WO2017173581A1 - 天线测量方法及终端 - Google Patents

天线测量方法及终端 Download PDF

Info

Publication number
WO2017173581A1
WO2017173581A1 PCT/CN2016/078498 CN2016078498W WO2017173581A1 WO 2017173581 A1 WO2017173581 A1 WO 2017173581A1 CN 2016078498 W CN2016078498 W CN 2016078498W WO 2017173581 A1 WO2017173581 A1 WO 2017173581A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
measurement
occupied
selection module
duration
Prior art date
Application number
PCT/CN2016/078498
Other languages
English (en)
French (fr)
Inventor
龙星宇
钟延宗
上官声长
宋超迪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680025212.2A priority Critical patent/CN107534465B/zh
Priority to EP16897516.7A priority patent/EP3407505B1/en
Priority to US16/090,449 priority patent/US10469153B2/en
Priority to PCT/CN2016/078498 priority patent/WO2017173581A1/zh
Publication of WO2017173581A1 publication Critical patent/WO2017173581A1/zh
Priority to US16/586,369 priority patent/US10659136B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing

Definitions

  • the present invention relates to communication technologies, and in particular, to an antenna measurement method and a terminal.
  • Some existing mobile terminals may set multiple antennas at different positions inside the terminal, and different modules in the terminal, such as the main set of the main mode of the multi-card multi-mode terminal, the diversity of the main mode, the main set of the sub-module, and the sub-module For diversity, etc., different antennas in the terminal will be used. If a fixed antenna is set for different modules, when the user uses the terminal and just holds the antenna corresponding to the working module, the communication performance of the working module is attenuated, resulting in a high call drop rate or a dropped rate.
  • a method for antenna measurement selection is proposed in the prior art, and no fixed antenna is set for different modules in the terminal, but the antenna is measured and selected by the module when the module needs to use the antenna.
  • different modules of the terminal have different priorities, and the highest priority module can select two antennas to measure and select one of them as the final.
  • the antennas used, except for the highest priority modules, do not have the ability to measure and select antennas.
  • the antennas that these modules can use are determined by the inherent hardware connections.
  • the embodiment of the invention provides an antenna measurement method and a terminal, which are used to solve the problem of high call drop rate or drop rate in the prior art.
  • a first aspect of the present invention provides an antenna measurement method, the method being applied to a terminal including at least two antenna selection modules, the method comprising:
  • the first antenna selection module with high priority in the terminal determines at least two antennas to be tested, and the determined at least two antennas to be tested are used as the first measurement antenna, and the first measurement antenna is added to the occupied antenna set. And further, the first antenna selection module determines a measurement duration of the first measurement antenna; Further, the first antenna selection module performs a measurement operation on the first measurement antenna.
  • the second antenna selection module having a lower priority than the first antenna selection module determines the second measurement antenna and the second according to the measured antenna set and the measurement duration of the first measurement antenna, based on the measurement operation performed by the first antenna selection module. Measuring the measurement duration of the antenna and adding the second measurement antenna to the occupied antenna set; and further, the second antenna selection module performs a measurement operation on the second measurement antenna.
  • the first antenna selection module and the second antenna selection module determine measurement results of the first measurement antenna and the second measurement antenna when passing the measurement duration of the first measurement antenna.
  • the first antenna selection module and the second antenna selection module are modules in the terminal that can independently use the antenna.
  • the second antenna selection module may perform the antenna measurement operation while the first antenna selection module performs the antenna measurement operation, that is, all the modules in the terminal have the right of antenna measurement and selection, thereby ensuring that all modules are You can choose a better quality antenna.
  • the second antenna selection module determines the measurement duration of the second measurement antenna and the second measurement antenna according to the occupied antenna set and the measurement duration of the first measurement antenna, including:
  • the second antenna selection module acquires the measured antenna set and the measurement duration of the first measurement antenna
  • the second antenna selection module determines the second measurement antenna according to the occupied antenna set
  • the second antenna selection module calculates a difference between a measurement duration of the first measurement antenna and a duration of determining the second measurement antenna by the second antenna selection module, where the difference is used as the second measurement antenna The measurement duration.
  • the second antenna selection module acquires the measured antenna set and the measurement duration of the first measurement antenna, including:
  • the first antenna selection module sends a notification message to the second antenna module, where the notification message includes the occupied antenna set and the measurement duration of the first measurement antenna;
  • the second antenna selection module receives the notification message, and obtains the measured antenna set and the measurement duration of the first measurement antenna from the notification message.
  • the second antenna selection module acquires the occupied antenna set And a measurement duration of the first measurement antenna, including:
  • the second antenna selection module acquires the occupied antenna set and the measurement duration of the first measurement antenna from a preset storage unit.
  • the second antenna selection module determines the second measurement antenna according to the occupied antenna set, including:
  • the second antenna selection module selects at least two antennas to be tested as the second measurement antenna from the antennas to be tested other than the occupied antenna set. That is, the measurement antenna selected by the second antenna selection module does not overlap with the measurement antennas of all the previous modules.
  • the occupied antenna set includes an occupied time period of each occupied antenna of the terminal, and correspondingly, the second antenna selection module is configured according to the occupied antenna.
  • the determining determines the second measurement antenna, including:
  • the second antenna selection module selects at least one antenna from the set of occupied antennas as an antenna to be occupied;
  • the second antenna selection module determines the occupied time period of the antenna to be occupied, so that the occupied time period of the antenna to be occupied and the occupied time of other occupied antennas except the antenna to be occupied in the occupied antenna set Segments do not overlap;
  • the second antenna selection module selects at least one antenna to be tested from the antennas to be tested other than the set of occupied antennas, and determines an occupied period of time of the at least one antenna to be tested;
  • the second antenna selection module uses the at least one antenna under test and the set of antennas to be occupied as the second measurement antenna.
  • the method further includes:
  • the first antenna selection module writes the occupied antenna set and the measurement duration of the first measurement antenna into the preset storage unit.
  • the method further includes:
  • the second antenna selection module writes the measured antenna set and the measurement duration of the second measurement antenna into the preset storage unit.
  • the first antenna selection module and the second antenna selection module determine the first measurement antenna and the The measurement results of the second measurement antenna include:
  • the second antenna selection module If the second antenna selection module does not complete the measurement of the second measurement antenna when the measurement duration of the first measurement antenna passes, the second antenna selection module stops performing the measurement operation, and the second The measurement result of the antenna that has completed the measurement in the antenna is measured as the measurement result of the second measurement antenna.
  • the method further includes:
  • the first antenna selection module acquires the measurement duration of the first measurement antenna and the first measurement antenna from a preset configuration table
  • the second antenna selection module acquires the measurement duration of the second measurement antenna and the second measurement antenna from a preset configuration table.
  • a second aspect of the present invention provides a terminal, where the terminal includes a first antenna selection module and a second antenna selection module;
  • the first antenna selection module includes a first determining unit and a first measuring unit
  • the first determining unit is configured to determine at least two antennas to be tested, and determine the at least two measured antennas as the first measurement antenna, and add the first measurement antenna to the occupied antenna set;
  • the first determining unit is further configured to determine a measurement duration of the first measurement antenna
  • the first measuring unit is configured to perform a measurement operation on the first measurement antenna
  • the second antenna measuring unit includes a second determining unit and a second measuring unit;
  • the second determining unit is configured to determine, according to the occupied antenna set and the measurement duration of the first measurement antenna, a measurement duration of the second measurement antenna and the second measurement antenna, and the second measurement antenna Joining the occupied antenna set;
  • the second measuring unit is configured to perform a measurement operation on the second measurement antenna
  • the first measurement unit and the second measurement unit determine measurement results of the first measurement antenna and the second measurement antenna when passing the measurement duration of the first measurement antenna;
  • the first antenna selection module and the second antenna selection module are modules in the terminal that can independently use an antenna, and the second antenna selection module selects the antenna under test to have a lower priority than the first antenna selection module.
  • the second antenna selection module further includes: a second acquisition unit and a second calculation unit;
  • the second acquiring unit is configured to acquire the measured antenna set and the measurement duration of the first measurement antenna
  • the second determining unit is further configured to determine the second measurement antenna according to the occupied antenna set;
  • the second calculating unit is configured to calculate a difference between a measurement duration of the first measurement antenna and a duration of determining the second measurement antenna by the second antenna selection module, where the difference is used as the second Measure the measurement duration of the antenna.
  • the second obtaining unit is specifically configured to:
  • the first antenna module And receiving, by the first antenna module, a notification message, where the notification message includes the occupied antenna set and a measurement duration of the first measurement antenna;
  • the second obtaining unit is further used to:
  • the second determining unit is specifically configured to:
  • the occupied antenna set includes an occupied time period of each occupied antenna of the terminal, and the second determining unit is further configured to:
  • At least one antenna from the set of occupied antennas as the antenna to be occupied; determining an occupied time period of the antenna to be occupied, so that the occupied time period of the antenna to be occupied and the occupied antenna set are occupied except for The occupied time periods of other occupied antennas outside the antenna do not overlap; at least one antenna under test is selected from the antennas to be tested other than the set of occupied antennas, and the occupied time period of the at least one antenna under test is determined. And using the at least one antenna under test and the set of antennas to be occupied as the second measurement antenna.
  • the first antenna selection module further includes:
  • a first writing unit configured to write the occupied antenna set and the measurement duration of the first measurement antenna into the preset storage unit.
  • the second antenna selection module further includes:
  • a second writing unit configured to write the measured antenna set and the measurement duration of the second measurement antenna into the preset storage unit.
  • the first measurement unit and the second measurement unit determine the first measurement antenna and the second measurement antenna when passing the measurement duration of the first measurement antenna
  • the measurement results are as follows:
  • the second measurement unit does not complete the measurement of the second measurement antenna, the second measurement unit stops performing the measurement operation, and the second measurement antenna is The measurement result of the antenna in which the measurement has been completed is taken as the measurement result of the second measurement antenna.
  • the first antenna selection module further includes:
  • a first acquiring unit configured to acquire, from the preset configuration table, a measurement duration of the first measurement antenna and the first measurement antenna
  • the second obtaining unit is further configured to acquire, by using a preset configuration table, a measurement duration of the second measurement antenna and the second measurement antenna.
  • a third aspect of the present invention provides a terminal, including a memory and a processor, wherein the memory is configured to store program instructions, and the processor is configured to call a program instruction in the memory to execute the following method:
  • the processor controls the first antenna selection module to perform:
  • the processor controls the second antenna selection module to perform:
  • the processor controls the first antenna selection module and the second antenna selection module to perform:
  • the first antenna selection module and the second antenna selection module are In a module that uses an antenna independently, the second antenna selection module selects the antenna under test to have a lower priority than the first antenna selection module.
  • the processor is specifically used to:
  • the processor is further specifically configured to:
  • the processor is further specifically configured to:
  • the processor is further specifically configured to:
  • the occupied antenna set includes an occupied time period of each occupied antenna of the terminal, and correspondingly, the processor is further configured to:
  • a set of the at least one antenna under test and the antenna to be occupied is used as the second measurement antenna.
  • the processor is further specifically configured to:
  • the processor is further specifically configured to:
  • the processor is further specifically configured to:
  • the measurement operation is stopped, and the measurement result of the antenna that has completed the measurement in the second measurement antenna is taken as the measurement result of the second measurement antenna.
