WO2017170958A1 - Curable resin composition, dry film, cured product and printed wiring board - Google Patents

Curable resin composition, dry film, cured product and printed wiring board Download PDF

Info

Publication number
WO2017170958A1
WO2017170958A1 PCT/JP2017/013453 JP2017013453W WO2017170958A1 WO 2017170958 A1 WO2017170958 A1 WO 2017170958A1 JP 2017013453 W JP2017013453 W JP 2017013453W WO 2017170958 A1 WO2017170958 A1 WO 2017170958A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
group
cured product
resin
Prior art date
Application number
PCT/JP2017/013453
Other languages
French (fr)
Japanese (ja)
Inventor
千穂 植田
岡田 和也
信人 伊藤
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to CN201780018353.6A priority Critical patent/CN109073969B/en
Priority to KR1020187031079A priority patent/KR102369508B1/en
Priority to JP2018509482A priority patent/JP6967508B2/en
Publication of WO2017170958A1 publication Critical patent/WO2017170958A1/en
Priority to JP2021173393A priority patent/JP2022009428A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a curable resin composition, a dry film, a cured product, and a printed wiring board.
  • IC package instead of IC packages called QFP (Quad Flat Pack Package), SOP (Small Outline Package), etc., BGA (Ball Grid Array), CSP (Chip Scale Package), etc. IC package called is used.
  • FC-BGA Flexible Chip Ball Grid Array
  • FC-BGA Flexible Resist Opening
  • a printed wiring board also referred to as a package substrate
  • SRO solder Resist Opening
  • Patent Document 1 discloses that the crack resistance is improved by an elastomer.
  • an object of the present invention is to provide a curable resin composition capable of obtaining a cured product having excellent crack resistance when a high temperature load is applied, a dry film having a resin layer obtained from the composition, the composition or the dry composition. It is providing the hardened
  • Stress mainly consists of (1) stress generated by thermal linear expansion (CTE) difference between solder resist and peripheral members (copper, base material, etc.), and (2) gas generated by thermal history during packaging (solder resist And (3) stress (strain) generated by the crosslinking reaction in the solder resist due to the thermal history after mounting.
  • CTE thermal linear expansion
  • strain stress generated by the crosslinking reaction in the solder resist due to the thermal history after mounting.
  • a method of blending an elastomer or the like into a solder resist to relieve stress or a method of reducing the solder resist to a high glass transition temperature (Tg) and a low CTE is based on the stress generated in (1) above.
  • the behavior of the viscous component by DMA is a very important physical property for predicting the characteristics of a solder resist whose Tg is lower than the melting temperature of the solder.
  • the change behavior of Tan ⁇ obtained by DMA has an important meaning, and a material having a large maximum value of the Tan ⁇ peak (for example, a material having physical properties as shown in FIG. 1) depends on mounting electronic components. A material that is flexible and flexible for the purpose of relieving mechanical stress is considered to be suitable.
  • a material having a small maximum value of Tan ⁇ peak for example, a material having physical properties as shown in FIG. 2). Found that it is rigid and less temperature dependent so as not to lose stress.
  • the Tan ⁇ value of DMA is 0.15 or less, the viscosity component in the cured product is small. It is possible to suppress the reaction from proceeding in part or causing a change in physical properties due to sparse cross-linking structure due to molecular motion in the vicinity of Tg. That is, since there is little temperature dependence and there are few physical property changes before and after Tg, the stress which generate
  • the average particle diameter of the inorganic filler is set to a specific range, a specific reactive group is introduced into the inorganic filler, and the epoxy equivalent of the epoxy resin is within a specific value range. From the viewpoint that the cross-linking becomes dense, it has been found that it is effective for the stress (2).
  • the curable resin composition of the present invention comprises (A) an alkali-soluble resin, (B) a thermosetting component, (C) a compound having an ethylenically unsaturated group, (D) a photopolymerization initiator, and (E ) A resin composition containing a surface-treated inorganic filler, wherein the (E) surface-treated inorganic filler has an average particle size of 100 nm to 1 ⁇ m, and (A) the alkali-soluble resin, It has a reactive group capable of reacting with at least one of the (B) thermosetting component and the (C) compound having an ethylenically unsaturated group, and as the (B) thermosetting component, an epoxy equivalent of 300 g / eq.
  • the curable resin composition of the present invention has an epoxy equivalent of 300 g / eq.
  • the following epoxy resins preferably include (B-1) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower and (B-2) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower.
  • the compounding amount of the compound (C) having an ethylenically unsaturated group is preferably less than 20 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin.
  • the blending amount of the (E) surface-treated inorganic filler is preferably 35% by mass or more in the solid content of the curable resin composition.
  • the curable resin composition of the present invention has a storage elastic modulus of 150 ° C. when a dynamic viscoelasticity measurement is performed from 25 ° C. to 300 ° C. under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min. It is preferably 1 GPa or more and the change rate of the storage elastic modulus from 25 ° C. to 150 ° C. is within 70%.
  • CTE ⁇ 2 of the cured product is preferably 110 ppm or less.
  • the Tg of the cured product is preferably 160 ° C. or higher.
  • the curable resin composition of the present invention is preferably used for forming a solder resist.
  • the dry film of the present invention is characterized by having a resin layer obtained by applying the curable resin composition to the film and drying it.
  • the cured product of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
  • the printed wiring board of the present invention is characterized by having the cured product.
  • the curable resin composition which can obtain the hardened
  • the cured product of the resin layer and a printed wiring board having the cured product can be provided.
  • FIG. 1 is an image diagram showing storage elastic modulus, loss elastic modulus, and Tan ⁇ of a cured product having a large maximum value of Tan ⁇ peak.
  • FIG. 2 is an image diagram showing storage elastic modulus, loss elastic modulus, and Tan ⁇ of a cured product having a small maximum value of Tan ⁇ peak.
  • the curable resin composition of the present invention is such that the maximum value of Tan ⁇ of the cured product is 0.15 or less in the temperature range of 25 to 300 ° C. With such physical properties, the temperature of the cured film is low. Stable crack resistance can be obtained even when exposed to high temperatures.
  • the physical properties of the cured product such as Tan ⁇ are further provided with a high-pressure mercury lamp after irradiating the resin layer after drying the resin composition with ultraviolet rays at about 500 mJ / cm 2. It means physical properties of a cured product having a thickness of 40 ⁇ m obtained by irradiating with an exposure amount of 1 J / cm 2 in a UV conveyor furnace and then heating at 160 ° C.
  • the measured physical properties such as Tan ⁇ are based on a chart obtained by measuring from 25 ° C. to 300 ° C. under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min.
  • the loss elastic modulus (viscous component) is decreased, the storage elastic modulus (elastic component) is increased, or both are performed. In other words, the elastic component may be increased as much as possible in the cured product rather than the viscous component.
  • Means for setting the maximum value of Tan ⁇ to 0.15 or less is not particularly limited, but the average particle diameter is 100 nm to 1 ⁇ m, and (A) an alkali-soluble resin, (B) a thermosetting component, and (C) ethylene.
  • E When the average particle diameter of an inorganic filler is 1 micrometer or less, the surface area per volume is large and it can have many said reactive groups. On the other hand, when the average particle size is 100 nm or more, the shrinkage of the cured product is suppressed and the crack resistance is improved.
  • Epoxy equivalent is 300 g / eq. As a thermosetting component.
  • the number of cross-linking points with (A) alkali-soluble resin increases, so that the cross-linking density increases and unreacted (A) alkali-soluble resin and the like can be reduced.
  • the maximum value of Tan ⁇ is reduced, the cured product is less likely to undergo a sudden change in elastic modulus at a high temperature around 150 ° C., and crack resistance is further improved. Therefore, the above (E) inorganic filler and epoxy equivalent are 300 g / eq.
  • the maximum value of Tan ⁇ of the cured product becomes 0.15 or less in the range of 25 to 300 ° C., and stable crack resistance can be obtained. It is preferable that the maximum value of Tan ⁇ is 0.13 or less because crack resistance is further improved.
  • Tan ⁇ of the cured product can be reduced by reducing the blending amount of the compound (C) having an ethylenically unsaturated group.
  • the storage elastic modulus at 150 ° C. of the cured product of the curable resin composition of the present invention may be any value as long as the maximum value of Tan ⁇ of the cured product is 0.15 or less, but is 1 GPa or more. Is preferred. More preferably, it is 2 GPa or more.
  • the storage elastic modulus is 1 GPa or more, resistance of the cured product to the water vapor pressure inside the package is improved, and crack resistance and insulation reliability are improved. Conventionally, in order to obtain crack resistance at high temperatures, it has been preferred that the change in storage elastic modulus is large for stress absorption.
  • the rate of change in the storage elastic modulus is reduced to maintain the toughness even at high temperatures, thereby suppressing the generation of stress and the generation of cracks. It is.
  • the change rate of the storage elastic modulus is small, and the change rate of the storage elastic modulus at 25 ° C. to 150 ° C. is preferably within 70%. More preferably, it is within 65%.
  • the CTE ⁇ 2 of the cured product of the curable resin composition of the present invention is preferably 110 ppm or less, more preferably 100 ppm or less. As CTE ⁇ 2 is smaller, changes in physical properties can be reduced even at high temperatures.
  • the curable resin composition of the present invention preferably has a Tg (glass transition temperature) of 160 ° C. or higher. More preferably, it is 165 ° C. or higher. The higher the Tg, the less the change in physical properties at high temperatures.
  • (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
  • the alkali-soluble resin is, for example, a resin containing one or more alkali-soluble groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups, preferably a compound having two or more phenolic hydroxyl groups, a carboxyl group-containing resin. , A compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups.
  • (A) As the alkali-soluble resin a carboxyl group-containing resin or a phenolic hydroxyl group-containing resin can be used, but from the viewpoint of reactivity with (B) a thermosetting component and (E) an inorganic filler, a carboxyl group-containing resin. Is preferred.
  • the alkali-soluble resin having a smaller weight average molecular weight is preferred because the proportion of alkali-soluble groups in the alkali-soluble resin increases and the crosslink density of the cured product increases.
  • the alkali-soluble resin preferably has a weight average molecular weight of 10,000 or less in terms of polystyrene when measured by weight average molecular weight (Mw) gel permeation chromatography (GPC).
