WO2017171064A1 - 血液浄化システム、及びそのプライミング方法 - Google Patents

血液浄化システム、及びそのプライミング方法 Download PDF

Info

Publication number
WO2017171064A1
WO2017171064A1 PCT/JP2017/013770 JP2017013770W WO2017171064A1 WO 2017171064 A1 WO2017171064 A1 WO 2017171064A1 JP 2017013770 W JP2017013770 W JP 2017013770W WO 2017171064 A1 WO2017171064 A1 WO 2017171064A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
supply channel
replacement fluid
channel
liquid
Prior art date
Application number
PCT/JP2017/013770
Other languages
English (en)
French (fr)
Inventor
聡一郎 岡崎
理人 川嶋
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to JP2018509695A priority Critical patent/JP6646733B2/ja
Priority to EP17775595.6A priority patent/EP3437672B1/en
Priority to CN201780021135.8A priority patent/CN109069723B/zh
Priority to CN202110689786.2A priority patent/CN113304341B/zh
Publication of WO2017171064A1 publication Critical patent/WO2017171064A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3424Substitution fluid path
    • A61M1/3431Substitution fluid path upstream of the filter
    • A61M1/3434Substitution fluid path upstream of the filter with pre-dilution and post-dilution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3643Priming, rinsing before or after use
    • A61M1/3644Mode of operation
    • A61M1/3649Mode of operation using dialysate as priming or rinsing liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters

Definitions

  • the present invention relates to a blood purification system and a priming method thereof.
  • a blood purification system that purifies blood using a blood purifier that purifies blood circulating outside the body (hereinafter also referred to as “extracorporeal blood”) is widely known.
  • the blood purifier has a first space and a second space separated by a blood purification film, blood flows in the first space, and a liquid that purifies blood in the second space, for example, A blood purifier through which dialysate flows is common.
  • a so-called priming operation is performed in which the minute dust, the protective agent for the membrane, the filling liquid and the air in the blood purification device and the blood circuit are washed away with the priming liquid so that the purification treatment can be started. Line is done.
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-110098 discloses a blood purification system applied to online hemodiafiltration, which includes a dialysate supply line L6 connected to the arterial blood circuit 2, A blood purification system is described having a first connection line L4 connected to the chamber 9 on the arterial blood circuit 2 and a second connection line L5 connected to the chamber 10 on the venous blood circuit 3. .
  • the dialysate supply line L6 supplies dialysate to the arterial blood circuit 2 and the first connection line L4 and the second connection line L5 pass through the branch line L3. (See Patent Document 1, FIG. 2, etc.).
  • Priming work performed before blood purification treatment is one of the work with a heavy work load.
  • the priming operation in the conventional blood purification system varies depending on the structure of the blood purifier and the blood circuit used. Generally, the priming on the blood circuit side and the priming on the dialysate circuit side are performed independently. Therefore, the worker has to change the connection of the circuit such as the blood circuit each time and change the settings of the pump and the device. For example, in a conventional blood purification system as described in Patent Document 1, when the blood circuit is filled with dialysate, the first connection line L4 and the second connection line L5 are simply used to discharge the dialysate.
  • the type of hemodialyzer used differs depending on the medical site, and the flow of priming liquid may vary depending on the air bleedability inside and outside the blood purification membrane of the hemodialyzer, the ultrafiltration rate (UFR), etc. Therefore, a highly versatile blood purification system is required.
  • the present invention can alleviate the work load for priming and the like, which is naturally performed in the conventional blood purification process as described above, and thus contributes to prevention of errors and is highly versatile. And a priming method thereof.
  • the present inventors have found that the above problems can be solved by a blood purification system having a specific circuit structure and a liquid feeding means, and have completed the present invention. It was. That is, the present invention is as follows.
  • a blood purifier having a first space and a second space separated by a blood purification membrane, and purifying blood through extracorporeal blood in the first space;
  • a blood inlet-side flow path through which the extracorporeal blood before flowing into the first space flows;
  • a blood outlet side flow path through which the extracorporeal blood after flowing out of the first space flows;
  • a liquid supply channel for supplying liquid to the second space;
  • a liquid recovery flow path for recovering liquid from the second space;
  • An arterial replacement fluid supply channel branched from the liquid supply channel and connected to the blood inlet channel; Branched from the liquid supply channel, and connected to the blood outlet channel, the venous replacement fluid supply channel;
  • An online blood purification system comprising: The blood purification system, wherein the arterial replacement fluid supply channel and the venous replacement fluid supply channel each have a liquid feeding means that can be independently controlled.
  • the blood purification system according to item 1, wherein the blood inlet side channel and the blood outlet side channel can be connected to each other.
  • the liquid supply channel is a dialysate supply channel for supplying dialysate to the second space
  • the liquid recovery channel is a dialysate recovery channel for recovering dialysate from the second space
  • the blood purification system according to item 1 or 2 wherein the blood purifier is a hemodialyzer capable of purifying blood by bringing the extracorporeal circulating blood into contact with the dialysate.
  • Item 3 The blood purifier is a hollow fiber type hemodialyzer that purifies blood by contacting dialysis fluid flowing outside the hollow fiber with extracorporeal circulating blood flowing inside the hollow fiber. Blood purification system.
  • the blood purification system includes a blood purification device that can be used repeatedly,
  • the blood purification apparatus includes the liquid supply channel, the liquid recovery channel, the arterial replacement fluid supply channel, and the venous replacement fluid supply channel,
  • the arterial replacement fluid supply channel and the venous replacement fluid supply channel can supply replacement fluid directly to the extracorporeal circulation blood
  • the blood purification system according to any one of items 1 to 4, wherein the blood purification device further comprises a replacement fluid pressure measuring means for detecting an abnormality in the flow of the extracorporeal circulating blood.
  • the replacement fluid pressure measuring unit directly measures the fluid pressure of the replacement fluid flowing through the region communicating with the arterial replacement fluid supply channel and / or the venous replacement fluid supply channel. .
  • the blood purifier has an arterial end having a blood inlet and a venous end having a blood outlet, the blood inlet-side flow path is connected to the blood inlet, and the blood outlet is connected to the blood outlet.
  • the blood outlet side flow path is connected, Item further comprising a replacement fluid inlet at the arterial end and / or the venous end, and the arterial replacement fluid supply channel and / or the venous replacement fluid supply channel connected to the replacement fluid inlet.
  • the blood purification system according to any one of 1 to 6.
  • the blood purifier has an arterial end having a blood inlet and a venous end having a blood outlet.
  • the blood inlet-side flow path is connected to the blood inlet, and the blood outlet is connected to the blood outlet.
  • the blood outlet side flow path is connected, Item 1-8, wherein the arterial side end and / or the venous side end have an internal space having a predetermined capacity capable of capturing a gas mixed or generated during blood purification.
  • the blood purification system according to any one of Items 1 to 9, wherein at least one of the components is constituted by a tubular member.
  • the blood purification system according to any one of items 1 to 10 wherein the liquid supply channel and the liquid recovery channel are connectable to each other.
  • Either one of the arterial replacement fluid supply channel or the venous replacement fluid supply channel is closed, and blood is collected from the other unclosed to the blood inlet channel or blood outlet channel. By flowing the liquid for use, blood remaining in the first space can be collected.
  • the branch point between the artery-side replacement fluid supply channel and the liquid supply channel is any one of items 1 to 13, which is downstream of the branch point between the vein-side replacement fluid supply channel and the liquid supply channel.
  • the blood purification system as described in. [15]
  • Item 15 In the liquid supply channel, Item 15. The item 1-14, wherein the branch point between the arterial replacement fluid supply channel and the liquid supply channel is upstream from the branch point between the vein replacement fluid supply channel and the liquid supply channel.
  • the blood purification system as described in.
  • the priming method of the blood purification system according to any one of items 1 to 15, Priming fluid is allowed to flow into the liquid supply channel, and a part of the priming fluid flowing through the liquid supply channel is passed through the arterial replacement fluid supply channel and / or the venous replacement fluid supply channel. Flowing into the first space of; Collecting a part of the priming liquid flowing in the first space through the blood purification membrane and flowing into the second space, and recovering the priming liquid from the liquid recovery channel; A priming method.
  • a blood purification apparatus suitable for use in the blood purification system and the priming method of the present embodiment is, for example, as follows.
  • a blood purification device used with a disposable blood purification device for purifying extracorporeal circulating blood The blood purification apparatus comprises: at least one replacement fluid supply channel for directly supplying replacement fluid to the extracorporeal circulation blood; and replacement fluid flowing through the replacement fluid supply channel for detecting an abnormality in the flow of the extracorporeal circulation blood.
  • Having a replacement fluid pressure measuring means for measuring pressure There are two systems for supplying the replacement fluid, one system is for supplying the replacement fluid to the extracorporeal circulation blood before purification, and the other system supplies the replacement fluid to the extracorporeal circulation blood after purification.
  • the two systems of the replacement fluid supply channels have blood supply means that can be independently controlled.
  • the blood purifier is a hemodialyzer that purifies blood by bringing dialysate into contact with the extracorporeal circulating blood, Item 21.
  • the blood purification apparatus further includes a dialysate supply channel for supplying dialysate to the hemodialyzer, and a dialysate recovery channel for recovering dialysate from the hemodialyzer. Blood purification device.
  • Item 22 The blood purification device according to Item 21, wherein the hemodialyzer is a hollow fiber hemodialyzer that purifies blood by contacting an extracorporeal circulating blood flowing inside the hollow fiber with a dialysate flowing outside the hollow fiber. apparatus.
  • Item 22 The blood purification device according to Item 21 or 22, wherein the replacement fluid supply channel is branched from the dialysate supply channel and supplies the dialysate as a replacement fluid to the extracorporeal blood.
  • the blood purifier has an arterial end having a blood inlet, and a venous end having a blood outlet, Items 20 to 20 further comprising a replacement fluid inlet at the arterial side end and / or the venous side end, and the replacement fluid inlet is connected to the replacement fluid supply channel of the blood purification device when in use and the replacement fluid flows. 24.
  • the blood purification apparatus according to any one of 23.
  • Item 25 Item 25.
  • the device further comprises mixing means for uniformly mixing the extracorporeal blood and the replacement fluid flowing from the replacement fluid inlet at the arterial end and / or the venous end of the blood purifier.
  • Blood purification device Item 24 or 25 having an internal space having a predetermined capacity capable of capturing a gas mixed or generated during blood purification at the arterial end and / or the venous end of the blood purifier.
  • the blood purification apparatus as described.
  • the blood purifier further includes a replacement fluid inlet tubular member connected to the replacement fluid inlet, and the replacement fluid inlet tubular member is connected to the replacement fluid supply flow path of the blood purification device when in use, and the replacement fluid flows. 27.
  • the blood purification apparatus according to any one of items 24 to 26.
  • the blood purification system and the priming method of the present invention have the above-described configuration, it is possible to reduce the work load related to priming and the like, thus contributing to prevention of errors and excellent versatility.
  • FIG. 1 is a schematic diagram of a blood purification system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a first embodiment of a priming method for a blood purification system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a second embodiment of the priming method of the blood purification system according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a third embodiment of the priming method of the blood purification system according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a fourth embodiment of the priming method of the blood purification system according to the embodiment of the present invention.
  • FIG. 6 is a schematic view illustrating the aspect of blood collection by the blood purification system according to the embodiment of the invention.
  • FIG. 7 is a schematic diagram of a blood purifier and a blood purification device used in a preferred embodiment of the blood purification system of the present invention.
  • FIG. 8 is a schematic view showing a cross section of a blood purifier used in a preferred embodiment of the blood purification system of the present invention.
  • FIG. 9 is a schematic diagram showing a conventional blood circuit.
  • this embodiment a blood purification system according to an embodiment of the present invention (hereinafter referred to as “this embodiment”) and a priming method thereof will be described in detail with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • FIG. 1 is a schematic view showing a blood purification system according to the present embodiment.
  • the blood purification system (500) according to the present embodiment has a first space (11) and a second space (12) separated by a blood purification membrane (13), and passes extracorporeal blood through the first space.
  • a flowing blood outlet channel (22) a liquid supply channel (31) for supplying a liquid to the second space; and a liquid recovery channel (32) for recovering the liquid from the second space Branching from the liquid supply channel and connected to the blood inlet side channel; arterial side replacement fluid supply channel (41); branched from the liquid supply channel and connected to the blood outlet side channel;
  • An online blood purification system having a venous replacement fluid supply channel (42). That.
  • the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel each have liquid supply means (51 and 52) that can be controlled independently.
  • the blood purification system of the present embodiment has the above-described configuration, so that the priming liquid that has passed through the first space of the blood purification device can flow to the second space without being discarded, or the second space Priming liquid that has flowed into the first space can be allowed to flow to the first space without being discarded, so that there is no need to change the circuit or switch the pump, and the priming of the first space and the second space can be performed. Since it can be performed simultaneously, the work load is reduced.
  • the blood purification system of the present invention includes hemodialysis treatment (generally also referred to as “HD”), hemofiltration dialysis treatment (generally also referred to as “HDF”), and blood filtration treatment (generally referred to as “HF”). Can also be used for any blood treatment.
  • hemodialysis treatment generally also referred to as “HD”
  • HDF hemofiltration dialysis treatment
  • HF blood filtration treatment
  • the blood purification system of the present invention there are two systems for supplying a replacement fluid to the blood circuit: an arterial side replacement fluid supply channel and a venous side replacement fluid supply channel, which can be controlled independently. Since the liquid feeding means is provided, the replacement fluid can be supplied or recovered from any system. Therefore, at the time of priming work, an appropriate flow method can be set according to the type of hemodialyzer.
  • a replacement fluid can be supplied upstream from the first space of the blood purifier (also referred to as “pre-dilution”), and a replacement fluid can be supplied downstream from the first space (“front”. It can also be supplied simultaneously upstream and downstream from the first space (also referred to as “before and after simultaneous dilution”).
  • the blood remaining in the blood circuit can be collected by supplying the blood collection liquid from either the arterial side replacement fluid supply channel or the vein side replacement fluid supply channel.
  • the blood can be collected without changing, and therefore, the work burden on the blood collection work is reduced, which contributes to prevention of errors more. Therefore, the blood purification system of the present invention reduces the work load for priming and the like, thus contributing to safety and excellent versatility.
  • the blood purifier in the blood purification system of the present embodiment has a first space and a second space separated by a blood purification film, and can purify blood through extracorporeal blood in the first space.
  • a blood purification film There is no particular limitation.
  • the types of blood purifiers are generally classified according to the principle of purifying blood. Examples of the principle for purifying blood include filtration, dialysis, and combinations thereof. In this embodiment, the blood purifier may be of any type.
  • the blood purifier may be a blood filter that purifies blood by filtering extracorporeal blood with a blood purification membrane. Since such a blood filter can be used as part of the blood purification system of the present embodiment, the present invention does not exclude the use of these types of blood purification devices.
  • the blood purifier may be a hemodialyzer that purifies blood by bringing dialysate into contact with extracorporeal circulating blood through a blood purification membrane.