  • the processor is further specifically configured to:
  • the preset configuration table is used to indicate a correspondence between an antenna selection module, a measurement antenna, and a measurement duration.
  • the first antenna selection module includes at least: a main set of the main mode, a diversity of the main mode, a main set of the sub mode, and a diversity of the sub mode.
  • all antenna selection modules in the terminal can perform antenna measurement in parallel, so that communication performance of all antenna selection modules in the terminal is improved. Reduce call drop rate and drop rate.
  • FIG. 1 is a schematic diagram of a terminal according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart diagram of Embodiment 1 of an antenna measurement method according to an embodiment of the present disclosure
  • 3 is a diagram showing an example of performing a complete measurement process for each module in the terminal
  • FIG. 4 is a schematic flowchart diagram of Embodiment 2 of an antenna measurement method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of antenna measurement by means of a notification message between modules
  • FIG. 6 is a schematic flowchart diagram of Embodiment 3 of an antenna measurement manner according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of comparison of two ways of determining a second measurement antenna according to a set of occupied antennas
  • FIG. 8 is a block diagram of a first embodiment of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram of a second embodiment of a terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a block diagram of a third embodiment of a terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of a fourth embodiment of a terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a fifth embodiment of a terminal according to an embodiment of the present disclosure.
  • the terminal 100 includes a transmitting circuit 1002, a receiving circuit 1003, a power controller 1004, a processor 1006, a memory 1007, and an antenna 1001.
  • the processor 1006 controls the operation of the terminal 100.
  • the memory 1007 can include read only memory and random access memory and provides instructions and data to the processor 1006.
  • Memory 1007 A part of it may also include a non-volatile random access memory (Nonvolatile RAM, abbreviated as NVRAM).
  • NVRAM non-volatile random access memory
  • the terminal 100 may be embedded or may itself be a wireless communication device such as a mobile phone, and may further include a carrier accommodating the transmitting circuit 1002 and the receiving circuit 1003 to allow data transmission between the terminal 100 and a remote location.
  • Transmitting circuit 1002 and receiving circuit 1003 can be coupled to antenna 1001.
  • the antenna 1001 may include a plurality of components, and the components of the terminal 100 are coupled together by a bus system 3100.
  • the bus system 3100 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as the bus system 3100 in the figure.
  • the terminal 100 may also include a decoding processor 1005.
  • the terminal 100 further includes an antenna selection module 1008.
  • the antenna selection module is a module in the terminal that can independently use an antenna to transmit or receive signals, that is, can interact with the antenna 1001 through the transmitting circuit 1002 and the receiving circuit 1003. A plurality of antenna selection modules may be included in the terminal.
  • the antenna selection module described below in the embodiment of the present invention can be regarded as a specific example of the antenna selection module 1008.
  • the terminal has a plurality of modules that can independently transmit and receive signals using antennas.
  • the modules with the highest priority among the modules have the right to measure and select antennas, while other modules do not have The right to measure and select an antenna can only rely on the inherent hardware connection to measure and select the antenna. Therefore, the solution provided by the prior art only provides antenna measurement and selection rights for the module with the highest priority among the terminals, and other modules cannot measure and select the optimal antenna even when there is an idle optimal antenna.
  • the prior art even for the highest level module, the prior art only allows it to measure two antennas and finally select one antenna. If the two antennas are not the best antenna, and the best antenna is idle, The highest level module still cannot measure and select this best antenna.
  • the above problems of the prior art cause the communication performance of the modules in the terminal to be unguaranteed.
  • an embodiment of the present invention provides an antenna measurement method, which allows all modules in a terminal to perform antenna measurement in parallel in the same time period, that is, all modules have the right to measure and select antennas, The module then performs subsequent antenna selection based on the measurement results of the antenna to ensure communication performance of all modules.
  • the “antenna selection module” in the embodiment of the present invention refers to a module in the terminal that can independently use an antenna to transmit or receive signals, including but not limited to: a main set of a main mode (main card).
  • the division of the main model (main card), the main set of the submodule (sub card), and the submodule (sub card) Set primary mode (primary card) subcarrier main set, main mode (primary card) subcarrier diversity, LTE and voice network synchronization support (Simultaneous Voice and LTE, SVLTE for short) code division multiple access (Code Division Multiple Access , referred to as CDMA) main set, SVLTE CDMA diversity, SVLTE LTE main set, SVLTE LTE diversity, Wireless Fidelity (WIFI).
  • CDMA Code Division Multiple Access
  • Embodiment 1 of an antenna measurement method is a terminal including at least two antenna selection modules.
  • the method includes:
  • the first antenna selection module in the terminal determines at least two antennas to be tested, and the determined at least two antennas to be tested are used as the first measurement antenna, and the first measurement antenna is added to the occupied antenna set.
  • the first antenna selection module and the second antenna selection module described below are modules of the terminal that can independently use the antenna, and the second antenna selection module selects the antenna to be tested to have a lower priority than the first antenna selection module. That is, the antenna measurement is initiated from the highest priority module and the antenna measurement operation is performed down step by step.
  • the terminal includes multiple modules, and includes multiple antennas that can be used for multiple modules.
  • multiple modules measure all antennas in the terminal, and then according to the measurement results. Make antenna selection.
  • Each module in the terminal for example, the first selection module in this embodiment selects at least two of the measurements for each measurement, and therefore each module in the terminal may need to perform multiple antenna measurements.
  • the embodiment is executed multiple times to finally complete all antenna measurements.
  • the selected antenna is added to the above occupied antenna set.
  • This set is used to record the occupied antennas during each measurement, and is constantly updated by each module during the antenna measurement process. For example, if the first selection module is the highest priority Module, the occupied antenna set is empty at this time, and the first selection module writes the occupied antenna information to the set when the measurement antenna is selected, for example, antennas numbered 1 and 3 are occupied, and the next selection module performs antenna selection.
  • antennas numbered 1 and 3 are already occupied according to the occupied antenna information recorded in the set, antennas other than numbers 1 and 3, such as antennas numbered 4 and 7, are selected, and the selected ones are selected.
  • the result is written into the set, after which the subsequent modules add new values to the set in turn, thereby avoiding antenna selection conflicts due to antenna occupancy during antenna measurement.
  • the first antenna selection module determines a measurement duration of the first measurement antenna.
  • the measurement duration of the antenna to be measured is determined according to the actual situation of the selected antenna.
  • the measurement duration corresponding to the selected antenna can be directly used as the measurement duration; if the module is not the highest priority, it needs to be based on the higher priority.
  • the specified time is used to determine the measurement duration.
  • the first antenna selection module performs a measurement operation on the first measurement antenna.
  • the second antenna selection module determines a measurement duration of the second measurement antenna and the second measurement antenna according to the collected antenna set and the measurement duration of the first measurement antenna, and adds the second measurement antenna to the occupied antenna set.
  • the second antenna selection module is regarded as a module with low priority among the two modules having interaction, and the second selection module also starts measurement during the operation of the first selection module, that is, parallel between the modules is realized. Antenna measurement.
  • the measurement antenna and the measurement duration that can be selected by the second selection module need to be determined based on the module with the higher priority level of the interaction with the module.
  • the second antenna selection module performs a measurement operation on the second measurement antenna.
  • the first antenna selection module and the second antenna selection module determine measurement results of the first measurement antenna and the second measurement antenna.
  • the actual measurement time of the module of the next priority cannot be determined by itself, but is determined by the module of the previous priority, and the measurement time of the module of the next priority must be prioritized.
  • this ensures that after each measurement, the highest priority module determines a measurement time, and the measurement time of each lower priority module is within this time range, ie: each module is At the end of the measurement period of the first measurement antenna, the measurement is ended at the same time, so that in one measurement process, each module can participate in antenna selection, each antenna may be measured, and no antenna measurement conflict occurs in the next measurement process. .
  • all modules in the terminal can have the right of antenna measurement and selection, that is, the antenna measurement can be completed in parallel in a unified time period, so that not only all modules can select a better quality antenna, but also Antenna measurements do not collide and efficiency increases due to antenna measurements performed in parallel.
  • each module is allowed to select at least two antennas for measurement each time, and finally all the antennas in the terminal are measured once, thereby ensuring that each module can select the best quality antenna according to the measurement result.
  • FIG. 3 is a diagram showing an example of performing a complete measurement process for each module in the terminal.
  • the priority of module 1 is higher than the priority of module 2, and the terminal includes 4 antennas, and each antenna is selected.
  • Each step in FIG. 3 represents performing an antenna measurement in which all modules corresponding to the above embodiment participate. Through the process shown in Figure 3, all antenna measurement modules in the terminal complete the measurement of all the antennas in the terminal.
  • module 1 performs multiple rounds of measurements on antennas 1 and 3, and determines the average result based on the results of multiple rounds of measurements.
  • Module 2 performs multiple rounds of measurements on antennas 0 and 2, and The results of multiple rounds of measurements determine the average result.
  • FIG. 4 is a schematic flowchart of Embodiment 2 of an antenna measurement method according to an embodiment of the present invention.
  • the foregoing Step S104 may specifically include:
  • the second antenna selection module acquires the measured antenna set and the measurement duration of the first measurement antenna.
  • the set of occupied antennas and the measurement duration of the first measurement antenna are determined by the first antenna selection module having a higher priority, and then notified to the second selection module by a specific manner, such as message notification, writing to a preset unit, and the like.
  • the second antenna selection module determines the second measurement antenna according to the occupied antenna set.
  • the second antenna selection module calculates a difference between a measurement duration of the first measurement antenna and a duration of the second measurement antenna determined by the second antenna selection module, where the difference is used as a measurement duration of the second measurement antenna.
  • the measurement duration of the second measurement antenna of the second antenna selection module is determined by the module of the previous priority, and the measurement duration of the second measurement antenna of the second antenna selection module must be in the module of the previous priority. The range of measurement durations. If the second selection module has not completed the measurement of the second measurement antenna when the measurement time of the first measurement antenna has passed for some reason, the second antenna selection module needs to stop performing the measurement operation to ensure that the measurement operation does not conflict. At the same time, the second antenna selection module uses the measurement result of the antenna that has completed the measurement in the second measurement antenna as the measurement result of the second measurement antenna.
  • this embodiment relates to a manner in which the second antenna selection module acquires the occupied antenna set and the measurement duration of the first measurement antenna. That is, one embodiment of the above step S201 is:
  • the first antenna selection module sends a notification message to the second antenna module, where the notification message includes the occupied antenna set and the measurement duration of the first measurement antenna.
  • the second antenna selection module receives the notification message and obtains the measured antenna set and the measurement duration of the first measurement antenna from the notification message.
  • the module in the terminal transmits the occupied antenna and the measurement duration information by means of message interaction during each antenna measurement process.
  • the manner in which the message is exchanged enables the second antenna selection module to start performing the antenna measurement process after receiving the notification message, that is, the antenna measurement can be started without an additional trigger condition, which can save time overhead for each antenna measurement.
  • FIG. 5 is a schematic diagram of antenna measurement by means of a notification message between modules.
  • module 1 there are three antenna selection modules in the terminal, namely, module 1, module 2, and module 3, and module 1 has the highest priority. 3 has the lowest priority, and each module measures 2 antennas at a time, then the antenna measurement is initiated by module 1.