  • alkali-soluble resin has an ethylenically unsaturated group in a molecule
  • numerator other than a carboxyl group from a viewpoint of developability, photocurability, and developability.
  • carboxyl group-containing resin those derived from acrylic acid, methacrylic acid or derivatives thereof are preferable.
  • Specific examples of the carboxyl group-containing resin include compounds listed below (which may be either oligomers or polymers).
  • a difunctional or higher polyfunctional epoxy resin is reacted with (meth) acrylic acid, and the hydroxyl group present in the side chain is dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc.
  • the bifunctional or higher polyfunctional epoxy resin is preferably solid.
  • a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of a bifunctional epoxy resin with epichlorohydrin is reacted with (meth) acrylic acid, and a dibasic acid anhydride is added to the resulting hydroxyl group.
  • a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of a bifunctional epoxy resin with epichlorohydrin is reacted with (meth) acrylic acid, and a dibasic acid anhydride is added to the resulting hydroxyl group.
  • the bifunctional epoxy resin is preferably solid.
  • An epoxy compound having two or more epoxy groups in one molecule is combined with a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, and (meth) acrylic acid or the like.
  • the resulting reaction product has many alcoholic hydroxyl groups such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and adipic anhydride.
  • a carboxyl group-containing photosensitive resin obtained by reacting a basic acid anhydride.
  • An unsaturated group-containing monocarboxylic acid is reacted with a reaction product obtained by reacting a compound having two or more phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate.
  • a carboxyl group-containing photosensitive resin obtained by reacting the resulting reaction product with a polybasic acid anhydride.
  • Carboxy group-containing photosensitivity obtained by copolymerization of unsaturated carboxylic acid such as (meth) acrylic acid and unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene. resin.
  • unsaturated carboxylic acid such as (meth) acrylic acid
  • unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene. resin.
  • a carboxyl group obtained by reacting a difunctional acid such as adipic acid, phthalic acid or hexahydrophthalic acid with a polyfunctional oxetane resin as described later and adding a dibasic acid anhydride to the resulting primary hydroxyl group Contains polyester resin.
  • a carboxyl group-containing photosensitive resin obtained by adding a compound having a cyclic ether group and a (meth) acryloyl group in one molecule to the carboxyl group-containing resin such as (1) to (7) described above.
  • the main chain derived from a phenol resin or an epoxy resin is separated from the ethylenically unsaturated group of the side chain.
  • a chain extension structure so that a certain distance is generated between the main chain and the ethylenically unsaturated group.
  • Such a structure is preferable for improving the reactivity between side chain ethylenically unsaturated groups.
  • the carboxyl group-containing resin having a chain extension structure and an ethylenically unsaturated group for example, the carboxyl group-containing resins described in (3), (4), (5), and (8) are preferable.
  • the acid value of the alkali-soluble resin is preferably 40 to 150 mgKOH / g.
  • the acid value of the carboxyl group-containing resin is 40 mgKOH / g or more, alkali development is improved.
  • cured material pattern can be drawn easily by making an acid value into 150 mgKOH / g or less. More preferably, it is 50 to 130 mgKOH / g.
  • the blending amount of the alkali-soluble resin is, for example, 15 to 60% by mass, preferably 20 to 60% by mass, based on the total solid content of the composition excluding the solvent.
  • the content By setting the content to 15% by mass or more, preferably 20% by mass or more, the coating film strength can be improved. Further, when the content is 60% by mass or less, viscosity becomes appropriate and workability is improved. More preferably, it is 30 to 50% by mass.
  • the curable resin composition of the present invention has an epoxy equivalent of 300 g / eq.
  • the following epoxy resin is included, and 200 g / eq. Is more preferable from the viewpoint of improving the crosslink density and further improving the crack resistance. It is as follows.
  • Epoxy resin includes epoxidized vegetable oil; bisphenol A type epoxy resin; hydroquinone type epoxy resin; bisphenol type epoxy resin; thioether type epoxy resin; brominated epoxy resin; novolac type epoxy resin; biphenol novolac type epoxy resin; Resin; Hydrogenated bisphenol A type epoxy resin; Glycidylamine type epoxy resin; Hydantoin type epoxy resin; Alicyclic epoxy resin; Trihydroxyphenylmethane type epoxy resin; Alkylphenol type epoxy resin (for example, bixylenol type epoxy resin); Type epoxy resin; bisphenol S type epoxy resin; bisphenol A novolak type epoxy resin; tetraphenylolethane type epoxy resin; Diglycidyl phthalate resin; Tetraglycidyl xylenoyl ethane resin; Naphthalene group-containing epoxy resin; Epoxy resin having dicyclopentadiene skeleton; Triphenylmethane type epoxy resin; Epoxy resin having dicyclopentadiene skeleton; Tripheny
  • An epoxy resin can be used individually by 1 type or in combination of 2 or more types.
  • novolac type epoxy resins bisphenol type epoxy resins, bixylenol type epoxy resins, biphenol type epoxy resins, biphenol novolac type epoxy resins, naphthalene type epoxy resins, epoxy resins having a silsesquioxane skeleton, and triphenylmethane
  • At least one of the type epoxy resins is preferred.
  • Epoxy equivalent is 300 g / eq.
  • the following commercially available epoxy resins include EXP7241 (triphenylmethane type epoxy resin), HP6000 (epoxy resin having a naphthalene group), Epicron N-740 (phenol novolac type epoxy resin) manufactured by DIC, Nippon Steel & Sumikin Chemical Co., Ltd.
  • Examples include Epototo YDC-1312 (hydroquinone type epoxy resin) and YSLV-80XY (bisphenol F type epoxy resin).
  • thermosetting component contains two or more polyfunctional epoxy resins from the viewpoint of lowering Tan ⁇ .
  • polyfunctional means two or more functional groups.
  • the composition of the present invention preferably contains (B-1) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower as the (B) thermosetting component.
  • B-2) It is preferable to include a mixture with a bifunctional or higher functional epoxy resin having a softening point exceeding 40 ° C. (B-1) By including a bifunctional or higher functional epoxy resin with a softening point of 40 ° C.
  • (E) it is possible to achieve high filling of inorganic fillers, resulting in low CTE and low Tan ⁇ , and crack resistance in thermal cycle tests. Will improve.
  • (B-2) by including a bifunctional or higher functional epoxy resin having a softening point exceeding 40 ° C., the glass transition temperature (Tg) of the entire curable resin composition can be increased. As a result, heat resistance such as PCT resistance and reliability such as crack resistance in a thermal cycle test can be further improved.
  • the softening point means a value measured according to the method described in JIS K 7234.
  • the bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower may be a known resin, but is preferably liquid at room temperature, for example.
  • B-1 Commercially available bifunctional or higher functional epoxy resins having a softening point of 40 ° C.
  • the content of the (B-1) bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower is such that (B-1) the softening point is 40 ° C. or lower with respect to 1 equivalent of the alkali-soluble group of the alkali-soluble resin.
  • the epoxy group of the bifunctional or higher functional epoxy resin is preferably in the range of 0.2 to 1.8 equivalents.
  • the softening point of the bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower is preferably ⁇ 80 to 30 ° C., more preferably ⁇ 70 to 20 ° C.
  • B-2 Commercially available bifunctional or higher functional epoxy resins having a softening point exceeding 40 ° C. include, for example, ICTEP-S (softening point: 110 ° C.), TEPIC-H, N870, DIC manufactured by Nissan Chemical Co., Ltd.
  • HP-7200 softening point: 60 ° C
  • HP-4700 softening point: 90 ° C
  • HP-4710 softening point: 96 ° C
  • EXA-7241 softening point: 70 ° C
  • NC-3000L softening point: 52 ° C
  • NC-7000L softening point: 86 ° C
  • CER-3000L softening point: 93 ° C
  • EPPN-502H softening point: 67 ° C.
  • Epototo YSLV-80XY softening point: 80 ° C.
  • EPICLON-N660 softening point: 61 to 69 ° C.
  • YDC-1312 softening point: 140 ° C.
  • the softening point of a bifunctional or higher functional epoxy resin having a softening point exceeding 40 ° C. is preferably 50 ° C. or higher, and more preferably 60 ° C. or higher.
  • the upper limit of the softening point in the (B-2) bifunctional or higher functional epoxy resin having a softening point exceeding 40 ° C. is not particularly limited, but is about 400 ° C. or lower. It is preferable that it is 80 degrees C or less from a viewpoint of the workability at the time of forming into a dry film.
  • the blending ratio of (B-1) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or less and (B-2) an epoxy resin having a softening point of more than 40 ° C. is (B-1) the softening point is 40 ° C. or less.
  • Equivalent ratio of epoxy group (b-1) of bifunctional or higher epoxy resin to (B-2) epoxy group (b-2) of bifunctional or higher epoxy resin having a softening point exceeding 60 ° C. (b-1) : (B-2) is preferably 3: 7 to 9: 1, more preferably 4: 6 to 8: 2. When the ratio of the epoxy group (b-1) is 3 to 9, it is possible to achieve both low Tan ⁇ and high Tg.
  • Epoxy equivalent is 300 g / eq.
  • the following epoxy resin it is particularly preferable to include a trifunctional or higher functional epoxy resin from the viewpoint of increasing the crosslinking density among the epoxy resins.
  • the structure of the tri- or higher functional epoxy resin is not particularly limited as long as it is an epoxy resin having three or more epoxy groups. Among them, the epoxy equivalent is 200 g / eq. From the viewpoint of further increasing the crosslinking density.
  • the following trifunctional or higher epoxy resins are more preferable.
  • an epoxy resin having a silsesquioxane skeleton can be more suitably used as the thermosetting component.
  • the epoxy resin having a silsesquioxane skeleton is a silsesquioxane, that is, a network polymer or polyhedral cluster having a structure of (RSiO 1.5 ) n obtained by hydrolyzing a trifunctional silane.
  • Any compound having an epoxy group-containing group is not particularly limited. Each silicon of silsesquioxane is bonded with an average of 1.5 oxygen atoms and one hydrocarbon group.
  • the epoxy resin having a silsesquioxane skeleton preferably has a silsesquioxane skeleton represented by the following general formula (1).
  • R 1 to R 4 are each independently a group having a SiO bond or an organic group, and at least one of R 1 to R 4 is a group having an epoxy group
  • a group refers to a group containing a carbon atom.
