WO2017171387A1 - 신틸레이터 패널 및 그 제조 방법 - Google Patents

신틸레이터 패널 및 그 제조 방법 Download PDF

Info

Publication number
WO2017171387A1
WO2017171387A1 PCT/KR2017/003394 KR2017003394W WO2017171387A1 WO 2017171387 A1 WO2017171387 A1 WO 2017171387A1 KR 2017003394 W KR2017003394 W KR 2017003394W WO 2017171387 A1 WO2017171387 A1 WO 2017171387A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
scintillator
reflective film
substrate
scintillator panel
Prior art date
Application number
PCT/KR2017/003394
Other languages
English (en)
French (fr)
Inventor
홍태권
전제우
최원준
이진서
송재복
Original Assignee
주식회사 아비즈알
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아비즈알 filed Critical 주식회사 아비즈알
Publication of WO2017171387A1 publication Critical patent/WO2017171387A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Definitions

  • the present invention relates to a scintillator panel used in a radiation detector and a method of manufacturing the same, and more particularly, by using an anti-scattering film to reduce diffuse reflection and scattering of light converted in a scintillator layer.
  • the present invention relates to a scintillator panel and a method of manufacturing the same.
  • X-ray imaging has been used for a variety of purposes, such as medical and industrial use, and in the past, a method using an X-ray photosensitive film has been used.
  • an X-ray photograph can be used to check an image immediately and easily retake a digital X-ray.
  • the development of the detector is actively progressing.
  • a direct ionization method that converts X-rays directly into an electrical signal to generate a digital X-ray image, and converts X-rays into visible light by a scintillator to detect visible light through an image sensor
  • an indirect ionization method for generating an image.
  • X-ray imaging using an X-ray detector has the risk of radiation exposure when used for medical or industrial purposes, and excessive radiation exposure is very harmful to the human body. Therefore, the X-ray detector reduces the radiation exposure and at the same time provides high-quality X-ray images. It is very important to be able to get.
  • the CsI used as the scintillator is very vulnerable to moisture and has a property of being deliquescent by slight moisture permeation. In order to prevent this, it is very important to block the moisture permeation path to prevent the moisture permeation into the scintillator.
  • the scintillator panel according to the embodiment of the present invention is an indirect ionization type X-ray detector, which suppresses diffuse reflection and scattering of visible light generated from the scintillator as much as possible to reduce the radiation exposure amount and to obtain a high quality X-ray image It is an object of the present invention to provide a laser panel and a method of manufacturing the same.
  • An object of the present invention is to provide a scintillator panel capable of protecting the scintillator from moisture permeation and a method of manufacturing the same.
  • the present invention provides a scintillator panel in which a black layer is formed on a reflective film for improving a detection performance and protecting a substrate when a glass substrate and a substrate having high refractive index and high transmittance are used.
  • the present invention improves the resolution by suppressing the scattering and re-reflection of light by employing a black layer on the reflective film.
  • a scintillator panel has a photoelectric conversion element formed in a predetermined region of an upper surface thereof, and an electrode pad electrically connected to the photoelectric conversion element has a region where the photoelectric conversion element is formed.
  • a substrate 110 formed outside;
  • a scintillator layer (120) formed by growing into columnar crystals in a region where the photoelectric conversion element is formed on the substrate (110) and converting radiation into light having a predetermined wavelength band;
  • a reflective film 150 coupled to the upper portion of the scintillator layer, wherein the scintillator layer 120 and the reflective film 150 are bonded by surface compression, and the substrate 110 and the reflective film 150 The edge is joined through the adhesive.
  • the combination of the scintillator layer 120 and the reflective film 150 performs surface compression while maintaining a vacuum.
  • the scintillator panel further includes a dam structure 130 formed to surround a space on an outer portion of an area where the scintillator layer 120 is formed on the substrate 110, and the dam structure 130. Limits the region where the scintillator layer 120 is formed.
  • the scintillator panel may further include a sealing material 160 disposed on the outer side of the dam structure 130, and the sealing material 160 may use a paraline or a room temperature hardening type curing material.
  • the reflective film is formed by adhering a reflective sheet including a metal or a metal oxide onto the scintillator layer.
  • the reflective sheet may include aluminum or aluminum oxide.
  • the reflective sheet may have a thickness of 40-60 ⁇ m.
  • a protective film layer may be further included on the reflective film, and the protective film layer may include a PET film.
  • the thickness of the PET film may be 30-50 ⁇ m.
  • a coating layer may be further included between the scintillator layer and the reflective film.
  • the coating layer may include silver (Ag).
  • the thickness of the coating layer may be 900-1100 kPa.
  • the adhesive sheet further comprises an adhesive layer formed between the scintillator layer and the reflective sheet to adhere the reflective sheet onto the scintillator layer.
  • the scintillator panel further includes a black layer disposed on the reflective film.
  • the black layer surrounds the upper and side portions of the scintillator layer.
  • the scintillator panel further includes a protective layer 180 disposed to form the vacuum layer 140 between the reflective film 150.
  • a method of manufacturing a scintillator panel wherein an electrode pad having a photoelectric conversion element formed in a predetermined region on a surface thereof and electrically connected to the photoelectric conversion element includes: Preparing a substrate 110 formed outside the formed region; Growing and forming a scintillator layer (120) for converting radiation into light having a predetermined wavelength band in a region in which the photoelectric conversion element is formed on the substrate (110) as a columnar crystal; Forming a dam structure (130) by coating the outer surface of the region where the scintillator layer (120) is formed on the substrate (110); Maintaining a vacuum surface compression state between the scintillator layer 120 and the reflective film 150 in a state in which the reflective film 150 is laminated on the scintillator layer 120; And applying heat and pressure to a portion where the reflective film 150 is in contact with the scintillator layer 120.
  • the scintillator panel according to the embodiment of the present invention may have the following effects. However, since a specific embodiment does not mean to include all of the following effects or only the following effects, it should not be understood that the scope of the disclosed technology is limited by this.
  • the scintillator panel according to the embodiment of the present invention forms an anti-scattering film on the scintillator layer in an indirect ionization type X-ray detector, thereby suppressing diffuse reflection and scattering of visible light generated from the scintillator as much as possible while reducing the radiation exposure amount. High quality X-ray images can be obtained.
  • the present invention provides a scintillator panel in which a black layer is formed on a reflective film for improving a detection performance and protecting a substrate when a glass substrate and a substrate having high refractive index and high transmittance are used.
  • the present invention improves the resolution by suppressing the scattering and re-reflectance of light by employing a black layer on the reflection work.
  • FIG. 1 illustrates a structure of a scintillator panel according to an embodiment of the present invention.
  • FIG. 2 illustrates the structure of the scintillator panel in a state in which a sealing material is added to the outside of the dam structure in FIG. 1.
  • FIG. 3 illustrates the structure of the scintillator panel in a state where a black layer is disposed on the reflective film in FIG. 1.
  • FIG. 4 illustrates the structure of the scintillator panel in a state in which the reflective film and the black layer surround the upper and side portions of the scintillator.
  • FIG. 5 illustrates a structure of a scintillator panel in which a reflective film is disposed to cover the scintillator and the substrate, and a separate protective film is disposed on the reflective film.
  • FIG. 6 illustrates the structure of the scintillator panel in which both ends of the reflective film are lower than the center in the state in which the filler material is added to the dam structure in FIG. 1.
  • FIG. 7 is a view showing a state in which the PET film is laminated on the scintillator panel according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a state in which a silver (Ag) coating layer is formed between a reflective film and a scintillator layer of a scintillator panel according to an exemplary embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms may be used for the purpose of distinguishing one component from another component.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 illustrates a structure of a scintillator panel according to an embodiment of the present invention.
  • a scintillator panel may include an electrode pad (not shown) in which a photoelectric conversion element (not shown) is formed in a predetermined area on a surface thereof and is electrically connected to the photoelectric conversion element.
  • a scintillator layer formed by growing a columnar crystal in a substrate 110 formed outside the region where the photoelectric conversion element is formed and a region where the photoelectric conversion element is formed, and converting radiation into light having a predetermined wavelength band.
  • the dam structure 130 is formed by applying a room temperature hardening hardening material so as to surround the outside of the region where the scintillator layer 120 is formed on the substrate 110, and the scintillator layer 120 and the dam structure ( And a reflective film 150 formed on the substrate 130 and formed of a stacked structure thereof.
  • a space 140 is formed between the reflective film 150, the scintillator layer 120, and the dam structure 130.
  • the scintillator layer 120 and the reflective film 150 are coupled by surface compression, and the edges of the substrate 110 and the reflective film 150 are coupled through the dam structure 130. That is, in a state where a predetermined space is formed between the scintillator layer 120 and the dam structure 130, the upper portion of the scintillator layer 120 and the reflective film 150 are tightly coupled by surface compression, and the substrate 110 is formed.
  • the upper edge of the lower surface and the lower edge of the reflective film 150 has a form that is coupled through the dam structure (130).
  • both ends of the reflective film 150 is coupled to the substrate 110, it is possible through the adhesive in a state in which the coupling of the dam structure 130 is excluded.
  • the substrate 110 on which the photoelectric conversion element is formed may be a TFT panel or a CMOS panel that serves to detect and convert the visible light into an electric signal when the radiation is converted into visible light by the scintillator layer 120.
  • the photoelectric conversion element is a device that converts light into an electrical signal, for example, a photo diode.
  • the substrate 110 may include a plurality of photoelectric conversion elements formed in one or two dimensions to form a light receiving unit, and an electrode unit including a plurality of electrode pads connected to the light receiving unit to output an electrical signal of the light receiving unit to the outside. It is formed at the edge of the substrate.
  • the scintillator layer 120 is formed by growing into pillar-shaped (column) crystals on the substrate 110, and converts the radiation transmitted from the radiation generating apparatus to the imaging target and converted into light having a predetermined wavelength band.
  • the wavelength band of the light to be converted may be adjusted to a wavelength band with high photoelectric conversion efficiency when the photoelectric conversion element of the substrate 110 is converted into an electrical signal, and the wavelength band may be adjusted by the material of the scintillator layer 120. have.
  • the material of the scintillator layer 120 for example, Cesium Iodide (CsI), thallium (Tl) doping CsI, or the like may be used. Since the material used as the material of the scintillator is deliquescent when moisture penetrates, it is very vulnerable to moisture. Therefore, moisture must not be penetrated from the outside. Accordingly, a moisture-proof protective film is formed to protect the scintillator layer. .
  • the dam structure 130 functions as an adhesive layer between the substrate 110 and the reflective film 150, and may be formed at a predetermined height outside the scintillator layer 120, and prevents moisture permeation into the scintillator layer 120. In order to be moisture proof. Meanwhile, in the dam structure 130, parylene, which is used as a moisture proof protective film that may be formed between the scintillator layer 120 and the dam structure 130, contacts the electrode portion of the substrate 110 to form an electrode pad. Prevent damage.
  • the dam structure 130 may be formed by applying a room temperature hardening type curing material having moisture resistance, or may be formed by adhering a waterproof tape to simplify the process. Meanwhile, the dam structure 130 may be a form in which a thermosetting and UV curing agent is added to a room temperature curing material or a filler material is included in the room temperature curing material.
  • another embodiment may further include a moisture proof protective film that may be disposed between the scintillator layer 120 and the reflective film 150.
  • Moisture-proof protective film may be formed on the scintillator layer 120 to protect the scintillator layer 120 vulnerable to moisture from moisture permeation, the moisture-proof protective film to prevent the penetration of moisture from the outside while transmitting radiation or visible light.
