WO2017173682A1 - 石墨烯显示器的驱动方法以及石墨烯显示器 - Google Patents

石墨烯显示器的驱动方法以及石墨烯显示器 Download PDF

Info

Publication number
WO2017173682A1
WO2017173682A1 PCT/CN2016/080154 CN2016080154W WO2017173682A1 WO 2017173682 A1 WO2017173682 A1 WO 2017173682A1 CN 2016080154 W CN2016080154 W CN 2016080154W WO 2017173682 A1 WO2017173682 A1 WO 2017173682A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
pixel
dynamic sub
coordinates
brightness
Prior art date
Application number
PCT/CN2016/080154
Other languages
English (en)
French (fr)
Inventor
樊勇
萧宇均
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/038,648 priority Critical patent/US10037725B2/en
Publication of WO2017173682A1 publication Critical patent/WO2017173682A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/022Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using memory planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0041Devices characterised by their operation characterised by field-effect operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to the field of liquid crystal display, and in particular to a method for driving a graphene display and a graphene display.
  • the technical problem to be solved by the present invention is to provide a driving method of a graphene display and a graphene display, which can realize high color fidelity quickly, effectively and conveniently, and greatly improve the display quality of the liquid crystal display.
  • one technical solution adopted by the present invention is to provide a driving method of a graphene display, each pixel of the graphene display includes two dynamic sub-pixels, and the method includes:
  • the driving voltage is output to the pixel.
  • the first dynamic sub-pixel and the second dynamic pixel of the pixel are obtained according to the positional relationship between the target color point coordinate and the three color gamut blocks divided by the RGB three-color color gamut in the color gamut coordinate system.
  • the steps of color coordinates or brightness include:
  • the step of brightness of a sub-dynamic sub-pixel and brightness of the second dynamic sub-pixel specifically includes:
  • the step of obtaining the target color point coordinates of the pixel in the color gamut coordinate system by the RGB grayscale value to be input by the pixel specifically includes:
  • the color coordinates corresponding to the input RGB gray scale values are respectively R (u' R , v' R ), G (u' G , v' G ), B (u' B , v' B ), according to The following formula (1),
  • the target color point coordinates (u', v') are calculated, wherein the RGB gray scale values form brightnesses of L Rg , L Gg , L Bg , respectively .
  • the step of obtaining the brightness of each of the two dynamic sub-pixels specifically includes:
  • the color coordinates corresponding to the RGB gray scale values are R(u' R , v′ R ), G(u′ G , v′ G ), B(u′ B , v′ B ), respectively, the RGB
  • the grayscale values form brightness L Lg , L Gg , L Bg
  • the second dynamic sub-pixel has color coordinates Y (u′ Y , v′ Y ), the first sub-dynamic sub-pixel and the The color coordinate of the mixed color of the second dynamic sub-pixel is D(u' D , v' D );
  • the color coordinate D is obtained by converting the target color point coordinates.
  • the method further includes: before the step of obtaining the target color point coordinates of the pixel in the color gamut coordinate system by the RGB grayscale value to be input by the pixel, the method further includes:
  • the RGB three-color color gamut is divided into three color gamut blocks of WBR, WGR, and WBG.
  • the color coordinate of the first dynamic sub-pixel and the color of the second dynamic sub-pixel are determined by the falling color gamut block and the position of the target color point coordinate at the color gamut block.
  • the steps of the coordinates specifically include:
  • the color coordinates of the first dynamic sub-pixel are red color coordinates
  • the color coordinate of the first dynamic sub-pixel is a color coordinate of blue
  • the color coordinates of the first dynamic sub-pixel are red color coordinates
  • the color coordinate of the second dynamic sub-pixel is an intersection coordinate between the target color point coordinate and an edge line of the set color gamut of the graphene display.
  • Another technical solution adopted by the present invention is to provide a graphene display.
  • the graphene display includes a display unit and a display driving unit electrically connected to the display unit, the display unit including a plurality of pixels, each of the pixels including two dynamic sub-pixels,
  • the display unit is configured to obtain, by the RGB grayscale value to be input by the pixel, target color point coordinates of the pixel in a color gamut coordinate system, and further, according to the target color point coordinate and the color gamut coordinate a positional relationship of three color gamut blocks divided by RGB three-color color gamut, obtaining color coordinates or brightness of the first dynamic sub-pixel and the second dynamic pixel of the pixel; and also used by the first dynamic The color coordinates or brightness of the sub-pixel and the second dynamic sub-pixel determine a driving voltage of the pixel;
  • the display driving unit is configured to output the driving voltage to the pixel.
  • the display unit is specifically configured to determine the color gamut block into which the target color point coordinates falls;
  • the display unit is specifically configured to use the target color point coordinate as the color coordinate of the mixed color of the two dynamic sub-pixels, and the target brightness value formed by the RGB grayscale value as the two dynamic sub- The brightness of the mixed color of the pixel;
  • the display unit is specifically configured to set the color coordinates corresponding to the gray scale values of the input RGB as R(u' R , v' R ), G(u' G , v' G ), B ( u' B , v' B ), according to the following formula (1),
  • the target color point coordinates are calculated as (u', v'), wherein the RGB gray scale values form brightnesses of L Rg , L Gg , and L Bg , respectively .
  • the display unit calculates the brightness L Xg formed by the first dynamic sub-pixel gray scale value and the brightness L Yg formed by the second dynamic sub-pixel gray scale value according to formula (2).
  • the color coordinates corresponding to the RGB gray scale values are R(u' R , v′ R ), G(u′ G , v′ G ), B(u′ B , v′ B ), respectively, the RGB
  • the luminance values formed by the grayscale values are L Rg , L Gg , and L Bg , respectively, and the color coordinates of the second dynamic subpixel are Y(u′ Y , v′ Y ), and the first sub-dynamic sub-pixel and the The color coordinate of the mixed color of the second dynamic sub-pixel is D(u' D , v' D );
  • the color coordinate D is obtained by converting the target color point coordinates.
  • the graphene display unit is further configured to divide the RGB three-color color gamut into three color gamut blocks of WBR, WGR, and WBG.
  • the display unit is specifically used to display the display unit.
  • the color coordinates of the first dynamic sub-pixel are red color coordinates
  • the color coordinates of the first dynamic sub-pixel are blue color coordinates
  • the color coordinates of the first dynamic sub-pixel are red color coordinates
  • the color coordinates of the second dynamic sub-pixel are between the connection of the target color point coordinates and the color coordinates of the color corresponding to the first dynamic sub-pixel and the edge line of the set color gamut of the graphene display The coordinates of the intersection.
  • each pixel of the graphene display of the present embodiment includes two dynamic sub-pixels, and the pixel is obtained by the RGB grayscale value of the pixel to be input, and the pixel is obtained.
  • Target color point coordinates in the gamut coordinate system according to the target color point coordinates and the gamut coordinates a positional relationship of three color gamut blocks divided by RGB three-color color gamut, obtaining color coordinates or brightness of the first dynamic sub-pixel and the second dynamic pixel of the pixel; and the first dynamic sub-pixel and The color coordinates or brightness of the second dynamic sub-pixel determines the driving voltage of the pixel, and outputs the driving voltage.
  • the color gamut display of the graphene display not only can be 158%, which far exceeds the color gamut that can be realized by any display, and the color gamut can completely cover the gamut range of the existing real object, and can realize the color. High fidelity greatly improves the display quality of the display.
  • FIG. 1 is a schematic flow chart of an embodiment of a driving method of a graphene display of the present invention
  • FIG. 2 is a schematic view showing an embodiment of a color gamut display range of a graphene display of the present invention
  • FIG. 3 is a schematic structural view of an embodiment of a graphene display of the present invention.
  • FIG. 4 is a schematic view showing the structure of an embodiment of a display unit of a graphene display of the present invention.
  • FIG. 1 is a schematic flow chart of an embodiment of a driving method of a graphene display of the present invention.
  • the driving method of this embodiment includes the following steps:
  • Each pixel of the graphene display in the present invention includes two dynamic pixels. Since the input RGB grayscale values are different, the two dynamic subpixels are also not fixed, and are selected according to different input RGB grayscale values. The brightness or color coordinates of the two dynamic sub-pixels are determined to achieve the display color gamut of the graphene display.
  • the RGB three-color color gamut of the graphene display is first divided into WBR, WGR, WBG.
  • WBR three-color color gamut of the graphene display
  • WBG three color gamut blocks.
  • a uniform color coordinate system such as a CIE 1976 color coordinate of a uniform color space, is used in the embodiment, which is not limited herein.
  • the graphene display determines the target color point coordinates of the pixel corresponding to the graphene display in the color gamut coordinate system for the input RGB gray scale value.
  • the target color point coordinates are (u', v')