  • a blood purifier is a so-called hollow fiber hemodialyzer that uses hollow fibers as a blood purification membrane and purifies blood by contacting dialysate flowing outside the hollow fiber with extracorporeal circulating blood flowing inside the hollow fiber. There may be.
  • the hemodialyzer can purify blood using the principle of diffusion or by combining filtration with diffusion.
  • the term “hemodialyzer” includes a so-called “hemodialyzer” that purifies blood by combining filtration with diffusion.
  • Blood purifiers generally have an arterial end having a blood inlet and a venous end having a blood outlet in order to pass extracorporeal circulating blood.
  • the “arterial side end” is a portion of the blood purifier that has a function of substantially purifying extracorporeal circulation blood (hereinafter also referred to as “blood purifying section”. 216.) refers to a portion upstream of the blood purification section
  • “venous side end portion” refers to a portion of the blood purifier that is downstream of the blood purification section.
  • the arterial side end and the venous side end may be parts different from the main body container, such as a lid, or may be a part formed integrally with the main body container.
  • the shape of the main body container of the blood purifier is not limited, it is, for example, a cylinder, typically a cylinder.
  • the blood purification system of the present embodiment includes a blood inlet-side flow path through which extracorporeal circulated blood before flowing into the first space of the blood purifier and a blood outlet through which extracorporeal circulated blood after flowing out of the first space flows.
  • a side channel refers to a flow path up to immediately before the extracorporeal circulating blood flows into the first space, including the internal space of the arterial end of the blood purifier.
  • blood outlet side flow path refers to a flow path immediately after flowing out of the first space, including the internal space at the vein side end of the blood purifier.
  • the blood purifier has an arterial end having a blood inlet and a venous end having a blood outlet, a blood inlet-side flow path is connected to the blood inlet, and a blood outlet is connected to the blood outlet.
  • a side flow path may be connected.
  • At least one of the blood inlet side flow path and the blood outlet side flow path may be a tubular member.
  • the blood inlet tubular member is connected to the blood inlet to form the blood inlet side flow path, and the blood is discharged to the blood outlet.
  • the outlet tubular member may be connected to form a blood outlet channel.
  • the blood inlet side flow path, the first space, and the blood outlet side flow path communicate with each other to form a blood circuit, and extracorporeal blood can flow.
  • the blood inlet side channel and the blood outlet side channel may be connectable to each other. Since the blood inlet side channel and the blood outlet side channel can be connected to each other, by connecting them at the time of priming, the priming liquid can be circulated through the blood circuit. It can be done more efficiently.
  • the mode of interconnection between the blood inlet side channel and the blood outlet side channel is not particularly limited.
  • the blood inlet side flow path may have a blood pump.
  • the liquid feeding means of the arterial side replacement fluid supply channel, the liquid feeding means of the vein side replacement fluid supply channel, and the blood pump of the blood inlet side channel may be independently controllable.
  • the blood purification system of this embodiment has a liquid supply channel for supplying liquid to the second space of the blood purifier, and a liquid recovery channel for recovering liquid from the second space. Therefore, the blood purification system according to the present embodiment uses a dialysate and purifies blood using the principle of diffusion, such as blood purification treatment (generally referred to as “HD”) and blood filtration. It can be used for any dialysis treatment (generally also referred to as “HDF”). In the present specification, blood purification treatment using the principle of diffusion, including HD and HDF, is collectively referred to as “hemodialysis treatment”. However, it is not limited to these dialysis treatments.
  • the liquid supply channel supplies the dialysate to the second space. It may be a dialysate supply channel for supplying, and the liquid recovery channel may be a dialysate recovery channel for recovering dialysate from the second space.
  • the dialysate is not particularly limited as long as it can be brought into contact with extracorporeal circulating blood to remove excess water, waste, etc. from the blood.
  • Examples of the dialysate include physiological saline.
  • Dialysate may be used as a replacement fluid.
  • the means (not shown) for feeding the dialysate is not limited, and any liquid feed pump such as a dual pump, a tubing pump, etc. can be used.
  • At least one of the liquid supply channel and the liquid recovery channel may be formed of a tubular member.
  • the liquid supply channel and the liquid recovery channel may be connectable to each other.
  • the liquid supply flow path and the liquid recovery flow path are connected to each other so that the cleaning / disinfecting liquid can be circulated therein.
  • the inside can be efficiently cleaned and disinfected.
  • the mode of interconnection between the liquid supply channel and the liquid recovery channel is not particularly limited.
  • the blood purification system of the present embodiment is branched from the liquid supply flow path, is connected to the blood inlet flow path, is branched from the arterial side replacement fluid supply flow path, and the liquid supply flow path. And a venous replacement fluid supply channel connected to the channel.
  • the blood purification system can supply a replacement fluid to extracorporeal circulation blood through an arterial replacement fluid supply channel and / or a venous replacement fluid supply channel.
  • At least one of the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel may be formed of a tubular member.
  • the position where the arterial side replacement fluid supply channel is connected to the blood inlet side channel is not particularly limited, may be upstream from the blood purifier, may be on the drip chamber, or the arterial end of the blood purifier. May be connected to a replacement fluid inlet provided in The position where the venous replacement fluid supply channel is connected to the blood outlet channel is not limited. It may be downstream from the blood purifier, may be on the drip chamber, or may be connected to a replacement fluid inlet provided at the vein side end of the blood purifier.
  • the positional relationship between the branch point between the artery-side replacement fluid supply channel and the liquid supply channel and the branch point between the vein-side replacement fluid supply channel and the fluid supply channel is not particularly limited.
  • the branch point between the artery-side replacement fluid supply channel and the liquid supply channel may be downstream or upstream from the branch point between the vein-side replacement fluid supply channel and the liquid supply channel.
  • the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel may be connectable to each other.
  • the arterial-side replacement fluid supply channel and the venous-side replacement fluid supply channel are connected to each other so that the cleaning / disinfecting solution can be circulated therein. Therefore, cleaning and disinfection in the flow path can be performed efficiently.
  • the liquid supply channel and the liquid recovery channel may be connected to each other, and the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel may be connected to each other. In this case, the inside of the flow path of the blood purification apparatus can be more efficiently cleaned and disinfected.
  • the mode of interconnection between the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel is not particularly limited.
  • the blood purifier further has a replacement fluid inlet at the end of the artery and / or the end of the vein, and an artery replacement fluid supply channel and / or a vein replacement fluid supply channel is connected to the replacement fluid inlet. It may be.
  • the replacement fluid and / or dialysis fluid typically mixes the replacement fluid and / or dialysate stock solution with highly clean water at a location where blood purification is performed, such as a hospital. Is adjusted on the spot and supplied to the blood purification system.
  • the adjustment and supply of the replacement fluid and / or dialysate may be performed by a replacement fluid (dialysis fluid) supply source.
  • the supply source of the replacement fluid (dialysate) may be provided in the blood purification device (70).
  • the supply source provided separately from the blood purification device for example, replacement fluid (dialysis fluid) (Liquid) supply apparatus etc. may be sufficient (not shown).
  • the liquid feeding means (not shown in FIG. 1) for feeding the replacement fluid and / or dialysate is not limited, and any liquid feeding pump, for example, a dual pump, a tubing pump, or the like can be used.
  • the blood purifier further has a replacement fluid inlet at the end of the artery and / or the end of the vein, and an artery replacement fluid supply channel and / or a vein replacement fluid supply channel is connected to the replacement fluid inlet.
  • the arterial end and / or the venous end may further include mixing means for uniformly mixing the extracorporeal blood and the replacement fluid flowing from the replacement fluid inlet.
  • the blood purifier has a mixing means at the end of the artery side, mixing of extracorporeal blood and fluid replacement is promoted, blood can be purified more uniformly, and the function of the blood purifier can be reduced. Can also be expected.
  • mixing means at the venous side end mixing of extracorporeal circulating blood and replacement fluid is promoted, and the burden on the patient can be reduced.
  • the mixing means is not particularly limited, and those skilled in the art can select any appropriate means.
  • the mixing unit is preferably a mixing unit that does not have a drive unit from the viewpoints of safety, ease of manufacture, and the like.
  • Examples of the mixing means having no driving unit include providing an obstacle such as a baffle plate or a protrusion, and providing a structure generally called a static mixer.
  • Such a mixing means does not exclude an aspect in which the shape of the replacement fluid inlet and the shape of the end portion are combined to mix the blood and the replacement fluid.
  • the blood purifier has an arterial end having a blood inlet and a venous end having a blood outlet, a blood inlet-side flow path is connected to the blood inlet, and a blood outlet is connected to the blood outlet. Even if the side flow path is connected and the arterial side end portion and / or the venous side end portion has an internal space having a predetermined capacity capable of capturing a gas mixed or generated during blood purification. Good.
  • a drip chamber (403) is provided on the blood inlet tubular member and / or the blood outlet tubular member to prevent gas from flowing into the patient's body and is mixed or generated during blood purification.
  • the drip chamber on the blood outlet tubular member was important because the blood outlet tubular member allows blood to flow back into the patient's body.
  • the arterial side end and / or the venous side end of the blood purifier has the above internal space, thereby providing the drip chamber shown in FIG. Eliminates the need for blood circuit, simplifies the work load, contributes to error prevention, reduces contact between blood and air, and reduces blood coagulation more effectively .
  • the manufacturing cost is reduced, the number of members discarded for each blood purification treatment can be reduced, and the economy is further improved.
  • the predetermined capacity of the internal space is not limited to the following, but may be, for example, 5 cc or more and 30 cc or less.
  • ⁇ Drug input> you may further have a chemical
  • an anticoagulant may be introduced in order to prevent coagulation of extracorporeal circulating blood due to contact between blood and air.
  • a drug inlet (not shown) is provided in a blood inlet tubular member or the like.
  • the blood circuit is further simplified, and it contributes to error prevention.
  • the blood purification system of the present embodiment has liquid feeding means that can be independently controlled in the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel.
  • Independently controllable fluid delivery means can arbitrarily set the flow rate and flow direction when closing, releasing, and delivering the arterial side fluid replacement channel and venous side fluid supply channel, and delivering the fluid. And may be changed at an arbitrary timing.
  • Independently controllable fluid delivery means can be used on the arterial side based on any parameters in using the blood purification system, such as pressure, temperature, flow rate, etc. of extracorporeal blood, dialysate, and / or fluid replacement. It may be possible to change the flow rate and the flow direction when the replacement fluid supply channel and the vein-side replacement fluid supply channel are closed, released, and supplied, and the solution is supplied.
  • the liquid feeding means is not particularly limited, and any liquid feeding pump, for example, a tubing pump or a dual pump can be used.
  • the blood purification system of this embodiment can be used with a blood purification device that can be used repeatedly.
  • the blood purification apparatus may have a liquid supply channel, a liquid recovery channel, an arterial side replacement fluid supply channel, and a venous side replacement fluid supply channel.
  • the arterial replacement fluid supply channel and the venous replacement fluid supply channel can directly supply replacement fluid to extracorporeal circulation blood, and the blood purification device measures the replacement fluid pressure to detect abnormalities in the flow of extracorporeal circulation blood.
  • You may have a means further.
  • the replacement fluid pressure measurement unit may be a replacement fluid pressure measurement unit that directly measures the fluid pressure of the replacement fluid flowing through the region communicating with the arterial replacement fluid supply channel and / or the venous replacement fluid supply channel.
  • the “region communicating with the arterial side replacement fluid supply channel and / or the venous side replacement fluid supply channel” refers to an abnormal flow of extracorporeal blood by measuring the pressure of the replacement fluid by means of a replacement fluid pressure measuring means. This is intended to be an area that can be detected.
  • the “communication region” can also be referred to as a region having a fluid pressure related to the fluid pressure of extracorporeal circulating blood. Therefore, for example, in the region upstream of the liquid feeding means of the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel, an abnormality in the flow of extracorporeal blood cannot be detected even if a replacement fluid pressure measurement unit is provided.
  • the portion of the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel downstream from the liquid feeding means is “arterial side” It should be noted that this corresponds to the “region communicating with the replacement fluid supply channel and / or the venous replacement fluid supply channel”.
  • a pressure measuring tubular member (404) is connected to a drip chamber (403) provided on a blood circuit.
  • This pressure measuring tubular member is connected to the upper part of the drip chamber so as not to come into contact with blood, and communicates with the gas phase in the drip chamber.
  • a pressure measuring device (not shown) is connected to the pressure measuring tubular member to detect abnormalities in the flow of extracorporeal blood through the gas phase in the drip chamber. Therefore, conventionally, the pressure measuring tubular member itself, the connecting member (407) for attaching the pressure measuring tubular member, and the like are necessary. Further, it is necessary to connect the pressure measuring device to the pressure measuring tubular member before the blood purification treatment and to remove it after the blood purification treatment, increasing the work load.
  • the pressure measuring tubular member (404) prevents blood and the like from leaking from the blood circuit to the pressure measuring means side in order to prevent contaminants such as bacteria from entering the blood circuit from the pressure measuring means.
  • a hydrophobic filter (408) is provided. Since the pressure inside the drip chamber cannot be measured if the hydrophobic filter gets wet, care must be taken not to wet the hydrophobic filter before the blood purification treatment. It was necessary to monitor the filter for getting wet. However, due to the fact that the blood circuit or the like is not properly connected, the air in the gas phase in the drip chamber may leak, and the hydrophobic filter may get wet with the blood or the replacement fluid in the blood circuit. And once the hydrophobic filter gets wet, it must be replaced with a new blood circuit, which increases the workload.
  • the blood purification system includes a blood purification device that can be used repeatedly, and the blood purification device includes a liquid supply channel, a liquid recovery channel, an arterial replacement fluid supply channel, and a venous replacement fluid supply flow.
  • the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel can directly supply the replacement fluid to the extracorporeal circulation blood, and the blood purification device detects an abnormal flow of the extracorporeal circulation blood.
  • the pressure of the liquid replacement fluid can be measured without going through the gas phase of the drip chamber, there is no need to previously provide a gas phase for pressure measurement in the drip chamber.
  • the contact area with can be reduced. Therefore, it is possible to reduce the work load related to connection of equipment before blood purification treatment, removal of equipment after blood purification treatment, and handling of a hydrophobic filter, etc.