  • paraline which can be used as a moisture proof protective film, is a product name of polyparaxylene polymer, such as paraline-N, paraline-C, and paraline-D.
  • a moisture resistant protective film is formed by applying, curing, or depositing paraline. Can be.
  • the reflective film 150 is formed on the scintillator layer 120 and the dam structure 130 to transmit radiation and reflect visible light.
  • Metal or metal oxide may be used as the material of the reflective film 150, and specifically, metals such as Al, Ag, Cr, Cu, Ni, Ti, Mg, Ph, Pt, Au, or oxides of these metals such as TiO2, etc. This can be used.
  • the reflective film 150 may be formed by depositing a metal or metal oxide by CVD, PVD or sputtering, and may also be formed by bonding a reflective sheet including the metal or metal oxide onto the dam structure 130. It may be.
  • the method of bonding the reflective film 150 on the scintillator layer 120 may use a method of surface pressing while maintaining a vacuum. In the state where the reflective film 150 is laminated on the scintillator layer 120, the vacuum surface compression state is maintained between the scintillator layer 120 and the reflective film 150, and the reflective film 150 and the scintillator layer 120 are maintained. This makes it possible through the process of applying heat and pressure to the contact portion.
  • an adhesive layer is applied to the outer portion of the scintillator layer 120 on the substrate 110.
  • the adhesive layer may be a dam structure 130.
  • a process of applying heat and pressure to a portion where the reflective film 150 and the dam structure 130 are in contact with each other is performed. In this state, a vacuum is maintained between the substrate 110 and the reflective film 150, and the Only the outer portion may be laminated with the substrate 110 using the dam structure 130.
  • the scintillator panel according to the present invention shows a structure in which the sealing material 160 is added on the outer side of the dam structure 130.
  • the sealing material 160 a parylene or a room temperature hardening type hardening material may be used. Accordingly, moisture vapor permeation into the scintillator layer 120 can be more effectively blocked.
  • the reflective film 150 when the reflective film 150 is formed, a separate reflective sheet may be adhered to the lower portion of the reflective film 150, in which case an adhesive layer may be formed.
  • the reflective film 150 can be formed by a simpler process by adhering the reflective sheet onto the scintillator layer 120 by the adhesive layer.
  • a room temperature hardening type hardening material may be used, and as the room temperature hardening type hardening material, for example, PANAX SP1101 of Uksung Chemical Co., Ltd. may be used, which is modified silicon, calcium carbonate, titanium dioxide, dehydrating agent, It is a mixture of a crosslinking agent and the like and has a property of natural curing at room temperature.
  • the sealant 190 may be a form in which a thermosetting and UV curing agent is added to the room temperature curing material or a filler material is included in the room temperature curing material.
  • FIG. 3 illustrates the structure of the scintillator panel in a state where a black layer (black layer) is disposed on the reflective layer in FIG. 1.
  • 4 illustrates the structure of the scintillator panel in a state in which the reflective film and the black layer surround the upper and side portions of the scintillator.
  • black layer is used to improve detection performance and protect a substrate when a substrate is used.
  • a black layer may be coated with a black paint, but is not limited thereto. Materials having a black color may be employed regardless of the thickness of the fabric, paper, and the like.
  • the black layer 170 functions to increase the resolution by suppressing scattering and re-reflection of light in a state of being attached to the upper portion of the reflective film 150.
  • FIG. 5 illustrates a structure of a scintillator panel in which a reflective film is disposed to cover the scintillator and the substrate, and a separate protective film is disposed on the reflective film.
  • the scintillator panel is formed of a substrate 110, a scintillator layer 120 formed by growing a columnar crystal in a region where a photoelectric conversion element is formed on the substrate 110, and converting radiation into light having a predetermined wavelength band, and the substrate.
  • a dam structure 130 formed by applying a room temperature hardening type hardening material to surround the outside of the region where the scintillator layer 120 is formed on the 110, and a reflective film formed so as to cover the scintillator layer 120 in close contact with each other ( 150, a protective layer 180 disposed to form the space 140 between the reflective film 150, and a sealing layer 160 disposed outside the dam structure 130. Is formed.
  • FIG 6 shows the structure of the scintillator panel in which both ends of the reflective film are lower than the center in the state in which the filler material is added to the dam structure.
  • the scintillator panel uses a room temperature hardening type curable material to surround the periphery of the substrate 110, the scintillator layer 120 growing as columnar crystals on the substrate 110, and an area where the scintillator layer 120 is formed on the substrate 110. And a reflective film 150 formed to cover the dam structure 130 and the scintillator layer 120 formed by applying a coating, and are formed in a stacked structure thereof. On the other hand, when both ends of the reflective film 150 is coupled to the substrate 110, it is possible through the adhesive in a state in which the coupling of the dam structure 130 is excluded.
  • the dam structure 130 may be provided with a filler material having a small grain shape, and the filler material functions to lengthen the moisture permeable path when moisture penetrates between the dam structure 130 and the reflective film 150.
  • FIG. 7 is a view illustrating a PET film laminated on the scintillator panel 100 according to an embodiment of the present invention
  • FIG. 8 is a reflection film of the scintillator panel 100 according to an embodiment of the present invention
  • 150 is a view showing a state in which the coating layer 200 is formed between the scintillator layer 120.
  • the scintillator panel 100 may have a protective film layer 190 stacked on an upper portion of the reflective film 150 provided as a reflective sheet.
  • the reflective film 150 may be provided as a reflective sheet including aluminum or aluminum oxide, and a protective film layer 190 (PET film) may be stacked on the reflective sheet.
  • PET film protective film layer 190
  • protrusions may be formed on the surface of the reflective sheet.
  • the PET film laminated on the reflective sheet may mitigate the detection of protrusions that may be formed by vacuum surface compression of the reflective sheet and the scintillator layer 120.
  • the reflective sheet may include aluminum or aluminum oxide, the thickness of the reflective sheet is about 40-100 ⁇ m, PET film may be about 10-60 ⁇ m.
  • the method of bonding the reflective film 150 on the scintillator layer 120 may use a method of surface pressing while maintaining a vacuum. In the state where the reflective film 150 is laminated on the scintillator layer 120, the vacuum surface compression state is maintained between the scintillator layer 120 and the reflective film 150, and the reflective film 150 and the scintillator layer 120 are maintained. This makes it possible through the process of applying heat and pressure to the contact portion.
  • the PET film (protective film layer) is formed by being stacked on top of the reflective sheet (reflective film), the reflective sheet is provided below, and the reflective sheet is attached to the substrate 110 through the adhesive layer 131.
  • the adhesive layer 131 can be.
  • the substrate 110 and the reflective sheet may be coupled through the adhesive layer 131. Since the filler material for lengthening the moisture vapor transmission path may be added to the adhesive layer 131, the reflective sheet and the substrate 110 may be adhered to each other without a separate dam structure 130. Therefore, even when there is no moisture barrier layer of the organic film material under the reflective film 150, the moisture proof for the scintillator layer 120 can be made, and the overall manufacturing process of the scintillator panel 100 can be simplified.
  • the thickness of the reflective sheet including aluminum is preferably about 40-60 ⁇ m.
  • an aluminum sheet having a thickness of about 100 ⁇ m may be used, but an aluminum sheet larger than about 60 ⁇ m may be used for the reflective sheet and the substrate when the vacuum surface compression method is applied. Greater pressure is required to form even mating surfaces between them.
  • the reflectance (normal reflection) of visible light may be reduced, in the case of a reflective sheet having a thickness less than about 40 ⁇ m of the scintillator layer 120 during vacuum surface compression
  • the non-uniform surface of the columnar crystal surface forming the scintillator layer 120 may form protrusions on the reflective sheet, thereby affecting the appearance quality.
  • the scintillator panel 100 uses an aluminum sheet and a PET film having a predetermined thickness so as not to reduce the reflectance while increasing the workability, while increasing the workability and reducing the reflectance without causing the appearance protrusion. To prevent stains.
  • the thickness of the reflective film 150 may be about 30-50 ⁇ m.
  • projections may be formed by columnar crystals forming the scintillator layer 120 on the exterior of the reflective sheet (for example, PET film coating having a thickness of about 10 ⁇ m may have stains due to coating variation), therefore, PET film PET film laminated on top of the reflective sheet is provided with a thickness of about 40-60 ⁇ m to prevent surface staining by the appearance process.
  • a silver (Ag) coating layer 200 may be further included between the scintillator layer 120 and the reflective film 150.
  • the silver coating layer 200 may form an even reflective surface than when using a single aluminum sheet, thereby increasing the reflectance of visible light.
  • the thickness of the silver coating layer 200 may be formed to 900-1100 kPa.
  • the reflective sheet used aluminum sheet and the thickness was about 100 micrometers.
  • PET film is manufactured by Solueta Co., Ltd. and laminated on top of aluminum sheet using a film with a thickness of about 10 ⁇ m.
  • the aluminum sheet was laminated at a thickness of about 40 ⁇ m, and the PET film was laminated on the aluminum sheet using a film having a thickness of about 50 ⁇ m.
  • Example 2 An aluminum sheet of about 40 ⁇ m thick and a PET film of about 50 ⁇ m thick were laminated as in Example 2, and a silver (Ag) coating layer was coated with a thickness of about 1000 mm between the scintillator layer and the aluminum sheet.
  • a silver (Ag) coating layer was coated with a thickness of about 1000 mm between the scintillator layer and the aluminum sheet.
  • Example 2 Example 3 Reflectance ( % ) 80 87 91 Test result L / O 270 296 316 CTF 44 45.5 43 Sensitivity 108 115.9 129 MTF 37 37.5 36.5 Reliability Results (55 °C / 95% / 512hr ) Pass Pass Pass
  • Table 1 is a result of measuring the reflectance and the like of the scintillator panel 100 according to the first to third embodiments.
  • a photoelectric conversion element is formed in a predetermined region on a surface, and an electrode pad electrically connected to the photoelectric conversion element is prepared on the substrate 110 formed outside the region where the photoelectric conversion element is formed, whereby the photoelectric conversion element on the substrate 110 is formed.
  • a scintillator layer 120 for converting radiation into light of a predetermined wavelength band is formed by growing a columnar crystal in the region.
  • the scintillator layer 120 may convert the radiation that has been irradiated from the radiation generating device to the imaging target and converted into light of a predetermined wavelength band, and the material of the scintillator layer 120 may be adjusted to adjust the wavelength band of the converted light. It may be determined, for example, Cesium Iodide (CsI), thallium (Tl) doping (CsI) and the like can be used.
  • the dam structure 130 is formed by applying a room temperature hardening type hardener to surround the periphery of the region where the scintillator layer 120 is formed on the substrate 110.
  • the dam structure 130 may limit an area in the substrate 110 of the scintillator layer 120, and thus, the dam structure 130 may be formed before the scintillator layer 120 is formed. .
  • the dam structure 130 may be formed at a predetermined height on the outer side of the scintillator layer 120 and should have moisture resistance to prevent moisture permeation to the scintillator layer 120.
  • the dam structure 130 may be formed by applying a room temperature hardening type curing material having moisture resistance, but may be formed by adhering a waterproof tape to simplify the process.
  • the reflective film 150 is formed on the scintillator layer 120 and the dam structure 130.
  • the reflective film 150 has a property of transmitting radiation and reflecting visible light, and a metal or a metal oxide may be used as the material of the reflective film 150.
  • a metal or a metal oxide may be used as the material of the reflective film 150.
  • Al, Ag, Cr, Cu, Ni, Ti, Metals such as Mg, Ph, Pt, Au, or oxides of these metals such as TiO2 may be used.
  • the sealing member 160 may be sealed to the outside of the dam structure 130 in order to enhance the sealing for blocking moisture permeation between the reflective film 150 and the dam structure 130.
  • a room temperature curing type curing material may be used.
  • PANAX SP1101 of Uksung Chemical Co., Ltd. may be used, which is a mixture of modified silicon, calcium carbonate, titanium dioxide, a dehydrating agent, a crosslinking agent, and the like. It has the property of natural curing at room temperature.
  • the scintillator panel according to the present invention reduces the amount of radiation exposure by suppressing diffuse reflection and scattering of visible light generated from the scintillator by placing a reflective film on the scintillator layer in the indirect ionization type X-ray detector.
  • the dam structure 130 and the sealing material 160 are formed on the side of the scintillator layer in order to obtain a high quality X-ray image and to prevent the scintillator from being deteriorated due to the penetration of moisture.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