  • the input color coordinates corresponding to the RGB gray scale values are R(u' R , v' R ), G(u' G , v' G ), respectively.
  • the luminance values formed by the RGB gray scale values are L Rg , L Gg , L Bg , respectively, and the target color coordinates (u′ are obtained according to the following formula (1), v').
  • Step 102 Obtain a first dynamic sub-pixel and a second dynamic pixel of the pixel according to a positional relationship between the target color point coordinate and three color gamut blocks divided by the RGB three-color color gamut in the color gamut coordinate system. Color coordinates or brightness.
  • the color gamut block into which the target color point coordinates falls is further determined according to the target color point coordinates.
  • the color coordinate of the first dynamic sub-pixel is a red color coordinate.
  • the color coordinates of the first dynamic sub-pixel are blue color coordinates.
  • the color coordinate of the first dynamic sub-pixel is a red color coordinate.
  • the intersection determines the color coordinates of the second dynamic sub-pixel. Specifically, determining a current setting color of the connection line and the graphene display by searching a preset table according to the slope of the connection of the target color point coordinates and the color coordinates of the color corresponding to the first dynamic sub-pixel The coordinates of the intersection between the edge lines of the domain, that is, the color coordinates of the second dynamic sub-pixel.
  • the color coordinate of the first dynamic sub-pixel is a red color coordinate.
  • the target color point coordinates replace the color point coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel, and the target brightness value formed by the RGB gray-scale value gray-scale value is used as the first dynamic sub-pixel and the second dynamic The brightness of the mixed color of the sub-pixel, that is, the following formula (2),
  • the target color point coordinates (u', v'), the brightness formed by the RGB gray scale values are L Rg , L Gg , L Bg , respectively, and the color coordinates of the second dynamic sub-pixel are Y (u' Y , v′ Y ), the brightness of the first dynamic sub-pixel gray scale value is L Xg , and the brightness of the second dynamic sub-pixel gray scale value is L Yg .
  • the brightness L Xg formed by the first dynamic sub-pixel gray scale value and the brightness L Yg formed by the second dynamic sub-pixel gray scale value are as shown in the following formula (3):
  • the target color point coordinates (u', v'), the color coordinates corresponding to the RGB gray scale values are R (u' R , v' R ), G (u' G , v' G ), B ( u' B , v' B ), the brightness formed by the RGB gray scale values is L Rg , L Gg , L Bg , respectively, and the color coordinates of the second dynamic sub-pixel are Y (u′ Y , v′ Y ) .
  • the color coordinates of the first dynamic sub-pixel are red color coordinates.
  • the triangle formed by the three-point connection of the WGB does not completely cover the curve formed by the three points of the WGB and the edge line of the graphene. Further, at this time, when the target color point coordinates fall into the WBR color.
  • the domain block is used, the color point coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel cannot be completely replaced by the target color point coordinate, and some relative conversion is needed.
  • the target color point coordinates are A(u', v'), and the target color point coordinate A point is connected to the color coordinate R point of the color corresponding to the first dynamic sub-pixel and the set area of the graphene display
  • the color coordinate of the edge intersection Y is the color coordinate of the second dynamic sub-pixel
  • the color coordinate of the second dynamic sub-pixel is Y (u' Y , v' Y ) by the slope of the above-mentioned connection.
  • the intersection of the WB two-point connection and the RY two-point connection is C
  • the intersection of the two-point connection line and the RY two-point connection line is E
  • the color point of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel is set.
  • the coordinate is D
  • the brightness formed by the RGB gray scale values is L Rg , L Gg , L Bg , and the color coordinates of the second dynamic sub-pixel are Y(u′ Y , v′ Y ), and the first dynamic sub-pixel gray scale value
  • the brightness formed is L Xg
  • the color coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel are D(u' D , v' D ), and the color coordinates corresponding to the RGB gray-scale values are respectively R(u' R , v ' R ), G(u' G , v' G ), B(u' B , v' B ), the brightness formed by the RGB gray scale values are L Rg , L Gg , L Bg , respectively, the second The color coordinates of the dynamic sub-pixel are Y(u' Y , v' Y ).
  • the color coordinates of the first dynamic sub-pixel are blue color coordinates. Similar to the target color point coordinates falling into the WGB color gamut block, the triangle formed by the WGR three-point connection does not completely cover the curve formed by the WGR three points and the edge line of the graphene. When the target color point coordinate falls into the WGR color gamut block, the target color point coordinate cannot completely replace the color point coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel, and some relative conversion is needed.
  • the conversion method is the same as the conversion method of the target color point coordinate falling into the WGB color gamut block, and the target color point coordinate is A (u', v'), and the target color point coordinate A point corresponds to the color of the first dynamic sub-pixel.
  • the color coordinate of the intersection of the line of the color coordinate point B and the edge of the set area of the graphene display is the color coordinate of the second dynamic sub-pixel, and the color of the second dynamic sub-pixel is obtained by the slope of the connection line.
  • the coordinates are Y(u' Y , v' Y ).
  • the intersection of the WG two-point connection and the BY two-point connection is C
  • the intersection point of the GR two-point connection and the BY two-point connection is E
  • the color point of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel is set.
  • the coordinate is D
  • the brightness formed by the RGB gray scale values is L Rg , L Gg , L Bg , and the color coordinates of the second dynamic sub-pixel are Y(u′ Y , v′ Y ), and the first dynamic sub-pixel gray scale value
  • the brightness formed is L Xg
  • the color coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel are D(u' D , v' D ), and the color coordinates corresponding to the RGB gray-scale values are respectively R(u' R , v ' R ), G(u' G , v' G ), B(u' B , v' B ), the brightness formed by the RGB gray scale values are L Rg , L Gg , L Bg , respectively, the second The color coordinates of the dynamic sub-pixel are Y(u' Y , v' Y ).
  • the pixels of the display emit different colors of light, for example, when the gate unit is 0 to 10 V, the source/drain voltage Vds > the turn-on voltage Vth, at this time, the graphene display
  • the pixel emits red light; when the gate unit is 20-30V, the source-drain voltage Vds> turns on the voltage Vth, at this time, the pixel of the graphene display emits green light; when the gate unit is 40-50V, the source-drain voltage Vds> turns on.
  • the voltage Vth at this time, the pixels of the graphene display emit blue light. Therefore, the color of the graphene display can be changed by changing the magnitude of the driving voltage, that is, the gray scale is adjusted. Conversely, due to the one-to-one correspondence described above, the driving of the graphene display can be determined according to the gray scale of the current graphene display. Voltage.
  • the driving voltage is output to the pixel, and correspondingly, the graphene displays a corresponding color.
  • each pixel of the graphene display of the present embodiment includes two dynamic sub-pixels, and the pixel obtains the target color point of the pixel in the color gamut coordinate system by the RGB gray scale value to be input by the pixel.
  • Coordinates obtaining color of the first dynamic sub-pixel and the second dynamic pixel of the pixel according to a positional relationship between the target color point coordinate and the three color gamut blocks divided by the RGB three-color color gamut in the color gamut coordinate system Coordinate or brightness; determining a driving voltage of the pixel by color coordinates or brightness of the first dynamic sub-pixel and the second dynamic sub-pixel, and outputting the driving voltage.
  • the color gamut display of the graphene display not only can be 158%, which far exceeds the color gamut that can be realized by any display, and the color gamut can completely cover the gamut range of the existing real object, and can realize the color. High fidelity greatly improves the display quality of the display.
  • FIG. 3 is a schematic structural view of an embodiment of a graphene display of the present invention.
  • the graphene display of the present embodiment includes a display unit 301 and a driving unit 302.
  • the display unit 301 is electrically connected to the driving unit 302.
  • the display unit 301 includes a plurality of pixels, each of which includes two dynamic sub-pixels.
  • the display unit 301 includes a lower substrate 3011 disposed in order from top to bottom, a source 3012 and a drain 3013 disposed on the lower substrate 3011, and between the source 3012 and the drain 3013. Separated by a channel, the source 3012, the drain 3013 and the channel are covered with a light-emitting layer 3014, and the light-emitting layer 3014 is formed with a gate 3015.
  • the display unit 301 further includes a cover layer 3015.
  • the material of the lower substrate 3011 includes at least one of a water-blocking transparent organic material PET, glass, and nickel, and a surface of the lower substrate 3011 facing away from the source 3012 and the drain 3013 is provided with a high-reflectivity metal. Reflective layer.
  • the material of the source 3012 and the drain 3013 is reduced graphene oxide, and the material of the gate 3016 is graphene oxide.
  • the material of the light-emitting layer 3014 is a semiconductor-reduced graphene oxide.
  • the material of the upper substrate 3019 is at least one of a water-absorbing oxygen organic material or glass.
