WO2017173718A1 - 一种射频通路选择方法及装置、存储介质 - Google Patents

一种射频通路选择方法及装置、存储介质 Download PDF

Info

Publication number
WO2017173718A1
WO2017173718A1 PCT/CN2016/083262 CN2016083262W WO2017173718A1 WO 2017173718 A1 WO2017173718 A1 WO 2017173718A1 CN 2016083262 W CN2016083262 W CN 2016083262W WO 2017173718 A1 WO2017173718 A1 WO 2017173718A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
channel
radio frequency
low frequency
registration
Prior art date
Application number
PCT/CN2016/083262
Other languages
English (en)
French (fr)
Inventor
罗玲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017173718A1 publication Critical patent/WO2017173718A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the present invention relates to a signal path selection technology in the field of wireless communication, and in particular, to a method and device for selecting a radio frequency path and a storage medium.
  • LTE Long Term Evolution
  • WIFI wireless local area networks
  • AP wireless access point
  • the solution to the above problem is mainly to shield the low frequency 1 to 4 channels of WIFI by software, and only allow high frequency 5 to 13 channels to work. Since the carrier frequency of the low frequency 1 ⁇ 4 channel of WIFI is from 2412MHz to 2427MHz, the carrier frequency of the high frequency 5 ⁇ 13 channel is from 2432MHz to 2472MHz, so even if the 1 to 4 channels of WIFI are shielded, if the terminal registers with LTE Band40 (2300MHz) After ⁇ 2400MHz) frequency band, there is still co-channel interference in the frequency band close to 2400MHz.
  • WIFI data upload and download speed will still decline, and LTE work will also be affected; if the distance is a little farther, WIFI may be disconnected directly, and when multiple users access WIFI, it will lead to channel blockage, resulting in wireless terminal. Communication performance is poor.
  • the embodiment of the present invention is to provide a radio frequency path selection method and device, and a storage medium, which can adaptively select a channel for transmitting and receiving signals, overcome the problem of co-channel interference, and improve wireless communication performance.
  • an embodiment of the present invention provides a radio frequency path selection method, where the method includes:
  • the determining a frequency band range of the registration frequency point, and selecting, according to the frequency band range control network signal, a channel for transmitting and receiving includes:
  • the registration frequency point is not in the range of the low frequency band, disconnect the RF path to the low frequency channel, and receive a control instruction of the radio frequency chip, where the control command controls the network signal to transmit and receive through the high frequency channel;
  • the control command controls the network signal to pass through the low frequency channel and
  • the high frequency channel transmits and receives.
  • the acquiring the frequency of registration of the radio frequency chip includes:
  • the terminal is powered on, and connects the radio frequency path to the low frequency channel;
  • the registration frequency of the radio frequency chip is obtained.
  • the method further includes:
  • the initial registration frequency of the RF chip is described and registered.
  • the method further includes:
  • the registration frequency is in the range of the low frequency band, connecting the connection of the radio frequency path to the low frequency directional coupling channel, and receiving a control instruction of the radio frequency chip, where the control instruction controls the network of the low frequency band
  • the signal is transmitted and received through the low frequency channel and/or the low frequency directional coupling channel.
  • the high frequency channel comprises:
  • LTE Long-term evolution of LTE high-frequency RF channels, 2.4G RF channels for wireless LAN WIFI and 5G RF channels for WIFI.
  • the high frequency antenna operating in the high frequency channel is a communication antenna covering the 2300 MHz to 2600 MHz frequency band of LTE and the 2.4G and 5G frequency bands of WIFI;
  • the low frequency antenna operating in the low frequency channel is a communication antenna covering the LTE 700 MHz to 2100 MHz frequency band.
  • an embodiment of the present invention further provides a radio frequency path selecting apparatus, where the apparatus includes:
  • the processing module is configured to determine a frequency band range of the registered frequency point, and select a channel to transmit and receive according to the frequency band control network signal.
  • the processing module is configured to
  • the control command controls the network signal to transmit and receive through the high frequency channel.
  • the control command controls the network signal to pass through the low frequency channel and
  • the high frequency channel transmits and receives.
  • the acquiring module is configured to
  • the terminal is powered on, and connects the radio frequency path to the low frequency channel;
  • the registration frequency of the radio frequency chip is obtained.
  • the apparatus further includes:
  • the determining module is configured to periodically acquire the registration information of the radio frequency chip according to a preset period, and determine whether the signal strength in the registration information is less than a preset threshold, and if the signal strength is less than a preset threshold, return to the re
  • the initial registration frequency of the radio frequency chip is selected according to the network environment and registered.
  • the processing module is further configured to: if the registration frequency is within the range of the low frequency band, connect the connection of the radio frequency path to the low frequency directional coupling channel, and receive the A control command of the radio frequency chip, the control command controlling the network signal of the low frequency band to transmit and receive through the low frequency channel and/or the low frequency directional coupling channel.
  • an embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions for performing the radio frequency path selection method provided by the first aspect of the present invention.
  • the embodiment of the invention provides a radio frequency path selection method and device, and a storage medium.
  • the frequency range of the registered frequency point is determined by acquiring a registered frequency point of the radio frequency chip, so that the network signal can be selected according to the frequency band range to select different frequency bands.
  • the transmitting and receiving that is, the high frequency signal of LTE can be transmitted and received through the high frequency band of the high frequency antenna, and the WIFI signal selects the 5G frequency band of the high frequency antenna to realize transmission and reception; the low frequency signal of LTE can pass the low frequency of the low frequency antenna
  • the frequency band realizes transmission and reception, and the WIFI signal selects the 2.4G frequency band of the high frequency antenna to realize transmission and reception.
  • the method can overcome the same frequency interference of LTE high frequency and WIFI, and improve wireless communication performance.
  • Embodiment 1 is a schematic flow chart of Embodiment 1 of a radio frequency path selection method provided by the present invention
  • Embodiment 2 is a schematic flowchart of Embodiment 2 of a method for selecting a radio frequency path according to the present invention
  • Embodiment 3 is a schematic flowchart of Embodiment 3 of a method for selecting a radio frequency path according to the present invention
  • Embodiment 4 is a schematic flowchart of Embodiment 4 of a method for selecting a radio frequency path according to the present invention
  • FIG. 5 is a schematic diagram of connection of a radio frequency chip, a data read control module, and an antenna in a radio frequency path selection method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of projection of an antenna placed on a back side of a terminal according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a radio frequency path selecting apparatus according to the present invention.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a radio frequency path selection apparatus according to the present invention.
  • the embodiments of the present invention are applicable to data products having both LTE and WIFI, for example, a terminal that can be used as an AP, such as a mobile phone with a WIFI hotspot function, a tablet computer, and the like.