  • module 1 After selecting the measurement antenna and determining the antenna measurement duration, module 1 notifies the module 2 by using the message. 2 On this basis, the occupied antenna is added and the measurement duration is re-determined, and the information is notified to the module 3 through the message, and the modules 1, 2, and 3 end the measurement at the same time, and the measurement of the measurement antenna is completed for the first time.
  • Figure 5 only shows the indication of the first measurement.
  • the modules 1, 2, and 3 in the terminal will perform the above steps again.
  • the measurement antenna and the measurement duration are performed, the antenna measurement is performed, and the information occupying the antenna set and the measurement duration is transmitted to the operation of the next-level module, thereby completing the second, third or more measurements until each module completes the terminal In the measurement of all antennas, each module selects the best antenna to be tested based on multiple measurements.
  • this embodiment relates to another manner in which the second antenna selection module acquires the occupied antenna set and the measurement duration of the first measurement antenna. That is, another embodiment of the above step S201 is:
  • the second antenna selection module acquires the occupied antenna set and the measurement duration of the first measurement antenna from the preset storage unit.
  • the second antenna selection module actively reads the occupied antenna set and the measurement duration of the first measurement antenna in the preset storage unit when the antenna measurement is required, and the content in the preset storage unit is high.
  • the priority module is written when making antenna measurements.
  • the acquisition mode of the embodiment does not need to wait for the notification message of the high-priority module, but is actively started by the module itself according to actual needs, so that the measurement requirements of each module can be more satisfied. .
  • the second antenna selection module acquires the occupied antenna set and the measurement duration of the first measurement antenna from the preset storage unit
  • the first antenna selection module performs the measurement operation on the first measurement antenna
  • the occupied antenna set and the measurement duration of the first measurement antenna are written into the preset storage unit. In this way, the second antenna selection module can ensure that the correct information is obtained.
  • the second antenna selection module After performing the measurement operation on the second measurement antenna, the second antenna selection module also writes the new occupied antenna set and the measurement duration of the second measurement antenna into the preset storage unit, thereby ensuring the next priority. Level modules get the right information.
  • the embodiment relates to a manner in which the second antenna selection module determines the second measurement antenna according to the occupied antenna set. That is, one embodiment of the above step S202 is:
  • the second antenna selection module selects at least two measured antennas from the measured antennas other than the occupied antenna set as the second measurement antenna.
  • the occupied antenna set corresponding to the mode includes only the identifier of the occupied antenna in the tested antenna of the terminal.
  • the identifier of the occupied antenna may be: the name, number of the occupied antenna or its He has taken up the performance parameters of the antenna.
  • FIG. 6 is a schematic flowchart of Embodiment 3 of an antenna measurement method according to an embodiment of the present invention.
  • the occupied antenna set corresponding to the embodiment includes an occupied time period of each occupied antenna in the tested antenna of the terminal, as shown in FIG. 6 .
  • another embodiment of the above step S202 is:
  • the second antenna selection module selects at least one antenna from the set of occupied antennas as the antenna to be occupied.
  • the second antenna selection module determines an occupied time period of the antenna to be occupied, so that the occupied time period of the antenna to be occupied does not overlap with the occupied time period of the occupied antenna except the antenna to be occupied.
  • the second antenna selection module selects at least one antenna to be tested from the antennas to be tested other than the occupied antenna set, and determines an occupied time period of the at least one antenna to be tested.
  • the second antenna selection module uses the at least one antenna to be tested and the set of antennas to be occupied as the second measurement antenna.
  • the occupied time period of each occupied antenna of the tested antenna including the terminal in the occupied antenna set since the set includes the occupied time period of occupying the antenna, when the second antenna selection module also wants to measure When an antenna is occupied in the set, it can be selected to be measured in other non-conflicting time periods. This will not affect the measurement of the antenna by other modules, but also the measurement requirements of the second antenna selection module.
  • the occupied antenna set may further include an identifier of the occupied antenna in the tested antenna of the terminal.
  • FIG. 7 is a schematic diagram of the comparison of the two methods for determining the second measurement antenna according to the set of occupied antennas.
  • A indicates that the occupied antenna set only includes the antenna identifier
  • B indicates that the occupied antenna set includes The antenna identification and the way the antenna occupies the time period.
  • the lower priority modules can no longer select antennas 0 and 1 for measurement.
  • the low priority modules are also The antenna 1 can be measured using the time when the antenna 1 is not occupied.
  • the first antenna selection module and the second antenna selection module may also acquire the measurement antenna and the measurement duration by querying the configuration table.
  • the first antenna selection module acquires the measurement duration of the first measurement antenna and the first measurement antenna from the preset configuration table; the second antenna selection module acquires the second measurement antenna and the second measurement antenna from the preset configuration table. Measuring time.
  • the preset configuration table is used to indicate a correspondence between an antenna selection module, a measurement antenna, and a measurement duration.
  • the antenna to be measured by each module and the length of time required for measurement can be pre-configured.
  • the antenna that meets the current time is directly measured in the preset configuration table according to the current time.
  • This method only needs to be configured in advance, and no additional operations are required during the measurement process, so that no conflicts between modules and high execution efficiency can be achieved.
  • FIG. 8 is a block diagram of a first embodiment of a terminal according to an embodiment of the present invention.
  • the terminal includes at least two antenna selection modules. As shown in FIG. 8, the terminal includes: a first antenna selection module 601 and a second antenna. Module 602 is selected.
  • the first antenna selection module 601 includes a first determination unit 6011 and a first measurement unit 6012.
  • the first determining unit 6011 is configured to determine at least two antennas to be tested, and determine the at least two measured antennas as the first measurement antenna, and add the first measurement antenna to the occupied antenna set.
  • the first determining unit 6011 is further configured to determine a measurement duration of the first measurement antenna
  • the first measuring unit 6012 is configured to perform a measurement operation on the first measurement antenna.
  • the second antenna selection module 602 includes a second determination unit 6021 and a second measurement unit 6022.
  • the second determining unit 6021 is configured to determine a measurement duration of the second measurement antenna and the second measurement antenna according to the collected antenna set and the measurement duration of the first measurement antenna, and add the second measurement antenna to the occupied antenna set.
  • the second measuring unit 6022 is configured to perform a measurement operation on the second measurement antenna.
  • the first measurement unit 6012 and the second measurement unit 6022 determine the measurement results of the first measurement antenna and the second measurement antenna.
  • the first antenna selection module 601 and the second antenna selection module 602 are modules in the terminal that can independently use the antenna, and the second antenna selection module 602 selects the antenna to be tested to have a lower priority than the first antenna.
  • the terminal is used to implement the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a block diagram of a second embodiment of the terminal according to the embodiment of the present invention.
  • the second antenna selection module 602 further includes a second obtaining unit 6023 and a second calculating unit 6024.
  • the second obtaining unit 6023 is configured to acquire the collected antenna set and the measurement duration of the first measurement antenna.
  • the second determining unit 6021 is further configured to determine the second measurement antenna according to the occupied antenna set.
  • the second calculating unit 6024 is configured to calculate a difference between the measurement duration of the first measurement antenna and the duration of the second measurement antenna determined by the second antenna selection module, and use the difference as the measurement duration of the second measurement antenna.
  • the second obtaining unit 6023 is specifically configured to:
  • the notification message sent by the first antenna module 601 is received, where the notification message includes the occupied antenna set and the measurement duration of the first measurement antenna.
  • the set of occupied antennas and the measurement duration of the first measurement antenna are obtained from the notification message.
  • the second obtaining unit 6023 is further specifically configured to:
  • the second determining unit 6021 is further specifically configured to:
  • At least two antennas to be tested are selected as the second measurement antenna from the antennas to be measured other than the set of occupied antennas.
  • the occupied time period of each occupied antenna of the tested antennas in the occupied antenna set is included, and correspondingly, the second determining unit 6021 is further configured to:
  • At least one antenna from the set of occupied antennas as the antenna to be occupied; determining the occupied time period of the antenna to be occupied, so that the occupied time period of the antenna to be occupied and other occupied antennas other than the antenna to be occupied in the occupied antenna set
  • the occupied time periods are not overlapped; at least one antenna to be tested is selected from the antennas to be tested other than the set of occupied antennas, and the occupied time period of the at least one antenna to be tested is determined; the at least one antenna to be tested is compared with the above
  • the set of antennas to be occupied serves as a second measurement antenna.
  • FIG. 10 is a block diagram of a third embodiment of a terminal according to an embodiment of the present invention.
  • the first antenna selection module 601 further includes a first writing unit 6013.
  • the first writing unit 6013 is configured to write the occupied antenna set and the measurement duration of the first measurement antenna into the preset storage unit.
  • FIG. 11 is a block diagram of a fourth embodiment of a terminal according to an embodiment of the present invention. As shown in FIG. 11, the second antenna selection module 602 further includes a second write unit 6025.
  • the second writing unit 6025 is configured to write the measured antenna duration of the occupied antenna set and the second measurement antenna into the preset storage unit.
  • the first measurement unit and the second measurement unit determine the measurement results of the first measurement antenna and the second measurement antenna, specifically:
  • the second measurement unit If the measurement period of the first measurement antenna passes, the second measurement unit does not complete the measurement of the second measurement antenna, the second measurement unit stops performing the measurement operation, and the measurement result of the antenna that has completed the measurement in the second measurement antenna is taken as The measurement result of the second measurement antenna.
  • FIG. 12 is a block diagram of a module in a fifth embodiment of the present invention. As shown in FIG. 12, the first antenna selection module 601 further includes a first acquiring unit 6014.
  • the first obtaining unit 6014 is configured to obtain, from the preset configuration table, a measurement duration of the first measurement antenna and the first measurement antenna.
  • the second obtaining unit 6023 is further specifically configured to:
  • the measurement durations of the second measurement antenna and the second measurement antenna are obtained from the preset configuration table.
  • the preset configuration table is used to indicate a correspondence relationship between the antenna selection module, the measurement antenna, and the measurement duration.
  • the first antenna selection module 601 includes at least: a main set of the main mode, a diversity of the main mode, a main set of the sub mode, and a diversity of the sub mode.
  • the embodiment of the present invention further provides a terminal as shown in FIG. 1 , which includes a memory 1007 and a processor 1006.
  • the memory 1007 is configured to store program instructions, and the processor 1006 is configured to call the program instructions in the memory 1007 to perform the following methods:
  • the processor 1006 controls the first antenna selection module to execute:
  • the processor 1006 controls the second antenna selection module to execute:
  • the processor 1006 controls the first antenna selection module and the second antenna selection module to perform:
  • the first antenna selection module and the second antenna selection module are modules in the terminal that can independently use an antenna, and the second antenna selection module selects the antenna under test to have a lower priority than the first antenna selection module.
  • An antenna selection module is
  • processor 1006 is specifically configured to:
  • processor 1006 is further specifically configured to:
  • processor 1006 is further specifically configured to:
  • processor 1006 is further specifically configured to:
  • the occupied antenna set includes an occupied time period of each of the tested antennas of the terminal, and correspondingly, the processor 1006 is further configured to:
  • a set of the at least one antenna under test and the antenna to be occupied is used as the second measurement antenna.
  • processor 1006 is further specifically configured to:
  • processor 1006 is further specifically configured to:
  • processor 1006 is further specifically configured to:
  • the measurement operation is stopped, and the measurement result of the antenna that has completed the measurement in the second measurement antenna is taken as the measurement result of the second measurement antenna.
  • processor 1006 is further specifically configured to:
  • the preset configuration table is used to indicate a correspondence relationship between the antenna selection module, the measurement antenna, and the measurement duration.
  • the first antenna selection module includes at least: a main set of the main mode, a diversity of the main mode, a main set of the sub mode, and a diversity of the sub mode.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