본 발명에 따른 신틸레이터 패널은 광전변환소자가 그 상면의 소정 영역에 형성되고 상기 광전변환소자와 전기적으로 접속된 전극 패드가 상기 광전변환소자가 형성된 영역의 외부에 형성된 기판(110); 상기 기판(110) 상의 상기 광전변환소자가 형성된 영역에 주상 결정으로 성장하여 형성되고 방사선을 소정의 파장 대역의 광으로 변환하는 신틸레이터층(120); 및 상기 신틸레이터층의 상부에 결합되는 반사막(150);을 포함하며, 상기 신틸레이터층(120) 및 반사막(150)은 면압착을 통해 결합하고, 상기 기판(110)과 반사막(150)의 가장자리는 접착제를 통해 결합된다.

Description

신틸레이터 패널 및 그 제조 방법
본 발명은 방사선 검출기에 이용되는 신틸레이터 패널 및 그 제조 방법에 관한 것으로, 보다 상세하게는 광산란방지막을 이용하여 신틸레이터층에서 변환된 광의 난반사 및 산란을 감소시킴으로써 방사선 검출기에서 저선량으로 고화질의 영상을 얻을 수 있도록 하는 신틸레이터 패널 및 그 제조 방법에 관한 것이다.
의료용이나 산업용 등의 다양한 목적으로 X선 촬영이 이용되어 오고 있으며, 종래에는 X선 감광 필름을 이용하는 방식이 사용되었으나, 근래에는 X선 촬영 후 바로 영상을 확인할 수 있고 재촬영이 용이한 디지털 X선 검출기의 개발이 활발히 진행되고 있다.
이러한 디지털 X선 검출기로서 X선을 직접 전기 신호로 변환하여 디지털 X선 영상을 생성하는 직접 전리 방식과 X선을 신틸레이터(scintillator)에 의해 가시광으로 변환하여 이미지 센서를 통해 가시광을 감지하여 X선 영상을 생성하는 간접 전리 방식이 있다.
한편, X선 검출기를 이용한 X선 촬영에는 의료용이나 산업용으로 사용되는 경우 방사선 피폭의 위험이 있으며 방사선 피폭량이 과다할 경우 인체에 매우 유해하므로 X선 검출기에서는 방사선 피폭량을 줄이면서도 동시에 고화질의 X선 영상을 얻을 수 있도록 하는 것이 대단히 중요하다.
이에 따라, 저선량과 고화질의 목적을 달성하기 위한 연구가 진행되고 있으며, 특히, 신틸레이터를 통해 X선을 가시광으로 변환하는 간접 전리 방식의 X선 검출기에서는 신틸레이터로부터 발생하는 가시광이 난반사 및 산란을 일으켜 X선 촬영 영상의 화질이 떨어지는 문제가 있다.
또한, 신틸레이터로 사용되는 CsI는 수분에 매우 취약하여 약간의 투습에 의해 조해되는 성질을 갖고 있으며, 이를 방지하기 위하여 신틸레이터로의 투습을 방지하기 위한 투습 경로의 차단이 매우 중요하다.
본 발명의 실시예에 따른 신틸레이터 패널은, 간접 전리 방식의 X선 검출기에서 신틸레이터로부터 발생하는 가시광의 난반사 및 산란을 최대한 억제시켜 방사선 피폭량을 줄이면서도 고화질의 X선 영상을 얻을 수 있도록 하는 신틸레이터 패널 및 그 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 신틸레이터로 사용되는 CsI가 수분의 침투로 인하여 조해되는 것을 방지하기 위하여 신틸레이터층 및 기판에 대한 반사막의 접착력을 향상시키고, 기판과 반사막 사이를 연결하는 접착제에서의 투습 경로를 효과적으로 연장하여 신틸레이터를 투습으로부터 보호할 수 있는 신틸레이터 패널 및 그 제조 방법을 제공하는 것을 목적으로 한다.
또한, 글래스 기판을 비롯해서 굴절률과 투과율이 높은 기판이 사용되었을 때 검출 성능의 향상 및 기판보호 기능을 위해 반사막 상에 흑색층(black layer)을 형성한 신틸레이터 패널을 제공한다. 본 발명은 반사막 상에 흑색층을 채용함으로써 빛의 산란 및 재반사율을 억제하여 분해능을 높인다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 관점에 따른 신틸레이터 패널은 광전변환소자가 그 상면의 소정 영역에 형성되고 상기 광전변환소자와 전기적으로 접속된 전극 패드가 상기 광전변환소자가 형성된 영역의 외부에 형성된 기판(110); 상기 기판(110) 상의 상기 광전변환소자가 형성된 영역에 주상 결정으로 성장하여 형성되고 방사선을 소정의 파장 대역의 광으로 변환하는 신틸레이터층(120); 및 상기 신틸레이터층의 상부에 결합되는 반사막(150);을 포함하며, 상기 신틸레이터층(120) 및 반사막(150)은 면압착을 통해 결합하고, 상기 기판(110)과 반사막(150)의 가장자리는 접착제를 통해 결합된다.
상기 신틸레이터층(120) 및 반사막(150)의 결합은 진공을 유지하면서 면압착을 수행한다.
상기 신틸레이터 패널은, 상기 기판(110) 상에서 상기 신틸레이터층(120)이 형성된 영역의 외곽 상에 공간을 두고 둘러싸도록 형성되는 댐 구조물(130);을 더 포함하고, 상기 댐 구조물(130)은 상기 신틸레이터층(120)이 형성되는 영역을 제한한다.
상기 신틸레이터 패널은, 상기 댐 구조물(130)의 외곽 상에 배치되는 밀봉재(160);를 더 포함하며, 상기 밀봉재(160)는 패럴린 또는 상온경화형 경화재를 사용할 수 있다.
상기 반사막은 금속 또는 금속산화물을 포함하는 반사 시트(sheet)가 상기 신틸레이터층 상에 접착되어 형성된다.
상기 반사시트는 알루미늄 또는 알루미늄 산화물을 포함할 수 있다.
상기 반사시트의 두께는 40-60 ㎛일 수 있다.
상기 반사막의 상부에 보호필름층을 더 포함하고, 상기 보호필름층은 PET필름을 포함할 수 있다.
상기 PET필름의 두께는 30-50 ㎛일 수 있다.
상기 신틸레이터층과 상기 반사막 사이에 코팅층을 더 포함할 수 있다.
상기 코팅층은 은(Ag)을 포함할 수 있다.
상기 코팅층의 두께는 900-1100 Å일 수 있다.
상기 반사 시트를 상기 신틸레이터층 상에 접착하기 위하여 상기 신틸레이터층과 상기 반사 시트 사이에 형성되는 점착층을 더 포함한다.
상기 신틸레이터 패널은, 상기 반사막의 상에 배치되는 블랙 레이어를 더 포함한다.
상기 블랙 레이어는 상기 신틸레이터층의 상부 및 측부를 감싸는 형태이다.
상기 신틸레이터 패널은, 상기 반사막(150)과의 사이에 진공층(140)을 형성하도록 배치되는 보호층(180)을 더 포함한다.
전술한 목적을 달성하기 위한 본 발명의 다른 관점에 따른 신틸레이터 패널의 제조 방법은, 광전변환소자가 면 상의 소정 영역에 형성되고 상기 광전변환소자와 전기적으로 접속된 전극 패드가 상기 광전변환소자가 형성된 영역의 외부에 형성된 기판(110)을 준비하는 단계; 상기 기판(110) 상의 상기 광전변환소자가 형성된 영역에 방사선을 소정의 파장 대역의 광으로 변환하는 신틸레이터층(120)을 주상 결정으로 성장시켜 형성하는 단계; 상기 기판(110) 상에서 상기 신틸레이터층(120)이 형성된 영역의 외곽을 둘러싸도록 도포하여 댐 구조물(130)을 형성하는 단계; 상기 신틸레이터층(120) 상에 반사막(150)을 합지한 상태에서, 상기 신틸레이터층(120)과 반사막(150) 사이에 진공 면압착 상태를 유지하는 단계; 상기 반사막(150)과 상기 신틸레이터층(120)이 맞닿는 부분에 열 및 압력을 가하는 단계;를 포함한다.
본 발명의 실시예에 따른 신틸레이터 패널은은 다음과 같은 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 발명의 실시예에 따른 신틸레이터 패널은, 간접 전리 방식의 X선 검출기에서 신틸레이터층 상부에 광산란방지막을 형성함으로써, 신틸레이터로부터 발생하는 가시광의 난반사 및 산란을 최대한 억제시켜 방사선 피폭량을 줄이면서도 고화질의 X선 영상을 얻을 수 있다.