  • the terminal of the embodiment of the invention comprises: a radio frequency chip, a high frequency radio frequency channel, a low frequency radio frequency channel, a high frequency antenna, a low frequency antenna, a 5G frequency band high frequency antenna which can be used as a low frequency auxiliary antenna, a directional coupled microstrip line, a high frequency and a low frequency channel Feed point, data read control module and microstrip line control switch.
  • the high frequency channel of the embodiment of the invention includes but is not limited to: LTE high frequency RF channel (from 2300MHz to 2600MHz RF channel), and WIFI 2.4G or 5G RF channel (WIFI 2.4G and 5G RF channel), high
  • the frequency antenna refers to a communication antenna covering the frequency band from 2.3G to 5.8G.
  • the communication antenna can cover the 2300MHz to 2600MHz frequency band of LTE and the 2.4G and 5G frequency bands of WIFI.
  • the low frequency antenna is used to cover the communication from the 700MHz to 2100MHz frequency band. antenna.
  • the two antennas work at the same time at low frequency and high frequency respectively. On the one hand, it can avoid the problem that the high frequency and low frequency use of one antenna in the prior art leads to poor isolation of some high frequency bands, and on the other hand, the high frequency conduction loss can also be reduced. .
  • FIG. 1 is a schematic flowchart of Embodiment 1 of a method for selecting a radio frequency path provided by the present invention, as shown in FIG. 1 As shown, the method includes:
  • Step 101 Acquire a registration frequency of the radio frequency chip.
  • the data reading control module of the terminal starts to read the frequency point to which the radio frequency chip is registered, and the frequency point may be in the range of 700 MHz to 2100 MHz, or may be in the range of 2300 MHz to 2600 MHz, and the low frequency may be divided according to the frequency point. Frequency bands and high frequency bands.
  • Step 102 Determine a frequency band range of the registered frequency point, and select a channel for transmitting and receiving according to the frequency band control network signal.
  • the frequency band range of the frequency point read by the data reading control module of the terminal in step 101 is determined, and according to the frequency band range, the control network signal selects different channels for transmitting and receiving.
  • the frequency band range of the registered frequency point in step 101 can be determined by the operation of the judgment.
  • the network signals of the frequency bands of 700 MHz to 2100 MHz and the frequency bands of 2300 MHz to 2600 MHz are selected to transmit and receive.
  • the low frequency signal for controlling the LTE is input to the low frequency antenna through the low frequency channel feed point, and the low frequency band of the low frequency antenna is, for example, 700 MHz.
  • the ⁇ 2100MHz frequency band is transmitted and received; at this time, if WIFI is enabled, the WIFI signal is input to the high frequency antenna through the high frequency channel feed point, and is transmitted and received by the 2.4G frequency band of the high frequency antenna.
  • the radio frequency chip controls the high frequency signal of the LTE through the high frequency channel feed point input.
  • the high frequency band of the high frequency antenna for example, the frequency band of 2300MHz to 2600MHz, is transmitted and received; if WIFI is enabled, the WIFI signal is input to the high frequency antenna through the high frequency channel feed point, and the 5G frequency band of the high frequency antenna Implement transmission and reception.
  • the radio frequency path selection method of the embodiment obtains the frequency point to which the radio frequency chip is registered, and Determining the frequency range of the registered frequency point, selecting a suitable channel for transmitting and receiving according to the frequency band control network signal, so that the LTE high frequency signal can be input to the high frequency antenna through the high frequency channel feed point, and the high frequency antenna is
  • the high frequency band for example, the 2300MHz to 2600MHz frequency band is transmitted and received, and the WIFI signal selects the 5G frequency band of the high frequency antenna to transmit and receive;
  • the low frequency signal of the LTE can be input to the low frequency antenna through the low frequency channel feed point, for example, the low frequency band of the low frequency antenna, for example The 700MHz to 2100MHz frequency band is transmitted and received, and the WIFI signal selects the 2.4G frequency band of the high frequency antenna to transmit and receive. Therefore, the same-frequency interference of the LTE high-frequency and WIFI can be overcome, and the wireless communication performance can be improved.
  • FIG. 2 is a schematic flowchart of a method for selecting a radio frequency path according to a second embodiment of the present invention. As shown in FIG. 2, the method further includes:
  • Step 101 Acquire a registration frequency of the radio frequency chip.
  • the registration frequency of the radio frequency chip obtained in step 101 has been described in detail in the first embodiment, and details are not described herein again.
  • Step 103 Determine whether the registered frequency point is within the range of the low frequency band; if the registered frequency point is not within the range of the low frequency band, go to step 104, otherwise if the registered frequency point is within the range of the low frequency band, go to step 105.
  • the acquired registration frequency is within the range of the low frequency band.
  • the low frequency band in this implementation refers to 700 MHz to 2100 MHz, and may be expanded or changed according to the extension of the frequency band or the development of the terminal in the future. The embodiment of the invention is not limited thereto. If it is not within the range of the low frequency band, go to step 104, otherwise go to step 105.
  • Step 104 Disconnect the RF path to the low frequency channel, and receive a control command of the RF chip.
  • the control command controls the network signal to transmit and receive through the high frequency channel, and ends the processing flow.
  • the microstrip line control switch of the terminal is disconnected and low frequency.
  • the connection of the channel feed point is used to disconnect the RF path to the low frequency channel.
  • the microstrip line control switch is a communication switch for controlling the RF path to the low frequency channel feed point; when the switch is closed, the RF path is connected to the low frequency channel feed point, and the low frequency signal can enter the low frequency antenna through the low frequency channel feed point; , disconnect the RF path to the low-frequency channel feed point, the low-frequency signal can not enter the low-frequency antenna through the low-frequency channel feed point.
  • the control command controls the high frequency signal of the LTE to be input to the high frequency antenna through the high frequency channel feed point, and the high frequency antenna is
  • the high frequency band for example, the 2300MHz to 2600MHz frequency band is transmitted and received;
  • the WIFI wireless mode of the radio frequency chip is selected according to the registered frequency point information provided by the data reading control module of the terminal, such as 802.11a/n/ac. Waiting for the 5G frequency band, at this time, the WIFI signal is input to the high frequency antenna through the high frequency channel feed point, and is transmitted and received by the 5G frequency band of the high frequency antenna.
  • Step 105 Maintain the connection of the RF path to the low frequency channel, and receive the control command of the RF chip.
  • the control command controls the network signal to transmit and receive through the low frequency channel and the high frequency channel respectively.
  • the data read control module of the terminal reads that the frequency register registered by the radio frequency chip is in the range of 700 MHz to 2100 MHz, and then controls the microstrip line control switch to continue to connect to the low frequency channel feed point to ensure that the low frequency signal passes through the low frequency channel.
  • the feed point enters the low frequency antenna; wherein, in this step, the microstrip line control switch of the default terminal is previously connected to the low frequency channel feed point.
  • receiving the control command of the radio frequency chip to control the terminal microstrip line control switch to continue to connect to the low frequency channel feed point, and start the LTE low frequency operation that is, the control command controls the low frequency signal of the LTE to be input to the low frequency antenna through the low frequency channel feed point.