  • the display unit 301 is specifically configured to obtain the target color point coordinates of the pixel in the color gamut coordinate system by the RGB gray scale value to be input by the pixel.
  • the display unit 301 first divides the RGB three-color color gamut of the graphene display into three colors of WBR, WGR, and WBG. Domain block.
  • a uniform color coordinate system such as a CIE 1976 color coordinate of a uniform color space, is used in the embodiment, which is not limited herein.
  • the graphene display determines the target color point coordinates of the pixel corresponding to the graphene display in the color gamut coordinate system for the input RGB gray scale value.
  • the target color point coordinates are (u', v')
  • the input color coordinates corresponding to the RGB gray scale values are R(u' R , v' R ), G(u' G , v' G ), respectively.
  • the luminances formed by the RGB gray scale values are L Rg , L Gg , and L Bg , respectively, and the target color coordinates are obtained according to the following formula (1).
  • the display unit 301 is further configured to: according to the target color point coordinates and the gamut coordinate system by RGB three The positional relationship of the three color gamut blocks divided by the color gamut obtains the color coordinates or brightness of the first dynamic sub-pixel and the second dynamic pixel of the pixel.
  • the color coordinate of the first dynamic sub-pixel is a red color coordinate.
  • the color coordinates of the first dynamic sub-pixel are blue color coordinates.
  • the color coordinate of the first dynamic sub-pixel is a red color coordinate.
  • the display unit 301 selects a line connecting the color point coordinates of the color corresponding to the first dynamic sub-pixel and the edge line of the set color gamut of the graphene display. The intersection between the two determines the color coordinates of the second dynamic sub-pixel. Specifically, determining a current setting color of the connection line and the graphene display by searching a preset table according to the slope of the connection of the target color point coordinates and the color coordinates of the color corresponding to the first dynamic sub-pixel The coordinates of the intersection between the edge lines of the domain, that is, the color coordinates of the second dynamic sub-pixel.
  • the color coordinate of the first dynamic sub-pixel is a red color coordinate.
  • the triangle formed by the WBR three-point connection and the curve formed by the WBR three points and the edge line of the graphene substantially overlap, when the target color point coordinates fall into the WBR color gamut block, Substituting the target color point coordinates for the color point coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel, and using the target luminance value formed by the RGB gray-scale value gray-scale value as the first dynamic sub-pixel and the first The brightness of the mixed color of the two dynamic sub-pixels, that is, the following formula (2),
  • the target color point coordinates (u', v'), the brightness formed by the RGB gray scale values are L Rg , L Gg , L Bg , respectively, and the color coordinates of the second dynamic sub-pixel are Y (u' Y , v′ Y ), the brightness of the first dynamic sub-pixel gray scale value is L Xg , and the brightness of the second dynamic sub-pixel gray scale value is L Yg .
  • the brightness L Xg formed by the first dynamic sub-pixel gray scale value and the brightness L Yg formed by the second dynamic sub-pixel gray scale value are as shown in the following formula (3):
  • the target color point coordinates (u', v'), the color coordinates corresponding to the RGB gray scale values are R (u' R , v' R ), G (u' G , v' G ), B ( u' B , v' B ), the brightness formed by the RGB gray scale values is L Rg , L Gg , L Bg , respectively, and the color coordinates of the second dynamic sub-pixel are Y (u′ Y , v′ Y ) .
  • the color coordinates of the first dynamic sub-pixel are red color coordinates.
  • the triangle formed by the three-point connection of the WGB does not completely cover the curve formed by the three points of the WGB and the edge line of the graphene. Further, at this time, when the target color point coordinates fall into the WBR color.
  • the domain block is used, the color point coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel cannot be completely replaced by the target color point coordinate, and some relative conversion is needed.
  • the target color point coordinates are A(u', v'), and the target color point coordinate A point is connected to the color coordinate R point of the color corresponding to the first dynamic sub-pixel and the set area of the graphene display
  • the color coordinate of the edge intersection Y is the color coordinate of the second dynamic sub-pixel
  • the color coordinate of the second dynamic sub-pixel is Y (u' Y , v' Y ) by the slope of the above-mentioned connection.
  • the intersection of the WB two-point connection and the RY two-point connection is C
  • the intersection of the two-point connection line and the RY two-point connection line is E
  • the color point of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel is set.
  • the coordinate is D
  • the brightness formed by the RGB gray scale values is L Rg , L Gg , L Bg , and the color coordinates of the second dynamic sub-pixel are Y(u′ Y , v′ Y ), and the first dynamic sub-pixel gray scale value
  • the brightness formed is L Xg
  • the color coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel are D(u' D , v' D ), and the color coordinates corresponding to the RGB gray-scale values are respectively R(u' R , v ' R ), G(u' G , v' G ), B(u' B , v' B ), the brightness formed by the RGB gray scale values are L Rg , L Gg , L Bg , respectively, the second The color coordinates of the dynamic sub-pixel are Y(u' Y , v' Y ).
  • the color coordinates of the first dynamic sub-pixel are blue color coordinates. Similar to the target color point coordinates falling into the WGB color gamut block, since the triangle formed by the WGR three-point connection does not completely cover the curve formed by the WGR three points and the edge line of the graphene, when the target color point coordinates fall into When the WGR gamut block is reached, the target color point coordinates cannot completely replace the color point coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel, and some relative conversion is needed.
  • the conversion method is the same as the conversion method of the target color point coordinate falling into the WGB color gamut block, and the target color point coordinate is A (u', v'), and the target color point coordinate A point corresponds to the color of the first dynamic sub-pixel.
  • the color coordinate of the intersection of the line of the color coordinate point B and the edge of the set area of the graphene display is the color coordinate of the second dynamic sub-pixel, and the color of the second dynamic sub-pixel is obtained by the slope of the connection line.
  • the coordinates are Y(u' Y , v' Y ).
  • the intersection of the WG two-point connection and the BY two-point connection is C
  • the intersection point of the GR two-point connection and the BY two-point connection is E
  • the color point of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel is set.
  • the coordinate is D
  • the brightness formed by the RGB gray scale values is L Rg , L Gg , L Bg , and the color coordinates of the second dynamic sub-pixel are Y(u′ Y , v′ Y ), and the first dynamic sub-pixel gray scale value
  • the brightness formed is L Xg
  • the color coordinates of the mixed color of the first dynamic sub-pixel and the second dynamic sub-pixel are D(u' D , v' D ), and the color coordinates corresponding to the RGB gray-scale values are respectively R(u' R , v ' R ), G(u' G , v' G ), B(u' B , v' B ), the brightness formed by the RGB gray scale values are L Rg , L Gg , L Bg , respectively, the second The color coordinates of the dynamic sub-pixel are Y(u' Y , v' Y ).
  • the display unit 301 is further configured to determine a driving voltage of the pixel by color coordinates or brightness of the first dynamic sub-pixel and the second dynamic sub-pixel.
  • the pixels of the display emit different colors of light, for example, when the gate unit is 0 to 10 V, the source/drain voltage Vds > the turn-on voltage Vth, at this time, the graphene display
  • the pixel emits red light; when the gate unit is 20-30V, the source-drain voltage Vds> turns on the voltage Vth, at this time, the pixel of the graphene display emits green light; when the gate unit is 40-50V, the source-drain voltage Vds> turns on.
  • the voltage Vth at this time, the pixels of the graphene display emit blue light.
  • the color displayed by the graphene display can be changed by changing the magnitude of the driving voltage, that is, the gray scale is adjusted, and conversely, due to the one-to-one correspondence described above, the display unit 301 can determine the gray scale of the current graphene display.
  • the driving voltage of the graphene display is not limited to the magnitude of the driving voltage, that is, the gray scale is adjusted, and conversely, due to the one-to-one correspondence described above.
  • the driving unit 302 is configured to output the driving voltage to the pixel.
  • the driving unit 302 After the display unit 301 determines the driving voltage of the pixel corresponding to the graphene display according to the color coordinates or brightness of the first dynamic sub-pixel and the second dynamic sub-pixel, the driving unit 302 outputs the driving voltage to the pixel, correspondingly, the graphene display The corresponding color.
  • the graphene display of the present embodiment includes a display unit and a driving unit.
  • the display unit includes a plurality of pixels, and each pixel includes two dynamic sub-pixels, and the display unit is RGB grayscale value to be input by the pixel.
  • the driving unit outputs the Drive voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种石墨烯显示器的驱动方法以及石墨烯显示器,该石墨烯显示器的每个像素包括两个动态亚像素,该驱动方法包括,由像素待输入的RGB灰阶值,获得像素在色域坐标系中的目标色点坐标(101);根据目标色点坐标与色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得像素的第一动态亚像素和第二动态像素的色坐标或亮度(102);由第一动态亚像素和第二动态亚像素的色坐标或亮度确定像素的驱动电压(103);向像素输出该驱动电压(104)。