또한, 글래스 기판을 비롯해서 굴절률과 투과율이 높은 기판이 사용되었을 때 검출 성능의 향상 및 기판보호 기능을 위해 반사막 상에 흑색층(black layer)을 형성한 신틸레이터 패널을 제공한다. 본 발명은 반사작 상에 흑색층을 채용함으로써 빛의 산란 및 재반사율을 억제하여 분해능을 높인다.
도 1은 본 발명의 일 실시예에 따른 신틸레이터 패널의 구조를 나타낸 것이다.
도 2는 도 1에서 댐 구조물의 외곽 상에 밀봉재가 부가된 상태의 신틸레이터 패널의 구조를 나타낸 것이다.
도 3은 도 1에서 반사막의 상부 상에 블랙 레이어가 배치된 상태의 신틸레이터 패널의 구조를 나타낸 것이다.
도 4는 반사막 및 블랙 레이어가 신틸레이터의 상부 및 측부를 감싸는 형태로 배치된 상태의 신틸레이터 패널의 구조를 나타낸 것이다.
도 5는 신틸레이터 및 기판을 덮도록 반사막이 배치되고, 별도의 보호막이 반사막의 상부에 배치된 상태의 신틸레이터 패널의 구조를 나타낸 것이다.
도 6은 도 1에서 댐 구조물에 필러재가 부가된 상태에서 반사막의 양단이 중앙보다 낮은 상태의 신틸레이터 패널의 구조를 나타낸 것이다.
도 7은 본 발명의 실시예에 따른 신틸레이터 패널의 상부에 PET필름이 적층된 모습을 도시한 도면이다.
도 8은 본 발명의 실시예에 따른 신틸레이터 패널의 반사막과 신틸레이터층 사이에 은(Ag) 코팅층이 형성된 모습을 도시한 도면이다.
본문에 개시되어 있는 본 발명의 실시예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 된다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로 사용될 수 있다. 예를 들어, 본 발명의 권리 범위로부터 이탈되지 않은 채 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미이다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미인 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 신틸레이터 패널의 구조를 나타낸 것이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 신틸레이터 패널은, 광전변환소자(미도시)가 면 상의 소정 영역에 형성되고 상기 광전변환소자와 전기적으로 접속된 전극 패드(미도시)가 상기 광전변환소자가 형성된 영역의 외부에 형성된 기판(110), 상기 기판(110) 상의 광전변환소자가 형성된 영역에 주상 결정으로 성장하여 형성되고 방사선을 소정의 파장 대역의 광으로 변환하는 신틸레이터층(120), 상기 기판(110) 상에서 신틸레이터층(120)이 형성된 영역의 외곽을 둘러싸도록 상온경화형 경화재를 도포하여 형성되는 댐 구조물(130), 및 상기 신틸레이터층(120)과 댐 구조물(130) 상에 형성되는 반사막(150)을 포함하며, 이들의 적층 구조로 형성된다. 본 발명에서는 상기 반사막(150), 신틸레이터층(120) 및 댐 구조물(130) 사이에는 공간(140)이 형성된다.
상기 신틸레이터층(120) 및 반사막(150)은 면압착을 통해 결합하고, 상기 기판(110)과 반사막(150)의 가장자리는 댐 구조물(130)을 통해 결합한다. 즉, 신틸레이터층(120)과 댐 구조물(130) 사이에 일정한 공간이 형성된 상태에서, 상기 신틸레이터층(120)의 상부와 반사막(150)은 면압착을 통해 밀착 결합하고, 기판(110)의 상면 가장자리와 반사막(150)의 하면 가장자리는 댐 구조물(130)을 통해 결합하는 형태를 갖는다. 한편, 반사막(150)의 양단이 기판(110) 상에 결합하는 경우에 댐 구조물(130)의 결합을 배제한 상태에서 접착제를 통해 가능하게 한다.
광전변환소자가 형성된 기판(110)은 방사선이 신틸레이터층(120)에 의해 가시광으로 변환되는 경우 이 가시광을 감지하여 전기 신호로 변환하는 역할을 하는 TFT 패널 또는 CMOS 패널일 수 있다. 광전변환소자는 빛을 전기신호로 변환하는 소자로서, 예를 들어, 포토다이오드(photo diode)가 이에 해당된다. 기판(110)에는 복수의 광전변환소자가 1차원 또는 2차원으로 형성되어 수광부를 형성할 수 있고, 수광부와 연결되어 수광부의 전기 신호를 외부로 출력할 수 있는 복수의 전극 패드를 포함하는 전극부가 기판의 가장자리에 형성된다.
신틸레이터층(120)은 기판(110) 상에 주상(기둥 모양) 결정으로 성장시켜 형성되어, 방사선 발생 장치로부터 촬영 대상으로 조사되어 통과한 방사선을 소정의 파장 대역의 광으로 변환할 수 있다. 여기서, 변환되는 광의 파장 대역은 기판(110)의 광전변환소자가 전기 신호로 변환함에 있어 광전변환효율이 높은 파장 대역으로 조정될 수 있으며, 신틸레이터층(120)의 재료에 의해 파장 대역이 조정될 수 있다.
신틸레이터층(120)의 재료로는, 예를 들어, CsI(Cesium Iodide), 탈륨(Tl) 도핑(doping) CsI 등이 이용될 수 있다. 신틸레이터의 재료로 사용되는 물질은 수분이 침투하는 경우 조해되는 성질이 있으므로 습기에 매우 취약하기 때문에 외부로부터 습기가 침투하지 못하도록 하여야 하며, 이에 따라, 방습 보호막을 형성하여 신틸레이터층을 보호하도록 한다.
댐 구조물(130)은 기판(110)과 반사막(150) 간의 접착층 기능을 하는 것으로서, 신틸레이터층(120)의 외곽에 일정 높이로 형성될 수 있으며, 신틸레이터층(120)으로의 투습을 방지하기 위하여 방습성을 가져야 한다. 한편, 댐 구조물(130)은 신틸레이터층(120)과 댐 구조물(130) 사이에 형성될 수 있는 방습 보호막으로 사용되는 패럴린(Parylene)이 기판(110)의 전극부에 접촉하여 전극 패드를 손상시키는 것을 방지한다.
댐 구조물(130)은 방습성을 가진 상온경화형 경화재를 도포하여 형성할 수도 있으며, 공정을 단순화하기 위하여 방수 테이프를 접착하여 형성할 수도 있다. 한편, 댐 구조물(130)은 상온 경화재에 열경화형 및 UV형 경화재를 추가하거나 상온 경화재 내부에 필러재가 포함된 형태일 수 있다.
본 발명에서는 방습 보호막으로 사용되는 패럴린(Parylene)이 없는 상태를 기준으로 하지만, 다른 실시예로서는 신틸레이터층(120)과 반사막(150) 사이에 배치될 수 있는 방습 보호막을 추가적으로 구비할 수 있다. 방습 보호막은 신틸레이터층(120) 상에 형성되어 수분에 취약한 신틸레이터층(120)을 투습으로부터 보호하도록 할 수 있는데, 상기 방습 보호막은 방사선이나 가시광을 투과시키면서 외부로부터의 습기가 침투하는 것을 방지할 수 있으며, 이러한 특성을 갖는 재료로서 패럴린을 사용할 수 있다. 방습 보호막으로 채용 가능한 패럴린은 폴리파라자일렌(polyparaxylene) 고분자의 상품명으로 패럴린-N, 패럴린-C, 패럴린-D 등이 있으며, 방습 보호막은 패럴린을 도포, 경화하거나 증착하여 형성될 수 있다.