  • the low frequency band of the low frequency antenna for example, the frequency band of 700 MHz to 2100 MHz, is transmitted and received; at this time, if WIFI is enabled, according to the range of registered frequency information provided by the data read control module, the WIFI wireless mode of the radio frequency chip is selected such as 802.11b/g/ n 2.4G frequency band, because the high frequency channel is also available at this time, the WIFI signal is input to the high frequency antenna through the high frequency channel feed point, and is transmitted and received by the 2.4G frequency band of the high frequency antenna.
  • the selection is broken. Whether to open or maintain the connection of the RF path to the low frequency channel; if not in the range of the low frequency band, disconnect the RF path to the low frequency channel, thereby starting the LTE high frequency operation, that is, the control command controls the high frequency signal of the LTE through the high frequency channel
  • the feed point is input to the high frequency antenna, and is transmitted and received by the high frequency band of the high frequency antenna, for example, the frequency band of 2300 MHz to 2600 MHz; at this time, if the WIFI is enabled, the registered frequency point information and the radio frequency provided by the control module according to the data of the terminal are read.
  • the WIFI wireless mode of the chip selects a 5G frequency band such as 802.11a/n/ac, and the WIFI signal is input to the high frequency antenna through the high frequency channel feed point, and is transmitted and received by the 5G frequency band of the high frequency antenna. If it is in the range of the low frequency band, the RF path to the low frequency channel is maintained.
  • a 5G frequency band such as 802.11a/n/ac
  • the LTE low frequency operation is started, that is, the control command controls the low frequency signal of the LTE to be input to the low frequency antenna through the low frequency channel feed point, and the low frequency band of the low frequency antenna is, for example, The 700MHz ⁇ 2100MHz frequency band is transmitted and received; and since the high frequency channel is also available at this time, the WIFI wireless mode of the radio frequency chip selects a 2.4G frequency band such as 802.11b/g/n, and the WIFI signal is input to the high frequency through the high frequency channel feed point.
  • the antenna is transmitted and received by the 2.4G frequency band of the high frequency antenna. Therefore, in the LTE low-frequency and high-frequency working modes, the same-frequency interference with WIFI can be overcome, and the wireless communication performance is improved.
  • FIG. 3 is a schematic flowchart of a method for selecting a radio frequency path according to a third embodiment of the present invention. As shown in FIG. 3, on the basis of the foregoing embodiment, the acquiring frequency of the radio frequency chip includes:
  • Step 1011 The terminal is powered on, and connects the radio frequency path to the low frequency channel.
  • the terminal is powered on, and the microstrip line control switch of the terminal is connected to the low frequency channel feed point to connect the RF path to the low frequency channel. Since the RF path to the high frequency channel is always connected, all of the time Channels are available for connectivity.
  • the terminal here is a terminal that can be used as an AP, such as a mobile phone with a WIFI hotspot function, a tablet computer, and the like.
  • Step 1012 Select an initial registration frequency of the radio frequency chip according to the network environment and register.
  • the radio frequency chip is registered at the optimal frequency point according to the current network condition, that is, the initial registration frequency point is selected and registered.
  • Step 1013 After the preset time arrives, obtain the registration frequency of the radio frequency chip.
  • the preset time here is a period of time after the terminal is powered on, for example, it can be set to 3 minutes, and the preset time can be set according to user requirements and terminal performance, which is not limited herein.
  • the data read control module of the terminal is timed. After the preset time arrives, for example, the data read control module starts to count the registered frequency of the radio frequency chip after the terminal is powered on for 3 minutes, and takes out the data of the registered frequency point.
  • Embodiment 4 is a schematic flowchart of Embodiment 4 of a method for selecting a radio frequency path according to the present invention. As shown in FIG. 4, on the basis of Embodiment 3, the method includes:
  • Step 1011 The terminal is powered on, and connects the radio frequency path to the low frequency channel.
  • Step 1012 Select an initial registration frequency of the radio frequency chip according to the network environment and register.
  • Step 1013 After the preset time arrives, obtain the registration frequency of the radio frequency chip.
  • Step 103 Determine whether the registration frequency point is within the range of the low frequency band; if the registration frequency point is not within the range of the low frequency band, perform step 106; otherwise, perform step 108.
  • step 106 After obtaining the registration frequency, it is determined whether the registration frequency is in the low frequency range, for example, the frequency range of 700 MHz to 2100 MHz, if not in the low frequency range, step 106 is performed, that is, disconnected. The connection of the RF path to the low frequency channel; otherwise, proceeding to step 108, the RF path to the low frequency channel is maintained.
  • the low frequency range for example, the frequency range of 700 MHz to 2100 MHz
  • Step 106 Disconnect the RF path to the low frequency channel.
  • Step 107 Receive a control instruction of the radio frequency chip, and the control instruction controls the network signal to transmit and receive through the high frequency channel, and step 110 is performed.
  • Step 108 Maintain the connection of the RF path to the low frequency channel.
  • Step 109 Receive a control instruction of the radio frequency chip, and the control instruction controls the network signal to transmit and receive through the low frequency channel and the high frequency channel respectively.
  • Steps 1011 to 109 are described in detail in the foregoing embodiments, and details are not described herein again.
  • Step 110 Periodically acquire registration information of the radio frequency chip according to a preset period, and determine registration. Whether the signal strength in the information is less than a preset threshold, if the signal strength is less than the preset threshold, return to select the initial registration frequency of the radio frequency chip according to the network environment and register.
  • the data reading control module of the terminal periodically reads the registration information of the radio frequency chip according to the preset period, and the preset period can be set to 1 minute or other time, and is set according to user requirements and terminal performance, and is set by The timer of the data read control module implements timing.
  • the preset threshold is set according to user requirements and terminal performance, for example, the preset threshold may be -90dbm, return to step 1012, the radio chip re-registers the network, and continues to perform steps 1013-110; if the threshold of the weak signal is not reached, the registration information of the radio frequency chip is periodically read according to the preset period and the judgment registration information is continuously executed. The process of whether the signal is a weak signal.
  • the microstrip line control switch of the terminal is initially connected to the low frequency channel feed point, and the connection of the radio frequency path to the low frequency channel is connected to ensure that both the low frequency channel and the high frequency channel are available, and then the registration of the radio frequency chip is obtained.
  • the frequency point determines whether the registered frequency point is within the range of the low frequency frequency point; if not within the range of the low frequency frequency point, disconnects the RF path to the low frequency channel, and the control command controls the high frequency signal of the LTE to pass through the high frequency channel feed
  • the point input is input to the high frequency antenna, and is transmitted and received by the high frequency band of the high frequency antenna, for example, the frequency band of 2300 MHz to 2600 MHz
  • the WIFI signal is input to the high frequency antenna through the high frequency channel feed point, and is transmitted and received by the 5G frequency band of the high frequency antenna.