Description

石墨烯显示器的驱动方法以及石墨烯显示器 技术领域
本发明涉及液晶显示领域,特别是涉及一种石墨烯显示器的驱动方法以及石墨烯显示器。
背景技术
伴随着液晶显示器的普及以及市场的不断扩大,在众多选择中,用户对液晶显示装置性能的要求也越来越高,传统的显示器,即使是高色饱的RGB三基色显示器甚至是RGBY四基色显示器都已经不能满足用户对显示器色域覆盖的要求。
近年来由于石墨烯发光元件的出现,使石墨烯在显示领域的应用得以扩扩展。石墨烯具有质地坚硬,透明高(穿透率≈97.7%),导热系数高(达5300W/m·K),电子迁移率高(超过15000cm2/V·s)等优良特定,近年来在显示器上的应用,逐渐增多,尤其是在触摸屏的应用(作为替代传统透明导电薄膜ITO)和在LED方面的应用。通过理论计算,石墨烯的色域可以达到158%,然而现有技术中,并不存在如何实现该高色域覆盖的方法。
发明内容
本发明主要解决的技术问题是提供一种石墨烯显示器的驱动方法以及石墨烯显示器,能够快速、有效、方便的实现高色彩保真度,极大的提升液晶显示器的显示品质。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种石墨烯显示器的驱动方法,所述石墨烯显示器的每个像素包括两个动态亚像素,所述方法包括:
由所述像素待输入的RGB灰阶值,获得所述像素在色域坐标系中的目标色点坐标;
根据所述目标色点坐标与所述色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度;
由所述第一动态亚像素和第二动态亚像素的色坐标或亮度确定所述像素的 驱动电压;
向所述像素输出所述驱动电压。
其中,所述根据所述目标色点坐标与色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度的步骤包括:
确定所述目标色点坐标落入的所述色域块;
由所述落入的色域块以及所述目标色点坐标在所述色域块的位置,确定所述第一动态亚像素的色坐标和所述第二动态亚像素的色坐标;
由所述目标色点坐标、所述RGB灰阶值形成的亮度值、所述第一动态亚像素的色坐标以及所述第二动态亚像素的色坐标,计算得到所述第一亚动态亚像素的亮度以及所述第二动态亚像素的亮度。
其中,所述由所述目标色点坐标、所述RGB灰阶值形成的亮度值、所述第一动态亚像素的色坐标以及所述第二动态亚像素的色坐标,计算得到所述第一亚动态亚像素的亮度以及所述第二动态亚像素的亮度的步骤具体包括:
以所述目标色点坐标作为所述两个动态亚像素的混合色的色坐标,以所述RGB灰阶值形成的目标亮度值作为所述两个动态亚像素的混合色的亮度;
根据所述两个动态亚像素各自的亮度与所述获得的两个动态亚像素各自的色坐标、所述两个动态亚像素的混合色的色坐标及亮度之间的关系,获得所述两个动态亚像素各自的亮度。
其中,所述由所述像素待输入的RGB灰阶值,获得所述像素在色域坐标系中的目标色点坐标的步骤具体包括:
设定输入的所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),根据如下公式(1),
Figure PCTCN2016080154-appb-000001
计算得到所述目标色点坐标(u′,v′),其中,所述RGB灰阶值形成的亮 度分别为LRg、LGg、LBg
其中,所述根据所述两个动态亚像素各自的亮度与所述获得的两个动态亚像素各自的色坐标、所述两个动态亚像素的混合色的色坐标及亮度之间的关系,获得所述两个动态亚像素各自的亮度的步骤具体包括:
根据公式(2)计算得到所述第一动态亚像素的亮度LXg以及所述第二动态亚像素的亮度,
Figure PCTCN2016080154-appb-000002
其中,所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),所述第一亚动态亚像素与所述第二动态亚像素的混合色的色坐标为D(u′D,v′D);
所述色坐标D由所述目标色点坐标换算得到。
其中,所述由所述像素待输入的RGB灰阶值,获得所述像素在色域坐标系中的目标色点坐标的步骤之前,所述方法还包括:
将所述RGB三色色域分割成WBR、WGR、WBG三个色域块。
其中,所述由所述落入的色域块以及所述目标色点坐标在所述色域块的位置,确定所述第一动态亚像素的色坐标和所述第二动态亚像素的色坐标的步骤具体包括:
当所述色点落入WBR色域块时,所述第一动态亚像素的色坐标为红色的色坐标;
当所述色点落入WGR色域块时,所述第一动态亚像素的色坐标为蓝色的色坐标;
当所述色点落入WBG色域块时,所述第一动态亚像素的色坐标为红色的色坐标;
所述第二动态亚像素的色坐标为所述目标色点坐标与所述石墨烯显示器的设定色域的边缘线之间的交点坐标。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种石墨烯显示器,
所述石墨烯显示器包括显示单元以及与所述显示单元电连接的显示驱动单元,所述显示单元包括多个像素,每个所述像素包括两个动态亚像素,
所述显示单元用于由所述像素待输入的RGB灰阶值,获得所述像素在色域坐标系中的目标色点坐标,还用于根据所述目标色点坐标与所述色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度;还用于由所述第一动态亚像素和第二动态亚像素的色坐标或亮度确定所述像素的驱动电压;
所述显示驱动单元用于向所述像素输出所述驱动电压。
其中,所述显示单元具体用于确定所述目标色点坐标落入的所述色域块;
由所述落入的色域块以及所述目标色点坐标在所述色域块的位置,确定所述第一动态亚像素的色坐标和所述第二动态亚像素的色坐标;
由所述目标色点坐标、所述RGB灰阶值形成的亮度值、所述第一动态亚像素的色坐标以及所述第二动态亚像素的色坐标,计算得到所述第一亚动态亚像素的亮度以及所述第二动态亚像素的亮度。
其中,所述显示单元具体用于以所述目标色点坐标作为所述两个动态亚像素的混合色的色坐标,以所述RGB灰阶值形成的目标亮度值作为所述两个动态亚像素的混合色的亮度;
根据所述两个动态亚像素各自的亮度与所述获得的两个动态亚像素各自的色坐标、所述两个动态亚像素的混合色的色坐标及亮度之间的关系,获得所述两个动态亚像素各自的亮度。
其中,所述显示单元具体用于设定输入的所述RGB的灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),根据如下公式(1),
Figure PCTCN2016080154-appb-000003
计算得到所述目标色点坐标为(u′,v′),其中,所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg
其中,所述显示单元根据公式(2)计算得到所述第一动态亚像素灰阶值形成的的亮度LXg以及所述第二动态亚像素灰阶值形成的的亮度LYg
Figure PCTCN2016080154-appb-000004
其中,所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度值分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),所述第一亚动态亚像素与所述第二动态亚像素的混合色的色坐标为D(u′D,v′D);
所述色坐标D由所述目标色点坐标换算得到。
其中,所述石墨烯显示单元还用于将所述RGB三色色域分割成WBR、WGR、WBG三个色域块。
其中,所述显示单元具体用于,
当所述目标色点落入WBR色域块时,所述第一动态亚像素的色坐标为红色的色坐标;
当所述目标色点落入WGR色域块时,所述第一动态亚像素的色坐标为蓝色的色坐标;
当所述目标色点落入WBG色域块时,所述第一动态亚像素的色坐标为红色的色坐标;
所述第二动态亚像素的色坐标为所述目标色点坐标以及所述第一动态亚像素对应的颜色的色坐标的连线与所述石墨烯显示器的设定色域的边缘线之间的交点坐标。
本发明的有益效果是:区别于现有技术的情况,本实施方式的石墨烯显示器的的每个像素包括两个动态亚像素,该像素由像素待输入的RGB灰阶值,获得该像素在色域坐标系中的目标色点坐标,根据目标色点坐标与所述色域坐标 系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度;由所述第一动态亚像素和第二动态亚像素的色坐标或亮度确定所述像素的驱动电压,并输出所述驱动电压。通过上述驱动方式,不仅能够实现石墨烯显示器的158%的色域显示,远超过任何显示器所能实现的色域,且其色域能够完全覆盖现有真实物体的色域范围,而且能够实现色彩高保真度,极大的提升了显示器的显示品质。
附图说明
图1是本发明石墨烯显示器的驱动方法一实施方式的流程示意图;
图2是本发明石墨烯显示器的色域显示范围一实施方式的示意图;
图3是本发明石墨烯显示器一实施方式的结构示意图;
图4是本发明石墨烯显示器的显示单元一实施方式的结构示意图。
具体实施方式
参阅图1,图1是本发明石墨烯显示器的驱动方法一实施方式的流程示意图。
具体地,如图1所示,本实施方式的驱动方法包括如下步骤:
101:由所述像素待输入的RGB灰阶值,获得所述像素在色域坐标系中的目标色点坐标。