반사막(150)은 신틸레이터층(120)과 댐 구조물(130)의 상부에 형성되어 방사선을 투과하는 동시에 가시광을 반사하는 성질을 갖는다. 반사막(150)의 재료로는 금속 또는 금속 산화물이 이용될 수 있으며, 구체적으로 Al, Ag, Cr, Cu, Ni, Ti, Mg, Ph, Pt, Au 등의 금속이나 TiO2 등과 같은 이들 금속의 산화물이 이용될 수 있다. 반사막(150)은 금속 또는 금속 산화물이 CVD, PVD나 스퍼터링 등에 의해 증착하여 형성할 수 있으며, 또한, 금속 또는 금속 산화물을 포함하는 반사 시트(sheet)를 댐 구조물(130) 상에 접착하여 형성할 수도 있다.
상기 반사막(150)을 신틸레이터층(120) 상에 결합하는 방법은 진공을 유지하면서 면압착하는 방법을 사용할 수 있다. 신틸레이터층(120) 상에 반사막(150)을 합지한 상태에서, 신틸레이터층(120)과 반사막(150) 사이에 진공 면압착 상태를 유지하고, 반사막(150)과 신틸레이터층(120)이 맞닿는 부분에 열 및 압력을 가하는 과정을 통해 가능하게 한다.
구체적으로는, 기판(110)에서 신틸레이터층(120)의 외곽 부분에 접착층을 도포한다. 상기 접착층은 댐 구조물(130)일 수 있다.
상기 댐 구조물(130)을 가경화하고, 기판(110) 상에 반사막(150)을 합지한 상태에서, 기판(110)과 반사막(150) 사이에 진공 상태를 만들어 준다.
반사막(150)과 댐 구조물(130)이 맞닿는 부분에 열 및 압력을 가하여 붙이는 공정을 진행하는데, 상기 상태에서 기판(110)과 반사막(150) 사이에 진공 상태를 유지하며, 반사막(150)의 외곽 부분만 댐 구조물(130)을 이용하여 기판(110)과 합지하는 것일 수 있다.
한편, 도 2를 참조하면 본 발명에 따른 신틸레이터 패널에서는 댐 구조물(130)의 외곽 상에 밀봉재(160)를 부가한 구조를 나타낸 것이다.
밀봉재(160)로는 패럴린 또는 상온경화형 경화재가 이용될 수 있다. 이에 따라, 신틸레이터층(120)으로의 투습을 보다 효과적으로 차단할 수 있다.
한편, 반사막(150)을 형성시에 별도의 반사 시트(sheet)를 반사막(150)의 하부 상에 접착하여 형성할 수도 있는데, 이 경우 점착층이 형성될 수 있다. 이와 같이, 점착층에 의하여 반사 시트를 신틸레이터층(120) 상에 접착함으로써 보다 간단한 공정에 의하여 반사막(150)을 형성할 수 있다.
밀봉재(190)로는 상온경화형 경화재가 이용될 수 있으며, 상온경화형 경화재로는, 예를 들어, 욱성화학(주)의 PANAX SP1101이 이용될 수 있고, 이는 변성실리콘, 탄산칼슘, 이산화티타늄, 탈수제, 가교제 등을 혼합한 것으로 상온에서 자연경화하는 특성을 갖는다. 밀봉재(190)는 상온 경화재에 열경화형 및 UV형 경화재를 추가하거나 상온 경화재 내부에 필러재가 포함된 형태일 수 있다.
도 3은 도 1에서 반사막의 상부 상에 블랙 레이어(흑색층,black layer)이 배치된 상태의 신틸레이터 패널의 구조를 나타낸 것이다. 도 4는 반사막 및 블랙 레이어가 신틸레이터의 상부 및 측부를 감싸는 형태로 배치된 상태의 신틸레이터 패널의 구조를 나타낸 것이다.
본 명세서 상에서 사용되는 용어인 블랙 레이어는 기판이 사용되었을 때 검출 성능의 향상 및 기판보호 기능을 사용되는 것으로서 구체적으로는 검은색 도료를 코팅처리하는 방식을 사용할 수 있으나, 이에 한정되는 것은 아니고 검은색 직물, 종이 등 두께에 관계없이 흑색을 갖는 물질을 채용할 수 있다.
블랙 레이어(170)는 반사막(150)의 상부에 부착된 상태에서 빛의 산란 및 재반사율을 억제하여 분해능을 높이는 기능을 한다.
도 5는 신틸레이터 및 기판을 덮도록 반사막이 배치되고, 별도의 보호막이 반사막의 상부에 배치된 상태의 신틸레이터 패널의 구조를 나타낸 것이다.
신틸레이터 패널은, 기판(110), 상기 기판(110) 상의 광전변환소자가 형성된 영역에 주상 결정으로 성장하여 형성되고 방사선을 소정의 파장 대역의 광으로 변환하는 신틸레이터층(120), 상기 기판(110) 상에서 신틸레이터층(120)이 형성된 영역의 외곽을 둘러싸도록 상온경화형 경화재를 도포하여 형성되는 댐 구조물(130), 상기 신틸레이터층(120)을 밀착한 상태로 덮도록 형성되는 반사막(150), 반사막(150)과의 사이에 공간(140)을 형성하도록 배치되는 보호층(180), 및 댐 구조물(130)의 외곽에 배치되는 밀봉층(160)을 포함하며, 이들의 적층 구조로 형성된다.
도 6은 댐 구조물에 필러재가 부가된 상태에서 반사막의 양단이 중앙보다 낮은 상태의 신틸레이터 패널의 구조를 나타낸 것이다.
신틸레이터 패널은 기판(110), 기판(110) 상에 주상 결정으로 성장하는 신틸레이터층(120), 기판(110) 상에서 신틸레이터층(120)이 형성된 영역의 외곽을 둘러싸도록 상온경화형 경화재를 도포하여 형성되는 댐 구조물(130) 및 신틸레이터층(120)을 밀착한 상태로 덮도록 형성되는 반사막(150)을 포함하며, 이들의 적층 구조로 형성된다. 한편, 반사막(150)의 양단이 기판(110) 상에 결합하는 경우에 댐 구조물(130)의 결합을 배제한 상태에서 접착제를 통해 가능하게 한다.
댐 구조물(130)은 작은 알갱이 형상의 필러재가 부가될 수 있는데, 상기 필러재는 댐 구조물(130)과 반사막(150) 사이로 수분이 침투하는 경우에 수분의 투습 경로를 길게 하는 기능을 한다.
도 7은 본 발명의 실시예에 따른 신틸레이터 패널(100)의 상부에 PET필름이 적층된 모습을 도시한 도면이고, 도 8은 본 발명의 실시예에 따른 신틸레이터 패널(100)의 반사막(150)과 신틸레이터층(120) 사이에 코팅층(200)이 형성된 모습을 도시한 도면이다.
도 7 및 도 8을 참고하면, 본 발명의 실시예에 따른 신틸레이터 패널(100)은 반사시트로 구비된 반사막(150)의 상부에 보호필름층(190)이 적층될 수 있다. 예를 들면, 반사막(150)은 알루미늄 또는 알루미늄 산화물을 포함하는 반사시트로 구비될 수 있으며, 반사시트의 상부에는 보호필름층(190)(PET필름)이 적층될 수 있다.
반사시트와 신틸레이터층(120)의 진공면압착을 수행하는 경우 반사시트 표면에 돌기가 형성될 수 있다. 반사시트 상부에 적층된 PET필름은 반사시트와 신틸레이터층(120)의 진공면압착에 의해 형성될 수 있는 돌기의 검출을 완화할 수 있다.
반사시트는 알루미늄 또는 알루미늄 산화물을 포함할 수 있으며, 상기 반사시트의 두께는 약 40-100 ㎛ 이고, PET필름은 약 10-60 ㎛일 수 있다.
본 발명의 실시예에 따른 신틸레이터패널의 경우, 상기 반사막(150)을 신틸레이터층(120) 상에 결합하는 방법은 진공을 유지하면서 면압착하는 방법을 사용할 수 있다. 신틸레이터층(120) 상에 반사막(150)을 합지한 상태에서, 신틸레이터층(120)과 반사막(150) 사이에 진공 면압착 상태를 유지하고, 반사막(150)과 신틸레이터층(120)이 맞닿는 부분에 열 및 압력을 가하는 과정을 통해 가능하게 한다.
도 7과 같이, PET필름(보호필름층)은 반사시트(반사막)의 상부에 적층되어 형성되며, 그 하부에 반사시트가 구비되고, 반사시트는 접착층(131)을 통하여 기판(110)에 부착될 수 있다.