  • the control command controls the low-frequency signal of LTE to be input to the low-frequency antenna through the low-frequency channel feed point, and the low-frequency band of the low-frequency antenna, for example, the 700MHz to 2100MHz frequency band, transmits and receives.
  • the WIFI signal is input to the high frequency antenna through the high frequency channel feed point, and the 2.4G frequency band of the high frequency antenna is Transmitting and receiving; and further periodically determining whether the signal strength in the registration information of the radio frequency chip is a weak signal, and if it is a weak signal, returning to re-register the network from the radio frequency chip to start execution, otherwise, the signal in the registration information is continuously executed.
  • the process of weak signals Therefore, you can overcome LTE And the same frequency interference problem of WIFI to improve the performance of wireless communication.
  • the method further includes:
  • the control instruction controlling a network signal of the low frequency band to transmit and receive through a low frequency channel and/or a low frequency directional coupling channel.
  • the connection of the RF path to the low frequency directional coupling channel can also be connected, that is, the directional coupled microstrip line of the terminal is connected to the high frequency 5G antenna, so that the low frequency antenna can be utilized.
  • the high frequency 5G antenna acts as an auxiliary antenna for the low frequency antenna to enhance the antenna performance of the low frequency antenna. Therefore, the network signal of the control command to control the low frequency band can be transmitted and received through the low frequency antenna of the low frequency channel, or can be transmitted and received through the directional coupled microstrip line to the 5G frequency band of the high frequency antenna (as an auxiliary antenna of the low frequency antenna). Or transmitting and receiving through the low frequency antenna of the low frequency channel and the low frequency directional coupling microstrip line passing through the directional coupling channel to the 5G frequency band of the high frequency antenna.
  • the high frequency channel comprises:
  • LTE high-frequency RF channel LTE high-frequency RF channel, WIFI 2.4G RF channel and WIFI 5G RF channel.
  • the high frequency antenna operating in the high frequency channel is a communication antenna covering the 2300 MHz to 2600 MHz frequency band of LTE and the 2.4G and 5G frequency bands of WIFI;
  • the low frequency antenna operating in the low frequency channel is a communication antenna covering the LTE 700 MHz to 2100 MHz frequency band.
  • the radio frequency chip includes a radio frequency chip, a high frequency radio frequency channel, a low frequency radio frequency channel, and 2300 MHz.
  • FIG. 6 is a schematic diagram of a projection of an antenna in a rear area of a terminal according to an embodiment of the present invention.
  • the antenna in this embodiment may be placed in four areas A, B, C, and D of the terminal, for example, may be placed.
  • A, B, C, and D of the terminal for example, may be placed.
  • it can also be placed on the left and right sides, depending on the overall structural layout and the optimal position of the clearing area of the antenna.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a radio frequency path selecting apparatus according to the present invention. As shown in FIG. 7, the apparatus includes:
  • the obtaining module 11 is configured to acquire a registration frequency of the radio frequency chip
  • the processing module 12 is configured to determine a frequency band range of the registered frequency point, and select a channel to transmit and receive according to the frequency band control network signal.
  • the radio frequency path selecting device of the embodiment obtains a frequency point to which the radio frequency chip is registered by the acquiring module, and determines a frequency band range of the registered frequency point, and the processing module selects an appropriate channel to transmit and receive according to the frequency band control network signal, thereby
  • the high-frequency signal of LTE can be input to the high-frequency antenna through the high-frequency channel feed point, and the high-frequency frequency band of the high-frequency antenna is transmitted and received in the frequency band of 2300MHz to 2600MHz, and the WIFI signal selects the 5G frequency band of the high-frequency antenna to realize the transmission and the transmission.
  • LTE low-frequency signals can be input to the low-frequency antenna through the low-frequency channel feed point, and the low-frequency band of the low-frequency antenna, for example, the 700MHz to 2100MHz frequency band, can be transmitted and received, and the WIFI signal selects the 2.4G frequency band of the high-frequency antenna to transmit and receive. Therefore, the same-frequency interference of the LTE high-frequency and WIFI can be overcome, and the wireless communication performance can be improved.
  • the processing module 12 is configured to
  • the control command controls the network signal to transmit and receive through the high frequency channel.
  • the control command controls the network signal to pass through the low frequency channel and
  • the high frequency channel transmits and receives.
  • the obtaining module 11 is configured to
  • the terminal is powered on, and connects the radio frequency path to the low frequency channel;
  • the registration frequency of the radio frequency chip is obtained.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a radio frequency path selecting apparatus according to the present invention. As shown in FIG. 8, the apparatus further includes:
  • the determining module 13 is configured to periodically acquire the registration information of the radio frequency chip according to a preset period, and determine whether the signal strength in the registration information is less than a preset threshold, and if the signal strength is less than a preset threshold, return The initial registration frequency of the radio frequency chip is selected according to the network environment and registered.
  • the processing module 12 is configured to connect the radio frequency path to the low frequency directional coupling channel if the registration frequency is within the range of the low frequency band, and receive the A control command of the radio frequency chip, the control command controlling the network signal of the low frequency band to transmit and receive through the low frequency channel and/or the low frequency directional coupling channel.
  • the obtaining module 11, the processing module 12, and the determining module 13 may each be a central processing unit (CPU), a microprocessor (MPU), a digital signal processor (DSP), or a field programmable gate located at the terminal.
  • Array FPGA
  • radio frequency path selection method is implemented in the form of a software function module and sold or used as a stand-alone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM, a read only memory), a magnetic disk, or an optical disk.
  • the medium to store the program code includes: a U disk, a mobile hard disk, a read only memory (ROM, a read only memory), a magnetic disk, or an optical disk.
  • the medium to store the program code includes: a U disk, a mobile hard disk, a read only memory (ROM, a read only memory), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the radio frequency path selection method in the embodiment of the present invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. Instructions are provided for implementation The steps of a function specified in a block or blocks of a flow or a flow and/or a block diagram of a flow chart.
  • the frequency range of the registered frequency point is determined by acquiring the registered frequency point of the radio frequency chip, so that the network signal can be controlled according to the frequency band range to select different frequency bands for transmission and reception, that is, the high frequency signal of the LTE can be
  • the high frequency band of the high frequency antenna is used for transmitting and receiving, and the WIFI signal selects the 5G frequency band of the high frequency antenna to transmit and receive; the low frequency signal of the LTE can be transmitted and received through the low frequency band of the low frequency antenna, and the high frequency band of the WIFI signal selects the high frequency.
  • the 2.4G band of the antenna enables transmission and reception.
  • the method can overcome the same frequency interference of LTE high frequency and WIFI, and improve wireless communication performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种射频通路选择方法,所述方法包括:获取射频芯片的注册频点;确定所述注册频点的频段范围,根据所述频段范围控制网络信号选择频道进行发射和接收。本发明实施例还公开一种射频通路选择装置、存储介质。