  • the contact with air is reduced, blood coagulation is reduced, and the number of parts is reduced, so that the manufacturing cost is reduced, and the number of members discarded for each blood purification treatment is fewer and the economy is excellent.
  • the replacement fluid can be directly supplied to extracorporeal circulation blood means that the abnormality of the flow of extracorporeal circulation blood can be detected by measuring the pressure of the replacement fluid by the replacement fluid pressure measuring means. It is intended to be configured. Therefore, for example, the portion of the arterial side replacement fluid supply channel and the venous side replacement fluid supply channel upstream of the liquid feeding means cannot detect an abnormal flow of extracorporeal blood even if a replacement fluid pressure measuring unit is provided.
  • the portion that is downstream of the liquid feeding means, not the portion that can supply the replacement fluid directly to the extracorporeal circulation blood, corresponds to the portion that can supply the replacement fluid directly to the extracorporeal circulation blood.
  • the position of the replacement fluid pressure measuring means is not particularly limited as long as it is on the arterial replacement fluid supply channel and the venous replacement fluid supply channel that can supply the replacement fluid directly to the extracorporeal circulation blood of the blood purification device.
  • a replacement fluid pressure measuring means may be installed outside.
  • any pressure gauge can be used as long as the pressure of the replacement fluid, which is a liquid, can be measured.
  • the means for measuring the fluid replacement pressure is not limited to the following: an elastic pressure gauge such as a Bourdon tube pressure gauge, a diaphragm pressure gauge, a bellow pressure gauge, a chamber pressure gauge; and an inelastic pressure gauge such as a liquid column pressure gauge, and A weight pressure gauge and the like can be mentioned.
  • the blood purification apparatus may further include a control device that automatically determines whether or not the flow of extracorporeal circulating blood is abnormal.
  • the control device may provide a display for notifying the operator when it is determined that the extracorporeal circulating blood flow is abnormal.
  • the blood purification system of the present embodiment closes either one of the arterial side replacement fluid supply channel or the venous side replacement fluid supply channel, from the other not closed to the blood inlet side channel or blood outlet side channel. It may be possible to recover the blood remaining in the first space by flowing the blood recovery liquid. As a result, at the end of the blood purification process, the blood collection operation can be started without recombining the blood circuit or the replacement fluid circuit, so that the work load is further reduced.
  • FIG. 6 is a schematic view illustrating the aspect of blood collection by the blood purification system according to the embodiment of the invention.
  • the venous replacement fluid supply channel is closed by controlling the liquid supply means (52) of the venous replacement fluid supply channel to be closed, and the artery side
  • the liquid supply means (51) of the replacement fluid supply channel to flow the blood recovery liquid from the artery side replacement fluid supply channel to the blood inlet side channel (flow 5)
  • it remains in the first space.
  • Blood can be collected (flow 3).
  • the blood remaining upstream from the first space can be collected from the arterial puncture needle side (flow 4).
  • the blood purification system of this embodiment may be capable of closing the liquid supply channel (31) and / or the liquid recovery channel (32).
  • the closing means is not limited, and an electromagnetic valve, a clamp, or the like can be used.
  • the liquid for blood collection is not particularly limited as long as it can be used for replacement of extracorporeal circulating blood remaining in the first space and blood circuit, and for example, a replacement fluid, dialysis solution, organized saline solution and the like can be used.
  • a replacement fluid dialysis solution, organized saline solution and the like
  • a dialysate that can be used for replacement of extracorporeal circulating blood remaining in the first space and blood circuit can be used as the blood recovery liquid.
  • dialysate is typically also used as a replacement fluid.
  • FIG. 7 is a schematic diagram of a blood purifier and a blood purification device used in a preferred embodiment of the blood purification system of the present embodiment.
  • a blood purifier (200) is a hemodialyzer that purifies blood by bringing dialysate into contact with extracorporeal blood, and is used with a blood purifier (100) that can be used repeatedly.
  • the blood purification apparatus (100) includes an arterial side replacement fluid supply channel (41) connected to the artery side end of the blood purification unit, and a vein side replacement fluid supply channel (connected to the vein side end of the blood purification unit).
  • the blood purification apparatus has a replacement fluid pressure measuring means (60) for measuring the pressure of the replacement fluid flowing through the replacement fluid supply channel for detecting abnormalities in the flow of extracorporeal circulating blood on each replacement fluid supply channel.
  • the blood purification apparatus also includes a dialysate supply channel (31) for supplying dialysate to the hemodialyzer and a dialysate recovery channel (32) for recovering a liquid such as dialysate from the hemodialyzer. It has further.
  • the two systems of replacement fluid supply channels are branched from the dialysate supply channel (31), respectively. Therefore, the blood purification device (100) uses the dialysate from the dialysate supply source (70) as a replacement fluid for extracorporeal circulation blood. Is an online blood purification device that can be supplied to
  • FIG. 8 is a schematic view showing a cross section of a blood purifier used in a preferred embodiment of the blood purification system of the present invention.
  • a blood purifier (200) has a bundle (209) of hollow fibers in a cylindrical main body container (208), and the bundle of hollow fibers is cylindrical at both ends by sealing members (210). The inside of the hollow fiber is separated from the outside. For the sake of explanation, only a part of the bundle of hollow fibers is shown.
  • the cylindrical main body container has an arterial end (201) having a blood inlet (203) and a replacement fluid inlet (207) at both ends, and a venous end having a blood outlet (204) and a replacement fluid inlet (207). (202).
  • a blood inlet tubular member (not shown) is connected to the blood inlet, and a blood outlet tubular member (not shown) is connected to the blood outlet to form a blood circuit. Extracorporeal blood can flow inside the thread.
  • a replacement fluid inlet tubular member (215) is connected to the replacement fluid inlet, and the replacement fluid inlet tubular member is connected to two replacement fluid supply channels of the blood purification device (100) when in use. Can flow.
  • the main body container has a dialysate inlet (211) and a dialysate outlet (212) on its side surface, and when used, the dialysate is placed in a space surrounded by the outside of the hollow fiber, the inside of the main body container, and the sealing member.
  • the extracorporeal blood can be brought into contact with the dialysate through the hollow fiber.
  • the blood purifier has a mixing means (213) inside the arterial side end, and uniformly distributes the extracorporeal blood and the replacement fluid flowing from the replacement fluid inlet before the blood passes through the hollow fiber. Can be mixed. Furthermore, the blood purifier has an internal space (214) having a predetermined capacity capable of capturing a gas mixed or generated during blood purification at the arterial end and the venous end.
  • FIG. 2 is a schematic diagram showing the first embodiment of the priming method of the blood purification system according to the present embodiment.
  • the priming liquid is caused to flow from the priming liquid supply means (not shown) into the liquid supply flow path, and the priming liquid is recovered from the liquid recovery flow path through the second space of the blood purifier.
  • Flows 1, 6, and 7 a part of the priming fluid flowing in the liquid supply flow channel is caused to flow into the venous side replacement fluid supply flow channel (flow 2), and the first space (flow in the blood purifier) 3) and returning to the liquid supply channel through the arterial fluid replacement channel (flow 5).
  • the first space and the second space can be simultaneously primed.
  • the blood inlet side channel and the blood outlet side channel may be connected and the priming solution may be circulated by the blood pump (53) (flow 4).
  • the priming fluid flow is arbitrarily controlled by independently controlling the fluid feeding means (52) of the venous fluid replacement flow channel, the fluid feeding device (51) of the arterial fluid replacement fluid flow channel, and the blood pump (53).
  • the flow rate can be balanced.
  • the flow into the venous replacement fluid supply channel (flow 2) and the recovery from the artery replacement fluid supply channel (flow 5) do not necessarily have to be the same flow rate.
  • the flow 2 may be controlled to be larger than the flow 5 by the liquid feeding means (51 and 52), and a part of the priming solution of the flow 3 may be transmitted to the flow 6 through the blood purification membrane.
  • the flow 2 may be controlled to be smaller than the flow 5, and a part of the priming solution in the flow 6 may be transmitted to the flow 3 through the blood purification membrane.
  • the flow rate of the priming solution is not limited.
  • the priming solution is supplied to the vein-side replacement fluid supply channel.
  • the flow rate (flow 2) is 60; the flow rate to the first space (flow 3) is 30; the circulation volume in the blood flow path (flow 4) is 30; the recovery volume (flow) from the arterial replacement fluid supply flow path 5) can be 60; the flow rate to the second space (flow 6) can be 100.
  • FIG. 3 is a schematic diagram showing a second embodiment of the priming method of the blood purification system according to the present embodiment.
  • the priming liquid is caused to flow from the priming liquid supply means (not shown) into the liquid supply flow path, and the priming liquid is recovered from the liquid recovery flow path through the second space of the blood purifier.
  • Flows 1, 6, and 7 a part of the priming fluid flowing through the liquid supply flow channel is caused to flow into the arterial replacement fluid supply flow channel (flow 5), and the first space (flow of the blood purifier) 3) and returning to the liquid supply flow path through the venous replacement fluid supply flow path (flow 2).
  • the blood inlet side channel and the blood outlet side channel may be connected and the priming solution may be circulated by the blood pump (53) (flow 4).
  • the priming fluid flow is arbitrarily controlled by independently controlling the fluid feeding means (52) of the venous fluid replacement flow channel, the fluid feeding device (51) of the arterial fluid replacement fluid flow channel, and the blood pump (53). The flow rate can be balanced.
  • the inflow into the artery side replacement fluid supply channel (flow 5) and the recovery from the vein side replacement fluid supply channel (flow 2) do not necessarily have to be the same flow rate.
  • the flow 5 may be controlled to be larger than the flow 2 by the liquid feeding means (51 and 52), and a part of the priming liquid of the flow 3 may be transmitted to the flow 6 through the blood purification membrane.
  • the flow 5 may be controlled to be smaller than the flow 2, and a part of the priming solution of the flow 6 may be permeated to the flow 3 through the blood purification membrane.
  • the flow rate of the priming solution is not limited.
  • the flow rate of the entire priming solution (flows 1 and 7) is 100
  • the priming solution is supplied from the vein-side replacement fluid supply channel.
  • the recovery amount (flow 2) is 60; the flow rate to the first space (flow 3) is 30; the circulation amount in the blood flow path (flow 4) is 30; the flow rate (flow) to the arterial replacement fluid supply flow path 5) can be 60; the flow rate to the second space (flow 6) can be 100.
  • FIG. 4 is a schematic diagram showing a third embodiment of the blood purification system priming method according to the present embodiment.
  • the priming liquid is caused to flow from the priming liquid supply means (not shown) into the liquid supply flow path, and the priming liquid is recovered from the liquid recovery flow path through the second space of the blood purifier.
  • Flows 1, 6, and 7 a part of the priming solution passing through the second space is allowed to flow into the first space through the blood purification membrane (flow 3), and the arterial fluid replacement supply flow Return to the fluid supply channel through the channel and / or the venous replacement fluid supply channel (streams 2 and 5).
  • the first space and the second space can be simultaneously primed.
  • the blood inlet side channel and the blood outlet side channel may be connected and the priming solution may be circulated by the blood pump (53) (flow 4).
  • the priming fluid flow is arbitrarily controlled by independently controlling the fluid feeding means (52) of the venous fluid replacement flow channel, the fluid feeding device (51) of the arterial fluid replacement fluid flow channel, and the blood pump (53).
  • the flow rate can be balanced.
  • the collection of the priming solution from the blood circuit can be performed through either the arterial replacement fluid supply channel (flow 5) or the venous replacement fluid supply channel (flow 2).
  • the flow rates can be arbitrarily balanced by the liquid delivery means (51 and 52), may be the same, and stream 5 may be larger than stream 2
  • the flow 5 may be smaller than the flow 2.
  • the flow rate of the priming solution is not limited.
  • the flow rate of the entire priming solution (flows 1 and 7) is 100
  • the priming solution is supplied from the vein-side replacement fluid supply channel.
  • the recovery amount (flow 2) is 60; the recovery amount (flow 5) from the arterial replacement fluid supply channel is 30; the flow rate of the flow 6 that flows into the second space is 190, and from the second space
  • the flow rate flowing out is 100; the total flow rate from the second space to the first space (flow 3) is 90, the flow rate going to the blood inlet is 60 in the flow 3, and the flow rate going to the blood outlet
  • the circulation amount (flow 4) in the blood flow path can be 30.
  • FIG. 5 is a schematic diagram showing a fourth embodiment of the blood purification system priming method according to the present embodiment.
  • the priming liquid is caused to flow from the priming liquid supply means (not shown) into the liquid supply flow path (flows 1 and 6), and a part of the priming liquid flowing through the liquid supply flow path is Flowing into the first space of the blood purifier through the arterial replacement fluid supply channel and / or the venous replacement fluid supply channel (flows 2 and 5); a portion of the priming fluid flowing through the first space; , Passing through the blood purification membrane and flowing into the second space (flow 3), and recovering the priming liquid from the liquid recovery flow path (flow 7).
  • the blood inlet side channel and the blood outlet side channel may be connected and the priming solution may be circulated by the blood pump (53) (flow 4).
  • the priming fluid flow is arbitrarily controlled by independently controlling the fluid feeding means (52) of the venous fluid replacement flow channel, the fluid feeding device (51) of the arterial fluid replacement fluid flow channel, and the blood pump (53). The flow rate can be balanced.
  • the supply of the priming solution to the blood circuit can be performed through either the arterial side replacement fluid supply channel (flow 5) or the venous side replacement fluid supply channel (flow 2).
  • the flow rate can be arbitrarily balanced by the liquid delivery means (51 and 52), may be the same, and stream 5 may be larger than stream 2
  • the flow 5 may be smaller than the flow 2.
  • the flow rate of the priming solution is not limited.
  • the priming solution is supplied to the vein-side replacement fluid supply channel.
  • the flow rate (flow 2) is 30; the flow rate to the arterial fluid replacement flow path (flow 5) is 60; the circulation amount (flow 4) in the blood flow path is 30; the flow rate to the first space (flow 3) ) Is 90, the flow rate from the blood inlet is 30 in the flow 3, the flow rate from the blood outlet is 60, the flow rate flowing into the second space of the flow 6 is 10,
  • the flow rate flowing out of the space can be set to 100.
  • the priming solution is not limited as long as it can be put into a state where the purification treatment can be started, and is typically a replacement fluid, dialysis solution, physiological saline, or the like used for blood purification treatment.
  • Blood purifier 11 First space 12 Second space 13 Blood purification membrane 21 Blood inlet side channel 22 Blood outlet side channel 31 Liquid (dialysate) supply channel 32 Liquid (dialysate) recovery Flow path 41 Arterial side replacement fluid supply path 42 Vein side replacement fluid supply path 51 Fluid supply means of arterial side replacement fluid supply path 52 Liquid supply means of vein side replacement fluid supply path 53 Blood pump 60 Replacement fluid pressure measurement means 70 Replacement fluid (dialysis Fluid) Supply source 100 Blood purification device 200 Blood purification device 201 Arterial side end 202 Vein side end 203 Blood inlet 204 Blood outlet 207 Supplementary fluid inlet 208 Main body container 209 Hollow fiber bundle 210 Sealing member 211 Dialysate inlet 212 Dialysate Outlet 213 Mixing means 214 Internal space 215 Replacement fluid inlet tubular member 216 Blood purification unit 400 Blood circuit 401 Blood inlet Jo member 402 blood outlet tubular member 403 drip chamber 404 for pressure measurement tubular member 405 replacement fluid inlet tubular member 406 priming line