본 발명의 실시예에 따른 신틸레이터 패널(100)은 접착층(131)을 통하여 기판(110)과 반사시트가 결합될 수 있다. 상기 접착층(131)에는 투습경로를 길게 하기 위한 필러재가 부가될 수 있으므로 별도의 댐 구조물(130) 없이 반사시트와 기판(110)이 접착될 수 있다. 따라서, 반사막(150)의 하부에 유기막소재의 투습방지층이 없더라도 신틸레이터층(120)에 대한 방습이 이루어질 수 있고, 전체적인 신틸레이터 패널(100)의 제조공정이 단순화될 수 있다.
진공압착에 의하여 신틸레이터층(120)에 진공면압착을 형성하기 위해서, 알루미늄을 포함하는 반사시트의 두께는 약 40-60 ㎛인 것이 바람직하다. 신틸레이터층(120)을 형성하는 주상결정면의 표면의 영향을 고려하여, 약 100 ㎛ 두께의 알루미늄시트가 사용될 수 있지만 약 60 ㎛를 초과하는 알루미늄시트는 진공면압착방식을 적용시 반사시트와 기판사이에 고른 결합면을 형성하는데 보다 큰 압력이 필요하다.
한편, 약 100 ㎛의 두께 미만인 반사시트를 사용하는 경우, 가시광선의 반사율(정반사)이 저하될 수 있고, 약 40 ㎛ 미만의 두께를 갖는 반사시트의 경우 진공면압착시 신틸레이터층(120)의 외곽부분에 밀착성이 우수한 특징이 있으나 신틸레이터층(120)을 형성하는 주상결정면의 불균일한 표면이 반사시트에 돌기를 형성하여 외관 품질에 영향을 줄 수 있다.
본 발명의 실시예에 따른 신틸레이터 패널(100)은 가공성을 높이면서도 반사율의 저감이 일어나지 않도록, 소정의 두께를 갖는 알루미늄 시트와 PET필름을 사용하여 가공성을 높이면서도 반사율의 저감이 일어나지 않고 외관돌기에 따른 얼룩을 방지 할 수 있다.
진공 면압착 방식에 의하여 반사막(150)을 신틸레이터층(120)에 부착하기 위한 가공성을 높이기 위해서는 반사막(150), 즉 알루미늄 반사시트의 두께는 약 30-50 ㎛인 것이 사용될 수 있다. 반사시트의 외관에 신틸레이터층(120)을 형성하는 주상결정에 의해 돌기가 형성(예를 들면, 약 10 ㎛의 PET필름 코팅의 경우 코팅 편차에 따른 얼룩 존재할 수 있음)될 수 있으므로, PET필름이 반사시트의 상부에 적층되는 PET필름의 두께는 약 40-60 ㎛로 구비되어 외관돌기에 의한 표면 얼룩을 방지할 수 있다.
한편, 상기 신틸레이터층(120)과 상기 반사막(150) 사이에 은(Ag) 코팅층(200)을 더 포함할 수 있다. 은 코팅층(200)은단일 알루미늄시트를 사용한 경우보다 고른 반사면을 형성하여, 가시광선의 반사율을 증가할 수 있다. 이때, 상기 은 코팅층(200)의 두께는 900-1100 Å로 형성될 수 있다.
이하 본 발명의 실시예에 따른 신틸레이터 패널(100)에 대하여 실시예를 통하여 살펴본다:
실시예
실시예 1:
반사시트는 알루미늄 시트를 사용하였으며 두께는 약 100 ㎛의 것을 사용하였음.
PET필름의 경우 솔루에타 社에서 제조된 필름으로써 두께가 약 10 ㎛의 두께의 필름을 사용하여 알루미늄 시트 상부에 적층함
실시예 2:
실시예 1과 같은 적층 구조로써, 알루미늄 시트의 두께는 약 40 ㎛로 적층하고, PET필름은 약 50 ㎛의 두께의 필름을 사용하여 알루미늄 시트 상부에 적층함
실시예 3:
실시예 2와 동일한 약 40 ㎛ 두께의 알루미늄 시트와 약 50 ㎛의 두께의 PET필름을 적층하였으며, 신틸레이터층과 알루미늄 시트 사이에 약 1000 Å의 두께로 은(Ag) 코팅층을 코팅함
구분 실시예 1 실시예 2 실시예 3
반사율 ( % ) 80 87 91
Test 결과 L/O 270 296 316
CTF 44 45.5 43
Sensitivity 108 115.9 129
MTF 37 37.5 36.5
신뢰성 결과 (55℃/95%/ 512hr ) Pass Pass Pass
상기 표 1은 상기 실시예 1 내지 3에 따른 신틸레이터 패널(100)의 반사율 등을 측정한 결과이다.
상기 표를 통하여 알 수 있듯이, 약 40 ㎛의 알루미늄 시트와 약 50 ㎛의 PET필름을 적용한 신틸레이터 패널(100)의 경우 향상된 L/O(light output), CTF(contrast transfer function), 감도(Sensitivity) 및 MTF(modulation transfer function)을 갖는다.
다음은, 본 발명의 일 실시예에 따른 신틸레이터 패널의 제조 방법에 대해 설명하도록 한다.
광전변환소자가 면 상의 소정 영역에 형성되고 광전변환소자와 전기적으로 접속된 전극 패드가 광전변환소자가 형성된 영역의 외부에 형성된 기판(110)을 준비하여, 기판(110) 상의 광전변환소자가 형성된 영역에 방사선을 소정의 파장 대역의 광으로 변환하는 신틸레이터층(120)을 주상 결정으로 성장시켜 형성한다.
신틸레이터층(120)은 방사선 발생 장치로부터 촬영 대상으로 조사되어 통과한 방사선을 소정의 파장 대역의 광으로 변환할 수 있으며, 변환되는 광의 파장 대역을 조정하기 위하여 신틸레이터층(120)의 재료가 결정될 수도 있으며, 예를 들어, CsI(Cesium Iodide), 탈륨(Tl) 도핑(doping) CsI 등이 이용될 수 있다.
다음으로, 기판(110) 상에서 신틸레이터층(120)이 형성된 영역의 외곽을 둘러싸도록 상온경화형 경화재를 도포하여 댐 구조물(130)을 형성한다. 다만, 댐 구조물(130)은 신틸레이터층(120)의 기판(110) 내 영역을 제한할 수도 있고, 이에 따라, 신틸레이터층(120)이 형성되기 전에 댐 구조물(130)이 형성될 수도 있다.
댐 구조물(130)은 신틸레이터층(120)의 외곽에 일정 높이로 형성될 수 있으며, 신틸레이터층(120)으로의 투습을 방지하기 위하여 방습성을 가져야 한다. 댐 구조물(130)은 방습성을 가진 상온경화형 경화재를 도포하여 형성할 수도 있으나, 공정을 단순화하기 위하여 방수 테이프를 접착하여 형성할 수도 있다.
다음, 신틸레이터층(120) 및 댐 구조물(130) 상에 반사막(150)을 형성한다. 반사막(150)은 방사선을 투과하는 동시에 가시광을 반사하는 성질을 갖고, 반사막(150)의 재료로는 금속 또는 금속 산화물이 이용될 수 있으며, 구체적으로 Al, Ag, Cr, Cu, Ni, Ti, Mg, Ph, Pt, Au 등의 금속이나 TiO2 등과 같은 이들 금속의 산화물이 이용될 수 있다.
추가로, 반사막(150)과 댐 구조물(130) 사이의 투습을 차단하기 위한 밀봉을 강화하기 위하여 댐 구조물(130) 외곽에 밀봉재(160)로 밀봉할 수 있다. 밀봉재(160)로는 상온경화형 경화재가 이용될 수 있으며, 예를 들어, 욱성화학(주)의 PANAX SP1101이 이용될 수 있고, 이는 변성실리콘, 탄산칼슘, 이산화티타늄, 탈수제, 가교제 등을 혼합한 것으로 상온에서 자연경화하는 특성을 갖는다.
이상에서 상술한 바와 같은 본 발명에 따른 신틸레이터 패널은 간접 전리 방식의 X선 검출기에서 신틸레이터층의 상부에 반사막을 배치함으로써 신틸레이터로부터 발생하는 가시광의 난반사 및 산란을 최대한 억제시켜 방사선 피폭량을 줄이면서도 고화질의 X선 영상을 얻을 수 있고, 신틸레이터가 수분의 침투로 인하여 조해되는 것을 방지하기 위하여 신틸레이터층의 측부 상에 댐 구조물(130) 및 밀봉재(160)을 형성한다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
100: 신틸레이터 패널
110: 기판
120: 신틸레이터층
130: 댐 구조물
131: 접착층
140: 공간
150: 반사막
160: 밀봉재
170: 블랙 레이어
180: 보호층
190: 보호필름층
200: 코팅층

