或6或7或8任一项所述的方法,其特征在于,各个调度控制信息携带在物理下行控制信道PDCCH信息中向所述第一车辆终端发送;
    所述PDCCH信息包含用于指示所述PDCCH信息传输格式的格式信息;
    所述格式信息包含:第三字段,所述第三字段用于表示调度控制信息。
  14. 根据权利要求1-12任一项所述的方法,其特征在于,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之前,所述方法还包括:
    确定起始帧号和起始子帧号;
    根据起始帧号和起始子帧号确定第一SPS周期内发送调度分配SA和V2V数据包的帧号和子帧号。
  15. 根据权利要求1所述的方法,其特征在于,在按照所述第一SPS周期向第二车辆终端发送V2V数据包之前,所述方法还包括:
    在所述第一车辆终端内设置定时器,若所述第一车辆终端在所述定时器超时后,未接收到所述基站发送的第一调度控制信息,则停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包。
  16. 一种车辆到车辆V2V通信方法,其特征在于,所述方法包括:
    基站向第一车辆终端发送第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
    所述基站向所述第一车辆终端发送第一调度控制信息,以使得所述第一车辆终端按照所述第一SPS周期向第二车辆终端发送V2V数据包;所述第一调度控制信息用于指示所述第一车辆终端进行SPS激活。
  17. 根据权利要求16所述的方法,其特征在于,在向所述第一车辆终端发送第一调度控制信息之前,所述方法还包括:
    接收所述第一车辆终端发送的第一指示信息;其中,所述第一指示信息用于指示所述第一车辆终端满足SPS激活条件;
    或者,所述基站确定存在空闲资源分配给所述第一车辆终端、以及确定所述第一车辆终端满足SPS激活条件。
  18. 根据权利要求17所述的方法,其特征在于,在接收所述第一车辆终端发送的第一指示信息之后,所述方法还包括:
    所述基站确定所述第一车辆终端发送所述第一指示信息的发送时刻;
    根据所述第一指示信息的发送时刻和所述第一SPS周期确定第一时刻;
    所述基站向所述第一车辆终端发送第一调度控制信息包括:
    在所述第一时刻向所述第一车辆终端发送所述第一调度控制信息。
  19. 根据权利要求17或18所述的方法,其特征在于,所述基站确定所述第一车辆终端满足SPS激活条件包括:
    收集所述第一车辆终端接收或发送的数据包;
    若所述第一车辆终端连续接收或发送的N个数据包,且所述N个数据包均为V2V数据包,所述N个数据包中任意相邻两个数据包间的接收或发送时间间隔满足预设时间间隔,则确定所述第一车辆终端满足SPS激活条件。
  20. 根据权利要求16所述的方法,其特征在于,在所述基站向所述第一车辆终端发送第一调度控制信息之后,所述方法还包括:
    所述基站接收所述第一车辆终端发送的第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
    所述基站向所述第一车辆终端发送第二调度控制信息;所述第二调度控制信息用于指示所述第一车辆终端进行SPS去激活;
    所述基站向所述第一车辆终端发送第二SPS配置参数;所述第二SPS配置参数包含:第二SPS周期;
    所述基站向所述第一车辆终端发送第三调度控制信息,以使得所述第一车辆终端按照所述第二SPS周期向所述第二车辆终端发送V2V数据包;所述第三调度控制信息用于指示所述第一车辆终端进行SPS激活。
  21. 根据权利要求16所述的方法,其特征在于,在所述基站向所述第一车辆终端发送第一调度控制信息之后,所述方法还包括:
    所述基站接收所述第一车辆终端发送的第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
    所述基站向所述第一车辆终端发送第四调度控制信息,以使得所述第一车辆终端按照第三SPS周期向所述第二车辆终端发送V2V数据包;
    其中,所述第四调度控制信息用于指示所述第一车辆终端进行SPS重激活;所述第三SPS周期由所述第一车辆终端进行配置。
  22. 根据权利要求16所述的方法,其特征在于,在所述基站向所述第一车辆终端发送第一调度控制信息之后,所述方法还包括:
    所述基站接收所述第一车辆终端发送的第三指示信息,其中,所述第三指示信息用于指示所述第一车辆终端满足SPS去激活条件;
    所述基站向所述第一车辆终端发送第五调度控制信息,以使得所述第一车辆终端停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包;所述第五调度控制信息用于指示所述第一车辆终端进行SPS去激活。