一种天线测量方法及终端,该方法包括:终端中的第一天线选择模块确定至少两根被测天线,将确定出的至少两根被测天线作为第一测量天线,并将所述第一测量天线加入已占用天线集合中(S101),并确定第一测量天线的测量时长(S102),再对第一测量天线执行测量操作(S103);第二天线选择模块根据已占用天线集合和第一测量天线的测量时长确定第二测量天线以及第二测量天线的测量时长,并将所述第二测量天线加入所述已占用天线集合中(S104),并对第二测量天线执行测量操作(S105),当经过第一测量天线的测量时长时,第一天线选择模块和第二天线选择模块确定第一测量天线和第二测量天线的测量结果(S106)。该方法使得终端中的所有模块可以并行执行天线测量,从而使得各模块的通信性能得到提升。

Description

天线测量方法及终端 技术领域
本发明涉及通信技术,尤其涉及一种天线测量方法及终端。
背景技术
现有的部分移动终端会在终端内部的不同位置设置多根天线,终端中的不同模块,例如多卡多模终端的主模的主集、主模的分集、副模的主集、副模的分集等,会使用终端中的不同天线。如果给不同模块设置固定的天线,则当用户使用终端时正好握住了正在工作的模块对应的天线,则会使得正在工作的模块的通信性能衰减,导致高的掉话率或掉网率。
为解决上述问题,现有技术中提出了一种天线测量选择的方法,不再为终端中的不同模块设置固定的天线,而是在模块需要使用天线时由模块来测量和选择天线。具体地,例如在长期演进(Long Term Evolution,简称LTE)系统中,终端的不同模块具有不同的优先级,最高优先级的模块可以选定两根天线来来测量,并从中选择其一作为最终使用的天线,除最高优先级模块之外的其他模块不具备天线测量和选择的能力,这些模块可以使用的天线由固有的硬件连接来决定。
但是,现有技术所采用的方案并不能保证终端中的所有模块的通信性能得到保障,还是会存在高的掉话率或掉网率的问题。
发明内容
本发明实施例提供一种天线测量方法及终端,用于解决现有技术中所存在的高的掉话率或掉网率的问题。
本发明第一方面提供一种天线测量方法,该方法应用于包括至少两个天线选择模块的终端中,该方法包括:
终端中的具有高优先级的第一天线选择模块确定至少两根被测天线,将确定出的至少两根被测天线作为第一测量天线,并将该第一测量天线加入已占用天线集合中;进而,第一天线选择模块确定第一测量天线的测量时长; 进而,第一天线选择模块对第一测量天线执行测量操作。
优先级低于第一天线选择模块的第二天线选择模块在第一天线选择模块执行测量操作的基础上,根据上述已占用天线集合以及第一测量天线的测量时长确定第二测量天线以及第二测量天线的测量时长,并将第二测量天线加入已占用天线集合中;进而,第二天线选择模块对第二测量天线执行测量操作。
当经过第一测量天线的测量时长时,第一天线选择模块和第二天线选择模块确定第一测量天线和第二测量天线的测量结果。
其中,上述第一天线选择模块及上述第二天线选择模块为终端中可以独立使用天线的模块。在上述过程中,第二天线选择模块可以在第一天线选择模块执行天线测量操作的同时也执行天线测量操作,即使得终端中的所有模块都具有天线测量和选择的权利,从而保证所有模块都可以选择到质量较好的天线。
在一种可能的设计中,第二天线选择模块根据所述已占用天线集合以及所述第一测量天线的测量时长确定第二测量天线以及所述第二测量天线的测量时长,包括:
所述第二天线选择模块获取所述已占用天线集合以及所述第一测量天线的测量时长;
所述第二天线选择模块根据所述已占用天线集合确定所述第二测量天线;
所述第二天线选择模块计算所述第一测量天线的测量时长与所述第二天线选择模块确定所述第二测量天线的时长的差值,将所述差值作为所述第二测量天线的测量时长。
在一种可能的设计中,第二天线选择模块获取所述已占用天线集合以及所述第一测量天线的测量时长,包括:
所述第一天线选择模块向所述第二天线模块发送一条通知消息,这条通知消息中包括所述已占用天线集合以及所述第一测量天线的测量时长;
所述第二天线选择模块接收这条通知消息,并从该通知消息中获取所述已占用天线集合以及所述第一测量天线的测量时长。
在一种可能的设计中,所述第二天线选择模块获取所述已占用天线集合 以及所述第一测量天线的测量时长,包括:
所述第二天线选择模块从预设存储单元中获取所述已占用天线集合以及所述第一测量天线的测量时长。
在一种可能的设计中,所述第二天线选择模块根据所述已占用天线集合确定所述第二测量天线,包括:
所述第二天线选择模块从所述已占用天线集合之外的被测天线中选择至少两根被测天线作为所述第二测量天线。即第二天线选择模块所选择的测量天线与其之前的所有模块的测量天线都不重叠。
在一种可能的设计中,所述已占用天线集合中包括所述终端的被测天线中每个已占用天线的占用时间段,相应地,所述第二天线选择模块根据所述已占用天线集合确定所述第二测量天线,包括:
所述第二天线选择模块从所述已占用天线集合中选择至少一个天线作为待占用天线;
所述第二天线选择模块确定所述待占用天线的占用时间段,以使所述待占用天线的占用时间段与所述已占用天线集合中除待占用天线外的其他已占用天线的占用时间段不重叠;
所述第二天线选择模块从所述已占用天线集合之外的被测天线中选择至少一根被测天线,并确定所述至少一根被测天线的占用时间段;
所述第二天线选择模块将所述至少一根被测天线与所述待占用天线的集合作为所述第二测量天线。
在一种可能的设计中,所述第一天线选择模块对所述第一测量天线执行测量操作之后,还包括:
所述第一天线选择模块将所述已占用天线集合以及所述第一测量天线的测量时长写入所述预设存储单元中。
在一种可能的设计中,所述第二天线选择模块对所述第二测量天线执行测量操作之后,还包括:
所述第二天线选择模块将所述已占用天线集合以及所述第二测量天线的测量时长写入所述预设存储单元中。
在一种可能的设计中,所述当经过所述第一测量天线的测量时长时,所述第一天线选择模块和所述第二天线选择模块确定所述第一测量天线和所述 第二测量天线的测量结果,包括:
若经过所述第一测量天线的测量时长时,所述第二天线选择模块未完成所述第二测量天线的测量,则所述第二天线选择模块停止执行测量操作,并将所述第二测量天线中已完成测量的天线的测量结果作为所述第二测量天线的测量结果。
在一种可能的设计中,该方法还包括:
所述第一天线选择模块从预设配置表中获取所述第一测量天线及所述第一测量天线的测量时长;
所述第二天线选择模块从预设配置表中获取所述第二测量天线及所述第二测量天线的测量时长。
本发明第二方面提供一种终端,该终端包括第一天线选择模块和第二天线选择模块;
所述第一天线选择模块包括第一确定单元和第一测量单元;
所述第一确定单元,用于确定至少两根被测天线,将确定的所述至少两根被测天线作为第一测量天线,并将所述第一测量天线加入已占用天线集合中;
所述第一确定单元,还用于确定所述第一测量天线的测量时长;
所述第一测量单元,用于对所述第一测量天线执行测量操作;
所述第二天线测量单元包括第二确定单元和第二测量单元;
所述第二确定单元,用于根据所述已占用天线集合以及所述第一测量天线的测量时长确定第二测量天线以及所述第二测量天线的测量时长,并将所述第二测量天线加入所述已占用天线集合中;
所述第二测量单元,用于对所述第二测量天线执行测量操作;
当经过所述第一测量天线的测量时长时,所述第一测量单元和所述第二测量单元确定所述第一测量天线和所述第二测量天线的测量结果;
其中,所述第一天线选择模块及所述第二天线选择模块为所述终端中可以独立使用天线的模块,所述第二天线选择模块选择所述被测天线的优先级低于所述第一天线选择模块
在一种可能的设计中,所述第二天线选择模块还包括:第二获取单元和第二计算单元;
所述第二获取单元,用于获取所述已占用天线集合以及所述第一测量天线的测量时长;
所述第二确定单元,还用于根据所述已占用天线集合确定所述第二测量天线;
所述第二计算单元,用于计算所述第一测量天线的测量时长与所述第二天线选择模块确定所述第二测量天线的时长的差值,将所述差值作为所述第二测量天线的测量时长。
在一种可能的设计中,所述第二获取单元具体用于:
接收所述第一天线模块发送的通知消息,所述通知消息中包括所述已占用天线集合以及所述第一测量天线的测量时长;
从所述通知消息中获取所述已占用天线集合以及所述第一测量天线的测量时长。
在一种可能的设计中,所述第二获取单元具体还用于:
从预设存储单元中获取所述已占用天线集合以及所述第一测量天线的测量时长。
在一种可能的设计中,所述第二确定单元具体用于:
从所述已占用天线集合之外的被测天线中选择至少两根被测天线作为所述第二测量天线。
在一种可能的设计中,所述已占用天线集合中包括所述终端的被测天线中每个已占用天线的占用时间段,相应地,所述第二确定单元具体还用于:
从所述已占用天线集合中选择至少一个天线作为待占用天线;确定所述待占用天线的占用时间段,以使所述待占用天线的占用时间段与所述已占用天线集合中除待占用天线外的其他已占用天线的占用时间段不重叠;从所述已占用天线集合之外的被测天线中选择至少一根被测天线,并确定所述至少一根被测天线的占用时间段;将所述至少一根被测天线与所述待占用天线的集合作为所述第二测量天线。
在一种可能的设计中,所述第一天线选择模块还包括:
第一写入单元,用于将所述已占用天线集合以及所述第一测量天线的测量时长写入所述预设存储单元中。
在一种可能的设计中,所述第二天线选择模块还包括:
第二写入单元,用于将所述已占用天线集合以及所述第二测量天线的测量时长写入所述预设存储单元中。
在一种可能的设计中,所述当经过所述第一测量天线的测量时长时,所述第一测量单元和所述第二测量单元确定所述第一测量天线和所述第二测量天线的测量结果,具体为:
若经过所述第一测量天线的测量时长时,所述第二测量单元未完成所述第二测量天线的测量,则所述第二测量单元停止执行测量操作,并将所述第二测量天线中已完成测量的天线的测量结果作为所述第二测量天线的测量结果。
在一种可能的设计中,所述第一天线选择模块还包括:
第一获取单元,用于从预设配置表中获取所述第一测量天线及所述第一测量天线的测量时长;
所述第二获取单元,还用于从预设配置表中获取所述第二测量天线及所述第二测量天线的测量时长。
本发明第三方面提供一种终端,包括存储器和处理器,其中,存储器用于存储程序指令,处理器用于调用存储器中的程序指令执行下述方法:
所述处理器控制第一天线选择模块执行:
确定至少两根被测天线,将确定的所述至少两根被测天线作为第一测量天线,并将所述第一测量天线加入已占用天线集合中;
确定所述第一测量天线的测量时长;
对所述第一测量天线执行测量操作;
所述处理器控制第二天线选择模块执行:
根据所述已占用天线集合以及所述第一测量天线的测量时长确定第二测量天线以及所述第二测量天线的测量时长,并将所述第二测量天线加入所述已占用天线集合中;
对所述第二测量天线执行测量操作;
当经过所述第一测量天线的测量时长时,所述处理器控制所述第一天线选择模块及所述第二天线选择模块执行:
确定所述第一测量天线和所述第二测量天线的测量结果;
其中,所述第一天线选择模块及所述第二天线选择模块为所述终端中可 以独立使用天线的模块,所述第二天线选择模块选择所述被测天线的优先级低于所述第一天线选择模块。
在一种可能的设计中,处理器具体用于:
控制所述第二天线选择模块执行:
获取所述已占用天线集合以及所述第一测量天线的测量时长;
根据所述已占用天线集合确定所述第二测量天线;
计算所述第一测量天线的测量时长与所述第二天线选择模块确定所述第二测量天线的时长的差值,将所述差值作为所述第二测量天线的测量时长。
在一种可能的设计中,所述处理器具体还用于:
控制所述第一天线选择模块执行:
向所述第二天线模块发送通知消息,所述通知消息中包括所述已占用天线集合以及所述第一测量天线的测量时长;
控制所述第二天线选择模块执行:
接收所述通知消息,并从所述通知消息中获取所述已占用天线集合以及所述第一测量天线的测量时长。
在一种可能的设计中,所述处理器具体还用于:
控制所述第二天线选择模块执行:
从预设存储单元中获取所述已占用天线集合以及所述第一测量天线的测量时长。
在一种可能的设计中,所述处理器具体还用于:
控制所述第二天线选择模块执行:
从所述已占用天线集合之外的被测天线中选择至少两根被测天线作为所述第二测量天线。
在一种可能的设计中,所述已占用天线集合中包括所述终端的被测天线中每个已占用天线的占用时间段,相应地,所述处理器具体还用于:
控制所述第二天线选择模块执行:
从所述已占用天线集合中选择至少一个天线作为待占用天线;
确定所述待占用天线的占用时间段,以使所述待占用天线的占用时间段与所述已占用天线集合中除待占用天线外的其他已占用天线的占用时间段不重叠;
从所述已占用天线集合之外的被测天线中选择至少一根被测天线,并确定所述至少一根被测天线的占用时间段;
将所述至少一根被测天线与所述待占用天线的集合作为所述第二测量天线。