Claims (12)

  1. 광전변환소자가 그 상면의 소정 영역에 형성되고 상기 광전변환소자와 전기적으로 접속된 전극 패드가 상기 광전변환소자가 형성된 영역의 외부에 형성된 기판(110);
    상기 기판(110) 상의 상기 광전변환소자가 형성된 영역에 주상 결정으로 성장하되 외측에 소정의 기울기를 갖는 경사를 갖도록 형성하고, 방사선을 소정의 파장 대역의 광으로 변환하는 신틸레이터층(120);
    투습 방지를 위해 금속 또는 금속산화물을 포함하는 반사시트로 구비되어 상기 신틸레이터층의 상부에 결합되는 반사막(150); 및
    방습성을 가진 상온경화형 경화재를 포함하는 접착층(131)을 포함하며,
    상기 신틸레이터층(120) 및 상기 반사막(150)은 진공을 유지한 상태로 면압착을 통해 결합하고, 상기 기판(110)과 상기 반사막(150)의 가장자리는 상기 댐 구조물을 통해 결합되는,
    신틸레이터 패널.
  2. 제1항에 있어서,
    상기 반사시트는 알루미늄 또는 알루미늄 산화물을 포함하는 것을 특징으로 하는
    신틸레이터 패널.
  3. 제2항에 있어서,
    상기 반사시트의 두께는 40-60 ㎛인 것을 특징으로 하는
    신틸레이터 패널.
  4. 제1항에 있어서,
    상기 반사막(150)의 상부에 보호필름층을 더 포함하고,
    상기 보호필름층(190)은 PET필름을 포함하는 것을 특징으로 하는
    신틸레이터 패널.
  5. 제4항에 있어서,
    상기 보호필름층(190)의 두께는 30-50 ㎛인 것을 특징으로 하는
    신틸레이터 패널.
  6. 제5항에 있어서,
    상기 신틸레이터층(120)과 상기 반사막(150) 사이에 코팅층(200)을 더 포함하는
    신틸레이터 패널.
  7. 제6항에 있어서,
    상기 코팅층(200)은 은을 포함하고,
    상기 코팅층(200)의 두께는 900-1100 Å인 것을 특징으로 하는
    신틸레이터 패널.
  8. 제 1 항에 있어서,
    상기 반사시트를 상기 신틸레이터층 상부에 접착하기 위하여 상기 신틸레이터층과 상기 반사시트 사이에 형성되는 점착층을 더 포함하는, 신틸레이터 패널.
  9. 제 1 항에 있어서,
    상기 신틸레이터 패널은,
    상기 반사막의 상에 배치되는 블랙 레이어를 더 포함하는, 신틸레이터 패널.
  10. 제 9 항에 있어서,
    상기 블랙 레이어는 상기 신틸레이터층의 상부 및 측부를 감싸는 형태인, 신틸레이터 패널.
  11. 제 1 항에 있어서,
    상기 신틸레이터 패널은,
    상기 반사막(150)과의 사이에 진공층(140)을 형성하도록 배치되는 보호층(180)을 더 포함하는, 신틸레이터 패널.
  12. 광전변환소자가 면 상의 소정 영역에 형성되고 상기 광전변환소자와 전기적으로 접속된 전극 패드가 상기 광전변환소자가 형성된 영역의 외부에 형성된 기판(110)을 준비하는 단계;
    상기 기판(110) 상의 상기 광전변환소자가 형성된 영역에 방사선을 소정의 파장 대역의 광으로 변환하는 신틸레이터층(120)을 주상 결정으로 성장시키되 외측에 소정의 기울기를 갖는 경사를 갖도록 형성하는 단계;
    상기 기판(110) 상에서 상기 신틸레이터층(120)이 형성된 영역의 외곽을 둘러싸도록 방습성을 가진 상온경화형 경화재를 도포하여 댐 구조물(130)을 형성하는 단계;
    상기 신틸레이터층(120) 상에 투습 방지를 위해 금속 또는 금속산화물을 포함하는 반사시트로 구비된 반사막(150)을 합지한 상태에서, 상기 신틸레이터층(120)과 반사막(150) 사이에 진공 면압착 상태를 유지하는 단계;
    상기 반사막(150)과 상기 신틸레이터층(120)이 맞닿는 부분에 열 및 압력을 가하는 단계;를 포함하고,
    상기 기판(110)과 반사막(150)의 가장자리는 상기 상온경화형 경화재에 의하여 형성된 상기 댐 구조물의 경화를 통해 결합되는, 신틸레이터 패널의 제조 방법.
PCT/KR2017/003394 2016-03-31 2017-03-29 신틸레이터 패널 및 그 제조 방법 WO2017171387A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160039108 2016-03-31
KR10-2016-0039108 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017171387A1 true WO2017171387A1 (ko) 2017-10-05