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)

Abstract

プライミング等にかかる作業負担を軽減することができ、したがってより過誤防止に寄与し、かつ汎用性に優れた血液浄化システム、及びそのプライミング方法を提供する。本発明の血液浄化システムは:血液浄化膜で隔てられた第一の空間及び第二の空間を有し、上記第一の空間に体外循環血液を通して血液を浄化する、血液浄化器と;上記第一の空間に流入する前の上記体外循環血液が流れる血液入口側流路と;上記第一の空間から流出した後の上記体外循環血液が流れる血液出口側流路と;上記第二の空間に液体を供給するための液体供給流路と;上記第二の空間から液体を回収するための液体回収流路と;上記液体供給流路から分岐しており、上記血液入口側流路に接続した、動脈側補液供給流路と;上記液体供給流路から分岐しており、上記血液出口側流路に接続した、静脈側補液供給流路と、を有する、オンライン型の血液浄化システムである。上記動脈側補液供給流路、及び上記静脈側補液供給流路は、それぞれ独立して制御可能な送液手段を有する。

Description

血液浄化システム、及びそのプライミング方法
 本発明は、血液浄化システム、及びそのプライミング方法に関する。
 体外を循環する血液(以下、「体外循環血液」ともいう。)を浄化する血液浄化器を用いて血液を浄化処理する、血液浄化システムが広く知られている。
 血液浄化器としては、血液浄化膜で隔てられた第一の空間と第二の空間とを有し、第一の空間には血液が流れ、第二の空間には血液を浄化する液体、例えば透析液が流れる血液浄化器が一般的である。
 血液浄化処理の前には、血液浄化装置と血液回路内の微小な塵、膜の保護剤、充填液および空気をプライミング液で洗浄除去し、浄化処理を開始できる状態にする、いわゆるプライミング作業を行が行われる。
 例えば、特許文献1(特開2011-110098号公報)には、オンライン型血液透析濾過に適用される血液浄化システムであって、動脈側血液回路2上に接続された透析液供給ラインL6と、動脈側血液回路2上のチャンバ9に接続された第一接続ラインL4と、静脈側血液回路3上のチャンバ10に接続された第二接続ラインL5とを有する、血液浄化システムが記載されている。特許文献1の血液浄化システムは、プライミング時、透析液供給ラインL6が動脈側血液回路2に透析液を供給し、第一接続ラインL4及び第二接続ラインL5は分岐ラインL3を介して透析液を排出する(特許文献1、図2等を参照)。
特開2011-110098号公報
 近年、血液浄化を必要とする患者数の増加に伴い、一人の担当看護師や医師が一度に担当しなければならない患者数が増加し、作業負担が増大している。例えば、血液浄化処理の現場では、一人の担当看護師又は医師が一度に10人以上もの患者を担当することがある。このとき、血液浄化処理ごと、血液回路等の接続及び取り外しにかかるチェックポイントが例えば単純化のため10カ所(実際にはそれ以上と考えられる。)あるとすれば、10人以上の患者を見るためには実に100以上の確認作業が必要である。したがって、血液浄化処理をより簡便なものにし、作業負担を軽減することが強く望まれている。作業負担を軽減することができれば、作業の効率化ばかりでなく、過誤防止にもつながる。
 作業負担の大きい作業のひとつとして、血液浄化処理前に行われるプライミング作業が挙げられる。従来の血液浄化システムにおけるプライミング作業は、使用する血液浄化器及び血液回路等の構造により様々であるが、一般的に、血液回路側のプライミングと透析液回路側のプライミングとが独立して行われるため、作業者は、その都度血液回路などの回路の接続を変更し、ポンプや装置の設定を変更する必要があった。例えば、特許文献1に記載されているような従来の血液浄化システムでは、血液回路内を透析液で満たす際、第一接続ラインL4及び第二接続ラインL5は単に透析液を排出するために使用され、かつ電磁弁V1、V2、及びV7は閉状態にされているため、透析液導入口1c及び1dとの間の流路及び透析液回路のプライミングは別工程で行われる(特許文献1、図2)。このとき、血液回路が適切かつ充分に透析液で置換されたか否かを確認し、次いで透析液回路側のプライミングに切り換える必要があり、このことは作業者にとって負担となる。
 また、医療現場によって、用いられる血液透析器の種類が異なり、血液透析器の血液浄化膜内外のエア抜け性、限外濾過率(UFR)等に応じてプライミング液の流し方が異なる場合があるため、汎用性の高い血液浄化システムが求められている。
 本発明は、上記のような従来の血液浄化処理において当然に行われていたプライミング等にかかる作業負担を軽減することができ、したがってより過誤防止に寄与し、かつ汎用性に優れた血液浄化システム、及びそのプライミング方法を提供することを目的とする。
 本願発明者らは、上記課題を解決するため鋭意検討を重ねた結果、特定の回路構造と、送液手段を有する血液浄化システムにより、上記課題を解決できることを見いだし、本発明を完成するに至った。すなわち、本発明は以下のとおりである。
〔1〕血液浄化膜で隔てられた第一の空間及び第二の空間を有し、上記第一の空間に体外循環血液を通して血液を浄化する、血液浄化器と;
 上記第一の空間に流入する前の上記体外循環血液が流れる血液入口側流路と;
 上記第一の空間から流出した後の上記体外循環血液が流れる血液出口側流路と;
 上記第二の空間に液体を供給するための液体供給流路と;
 上記第二の空間から液体を回収するための液体回収流路と;
 上記液体供給流路から分岐しており、上記血液入口側流路に接続した、動脈側補液供給流路と;
 上記液体供給流路から分岐しており、上記血液出口側流路に接続した、静脈側補液供給流路と、
を有する、オンライン型の血液浄化システムであって、
 上記動脈側補液供給流路、及び上記静脈側補液供給流路は、それぞれ独立して制御可能な送液手段を有する、血液浄化システム。
〔2〕上記血液入口側流路と、上記血液出口側流路とは、相互に接続可能である、項目1に記載の血液浄化システム。
〔3〕上記液体供給流路は、上記第二の空間に透析液を供給するための透析液供給流路であり、
 上記液体回収流路は、上記第二の空間から透析液を回収するための透析液回収流路であり、
 上記血液浄化器は、上記体外循環血液と上記透析液とを接触させて血液を浄化することができる血液透析器である、項目1又は2に記載の血液浄化システム。
〔4〕上記血液浄化器は、中空糸の内側を流れる体外循環血液に、上記中空糸の外側を流れる透析液を接触させて血液を浄化する中空糸型血液透析器である、項目3に記載の血液浄化システム。
〔5〕上記血液浄化システムは、繰り返し使用可能な血液浄化装置を含み、
 血液浄化装置は、上記液体供給流路と、上記液体回収流路と、上記動脈側補液供給流路と、上記静脈側補液供給流路とを有し、
 上記動脈側補液供給流路及び上記静脈側補液供給流路は、上記体外循環血液に補液を直接供給することができ、
 上記血液浄化装置は、上記体外循環血液の流れの異常を検出するための、補液圧力測定手段をさらに有する、項目1~4のいずれか一項に記載の血液浄化システム。
〔6〕前記補液圧力測定手段は、前記動脈側補液供給流路及び/又は前記静脈側補液供給流路と連通する領域を流れる補液の液圧を直接測定する、項目5に記載の血液浄化システム。
〔7〕上記血液浄化器は、血液入口を有する動脈側端部と、血液出口を有する静脈側端部とを有し、上記血液入口に上記血液入口側流路が接続され、上記血液出口に上記血液出口側流路が接続されており、
 上記動脈側端部及び/又は上記静脈側端部に、補液入口をさらに有し、上記補液入口に上記動脈側補液供給流路及び/又は上記静脈側補液供給流路が接続されている、項目1~6のいずれか一項に記載の血液浄化システム。
〔8〕上記動脈側端部及び/又は上記静脈側端部に、上記体外循環血液と上記補液入口から流入する補液とを均一に混合するための混合手段をさらに有する、項目7に記載の血液浄化システム。
〔9〕上記血液浄化器は、血液入口を有する動脈側端部と、血液出口を有する静脈側端部とを有し、上記血液入口に上記血液入口側流路が接続され、上記血液出口に上記血液出口側流路が接続されており、
 上記動脈側端部及び/又は上記静脈側端部に、血液浄化の間に混入又は発生する気体を捕獲することができる所定容量をもつ内部空間を有する、項目1~8のいずれか一項に記載の血液浄化システム。
〔10〕上記液体供給流路、上記液体回収流路、上記動脈側補液供給流路、上記静脈側補液供給流路、上記血液入口側流路、及び上記血液出口側流路からなる群から選択される少なくとも1つが管状部材で構成されている、項目1~9のいずれか一項に記載の血液浄化システム。
〔11〕上記液体供給流路と上記液体回収流路とは、相互に接続可能である、項目1~10のいずれか一項に記載の血液浄化システム。
〔12〕上記動脈側補液供給流路と、上記静脈側補液供給流路とは、相互に接続可能である、項目1~11のいずれか一項に記載の血液浄化システム。
〔13〕上記動脈側補液供給流路又は上記静脈側補液供給流路のいずれか一方を閉止して、閉止されていない他方から上記血液入口側流路又は上記血液出口側流路へと血液回収用液体を流入させることにより、上記第一の空間内に残存する血液を回収可能な、
項目1~12のいずれか一項に記載の血液浄化システム。
〔14〕上記液体供給流路において、
 上記動脈側補液供給流路と上記液体供給流路との分岐点が、上記静脈側補液供給流路と上記液体供給流路との分岐点より下流にある、項目1~13のいずれか一項に記載の血液浄化システム。
〔15〕上記液体供給流路において、
 上記動脈側補液供給流路と上記液体供給流路との分岐点が、上記静脈側補液供給流路と上記液体供給流路との分岐点より上流にある、項目1~14のいずれか一項に記載の血液浄化システム。
〔16〕項目1~15のいずれか一項に記載の血液浄化システムの、プライミング方法であって、
 上記液体供給流路にプライミング液を流入させ、上記血液浄化器の上記第二の空間を通じて、上記液体回収流路から上記プライミング液を回収することと;
 上記液体供給流路を流れるプライミング液の一部を、上記静脈側補液供給流路に流入させ、上記血液浄化器の上記第一の空間、及び上記動脈側補液供給流路を通じて、上記液体供給流路に戻すことと、
を有する、プライミング方法。
〔17〕項目1~15のいずれか一項に記載の血液浄化システムの、プライミング方法であって、
 上記液体供給流路にプライミング液を流入させ、上記血液浄化器の上記第二の空間を通じて、上記液体回収流路から上記プライミング液を回収することと;
 上記液体供給流路を流れるプライミング液の一部を、上記動脈側補液供給流路に流入させ、上記血液浄化器の上記第一の空間、及び上記静脈側補液供給流路を通じて、上記液体供給流路に戻すことと、
を有する、プライミング方法。
〔18〕項目1~15のいずれか一項に記載の血液浄化システムの、プライミング方法であって、
 上記液体供給流路にプライミング液を流入させ、
上記血液浄化器の上記第二の空間を通じて上記液体回収流路から上記プライミング液を回収することと;
 上記第二の空間を通るプライミング液の一部を、上記血液浄化膜を通過させて上記第一の空間へと流入させ、上記動脈側補液供給流路及び/又は上記静脈側補液供給流路を通じて、上記液体供給流路に戻すことと、
を有する、プライミング方法。
〔19〕項目1~15のいずれか一項に記載の血液浄化システムの、プライミング方法であって、
 上記液体供給流路にプライミング液を流入させ、上記液体供給流路を流れる上記プライミング液の一部を、上記動脈側補液供給流路及び/又は上記静脈側補液供給流路を通じて、上記血液浄化器の上記第一の空間へと流入させることと;
 上記第一の空間を流れるプライミング液の一部を、上記血液浄化膜を通過させて上記第二の空間へと流入させ、上記液体回収流路から上記プライミング液を回収することと;
を有する、プライミング方法。
 本実施形態の血液浄化システム及びそのプライミング方法に使用するのに適した血液浄化装置の実施形態は、例えば、以下のとおりである。
〔20〕
 体外循環血液を浄化する使い捨て血液浄化器と共に用いられる、血液浄化装置であって、
 上記血液浄化装置は、上記体外循環血液に補液を直接供給するための少なくとも1つの補液供給流路、及び上記体外循環血液の流れの異常を検出するための、上記補液供給流路を流れる補液の圧力を測定する補液圧力測定手段を有し、
 上記補液供給流路が2系統あり、1の系統は、補液を浄化前の上記体外循環血液に供給するためのものであり、他の系統は、補液を浄化後の上記体外循環血液に供給するためのものであり、
 2系統の上記補液供給流路は、それぞれ独立して制御可能な送液手段を有する、血液浄化装置。
〔21〕
 上記血液浄化器は、上記体外循環血液に透析液を接触させて血液を浄化する血液透析器であり、
 上記血液浄化装置は、上記血液透析器に透析液を供給するための透析液供給流路、及び上記血液透析器から透析液を回収するための透析液回収流路をさらに有する、項目20に記載の血液浄化装置。
〔22〕
 上記血液透析器は、中空糸の内側を流れる体外循環血液に、上記中空糸の外側を流れる透析液を接触させて血液を浄化する中空糸型血液透析器である、項目21に記載の血液浄化装置。
〔23〕
 上記補液供給流路は、上記透析液供給流路から分岐しており、透析液を補液として上記体外循環血液に供給する、項目21又は22に記載の血液浄化装置。
〔24〕
 上記血液浄化器は、血液入口をもつ動脈側端部と、血液出口をもつ静脈側端部とを有し、
 上記動脈側端部及び/又は上記静脈側端部に補液入口をさらに有し、上記補液入口は、使用時に、上記血液浄化装置の上記補液供給流路に接続され、補液が流れる、項目20~23のいずれか一項に記載の血液浄化装置。
〔25〕
 上記血液浄化器の上記動脈側端部及び/又は上記静脈側端部に、上記体外循環血液と上記補液入口から流入する補液とを均一に混合するための混合手段をさらに有する、項目24に記載の血液浄化装置。
〔26〕
 上記血液浄化器の上記動脈側端部及び/又は上記静脈側端部に、血液浄化の間に混入又は発生する気体を捕獲することができる所定容量をもつ内部空間を有する、項目24又は25に記載の血液浄化装置。
〔27〕
 上記血液浄化器は、上記補液入口に接続された補液入口管状部材をさらに有し、上記補液入口管状部材は、使用時に、上記血液浄化装置の上記補液供給流路に接続され、補液が流れる、項目24~26のいずれか一項に記載の血液浄化装置。
 本発明の血液浄化システム、及びそのプライミング方法は、上記のような構成を有するため、プライミング等にかかる作業負担を軽減することができ、したがってより過誤防止に寄与し、かつ汎用性に優れる。
図1は、本発明の実施形態による血液浄化システムの模式図である。 図2は、本発明の実施形態による血液浄化システムのプライミング方法の第一実施形態を示す模式図である。 図3は、本発明の実施形態による血液浄化システムのプライミング方法の第二実施形態を示す模式図である。 図4は、本発明の実施形態による血液浄化システムのプライミング方法の第三実施形態を示す模式図である。 図5は、本発明の実施形態による血液浄化システムのプライミング方法の第四実施形態を示す模式図である。 図6は、本発明の実施形態による血液浄化システムによる血液回収の態様を例示する模式図である。 図7は、本発明の血液浄化システムの好ましい実施形態において用いられる、血液浄化器及び血液浄化装置の模式図である。 図8は、本発明の血液浄化システムの好ましい実施形態において用いられる、血液浄化器の断面を示す模式図である。 図9は、従来の血液回路を示す模式図である。
 以下、図面を参照しながら本発明の実施形態(以下、「本実施形態」という。)による血液浄化システム、及びそのプライミング方法を詳細に説明するが、本実施形態に限定されるものではない。
 《血液浄化システム》
 図1は、本実施形態による血液浄化システムを示す模式図である。本実施形態による血液浄化システム(500)は、血液浄化膜(13)で隔てられた第一の空間(11)及び第二の空間(12)を有し、第一の空間に体外循環血液を通して血液を浄化する、血液浄化器(200)と;第一の空間に流入する前の体外循環血液が流れる血液入口側流路(21)と;第一の空間から流出した後の体外循環血液が流れる血液出口側流路(22)と;第二の空間に液体を供給するための液体供給流路(31)と;第二の空間から液体を回収するための液体回収流路(32)と;液体供給流路から分岐しており、血液入口側流路に接続した、動脈側補液供給流路(41)と;液体供給流路から分岐しており、血液出口側流路に接続した、静脈側補液供給流路(42)と、を有する、オンライン型の血液浄化システムである。動脈側補液供給流路、及び静脈側補液供給流路は、それぞれ独立して制御可能な送液手段(51、及び52)を有する。
 本実施形態の血液浄化システムは、上記構成を有することにより、血液浄化器の第一の空間を通ったプライミング液を廃棄することなく第二の空間へと流すことができ、あるいは第二の空間に流入させたプライミング液を廃棄することなく第一の空間へと流すことができるため、回路をつなぎ替えたりポンプを切り換えるといった作業を必要とせず、第一の空間及び第二の空間のプライミングを同時に行うことができるため、作業負担が軽減される。