Description

一种射频通路选择方法及装置、存储介质 技术领域
本发明涉及无线通信领域中信号通路选择技术,尤其涉及一种射频通路选择方法及装置、存储介质。
背景技术
随着无线通信技术的发展,同时具有大量长期演进(Long Term Evolution,LTE)和无线局域网(WIFI)的数据类产品越来越多,例如可作为无线访问接入点(Wireless Access Point,AP)的终端,极大的满足了在没有无线网络覆盖的区域内多个用户的上网需求。
然而,在测试这类终端的无线通信性能时,发现LTE高频和WIFI的相互干扰非常严重。例如,当终端同时支持LTE Band40(2300MHz~2400MHz)和WIFI(2400MHz~2500MHz)时,在2400MHz左右的频段干扰较大。
目前针对上述问题的解决方法主要是用软件将WIFI的低频1~4信道屏蔽,只允许高频5~13信道工作。由于WIFI的低频1~4信道的载波频率从2412MHz~2427MHz,高频5~13信道的载波频率从2432MHz~2472MHz,因而即使屏蔽了WIFI的1~4信道,如果终端注册上LTE的Band40(2300MHz~2400MHz)频段后,在靠近2400MHz的频段仍然存在同频干扰。这样,WIFI的数据上传下载速度还是会下降,而且LTE工作也会受到影响;如果距离稍远则WIFI可能直接断开连接,而且在多个用户接入WIFI时会导致通道堵塞,导致终端的无线通信性能较差。
发明内容
为解决上述技术问题,本发明实施例期望提供一种射频通路选择方法及装置、存储介质,能自适应的选择通道进行信号的发射和接收,克服同频干扰的问题,提高无线通信性能。
本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供一种射频通路选择方法,所述方法包括:
获取射频芯片的注册频点;
确定所述注册频点的频段范围,根据所述频段范围控制网络信号选择频道进行发射和接收。
在本发明的其他实施例中,所述确定所述注册频点的频段范围,根据所述频段范围控制网络信号选择频道进行发射和接收包括:
如果所述注册频点不在低频频段的范围内,断开射频通路到低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号通过高频通道进行发射和接收;
如果所述注册频点在所述低频频段的范围内,保持所述射频通路到所述低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号分别通过低频通道和高频通道进行发射和接收。
在本发明的其他实施例中,所述获取射频芯片的注册频点包括:
终端上电,连通所述射频通路到所述低频通道的连接;
根据网络环境选择所述射频芯片的初始注册频点并注册;
预设时间到达后,获取所述射频芯片的注册频点。
在本发明的其他实施例中,所述方法还包括:
根据预设周期周期性的获取所述射频芯片的注册信息,并判断所述注册信息中的信号强度是否小于预设阈值,如果所述信号强度小于预设阈值,则返回重新根据网络环境选择所述射频芯片的初始注册频点并注册。
在本发明的其他实施例中,所述方法还包括:
如果所述注册频点在所述低频频段的范围内,则连通所述射频通路到低频定向耦合通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制所述低频频段的网络信号通过低频通道和/或低频定向耦合通道进行发射和接收。
在本发明的其他实施例中,所述高频通道包括:
长期演进LTE高频射频通道,无线局域网WIFI的2.4G射频通道和WIFI的5G射频通道。
在本发明的其他实施例中,在所述高频通道工作的高频天线为覆盖LTE的2300MHz到2600MHz频段和WIFI的2.4G及5G频段的通信天线;
在所述低频通道工作的低频天线为覆盖LTE的700MHz到2100MHz频段的通信天线。
第二方面,本发明实施例还提供一种射频通路选择装置,所述装置包括:
获取模块,配置为获取射频芯片的注册频点;
处理模块,配置为确定所述注册频点的频段范围,根据所述频段范围控制网络信号选择频道进行发射和接收。
在本发明的其他实施例中,所述处理模块,配置为,
如果所述注册频点不在低频频段的范围内,断开射频通路到低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号通过高频通道进行发射和接收。
如果所述注册频点在所述低频频段的范围内,保持所述射频通路到所述低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号分别通过低频通道和高频通道进行发射和接收。
在本发明的其他实施例中,所述获取模块,配置为,
终端上电,连通所述射频通路到所述低频通道的连接;
根据网络环境选择所述射频芯片的初始注册频点并注册;
预设时间到达后,获取所述射频芯片的注册频点。
在本发明的其他实施例中,所述装置还包括:
判断模块,配置为根据预设周期周期性的获取所述射频芯片的注册信息,并判断所述注册信息中的信号强度是否小于预设阈值,如果所述信号强度小于预设阈值,则返回重新根据网络环境选择所述射频芯片的初始注册频点并注册。
在本发明的其他实施例中,所述处理模块,还配置为,如果所述注册频点在所述低频频段的范围内,则连通所述射频通路到低频定向耦合通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制所述低频频段的网络信号通过低频通道和/或低频定向耦合通道进行发射和接收。
第三方面,本发明实施例提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行本发明第一方面实施例提供的射频通路选择方法。
本发明实施例提供了一种射频通路选择方法及装置、存储介质,通过获取射频芯片的注册频点,确定该注册频点的频段范围,从而可以根据该频段范围来控制网络信号选择不同的频段进行发射和接收,即LTE的高频信号可以通过高频天线的高频频段实现发射和接收,且WIFI信号选择高频天线的5G频段实现发射和接收;LTE的低频信号可以通过低频天线的低频频段实现发射和接收,且WIFI信号选择高频天线的2.4G频段实现发射和接收。该方法能够克服LTE高频和WIFI的同频干扰,提高无线通信性能。
附图说明
图1为本发明提供的射频通路选择方法实施例一的流程示意图;
图2为本发明提供的射频通路选择方法实施例二的流程示意图;
图3为本发明提供的射频通路选择方法实施例三的流程示意图;
图4为本发明提供的射频通路选择方法实施例四的流程示意图;
图5为本发明实施例提供的射频通路选择方法中射频芯片、数据读取控制模块及天线的连接示意图;
图6为本发明实施例提供的天线在终端背面的放置区域投影示意图;
图7为本发明提供的射频通路选择装置实施例一的结构示意图;
图8为本发明提供的射频通路选择装置实施例二的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明实施例适用于同时具有LTE和WIFI的数据类产品,例如:可以为用作AP的终端,诸如具有WIFI热点功能的手机、平板电脑等。本发明实施例的终端包括:射频芯片、高频射频通道、低频射频通道、高频天线、低频天线、可作为低频辅助天线的5G频段高频天线、定向耦合微带线、高频与低频通道馈点、数据读取控制模块以及微带线控制开关。
本发明实施例的高频通道包括但不限于:LTE高频射频通道(从2300MHz开始到2600MHz的射频通道),和WIFI 2.4G或5G射频通道(WIFI的2.4G和5G的射频通道),高频天线指的是覆盖了从2.3G到5.8G频段的通信天线,此通信天线可以覆盖LTE的2300MHz到2600MHz频段和WIFI的2.4G和5G频段,低频天线用于覆盖从700MHz到2100MHz频段的通信天线。两副天线分别在低频和高频同时工作,一方面可以避免现有技术中高低频用一副天线而导致某些高频频段隔离度不好的问题,另一方面也可以减少高频的传导损耗。
图1为本发明提供的射频通路选择方法实施例一的流程示意图,如图1 所示,所述方法包括:
步骤101:获取射频芯片的注册频点。