在一种可能的设计中,所述处理器具体还用于:
控制所述第一天线选择模块执行:
将所述已占用天线集合以及所述第一测量天线的测量时长写入所述预设存储单元中。
在一种可能的设计中,所述处理器具体还用于:
控制所述第二天线选择模块执行:
将所述已占用天线集合以及所述第二测量天线的测量时长写入所述预设存储单元中。
在一种可能的设计中,所述处理器具体还用于:
若经过所述第一测量天线的测量时长时,所述第二天线选择模块未完成所述第二测量天线的测量,则控制所述第二天线选择模块执行:
停止执行测量操作,并将所述第二测量天线中已完成测量的天线的测量结果作为所述第二测量天线的测量结果。
在一种可能的设计中,所述处理器具体还用于:
控制所述第一天线选择模块执行:
从预设配置表中获取所述第一测量天线及所述第一测量天线的测量时长;以及,
控制所述第二天线选择模块执行:
从预设配置表中获取所述第二测量天线及所述第二测量天线的测量时长。
在一种可能的设计中,所述预设配置表用于表示天线选择模块、测量天线以及测量时长的对应关系。
在一种可能的设计中,所述第一天线选择模块至少包括:主模的主集,主模的分集,副模的主集,副模的分集。
使用本发明实施例的方案,能够使得终端中的所有天线选择模块并行执行天线测量,从而使得终端中的所有天线选择模块的通信性能都得到提升, 降低掉话率和掉网率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例涉及的终端的示意图;
图2为本发明实施例提供的天线测量方法实施例一的流程示意图;
图3为终端中各模块执行一个完整测量过程的示例图;
图4为本发明实施例提供的天线测量方法实施例二的流程示意图;
图5为模块间通过通知消息方式进行天线测量的示意图;
图6为本发明实施提供的天线测量方式实施例三的流程示意图;
图7为根据已占用天线集合确定第二测量天线的两种方式的对比示意图;
图8为本发明实施例提供的终端的实施例一的模块结构图;
图9为本发明实施例提供的终端的实施例二的模块结构图;
图10为本发明实施例提供的终端的实施例三的模块结构图;
图11为本发明实施例提供的终端的实施例四的模块结构图;
图12为本发明实施例提供的终端的实施例五的模块结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例涉及的终端的示意图,如图1所示,终端100包括发射电路1002、接收电路1003、功率控制器1004、处理器1006,存储器1007及天线1001。处理器1006控制终端100的操作。存储器1007可以包括只读存储器和随机存取存储器,并向处理器1006提供指令和数据。存储器1007 的一部分还可以包括非易失性随机存取存储器(Nonvolatile RAM,简称NVRAM)。具体的应用中,终端100可以嵌入或者本身可以就是例如移动电话之类的无线通信设备,还可以包括容纳发射电路1002和接收电路1003的载体,以允许终端100和远程位置之间进行数据发射和接收。发射电路1002和接收电路1003可以耦合到天线1001。天线1001可以包括多个,终端100的各个组件通过总线系统3100耦合在一起,其中,总线系统3100除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统3100。终端100还可以包括解码处理器1005。终端100中还包括天线选择模块1008,天线选择模块为终端中可以独立使用天线来发射或接收信号的模块,即可以通过发射电路1002和接收电路1003与天线1001交互。终端中可以包括多个天线选择模块。
本发明实施例下述的天线选择模块,都可以看作是天线选择模块1008的具体实例。
如上所述,终端中具有多个可以独立使用天线发射和接收信号的模块,在现有技术中,只有这些模块中具有最高优先级的模块具有测量和选择天线的权利,而其它模块并不具有测量和选择天线的权利,只能依赖固有的硬件连接来测量和选择天线。因此,现有技术所提供的方案仅为终端中具有最高优先级的模块提供天线测量和选择权利,其他模块即使在有空闲的最佳天线时也无法测量和选择最佳天线。另外,即使对于最高级别的模块,现有技术中也只允许其对两根天线进行测量并最终选择一根天线,如果这两根天线并不是最佳天线,而最佳天线又处于空闲状态,最高级别的模块仍然无法测量和选择这个最佳天线。现有技术的上述问题,导致终端中的模块的通信性能无法得到保障。
为解决现有技术的上述问题,本发明实施例提出一种天线测量方法,允许终端中的所有模块在同一时间段内并行进行天线测量,即允许所有模块都拥有天线测量和选择的权利,各模块再根据对天线的测量结果来进行后续的天线选择,从而保证所有模块的通信性能。
需要说明的是,本发明实施例中所述的“天线选择模块”,是指终端中能够独立使用天线来发射或接收信号的模块,包括但不限于:主模(主卡)的主集,主模(主卡)的分集,副模(副卡)的主集,副模(副卡)的分 集,主模(主卡)的副载波主集,主模(主卡)的副载波分集,LTE与语音网同步支持(Simultaneous Voice and LTE,简称SVLTE)的码分多址(Code Division Multiple Access,简称CDMA)主集,SVLTE的CDMA分集,SVLTE的LTE主集,SVLTE的LTE分集,无线保真(Wireless-Fidelity,简称WIFI)。
图2为本发明实施例提供的天线测量方法实施例一的流程示意图,该方法的执行主体为包括至少两个天线选择模块的终端。
需要说明的是,本实施例所涉及的实际的天线测量过程中,会涉及到终端中所有需要进行天线测量和选择的模块,天线测量的过程是从终端中最高优先级的模块开始,确定一个测量时长,其余所有模块在这个测量时长内依次完成自己的天线测量。本实施例涉及其中优先级相邻的任意两个模块的测量和交互过程,整体的测量过程是在此基础上依次类推,显而易见的,这些过程都是本发明实施例所保护的范围。
如图2所示,该方法包括:
S101、终端中的第一天线选择模块确定至少两根被测天线,将确定的该至少两根被测天线作为第一测量天线,并将该第一测量天线加入已占用天线集合中。
其中,第一天线选择模块和下述的第二天线选择模块都是终端中可以独立使用天线的模块,并且,第二天线选择模块选择被测天线的优先级低于第一天线选择模块。即,天线测量是从最高优先级的模块发起,并逐级向下执行天线测量操作。
终端中包括多个模块,还包括可以为多个模块所用的多根天线;为了在多根天线中选择合适的天线使用,多个模块会对终端中所有的天线都进行测量,进而根据测量结果进行天线选择。终端中的每个模块,例如本实施例中的第一选择模块每次测量时会选择其中的至少两根进行测量,因此,终端中的每个模块可能需要执行多次天线测量。对于本发明实施例来说,即多次执行本实施例,以最终完成所有的天线测量。
第一选择模块在选定需要测量的天线后,会将选定的天线加入到上述已占用天线集合中。该集合用于记录每次测量过程中的已被占用的天线,由各模块在天线测量过程中不断更新。例如,如果第一选择模块为最高优先级的 模块,则此时已占用天线集合为空,第一选择模块在选定测量天线时向该集合中写入占用天线信息,如编号为1和3的天线被占用,当下一个选择模块进行天线选择时,根据该集合中记载的占用天线信息发现编号为1和3的天线已经被占用,则会选择除了编号为1和3以外的天线,如编号为4和7的天线,并将该选择的结果写入该集合中,此后,后续的模块依次向该集合中加入新的值,从而,可以避免天线测量时由于天线占用带来的天线选择冲突。
第一天线选择模块确定被测天线的具体方法可以参考现有技术,此处不再赘述。
S102、第一天线选择模块确定第一测量天线的测量时长。
当第一选择模块选定要测量的天线后,根据所选定的天线的实际情况来确定要测量的天线的测量时长。
具体地,如果第一选择模块为最高优先级的模块,则可以直接将选定的天线对应的测量时长作为测量时长;如果不为最高优先级的模块,则还需要根据高一级优先级所规定的时间来确定测量时长。
S103、第一天线选择模块对第一测量天线执行测量操作。
具体执行测量操作的方法可以参考现有技术,此处不再赘述。
S104、第二天线选择模块根据上述已占用天线集合以及上述第一测量天线的测量时长确定第二测量天线以及第二测量天线的测量时长,并将第二测量天线加入已占用天线集合中。
第二天线选择模块看做是有交互的两个模块中的优先级低的模块,第二选择模块在第一选择模块的操作进行过程中也开始进行测量,即实现了各模块之间的并行天线测量。
第二选择模块可以选定的测量天线和测量时长都需要在与其交互的优先级高一级的模块的基础上来确定。
S105、第二天线选择模块对第二测量天线执行测量操作。
S106、当经过第一测量天线的测量时长时,第一天线选择模块和第二天线选择模块确定第一测量天线和第二测量天线的测量结果。
即,下一优先级的模块的实际测量时间不能自己决定,而是由其的上一级优先级的模块来决定,下一优先级的模块的测量时间必须是处于优先级的 模块的测量时间内,这样能够保证在每次测量时,由最高优先级的模块确定好一个测量时间后,向下各优先级的模块的测量时间都在这个时间范围内,即:各模块在第一测量天线的测量时长结束时同时结束测量,这样在一次测量过程中,各模块都可以参与天线选择,每根天线都可能被测量,在下一次测量过程中,也不会产生天线测量的冲突。
本实施例中,终端中的所有模块都可以具有天线测量和选择的权利,即可以在统一的时间段内并行完成天线测量,不仅使得所有模块都可以选择到质量较好的天线,同时,还由于并行执行天线测量而使得天线测量不会冲突并且效率提升。并且,本实施例中允许每个模块每次选择至少两根天线进行测量,并最终将终端中的所有天线都测量一遍,从而保证每个模块都能根据测量结果选择到质量最好的天线。
如前所示,终端中的所有模块通过多次执行上述实施例可以完成对终端中所有天线的测量。图3为终端中各模块执行一个完整测量过程的示例图。如图3所示,假设终端中有两个天线选择模块,分别为模块1和模块2,模块1的优先级高于模块2的优先级,并且终端中包括4个天线,并且每个天线选择模块每次测量2根天线,则需要进行3次测量来完成所有天线的测量。其中,图3中的每个步骤代表执行一次上述实施例对应的所有模块都参与的天线测量。经过图3所示的过程,终端中的所有天线测量模块都完成了对终端中所有天线的测量。需要说明的是,在每次测量中,模块1都会对天线1和3进行多轮测量,并根据多轮测量的结果确定平均结果,模块2会对天线0和2进行多轮测量,并根据多轮测量的结果确定平均结果。
在上述实施例的基础上,本实施例涉及第二天线选择模块确定第二测量天线以及第二测量天线的测量时长的过程。即,图4为本发明实施例提供的天线测量方法实施例二的流程示意图,如图4所示,上述步骤S104具体可以包括:
S201、第二天线选择模块获取已占用天线集合以及第一测量天线的测量时长。
已占用天线集合以及第一测量天线的测量时长由优先级高的第一天线选择模块确定出来后通过特定的方式告知第二选择模块,例如消息通知、写入预设单元等。
S202、第二天线选择模块根据已占用天线集合确定第二测量天线。
S203、第二天线选择模块计算第一测量天线的测量时长与第二天线选择模块确定第二测量天线的时长的差值,将该差值作为第二测量天线的测量时长。
即,第二天线选择模块的第二测量天线的测量时长是由其上一优先级的模块来决定的,第二天线选择模块的第二测量天线的测量时长必须在其上一优先级的模块的测量时长的范围内。如果第二选择模块由于某些原因,在经过第一测量天线的测量时长时还未完成第二测量天线的测量,则第二天线选择模块需要停止执行测量操作,以保证测量操作不发生冲突,同时,第二天线选择模块会将第二测量天线中已完成测量的天线的测量结果作为第二测量天线的测量结果。
在上述实施例的基础上,本实施例涉及第二天线选择模块获取已占用天线集合以及第一测量天线的测量时长的一种方式。即,上述步骤S201的一种实施方式为:
第一天线选择模块向第二天线模块发送通知消息,通知消息中包括已占用天线集合以及第一测量天线的测量时长。
第二天线选择模块接收上述通知消息,并从通知消息中获取已占用天线集合以及第一测量天线的测量时长。
本实施例中,终端中的模块在每次的天线测量过程中,通过消息交互的方式来传递已占用天线和测量时长信息。这种消息交互的方式能够使得第二天线选择模块在收到通知消息后就开始执行天线测量过程,即不需要额外的触发条件就可以启动天线测量,能够节省每次天线测量时的时间开销。
图5为模块间通过通知消息方式进行天线测量的示意图,如图5所示,假设终端中有3个天线选择模块,分别为模块1、模块2和模块3,模块1的优先级最高,模块3的优先级最低,并且每个模块每次测量2根天线,则天线测量由模块1发起,模块1在选定测量天线及确定天线测量时长后,将这些信息通过消息通知给模块2,模块2在此基础上增加占用天线以及重新确定测量时长,并将这些信息再通过消息通知给模块3,模块1、2、3在同一时刻结束测量,完成第一次对测量天线的测量。图5只给出了第一次测量的示意,在完成第一次测量后,终端中的模块1、2、3会再次依次执行上述确 定测量天线和测量时长,执行天线测量,传递占用天线集合和测量时长的信息给下一级模块的操作,从而完成第二次、第三次或更多次的测量,直到各模块完成对终端中所有天线的测量,此时,各模块会基于多次的测量结果选择最优的被测天线。