 さらに、本発明の血液浄化システムは、後述するように、血液透析処理(一般に「HD」ともいう。)、血液濾過透析処理(一般に「HDF」ともいう。)、及び血液濾過処理(一般に「HF」ともいう)のいずれの血液処理にも使用することができる。また、本発明の血液浄化システムは、血液回路に補液を供給することができる流路が、動脈側補液供給流路と静脈側補液供給流路との二系統あり、それぞれ独立して制御可能な送液手段を有しているため、いずれの系統からも補液を供給又は回収することができる。したがって、プライミング作業時には、血液透析器の種類に応じて適切な流し方を設定することができる。血液透析処理時には、血液浄化器の第一の空間より上流に補液を供給することができ(「前希釈」ともいう。)、第一の空間より下流に補液を供給することができ(「前希釈」ともいう。)、第一の空間より上流及び下流に同時に供給することもできる(「前後同時希釈」ともいう)。血液回収時には、動脈側補液供給流路又は静脈側補液供給流路のいずれか一方から血液回収用液体を供給することにより、血液回路内に残存する血液を回収することができるため、装置の接続を変更することなく血液を回収することができ、したがって血液回収作業にかかる作業負担が軽減され、より過誤防止に寄与する。したがって、本発明の血液浄化システムは、プライミング等にかかる作業負担が軽減され、したがって安全性に寄与し、かつ汎用性にも優れる。
 〈血液浄化器〉
 本実施形態の血液浄化システムにおける血液浄化器は、血液浄化膜で隔てられた第一の空間及び第二の空間を有し、第一の空間に体外循環血液を通して血液を浄化することができれば、特に限定されない。
 血液浄化器の種類は、一般に、血液を浄化する原理により大別される。血液を浄化する原理としては、例えば、濾過、透析、及びこれらの組合せが挙げられ、本実施形態において、血液浄化器はいずれの種類であってもよい。
 血液浄化器は、血液浄化膜で体外循環血液を濾過して血液を浄化する、血液濾過器であってもよい。このような血液濾過器を、本実施形態の血液浄化システムの一部として使用することができるため、本発明は、これらの種類の血液浄化器の使用を排除するものではない。
 血液浄化器は、血液浄化膜を介して体外循環血液に透析液を接触させて血液を浄化する、血液透析器であってもよい。血液浄化器は、血液浄化膜として中空糸を用い、中空糸の内側を流れる体外循環血液に、中空糸の外側を流れる透析液を接触させて血液を浄化する、いわゆる中空糸型血液透析器であってもよい。
 血液透析器は、拡散の原理を利用して、又は拡散とともに濾過を組み合わせて血液を浄化することができる。本願明細書において、用語「血液透析器」は、拡散とともに濾過を組み合わせて血液を浄化する、いわゆる「血液透析濾過器」を包含する。
 血液浄化器は、体外循環血液を通すため、一般に、血液入口をもつ動脈側端部と、血液出口をもつ静脈側端部とを有する。ここで、本願明細書において、「動脈側端部」とは、血液浄化器のうち、実質的に体外循環血液を浄化する機能を有する部分(以下、「血液浄化部」ともいう。図において符号216で示す。)よりも上流にあたる部分をいい、「静脈側端部」とは、血液浄化器のうち、血液浄化部よりも下流にあたる部分をいう。動脈側端部及び静脈側端部は、本体容器とは別の部品、例えば蓋等であってもよく、本体容器と一体に形成された部分であってもよい。血液浄化器の本体容器の形状は、限定されないが、例えば筒状、典型的には円筒状である。
 〈血液入口側流路、及び血液出口側流路〉
 本実施形態の血液浄化システムは、血液浄化器の第一の空間に流入する前の体外循環血液が流れる血液入口側流路と、第一の空間から流出した後の体外循環血液が流れる血液出口側流路とを有する。なお、本願明細書において、用語「血液入口側流路」とは、血液浄化器の動脈側端部の内部空間を含む、体外循環血液が第一の空間に流入する直前までの流路を指し、また、用語「血液出口側流路」とは、血液浄化器の静脈側端部の内部空間を含む、第一の空間から流出した直後から下流の流路を指す。
 本実施形態において、血液浄化器は、血液入口を有する動脈側端部と、血液出口を有する静脈側端部とを有し、血液入口に血液入口側流路が接続され、血液出口に血液出口側流路が接続されていてもよい。血液入口側流路、及び血液出口側流路の少なくとも一つは管状部材であってよく、例えば、血液入口に血液入口管状部材が接続され、血液入口側流路を構成し、血液出口に血液出口管状部材が接続されて、血液出口側流路を構成していてもよい。使用時に、血液入口側流路、第一の空間、及び血液出口側流路は連通して血液回路を構成し、体外循環血液が流れることができる。
 本実施形態の血液浄化システムは、血液入口側流路と血液出口側流路とが、相互に接続可能であってよい。血液入口側流路と血液出口側流路とが相互に接続可能であることにより、プライミング時にこれらを接続しておくことで、血液回路内にプライミング液を通して循環させることができるため、プライミング作業をより効率的に行うことができる。血液入口側流路と血液出口側流路との相互接続の態様は、特に限定されない。
 血液入口側流路は、血液ポンプを有していてもよい。動脈側補液供給流路の送液手段と、静脈側補液供給流路の送液手段と、血液入口側流路の血液ポンプとは、それぞれ独立に制御可能であってもよい。
 〈液体供給流路、及び液体回収流路〉
 本実施形態の血液浄化システムは、血液浄化器の第二の空間に液体を供給するための液体供給流路と、第二の空間から液体を回収するための液体回収流路とを有する。したがって、本実施形態の血液浄化システムは、透析液を使用し、拡散の原理を利用して血液を浄化する血液浄化処理、例えば、血液透析処理(一般に「HD」ともいう。)、及び血液濾過透析処理(一般に「HDF」ともいう。)のいずれにも使用することができる。本願明細書において、HD及びHDFを含む、拡散の原理を利用する血液浄化処理を総称して「血液透析処理」という。しかしながら、これらの透析処理に限定されるものではない。
 本実施形態において、血液浄化器が、体外循環血液と上記透析液とを接触させて血液を浄化することができる血液透析器である場合、液体供給流路は、第二の空間に透析液を供給するための透析液供給流路であってよく、液体回収流路は、第二の空間から透析液を回収するための透析液回収流路であってよい。
 透析液としては、体外循環血液に接触させて血液中から余分な水分や老廃物等を取り除くことができれば、特に限定されない。透析液としては、例えば、生理食塩水が挙げられる。透析液を補液として使用してもよい。透析液を送液する手段(図示せず)は限定されず、任意の送液ポンプ、例えば複式ポンプ、チュービングポンプ等を使用することができる。
 液体供給流路、及び液体回収流路の少なくとも一つは、管状部材から構成されていてもよい。
 液体供給流路と液体回収流路とは、相互に接続可能であってよい。血液浄化装置の流路内を洗浄消毒する際に、液体供給流路と液体回収流路とが相互に接続されていることによって、その中に洗浄消毒液を循環させることができるため、流路内の洗浄消毒を効率よく行うことができる。液体供給流路と液体回収流路との相互接続の態様は、特に限定されない。
 〈動脈側補液供給流路、及び静脈側補液供給流路〉
 本実施形態の血液浄化システムは、液体供給流路から分岐しており、血液入口側流路に接続した、動脈側補液供給流路と、液体供給流路から分岐しており、血液出口側流路に接続した、静脈側補液供給流路とを有する。
 血液浄化処理では、一般に、血液中から水分や老廃物等が取り除かれることに伴い、血液中の水分や電解質等の物質バランスの調節、及びpHの調節等を行うため、体外循環血液に対して補液を供給する。本実施形態において、血液浄化システムは、動脈側補液供給流路及び/又は静脈側補液供給流路を通して、体外循環血液に補液を供給することができる。
 動脈側補液供給流路、及び静脈側補液供給流路の少なくとも一つは、管状部材で構成されていてもよい。
 動脈側補液供給流路が血液入口側流路に接続する位置は特に限定されず、血液浄化器より上流であってもよく、ドリップチャンバー上であってもよく、血液浄化器の動脈側端部に設けられた補液入口に接続していてもよい。静脈側補液供給流路が血液出口側流路に接続する位置についてもまた限定されない。血液浄化器より下流であってもよく、ドリップチャンバー上であってもよく、血液浄化器の静脈側端部に設けられた補液入口に接続していてもよい。
 動脈側補液供給流路と液体供給流路との分岐点、及び静脈側補液供給流路と液体供給流路との分岐点の位置関係は特に限定されない。例えば、動脈側補液供給流路と液体供給流路との分岐点が、静脈側補液供給流路と液体供給流路との分岐点より下流にあってもよく、上流にあってもよい。
 動脈側補液供給流路と静脈側補液供給流路とは、相互に接続可能であってよい。血液浄化装置の流路内を洗浄消毒する際に、動脈側補液供給流路と静脈側補液供給流路とが相互に接続されていることによって、その中に洗浄消毒液を循環させることができるため、流路内の洗浄消毒を効率よく行うことができる。液体供給流路と液体回収流路とが相互に接続可能であり、かつ動脈側補液供給流路と静脈側補液供給流路とが相互に接続可能であってもよい。この場合、血液浄化装置の流路内を更に効率よく洗浄消毒することができる。動脈側補液供給流路と静脈側補液供給流路との相互接続の態様は、特に限定されない。
 〈補液入口〉
 本実施形態において、血液浄化器は、動脈側端部及び/又は静脈側端部に補液入口をさらに有し、補液入口に動脈側補液供給流路及び/又は静脈側補液供給流路が接続されていてもよい。
 従来は、図9に示すように、血液入口管状部材上やドリップチャンバー上に設けられた補液入口管状部材(405)から補液を供給する必要があった。したがって、従来は、補液入口管状部材自体、及びそれに伴う接続部材(407)等が必要であった。動脈側端部及び/又は静脈側端部の補液入口に動脈側補液供給流路及び/又は静脈側補液供給流路が接続されていることによって、従来必要であった図9に示す補液入口管状部材(405)及びその接続部材(407)が必要なくなるため、血液回路がより単純化され、過誤防止に寄与する。また、部品点数が少ないため製造コストが削減され、血液浄化処理ごとに破棄される部材を少なくすることができ、より経済性に優れる。
 オンライン型の血液浄化システムの場合、補液及び/又は透析液は、典型的に、病院等の血液浄化が行われる場所で、補液及び/又は透析液の原液と清浄度の高い水とを混合することによりその場で調整され、血液浄化システムに供給される。補液及び/又は透析液の調整及び供給は、補液(透析液)供給源で行ってもよい。補液(透析液)供給源は、例えば、図7に示すように、血液浄化装置内に備えられていてもよく(70)、血液浄化装置とは別に設けられた供給源、例えば、補液(透析液)供給装置等であってもよい(図示せず)。補液及び/又は透析液を送液するための送液手段(図1において図示せず)は限定されず、あらゆる送液ポンプ、例えば複式ポンプ、チュービングポンプ等を使用することができる。
 〈混合手段〉
 本実施形態において、血液浄化器は、動脈側端部及び/又は静脈側端部に補液入口をさらに有し、補液入口に動脈側補液供給流路及び/又は静脈側補液供給流路が接続されており、動脈側端部及び/又は静脈側端部に、体外循環血液と補液入口から流入する補液とを均一に混合するための混合手段をさらに有してもよい。
 血液浄化器が動脈側端部に混合手段を有することにより、体外循環血液と補液との混合が促進され、血液の浄化をより均一に行うことができ、また、血液浄化器の機能低下を低減する効果も期待できる。静脈側端部に混合手段を有することにより、体外循環血液と補液との混合が促進され、患者への負担を軽減することができる。
 混合手段は特に限定されず、当業者であれば、任意の適切な手段を選択することができる。例えば、混合手段としては、安全性、製造の容易性等の観点から、駆動部を有しない混合手段であることが好ましい。駆動部を有しない混合手段としては、例えば邪魔板や突起等の障害物を設けること、及び一般にスタティックミキサーと呼ばれる構造を設けること等が挙げられる。なお、かかる混合手段は、補液入口の形状と上記端部の形状とが相俟って血液と補液とが混合される態様を排除するものではない。
 〈内部空間〉
 本実施形態において、血液浄化器は、血液入口を有する動脈側端部と、血液出口を有する静脈側端部とを有し、血液入口に血液入口側流路が接続され、血液出口に血液出口側流路が接続されており、動脈側端部及び/又は静脈側端部に、血液浄化の間に混入又は発生する気体を捕獲することができる所定容量をもつ内部空間を有していてもよい。
 従来、図9に示すように、患者の体内に気体が流入しないよう、血液入口管状部材及び/又は血液出口管状部材上にドリップチャンバー(403)を設けて、血液浄化の間に混入又は発生する気体を捕獲する必要があった。特に、血液出口管状部材は、患者の体内に戻る血液が流れるため、血液出口管状部材上のドリップチャンバーは重要であった。これに対して、本実施形態において、血液浄化器の動脈側端部及び/又は静脈側端部が上記のような内部空間を有することにより、従来必要であった図9に示すドリップチャンバーを設ける必要がなくなり、血液回路がより単純化され、作業負担を軽減することができ、より過誤防止に寄与し、また、血液と空気との接触が減り、血液の凝固がより効果的に低減される。さらに、部品点数が少ないため製造コストが削減され、血液浄化処理ごとに破棄される部材を少なくすることができ、より経済性に優れる。
 内部空間の所定容量としては、以下に限定されないが、例えば5cc以上30cc以下とすることができる。
 〈薬剤投入口〉
 本実施形態において、血液浄化器の動脈側端部に薬剤投入口をさらに有していてもよい。血液浄化処理の際には、血液と空気との接触による体外循環血液の凝固を防止するため、抗凝固薬を投入することがある。従来は、血液入口管状部材等に薬剤投入口(図示せず)が設けられていた。これに対して、本実施形態において、血液浄化器の動脈側端部に薬剤投入口をさらに有する場合、従来の薬剤投入口が必要なくなり、血液回路がより単純化され、過誤防止に寄与する。
 〈送液手段〉
 本実施形態の血液浄化システムは、動脈側補液供給流路及び静脈側補液供給流路に、それぞれ独立して制御可能な送液手段を有する。
 独立して制御可能な送液手段は、動脈側補液供給流路、及び静脈側補液供給流路の閉鎖、解放、送液、並びに送液する際の流量及び流れ方向を、任意に設定することができ、かつ任意のタイミングで変更することができてもよい。
 独立して制御可能な送液手段は、血液浄化システムを使用する上でのあらゆるパラメータ、例えば、体外循環血液、透析液、及び/又は補液の、圧力、温度、流量等に基づいて、動脈側補液供給流路、及び静脈側補液供給流路の閉鎖、解放、送液、並びに送液する際の流量及び流れ方向を変更することができてもよい。
 送液手段としては特に限定されず、あらゆる送液ポンプ、例えばチュービングポンプ、複式ポンプ等を使用することができる。
 〈血液浄化装置〉
 本実施形態の血液浄化システムは、繰り返し使用可能な血液浄化装置とともに使用することができる。血液浄化装置は、液体供給流路と、液体回収流路と、動脈側補液供給流路と、静脈側補液供給流路とを有していてもよい。動脈側補液供給流路、及び静脈側補液供給流路は、体外循環血液に補液を直接供給することができ、血液浄化装置は、体外循環血液の流れの異常を検出するための、補液圧力測定手段をさらに有していてもよい。補液圧力測定手段は、動脈側補液供給流路及び/又は静脈側補液供給流路と連通する領域を流れる補液の液圧を直接測定する補液圧力測定手段であってもよい。本願明細書において、「動脈側補液供給流路及び/又は静脈側補液供給流路と連通する領域」とは、補液圧力測定手段によって補液の圧力を測定することで、体外循環血液の流れの異常を検出することができる領域を意図する。換言すれば、「連通する領域」とは、体外循環血液の液圧に関連する液圧を有する領域ともいうことができる。したがって、例えば、動脈側補液供給流路及び静脈側補液供給流路の送液手段より上流にあたる領域は、補液圧力測定手段を設けても体外循環血液の流れの異常を検出することができないため、「動脈側補液供給流路及び/又は静脈側補液供給流路と連通する領域」ではなく、動脈側補液供給流路及び静脈側補液供給流路の送液手段より下流にあたる部分が、「動脈側補液供給流路及び/又は静脈側補液供給流路と連通する領域」に該当することに留意されたい。
 図9に示すように、従来は、血液の流れの異常を検出するために、圧力測定用管状部材(404)が、血液回路上に設けられたドリップチャンバー(403)に接続されている。この圧力測定用管状部材は、血液に触れることがないようドリップチャンバーの上部に接続され、ドリップチャンバー内の気相に通じている。従来、使用時には、圧力測定用管状部材に圧力測定装置(図示せず)が接続され、ドリップチャンバー内の気相を介して体外循環血液の流れの異常を検出していた。したがって、従来は、圧力測定用管状部材自体、及び圧力測定管状部材を取り付けるための接続部材(407)等が必要であった。また、血液浄化処理前に、圧力測定装置を圧力測定用管状部材に接続し、血液浄化処理後に取り外す作業が必要であり、作業負担を増大させていた。
 また、従来、圧力測定用管状部材(404)は、圧力測定手段から血液回路内へと菌等の汚染物質が侵入しないようにするため、及び血液回路から圧力測定手段側へと血液等が漏出しないようにするために、疎水性フィルター(408)を有している。疎水性フィルターが濡れてしまうとドリップチャンバー内の圧力を測定することができなくなるため、血液浄化処理前に疎水性フィルターを濡らさないよう配慮しなければならず、また、血液浄化処理中に疎水性フィルターが濡れないよう監視する必要があった。しかしながら、血液回路等が適切に接続されていないこと等に起因して、ドリップチャンバー内の気相の空気が漏れて、血液回路内の血液や補液で疎水性フィルターが濡れてしまうおそれがある。そして、いったん疎水性フィルターが濡れてしまえば、新品の血液回路と交換しなければならならず、このことは作業負担を増大させていた。