在本步骤中,终端的数据读取控制模块开始读取射频芯片注册到的频点,该频点可能在700MHz~2100MHz范围内,也可能在2300MHz~2600MHz范围内,根据该频点可以划分低频频段和高频频段。
步骤102:确定注册频点的频段范围,根据频段范围控制网络信号选择频道进行发射和接收。
在本步骤中,确定步骤101中终端的数据读取控制模块读取到的频点的频段范围,根据该频段范围,控制网络信号选择不同的频道进行发射和接收。例如可以通过判断的操作,来确定步骤101中的注册处频点的频段范围。本实施例中,根据高低频道频段的范围,将700MHz~2100MHz频段和2300MHz~2600MHz频段的网络信号选择合适的频道进行发射和接收。
这里,若终端的数据读取控制模块读取到射频芯片注册的频点在700MHz~2100MHz范围内,则控制LTE的低频信号通过低频通道馈点输入至低频天线,由低频天线的低频频段例如700MHz~2100MHz频段实现发射和接收;此时,如果WIFI启用,WIFI信号通过高频通道馈点输入至高频天线,由高频天线的2.4G频段实现发射和接收。
若终端的数据读取控制模块读取到射频芯片的注册频点不在低频频段的范围内,而是在2300MHz~2600MHz频段范围内,则射频芯片控制LTE的高频信号通过高频通道馈点输入至高频天线,由高频天线的高频频段例如2300MHz~2600MHz频段实现发射和接收;此时如果WIFI启用,WIFI信号通过高频通道馈点输入至高频天线,由高频天线的5G频段实现发射和接收。
本实施例的射频通路选择方法,通过获取射频芯片注册到的频点,并 确定该注册频点的频段范围,根据该频段范围控制网络信号选择合适的频道进行发射和接收,从而使得LTE的高频信号可以通过高频通道馈点输入至高频天线,由高频天线的高频频段例如2300MHz~2600MHz频段实现发射和接收,且WIFI信号选择高频天线的5G频段实现发射和接收;LTE的低频信号可以通过低频通道馈点输入至低频天线,由低频天线的低频频段例如700MHz~2100MHz频段实现发射和接收,且WIFI信号选择高频天线的2.4G频段实现发射和接收。因此,可以克服LTE高频和WIFI的同频干扰,提高无线通信性能。
图2为本发明提供的射频通路选择方法实施例二的流程示意图,如图2所示,在实施例一的基础上,所述方法还包括:
步骤101:获取射频芯片的注册频点。
步骤101的获取射频芯片的注册频点在实施例一中已经详细说明,此处不再赘述。
步骤103:判断注册频点是否在低频频段的范围内;如果注册频点不在低频频段的范围内,转到步骤104,否则如果注册频点在低频频段的范围内,转到步骤105。
在本步骤中,判断获取到的注册频点是否在低频频段的范围内,本实施中的低频频段指的是700MHz~2100MHz,未来还可以根据频段的扩展或者终端的发展来扩展或者变化,本发明实施例中不限定于此。如果不在低频频段的范围内,则转到步骤104,否则转到步骤105。
步骤104:断开射频通路到低频通道的连接,并接收射频芯片的控制指令,控制指令控制网络信号通过高频通道进行发射和接收,结束本次处理流程。
在本步骤中,若终端的数据读取控制模块读取到射频芯片的注册频点在2300MHz~2600MHz频段范围内,则终端的微带线控制开关断开与低频 通道馈点的连接,用来断开射频通路到低频通道的连接。其中,微带线控制开关为控制射频通路到低频通道馈点的连通开关;该开关闭合时,连通射频通路到低频通道馈点,低频信号可以通过低频通道馈点进入低频天线;开关断开时,断开射频通路到低频通道馈点的连接,低频信号无法通过低频通道馈点进入低频天线。此时,接收射频芯片的控制指令,由于上述已断开射频通路到低频通道的连接,因而,控制指令控制LTE的高频信号通过高频通道馈点输入至高频天线,由高频天线的高频频段例如2300MHz~2600MHz频段实现发射和接收;此时,如果WIFI启用,那么根据终端的数据读取控制模块提供的注册频点信息,射频芯片的WIFI无线模式选择诸如802.11a/n/ac等5G频段,此时,WIFI信号通过高频通道馈点输入至高频天线,由高频天线的5G频段实现发射和接收。
步骤105:保持射频通路到低频通道的连接,并接收射频芯片的控制指令,控制指令控制网络信号分别通过低频通道和高频通道进行发射和接收。
在本步骤中,终端的数据读取控制模块读取到射频芯片注册的频点在700MHz~2100MHz频段范围内,则控制微带线控制开关继续连通到低频通道馈点,保证低频信号通过低频通道馈点进入低频天线;其中,在本步骤中,默认终端的微带线控制开关事先是与低频通道馈点连通的。此时,接收射频芯片的控制指令,以控制终端微带线控制开关继续连通到低频通道馈点,启动LTE低频工作,即:控制指令控制LTE的低频信号通过低频通道馈点输入至低频天线,由低频天线的低频频段例如700MHz~2100MHz频段实现发射和接收;此时,如果WIFI启用,根据数据读取控制模块提供的注册频点信息范围,射频芯片的WIFI无线模式选择诸如802.11b/g/n等2.4G频段,由于此时高频通道也可用,因而,WIFI信号通过高频通道馈点输入至高频天线,由高频天线的2.4G频段实现发射和接收。
本实施例中,通过判断注册频点是否在低频频段的范围内,来选择断 开还是保持射频通路到低频通道的连接;如果不在低频频段的范围内,则断开射频通路到低频通道的连接,从而启动LTE高频工作,即控制指令控制LTE的高频信号通过高频通道馈点输入至高频天线,由高频天线的高频频段例如2300MHz~2600MHz频段实现发射和接收;此时,如果WIFI启用,那么根据终端的数据读取控制模块提供的注册频点信息,射频芯片的WIFI无线模式选择诸如802.11a/n/ac等5G频段,WIFI信号通过高频通道馈点输入至高频天线,由高频天线的5G频段实现发射和接收。如果在低频频段的范围内,则保持射频通路到低频通道的连接,此时启动LTE低频工作,即控制指令控制LTE的低频信号通过低频通道馈点输入至低频天线,由低频天线的低频频段例如700MHz~2100MHz频段实现发射和接收;且由于此时高频通道也可用,射频芯片的WIFI无线模式选择诸如802.11b/g/n等2.4G频段,WIFI信号通过高频通道馈点输入至高频天线,由高频天线的2.4G频段实现发射和接收。因此,在LTE低频和高频工作模式下,均可以克服和WIFI的同频干扰,提高无线通信性能。
图3为本发明提供的射频通路选择方法实施例三的流程示意图,如图3所示,在上述实施例的基础上,所述获取射频芯片的注册频点包括:
步骤1011:终端上电,连通射频通路到低频通道的连接。
在本步骤中,首先终端上电,终端的微带线控制开关连通到低频通道馈点,连通射频通路到低频通道的连接,由于射频通路到高频通道始终是连通的,因而此时所有的通道均连通可用。此处的终端为可作AP的终端,例如具有WIFI热点功能的手机、平板电脑等。
步骤1012:根据网络环境选择射频芯片的初始注册频点并注册。
在本步骤中,射频芯片根据当前网络条件注册在最优频点上,即选择初始注册频点并注册。
步骤1013:预设时间到达后,获取射频芯片的注册频点。
在本步骤中,此处的预设时间是从终端上电开始后的一段时间,例如可以设置为3分钟,该预设时间可用根据用户需求和终端性能进行设置,此处不再限定。由终端的数据读取控制模块计时,在预设时间到达后例如数据读取控制模块从终端上电开始计时3分钟后,开始读取射频芯片的注册频点,取出注册频点的数据。
图4为本发明提供的射频通路选择方法实施例四的流程示意图,如图4所示,在实施例三的基础上,所述方法包括:
步骤1011:终端上电,连通射频通路到低频通道的连接。
步骤1012:根据网络环境选择射频芯片的初始注册频点并注册。
步骤1013:预设时间到达后,获取射频芯片的注册频点。
步骤103:判断注册频点是否在低频频段的范围内;如果注册频点不在低频频段的范围内,则执行步骤106;否则,执行步骤108。
在本步骤中,获取到注册频点后,判断该注册频点是否在低频频段范围内,该低频频段范围例如为700MHz~2100MHz频段,如果不在该低频频段范围内,执行步骤106,即断开射频通路到低频通道的连接;否则转到步骤108,即保持射频通路到低频通道的连接。
步骤106:断开射频通路到低频通道的连接。
步骤107:接收射频芯片的控制指令,控制指令控制网络信号通过高频通道进行发射和接收,执行步骤110。