本发明中的石墨烯显示器的每个像素包括两个动态像素,由于输入的RGB灰阶值不同,因此,两个动态亚像素也并不固定,是根据输入的RGB灰阶值的不同选择不同的确定两个动态亚像素的亮度或色坐标,从而实现石墨烯显示器的显示器色域。
具体地,如图2所示,为了确定输入的RGB灰阶值对应的两个动态亚像素的颜色或色坐标,先将石墨烯显示器的RGB三色色域进行分割,分割成WBR、WGR、WBG三个色域块。可选地,为了使各个色域块以及整个色域区域的颜色过渡的更加平滑,本实施方式中采用均匀色坐标系,如均匀色空间的CIE1976色坐标等,在此不做限定。
在完成色域块的划分后,石墨烯显示器对输入的RGB灰阶值确定石墨烯显示器对应的像素在该色域坐标系中的目标色点坐标。假设该目标色点坐标为(u′,v′),输入的所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度值分别为LRg、LGg、LBg,根据如下 如下公式(1)来获取该目标色坐标(u′,v′)。
Figure PCTCN2016080154-appb-000005
102:根据所述目标色点坐标与所述色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度。
在根据上述公式(1)确定了目标色点坐标(u′,v′)后,进一步的根据该目标色点坐标确定该目标色点坐标所落入的色域块。
具体地,当该目标色点坐标落入到WBR色域块时,所述第一动态亚像素的色坐标为红色的色坐标。当该目标色点坐标落入WGR色域块时,所述第一动态亚像素的色坐标为蓝色的色坐标。当该目标色点坐标落入WBG色域块时,所述第一动态亚像素的色坐标为红色的色坐标。
在确定该目标色点坐标后,根据所述目标色点坐标以及所述第一动态亚像素对应的颜色的色坐标的连线与所述石墨烯显示器的设定色域的边缘线之间的交点确定第二动态亚像素的色坐标。具体地,根据所述目标色点坐标以及所述第一动态亚像素对应的颜色的色坐标的连线的斜率,通过查找预先设定的表确定当前该连线与石墨烯显示器的设定色域的边缘线之间的交点的坐标,即为第二动态亚像素的色坐标。
进一步地,当该目标色点坐标落入到WBR色域块时,所述第一动态亚像素的色坐标为红色的色坐标。如图2所示,由于WBR三点连线构成的三角形与WBR三点与该石墨烯的边缘线所构成的曲线基本重叠,因此,当目标色点坐标落入到WBR色域块时,以该目标色点坐标代替第一动态亚像素与第二动态亚像素的混合色的色点坐标,并且以该RGB灰阶值灰阶值形成的目标亮度值作为第一动态亚像素与第二动态亚像素的混合色的亮度,即有如下公式(2),
Figure PCTCN2016080154-appb-000006
所述目标色点坐标(u′,v′),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),第一动态亚像素灰阶值形成的亮度为LXg,第二动态亚像素灰阶值形成的的亮度LYg
将公式(1)得到的该目标色点坐标的公式代入到上述公式(2),通过转换即可得到
第一动态亚像素灰阶值形成的的亮度LXg以及所述第二动态亚像素灰阶值形成的的亮度LYg,如下公式(3)所示:
Figure PCTCN2016080154-appb-000007
所述目标色点坐标(u′,v′),所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y)。
当目标色点坐标落入到WGB色域块时,所述第一动态亚像素的色坐标为红色的色坐标。如图2所示,由于WGB三点连线构成的三角形并不能完全覆盖WGB三点与该石墨烯的边缘线所构成的曲线,进一步地,此时,当目标色点坐标落入到WBR色域块时,以该目标色点坐标不能完全代替第一动态亚像素与第二动态亚像素的混合色的色点坐标,需要进行一些相对的转换。
具体的,设目标色点坐标为A(u′,v′),目标色点坐标A点与第一动态亚像素对应的颜色的色坐标R点的连线与石墨烯显示器的设定区域的边缘性的交点Y的色坐标为第二动态亚像素的色坐标,通过上述连线的斜率查表得到第二动态亚像素的色坐标为Y(u′Y,v′Y)。WB两点连线与RY两点连线的交点为C, GB两点连线与RY两点连线的交点为E,设第一动态亚像素与第二动态亚像素的混合色的色点坐标为D,通过大量实验推理得到的等比例长度换算得到AC/EC=DC/YC,从而得到第一动态亚像素与第二动态亚像素的混合色的色坐标为D(u′D,v′D)。
根据第一动态亚像素与第二动态亚像素的混合色的色坐标D(u′D,v′D)与两个动态亚像素的对应关系,以及第一动态亚像素与第二动态亚像素灰阶值形成的亮度与RGB灰阶值灰阶值形成的亮度相等的对应关系,得到公式(4),
Figure PCTCN2016080154-appb-000008
所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),第一动态亚像素灰阶值形成的亮度为LXg,第二动态亚像素灰阶值形成的的亮度LYg
进一步得到第一动态亚像素灰阶值形成的的亮度LXg以及所述第二动态亚像素灰阶值形成的的亮度LYg,如下公式(5)所示:
Figure PCTCN2016080154-appb-000009
所述第一动态亚像素与第二动态亚像素的混合色的色坐标为D(u′D,v′D),所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y)。
当目标色点坐标落入到WGR色域块时,所述第一动态亚像素的色坐标为蓝色的色坐标。与目标色点坐标落入WGB色域块相似,由于WGR三点连线构成的三角形并不能完全覆盖WGR三点与该石墨烯的边缘线所构成的曲线,因此, 当目标色点坐标落入到WGR色域块时,该目标色点坐标不能完全代替第一动态亚像素与第二动态亚像素的混合色的色点坐标,需要进行一些相对的转换。
具体的,与目标色点坐标落入WGB色域块的转换方法相同,设目标色点坐标为A(u′,v′),目标色点坐标A点与第一动态亚像素对应的颜色的色坐标B点的连线与石墨烯显示器的设定区域的边缘性的交点Y的色坐标为第二动态亚像素的色坐标,通过上述连线的斜率查表得到第二动态亚像素的色坐标为Y(u′Y,v′Y)。WG两点连线与BY两点连线的交点为C,GR两点连线与BY两点连线的交点为E,设第一动态亚像素与第二动态亚像素的混合色的色点坐标为D,通过大量实验推理得到的等比例长度换算得到AC/EC=DC/YC,从而得到第一动态亚像素与第二动态亚像素的混合色的色坐标为D(u′D,v′D)。
根据第一动态亚像素与第二动态亚像素的混合色的色坐标D(u′D,v′D)与两个动态亚像素的对应关系,以及第一动态亚像素与第二动态亚像素灰阶值形成的亮度与RGB灰阶值灰阶值形成的亮度相等的对应关系,得到公式(6),
Figure PCTCN2016080154-appb-000010
所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),第一动态亚像素灰阶值形成的亮度为LXg,第二动态亚像素灰阶值形成的的亮度LYg
进一步得到第一动态亚像素灰阶值形成的的亮度LXg以及所述第二动态亚像素灰阶值形成的的亮度LYg,如下公式(7)所示:
Figure PCTCN2016080154-appb-000011
所述第一动态亚像素与第二动态亚像素的混合色的色坐标为D(u′D,v′D), 所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y)。
103:由所述第一动态亚像素和第二动态亚像素的色坐标或亮度确定所述像素的驱动电压。
由于对于石墨烯显示器而言,栅极电压的不同,显示器的像素会发出不同颜色的光,例如当栅极单元为0~10V,源漏电压Vds>开启电压Vth,此时,石墨烯显示器的像素发出红光;当栅极单元为20~30V,源漏电压Vds>开启电压Vth,此时,石墨烯显示器的像素发出绿光;当栅极单元为40~50V,源漏电压Vds>开启电压Vth,此时,石墨烯显示器的像素发出蓝光。因此,可以通过改变驱动电压的大小来改变石墨烯显示器显示的颜色,即调节灰阶,反过来,由于存在上述一一对应关系,也可以根据当前石墨烯显示器的灰阶确定石墨烯显示器的驱动电压。
104:向所述像素输出所述驱动电压。
在根据第一动态亚像素和第二动态亚像素的色坐标或亮度确定石墨烯显示器对应的像素的驱动电压后,向该像素输出该驱动电压,对应地,石墨烯显示相应的颜色。
区别于现有技术,本实施方式的石墨烯显示器的的每个像素包括两个动态亚像素,该像素由像素待输入的RGB灰阶值,获得该像素在色域坐标系中的目标色点坐标,根据目标色点坐标与所述色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度;由所述第一动态亚像素和第二动态亚像素的色坐标或亮度确定所述像素的驱动电压,并输出所述驱动电压。通过上述驱动方式,不仅能够实现石墨烯显示器的158%的色域显示,远超过任何显示器所能实现的色域,且其色域能够完全覆盖现有真实物体的色域范围,而且能够实现色彩高保真度,极大的提升了显示器的显示品质。
参阅图3,图3是本发明石墨烯显示器一实施方式的结构示意图。如图3所示,本实施方式的石墨烯显示器包括显示单元301以及驱动单元302。显示单元301与驱动单元302相电连接。该显示单元301包括多个像素,每个像素包括两个动态亚像素。