在上述实施例的基础上,本实施例涉及第二天线选择模块获取已占用天线集合以及第一测量天线的测量时长的另一种方式。即,上述步骤S201的另一种实施方式为:
第二天线选择模块从预设存储单元中获取已占用天线集合以及第一测量天线的测量时长。
具体地,第二天线选择模块在需要进行天线测量时会主动到预设的存储单元中读取已占用天线集合以及第一测量天线的测量时长,该预设的存储单元中的内容是由高优先级的模块在进行天线测量时写入的。
本实施例的这种获取方式,相比于前一种获取方式,不需要等待高优先级的模块的通知消息,而是由模块本身根据实际需要主动启动,因此能更加满足各模块的测量需要。
基于上述实施例,在第二天线选择模块从预设存储单元中获取已占用天线集合以及第一测量天线的测量时长之前,第一天线选择模块在对第一测量天线执行测量操作之后,会将已占用天线集合以及第一测量天线的测量时长写入预设存储单元中。这样,才能保证第二天线选择模块获取到正确的信息。
进一步地,第二天线选择模块在在对第二测量天线执行测量操作之后,也会将新的已占用天线集合以及第二测量天线的测量时长写入预设存储单元中,从而保证下一优先级的模块能获取到正确的信息。
在上述实施例的基础上,本实施例涉及第二天线选择模块根据已占用天线集合确定第二测量天线的一种方式。即,上述步骤S202的一种实施方式为:
第二天线选择模块从所述已占用天线集合之外的被测天线中选择至少两根被测天线作为所述第二测量天线。
优选地,该方式所对应的已占用天线集合中仅包括终端的被测天线中已占用天线的标识。已占用天线的标识可以为:已占用天线的名称、编号或其 他已占用天线的性能参数。
具体地,当已占用天线集合中仅包括终端的被测天线中已占用天线的标识时,该集合用于表明哪些天线已经被完全占用,一旦被完全占用,其他模块就无法再使用该天线。因此,其他模块就需要从该集合之外的被测天线中选择测量天线。在上述实施例的基础上,本实施例涉及第二天线选择模块根据已占用天线集合确定第二测量天线的另一种方式。即,图6为本发明实施提供的天线测量方式实施例三的流程示意图,该实施例对应的已占用天线集合中包括终端的被测天线中每个已占用天线的占用时间段,如图6所示,上述步骤S202的另一种实施方式为:
S301、第二天线选择模块从已占用天线集合中选择至少一个天线作为待占用天线。
S302、第二天线选择模块确定待占用天线的占用时间段,以使该待占用天线的占用时间段与上述已占用天线集合中除待占用天线外的其他已占用天线的占用时间段不重叠。
S303、第二天线选择模块从已占用天线集合之外的被测天线中选择至少一根被测天线,并确定至少一根被测天线的占用时间段。
S304、第二天线选择模块将至少一根被测天线与待占用天线的集合作为第二测量天线。
该实施例中,已占用天线集合中包括终端的被测天线中每个已占用天线的占用时间段,由于该集合中包括了占用天线的占用时间段,那么当第二天线选择模块也希望测量该集合中某个占用天线时,就可以选择在其他不冲突的时间段来测量。这样既不会影响其他模块测量该天线,也可以满足第二天线选择模块的测量需求。
当然,该实施例中,已占用天线集合还可以包括终端的被测天线中已占用天线的标识。
图7为上述根据已占用天线集合确定第二测量天线的两种方式的对比示意图,如图7所示,A表示已占用天线集合中仅包含天线标识的方式,B表示已占用天线集合中包含天线标识和天线占用时间段的方式。A中的天线0和1被高优先级的模块占用后,低优先级的模块就不能再选择天线0和1进行测量。而B中的天线0和1被高优先级的模块占用后,低优先级的模块还 可以使用天线1未被占用的时间来对天线1进行测量。
在前述实施例的基础上,第一天线选择模块和第二天线选择模块还可以通过查询配置表的方式来获取测量天线及测量时长。
具体地,第一天线选择模块从预设配置表中获取第一测量天线及第一测量天线的测量时长;第二天线选择模块从预设配置表中获取第二测量天线及第二测量天线的测量时长。
其中,上述预设配置表用于表示天线选择模块、测量天线以及测量时长的对应关系。
即,可以预先配置好各模块要测量的天线及测量所需要的时长,当某个模块需要测量天线时,直接根据当前时间在预设配置表中查询满足当前时间的天线进行测量。
这种方式仅需要事先进行配置,在测量过程中不需要做额外的操作,就可以实现各模块间的不冲突以及高的执行效率。
图8为本发明实施例提供的终端的实施例一的模块结构图,该终端中至少包括两个天线选择模块,如图8所示,该终端包括:第一天线选择模块601及第二天线选择模块602。
第一天线选择模块601包括第一确定单元6011和第一测量单元6012。
第一确定单元6011,用于确定至少两根被测天线,将确定的该至少两根被测天线作为第一测量天线,并将该第一测量天线加入已占用天线集合中。
第一确定单元6011,还用于确定第一测量天线的测量时长;
第一测量单元6012,用于对第一测量天线执行测量操作。
第二天线选择模块602包括第二确定单元6021和第二测量单元6022。
第二确定单元6021,用于根据上述已占用天线集合以及第一测量天线的测量时长确定第二测量天线以及第二测量天线的测量时长,并将第二测量天线加入已占用天线集合中。
第二测量单元6022,用于对第二测量天线执行测量操作。
当经过第一测量天线的测量时长时,第一测量单元6012和第二测量单元6022确定第一测量天线和第二测量天线的测量结果。
其中,第一天线选择模块601及第二天线选择模块602为终端中可以独立使用天线的模块,第二天线选择模块602选择被测天线的优先级低于第一 天线选择模块601。
该终端用于实现前述方法实施例,其实现原理和技术效果类似,此处不再赘述。
图9为本发明实施例提供的终端的实施例二的模块结构图,如图9所示,第二天线选择模块602还包括第二获取单元6023和第二计算单元6024。
第二获取单元6023,用于获取已占用天线集合以及第一测量天线的测量时长。
第二确定单元6021,还用于根据已占用天线集合确定第二测量天线。
第二计算单元6024,用于计算第一测量天线的测量时长与第二天线选择模块确定第二测量天线的时长的差值,将该差值作为第二测量天线的测量时长。
另一实施例中,第二获取单元6023具体用于:
接收第一天线模块601发送的通知消息,该通知消息中包括已占用天线集合以及第一测量天线的测量时长。从通知消息中获取已占用天线集合以及第一测量天线的测量时长。
另一实施例中,第二获取单元6023具体还用于:
从预设存储单元中获取已占用天线集合以及第一测量天线的测量时长。
另一实施例中,第二确定单元6021具体还用于:
从已占用天线集合之外的被测天线中选择至少两根被测天线作为第二测量天线。
另一实施例中,已占用天线集合中包括终端的被测天线中每个已占用天线的占用时间段,相应地,第二确定单元6021具体还用于:
从已占用天线集合中选择至少一个天线作为待占用天线;确定待占用天线的占用时间段,以使待占用天线的占用时间段与已占用天线集合中除待占用天线外的其他已占用天线的占用时间段不重叠;从已占用天线集合之外的被测天线中选择至少一根被测天线,并确定该至少一根被测天线的占用时间段;将该至少一根被测天线与上述待占用天线的集合作为第二测量天线。
图10为本发明实施例提供的终端的实施例三的模块结构图,如图10所示,第一天线选择模块601还包括第一写入单元6013。
第一写入单元6013,用于将已占用天线集合以及第一测量天线的测量时长写入预设存储单元中。
图11为本发明实施例提供的终端的实施例四的模块结构图,如图11所示,第二天线选择模块602还包括第二写入单元6025。
第二写入单元6025,用于将已占用天线集合以及第二测量天线的测量时长写入预设存储单元中。
另一实施例中,前述当经过第一测量天线的测量时长时,第一测量单元和第二测量单元确定第一测量天线和第二测量天线的测量结果,具体为:
若经过第一测量天线的测量时长时,第二测量单元未完成第二测量天线的测量,则第二测量单元停止执行测量操作,并将第二测量天线中已完成测量的天线的测量结果作为第二测量天线的测量结果。
图12为本发明实施例提供的终端的实施例五的模块结构图,如图12所示,第一天线选择模块601还包括第一获取单元6014。
第一获取单元6014,用于从预设配置表中获取第一测量天线及第一测量天线的测量时长。
另一实施例中,第二获取单元6023具体还用于:
从预设配置表中获取第二测量天线及第二测量天线的测量时长。
优选地,上述预设配置表用于表示天线选择模块、测量天线以及测量时长的对应关系。
可选地,第一天线选择模块601至少包括:主模的主集,主模的分集,副模的主集,副模的分集。
本发明实施例还提供一种如图1所示的终端,包括存储器1007和处理器1006。
存储器1007用于存储程序指令,处理器1006用于调用存储器1007中的程序指令执行下述方法:
处理器1006控制第一天线选择模块执行:
确定至少两根被测天线,将确定的所述至少两根被测天线作为第一测量天线,并将所述第一测量天线加入已占用天线集合中;
确定所述第一测量天线的测量时长;
对所述第一测量天线执行测量操作;
处理器1006控制第二天线选择模块执行:
根据所述已占用天线集合以及所述第一测量天线的测量时长确定第二测量天线以及所述第二测量天线的测量时长,并将所述第二测量天线加入所述已占用天线集合中;
对所述第二测量天线执行测量操作;
当经过所述第一测量天线的测量时长时,处理器1006控制第一天线选择模块及第二天线选择模块执行:
确定所述第一测量天线和所述第二测量天线的测量结果;
其中,所述第一天线选择模块及所述第二天线选择模块为所述终端中可以独立使用天线的模块,所述第二天线选择模块选择所述被测天线的优先级低于所述第一天线选择模块。
进一步地,处理器1006具体用于:
控制所述第二天线选择模块执行:
获取所述已占用天线集合以及所述第一测量天线的测量时长;
根据所述已占用天线集合确定所述第二测量天线;
计算所述第一测量天线的测量时长与所述第二天线选择模块确定所述第二测量天线的时长的差值,将所述差值作为所述第二测量天线的测量时长。
进一步地,处理器1006具体还用于:
控制所述第一天线选择模块执行:
向所述第二天线模块发送通知消息,所述通知消息中包括所述已占用天线集合以及所述第一测量天线的测量时长;
控制所述第二天线选择模块执行:
接收所述通知消息,并从所述通知消息中获取所述已占用天线集合以及所述第一测量天线的测量时长。
进一步地,处理器1006具体还用于:
控制所述第二天线选择模块执行:
从预设存储单元中获取所述已占用天线集合以及所述第一测量天线的测量时长。
进一步地,处理器1006具体还用于:
控制所述第二天线选择模块执行:
从所述已占用天线集合之外的被测天线中选择至少两根被测天线作为所述第二测量天线。
进一步地,所述已占用天线集合中包括所述终端的被测天线中每个已占用天线的占用时间段,相应地,处理器1006具体还用于:
控制所述第二天线选择模块执行:
从所述已占用天线集合中选择至少一个天线作为待占用天线;
确定所述待占用天线的占用时间段,以使所述待占用天线的占用时间段与所述已占用天线集合中除待占用天线外的其他已占用天线的占用时间段不重叠;
从所述已占用天线集合之外的被测天线中选择至少一根被测天线,并确定所述至少一根被测天线的占用时间段;
将所述至少一根被测天线与所述待占用天线的集合作为所述第二测量天线。
进一步地,处理器1006具体还用于:
控制所述第一天线选择模块执行:
将所述已占用天线集合以及所述第一测量天线的测量时长写入所述预设存储单元中。
进一步地,处理器1006具体还用于:
控制所述第二天线选择模块执行:
将所述已占用天线集合以及所述第二测量天线的测量时长写入所述预设存储单元中。
进一步地,处理器1006具体还用于:
若经过所述第一测量天线的测量时长时,所述第二天线选择模块未完成所述第二测量天线的测量,则控制所述第二天线选择模块执行:
停止执行测量操作,并将所述第二测量天线中已完成测量的天线的测量结果作为所述第二测量天线的测量结果。
进一步地,处理器1006具体还用于:
控制所述第一天线选择模块执行:
从预设配置表中获取所述第一测量天线及所述第一测量天线的测量时长;以及,
控制所述第二天线选择模块执行:
从预设配置表中获取所述第二测量天线及所述第二测量天线的测量时长。
进一步地,所述预设配置表用于表示天线选择模块、测量天线以及测量时长的对应关系。
进一步地,所述第一天线选择模块至少包括:主模的主集,主模的分集,副模的主集,副模的分集。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (36)