步骤108:保持射频通路到低频通道的连接。
步骤109:接收射频芯片的控制指令,控制指令控制网络信号分别通过低频通道和高频通道进行发射和接收。
其中,步骤1011至步骤109在上述实施例中已进行详细说明,此处不再赘述。
步骤110:根据预设周期周期性的获取射频芯片的注册信息,判断注册 信息中的信号强度是否小于预设阈值,如果信号强度小于预设阈值,则返回重新根据网络环境选择射频芯片的初始注册频点并注册。
在本步骤中,终端的数据读取控制模块根据预设周期周期性的读取射频芯片的注册信息,预设周期可以设置为1分钟或者其他时间,根据用户需求和终端性能进行设置,并由数据读取控制模块的定时器实现定时。如果数据读取控制模块获取到射频芯片的注册信息中信号达到弱信号的阈值,即信号强度小于某个预设阈值,预设阈值根据用户需求和终端性能进行设置,例如该预设阈值可以为-90dbm,则返回步骤1012射频芯片重新注册网络,并继续执行步骤1013~110;如果未达到弱信号的阈值,则根据预设周期周期性的读取射频芯片的注册信息并继续执行判断注册信息中信号是否为弱信号的过程。
本实施例的射频通路选择方法,初始时终端的微带线控制开关连通到低频通道馈点,连通射频通路到低频通道的连接,保证低频通道和高频通道均可用,然后获取射频芯片的注册频点并判断该注册频点是否在低频频点的范围内;如果不在低频频点的范围内,则断开射频通路到低频通道的连接,控制指令控制LTE的高频信号通过高频通道馈点输入至高频天线,由高频天线的高频频段例如2300MHz~2600MHz频段实现发射和接收,WIFI信号通过高频通道馈点输入至高频天线,由高频天线的5G频段实现发射和接收;否则,保持射频通路到低频通道的连接,启动LTE低频工作,即控制指令控制LTE的低频信号通过低频通道馈点输入至低频天线,由低频天线的低频频段例如700MHz~2100MHz频段实现发射和接收,WIFI信号通过高频通道馈点输入至高频天线,由高频天线的2.4G频段实现发射和接收;并进一步周期性的判断获取到射频芯片的注册信息中的信号强度是否为弱信号,如果是弱信号则返回从射频芯片重新注册网络开始执行,否则继续执行判断注册信息中信号是否为弱信号的过程。因此,可以克服LTE 和WIFI的同频干扰问题,提高无线通信性能。
在本发明的其他实施例中,在实施例二的基础上,所述方法还包括:
如果所述注册频点在所述低频频段的范围内,则连通所述射频通路到低频定向耦合通道的连接;
接收所述射频芯片的控制指令,所述控制指令控制所述低频频段的网络信号通过低频通道和/或低频定向耦合通道进行发射和接收。
这里,如果注册频点在低频频段的范围内,那么还可以连通射频通路到低频定向耦合通道的连接,即通过终端的定向耦合微带线连通到高频的5G天线,这样,低频天线可以利用高频的5G天线作为低频天线的辅助天线来增强低频天线的天线性能。因此,控制指令控制低频频段的网络信号可以通过低频通道的低频天线进行发射和接收,也可以通过定向耦合微带线连通到高频天线的5G频段(作为低频天线的辅助天线)进行发射和接收,或者通过低频通道的低频天线和通过定向耦合通道的低频定向耦合微带线连通到高频天线的5G频段进行发射和接收。
在本发明的其他实施例中,所述高频通道包括:
LTE高频射频通道,WIFI的2.4G射频通道和WIFI的5G射频通道。
在本发明的其他实施例中,在所述高频通道工作的高频天线为覆盖LTE的2300MHz到2600MHz频段和WIFI的2.4G及5G频段的通信天线;
在所述低频通道工作的低频天线为覆盖LTE的700MHz到2100MHz频段的通信天线。
图5为本发明实施例提供的射频通路选择方法中射频芯片、数据读取控制模块及天线的连接示意图,如图5所示,其包括射频芯片、高频射频通道、低频射频通道、2300MHz~2600MHz频段高频天线、700MHz~2100MHz频段低频天线、可作为低频辅助天线的5G频段高频天线、定向耦合微带、高频与低频通道馈点、数据读取控制模块以及微带线控制开关。
图6为本发明实施例提供的天线在终端背面的放置区域投影示意图,如图6所示,本实施例中的天线可以放置在终端的A、B、C、D四个区域,例如可以放置在手机背部的上下方向,也可以放置在左右侧边,取决于整体的结构布局和天线的净空区最优位置。
图7为本发明提供的射频通路选择装置实施例一的结构示意图,如图7所示,所述装置包括:
获取模块11,配置为获取射频芯片的注册频点;
处理模块12,配置为确定所述注册频点的频段范围,根据所述频段范围控制网络信号选择频道进行发射和接收。
本实施例的射频通路选择装置,通过获取模块获取射频芯片注册到的频点,并确定该注册频点的频段范围,处理模块根据该频段范围控制网络信号选择合适的频道进行发射和接收,从而使得LTE的高频信号可以通过高频通道馈点输入至高频天线,由高频天线的高频频段例如2300MHz~2600MHz频段实现发射和接收,且WIFI信号选择高频天线的5G频段实现发射和接收;LTE的低频信号可以通过低频通道馈点输入至低频天线,由低频天线的低频频段例如700MHz~2100MHz频段实现发射和接收,且WIFI信号选择高频天线的2.4G频段实现发射和接收。因此,可以克服LTE高频和WIFI的同频干扰,提高无线通信性能。
在本发明的其他实施例中,处理模块12,配置为,
如果所述注册频点不在低频频段的范围内,断开射频通路到低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号通过高频通道进行发射和接收。
如果所述注册频点在所述低频频段的范围内,保持所述射频通路到所述低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号分别通过低频通道和高频通道进行发射和接收。
在本发明的其他实施例中,所述获取模块11,配置为,
终端上电,连通所述射频通路到所述低频通道的连接;
根据网络环境选择所述射频芯片的初始注册频点并注册;
预设时间到达后,获取所述射频芯片的注册频点。
图8为本发明提供的射频通路选择装置实施例二的结构示意图,如图8所示,所述装置还包括:
判断模块13,配置为根据预设周期周期性的获取所述射频芯片的注册信息,并判断所述注册信息中的信号强度是否小于预设阈值,如果所述信号强度小于预设阈值,则返回重新根据网络环境选择所述射频芯片的初始注册频点并注册。
在本发明的其他实施例中,所述处理模块12,配置为,如果所述注册频点在所述低频频段的范围内,则连通所述射频通路到低频定向耦合通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制所述低频频段的网络信号通过低频通道和/或低频定向耦合通道进行发射和接收。
在实际应用中,所述获取模块11、处理模块12和判断模块13均可由位于终端的中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)、或现场可编程门阵列(FPGA)等实现。
需要说明的是,本发明实施例中,如果以软件功能模块的形式实现上述的射频通路选择方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可 以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例再提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行本发明实施例中的射频通路选择方法。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现 在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例中,通过获取射频芯片的注册频点,确定该注册频点的频段范围,从而可以根据该频段范围来控制网络信号选择不同的频段进行发射和接收,即LTE的高频信号可以通过高频天线的高频频段实现发射和接收,且WIFI信号选择高频天线的5G频段实现发射和接收;LTE的低频信号可以通过低频天线的低频频段实现发射和接收,且WIFI信号选择高频天线的2.4G频段实现发射和接收。该方法能够克服LTE高频和WIFI的同频干扰,提高无线通信性能。