 これに対して、血液浄化システムが、繰り返し使用可能な血液浄化装置を含み、血液浄化装置が、液体供給流路と、液体回収流路と、動脈側補液供給流路と、静脈側補液供給流路とを有し、動脈側補液供給流路及び静脈側補液供給流路が、体外循環血液に補液を直接供給することができ、血液浄化装置が、体外循環血液の流れの異常を検出するための、補液圧力測定手段をさらに有することによって、従来必要であった圧力測定用管状部材やそれに伴う接続部材、及び疎水性フィルター等が必要なくなり、血液回路がより単純化される。また、ドリップチャンバーの気相を介さずに、液体である補液の圧力を測定することができるため、ドリップチャンバー内に圧力測定のための気相を予め設けておく必要がなく、血液と気相との接触面積を低減することができる。したがって、血液浄化処理前の機材の接続及び血液浄化処理後の機材の取り外し、並びに疎水性フィルターの取扱い等にかかる作業負担を軽減することができ、したがってより過誤防止に寄与し、また、血液と空気との接触が減り、血液の凝固が低減され、さらに、部品点数が少ないため製造コストが削減され、血液浄化処理ごとに廃棄される部材がより少なく経済性にも優れる。
 本願明細書において、「体外循環血液に補液を直接供給することができる」とは、補液圧力測定手段によって補液の圧力を測定することで、体外循環血液の流れの異常を検出することができるように構成されていることを意図する。したがって、例えば、動脈側補液供給流路及び静脈側補液供給流路の送液手段より上流にあたる部分は、補液圧力測定手段を設けても体外循環血液の流れの異常を検出することができないため、「体外循環血液に補液を直接供給することができる」部分ではなく、送液手段より下流にあたる部分が、「体外循環血液に補液を直接供給することができる」部分に該当する。
 補液圧力測定手段の位置は、血液浄化装置の、体外循環血液に補液を直接供給することができる動脈側補液供給流路及び静脈側補液供給流路上であれば特に限定されない。体外循環血液に補液を直接供給するための動脈側補液供給流路及び/又は静脈側補液供給流路が血液浄化装置の筐体の外側に伸びている場合には、血液浄化装置の筐体の外側に補液圧力測定手段が設置されていてもよい。
 補液圧力測定手段としては、液体である補液の圧力を測定することができれば、任意の圧力計を使用することができる。補液圧力測定手段としては、以下に限定されないが;弾性圧力計、例えば、ブルドン管圧力計、ダイアフラム圧力計、ベロー圧力計、チャンバ圧力計;並びに非弾性圧力計、例えば、液柱圧力計、及び重錘圧力計等が挙げられる。
 体外循環血液の流れが異常であるか否かは、当業者であれば、患者や血液浄化処理の条件等に合わせて適切に判断することができる。例えば、補液の圧力が、定常状態の値から所定値以上変動したとき、血液の流れが異常であると判断することができる。血液浄化装置は、体外循環血液の流れが異常であるか否かを自動的に判断する制御装置をさらに有してもよい。制御装置は、体外循環血液の流れが異常であると判断したときに、作業者に知らせるための表示を提供してもよい。
 〈血液回収〉
 本実施形態の血液浄化システムは、動脈側補液供給流路又は静脈側補液供給流路のいずれか一方を閉止して、閉止されていない他方から血液入口側流路又は血液出口側流路へと血液回収用液体を流入させることにより、第一の空間内に残存する血液を回収することが可能であってよい。これにより、血液浄化処理終了時に、血液回路や補液回路を組み替えることなく血液回収作業を開始することができるため、作業負担がより軽減される。
 図6は、本発明の実施形態による血液浄化システムによる血液回収の態様を例示する模式図である。図6に示すように、例えば、血液浄化処理終了時に、静脈側補液供給流路の送液手段(52)を閉状態に制御することにより静脈側補液供給流路を閉止して、かつ動脈側補液供給流路の送液手段(51)を制御して動脈側補液供給流路から血液入口側流路へと血液回収用液体を流入させることにより(流れ5)、第一の空間内に残存する血液を回収することが可能できる(流れ3)。第一の空間より上流に残存する血液は、動脈側穿刺針側から回収することができる(流れ4)。
 本実施形態の血液浄化システムは、液体供給流路(31)及び/又は液体回収流路(32)を閉止することが可能であってもよい。閉止手段は限定されず、電磁弁、クランプ等を使用することができる。
 血液回収用液体は、第一の空間及び血液回路に残存する体外循環血液の置換に使用することができれば特に限定されず、例えば補液、透析液、整理食塩水等を使用することができる。オンライン型の血液浄化システムの場合、血液回収用液体としては、第一の空間及び血液回路に残存する体外循環血液の置換に使用することができる透析液を使用することができる。オンライン型の血液浄化システムの場合、上記で説明したように、透析液は、典型的には補液としても用いられる。
 〈血液浄化システムの好ましい実施形態〉
 図7は、本実施形態の血液浄化システムの好ましい実施形態において用いられる、血液浄化器及び血液浄化装置の模式図である。図7において、血液浄化器(200)は、体外循環血液に透析液を接触させて血液を浄化する血液透析器であり、繰り返し使用可能な血液浄化装置(100)と共に用いられ、血液浄化システムを構成する。血液浄化装置(100)は、血液浄化器の動脈側端部に接続された動脈側補液供給流路(41)、及び血液浄化器の静脈側端部に接続された静脈側補液供給流路(42)を有し、それぞれ、血液入口側流路(21)及び血液出口側流路(22)を流れる体外循環血液に補液を直接供給することができる。これらの補液供給流路は、それぞれ独立して制御可能な送液手段(51及び52)を有する。血液浄化装置は、それぞれの補液供給流路上に、体外循環血液の流れの異常を検出するための、補液供給流路を流れる補液の圧力を測定する補液圧力測定手段(60)を有している。また、血液浄化装置は、血液透析器に透析液を供給するための透析液供給流路(31)、及び血液透析器から透析液などの液体を回収するための透析液回収流路(32)をさらに有している。2系統の補液供給流路はそれぞれ透析液供給流路(31)から分岐しており、したがって、血液浄化装置(100)は、透析液供給源(70)からの透析液を補液として体外循環血液に供給することができる、オンライン型血液浄化装置である。
 図8は、本発明の血液浄化システムの好ましい実施形態において用いられる、血液浄化器の断面を示す模式図である。図8において、血液浄化器(200)は、筒状の本体容器(208)内に中空糸の束(209)を有し、中空糸の束は、その両端が封止部材(210)によって筒状の本体容器内に固定され、中空糸の内側と外側とが隔てられている。なお、説明のため、中空糸の束はその一部のみ記載されている。
 筒状の本体容器は、その両端に、血液入口(203)及び補液入口(207)をもつ動脈側端部(201)と、血液出口(204)及び補液入口(207)をもつ静脈側端部(202)とを有している。使用時に、血液入口には血液入口管状部材(図示せず)が接続され、血液出口には血液出口管状部材(図示せず)が接続されて、血液回路を構成しており、使用時に、中空糸の内側に体外循環血液を流すことができる。また、補液入口には、それぞれ補液入口管状部材(215)が接続されており、補液入口管状部材は、使用時に、それぞれ血液浄化装置(100)の2系統の補液供給流路に接続され、補液を流すことができる。本体容器は、その側面に透析液入口(211)及び透析液出口(212)を有し、使用時に、中空糸の外側と本体容器の内側と、封止部材とで囲まれた空間に透析液を流すことによって、体外循環血液を、中空糸を介して透析液と接触させることができる。
 また、血液浄化器は、動脈側端部の内部に混合手段(213)を有しており、血液が中空糸の内部を通る前に、体外循環血液と補液入口から流入する補液とを均一に混合することができる。さらに、血液浄化器は、動脈側端部及び静脈側端部に、血液浄化の間に混入又は発生する気体を捕獲することができる所定容量をもつ内部空間(214)を有している。
 《血液浄化システムのプライミング方法》
 以下、図面を参照しながら本実施形態の血液浄化システムのプライミング方法の実施形態を説明するが、本実施形態に限定されるものではない。
 〈プライミング方法の第一実施形態〉
 図2は、本実施形態による血液浄化システムのプライミング方法の第一実施形態を示す模式図である。プライミング方法の第一実施形態は、プライミング液の供給手段(図示せず)から液体供給流路にプライミング液を流入させ、血液浄化器の第二の空間を通じて、液体回収流路からプライミング液を回収することと(流れ1、6、及び7);液体供給流路を流れるプライミング液の一部を、静脈側補液供給流路に流入させ(流れ2)、血液浄化器の第一の空間(流れ3)、及び動脈側補液供給流路(流れ5)を通じて、液体供給流路に戻すことを含む。これにより、第一の空間と第二の空間とを同時にプライミングすることができる。血液入口側流路と血液出口側流路とを接続して、血液ポンプ(53)によって、プライミング液を循環させてもよい(流れ4)。静脈側補液供給流路の送液手段(52)と、動脈側補液供給流路の送液手段(51)と、血液ポンプ(53)とを独立して制御して、プライミング液の流れを任意の流量にバランスさせることができる。
 プライミング方法の第一実施形態において、静脈側補液供給流路への流入(流れ2)及び動脈側補液供給流路からの回収(流れ5)は、必ずしも同一の流量でなくてもよい。例えば、送液手段(51及び52)によって、流れ2を流れ5よりも大きく制御し、流れ3のプライミング液の一部を流れ6へと血液浄化膜を介して透過させてもよい。あるいは、流れ2を流れ5よりも小さく制御し、流れ6のプライミング液の一部を流れ3へと血液浄化膜を介して透過させてもよい。
 プライミング方法の第一実施形態において、プライミング液の流量は、限定されないが、例えば、プライミング液全体の流量(流れ1、及び7)を100としたとき、プライミング液の静脈側補液供給流路への流量(流れ2)を60とし;第一の空間への流量(流れ3)を30とし、血液流路における循環量(流れ4)を30とし;動脈側補液供給流路からの回収量(流れ5)を60とし;第二の空間への流量(流れ6)を100とすることができる。
 〈プライミング方法の第二実施形態〉
 図3は、本実施形態による血液浄化システムのプライミング方法の第二施形態を示す模式図である。プライミング方法の第二実施形態は、プライミング液の供給手段(図示せず)から液体供給流路にプライミング液を流入させ、血液浄化器の第二の空間を通じて、液体回収流路からプライミング液を回収することと(流れ1、6、及び7);液体供給流路を流れるプライミング液の一部を、動脈側補液供給流路に流入させ(流れ5)、血液浄化器の第一の空間(流れ3)、及び静脈側補液供給流路(流れ2)を通じて、液体供給流路に戻すことを含む。これにより、第一の空間と第二の空間とを同時にプライミングすることができる。血液入口側流路と血液出口側流路とを接続して、血液ポンプ(53)によって、プライミング液を循環させてもよい(流れ4)。静脈側補液供給流路の送液手段(52)と、動脈側補液供給流路の送液手段(51)と、血液ポンプ(53)とを独立して制御して、プライミング液の流れを任意の流量にバランスさせることができる。
 プライミング方法の第二実施形態において、動脈側補液供給流路への流入(流れ5)及び静脈側補液供給流路からの回収(流れ2)は、必ずしも同一の流量でなくてもよい。例えば、送液手段(51及び52)によって、流れ5を流れ2よりも大きく制御し、流れ3のプライミング液の一部を流れ6へと血液浄化膜を介して透過させてもよい。あるいは、流れ5を流れ2よりも小さく制御し、流れ6のプライミング液の一部を流れ3へと血液浄化膜を介して透過させてもよい。
 プライミング方法の第二実施形態において、プライミング液の流量は、限定されないが、例えば、プライミング液全体の流量(流れ1、及び7)を100としたとき、プライミング液の静脈側補液供給流路からの回収量(流れ2)を60とし;第一の空間への流量(流れ3)を30とし;血液流路における循環量(流れ4)を30とし;動脈側補液供給流路への流量(流れ5)を60とし;第二の空間への流量(流れ6)を100とすることができる。
 〈プライミング方法の第三実施形態〉
 図4は、本実施形態による血液浄化システムのプライミング方法の第三施形態を示す模式図である。プライミング方法の第三実施形態は、プライミング液の供給手段(図示せず)から液体供給流路にプライミング液を流入させ、血液浄化器の第二の空間を通じて液体回収流路からプライミング液を回収することと(流れ1、6、及び7);第二の空間を通るプライミング液の一部を、血液浄化膜を通過させて第一の空間へと流入させ(流れ3)、動脈側補液供給流路及び/又は静脈側補液供給流路を通じて、液体供給流路に戻すこと(流れ2及び5)を含む。これにより、第一の空間と第二の空間とを同時にプライミングすることができる。血液入口側流路と血液出口側流路とを接続して、血液ポンプ(53)によって、プライミング液を循環させてもよい(流れ4)。静脈側補液供給流路の送液手段(52)と、動脈側補液供給流路の送液手段(51)と、血液ポンプ(53)とを独立して制御して、プライミング液の流れを任意の流量にバランスさせることができる。
 プライミング方法の第三実施形態において、血液回路からのプライミング液の回収は、動脈側補液供給流路(流れ5)及び静脈側補液供給流路(流れ2)のいずれか一方を通じて行うことができる。流れ2及び5の両方から回収する場合、その流量は送液手段(51及び52)によって任意にバランスさせることができ、同一であってもよく、流れ5を流れ2よりも大きくしてもよく、流れ5を流れ2よりも小さくしてもよい。
 プライミング方法の第三実施形態において、プライミング液の流量は、限定されないが、例えば、プライミング液全体の流量(流れ1、及び7)を100としたとき、プライミング液の静脈側補液供給流路からの回収量(流れ2)を60とし;動脈側補液供給流路からの回収量(流れ5)を30とし;流れ6のうち、第二の空間へ流入する流量を190とし、第二の空間から流出する流量を100とし;第二の空間から第一の空間への流量(流れ3)の合計を90とし、流れ3のうち、血液入口へと向かう流量を60とし、血液出口へと向かう流量を30とし;血液流路における循環量(流れ4)を30とすることができる。
 〈プライミング方法の第四実施形態〉
 図5は、本実施形態による血液浄化システムのプライミング方法の第四施形態を示す模式図である。プライミング方法の第四実施形態は、プライミング液の供給手段(図示せず)から液体供給流路にプライミング液を流入させ(流れ1及び6)、液体供給流路を流れるプライミング液の一部を、動脈側補液供給流路及び/又は静脈側補液供給流路を通じて(流れ2及び5)、血液浄化器の第一の空間へと流入させることと;第一の空間を流れるプライミング液の一部を、血液浄化膜を通過させて第二の空間へと流入させ(流れ3)、液体回収流路からプライミング液を回収すること(流れ7)を含む。これにより、第一の空間と第二の空間とを同時にプライミングすることができる。血液入口側流路と血液出口側流路とを接続して、血液ポンプ(53)によって、プライミング液を循環させてもよい(流れ4)。静脈側補液供給流路の送液手段(52)と、動脈側補液供給流路の送液手段(51)と、血液ポンプ(53)とを独立して制御して、プライミング液の流れを任意の流量にバランスさせることができる。
 プライミング方法の第四実施形態において、血液回路へのプライミング液の供給は、動脈側補液供給流路(流れ5)及び静脈側補液供給流路(流れ2)のいずれか一方を通じて行うことができる。流れ2及び5の両方から供給する場合、その流量は送液手段(51及び52)によって任意にバランスさせることができ、同一であってもよく、流れ5を流れ2よりも大きくしてもよく、流れ5を流れ2よりも小さくしてもよい。
 プライミング方法の第四実施形態において、プライミング液の流量は、限定されないが、例えば、プライミング液全体の流量(流れ1、及び7)を100としたとき、プライミング液の静脈側補液供給流路への流量(流れ2)を30とし;動脈側補液供給流路への流量(流れ5)を60とし;血液流路における循環量(流れ4)を30とし;第一の空間への流量(流れ3)の合計を90とし、流れ3のうち、血液入口からの流量を30とし、血液出口からの流量を60とし;流れ6のうち、第二の空間に流入する流量を10とし、第二の空間から流出する流量を100とすることができる。
 プライミング液としては、浄化処理を開始できる状態にすることができる液体であれば限定されず、典型的には血液浄化処理に使用する補液、透析液、生理食塩水等である。
 1~7  流れ
 10  血液浄化器
 11  第一の空間
 12  第二の空間
 13  血液浄化膜
 21  血液入口側流路
 22  血液出口側流路
 31  液体(透析液)供給流路
 32  液体(透析液)回収流路
 41  動脈側補液供給流路
 42  静脈側補液供給流路
 51  動脈側補液供給流路の送液手段
 52  静脈側補液供給流路の送液手段
 53  血液ポンプ
 60  補液圧力測定手段
 70  補液(透析液)供給源
 100  血液浄化装置
 200  血液浄化器
 201  動脈側端部
 202  静脈側端部
 203  血液入口
 204  血液出口
 207  補液入口
 208  本体容器
 209  中空糸の束
 210  封止部材
 211  透析液入口
 212  透析液出口
 213  混合手段
 214  内部空間
 215  補液入口管状部材
 216  血液浄化部
 400  血液回路
 401  血液入口管状部材
 402  血液出口管状部材
 403  ドリップチャンバー
 404  圧力測定用管状部材
 405  補液入口管状部材
 406  プライミングライン
 407  接続部材
 408  疎水性フィルター
 500  血液浄化システム