  23. 根据权利要求17或20或21或22任一项所述的方法,其特征在于,各个指示信息携带在下述任一信息中发送至所述基站:
    BSR信息、MAC CE信息、无线链路控制RRC信息、物理上行控制信道PUCCH信息。
  24. 根据权利要求23所述的方法,其特征在于,所述MAC CE信息包含:MAC子帧头;所述MAC子帧头包含:第一字段和第二字段;
    所述第一字段用于表示增大所述第一SPS周期或减小所述第一SPS周期或不需重配置所述第一SPS周期;
    所述第二字段用于表示指示信息。
  25. 根据权利要求23所述的方法,其特征在于,所述MAC CE信息包含:控制字段,所述控制字段包含:第一子字段、第二子字段和第三子字段;
    所述第一子字段用于表示指示信息;
    所述第二子字段用于表示所述第一SPS周期的大小;
    所述第三子字段用于表示所述第一SPS周期内发送的数据包的大小。
  26. 根据权利要求16或20或21或22任一项所述的方法,其特征在于,各个调度控制信息携带在物理下行控制信道PDCCH信息中向所述第一车辆终端发送;
    所述PDCCH信息包含用于指示所述PDCCH信息传输格式的格式信息;
    所述格式信息包含:第三字段,所述第三字段用于表示调度控制信息。
  27. 根据权利要求16所述的方法,其特征在于,所述方法还包括;
    若所述基站检测到所述第一车辆终端不在所述基站的覆盖范围内,则释放分配给所述第一车辆终端的SPS资源。
  28. 一种车辆终端,其特征在于,所述车辆终端包括:
    接收单元,用于接收基站发送的第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
    所述接收单元,还用于接收所述基站发送的第一调度控制信息,所述第一调度控制信息用于指示所述车辆终端进行SPS激活;
    发送单元,用于按照所述第一SPS周期向第二车辆终端发送V2V数据包。
  29. 根据权利要求28所述的车辆终端,其特征在于,所述车辆终端还包括:
    确定单元,用于在接收单元接收基站发送的第一半静态调度SPS配置参数之后,接收所述基站发送的第一调度控制信息之前,确定所述车辆终端满足SPS激活条件;
    所述发送单元,还用于在所述确定单元确定车辆终端满足SPS激活条件后,向所述基站发送第一指示信息;其中,所述第一指示信息用于指示所述车辆终端满足SPS激活条件。
  30. 根据权利要求29所述的车辆终端,其特征在于,所述确定单元,具体用于:
    若所述车辆终端连续接收或发送N个数据包,且所述N个数据包均为V2V数据包,所述N个数据包中任意相邻两个数据包间的接收或发送时间间隔满足预设时间间隔,则确定所述车辆终端满足SPS激活条件;
    其中,所述N大于等于第一阈值。
  31. 根据权利要求28所述的车辆终端,其特征在于,所述车辆终端还包括:
    确定单元,用于在所述发送单元按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,确定所述车辆终端满足SPS重激活条件;
    所述发送单元,还用于在所述确定单元确定所述车辆终端满足SPS重激活条件后,向所述基站发送第二指示信息,其中,所述第二指示信息用于指示所述车辆终端满足SPS重激活条件。
  32. 根据权利要求31所述的车辆终端,其特征在于,所述确定单元,具 体用于:
    若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率大于等于第二阈值,则确定所述车辆终端满足SPS重激活条件;
    或者,若在M个所述第一SPS周期内,未发送数据的第一SPS周期的个数与所述M的比率小于第二阈值,且在发送数据的第一SPS周期内所述车辆终端丢失V2V数据包,则确定所述车辆终端满足SPS重激活条件;
    所述M为大于等于1的整数。
  33. 根据权利要求31或32所述的车辆终端,其特征在于,
    所述接收单元,还用于在所述发送单元向所述基站发送第二指示信息之后,接收所述基站发送的第二调度控制信息;所述第二调度控制信息用于指示所述车辆终端进行SPS去激活;
    以及,接收所述基站发送的第二SPS配置参数;所述第二SPS配置参数包含:第二SPS周期;
    接收所述基站发送的第三调度控制信息;所述第三调度控制信息用于指示所述车辆终端进行SPS激活;
    所述发送单元,还用于按照所述第二SPS周期向所述第二车辆终端发送V2V数据包。
  34. 根据权利要求31或32所述的车辆终端,其特征在于,
    所述接收单元,还用于在所述发送单元向所述基站发送第二指示信息之后,接收所述基站发送的第四调度控制信息;所述第四调度控制信息用于指示所述车辆终端进行SPS重激活;
    所述发送单元,还用于按照第三SPS周期向所述第二车辆终端发送V2V数据包;