具体地,如图4所示,所述显示单元301包括从上到下依次设置下基板3011,设置在该下基板3011上的源极3012以及漏极3013,源极3012与漏极3013之间以一沟道隔开,且该源极3012、漏极3013以及沟道上覆盖有发光层3014,发光层3014上形成有栅极3015,该显示单元301还包括覆盖在所述栅极3015上的保护层3016,设置在该保护层3016上的黑色矩阵层3017以及设置在该黑色矩阵层上的上基板3018。
其中,下基板3011的材质包括隔水隔氧透明有机材质PET、玻璃以及镍中的至少一种,且该下基板3011背向所述源极3012以及漏极3013的一面设置有高反射率金属反射层。源极3012和漏极3013的材质为还原氧化石墨烯,栅极3016的材质为氧化石墨烯。发光层3014的材质为半导体还原氧化石墨烯。上基板3019的材质为隔水氧有机材质或玻璃中的至少一种。
该显示单元301具体用于由所述像素待输入的RGB灰阶值,获得所述像素在色域坐标系中的目标色点坐标。
具体地,为了确定输入的RGB灰阶值对应的两个动态亚像素的颜色或色坐标,显示单元301先将石墨烯显示器的RGB三色色域进行分割,分割成WBR、WGR、WBG三个色域块。可选地,为了使各个色域块以及整个色域区域的颜色过渡的更加平滑,本实施方式中采用均匀色坐标系,如均匀色空间的CIE1976色坐标等,在此不做限定。
在完成色域块的划分后,石墨烯显示器对输入的RGB灰阶值确定石墨烯显示器对应的像素在该色域坐标系中的目标色点坐标。假设该目标色点坐标为(u′,v′),输入的所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,根据如下如下公式(1)来获取该目标色坐标。
Figure PCTCN2016080154-appb-000012
显示单元301还用于根据所述目标色点坐标与所述色域坐标系中由RGB三 色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度。
具体地,当该目标色点坐标落入到WBR色域块时,所述第一动态亚像素的色坐标为红色的色坐标。当该目标色点坐标落入WGR色域块时,所述第一动态亚像素的色坐标为蓝色的色坐标。当该目标色点坐标落入WBG色域块时,所述第一动态亚像素的色坐标为红色的色坐标。
显示单元301在确定该目标色点坐标后,根据所述目标色点坐标以及所述第一动态亚像素对应的颜色的色坐标的连线与所述石墨烯显示器的设定色域的边缘线之间的交点确定第二动态亚像素的色坐标。具体地,根据所述目标色点坐标以及所述第一动态亚像素对应的颜色的色坐标的连线的斜率,通过查找预先设定的表确定当前该连线与石墨烯显示器的设定色域的边缘线之间的交点的坐标,即为第二动态亚像素的色坐标。
进一步地,当该目标色点坐标落入到WBR色域块时,所述第一动态亚像素的色坐标为红色的色坐标。进一步地如图2所示,由于WBR三点连线构成的三角形与WBR三点与该石墨烯的边缘线所构成的曲线基本重叠,因此,当目标色点坐标落入到WBR色域块时,以该目标色点坐标代替第一动态亚像素与第二动态亚像素的混合色的色点坐标,并且以该RGB灰阶值灰阶值形成的目标亮度值作为第一动态亚像素与第二动态亚像素的混合色的亮度,即有如下公式(2),
Figure PCTCN2016080154-appb-000013
所述目标色点坐标(u′,v′),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),第一动态亚像素灰阶值形成的亮度为LXg,第二动态亚像素灰阶值形成的的亮度LYg
将公式(1)得到的该目标色点坐标的公式代入到上述公式(2),通过转换即可得到
第一动态亚像素灰阶值形成的的亮度LXg以及所述第二动态亚像素灰阶值形成的的亮度LYg,如下公式(3)所示:
Figure PCTCN2016080154-appb-000014
所述目标色点坐标(u′,v′),所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y)。
当目标色点坐标落入到WGB色域块时,所述第一动态亚像素的色坐标为红色的色坐标。如图2所示,由于WGB三点连线构成的三角形并不能完全覆盖WGB三点与该石墨烯的边缘线所构成的曲线,进一步地,此时,当目标色点坐标落入到WBR色域块时,以该目标色点坐标不能完全代替第一动态亚像素与第二动态亚像素的混合色的色点坐标,需要进行一些相对的转换。
具体的,设目标色点坐标为A(u′,v′),目标色点坐标A点与第一动态亚像素对应的颜色的色坐标R点的连线与石墨烯显示器的设定区域的边缘性的交点Y的色坐标为第二动态亚像素的色坐标,通过上述连线的斜率查表得到第二动态亚像素的色坐标为Y(u′Y,v′Y)。WB两点连线与RY两点连线的交点为C,GB两点连线与RY两点连线的交点为E,设第一动态亚像素与第二动态亚像素的混合色的色点坐标为D,通过大量实验推理得到的等比例长度换算得到AC/EC=DC/YC,从而得到第一动态亚像素与第二动态亚像素的混合色的色坐标为D(u′D,v′D)。
根据第一动态亚像素与第二动态亚像素的混合色的色坐标D(u′D,v′D)与两个动态亚像素的对应关系,以及第一动态亚像素与第二动态亚像素灰阶值形成的亮度与RGB灰阶值灰阶值形成的亮度相等的对应关系,得到公式(4),
Figure PCTCN2016080154-appb-000015
所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),第一动态亚像素灰阶值形成的亮度为LXg,第二动态亚像素灰阶值形成的的亮度LYg
进一步得到第一动态亚像素灰阶值形成的的亮度LXg以及所述第二动态亚像素灰阶值形成的的亮度LYg,如下公式(5)所示:
Figure PCTCN2016080154-appb-000016
所述第一动态亚像素与第二动态亚像素的混合色的色坐标为D(u′D,v′D),所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y)。
当目标色点坐标落入到WGR色域块时,所述第一动态亚像素的色坐标为蓝色的色坐标。与目标色点坐标落入WGB色域块相似,由于WGR三点连线构成的三角形并不能完全覆盖WGR三点与该石墨烯的边缘线所构成的曲线,因此,当目标色点坐标落入到WGR色域块时,该目标色点坐标不能完全代替第一动态亚像素与第二动态亚像素的混合色的色点坐标,需要进行一些相对的转换。
具体的,与目标色点坐标落入WGB色域块的转换方法相同,设目标色点坐标为A(u′,v′),目标色点坐标A点与第一动态亚像素对应的颜色的色坐标B点的连线与石墨烯显示器的设定区域的边缘性的交点Y的色坐标为第二动态亚像素的色坐标,通过上述连线的斜率查表得到第二动态亚像素的色坐标为Y(u′Y,v′Y)。WG两点连线与BY两点连线的交点为C,GR两点连线与BY两点连线的交点为E,设第一动态亚像素与第二动态亚像素的混合色的色点坐标为D,通过大量实验推理得到的等比例长度换算得到AC/EC=DC/YC,从而得到第一动态亚像素与第二动态亚像素的混合色的色坐标为D(u′D,v′D)。
根据第一动态亚像素与第二动态亚像素的混合色的色坐标D(u′D,v′D)与两 个动态亚像素的对应关系,以及第一动态亚像素与第二动态亚像素灰阶值形成的亮度与RGB灰阶值灰阶值形成的亮度相等的对应关系,得到公式(6),
Figure PCTCN2016080154-appb-000017
所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),第一动态亚像素灰阶值形成的亮度为LXg,第二动态亚像素灰阶值形成的的亮度LYg
进一步得到第一动态亚像素灰阶值形成的的亮度LXg以及所述第二动态亚像素灰阶值形成的的亮度LYg,如下公式(7)所示:
Figure PCTCN2016080154-appb-000018
所述第一动态亚像素与第二动态亚像素的混合色的色坐标为D(u′D,v′D),所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y)。
显示单元301还用于由所述第一动态亚像素和第二动态亚像素的色坐标或亮度确定所述像素的驱动电压。
由于对于石墨烯显示器而言,栅极电压的不同,显示器的像素会发出不同颜色的光,例如当栅极单元为0~10V,源漏电压Vds>开启电压Vth,此时,石墨烯显示器的像素发出红光;当栅极单元为20~30V,源漏电压Vds>开启电压Vth,此时,石墨烯显示器的像素发出绿光;当栅极单元为40~50V,源漏电压Vds>开启电压Vth,此时,石墨烯显示器的像素发出蓝光。因此,可以通过改变驱动电压的大小来改变石墨烯显示器显示的颜色,即调节灰阶,反过来,由于存在上述一一对应关系,显示单元301可以根据当前石墨烯显示器的灰阶确定 石墨烯显示器的驱动电压。
驱动单元302用于向所述像素输出所述驱动电压。
驱动单元302在显示单元301根据第一动态亚像素和第二动态亚像素的色坐标或亮度确定石墨烯显示器对应的像素的驱动电压后,向该像素输出该驱动电压,对应地,石墨烯显示相应的颜色。