  • the structure of the silsesquioxane is not particularly limited, and a silsesquioxane having a known and conventional structure such as a random structure, a ladder structure, a complete cage structure, or an incomplete cage structure can be used.
  • the group having an SiO bond that R 1 to R 4 can take is not particularly limited, a group having an SiO bond and an aliphatic skeleton, a group having an SiO bond and an aromatic skeleton, a group having an SiO bond and a hetero atom, and the like And is preferably within the range of the equivalent of the above thermosetting functional group (epoxy group).
  • the organic group containing a carbon atom that can be taken by R 1 to R 4 is not particularly limited, and examples thereof include an aliphatic group such as a methyl group, an aromatic group such as a phenyl group, and a group having a hetero atom.
  • the organic group is preferably an organic group having 1 to 30 carbon atoms, and is preferably within an equivalent range of the thermosetting functional group (epoxy group).
  • At least one of R 1 to R 4 is a group having an epoxy group, and the group having an epoxy group is not particularly limited as long as the group having SiO bond or the organic group has an epoxy group. .
  • thermosetting component is, for example, 1 to 100 parts by weight, preferably 10 to 80 parts by weight, and more preferably 20 to 60 parts by weight with respect to 100 parts by weight of the (A) alkali-soluble resin.
  • the curable resin composition of the present invention has an epoxy equivalent of 300 g / eq. Within the range not impairing the effects of the present invention.
  • epoxy resins such as melamine resin, benzoguanamine resin, melamine derivative, benzoguanamine derivative, isocyanate compound, block isocyanate compound, cyclocarbonate compound, epoxy equivalent is 300 g / eq.
  • Known compounds such as epoxy resins, oxetane compounds, episulfide resins, bismaleimides, carbodiimide resins, and the like can be used.
  • the compound having a plurality of cyclic (thio) ether groups in the molecule is a compound having a plurality of 3, 4 or 5-membered cyclic (thio) ether groups in the molecule.
  • a compound having a group that is, a polyfunctional epoxy compound, a compound having a plurality of oxetanyl groups in the molecule, that is, a polyfunctional oxetane compound, a compound having a plurality of thioether groups in the molecule, that is, a polyfunctional episulfide resin.
  • the curable resin composition of the present invention contains (C) a compound having an ethylenically unsaturated group.
  • a compound having an ethylenically unsaturated group a compound having one or more ethylenically unsaturated groups in the molecule is preferably used.
  • a photopolymerizable oligomer, a photopolymerizable vinyl monomer, or the like, which is a conventionally known compound having an ethylenically unsaturated group can be used.
  • the compound (C) having an ethylenically unsaturated group mentioned here does not include (A) an alkali-soluble resin having an ethylenically unsaturated group and (E) a surface-treated inorganic filler. .
  • Examples of the photopolymerizable oligomer include unsaturated polyester oligomers and (meth) acrylate oligomers.
  • Examples of (meth) acrylate oligomers include phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, epoxy (meth) acrylates such as bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, epoxy urethane (meta ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate, and the like.
  • photopolymerizable vinyl monomer known and commonly used monomers, for example, styrene derivatives such as styrene, chlorostyrene and ⁇ -methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl- vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide, Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide (Meth) acrylamides such as rilamide and N-butoxymethylacrylamide; allyl compounds such as triallyl isocyan
  • the compounding amount of the compound (C) having an ethylenically unsaturated group is preferably less than 20 parts by mass, more preferably 5 to 18 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin. More preferably, it is 10 to 15 parts by mass.
  • (C) By reducing the compounding quantity of the compound which has an ethylenically unsaturated group, the compound which has an unreacted ethylenically unsaturated group in hardened
  • photopolymerization initiator Any photopolymerization initiator may be used as long as it is a known photopolymerization initiator as a photopolymerization initiator or a photoradical generator.
  • photopolymerization initiator examples include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2, 6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6- Trimethylbenzoyl) -phenylphosphine oxide Bisacylphosphine oxides such as (IR
  • a photoinitiator may be used individually by 1 type and may be used in combination of 2 or more type.
  • monoacylphosphine oxides and oxime esters are preferable, and oxime esters having high sensitivity are most preferable.
  • the oxime esters preferably have one or more oxime ester groups.
  • ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]- , 1- (O-acetyloxime) is more preferred.
  • the blending amount of the photopolymerization initiator is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin.
  • the amount is 0.5 parts by mass or more, the surface curability is good, and when the amount is 20 parts by mass or less, halation hardly occurs and good resolution is obtained.
  • the curable resin composition of the present invention has an average particle size of 100 nm to 1 ⁇ m and (A) an alkali-soluble resin, (B) a thermosetting component, and (C) at least one compound having an ethylenically unsaturated group, Contains (E) a surface-treated inorganic filler having a reactive group capable of reacting.
  • the inorganic filler is not particularly limited, and known and commonly used fillers such as silica, crystalline silica, Neuburg silica, aluminum hydroxide, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, synthetic mica Inorganic fillers such as aluminum hydroxide, barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate and zinc white can be used.
  • silica is preferable, and since the surface area is small and stress is dispersed throughout, it is difficult to become a starting point of cracks, and from the viewpoint of excellent resolution, spherical silica is more preferable.
  • Examples of the reactive group of the (E) surface-treated inorganic filler include (meth) acryloyl group, vinyl group, cyclic (thio) ether group, acidic group, and basic group.
  • Examples of the cyclic (thio) ether group include an epoxy group, an oxetanyl group, and an episulfide group.
  • Examples of the acidic group include a carboxyl group, a phenolic hydroxyl group, an alcoholic hydroxyl group, a thiol group, a sulfone group, and a phosphate group.
  • Examples of the basic group include an amino group, an amide group, and an ammonium group.
  • the reactive group of the surface-treated inorganic filler is preferably any one of a (meth) acryloyl group, a vinyl group, and a cyclic (thio) ether group.
  • the reactive group of the surface-treated inorganic filler is a cyclic (thio) ether group, it is excellent in (A) reactivity with an alkali-soluble resin, and is a (meth) acryloyl group or vinyl group (A) ) Excellent reactivity with the ethylenically unsaturated group of the alkali-soluble resin.
  • the method for introducing the reactive group into the inorganic filler is not particularly limited, and may be introduced using a known and commonly used method.
  • the surface treatment agent having the reactive group for example, the coupling having the reactive group.
  • the surface of the inorganic filler may be treated with an agent or the like.
  • a surface treatment with a coupling agent is preferable.
  • a silane coupling agent a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Among these, a silane coupling agent is preferable.
  • silane coupling agent capable of introducing the reactive group into the inorganic filler examples include a silane coupling agent having a vinyl group, a silane coupling agent having a methacryl group, a silane coupling agent having an acrylic group, and an epoxy group.
  • examples of the silane coupling agent include a silane coupling agent and a carboxyl group-containing silane coupling agent, and among them, a silane coupling agent having at least one of a (meth) acryl group and a vinyl group is preferable.
  • the surface-treated inorganic filler should just be mix
  • a pre-dispersion liquid in which an inorganic filler is pre-dispersed in a solvent or a resin component is more preferable that the pre-dispersed liquid is blended in the composition after blending or sufficiently surface-treating when the surface-untreated inorganic filler is pre-dispersed in the solvent.
  • the average particle size of the surface-treated inorganic filler is preferably 100 to 800 nm, more preferably 100 to 700 nm, and even more preferably 200 to 700 nm.
  • the average particle diameter of the surface-treated inorganic filler is not only the particle diameter of the primary particles but also the average particle diameter including the particle diameter of the secondary particles (aggregates) (D50 ).
  • the average particle size can be determined by a laser diffraction particle size distribution measuring device. Examples of the measuring apparatus using the laser diffraction method include Nanotrac wave manufactured by Nikkiso Co., Ltd.
  • thermosetting catalyst The curable resin composition of the present invention preferably contains a thermosetting catalyst.
  • thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole.
  • Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine.
  • the blending amount of the thermosetting catalyst is preferably 0.05 to 20 parts by mass, more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the (B) thermosetting component.
  • the curable resin composition of the present invention can contain a curing agent.
  • the curing agent include phenol resins, polycarboxylic acids and acid anhydrides thereof, cyanate ester resins, active ester resins, maleimide compounds, and alicyclic olefin polymers.
  • curing agent can be used individually by 1 type or in combination of 2 or more types.
  • the curable resin composition of the present invention may contain a colorant.
  • a colorant known colorants such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable not to contain a halogen from the viewpoint of reducing the environmental burden and affecting the human body.
  • the addition amount of the colorant is not particularly limited, but is preferably 10 parts by mass or less, particularly preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin.
  • the curable resin composition of the present invention can contain an organic solvent for the purpose of preparing the composition and adjusting the viscosity when applied to a substrate or a carrier film.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether , Glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol
  • additives include thermal polymerization inhibitors, UV absorbers, silane coupling agents, plasticizers, flame retardants, antistatic agents, anti-aging agents, antibacterial / antifungal agents, antifoaming agents, leveling agents, thickening agents Agent, adhesion imparting agent, thixotropic agent, photoinitiator aid, sensitizer, thermoplastic resin, organic filler, mold release agent, surface treatment agent, dispersant, dispersion aid, surface modifier, stabilizer , Phosphor, AB type or ABA type block copolymer, and the like.
  • the curable resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more.
  • the dry film of the present invention has a resin layer obtained by applying and drying the curable resin composition of the present invention on a carrier film.
  • the curable resin composition of the present invention is diluted with the above organic solvent to adjust to an appropriate viscosity, and then a comma coater, a blade coater, a lip coater, a rod coater, and a squeeze coater. Apply a uniform thickness on the carrier film using a reverse coater, transfer roll coater, gravure coater, spray coater or the like. Thereafter, the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer.
  • the coating film thickness is not particularly limited, but in general, the film thickness after drying is appropriately selected in the range of 3 to 150 ⁇ m, preferably 5 to 60 ⁇ m.
  • a plastic film is used as the carrier film.
  • a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used.
  • the thickness of the carrier film is not particularly limited, but is generally appropriately selected within the range of 10 to 150 ⁇ m. More preferably, it is in the range of 15 to 130 ⁇ m.