    所述第三SPS周期由所述车辆终端进行配置。
  35. 根据权利要求28所述的车辆终端,其特征在于,所述车辆终端还包括:
    确定单元,用于在所述发送单元按照所述第一SPS周期向第二车辆终端发送V2V数据包之后,确定所述车辆终端满足SPS去激活条件;
    所述发送单元,还用于在所述确定单元确定所述车辆终端满足SPS去激活条件后,向所述基站发送第三指示信息,其中,所述第三指示信息用于指示所述车辆终端满足SPS去激活条件;
    所述接收单元,还用于接收所述基站发送的第五调度控制信息;所述第五调度控制信息用于指示所述车辆终端进行SPS去激活;
    所述发送单元,还用于停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包。
  36. 根据权利要求35所述的车辆终端,其特征在于,所述确定单元,具体用于:
    若在时间连续的Q个第一SPS周期内均未发送数据,所述Q大于等于第三阈值,则确定所述车辆终端满足SPS去激活条件;
    或者,在时间连续的Q个第一SPS周期内发送数据包的大小均小于第四阈值,则确定所述车辆终端满足SPS去激活条件;
    所述Q为大于等于1的整数。
  37. 根据权利要求29或31或35任一项所述的车辆终端,其特征在于,各个指示信息携带在下述任一信息中向所述基站发送:
    BSR信息、MAC CE信息、无线链路控制RRC信息、物理上行控制信道PUCCH信息。
  38. 根据权利要求37所述的车辆终端,其特征在于,所述MAC CE信息包含:MAC子帧头;所述MAC子帧头包含:第一字段和第二字段;
    所述第一字段用于表示增大所述第一SPS周期或减小所述第一SPS周期或不需重配置所述第一SPS周期;
    所述第二字段用于表示指示信息。
  39. 根据权利要求37所述的车辆终端,其特征在于,所述MAC CE信息包含:控制字段,所述控制字段包含:第一子字段、第二子字段和第三子字段;
    所述第一子字段用于表示指示信息;
    所述第二子字段用于表示所述第一SPS周期的大小;
    所述第三子字段用于表示所述第一SPS周期内发送的数据包的大小。
  40. 根据权利要求28或33或34或35任一项所述的车辆终端,其特征在于,各个调度控制信息携带在物理下行控制信道PDCCH信息中向所述车辆终端发送;
    所述PDCCH信息包含用于指示所述PDCCH信息传输格式的格式信息;
    所述格式信息包含:第三字段,所述第三字段用于表示调度控制信息。
  41. 根据权利要求28-39任一项所述的车辆终端,其特征在于,所述车辆终端还包括:
    所述确定单元,用于在按照所述第一SPS周期向第二车辆终端发送V2V数据包之前,确定起始帧号和起始子帧号;
    所述发送单元,具体用于根据起始帧号和起始子帧号确定第一SPS周期内发送调度分配SA和V2V数据包的帧号和子帧号。
  42. 根据权利要求28所述的车辆终端,其特征在于,所述车辆终端内设置有定时器,
    所述发送单元,具体用于若所述接收单元在所述定时器超时后,未接收到所述基站发送的第一调度控制信息,则停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包。
  43. 一种基站,其特征在于,所述基站包括:
    发送单元,用于向第一车辆终端发送第一半静态调度SPS配置参数;所述第一SPS配置参数包含:第一SPS周期;
    以及,向所述第一车辆终端发送第一调度控制信息,以使得所述第一车辆终端按照所述第一SPS周期向第二车辆终端发送V2V数据包;所述第一调 度控制信息用于指示所述第一车辆终端进行SPS激活。
  44. 根据权利要求43所述的基站,其特征在于,所述基站还包括:
    接收单元,在所述发送单元向所述第一车辆终端发送第一调度控制信息之前,接收所述第一车辆终端发送的第一指示信息;其中,所述第一指示信息用于指示所述第一车辆终端满足SPS激活条件;
    或者,所述基站包括:
    确定单元,用于在所述发送单元向所述第一车辆终端发送第一调度控制信息之前,确定存在空闲资源分配给所述第一车辆终端、以及确定所述第一车辆终端满足SPS激活条件。
  45. 根据权利要求44所述的基站,其特征在于,
    所述确定单元,还用于在所述接收单元接收所述第一车辆终端发送的第一指示信息之后,确定所述第一车辆终端发送所述第一指示信息的发送时刻;
    以及,根据所述第一指示信息的发送时刻和所述第一SPS周期确定第一时刻;
    所述发送单元,具体用于在所述第一时刻向所述第一车辆终端发送所述第一调度控制信息。
  46. 根据权利要求44或45所述的基站,其特征在于,所述确定单元,具体用于:
    收集所述第一车辆终端接收或发送的数据包;