Family

ID=59964976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003394 WO2017171387A1 (ko) 2016-03-31 2017-03-29 신틸레이터 패널 및 그 제조 방법

Country Status (2)

Country Link
CN (1) CN206906591U (ko)
WO (1) WO2017171387A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940428A1 (en) * 2020-07-17 2022-01-19 InnoCare Optoelectronics Corporation X ray device and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513873A (ja) * 2018-12-18 2022-02-09 北京納米維景科技有限公司 シンチレータスクリーンの製造方法、シンチレータスクリーン及び対応する画像検出器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100085099A (ko) * 2007-11-20 2010-07-28 도시바 덴시칸 디바이스 가부시키가이샤 방사선 검출기와 그 제조 방법
KR20120018666A (ko) * 2010-08-23 2012-03-05 (주)비엠알테크놀러지 신틸레이터 패널 및 상기 패널을 포함하는 방사선 이미지 센서
KR20120125785A (ko) * 2011-05-09 2012-11-19 주식회사 아비즈레이 신틸레이터 패널 및 신틸레이터 패널을 제조하는 방법
KR20140115982A (ko) * 2013-03-21 2014-10-01 캐논 가부시끼가이샤 방사선 검출 장치 및 방사선 검출 시스템
JP2015096823A (ja) * 2013-11-15 2015-05-21 浜松ホトニクス株式会社 放射線検出器、及び放射線検出器の製造方法
KR20160021387A (ko) * 2014-08-14 2016-02-25 주식회사 아비즈알 신틸레이터 패널 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100085099A (ko) * 2007-11-20 2010-07-28 도시바 덴시칸 디바이스 가부시키가이샤 방사선 검출기와 그 제조 방법
KR20120018666A (ko) * 2010-08-23 2012-03-05 (주)비엠알테크놀러지 신틸레이터 패널 및 상기 패널을 포함하는 방사선 이미지 센서
KR20120125785A (ko) * 2011-05-09 2012-11-19 주식회사 아비즈레이 신틸레이터 패널 및 신틸레이터 패널을 제조하는 방법
KR20140115982A (ko) * 2013-03-21 2014-10-01 캐논 가부시끼가이샤 방사선 검출 장치 및 방사선 검출 시스템
JP2015096823A (ja) * 2013-11-15 2015-05-21 浜松ホトニクス株式会社 放射線検出器、及び放射線検出器の製造方法
KR20160021387A (ko) * 2014-08-14 2016-02-25 주식회사 아비즈알 신틸레이터 패널 및 그 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940428A1 (en) * 2020-07-17 2022-01-19 InnoCare Optoelectronics Corporation X ray device and manufacturing method thereof
US11681056B2 (en) 2020-07-17 2023-06-20 Innocare Optoelectronics Corporation X ray device and manufacturing method thereof

Also Published As

Publication number Publication date
CN206906591U (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
KR100564519B1 (ko) 방사선검출장치 및 그 제조방법
CN103728650B (zh) 放射线检测装置和放射线检测系统
US7034306B2 (en) Scintillator panel and radiation image sensor
KR100747800B1 (ko) 방사선 이미지 센서 및 신틸레이터 패널
US8779369B2 (en) Radiation detection apparatus, scintillator panel, method for manufacturing same and radiation detection system
US6278118B1 (en) Radiation detection device and method of making the same
KR101209395B1 (ko) 방사선 검출기와 그 제조 방법
WO1998036291A1 (fr) Dispositif de detection de radiations et son procede de production
JP2000284053A (ja) 放射線検出素子
US6583419B1 (en) Solid state radiation detector with enhanced life duration
JP2011128085A (ja) 放射線撮像装置、放射線撮像システム及び放射線撮像装置の製造方法
US6940072B2 (en) Radiation detection device and method of making the same
JP4099206B2 (ja) シンチレータパネル及び放射線イメージセンサ
WO2001075478A1 (fr) Detecteur de rayonnement et son procede de fabrication
WO2017171387A1 (ko) 신틸레이터 패널 및 그 제조 방법
EP1365261B1 (en) Scintillator panel and radiation image sensor
US7151263B2 (en) Radiation detector and method of manufacture thereof
JP2008082852A (ja) 放射線検出装置
JP2004301516A (ja) 放射線検出装置
JP3029873B2 (ja) 放射線検出素子及びその製造方法
JP4234303B2 (ja) 放射線検出器
KR102119733B1 (ko) 신틸레이터 패널
JP2012018074A (ja) 放射線検出器およびその製造方法
KR20220100334A (ko) 센서 모듈 제조방법 및 이로부터 제조된 센서 모듈을 포함하는 x선 디텍터
JP2004266210A (ja) 放射線撮像装置の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775811

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 18.02.2019.

122 Ep: pct application non-entry in european phase

Ref document number: 17775811

Country of ref document: EP

Kind code of ref document: A1