  • the peelable cover film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper, or the like can be used.
  • a cover film what is necessary is just a thing smaller than the adhesive force of a resin layer and a carrier film when peeling a cover film.
  • the resin layer may be formed by applying and drying the curable resin composition of the present invention on the cover film, and a carrier film may be laminated on the surface. That is, as the film to which the curable resin composition of the present invention is applied when producing a dry film in the present invention, either a carrier film or a cover film may be used.
  • the printed wiring board of the present invention has a curable resin composition of the present invention or a cured product obtained from a resin layer of a dry film.
  • the curable resin composition of the present invention is adjusted to a viscosity suitable for a coating method using the organic solvent, and a dip coating method is performed on a substrate.
  • the organic solvent contained in the composition is volatilized and dried (temporary drying) at a temperature of 60 to 100 ° C.
  • a tack-free resin layer is formed.
  • a resin layer is formed on a base material by peeling a carrier film.
  • Examples of the base material include printed wiring boards and flexible printed wiring boards that have been previously formed with copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, glass cloth / paper epoxy.
  • PEN polyethylene naphthalate
  • Volatile drying performed after the application of the curable resin composition of the present invention is performed in a dryer using a hot air circulation drying furnace, an IR furnace, a hot plate, a convection oven or the like (equipped with a heat source of an air heating method using steam).
  • the method can be carried out using a method in which hot air is brought into countercurrent contact and a method in which the hot air is blown onto the support.
  • a resin layer on the printed wiring board After forming a resin layer on the printed wiring board, it is selectively exposed with active energy rays through a photomask having a predetermined pattern, and the unexposed portion is diluted with a dilute alkaline aqueous solution (for example, 0.3 to 3 mass% sodium carbonate aqueous solution). ) To form a cured product pattern. Further, the cured product is irradiated with active energy rays and then heat-cured (for example, 100 to 220 ° C.), irradiated with active energy rays after heat-curing, or is subjected to final finish curing (main curing) only by heat-curing. A cured film having excellent properties such as properties and hardness is formed.
  • a dilute alkaline aqueous solution for example, 0.3 to 3 mass% sodium carbonate aqueous solution.
  • the exposure apparatus used for the active energy ray irradiation may be any apparatus that irradiates ultraviolet rays in the range of 350 to 450 nm, equipped with a high-pressure mercury lamp lamp, an ultra-high pressure mercury lamp lamp, a metal halide lamp, a mercury short arc lamp, etc.
  • a direct drawing apparatus for example, a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer
  • the lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the exposure amount for image formation varies depending on the film thickness and the like, but can be generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
  • the developing method can be a dipping method, a shower method, a spray method, a brush method, etc., and as a developing solution, potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, Alkaline aqueous solutions such as ammonia and amines can be used.
  • the curable resin composition of the present invention is preferably used for forming a cured film on a printed wiring board, more preferably used for forming a permanent film, and more preferably a solder resist, Used to form interlayer insulation layers and coverlays. Further, it is suitable for forming a printed wiring board having a fine pitch wiring pattern which requires a high degree of reliability, such as a package substrate, particularly a permanent film (particularly a solder resist) for FC-BGA.
  • a cured product having excellent crack resistance when a high temperature load is applied can be obtained, which is suitable for applications exposed to high temperature conditions such as in-vehicle applications.
  • reaction solution was cooled to room temperature, and 1.56 parts of 89% phosphoric acid was added to and mixed with the reaction solution to neutralize potassium hydroxide.
  • the nonvolatile content was 62.1%, and the hydroxyl value was 182.2 mgKOH / g (307. 9 g / eq.) Of a novolak-type cresol resin propylene oxide reaction solution. This was an average of 1.08 mol of propylene oxide added per equivalent of phenolic hydroxyl group.
  • reaction solution was cooled to room temperature, neutralized with 35.35 parts of a 15% aqueous sodium hydroxide solution, and then washed with water. Thereafter, toluene was distilled off while substituting 118.1 parts of diethylene glycol monoethyl ether acetate with an evaporator to obtain a novolak acrylate resin solution.
  • 332.5 parts of the obtained novolak acrylate resin solution and 1.22 parts of triphenylphosphine were introduced into a reactor equipped with a stirrer, a thermometer and an air blowing tube, and air was supplied at a rate of 10 ml / min.
  • Examples 1 to 17, Comparative Examples 1 to 5 The above resin solution (varnish) was blended together with various components shown in Tables 1 to 3 in proportions (parts by mass) shown in Tables 1 to 3, premixed with a stirrer, and then kneaded with a three-roll mill, A curable resin composition was prepared.
  • the curable resin composition obtained as described above was diluted by adding 300 g of methyl ethyl ketone, and stirred for 15 minutes with a stirrer to obtain a coating solution.
  • the coating solution is applied onto a 38 ⁇ m thick polyethylene terephthalate film (Embret PTH-25 manufactured by Unitika Co., Ltd.) having an arithmetic surface roughness Ra of 150 nm, usually dried at a temperature of 80 ° C. for 15 minutes, and a photosensitive material having a thickness of 20 ⁇ m.
  • a functional resin layer was formed.
  • a 18 ⁇ m-thick polypropylene film (OPP-FOA manufactured by Futamura Co., Ltd.) was bonded onto the photosensitive resin layer to produce a photosensitive dry film.
  • the polyethylene film is peeled from the photosensitive dry film obtained as described above, and the photosensitive resin layer of the photosensitive dry film is bonded to the copper foil surface side.
  • a vacuum laminator (MVLP-500 manufactured by Meiki Seisakusho Co., Ltd.)
  • the substrate and the photosensitive resin layer were laminated by heating and laminating under conditions of pressure: 0.8 MPa, 70 ° C., 1 minute, and vacuum: 133.3 Pa. Adhered.
  • the photosensitive dry film is exposed (exposure amount: 400 to 600 mJ / cm 2 ), and then the polyethylene terephthalate film is peeled off from the photosensitive dry film.
  • the photosensitive resin layer was exposed. Thereafter, development was performed for 60 seconds under conditions of 30 ° C. and a spray pressure of 2 kg / cm 2 using a 1 wt% Na 2 CO 3 aqueous solution to form a resin layer having a predetermined resist pattern. Subsequently, the resin layer was irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, and then heated at 160 ° C. for 60 minutes to completely cure the resin layer to prepare a cured coating film.
  • a high-pressure mercury lamp short arc lamp
  • ⁇ Crack resistance (TCT resistance)> The surface of a circuit board (50 mm ⁇ 50 mm ⁇ 0.4 mmt) with a 250 ⁇ m bump pitch to be connected to C4 is chemically polished, the polyethylene film is peeled off from the photosensitive dry film obtained as described above, and the surface is polished. Next, the photosensitive resin layer of the photosensitive dry film was bonded to the surface on the other side, and subsequently, using a vacuum laminator (MVLP-500, manufactured by Meiki Seisakusho), the degree of pressure was 0.8 MPa, 70 ° C., 1 minute, Vacuum lamination was performed under the condition of 133.3 Pa, and the substrate and the photosensitive resin layer were brought into close contact with each other.
  • MVLP-500 vacuum laminator
  • a polyethylene terephthalate film is formed from the photosensitive dry film. It peeled and the photosensitive resin layer was exposed. Thereafter, development was performed for 60 seconds under conditions of 30 ° C. and a spray pressure of 2 kg / cm 2 using a 1 wt% Na 2 CO 3 aqueous solution to form a resin layer having a predetermined resist pattern.
  • the resin layer was irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, and then heated at 160 ° C. for 60 minutes to completely cure the resin layer to form a cured film.
  • a TST evaluation substrate provided with a cured coating thereon was produced.
  • heat treatment was performed at 125 ° C. for 24 hours as preconditioning, and humidification treatment was performed at 60 ° C. and humidity 60% for 48 hours, and reflow 260 ° C. was performed three times.
  • the obtained substrate was put into a thermal cycle machine in which a temperature cycle between ⁇ 65 ° C. and 175 ° C.
  • NC-3000L (biphenylene type epoxy resin, epoxy equivalent: 273 g / eq., Bifunctional, softening point: 52 ° C.) * 23: EXA-7241 manufactured by DIC (triphenylmethane type epoxy resin, epoxy equivalent: 168 g / eq., Trifunctional, softening point: 70 ° C.) * 24: EPICLON-N660 manufactured by DIC (cresol novolac type epoxy resin, epoxy equivalent: 210 g / eq., Bifunctional, softening point: 61 to 69 ° C.)

Abstract

Provided are: a curable resin composition which is capable of providing a cured product that exhibits excellent crack resistance when a high temperature load is applied thereto; and the like. A curable resin composition which contains (A) an alkali-soluble resin, (B) a thermosetting component, (C) a compound having an ethylenically unsaturated group, (D) a photopolymerization initiator and (E) a surface-treated inorganic filler, and which is characterized in that: the inorganic filler (E) has an average particle diameter of 100 nm to 1 μm, and comprises a reactive group that is able to react with at least one of the alkali-soluble resin (A), the thermosetting component (B) and the compound (C) having an ethylenically unsaturated group; an epoxy resin having an epoxy equivalent weight of 300 g/eq. or less is contained as the thermosetting component (B); and with respect to a cured product obtained from the resin composition and having a thickness of 40 μm, the maximum value of Tan δ as determined by dynamic viscoelasticity measurement performed at a frequency of 1 Hz at a heating rate of 5°C/min from 25°C to 300°C is 0.15 or less.

Description

硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板Curable resin composition, dry film, cured product and printed wiring board
 本発明は硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板に関する。 The present invention relates to a curable resin composition, a dry film, a cured product, and a printed wiring board.
 近年、半導体部品の急速な進歩により、電子機器は軽薄短小化、高性能化、多機能化される傾向にある。この傾向に追従して半導体パッケージの小型化、多ピン化が実用化されている。 In recent years, with the rapid progress of semiconductor components, electronic devices tend to be lighter, thinner, smaller, higher performance, and multifunctional. Following this trend, miniaturization and multi-pin semiconductor packages have been put into practical use.