    若所述第一车辆终端连续接收或发送的N个数据包,且所述N个数据包均为V2V数据包,所述N个数据包中任意相邻两个数据包间的接收或发送时间间隔满足预设时间间隔,则确定所述第一车辆终端满足SPS激活条件。
  47. 根据权利要求43所述的基站,其特征在于,所述基站还包括:
    接收单元,用于在所述发送单元向所述第一车辆终端发送第一调度控制信息之后,接收所述第一车辆终端发送的第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
    所述发送单元,还用于向所述第一车辆终端发送第二调度控制信息;所述第二调度控制信息用于指示所述第一车辆终端进行SPS去激活;
    以及,向所述第一车辆终端发送第二SPS配置参数;所述第二SPS配置参数包含:第二SPS周期;
    向所述第一车辆终端发送第三调度控制信息,以使得所述第一车辆终端按照所述第二SPS周期向所述第二车辆终端发送V2V数据包;所述第三调度控制信息用于指示所述第一车辆终端进行SPS激活。
  48. 根据权利要求43所述的基站,其特征在于,所述基站还包括:
    接收单元,用于在所述发送单元向所述第一车辆终端发送第一调度控制信息之后,接收所述第一车辆终端发送的第二指示信息,其中,所述第二指示信息用于指示所述第一车辆终端满足SPS重激活条件;
    所述发送单元,用于向所述第一车辆终端发送第四调度控制信息,以使 得所述第一车辆终端按照第三SPS周期向所述第二车辆终端发送V2V数据包;
    其中,所述第四调度控制信息用于指示所述第一车辆终端进行SPS重激活;所述第三SPS周期由所述第一车辆终端进行配置。
  49. 根据权利要求43所述的基站,其特征在于,所述基站还包括:
    接收单元,用于在所述发送单元向所述第一车辆终端发送第一调度控制信息之后,接收所述第一车辆终端发送的第三指示信息,其中,所述第三指示信息用于指示所述第一车辆终端满足SPS去激活条件;
    所述发送单元,还用于向所述第一车辆终端发送第五调度控制信息,以使得所述第一车辆终端停止按照所述第一SPS周期向所述第二车辆终端发送V2V数据包;所述第五调度控制信息用于指示所述第一车辆终端进行SPS去激活。
  50. 根据权利要求44或47或48或49任一项所述的基站,其特征在于,各个指示信息携带在下述任一信息中发送至所述基站:
    BSR信息、MAC CE信息、无线链路控制RRC信息、物理上行控制信道PUCCH信息。
  51. 根据权利要求50所述的基站,其特征在于,所述MAC CE信息包含:MAC子帧头;所述MAC子帧头包含:第一字段和第二字段;
    所述第一字段用于表示增大所述第一SPS周期或减小所述第一SPS周期或不需重配置所述第一SPS周期;
    所述第二字段用于表示指示信息。
  52. 根据权利要求50所述的基站,其特征在于,所述MAC CE信息包含:控制字段,所述控制字段包含:第一子字段、第二子字段和第三子字段;
    所述第一子字段用于表示指示信息;
    所述第二子字段用于表示所述第一SPS周期的大小;
    所述第三子字段用于表示所述第一SPS周期内发送的数据包的大小。
  53. 根据权利要求43或47或48或49任一项所述的基站,其特征在于,各个调度控制信息携带在物理下行控制信道PDCCH信息中向所述第一车辆终端发送;
    所述PDCCH信息包含用于指示所述PDCCH信息传输格式的格式信息;
    所述格式信息包含:第三字段,所述第三字段用于表示调度控制信息。
PCT/CN2017/079479 2016-04-08 2017-04-05 一种v2v通信方法、设备及系统 WO2017173988A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17778652.2A EP3425932B1 (en) 2016-04-08 2017-04-05 V2v communication methods and devices
US16/153,455 US10735927B2 (en) 2016-04-08 2018-10-05 V2V communication method, device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610219028.3 2016-04-08
CN201610219028.3A CN107277738B (zh) 2016-04-08 2016-04-08 一种v2v通信方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/153,455 Continuation US10735927B2 (en) 2016-04-08 2018-10-05 V2V communication method, device, and system