  1. 一种天线测量方法,应用于包括至少两个天线选择模块的终端中,其特征在于,包括:
    所述终端中的第一天线选择模块确定至少两根被测天线,将确定的所述至少两根被测天线作为第一测量天线,并将所述第一测量天线加入已占用天线集合中;
    所述第一天线选择模块确定所述第一测量天线的测量时长;
    所述第一天线选择模块对所述第一测量天线执行测量操作;
    第二天线选择模块根据所述已占用天线集合以及所述第一测量天线的测量时长确定第二测量天线以及所述第二测量天线的测量时长,并将所述第二测量天线加入所述已占用天线集合中;
    所述第二天线选择模块对所述第二测量天线执行测量操作;
    当经过所述第一测量天线的测量时长时,所述第一天线选择模块和所述第二天线选择模块确定所述第一测量天线和所述第二测量天线的测量结果;
    其中,所述第一天线选择模块及所述第二天线选择模块为所述终端中可以独立使用天线的模块,所述第二天线选择模块选择所述被测天线的优先级低于所述第一天线选择模块。
  2. 根据权利要求1所述的方法,其特征在于,所述第二天线选择模块根据所述已占用天线集合以及所述第一测量天线的测量时长确定第二测量天线以及所述第二测量天线的测量时长,包括:
    所述第二天线选择模块获取所述已占用天线集合以及所述第一测量天线的测量时长;
    所述第二天线选择模块根据所述已占用天线集合确定所述第二测量天线;
    所述第二天线选择模块计算所述第一测量天线的测量时长与所述第二天线选择模块确定所述第二测量天线的时长的差值,将所述差值作为所述第二测量天线的测量时长。
  3. 根据权利要求2所述的方法,其特征在于,所述第二天线选择模块获取所述已占用天线集合以及所述第一测量天线的测量时长,包括:
    所述第一天线选择模块向所述第二天线模块发送通知消息,所述通知消 息中包括所述已占用天线集合以及所述第一测量天线的测量时长;
    所述第二天线选择模块接收所述通知消息,并从所述通知消息中获取所述已占用天线集合以及所述第一测量天线的测量时长。
  4. 根据权利要求2所述的方法,其特征在于,所述第二天线选择模块获取所述已占用天线集合以及所述第一测量天线的测量时长,包括:
    所述第二天线选择模块从预设存储单元中获取所述已占用天线集合以及所述第一测量天线的测量时长。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述第二天线选择模块根据所述已占用天线集合确定所述第二测量天线,包括:
    所述第二天线选择模块从所述已占用天线集合之外的被测天线中选择至少两根被测天线作为所述第二测量天线。
  6. 根据权利要求2-4任一项所述的方法,其特征在于,所述已占用天线集合中包括所述终端的被测天线中每个已占用天线的占用时间段,相应地,所述第二天线选择模块根据所述已占用天线集合确定所述第二测量天线,包括:
    所述第二天线选择模块从所述已占用天线集合中选择至少一个天线作为待占用天线;
    所述第二天线选择模块确定所述待占用天线的占用时间段,以使所述待占用天线的占用时间段与所述已占用天线集合中除待占用天线外的其他已占用天线的占用时间段不重叠;
    所述第二天线选择模块从所述已占用天线集合之外的被测天线中选择至少一根被测天线,并确定所述至少一根被测天线的占用时间段;
    所述第二天线选择模块将所述至少一根被测天线与所述待占用天线的集合作为所述第二测量天线。
  7. 根据权利要求4所述的方法,其特征在于,所述第一天线选择模块对所述第一测量天线执行测量操作之后,还包括:
    所述第一天线选择模块将所述已占用天线集合以及所述第一测量天线的测量时长写入所述预设存储单元中。
  8. 根据权利要求7所述的方法,其特征在于,所述第二天线选择模块对所述第二测量天线执行测量操作之后,还包括:
    所述第二天线选择模块将所述已占用天线集合以及所述第二测量天线的测量时长写入所述预设存储单元中。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述当经过所述第一测量天线的测量时长时,所述第一天线选择模块和所述第二天线选择模块确定所述第一测量天线和所述第二测量天线的测量结果,包括:
    若经过所述第一测量天线的测量时长时,所述第二天线选择模块未完成所述第二测量天线的测量,则所述第二天线选择模块停止执行测量操作,并将所述第二测量天线中已完成测量的天线的测量结果作为所述第二测量天线的测量结果。
  10. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述第一天线选择模块从预设配置表中获取所述第一测量天线及所述第一测量天线的测量时长;
    所述第二天线选择模块从预设配置表中获取所述第二测量天线及所述第二测量天线的测量时长。
  11. 根据权利要求10所述的方法,其特征在于,所述预设配置表用于表示天线选择模块、测量天线以及测量时长的对应关系。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一天线选择模块至少包括:主模的主集,主模的分集,副模的主集,副模的分集。
  13. 一种终端,所述终端包括至少两个天线选择模块,其特征在于,包括:第一天线选择模块和第二天线选择模块;
    所述第一天线选择模块包括第一确定单元和第一测量单元;
    所述第一确定单元,用于确定至少两根被测天线,将确定的所述至少两根被测天线作为第一测量天线,并将所述第一测量天线加入已占用天线集合中;
    所述第一确定单元,还用于确定所述第一测量天线的测量时长;
    所述第一测量单元,用于对所述第一测量天线执行测量操作;
    所述第二天线测量单元包括第二确定单元和第二测量单元;
    所述第二确定单元,用于根据所述已占用天线集合以及所述第一测量天线的测量时长确定第二测量天线以及所述第二测量天线的测量时长,并将所述第二测量天线加入所述已占用天线集合中;
    所述第二测量单元,用于对所述第二测量天线执行测量操作;
    当经过所述第一测量天线的测量时长时,所述第一测量单元和所述第二测量单元确定所述第一测量天线和所述第二测量天线的测量结果;
    其中,所述第一天线选择模块及所述第二天线选择模块为所述终端中可以独立使用天线的模块,所述第二天线选择模块选择所述被测天线的优先级低于所述第一天线选择模块。
  14. 根据权利要求13所述的终端,其特征在于,所述第二天线选择模块还包括:第二获取单元和第二计算单元;
    所述第二获取单元,用于获取所述已占用天线集合以及所述第一测量天线的测量时长;
    所述第二确定单元,还用于根据所述已占用天线集合确定所述第二测量天线;
    所述第二计算单元,用于计算所述第一测量天线的测量时长与所述第二天线选择模块确定所述第二测量天线的时长的差值,将所述差值作为所述第二测量天线的测量时长。
  15. 根据权利要求14所述的终端,其特征在于,所述第二获取单元具体用于:
    接收所述第一天线模块发送的通知消息,所述通知消息中包括所述已占用天线集合以及所述第一测量天线的测量时长;
    从所述通知消息中获取所述已占用天线集合以及所述第一测量天线的测量时长。
  16. 根据权利要求14所述的终端,其特征在于,所述第二获取单元具体还用于:
    从预设存储单元中获取所述已占用天线集合以及所述第一测量天线的测量时长。
  17. 根据权利要求14-16任一项所述的终端,其特征在于,所述第二确定单元具体用于:
    从所述已占用天线集合之外的被测天线中选择至少两根被测天线作为所述第二测量天线。
  18. 根据权利要求14-16任一项所述的终端,其特征在于,所述已占用 天线集合中包括所述终端的被测天线中每个已占用天线的占用时间段,相应地,所述第二确定单元具体还用于:
    从所述已占用天线集合中选择至少一个天线作为待占用天线;确定所述待占用天线的占用时间段,以使所述待占用天线的占用时间段与所述已占用天线集合中除待占用天线外的其他已占用天线的占用时间段不重叠;从所述已占用天线集合之外的被测天线中选择至少一根被测天线,并确定所述至少一根被测天线的占用时间段;将所述至少一根被测天线与所述待占用天线的集合作为所述第二测量天线。
  19. 根据权利要求16所述的终端,其特征在于,所述第一天线选择模块还包括:
    第一写入单元,用于将所述已占用天线集合以及所述第一测量天线的测量时长写入所述预设存储单元中。
  20. 根据权利要求19所述的终端,其特征在于,所述第二天线选择模块还包括:
    第二写入单元,用于将所述已占用天线集合以及所述第二测量天线的测量时长写入所述预设存储单元中。
  21. 根据权利要求13-20任一项所述的终端,其特征在于,所述当经过所述第一测量天线的测量时长时,所述第一测量单元和所述第二测量单元确定所述第一测量天线和所述第二测量天线的测量结果,具体为:
    若经过所述第一测量天线的测量时长时,所述第二测量单元未完成所述第二测量天线的测量,则所述第二测量单元停止执行测量操作,并将所述第二测量天线中已完成测量的天线的测量结果作为所述第二测量天线的测量结果。
  22. 根据权利要求13或14所述的终端,其特征在于,所述第一天线选择模块还包括:
    第一获取单元,用于从预设配置表中获取所述第一测量天线及所述第一测量天线的测量时长;
    所述第二获取单元,还用于从预设配置表中获取所述第二测量天线及所述第二测量天线的测量时长。
  23. 根据权利要求22所述的终端,其特征在于,所述预设配置表用于 表示天线选择模块、测量天线以及测量时长的对应关系。
  24. 根据权利要求13-23任一项所述的终端,其特征在于,所述第一天线选择模块至少包括:主模的主集,主模的分集,副模的主集,副模的分集。
  25. 一种终端,其特征在于,包括存储器和处理器;
    所述存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
    所述处理器控制第一天线选择模块执行:
    确定至少两根被测天线,将确定的所述至少两根被测天线作为第一测量天线,并将所述第一测量天线加入已占用天线集合中;
    确定所述第一测量天线的测量时长;
    对所述第一测量天线执行测量操作;
    所述处理器控制第二天线选择模块执行:
    根据所述已占用天线集合以及所述第一测量天线的测量时长确定第二测量天线以及所述第二测量天线的测量时长,并将所述第二测量天线加入所述已占用天线集合中;
    对所述第二测量天线执行测量操作;
    当经过所述第一测量天线的测量时长时,所述处理器控制所述第一天线选择模块及所述第二天线选择模块执行:
    确定所述第一测量天线和所述第二测量天线的测量结果;
    其中,所述第一天线选择模块及所述第二天线选择模块为所述终端中可以独立使用天线的模块,所述第二天线选择模块选择所述被测天线的优先级低于所述第一天线选择模块。
  26. 根据权利要求25所述的终端,其特征在于,所述处理器具体用于:
    控制所述第二天线选择模块执行:
    获取所述已占用天线集合以及所述第一测量天线的测量时长;
    根据所述已占用天线集合确定所述第二测量天线;
    计算所述第一测量天线的测量时长与所述第二天线选择模块确定所述第二测量天线的时长的差值,将所述差值作为所述第二测量天线的测量时长。
  27. 根据权利要求26所述的终端,其特征在于,所述处理器具体还用于:
    控制所述第一天线选择模块执行:
    向所述第二天线模块发送通知消息,所述通知消息中包括所述已占用天线集合以及所述第一测量天线的测量时长;
    控制所述第二天线选择模块执行:
    接收所述通知消息,并从所述通知消息中获取所述已占用天线集合以及所述第一测量天线的测量时长。
  28. 根据权利要求26所述的终端,其特征在于,所述处理器具体还用于:
    控制所述第二天线选择模块执行:
    从预设存储单元中获取所述已占用天线集合以及所述第一测量天线的测量时长。
  29. 根据权利要求26-28任一项所述的终端,其特征在于,所述处理器具体还用于:
    控制所述第二天线选择模块执行:
    从所述已占用天线集合之外的被测天线中选择至少两根被测天线作为所述第二测量天线。
  30. 根据权利要求26-28任一项所述的终端,其特征在于,所述已占用天线集合中包括所述终端的被测天线中每个已占用天线的占用时间段,相应地,所述处理器具体还用于:
    控制所述第二天线选择模块执行:
    从所述已占用天线集合中选择至少一个天线作为待占用天线;
    确定所述待占用天线的占用时间段,以使所述待占用天线的占用时间段与所述已占用天线集合中除待占用天线外的其他已占用天线的占用时间段不重叠;
    从所述已占用天线集合之外的被测天线中选择至少一根被测天线,并确定所述至少一根被测天线的占用时间段;
    将所述至少一根被测天线与所述待占用天线的集合作为所述第二测量天线。
  31. 根据权利要求28所述的终端,其特征在于,所述处理器具体还用于:
    控制所述第一天线选择模块执行:
    将所述已占用天线集合以及所述第一测量天线的测量时长写入所述预设存储单元中。
  32. 根据权利要求31所述的终端,其特征在于,所述处理器具体还用于:
    控制所述第二天线选择模块执行:
    将所述已占用天线集合以及所述第二测量天线的测量时长写入所述预设存储单元中。
  33. 根据权利要求25-32任一项所述的终端,其特征在于,所述处理器具体还用于:
    若经过所述第一测量天线的测量时长时,所述第二天线选择模块未完成所述第二测量天线的测量,则控制所述第二天线选择模块执行:
    停止执行测量操作,并将所述第二测量天线中已完成测量的天线的测量结果作为所述第二测量天线的测量结果。
  34. 根据权利要求25或26所述的终端,其特征在于,所述处理器具体还用于:
    控制所述第一天线选择模块执行:
    从预设配置表中获取所述第一测量天线及所述第一测量天线的测量时长;以及,
    控制所述第二天线选择模块执行:
    从预设配置表中获取所述第二测量天线及所述第二测量天线的测量时长。
  35. 根据权利要求34所述的终端,其特征在于,所述预设配置表用于表示天线选择模块、测量天线以及测量时长的对应关系。
  36. 根据权利要求25-35任一项所述的终端,其特征在于,所述第一天线选择模块至少包括:主模的主集,主模的分集,副模的主集,副模的分集。
PCT/CN2016/078498 2016-04-05 2016-04-05 天线测量方法及终端 WO2017173581A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680025212.2A CN107534465B (zh) 2016-04-05 2016-04-05 天线测量方法及终端
EP16897516.7A EP3407505B1 (en) 2016-04-05 2016-04-05 Antenna measurement method and terminal
US16/090,449 US10469153B2 (en) 2016-04-05 2016-04-05 Antenna measurement method and terminal
PCT/CN2016/078498 WO2017173581A1 (zh) 2016-04-05 2016-04-05 天线测量方法及终端
US16/586,369 US10659136B2 (en) 2016-04-05 2019-09-27 Antenna measurement method and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/078498 WO2017173581A1 (zh) 2016-04-05 2016-04-05 天线测量方法及终端