 具体的には、QFP(クワッド・フラットパック・パッケージ)、SOP(スモール・アウトライン・パッケージ)等と呼ばれるICパッケージに代わって、BGA(ボール・グリッド・アレイ)、CSP(チップ・スケール・パッケージ)等と呼ばれるICパッケージが使用されている。また、近年では、さらに高密度化されたICパッケージとして、FC-BGA(フリップチップ・ボール・グリッド・アレイ)も実用化されている。このようなICパッケージに用いられるプリント配線板(パッケージ基板ともいう。)においては、SRO(Solder Resist Opening)ピッチが狭く、互いに近接して形成されるため、SRO間に形成されるソルダーレジストは、細く薄くなり、クラックが生じやすくなっている。 Specifically, instead of IC packages called QFP (Quad Flat Pack Package), SOP (Small Outline Package), etc., BGA (Ball Grid Array), CSP (Chip Scale Package), etc. IC package called is used. In recent years, FC-BGA (Flip Chip Ball Grid Array) has been put to practical use as an IC package with higher density. A printed wiring board (also referred to as a package substrate) used in such an IC package has a narrow SRO (Solder Resist Opening) pitch and is formed close to each other. It is thin and thin, and cracks are likely to occur.
 今後も、ソルダーレジストの薄膜化が進む反面、実装部品の発熱は増加する傾向にあるため、さらなる高温でのクラック耐性が必要となる。特に車載用途の部品は電流密度が高く、高温になりやすいことから、クラックが発生し易い環境における使用が前提となる。 In the future, the solder resist film will continue to become thinner, but the heat generated by the mounted components tends to increase. Therefore, crack resistance at higher temperatures is required. In particular, parts for in-vehicle use have a high current density and are likely to be high in temperature, and therefore are assumed to be used in an environment where cracks are likely to occur.
 従来、クラック耐性を向上させる方法としては、例えば、酸変性ビニル基含有エポキシ樹脂、エラストマー、光重合開始剤、希釈剤および硬化剤を含む光硬化性樹脂組成物が開示さている(例えば特許文献1)。この特許文献1には、エラストマーによりクラック耐性が向上することが開示されている。 Conventionally, as a method for improving crack resistance, for example, a photocurable resin composition containing an acid-modified vinyl group-containing epoxy resin, an elastomer, a photopolymerization initiator, a diluent and a curing agent has been disclosed (for example, Patent Document 1). ). Patent Document 1 discloses that the crack resistance is improved by an elastomer.
 しかしながら、上記のような手段だけでは、今後更なる高温状態でのクラック耐性が要求された場合に、満足できる結果を得ることができなかった。 However, with the above means alone, satisfactory results could not be obtained when further resistance to cracking was required in the future.
特開平11-240930号公報Japanese Patent Laid-Open No. 11-240930
 そこで本発明の目的は、高温負荷がかかる時のクラック耐性に優れた硬化物を得ることができる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有するプリント配線板を提供することにある。 Accordingly, an object of the present invention is to provide a curable resin composition capable of obtaining a cured product having excellent crack resistance when a high temperature load is applied, a dry film having a resin layer obtained from the composition, the composition or the dry composition. It is providing the hardened | cured material of the resin layer of a film, and the printed wiring board which has this hardened | cured material.
 ICパッケージに使用されるソルダーレジストには様々な応力が加わり、これら応力が蓄積されることにより、耐えきれなくなった応力がクラックとして解放される。
 応力は主に、(1)ソルダーレジストと周辺部材(銅、基材等)との熱線膨張(CTE)差により発生する応力、(2)パッケージングする際の熱履歴により発生するガス(ソルダーレジストおよび、基材から発生するガス、水分)による応力、(3)実装された後の熱履歴によるソルダーレジスト内での架橋反応により発生する応力(歪み)がある。従来、クラックを抑えるために、エラストマー等をソルダーレジストに配合して、応力緩和させる手法や、ソルダーレジストを高ガラス転移温度(Tg)、低CTE化する手法は、上記(1)の発生応力に対して効果があった。
 しかしながら、近年、車載用途のICパッケージは高温環境下に曝されるため、(2)や(3)による応力が温度環境、熱履歴、使用部材による影響により大きくなり、しかも、その応力は無限であることから単純な応力緩和および高Tg、低CTEを狙ったものでは、発生応力を防ぎきれなくなる場合がある。
 そこで、発明者らは、そもそも、熱により、熱膨張率、弾性率が変化するソルダーレジストに対して、硬化後の熱膨張率を低くするという手段以外に、硬化後、Tg以上で弾性率が低下する特性に関して、変位速度に比例する力(粘性)を考慮したDMAの粘弾性評価が必要であることに気付いた。このDMAによる粘性成分の挙動は、Tgがはんだの溶融温度よりも低いソルダーレジストの特性を予測するためには非常に重要な物性となる。
 特に、DMAで得られるTanδの変化挙動は重要な意味を持っており、Tanδのピークの極大値が大きな材料(例えば図1に示すような物性を有する材料)は、電子部品を搭載することによる機械的なストレスを緩和する目的で柔軟でしなやかさが要求される部材に適していると考えられ、一方、Tanδのピークの極大値が小さな材料(例えば図2に示すような物性を有する材料)は、ストレスに負けないように剛直で温度依存性の少ないということを見出した。
 そして、今後のICパッケージには後者手法も考慮する必要があり、すなわち、DMAのTanδの数値が0.15以下であれば硬化物中の粘性成分が少ないため、粘性成分が熱履歴により、架橋反応が一部で進行したり、Tg付近で分子運動により架橋構造が疎になり物性変化を生じることを抑制することができる。つまり、温度依存性が少なく、Tg前後での物性変化が少ないため、高温熱履歴による物性変化により発生する応力を低減することができる。従って、DMAのTanδの数値が0.15以下であれば上記(1)の応力だけでなく、(3)の応力抑制にも有効となる。
 そして、硬化物のTanδを小さくするために、無機充填剤の平均粒径を特定の範囲とし、さらに無機充填剤に特定の反応性基を導入し、エポキシ樹脂のエポキシ当量を特定値以下の範囲とすることで架橋が密になる観点から(2)の応力に有効であることを見出した。
Various stresses are applied to the solder resist used in the IC package, and by accumulating these stresses, the stress that cannot be withstood is released as cracks.
Stress mainly consists of (1) stress generated by thermal linear expansion (CTE) difference between solder resist and peripheral members (copper, base material, etc.), and (2) gas generated by thermal history during packaging (solder resist And (3) stress (strain) generated by the crosslinking reaction in the solder resist due to the thermal history after mounting. Conventionally, in order to suppress cracks, a method of blending an elastomer or the like into a solder resist to relieve stress, or a method of reducing the solder resist to a high glass transition temperature (Tg) and a low CTE is based on the stress generated in (1) above. It was effective against this.
However, in recent years, IC packages for in-vehicle use are exposed to a high temperature environment, and the stress due to (2) and (3) becomes larger due to the influence of the temperature environment, thermal history, and materials used, and the stress is infinite. For this reason, there is a case where the generated stress cannot be prevented by simple stress relaxation, high Tg, and low CTE.
Therefore, the inventors originally had a modulus of elasticity at Tg or higher after curing, in addition to the means of lowering the thermal expansion coefficient after curing, with respect to the solder resist whose thermal expansion coefficient and elastic modulus change due to heat. Regarding the characteristics to be lowered, it was found that DMA viscoelasticity evaluation considering the force (viscosity) proportional to the displacement speed is necessary. The behavior of the viscous component by DMA is a very important physical property for predicting the characteristics of a solder resist whose Tg is lower than the melting temperature of the solder.
In particular, the change behavior of Tan δ obtained by DMA has an important meaning, and a material having a large maximum value of the Tan δ peak (for example, a material having physical properties as shown in FIG. 1) depends on mounting electronic components. A material that is flexible and flexible for the purpose of relieving mechanical stress is considered to be suitable. On the other hand, a material having a small maximum value of Tanδ peak (for example, a material having physical properties as shown in FIG. 2). Found that it is rigid and less temperature dependent so as not to lose stress.
In the future IC package, it is necessary to consider the latter method, that is, if the Tan δ value of DMA is 0.15 or less, the viscosity component in the cured product is small. It is possible to suppress the reaction from proceeding in part or causing a change in physical properties due to sparse cross-linking structure due to molecular motion in the vicinity of Tg. That is, since there is little temperature dependence and there are few physical property changes before and after Tg, the stress which generate | occur | produces by the physical property change by a high temperature heat history can be reduced. Therefore, if the value of Tan δ of DMA is 0.15 or less, it is effective not only for the stress of (1) above but also for the stress suppression of (3).
In order to reduce Tan δ of the cured product, the average particle diameter of the inorganic filler is set to a specific range, a specific reactive group is introduced into the inorganic filler, and the epoxy equivalent of the epoxy resin is within a specific value range. From the viewpoint that the cross-linking becomes dense, it has been found that it is effective for the stress (2).
 即ち、本発明の硬化性樹脂組成物は、(A)アルカリ可溶性樹脂、(B)熱硬化成分、(C)エチレン性不飽和基を有する化合物、(D)光重合開始剤、および、(E)表面処理された無機充填剤を含有する樹脂組成物であって、前記(E)表面処理された無機充填剤は、平均粒径100nm~1μmであり、且つ、前記(A)アルカリ可溶性樹脂、前記(B)熱硬化成分および前記(C)エチレン性不飽和基を有する化合物の少なくともいずれか1種と反応可能な反応性基を有し、前記(B)熱硬化成分として、エポキシ当量300g/eq.以下のエポキシ樹脂を含み、前記樹脂組成物から得られる厚さ40μmの硬化物において、周波数1Hz、昇温速度5℃/minの条件下で25℃~300℃まで動的粘弾性測定した場合におけるTanδの最大値が0.15以下であることを特徴とするものである。 That is, the curable resin composition of the present invention comprises (A) an alkali-soluble resin, (B) a thermosetting component, (C) a compound having an ethylenically unsaturated group, (D) a photopolymerization initiator, and (E ) A resin composition containing a surface-treated inorganic filler, wherein the (E) surface-treated inorganic filler has an average particle size of 100 nm to 1 μm, and (A) the alkali-soluble resin, It has a reactive group capable of reacting with at least one of the (B) thermosetting component and the (C) compound having an ethylenically unsaturated group, and as the (B) thermosetting component, an epoxy equivalent of 300 g / eq. In the case of a dynamic viscoelasticity measurement from 25 ° C. to 300 ° C. under a condition of a frequency of 1 Hz and a temperature rising rate of 5 ° C./min in a cured product having a thickness of 40 μm obtained from the resin composition, including the following epoxy resin The maximum value of Tan δ is 0.15 or less.