Publications (1)

Publication Number Publication Date
WO2017173988A1 true WO2017173988A1 (zh) 2017-10-12

Family

ID=60000241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079479 WO2017173988A1 (zh) 2016-04-08 2017-04-05 一种v2v通信方法、设备及系统

Country Status (4)

Country Link
US (1) US10735927B2 (zh)
EP (1) EP3425932B1 (zh)
CN (1) CN107277738B (zh)
WO (1) WO2017173988A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160643A1 (en) * 2018-02-15 2019-08-22 Qualcomm Incorporated Coexistence between user equipment with shared resource pool

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3482595B1 (en) * 2016-07-07 2021-09-01 LG Electronics Inc. Method and user equipment for receiving downlink signal
US20190190643A1 (en) * 2016-08-30 2019-06-20 Lg Electronics Inc. Method for terminal transmitting sidelink control information in wireless communication system and terminal using same
WO2018083198A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Semi-persistent transmission scheduling
US10531254B2 (en) * 2018-01-31 2020-01-07 Toyota Jidosha Kabushiki Kaisha Millimeter wave vehicle-to-vehicle communication system for data sharing
US11297472B2 (en) * 2018-02-01 2022-04-05 Hyundai Motor Company Method and apparatus for load distribution using a plurality of carriers in communication system supporting vehicle-to-everything communication
US11032867B2 (en) * 2018-03-27 2021-06-08 Hyundai Motor Company Method and apparatus for performing communication using aggregated carriers in V2X communication system
US11259274B2 (en) * 2018-04-03 2022-02-22 Idac Holdings, Inc. Resource pool sharing between network scheduled UE and autonomous scheduled UE transmissions
CN110740522B (zh) * 2018-07-18 2022-01-28 大唐移动通信设备有限公司 一种资源选择方法、基站及终端
WO2020029848A1 (zh) * 2018-08-10 2020-02-13 电信科学技术研究院有限公司 直接链路通信的方法、终端及网络设备
CN110830954B (zh) 2018-08-10 2021-02-12 电信科学技术研究院有限公司 一种直接链路通信的方法、终端及网络设备
FR3098077B1 (fr) 2019-06-26 2023-02-24 Commissariat Energie Atomique Procede et dispositif pour configurer une communication vehicule-a-vehicule
CN110351687B (zh) * 2019-07-02 2020-12-15 北京邮电大学 V2v资源调配方法和装置
CN112672428A (zh) * 2019-10-15 2021-04-16 中兴通讯股份有限公司 一种调度方法、装置及通信设备和存储介质
US11411612B2 (en) * 2020-11-16 2022-08-09 Ultralogic 6G, Llc Location-based beamforming for rapid 5G and 6G directional messaging
US11451949B2 (en) 2021-06-14 2022-09-20 Ultralogic 6G, Llc Sidelink V2V, V2X, and low-complexity IoT communication in 5G and 6G