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/090,449 A-371-Of-International US10469153B2 (en) 2016-04-05 2016-04-05 Antenna measurement method and terminal
US16/586,369 Continuation US10659136B2 (en) 2016-04-05 2019-09-27 Antenna measurement method and terminal

Publications (1)

Publication Number Publication Date
WO2017173581A1 true WO2017173581A1 (zh) 2017-10-12

Family

ID=60000801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078498 WO2017173581A1 (zh) 2016-04-05 2016-04-05 天线测量方法及终端

Country Status (4)

Country Link
US (2) US10469153B2 (zh)
EP (1) EP3407505B1 (zh)
CN (1) CN107534465B (zh)
WO (1) WO2017173581A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118409A (en) * 1997-02-14 2000-09-12 Nokia Mobile Phones, Ltd. Method and device for inspecting at least one antenna branch, in particular in a vehicle
CN1757172A (zh) * 2003-05-21 2006-04-05 日本电气株式会社 接收装置及使用该装置的无线通信系统
US7248843B2 (en) * 2003-11-07 2007-07-24 Ge Medical Systems Information Technologies, Inc. Antenna selection system and method
CN101273545A (zh) * 2005-09-30 2008-09-24 三菱电机研究实验室 在mimo无线lan中选择天线和波束的方法
CN102598533A (zh) * 2009-11-04 2012-07-18 日本电气株式会社 无线电通信系统的控制方法、无线电通信系统和无线电通信装置
CN102668408A (zh) * 2009-12-21 2012-09-12 高通股份有限公司 无线设备中的动态天线选择
CN103518394A (zh) * 2011-03-29 2014-01-15 阿尔卡特朗讯 包括多个天线的小小区基站以及通过选择天线的子集用于使用以控制接收模式的方法
US20140220902A1 (en) * 2013-02-04 2014-08-07 Intel Mobile Communications GmbH Radio communication devices and methods for controlling a radio communication device
EP2575267B1 (en) * 2011-09-30 2015-03-04 Alcatel Lucent A base station for wireless telecommunications and a method for selecting which subset of antennas to use
CN104396155A (zh) * 2012-05-21 2015-03-04 高通股份有限公司 用于天线选择的系统、装置和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595768B2 (en) * 2003-06-27 2009-09-29 Intel Corporation Switching schemes for multiple antennas
JP2009501493A (ja) 2005-07-15 2009-01-15 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド 多入力多出力システムのアンテナ選択
CN100471086C (zh) 2005-07-27 2009-03-18 北京邮电大学 一种在多天线系统中通过闭环控制选择发送天线的方法
CA2630567C (en) * 2005-12-12 2012-11-13 Wi-Lan, Inc. Self-installable switchable antenna
CN101047417B (zh) 2007-04-20 2010-06-09 哈尔滨工程大学 一种多用户mimo系统下行链路天线选择预处理方法
JP5006172B2 (ja) * 2007-12-04 2012-08-22 パナソニック株式会社 無線通信方法及び無線通信システム
US10420118B2 (en) * 2013-09-27 2019-09-17 Qualcomm Incorporated Multiflow with antenna selection
CN107112638B (zh) 2015-04-10 2019-11-29 华为技术有限公司 天线配置方法、装置及终端
WO2016161645A1 (zh) 2015-04-10 2016-10-13 华为技术有限公司 一种天线配置方法及终端

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118409A (en) * 1997-02-14 2000-09-12 Nokia Mobile Phones, Ltd. Method and device for inspecting at least one antenna branch, in particular in a vehicle
CN1757172A (zh) * 2003-05-21 2006-04-05 日本电气株式会社 接收装置及使用该装置的无线通信系统
US7248843B2 (en) * 2003-11-07 2007-07-24 Ge Medical Systems Information Technologies, Inc. Antenna selection system and method
CN101273545A (zh) * 2005-09-30 2008-09-24 三菱电机研究实验室 在mimo无线lan中选择天线和波束的方法
CN102598533A (zh) * 2009-11-04 2012-07-18 日本电气株式会社 无线电通信系统的控制方法、无线电通信系统和无线电通信装置
CN102668408A (zh) * 2009-12-21 2012-09-12 高通股份有限公司 无线设备中的动态天线选择
CN103518394A (zh) * 2011-03-29 2014-01-15 阿尔卡特朗讯 包括多个天线的小小区基站以及通过选择天线的子集用于使用以控制接收模式的方法
EP2575267B1 (en) * 2011-09-30 2015-03-04 Alcatel Lucent A base station for wireless telecommunications and a method for selecting which subset of antennas to use
CN104396155A (zh) * 2012-05-21 2015-03-04 高通股份有限公司 用于天线选择的系统、装置和方法
US20140220902A1 (en) * 2013-02-04 2014-08-07 Intel Mobile Communications GmbH Radio communication devices and methods for controlling a radio communication device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407505A4 *

Also Published As

Publication number Publication date
EP3407505A4 (en) 2019-01-09
US10659136B2 (en) 2020-05-19
US20200028566A1 (en) 2020-01-23
EP3407505B1 (en) 2020-02-05
US20190115968A1 (en) 2019-04-18
EP3407505A1 (en) 2018-11-28
CN107534465B (zh) 2020-11-10
US10469153B2 (en) 2019-11-05
CN107534465A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
US11297618B2 (en) Method for device to device communication, and terminal device
JP5917700B2 (ja) マルチチャネルを利用するrts/ctsシステム用の、送信およびリカバリモードのための装置および方法
TW201927021A (zh) 無線通訊系統中用於波束故障恢復的裝置及方法
KR20200017505A (ko) 통신 방법 및 통신 장치
US11083004B2 (en) Data transmission method and apparatus
JP2020528678A (ja) 測定ギャップの設定方法、装置、設備、端末及びシステム
JP2020506590A (ja) データパケット伝送方法および端末
KR20210127915A (ko) 동기 신호 블록 정보 처리 방법, 장치 및 통신 장치
KR102475094B1 (ko) 상향 전력 제어 방법, 단말기 디바이스 및 네트워크 디바이스
WO2015062082A1 (zh) 通信接入方法和用户设备
JP2012531161A (ja) 通信装置、通信方法及び製品
JP2021516884A (ja) ページングメッセージの送受信方法、ネットワークデバイス、及びユーザーデバイス
WO2017173581A1 (zh) 天线测量方法及终端
EP3534660A1 (en) Data transmission method and device
US20190281618A1 (en) Scheduling method, user equipment and base station
JP5891037B2 (ja) 通信システム、通信装置、通信プログラム及び通信方法
KR20200083948A (ko) 자원 지시 방법, 사용자 장치, 네트워크 장치 및 컴퓨터 저장 매체
CN110972157B (zh) 信息处理方法和终端设备
US8149803B2 (en) Apparatus for a beacon-enabled wireless network, transmission time determination method, and tangible machine-readable medium thereof
CN106998568B (zh) 一种空间共享方法及控制节点
JP2015115753A (ja) 通信端末
WO2014190469A1 (zh) 一种传输上行信号的方法和装置
US11330583B2 (en) Transmission time determination method and device, and computer storage medium
CN112752296A (zh) 一种数据传输方法、装置及电子设备
KR20210042384A (ko) Uci 결합을 전송하기 위한 방법, 단말 및 네트워크 측 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016897516

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016897516

Country of ref document: EP

Effective date: 20180824

NENP Non-entry into the national phase

Ref country code: DE