 本発明の硬化性樹脂組成物は、前記エポキシ当量300g/eq.以下のエポキシ樹脂として、(B-1)軟化点40℃以下の2官能以上のエポキシ樹脂と(B-2)軟化点40℃を超える2官能以上のエポキシ樹脂を含むことが好ましい。 The curable resin composition of the present invention has an epoxy equivalent of 300 g / eq. The following epoxy resins preferably include (B-1) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower and (B-2) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower.
 本発明の硬化性樹脂組成物は、前記(C)エチレン性不飽和基を有する化合物の配合量が、前記(A)アルカリ可溶性樹脂100質量部に対し20質量部未満であることが好ましい。 In the curable resin composition of the present invention, the compounding amount of the compound (C) having an ethylenically unsaturated group is preferably less than 20 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin.
 本発明の硬化性樹脂組成物は、前記(E)表面処理された無機充填剤の配合量が、硬化性樹脂組成物の固形分中で35質量%以上であることが好ましい。 In the curable resin composition of the present invention, the blending amount of the (E) surface-treated inorganic filler is preferably 35% by mass or more in the solid content of the curable resin composition.
 本発明の硬化性樹脂組成物は、前記硬化物の周波数1Hz、昇温速度5℃/minの条件下で25℃~300℃まで動的粘弾性測定した場合における、150℃の貯蔵弾性率が1GPa以上であり、且つ、25℃~150℃までの貯蔵弾性率の変化率が70%以内であることが好ましい。 The curable resin composition of the present invention has a storage elastic modulus of 150 ° C. when a dynamic viscoelasticity measurement is performed from 25 ° C. to 300 ° C. under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min. It is preferably 1 GPa or more and the change rate of the storage elastic modulus from 25 ° C. to 150 ° C. is within 70%.
 本発明の硬化性樹脂組成物は、前記硬化物のCTEα2が110ppm以下であることが好ましい。 In the curable resin composition of the present invention, CTEα2 of the cured product is preferably 110 ppm or less.
 本発明の硬化性樹脂組成物は、前記硬化物のTgが160℃以上であることが好ましい。 In the curable resin composition of the present invention, the Tg of the cured product is preferably 160 ° C. or higher.
 本発明の硬化性樹脂組成物は、ソルダーレジスト形成用であることが好ましい。 The curable resin composition of the present invention is preferably used for forming a solder resist.
 本発明のドライフィルムは、前記硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするものである。 The dry film of the present invention is characterized by having a resin layer obtained by applying the curable resin composition to the film and drying it.
 本発明の硬化物は、前記硬化性樹脂組成物、または、前記ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。 The cured product of the present invention is obtained by curing the curable resin composition or the resin layer of the dry film.
 本発明のプリント配線板は、前記硬化物を有することを特徴とするものである。 The printed wiring board of the present invention is characterized by having the cured product.
 本発明によれば、高温負荷がかかる時のクラック耐性に優れた硬化物を得ることができる硬化性樹脂組成物、該組成物から得られる樹脂層を有するドライフィルム、該組成物または該ドライフィルムの樹脂層の硬化物、および、該硬化物を有するプリント配線板を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the curable resin composition which can obtain the hardened | cured material excellent in the crack tolerance when high temperature load is applied, the dry film which has a resin layer obtained from this composition, this composition, or this dry film The cured product of the resin layer and a printed wiring board having the cured product can be provided.
図1は、Tanδのピークの極大値が大きな硬化物の貯蔵弾性率、損失弾性率、および、Tanδを示すイメージ図である。FIG. 1 is an image diagram showing storage elastic modulus, loss elastic modulus, and Tan δ of a cured product having a large maximum value of Tan δ peak. 図2は、Tanδのピークの極大値が小さな硬化物の貯蔵弾性率、損失弾性率、および、Tanδを示すイメージ図である。FIG. 2 is an image diagram showing storage elastic modulus, loss elastic modulus, and Tanδ of a cured product having a small maximum value of Tanδ peak.
 本発明の硬化性樹脂組成物は、25~300℃の温度範囲で硬化物のTanδの最大値が0.15以下となるものであり、このような物性であれば、硬化膜の温度が低温から高温まで曝されても安定したクラック耐性を得ることができる。
 尚、本明細書において、Tanδ等の硬化物の物性は、特に断りが無い限り、樹脂組成物の乾燥後の樹脂層に対し、約500mJ/cmで紫外線を照射後、さらに高圧水銀灯を備えたUVコンベア炉にて1J/cmの露光量で照射した後、160℃で60分加熱して樹脂層を完全硬化させて得られる厚さ40μmの硬化物の物性を意味する。また、紫外線とは波長が10~400nmの電磁波である。Tanδは、動的粘弾性測定で測定した損失弾性率を貯蔵弾性率で除した値、即ち、損失正接(=損失弾性率/貯蔵弾性率)であり、本明細書において動的粘弾性測定で測定されるTanδ等の物性は、周波数1Hz、昇温速度5℃/minの条件下で25℃~300℃まで測定して得られるチャート図に基づくものである。
The curable resin composition of the present invention is such that the maximum value of Tan δ of the cured product is 0.15 or less in the temperature range of 25 to 300 ° C. With such physical properties, the temperature of the cured film is low. Stable crack resistance can be obtained even when exposed to high temperatures.
In the present specification, unless otherwise specified, the physical properties of the cured product such as Tan δ are further provided with a high-pressure mercury lamp after irradiating the resin layer after drying the resin composition with ultraviolet rays at about 500 mJ / cm 2. It means physical properties of a cured product having a thickness of 40 μm obtained by irradiating with an exposure amount of 1 J / cm 2 in a UV conveyor furnace and then heating at 160 ° C. for 60 minutes to completely cure the resin layer. Ultraviolet rays are electromagnetic waves having a wavelength of 10 to 400 nm. Tan δ is a value obtained by dividing the loss elastic modulus measured by dynamic viscoelasticity measurement by the storage elastic modulus, that is, loss tangent (= loss elastic modulus / storage elastic modulus). The measured physical properties such as Tan δ are based on a chart obtained by measuring from 25 ° C. to 300 ° C. under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min.
 Tanδ(=損失弾性率/貯蔵弾性率)が小さい硬化物を得るためには、損失弾性率(粘性成分)を低下させるか、貯蔵弾性率(弾性成分)を増加させるか、その両方を行えばよく、言い換えると、硬化物中で粘性成分よりも弾性成分をできる限り多くすればよい。
 Tanδの最大値を0.15以下とするための手段は特に限定されないが、平均粒径が100nm~1μmであり、且つ、(A)アルカリ可溶性樹脂、(B)熱硬化成分および(C)エチレン性不飽和基を有する化合物の少なくともいずれか1種と反応可能な反応性基を有する表面処理された無機充填剤を使用し、かつ、(B)熱硬化成分としてエポキシ当量300g/eq.以下のエポキシ樹脂を使用することが効果的である。
 (E)無機充填剤の平均粒径が1μm以下であると、体積当たりの表面積が大きく、前記反応性基を多く有することができる。一方、平均粒径が100nm以上であると、硬化物の収縮を抑えてクラック耐性が向上する。
 また、(B)熱硬化成分としてエポキシ当量が300g/eq.以下のエポキシ樹脂を含むことにより、(A)アルカリ可溶性樹脂との架橋点が多くなるため、架橋密度が上がり、また、未反応の(A)アルカリ可溶性樹脂等を低減することができる。このことから、Tanδの最大値が小さくなり、硬化物が150℃付近の高温時に急激な弾性率変化しにくくなり、クラック耐性がより向上する。
 したがって、上記のような(E)無機充填剤とエポキシ当量が300g/eq.以下のエポキシ樹脂を含む組成物を硬化することにより、25~300℃の範囲で硬化物のTanδの最大値が0.15以下となり、安定したクラック耐性を得ることができる。Tanδの最大値が0.13以下であると、クラック耐性がさらに向上するので好ましい。
In order to obtain a cured product having a small Tan δ (= loss elastic modulus / storage elastic modulus), the loss elastic modulus (viscous component) is decreased, the storage elastic modulus (elastic component) is increased, or both are performed. In other words, the elastic component may be increased as much as possible in the cured product rather than the viscous component.
Means for setting the maximum value of Tanδ to 0.15 or less is not particularly limited, but the average particle diameter is 100 nm to 1 μm, and (A) an alkali-soluble resin, (B) a thermosetting component, and (C) ethylene. A surface-treated inorganic filler having a reactive group capable of reacting with at least one compound having a polymerizable unsaturated group, and (B) an epoxy equivalent of 300 g / eq. It is effective to use the following epoxy resin.
(E) When the average particle diameter of an inorganic filler is 1 micrometer or less, the surface area per volume is large and it can have many said reactive groups. On the other hand, when the average particle size is 100 nm or more, the shrinkage of the cured product is suppressed and the crack resistance is improved.
Moreover, (B) Epoxy equivalent is 300 g / eq. As a thermosetting component. By including the following epoxy resin, the number of cross-linking points with (A) alkali-soluble resin increases, so that the cross-linking density increases and unreacted (A) alkali-soluble resin and the like can be reduced. For this reason, the maximum value of Tan δ is reduced, the cured product is less likely to undergo a sudden change in elastic modulus at a high temperature around 150 ° C., and crack resistance is further improved.
Therefore, the above (E) inorganic filler and epoxy equivalent are 300 g / eq. By curing a composition containing the following epoxy resin, the maximum value of Tan δ of the cured product becomes 0.15 or less in the range of 25 to 300 ° C., and stable crack resistance can be obtained. It is preferable that the maximum value of Tan δ is 0.13 or less because crack resistance is further improved.
 また、後述するように、(C)エチレン性不飽和基を有する化合物の配合量を少量にしたりすることによっても、硬化物のTanδを小さくすることができる。 Also, as will be described later, Tanδ of the cured product can be reduced by reducing the blending amount of the compound (C) having an ethylenically unsaturated group.