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244416A (zh) * 2013-06-21 2014-12-24 华为技术有限公司 设备直通用户设备无线资源的选择方法和基站
CN104254132A (zh) * 2013-06-26 2014-12-31 上海朗帛通信技术有限公司 一种d2d系统中的调度方法和装置
CN104284340A (zh) * 2013-07-08 2015-01-14 华为技术有限公司 D2d通信方法、用户设备及基站
CN104812025A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 设备间发现及通信方法和系统
US20150282210A1 (en) * 2012-07-23 2015-10-01 Broadcom Corporation Vehicle gateway access in cellular network for vehicle communications

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595600B (zh) * 2011-01-17 2014-12-31 华为技术有限公司 半静态调度方法、用户设备及网络设备
CN106211332B (zh) * 2015-05-05 2021-08-17 中兴通讯股份有限公司 资源分配的方法和装置
US10477527B2 (en) * 2015-07-14 2019-11-12 Qualcomm Incorporated Semi-persistent scheduling mechanisms for vehicle-to-vehicle communication
WO2017135881A1 (en) * 2016-02-03 2017-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Efficient periodic scheduling for wireless communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150282210A1 (en) * 2012-07-23 2015-10-01 Broadcom Corporation Vehicle gateway access in cellular network for vehicle communications
CN104244416A (zh) * 2013-06-21 2014-12-24 华为技术有限公司 设备直通用户设备无线资源的选择方法和基站
CN104254132A (zh) * 2013-06-26 2014-12-31 上海朗帛通信技术有限公司 一种d2d系统中的调度方法和装置
CN104284340A (zh) * 2013-07-08 2015-01-14 华为技术有限公司 D2d通信方法、用户设备及基站
CN104812025A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 设备间发现及通信方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425932A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160643A1 (en) * 2018-02-15 2019-08-22 Qualcomm Incorporated Coexistence between user equipment with shared resource pool
US10716134B2 (en) 2018-02-15 2020-07-14 Qualcomm Incorporated Coexistence between user equipment with shared resource pool

Also Published As

Publication number Publication date
US10735927B2 (en) 2020-08-04
EP3425932A4 (en) 2019-04-10
EP3425932A1 (en) 2019-01-09
US20190045337A1 (en) 2019-02-07
CN107277738B (zh) 2021-02-12
EP3425932B1 (en) 2022-05-11
CN107277738A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2017173988A1 (zh) 一种v2v通信方法、设备及系统
EP3412090B1 (en) Efficient periodic scheduling for wireless communications
CN109644486B (zh) 终端在无线通信系统中发送侧链路控制信息的方法和使用该方法的终端
JP6952710B2 (ja) 車両用通信におけるQoS実装のための改良メカニズム
US11483821B2 (en) Feedback information transmission method, terminal device, and access network device
TWI748977B (zh) 基於lte的v2x通訊服務品質以及壅塞減輕
US10638284B2 (en) User apparatus, base station and notification method
CN108112087B (zh) 一种v2x网络资源信息指示方法及基站
CN108781465B (zh) 信道接入优先级类别选择
CN107592984B (zh) 在无线通信系统中根据基于竞争的调度请求执行副链路传输的方法和设备
EP3487239B1 (en) Semi-static transmission method and apparatus
CN111713166B (zh) 随机接入方法及装置
KR20210137522A (ko) 사이드링크 통신 관리들을 위한 방법 및 장치
US11647418B2 (en) Resource request method and device, method and device for processing resource request
WO2020200135A1 (zh) 一种资源配置方法及通信装置
WO2017133417A1 (zh) 数据信道子帧的指示方法及装置
EP3448110B1 (en) Method, apparatus and system for triggering scheduling request
CN114208083B (zh) 在nr v2x中释放副链路重传资源的方法和设备
CN110859005A (zh) 一种通信方法及相关设备
WO2017049490A1 (zh) 控制信令处理方法、装置及设备
CN114902735A (zh) 用于在无线通信系统中执行通信的方法和装置
JP2023540929A (ja) Nr v2xにおける補助情報に基づいてsl通信を行う方法及び装置
CN107113819B (zh) 一种通信设备、网络设备及设备到设备数据传输方法
CN114731540A (zh) 在nr v2x中执行资源预留的方法和设备
CN110999383A (zh) 载波聚合的混合自主和网络激活

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017778652

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017778652

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778652

Country of ref document: EP

Kind code of ref document: A1