Claims (19)

  1.  血液浄化膜で隔てられた第一の空間及び第二の空間を有し、前記第一の空間に体外循環血液を通して血液を浄化する、血液浄化器と;
     前記第一の空間に流入する前の前記体外循環血液が流れる血液入口側流路と;
     前記第一の空間から流出した後の前記体外循環血液が流れる血液出口側流路と;
     前記第二の空間に液体を供給するための液体供給流路と;
     前記第二の空間から液体を回収するための液体回収流路と;
     前記液体供給流路から分岐しており、前記血液入口側流路に接続した、動脈側補液供給流路と;
     前記液体供給流路から分岐しており、前記血液出口側流路に接続した、静脈側補液供給流路と、
    を有する、オンライン型の血液浄化システムであって、
     前記動脈側補液供給流路、及び前記静脈側補液供給流路は、それぞれ独立して制御可能な送液手段を有する、血液浄化システム。
  2.  前記血液入口側流路と、前記血液出口側流路とは、相互に接続可能である、請求項1に記載の血液浄化システム。
  3.  前記液体供給流路は、前記第二の空間に透析液を供給するための透析液供給流路であり、
     前記液体回収流路は、前記第二の空間から透析液を回収するための透析液回収流路であり、
     前記血液浄化器は、前記体外循環血液と前記透析液とを接触させて血液を浄化することができる血液透析器である、請求項1又は2に記載の血液浄化システム。
  4.  前記血液浄化器は、中空糸の内側を流れる体外循環血液に、前記中空糸の外側を流れる透析液を接触させて血液を浄化する中空糸型血液透析器である、請求項3に記載の血液浄化システム。
  5.  前記血液浄化システムは、繰り返し使用可能な血液浄化装置を含み、
     血液浄化装置は、前記液体供給流路と、前記液体回収流路と、前記動脈側補液供給流路と、前記静脈側補液供給流路とを有し、
     前記動脈側補液供給流路及び前記静脈側補液供給流路は、前記体外循環血液に補液を直接供給することができ、
     前記血液浄化装置は、前記体外循環血液の流れの異常を検出するための、補液圧力測定手段をさらに有する、請求項1~4のいずれか一項に記載の血液浄化システム。
  6.  前記補液圧力測定手段は、前記動脈側補液供給流路及び/又は前記静脈側補液供給流路と連通する領域を流れる補液の液圧を直接測定する、請求項5に記載の血液浄化システム。
  7.  前記血液浄化器は、血液入口を有する動脈側端部と、血液出口を有する静脈側端部とを有し、前記血液入口に前記血液入口側流路が接続され、前記血液出口に前記血液出口側流路が接続されており、
     前記動脈側端部及び/又は前記静脈側端部に、補液入口をさらに有し、前記補液入口に前記動脈側補液供給流路及び/又は前記静脈側補液供給流路が接続されている、請求項1~6のいずれか一項に記載の血液浄化システム。
  8.  前記動脈側端部及び/又は前記静脈側端部に、前記体外循環血液と前記補液入口から流入する補液とを均一に混合するための混合手段をさらに有する、請求項7に記載の血液浄化システム。
  9.  前記血液浄化器は、血液入口を有する動脈側端部と、血液出口を有する静脈側端部とを有し、前記血液入口に前記血液入口側流路が接続され、前記血液出口に前記血液出口側流路が接続されており、
     前記動脈側端部及び/又は前記静脈側端部に、血液浄化の間に混入又は発生する気体を捕獲することができる所定容量をもつ内部空間を有する、請求項1~8のいずれか一項に記載の血液浄化システム。
  10.  前記液体供給流路、前記液体回収流路、前記動脈側補液供給流路、前記静脈側補液供給流路、前記血液入口側流路、及び前記血液出口側流路からなる群から選択される少なくとも1つが管状部材で構成されている、請求項1~9のいずれか一項に記載の血液浄化システム。
  11.  前記液体供給流路と前記液体回収流路とは、相互に接続可能である、請求項1~10のいずれか一項に記載の血液浄化システム。
  12.  前記動脈側補液供給流路と、前記静脈側補液供給流路とは、相互に接続可能である、請求項1~11のいずれか一項に記載の血液浄化システム。
  13.  前記動脈側補液供給流路又は前記静脈側補液供給流路のいずれか一方を閉止して、閉止されていない他方から前記血液入口側流路又は前記血液出口側流路へと血液回収用液体を流入させることにより、前記第一の空間内に残存する血液を回収可能な、
    請求項1~12のいずれか一項に記載の血液浄化システム。
  14.  前記液体供給流路において、
     前記動脈側補液供給流路と前記液体供給流路との分岐点が、前記静脈側補液供給流路と前記液体供給流路との分岐点より下流にある、請求項1~13のいずれか一項に記載の血液浄化システム。
  15.  前記液体供給流路において、
     前記動脈側補液供給流路と前記液体供給流路との分岐点が、前記静脈側補液供給流路と前記液体供給流路との分岐点より上流にある、請求項1~14のいずれか一項に記載の血液浄化システム。
  16.  請求項1~15のいずれか一項に記載の血液浄化システムの、プライミング方法であって、
     前記液体供給流路にプライミング液を流入させ、前記血液浄化器の前記第二の空間を通じて、前記液体回収流路から前記プライミング液を回収することと;
     前記液体供給流路を流れるプライミング液の一部を、前記静脈側補液供給流路に流入させ、前記血液浄化器の前記第一の空間、及び前記動脈側補液供給流路を通じて、前記液体供給流路に戻すことと、
    を有する、プライミング方法。
  17.  請求項1~15のいずれか一項に記載の血液浄化システムの、プライミング方法であって、
     前記液体供給流路にプライミング液を流入させ、前記血液浄化器の前記第二の空間を通じて、前記液体回収流路から前記プライミング液を回収することと;
     前記液体供給流路を流れるプライミング液の一部を、前記動脈側補液供給流路に流入させ、前記血液浄化器の前記第一の空間、及び前記静脈側補液供給流路を通じて、前記液体供給流路に戻すことと、
    を有する、プライミング方法。
  18.  請求項1~15のいずれか一項に記載の血液浄化システムの、プライミング方法であって、
     前記液体供給流路にプライミング液を流入させ、
    前記血液浄化器の前記第二の空間を通じて前記液体回収流路から前記プライミング液を回収することと;
     前記第二の空間を通るプライミング液の一部を、前記血液浄化膜を通過させて前記第一の空間へと流入させ、前記動脈側補液供給流路及び/又は前記静脈側補液供給流路を通じて、前記液体供給流路に戻すことと、
    を有する、プライミング方法。
  19.  請求項1~15のいずれか一項に記載の血液浄化システムの、プライミング方法であって、
     前記液体供給流路にプライミング液を流入させ、前記液体供給流路を流れる前記プライミング液の一部を、前記動脈側補液供給流路及び/又は前記静脈側補液供給流路を通じて、前記血液浄化器の前記第一の空間へと流入させることと;
     前記第一の空間を流れるプライミング液の一部を、前記血液浄化膜を通過させて前記第二の空間へと流入させ、前記液体回収流路から前記プライミング液を回収することと;
    を有する、プライミング方法。
PCT/JP2017/013770 2016-03-31 2017-03-31 血液浄化システム、及びそのプライミング方法 WO2017171064A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018509695A JP6646733B2 (ja) 2016-03-31 2017-03-31 血液浄化システム、及びそのプライミング方法
EP17775595.6A EP3437672B1 (en) 2016-03-31 2017-03-31 Blood purification system and method for priming of same
CN201780021135.8A CN109069723B (zh) 2016-03-31 2017-03-31 血液净化系统和其启动加注方法
CN202110689786.2A CN113304341B (zh) 2016-03-31 2017-03-31 血液净化系统和其启动加注方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016073642 2016-03-31
JP2016-073635 2016-03-31
JP2016-073642 2016-03-31
JP2016073635 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017171064A1 true WO2017171064A1 (ja) 2017-10-05

Family

ID=59966156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013770 WO2017171064A1 (ja) 2016-03-31 2017-03-31 血液浄化システム、及びそのプライミング方法

Country Status (4)

Country Link
EP (1) EP3437672B1 (ja)
JP (1) JP6646733B2 (ja)
CN (2) CN109069723B (ja)
WO (1) WO2017171064A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151034A (ja) * 2019-03-18 2020-09-24 株式会社ジェイ・エム・エス 透析装置及び回路セットの判定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111166953A (zh) * 2020-02-03 2020-05-19 深圳汉诺医疗科技有限公司 一种用于净化血液的体外循环系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010718A1 (en) * 2001-07-12 2003-01-16 Nxstage Medical, Inc. Hemodilution cap and methods of use in blood-processing procedures
US20100096311A1 (en) * 2004-10-28 2010-04-22 Nxstage Medical, Inc Blood treatment dialyzer/filter design to trap entrained air in a fluid circuit
US20100274172A1 (en) * 2009-04-23 2010-10-28 Fresenius Medical Care Deutschland Gmbh Method of removing blood from an extracorporeal blood circuit, treatment apparatus, and tube system
JP2011110098A (ja) * 2009-11-24 2011-06-09 Nikkiso Co Ltd 血液浄化装置
US20110208105A1 (en) * 2007-08-31 2011-08-25 Martin Brandl Method for detecting the ion concentrations of citrate anti-coagulated extracorporeal blood purification
US20140074008A1 (en) * 2011-03-21 2014-03-13 Gambro Lundia Ab Apparatus for extracorporeal blood treatment
EP2735325A1 (en) * 2012-11-21 2014-05-28 Monica Zanotti Extracorporeal blood treatment apparatus
WO2015152236A1 (ja) * 2014-03-31 2015-10-08 株式会社メテク 血液浄化装置及び血液浄化装置の補液・プライミング方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331252B1 (en) * 1998-07-31 2001-12-18 Baxter International Inc. Methods for priming a blood compartment of a hemodialyzer
US8029454B2 (en) * 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
CN100457203C (zh) * 2006-01-10 2009-02-04 赵滨宇 血液透析循环装置
JP5294985B2 (ja) * 2008-12-16 2013-09-18 日機装株式会社 血液浄化装置及びそのプライミング方法
JP5431199B2 (ja) * 2010-02-10 2014-03-05 日機装株式会社 血液浄化装置及びそのプライミング方法
JP5519427B2 (ja) * 2010-06-25 2014-06-11 ニプロ株式会社 血液透析装置
EP2745863B9 (en) * 2012-12-20 2017-08-30 Gambro Lundia AB An apparatus for extracorporeal blood treatment
CN105363085B (zh) * 2015-12-10 2018-05-22 威海威高血液净化制品有限公司 血液净化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030010718A1 (en) * 2001-07-12 2003-01-16 Nxstage Medical, Inc. Hemodilution cap and methods of use in blood-processing procedures
US20100096311A1 (en) * 2004-10-28 2010-04-22 Nxstage Medical, Inc Blood treatment dialyzer/filter design to trap entrained air in a fluid circuit
US20110208105A1 (en) * 2007-08-31 2011-08-25 Martin Brandl Method for detecting the ion concentrations of citrate anti-coagulated extracorporeal blood purification
US20100274172A1 (en) * 2009-04-23 2010-10-28 Fresenius Medical Care Deutschland Gmbh Method of removing blood from an extracorporeal blood circuit, treatment apparatus, and tube system
JP2011110098A (ja) * 2009-11-24 2011-06-09 Nikkiso Co Ltd 血液浄化装置
US20140074008A1 (en) * 2011-03-21 2014-03-13 Gambro Lundia Ab Apparatus for extracorporeal blood treatment
EP2735325A1 (en) * 2012-11-21 2014-05-28 Monica Zanotti Extracorporeal blood treatment apparatus
WO2015152236A1 (ja) * 2014-03-31 2015-10-08 株式会社メテク 血液浄化装置及び血液浄化装置の補液・プライミング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3437672A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151034A (ja) * 2019-03-18 2020-09-24 株式会社ジェイ・エム・エス 透析装置及び回路セットの判定方法
JP7293761B2 (ja) 2019-03-18 2023-06-20 株式会社ジェイ・エム・エス 透析装置及び回路セットの判定方法

Also Published As

Publication number Publication date
EP3437672A1 (en) 2019-02-06
CN109069723B (zh) 2021-09-17
CN113304341B (zh) 2024-05-14
JPWO2017171064A1 (ja) 2018-11-22
EP3437672A4 (en) 2019-03-27
JP6646733B2 (ja) 2020-02-14
CN113304341A (zh) 2021-08-27
EP3437672B1 (en) 2021-03-03
CN109069723A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
JP3792751B2 (ja) 代替液浄化可能な血液透析濾過装置
RU2289426C2 (ru) Способ и устройство для обеспечения стерильности для систем вливания жидкости
CA2812674C (en) Dialysis supply system
JP4091873B2 (ja) 透析装置
JP4267917B2 (ja) ダイアフィルトレーションモジュール
EP2142234B1 (en) Method and apparatus for priming an extracorporeal blood circuit
JP4094946B2 (ja) 滅菌輸液を生成するための方法および装置
WO2011162229A1 (ja) 血液透析装置
CA2668749C (en) An apparatus for extracorporeal blood treatment
JP2004000479A (ja) モジュラー型在宅透析システム
EP3731893B1 (en) Apparatus for extracorporeal blood treatment
JP6646733B2 (ja) 血液浄化システム、及びそのプライミング方法
US10821216B1 (en) Method and apparatus for a hemodiafiltration module for use with a dialysis machine
JP6953162B2 (ja) 血液浄化器
US20230128863A1 (en) Inline heater for a peritoneal dialysis system
JP5822152B2 (ja) 血液透析装置
WO2024190572A1 (ja) 血液浄化装置及び血液浄化システム
CN112755289B (zh) 血液净化装置和预充方法
JP2001276216A (ja) 血液透析濾過装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509695

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775595

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775595

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775595

Country of ref document: EP

Kind code of ref document: A1