 硬化物のTanδの最大値が大きい場合、硬化物が高温に曝されると硬化物中の粘性成分が動きやすく物性が大きく変化するが、Tanδの最大値が0.15以下の硬化物であれば、硬化物のTgに近い高温状態となったとしても粘性成分がほとんど動かずに物性変化が小さく、クラックの発生が抑えられる。 When the maximum value of Tan δ of the cured product is large, when the cured product is exposed to a high temperature, the viscosity component in the cured product easily moves and the physical properties change greatly. However, if the maximum value of Tan δ is 0.15 or less, For example, even when a high temperature state close to the Tg of the cured product is reached, the viscosity component hardly moves and the physical property change is small, and the occurrence of cracks can be suppressed.
 また、本発明の硬化性樹脂組成物の硬化物の150℃における貯蔵弾性率は、硬化物のTanδの最大値が0.15以下となればどのような値でもよいが、1GPa以上であることが好ましい。より好ましくは、2GPa以上である。貯蔵弾性率が1GPa以上であると、パッケージ内部の水蒸気圧力に対する硬化物の耐性が向上し、クラック耐性や絶縁信頼性が向上する。
 また、従来は高温時のクラック耐性を得るためには応力吸収のために貯蔵弾性率の変化が大きいことが好ましいとされていた。
 しかしながら、本発明の硬化性樹脂組成物おいては逆に貯蔵弾性率の変化率を小さくして高温時でも強靭性を維持させて、応力の発生を抑制しクラックの発生を抑えようとするものである。
 本発明においては、貯蔵弾性率の変化率が小さい方が好ましく、25℃~150℃における貯蔵弾性率の変化率が70%以内であることが好ましい。より好ましくは65%以内である。
Further, the storage elastic modulus at 150 ° C. of the cured product of the curable resin composition of the present invention may be any value as long as the maximum value of Tan δ of the cured product is 0.15 or less, but is 1 GPa or more. Is preferred. More preferably, it is 2 GPa or more. When the storage elastic modulus is 1 GPa or more, resistance of the cured product to the water vapor pressure inside the package is improved, and crack resistance and insulation reliability are improved.
Conventionally, in order to obtain crack resistance at high temperatures, it has been preferred that the change in storage elastic modulus is large for stress absorption.
However, in the curable resin composition of the present invention, conversely, the rate of change in the storage elastic modulus is reduced to maintain the toughness even at high temperatures, thereby suppressing the generation of stress and the generation of cracks. It is.
In the present invention, it is preferable that the change rate of the storage elastic modulus is small, and the change rate of the storage elastic modulus at 25 ° C. to 150 ° C. is preferably within 70%. More preferably, it is within 65%.
 本発明の硬化性樹脂組成物の硬化物のCTEα2が110ppm以下であることが好ましく、より好ましくは100ppm以下である。CTEα2が小さいほど、高温でも物性変化を少なくすることができる。 The CTEα2 of the cured product of the curable resin composition of the present invention is preferably 110 ppm or less, more preferably 100 ppm or less. As CTEα2 is smaller, changes in physical properties can be reduced even at high temperatures.
 本発明の硬化性樹脂組成物は、Tg(ガラス転移温度)が160℃以上であることが好ましい。より好ましくは165℃以上である。Tgが高いほど、高温での物性変化を少なくすることができる。 The curable resin composition of the present invention preferably has a Tg (glass transition temperature) of 160 ° C. or higher. More preferably, it is 165 ° C. or higher. The higher the Tg, the less the change in physical properties at high temperatures.
 以下に、本発明の硬化性樹脂組成物の各成分について説明する。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語であり、他の類似の表現についても同様である。 Hereinafter, each component of the curable resin composition of the present invention will be described. In addition, in this specification, (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
[(A)アルカリ可溶性樹脂]
 (A)アルカリ可溶性樹脂は、例えばフェノール性水酸基、チオール基およびカルボキシル基のうち1種以上のアルカリ可溶性基を含有する樹脂であり、好ましくはフェノール性水酸基を2個以上有する化合物、カルボキシル基含有樹脂、フェノール性水酸基およびカルボキシル基を有する化合物、チオール基を2個以上有する化合物が挙げられる。(A)アルカリ可溶性樹脂としては、カルボキシル基含有樹脂やフェノール系水酸基含有樹脂を用いることができるが、(B)熱硬化成分および(E)無機充填剤との反応性の観点からカルボキシル基含有樹脂が好ましい。
[(A) Alkali-soluble resin]
(A) The alkali-soluble resin is, for example, a resin containing one or more alkali-soluble groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups, preferably a compound having two or more phenolic hydroxyl groups, a carboxyl group-containing resin. , A compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups. (A) As the alkali-soluble resin, a carboxyl group-containing resin or a phenolic hydroxyl group-containing resin can be used, but from the viewpoint of reactivity with (B) a thermosetting component and (E) an inorganic filler, a carboxyl group-containing resin. Is preferred.
 また、(A)アルカリ可溶性樹脂は重量平均分子量が小さい方が、アルカリ可溶性樹脂のアルカリ可溶性基の割合が増加し、硬化物の架橋密度が増加するため好ましい。(A)アルカリ可溶性樹脂は重量平均分子量は、重量平均分子量(Mw)ゲル・パーミエーション・クロマトグラフィー(GPC)で測定した場合のポリスチレン換算で、10,000以下であることが好ましい。 (A) The alkali-soluble resin having a smaller weight average molecular weight is preferred because the proportion of alkali-soluble groups in the alkali-soluble resin increases and the crosslink density of the cured product increases. (A) The alkali-soluble resin preferably has a weight average molecular weight of 10,000 or less in terms of polystyrene when measured by weight average molecular weight (Mw) gel permeation chromatography (GPC).
 (A)アルカリ可溶性樹脂は、現像性、光硬化性、耐現像性の観点から、カルボキシル基の他に、分子内にエチレン性不飽和基を有することが好ましい。なお、エチレン性不飽和基を有さないカルボキシル基含有樹脂のみを使用してもよい。エチレン性不飽和基としては、アクリル酸もしくはメタアクリル酸またはそれらの誘導体由来のものが好ましい。
 カルボキシル基含有樹脂の具体例としては、以下に列挙するような化合物(オリゴマーまたはポリマーのいずれでもよい)が挙げられる。
(A) It is preferable that alkali-soluble resin has an ethylenically unsaturated group in a molecule | numerator other than a carboxyl group from a viewpoint of developability, photocurability, and developability. In addition, you may use only carboxyl group-containing resin which does not have an ethylenically unsaturated group. As the ethylenically unsaturated group, those derived from acrylic acid, methacrylic acid or derivatives thereof are preferable.
Specific examples of the carboxyl group-containing resin include compounds listed below (which may be either oligomers or polymers).
(1)2官能またはそれ以上の多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。ここで、2官能またはそれ以上の多官能エポキシ樹脂は固形であることが好ましい。 (1) A difunctional or higher polyfunctional epoxy resin is reacted with (meth) acrylic acid, and the hydroxyl group present in the side chain is dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc. A carboxyl group-containing photosensitive resin to which is added. Here, the bifunctional or higher polyfunctional epoxy resin is preferably solid.
(2)2官能エポキシ樹脂の水酸基を、さらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に、(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。ここで、2官能エポキシ樹脂は固形であることが好ましい。 (2) A carboxyl group in which a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of a bifunctional epoxy resin with epichlorohydrin is reacted with (meth) acrylic acid, and a dibasic acid anhydride is added to the resulting hydroxyl group. Contains photosensitive resin. Here, the bifunctional epoxy resin is preferably solid.
(3)1分子中に2個以上のエポキシ基を有するエポキシ化合物に、1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (3) An epoxy compound having two or more epoxy groups in one molecule is combined with a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, and (meth) acrylic acid or the like. Reaction with a saturated carboxylic acid containing monocarboxylic acid, the resulting reaction product has many alcoholic hydroxyl groups such as maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and adipic anhydride. A carboxyl group-containing photosensitive resin obtained by reacting a basic acid anhydride.
(4)ビスフェノールA、ビスフェノールF、ビスフェノールS、ノボラック型フェノール樹脂、ポリ-p-ヒドロキシスチレン、ナフトールとアルデヒド類の縮合物、ジヒドロキシナフタレンとアルデヒド類との縮合物等の1分子中に2個以上のフェノール性水酸基を有する化合物と、エチレンオキシド、プロピレンオキシド等のアルキレンオキシドとを反応させて得られる反応生成物に、(メタ)アクリル酸等の不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (4) Two or more per molecule such as bisphenol A, bisphenol F, bisphenol S, novolac type phenol resin, poly-p-hydroxystyrene, condensate of naphthol and aldehydes, condensate of dihydroxynaphthalene and aldehydes, etc. Reaction obtained by reacting an unsaturated group-containing monocarboxylic acid such as (meth) acrylic acid with a reaction product obtained by reacting a compound having a phenolic hydroxyl group with an alkylene oxide such as ethylene oxide or propylene oxide A carboxyl group-containing photosensitive resin obtained by reacting a product with a polybasic acid anhydride.
(5)1分子中に2個以上のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に、不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。 (5) An unsaturated group-containing monocarboxylic acid is reacted with a reaction product obtained by reacting a compound having two or more phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate. A carboxyl group-containing photosensitive resin obtained by reacting the resulting reaction product with a polybasic acid anhydride.
(6)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有感光性樹脂。 (6) Carboxy group-containing photosensitivity obtained by copolymerization of unsaturated carboxylic acid such as (meth) acrylic acid and unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate, and isobutylene. resin.
(7)後述するような多官能オキセタン樹脂に、アジピン酸、フタル酸、ヘキサヒドロフタル酸等のジカルボン酸を反応させ、生じた1級の水酸基に、2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (7) A carboxyl group obtained by reacting a difunctional acid such as adipic acid, phthalic acid or hexahydrophthalic acid with a polyfunctional oxetane resin as described later and adding a dibasic acid anhydride to the resulting primary hydroxyl group Contains polyester resin.
(8)上述した(1)~(7)等のカルボキシル基含有樹脂に、1分子中に環状エーテル基と(メタ)アクリロイル基を有する化合物を付加させたカルボキシル基含有感光性樹脂。 (8) A carboxyl group-containing photosensitive resin obtained by adding a compound having a cyclic ether group and a (meth) acryloyl group in one molecule to the carboxyl group-containing resin such as (1) to (7) described above.