区别于现有技术,本实施方式的石墨烯显示器包括显示单元以及驱动单元,显示单元包括多个像素,每个像素包括包括两个动态亚像素,该显示单元由像素待输入的RGB灰阶值,获得该像素在色域坐标系中的目标色点坐标,根据目标色点坐标与所述色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度;由所述第一动态亚像素和第二动态亚像素的色坐标或亮度确定所述像素的驱动电压,驱动单元输出所述驱动电压。通过上述驱动方式,不仅能够实现石墨烯显示器的158%的色域显示,远超过任何显示器所能实现的色域,且其色域能够完全覆盖现有真实物体的色域范围,而且能够实现色彩高保真度,极大的提升了显示器的显示品质。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种石墨烯显示器的驱动方法,其中,所述石墨烯显示器的每个像素包括两个动态亚像素,所述方法包括:
    由所述像素待输入的RGB灰阶值,获得所述像素在色域坐标系中的目标色点坐标;
    根据所述目标色点坐标与所述色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度;
    由所述第一动态亚像素和第二动态亚像素的色坐标或亮度确定所述像素的驱动电压;
    向所述像素输出所述驱动电压。
  2. 根据权利要求1所述的方法,其中,所述根据所述目标色点坐标与色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度的步骤包括:
    确定所述目标色点坐标落入的所述色域块;
    由所述落入的色域块以及所述目标色点坐标在所述色域块的位置,确定所述第一动态亚像素的色坐标和所述第二动态亚像素的色坐标;
    由所述目标色点坐标、所述RGB灰阶值形成的亮度值、所述第一动态亚像素的色坐标以及所述第二动态亚像素的色坐标,计算得到所述第一亚动态亚像素的亮度以及所述第二动态亚像素的亮度。
  3. 根据权利要求2所述的方法,其中,所述由所述目标色点坐标、所述RGB灰阶值形成的亮度值、所述第一动态亚像素的色坐标以及所述第二动态亚像素的色坐标,计算得到所述第一亚动态亚像素的亮度以及所述第二动态亚像素的亮度的步骤具体包括:
    以所述目标色点坐标作为所述两个动态亚像素的混合色的色坐标,以所述RGB灰阶值形成的目标亮度值作为所述两个动态亚像素的混合色的亮度;
    根据所述两个动态亚像素各自的亮度与所述获得的两个动态亚像素各自的色坐标、所述两个动态亚像素的混合色的色坐标及亮度之间的关系,获得所述两个动态亚像素各自的亮度。
  4. 根据权利要求3所述的方法,其中,所述由所述像素待输入的RGB灰阶值,获得所述像素在色域坐标系中的目标色点坐标的步骤具体包括:
    设定输入的所述RGB的灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),根据如下公式(1),
    Figure PCTCN2016080154-appb-100001
    计算得到所述目标色点坐标为(u′,v′),其中,所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg
  5. 根据权利要求3所述的方法,其中,所述根据所述两个动态亚像素各自的亮度与所述获得的两个动态亚像素各自的色坐标、所述两个动态亚像素的混合色的色坐标及亮度之间的关系,获得所述两个动态亚像素各自的亮度的步骤具体包括:
    根据公式(2)计算得到所述第一动态亚像素灰阶值形成的的亮度LXg以及所述第二动态亚像素灰阶值形成的的亮度LYg
    Figure PCTCN2016080154-appb-100002
    其中,所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度值分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),所述第一亚动态亚像素与所述第二动态亚像素的混合色的色坐标为D(u′D,v′D);
    所述色坐标D由所述目标色点坐标换算得到。
  6. 根据权利要求2所述的方法,其中,所述由所述像素待输入的RGB灰阶 值,获得所述像素在色域坐标系中的目标色点坐标的步骤之前,所述方法还包括:
    将所述RGB三色色域分割成WBR、WGR、WBG三个色域块。
  7. 根据权利要求6所述的方法,其中,所述由所述落入的色域块以及所述目标色点坐标在所述色域块的位置,确定所述第一动态亚像素的色坐标和所述第二动态亚像素的色坐标的步骤具体包括:
    当所述目标色点落入WBR色域块时,所述第一动态亚像素的色坐标为红色的色坐标;
    当所述目标色点落入WGR色域块时,所述第一动态亚像素的色坐标为蓝色的色坐标;
    当所述目标色点落入WBG色域块时,所述第一动态亚像素的色坐标为红色的色坐标;
    所述第二动态亚像素的色坐标为所述目标色点坐标以及所述第一动态亚像素对应的颜色的色坐标的连线与所述石墨烯显示器的设定色域的边缘线之间的交点坐标。
  8. 一种石墨烯显示器,其中,所述石墨烯显示器包括显示单元以及与所述显示单元电连接的驱动单元,所述显示单元包括多个像素,每个所述像素包括两个动态亚像素,
    所述显示单元用于由所述像素待输入的RGB灰阶值,获得所述像素在色域坐标系中的目标色点坐标,还用于根据所述目标色点坐标与所述色域坐标系中由RGB三色色域划分而成的三个色域块的位置关系,获得所述像素的第一动态亚像素和第二动态像素的色坐标或亮度;还用于由所述第一动态亚像素和第二动态亚像素的色坐标或亮度确定所述像素的驱动电压;
    所述驱动单元用于向所述像素输出所述驱动电压。
  9. 根据权利要求8所述的石墨烯显示器,其中,所述显示单元具体用于确定所述目标色点坐标落入的所述色域块;
    由所述落入的色域块以及所述目标色点坐标在所述色域块的位置,确定所述第一动态亚像素的色坐标和所述第二动态亚像素的色坐标;
    由所述目标色点坐标、所述RGB灰阶值形成的亮度值、所述第一动态亚像素的色坐标以及所述第二动态亚像素的色坐标,计算得到所述第一亚动态亚像素的亮度以及所述第二动态亚像素的亮度。
  10. 根据权利要求9所述的石墨烯显示器,其中,所述显示单元具体用于以所述目标色点坐标作为所述两个动态亚像素的混合色的色坐标,以所述RGB灰阶值形成的目标亮度值作为所述两个动态亚像素的混合色的亮度;
    根据所述两个动态亚像素各自的亮度与所述获得的两个动态亚像素各自的色坐标、所述两个动态亚像素的混合色的色坐标及亮度之间的关系,获得所述两个动态亚像素各自的亮度。
  11. 根据权利要求10所述的石墨烯显示器,其中,所述显示单元具体用于设定输入的所述RGB的灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),根据如下公式(1),
    Figure PCTCN2016080154-appb-100003
    计算得到所述目标色点坐标为(u′,v′),其中,所述RGB灰阶值形成的亮度分别为LRg、LGg、LBg
  12. 根据权利要求10所述的石墨烯显示器,其中,所述显示单元根据公式(2)计算得到所述第一动态亚像素灰阶值形成的的亮度LXg以及所述第二动态亚像素灰阶值形成的的亮度LYg
    Figure PCTCN2016080154-appb-100004
    其中,所述RGB灰阶值对应的色坐标分别为R(u′R,v′R)、G(u′G,v′G)、B(u′B,v′B),所述RGB灰阶值形成的亮度值分别为LRg、LGg、LBg,所述第二动态亚像素的色坐标为Y(u′Y,v′Y),所述第一亚动态亚像素与所述第二动态亚像素的混合色的色坐标为D(u′D,v′D);
    所述色坐标D由所述目标色点坐标换算得到。
  13. 根据权利要求9所述的石墨烯显示器,其中,所述石墨烯显示单元还用于将所述RGB三色色域分割成WBR、WGR、WBG三个色域块。
  14. 根据权利要求13所述的石墨烯显示器,其中,所述显示单元具体用于,
    当所述目标色点落入WBR色域块时,所述第一动态亚像素的色坐标为红色的色坐标;
    当所述目标色点落入WGR色域块时,所述第一动态亚像素的色坐标为蓝色的色坐标;
    当所述目标色点落入WBG色域块时,所述第一动态亚像素的色坐标为红色的色坐标;
    所述第二动态亚像素的色坐标为所述目标色点坐标以及所述第一动态亚像素对应的颜色的色坐标的连线与所述石墨烯显示器的设定色域的边缘线之间的交点坐标。
PCT/CN2016/080154 2016-04-06 2016-04-25 石墨烯显示器的驱动方法以及石墨烯显示器 WO2017173682A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/038,648 US10037725B2 (en) 2016-04-06 2016-04-25 Driving methods of graphene display devices and graphene display devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610209228.0A CN105702220B (zh) 2016-04-06 2016-04-06 石墨烯显示器的驱动方法以及石墨烯显示器
CN201610209228.0 2016-04-06