Claims (13)

  1. 一种射频通路选择方法,所述方法包括:
    获取射频芯片的注册频点;
    确定所述注册频点的频段范围,根据所述频段范围控制网络信号选择频道进行发射和接收。
  2. 根据权利要求1所述的方法,其中,所述确定所述注册频点的频段范围,根据所述频段范围控制网络信号选择频道进行发射和接收包括:
    如果所述注册频点不在低频频段的范围内,断开射频通路到低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号通过高频通道进行发射和接收;
    如果所述注册频点在所述低频频段的范围内,保持所述射频通路到所述低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号分别通过低频通道和高频通道进行发射和接收。
  3. 根据权利要求1所述的方法,其中,所述获取射频芯片的注册频点包括:
    终端上电,连通所述射频通路到所述低频通道的连接;
    根据网络环境选择所述射频芯片的初始注册频点并注册;
    预设时间到达后,获取所述射频芯片的注册频点。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    根据预设周期周期性的获取所述射频芯片的注册信息,并判断所述注册信息中的信号强度是否小于预设阈值,如果所述信号强度小于预设阈值,则返回重新根据网络环境选择所述射频芯片的初始注册频点并注册。
  5. 根据权利要求2所述的方法,其中,所述方法还包括:
    如果所述注册频点在所述低频频段的范围内,则连通所述射频通路 到低频定向耦合通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制所述低频频段的网络信号通过低频通道和/或低频定向耦合通道进行发射和接收。
  6. 根据权利要求1至5任一项所述的方法,其中,所述高频通道包括:
    长期演进LTE高频射频通道,无线局域网WIFI的2.4G射频通道和WIFI的5G射频通道。
  7. 根据权利要求1至5任一项所述的方法,其中,在所述高频通道工作的高频天线为覆盖LTE的2300MHz到2600MHz频段和WIFI的2.4G及5G频段的通信天线;
    在所述低频通道工作的低频天线为覆盖LTE的700MHz到2100MHz频段的通信天线。
  8. 一种射频通路选择装置,所述装置包括:
    获取模块,配置为获取射频芯片的注册频点;
    处理模块,配置为确定所述注册频点的频段范围,根据所述频段范围控制网络信号选择频道进行发射和接收。
  9. 根据权利要求8所述的装置,其中,所述处理模块,配置为,
    如果所述注册频点不在低频频段的范围内,断开射频通路到低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号通过高频通道进行发射和接收;
    如果所述注册频点在所述低频频段的范围内,保持所述射频通路到所述低频通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制网络信号分别通过低频通道和高频通道进行发射和接收。
  10. 根据权利要求8所述的装置,其中,所述获取模块,配置为,
    终端上电,连通所述射频通路到所述低频通道的连接;
    根据网络环境选择所述射频芯片的初始注册频点并注册;
    预设时间到达后,获取所述射频芯片的注册频点。
  11. 根据权利要求10所述的装置,其中,所述装置还包括:判断模块,配置为根据预设周期周期性的获取所述射频芯片的注册信息,并判断所述注册信息中的信号强度是否小于预设阈值,如果所述信号强度小于预设阈值,则返回重新根据网络环境选择所述射频芯片的初始注册频点并注册。
  12. 根据权利要求9所述的装置,其中,所述处理模块,还配置为,如果所述注册频点在所述低频频段的范围内,则连通所述射频通路到低频定向耦合通道的连接,并接收所述射频芯片的控制指令,所述控制指令控制所述低频频段的网络信号通过低频通道和/或低频定向耦合通道进行发射和接收。
  13. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至7任一项所述的射频通路选择方法。
PCT/CN2016/083262 2016-04-07 2016-05-25 一种射频通路选择方法及装置、存储介质 WO2017173718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610214690.X 2016-04-07
CN201610214690.XA CN107276624A (zh) 2016-04-07 2016-04-07 一种射频通路选择方法及装置

Publications (1)

Publication Number Publication Date
WO2017173718A1 true WO2017173718A1 (zh) 2017-10-12

Family

ID=60000798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083262 WO2017173718A1 (zh) 2016-04-07 2016-05-25 一种射频通路选择方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN107276624A (zh)
WO (1) WO2017173718A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116546661A (zh) * 2023-05-08 2023-08-04 广东美镭科技有限公司 一种无线话筒的频段智能控制方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105142156B (zh) * 2015-07-30 2021-11-16 青岛海尔智能家电科技有限公司 一种高频WiFi中转通信方法和装置
CN108573182A (zh) * 2018-04-26 2018-09-25 深圳市盛路物联通讯技术有限公司 一种射频信号通信方法及系统
CN109769275A (zh) * 2019-01-22 2019-05-17 深圳高新兴物联科技有限公司 Wifi频段切换方法、装置、设备及计算机存储介质
CN115734377A (zh) * 2021-08-26 2023-03-03 华为技术有限公司 干扰消除方法、电子设备及存储介质
WO2024124408A1 (zh) * 2022-12-13 2024-06-20 海能达通信股份有限公司 通信方法、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055491A (zh) * 2010-04-14 2011-05-11 锐迪科创微电子(北京)有限公司 射频前端模块及具有该模块的移动通信装置
CN102332929A (zh) * 2011-09-23 2012-01-25 中兴通讯股份有限公司 双模射频模块、双模射频发送、接收方法以及用户终端
US20120039340A1 (en) * 2006-03-03 2012-02-16 Qualcomm Incorporated Method and apparatus for increasing spectrum use efficiency in a mesh network
CN203660044U (zh) * 2013-11-18 2014-06-18 东莞宇龙通信科技有限公司 一种能复用高低频天线的智能终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8855570B2 (en) * 2009-02-05 2014-10-07 Telefonaktiebolaget L M Ericsson (Publ) Coexistence of plural wireless communication transceivers in close proximity
US8923877B2 (en) * 2009-12-08 2014-12-30 Verizon Patent And Licensing Inc. Method and apparatus for providing carrier adjustment to mitigate interference
EP2630829B1 (en) * 2010-10-19 2018-01-31 Sony Ericsson Mobile Communications AB Mobile-assisted channel selection in devices having multiple radio transceivers
CN103906184A (zh) * 2012-12-28 2014-07-02 联芯科技有限公司 Lte终端热点覆盖时wifi信道的选择方法及选择系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039340A1 (en) * 2006-03-03 2012-02-16 Qualcomm Incorporated Method and apparatus for increasing spectrum use efficiency in a mesh network
CN102055491A (zh) * 2010-04-14 2011-05-11 锐迪科创微电子(北京)有限公司 射频前端模块及具有该模块的移动通信装置
CN102332929A (zh) * 2011-09-23 2012-01-25 中兴通讯股份有限公司 双模射频模块、双模射频发送、接收方法以及用户终端
CN203660044U (zh) * 2013-11-18 2014-06-18 东莞宇龙通信科技有限公司 一种能复用高低频天线的智能终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116546661A (zh) * 2023-05-08 2023-08-04 广东美镭科技有限公司 一种无线话筒的频段智能控制方法及系统
CN116546661B (zh) * 2023-05-08 2023-10-20 广东美镭科技有限公司 一种无线话筒的频段智能控制方法及系统

Also Published As

Publication number Publication date
CN107276624A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2017173718A1 (zh) 一种射频通路选择方法及装置、存储介质
US9907015B2 (en) Parallel scanning of wireless channels
KR102472989B1 (ko) 통신 제어 방법 및 전자 장치
JP6301408B2 (ja) 測定中のチューンアウェイ性能を改善したユーザ装置
CN111294891B (zh) 一种天线面板及波束的管理方法和设备
US20210105721A1 (en) Method for transmitting signal, network apparatus, and terminal apparatus
KR101614027B1 (ko) 동시 디바이스 디스커버리를 위한 시스템들 및 방법들
US20190208456A1 (en) Method and apparatus for motion detection systems
US20160316426A1 (en) Lte network assisted power saving
WO2022022474A1 (zh) 一种无线数据传输方法及其相关设备
US20200169331A1 (en) Method and device for measuring antenna reflection coefficient
EP3158786B1 (en) Data radio bearer configuration in a heterogeneous network
KR20130106882A (ko) 무선 통신 단말의 디바이스 공존 간섭을 회피하기 위한 방법, 단말 및 기지국
WO2019027511A1 (en) POSITION MEASUREMENT REPORTING FEEDBACK PLANNING IN WIRELESS COMMUNICATIONS
CN114765860A (zh) 传输方法、装置、设备及可读存储介质
JP5979835B2 (ja) 送信装置、送信方法およびプログラム
JP4996758B1 (ja) 情報処理装置及び通信制御方法
JP6439186B2 (ja) 端末装置、通信方法およびプログラム
JP6659042B2 (ja) 通信装置、通信システム、通信制御方法および通信制御プログラム
WO2018058580A1 (zh) 数据传输的方法和装置
WO2023078251A1 (zh) 信息获取方法、装置及终端
CN104426591A (zh) 一种处理载波聚合干扰的方法及终端
TWI811470B (zh) 用於測量天線的反射係數的方法及裝置
KR102146450B1 (ko) 통신 단말 장치와 그 핸드오버 방법
WO2023066355A1 (zh) 目标信息上报方法、终端及接入网设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897651

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897651

Country of ref document: EP

Kind code of ref document: A1