Publications (1)

Publication Number Publication Date
WO2017173682A1 true WO2017173682A1 (zh) 2017-10-12

Family

ID=56219205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080154 WO2017173682A1 (zh) 2016-04-06 2016-04-25 石墨烯显示器的驱动方法以及石墨烯显示器

Country Status (3)

Country Link
US (1) US10037725B2 (zh)
CN (1) CN105702220B (zh)
WO (1) WO2017173682A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057120B (zh) * 2016-08-15 2019-04-26 深圳市华星光电技术有限公司 一种显示器彩色转换方法
CN106292069A (zh) * 2016-09-12 2017-01-04 青岛海信电器股份有限公司 光源组件和液晶显示装置
CN106486074B (zh) * 2016-11-01 2019-04-02 深圳市华星光电技术有限公司 多基色石墨烯显示器的显示方法
CN108898987B (zh) * 2018-07-31 2021-04-27 京东方科技集团股份有限公司 一种灰阶转换方法、灰阶转换装置及显示装置
CN111741568B (zh) * 2020-08-05 2020-11-24 杭州罗莱迪思科技股份有限公司 一种基于亮度优先的多通道智能精准混色调光方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105303985A (zh) * 2015-11-24 2016-02-03 深圳市华星光电技术有限公司 石墨烯显示器及其显示驱动方法
US20160079319A1 (en) * 2013-12-02 2016-03-17 Electronics And Telecommunications Research Institute Dual-mode pixels including emissive and reflective devices, and dual-mode display using the pixels

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI330731B (en) * 2006-01-17 2010-09-21 Chi Mei Optoelectronics Corp Transflective liquid crystal display monitor and structure of color pixels thereof
CN101996615B (zh) 2009-08-26 2012-11-21 群康科技(深圳)有限公司 显示设备的色彩强化方法
US20110074808A1 (en) * 2009-09-28 2011-03-31 Jiandong Huang Full Color Gamut Display Using Multicolor Pixel Elements
CN101984487B (zh) * 2010-11-02 2013-05-22 友达光电股份有限公司 主动式矩阵有机发光二极管显示面板的驱动方法
WO2013035679A1 (ja) * 2011-09-07 2013-03-14 シャープ株式会社 多原色表示装置
US9291867B2 (en) * 2013-07-02 2016-03-22 Shenzhen China Star Optoelectronics Technology Co., Ltd Double layer liquid crystal (LC) fabry-perot (FP) filter display device
US9204013B2 (en) * 2013-11-07 2015-12-01 Xerox Corporation System to enable development and usage of fifth color separation forms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160079319A1 (en) * 2013-12-02 2016-03-17 Electronics And Telecommunications Research Institute Dual-mode pixels including emissive and reflective devices, and dual-mode display using the pixels
CN105303985A (zh) * 2015-11-24 2016-02-03 深圳市华星光电技术有限公司 石墨烯显示器及其显示驱动方法

Also Published As

Publication number Publication date
US10037725B2 (en) 2018-07-31
CN105702220A (zh) 2016-06-22
US20180090044A1 (en) 2018-03-29
CN105702220B (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
KR102339431B1 (ko) 표시 장치 및 전자 기기
US11017715B2 (en) Mura compensation method and device for curved screen
WO2017088284A1 (zh) 石墨烯显示器及其显示驱动方法
WO2017201789A1 (zh) 石墨烯显示器以及石墨烯显示器的驱动方法、驱动装置
WO2019114369A1 (zh) 基色转换方法及其转换器、显示控制方法、显示装置
WO2017173682A1 (zh) 石墨烯显示器的驱动方法以及石墨烯显示器
WO2017096684A1 (zh) Led背光色温调节电路及具有其的显示装置
CN104103667B (zh) 显示单元和电子设备
KR102268961B1 (ko) 데이터 변환부와 데이터 변환부의 데이터 변환 방법
US20170213850A1 (en) Color filter substrate, array substrate, and display panel and display apparatus having the same
US9589534B2 (en) System and method for converting RGB data to WRGB data
WO2016188024A1 (zh) 阵列基板、显示面板、显示装置及驱动方法
KR102601853B1 (ko) 표시장치 및 그의 영상 처리방법
TWI539206B (zh) 顯示裝置
CN104778929B (zh) 一种显示面板的驱动数据的转换方法及转换系统
WO2018082207A1 (zh) 多基色石墨烯显示器的显示方法
RU2011115818A (ru) Схема преображения сигнала и жидкокристаллическое устройство отображения с множеством основных цветов, снабженное ею
WO2017190427A1 (zh) 液晶面板的色温调整装置、方法及液晶面板
KR102239895B1 (ko) 입력 영상의 업 스케일링을 위한 데이터 변환부와 데이터 변환 방법
US11087690B2 (en) Display substrate, display device, control method and control circuit
WO2017197677A1 (zh) 石墨烯显示器以及石墨烯显示器的驱动方法、驱动装置
CN109727573B (zh) 一种显示方法及显示装置
CN105096805B (zh) 显示装置及子像素渲染方法
CN104851397A (zh) 驱动光源模块的方法和使用该方法的显示装置
US20150325183A1 (en) Image displaying method and image displaying system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15038648

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897616

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897616

Country of ref document: EP

Kind code of ref document: A1