 エチレン性不飽和基を有するカルボキシル基含有樹脂(カルボキシル基含有感光性樹脂ともいう)としては、フェノール樹脂やエポキシ樹脂等に由来する主鎖と側鎖のエチレン性不飽和基とが離れた構造であることが好ましい。言い換えると、側鎖にエチレン性不飽和基を導入する際、主鎖とエチレン性不飽和基との間にある程度の距離が生じるように鎖延長構造を導入することが好ましい。そのような構造であると、側鎖のエチレン性不飽和基同士の反応性が向上するための好ましい。鎖延長構造とエチレン性不飽和基を有するカルボキシル基含有樹脂としては、例えば、上記(3)、(4)、(5)、(8)に記載のカルボキシル基含有樹脂が好ましい。 As a carboxyl group-containing resin having an ethylenically unsaturated group (also referred to as a carboxyl group-containing photosensitive resin), the main chain derived from a phenol resin or an epoxy resin is separated from the ethylenically unsaturated group of the side chain. Preferably there is. In other words, when an ethylenically unsaturated group is introduced into the side chain, it is preferable to introduce a chain extension structure so that a certain distance is generated between the main chain and the ethylenically unsaturated group. Such a structure is preferable for improving the reactivity between side chain ethylenically unsaturated groups. As the carboxyl group-containing resin having a chain extension structure and an ethylenically unsaturated group, for example, the carboxyl group-containing resins described in (3), (4), (5), and (8) are preferable.
 (A)アルカリ可溶性樹脂の酸価は、40~150mgKOH/gであることが好ましい。カルボキシル基含有樹脂の酸価が40mgKOH/g以上とすることにより、アルカリ現像が良好になる。また、酸価を150mgKOH/g以下とすることで、正常な硬化物パターンの描画をし易くできる。より好ましくは、50~130mgKOH/gである。 (A) The acid value of the alkali-soluble resin is preferably 40 to 150 mgKOH / g. When the acid value of the carboxyl group-containing resin is 40 mgKOH / g or more, alkali development is improved. Moreover, a normal hardened | cured material pattern can be drawn easily by making an acid value into 150 mgKOH / g or less. More preferably, it is 50 to 130 mgKOH / g.
 (A)アルカリ可溶性樹脂の配合量は、溶剤を除いた組成物の固形分全量基準で、例えば、15~60質量%であり、20~60質量%であることが好ましい。15質量%以上、好ましくは20質量%以上とすることにより塗膜強度を向上させることができる。また60質量%以下とすることで粘性が適当となり加工性が向上する。より好ましくは、30~50質量%である。 (A) The blending amount of the alkali-soluble resin is, for example, 15 to 60% by mass, preferably 20 to 60% by mass, based on the total solid content of the composition excluding the solvent. By setting the content to 15% by mass or more, preferably 20% by mass or more, the coating film strength can be improved. Further, when the content is 60% by mass or less, viscosity becomes appropriate and workability is improved. More preferably, it is 30 to 50% by mass.
[(B)熱硬化成分]
 本発明の硬化性樹脂組成物は、(B)熱硬化成分として、エポキシ当量が300g/eq.以下のエポキシ樹脂を含むものであり、架橋密度を向上させてさらにクラック耐性を向上させる観点からより好ましくは、200g/eq.以下である。
[(B) Thermosetting component]
The curable resin composition of the present invention has an epoxy equivalent of 300 g / eq. The following epoxy resin is included, and 200 g / eq. Is more preferable from the viewpoint of improving the crosslink density and further improving the crack resistance. It is as follows.
 エポキシ樹脂は、上記エポキシ当量を満たせば特に限定されない。エポキシ樹脂としては、エポキシ化植物油;ビスフェノールA型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビスフェノール型エポキシ樹脂;チオエーテル型エポキシ樹脂;ブロム化エポキシ樹脂;ノボラック型エポキシ樹脂;ビフェノールノボラック型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;水添ビスフェノールA型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;ヒダントイン型エポキシ樹脂;脂環式エポキシ樹脂;トリヒドロキシフェニルメタン型エポキシ樹脂;アルキルフェノール型エポキシ樹脂(例えば、ビキシレノール型エポキシ樹脂);ビフェノール型エポキシ樹脂;ビスフェノールS型エポキシ樹脂;ビスフェノールAノボラック型エポキシ樹脂;テトラフェニロールエタン型エポキシ樹脂;複素環式エポキシ樹脂;ジグリシジルフタレート樹脂;テトラグリシジルキシレノイルエタン樹脂;ナフタレン基含有エポキシ樹脂;ジシクロペンタジエン骨格を有するエポキシ樹脂;トリフェニルメタン型エポキシ樹脂;シルセスキオキサン骨格を有するエポキシ樹脂;グリシジルメタアクリレート共重合系エポキシ樹脂;シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂;エポキシ変性のポリブタジエンゴム誘導体;CTBN変性エポキシ樹脂等が挙げられる。エポキシ樹脂は、1種を単独または2種以上を組み合わせて用いることができる。これらの中でも特にノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ビフェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、シルセスキオキサン骨格を有するエポキシ樹脂、およびトリフェニルメタン型エポキシ樹脂の少なくともいずれか1種が好ましい。 The epoxy resin is not particularly limited as long as the epoxy equivalent is satisfied. Epoxy resin includes epoxidized vegetable oil; bisphenol A type epoxy resin; hydroquinone type epoxy resin; bisphenol type epoxy resin; thioether type epoxy resin; brominated epoxy resin; novolac type epoxy resin; biphenol novolac type epoxy resin; Resin; Hydrogenated bisphenol A type epoxy resin; Glycidylamine type epoxy resin; Hydantoin type epoxy resin; Alicyclic epoxy resin; Trihydroxyphenylmethane type epoxy resin; Alkylphenol type epoxy resin (for example, bixylenol type epoxy resin); Type epoxy resin; bisphenol S type epoxy resin; bisphenol A novolak type epoxy resin; tetraphenylolethane type epoxy resin; Diglycidyl phthalate resin; Tetraglycidyl xylenoyl ethane resin; Naphthalene group-containing epoxy resin; Epoxy resin having dicyclopentadiene skeleton; Triphenylmethane type epoxy resin; Epoxy resin having silsesquioxane skeleton; Examples include acrylate copolymer epoxy resins; cyclohexyl maleimide and glycidyl methacrylate copolymer epoxy resins; epoxy-modified polybutadiene rubber derivatives; CTBN-modified epoxy resins. An epoxy resin can be used individually by 1 type or in combination of 2 or more types. Among these, novolac type epoxy resins, bisphenol type epoxy resins, bixylenol type epoxy resins, biphenol type epoxy resins, biphenol novolac type epoxy resins, naphthalene type epoxy resins, epoxy resins having a silsesquioxane skeleton, and triphenylmethane At least one of the type epoxy resins is preferred.
 エポキシ当量が300g/eq.以下のエポキシ樹脂の市販品としては、DIC社製のEXP7241(トリフェニルメタン型エポキシ樹脂)、HP6000(ナフタレン基を有するエポキシ樹脂)、エピクロンN-740(フェノールノボラック型エポキシ樹脂)、新日鉄住金化学社製のエポトートYDC-1312(ハイドロキノン型エポキシ樹脂)、YSLV-80XY(ビスフェノールF型エポキシ樹脂)等が挙げられる。 Epoxy equivalent is 300 g / eq. The following commercially available epoxy resins include EXP7241 (triphenylmethane type epoxy resin), HP6000 (epoxy resin having a naphthalene group), Epicron N-740 (phenol novolac type epoxy resin) manufactured by DIC, Nippon Steel & Sumikin Chemical Co., Ltd. Examples include Epototo YDC-1312 (hydroquinone type epoxy resin) and YSLV-80XY (bisphenol F type epoxy resin).
 本発明の組成物は、架橋密度をより高くすることができるため、低Tanδ化の観点から、(B)熱硬化成分として、2種類以上の多官能エポキシ樹脂を含むことが好ましい。本明細書において、「多官能」とは2官能以上を意味する。また、本発明の組成物は、(B)熱硬化成分として、(B-1)軟化点が40℃以下の2官能以上のエポキシ樹脂を含むことが好ましく、(B-1)成分と、(B-2)軟化点が40℃を超える2官能以上のエポキシ樹脂との混合物を含むことが好ましい。(B-1)軟化点が40℃以下の2官能以上のエポキシ樹脂を含むことにより、(E)無機充填剤の高充填化が可能となり低CTE、低Tanδとなり、サーマルサイクル試験において、クラック耐性が向上する。さらに、(B-2)軟化点が40℃を超える2官能以上のエポキシ樹脂も含むことにより、硬化性樹脂組成物全体のガラス転移温度(Tg)を上げることもできる。その結果、PCT耐性などの耐熱性、サーマルサイクル試験におけるクラック耐性などの信頼性をより向上させることができる。ここで、軟化点は、JIS K 7234に記載の方法に従い測定される値を意味する。 Since the composition of the present invention can increase the crosslink density, it is preferable that (B) a thermosetting component contains two or more polyfunctional epoxy resins from the viewpoint of lowering Tan δ. In this specification, “polyfunctional” means two or more functional groups. In addition, the composition of the present invention preferably contains (B-1) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower as the (B) thermosetting component. B-2) It is preferable to include a mixture with a bifunctional or higher functional epoxy resin having a softening point exceeding 40 ° C. (B-1) By including a bifunctional or higher functional epoxy resin with a softening point of 40 ° C. or less, (E) it is possible to achieve high filling of inorganic fillers, resulting in low CTE and low Tan δ, and crack resistance in thermal cycle tests. Will improve. Further, (B-2) by including a bifunctional or higher functional epoxy resin having a softening point exceeding 40 ° C., the glass transition temperature (Tg) of the entire curable resin composition can be increased. As a result, heat resistance such as PCT resistance and reliability such as crack resistance in a thermal cycle test can be further improved. Here, the softening point means a value measured according to the method described in JIS K 7234.
 (B-1)軟化点40℃以下の2官能以上のエポキシ樹脂としては、公知の樹脂でよいが、例えば、室温で液状であることが好ましい。(B-1)軟化点40℃以下の2官能以上のエポキシ樹脂の市販品としては、例えば、エピコート834、828(三菱化学社製)、YD-128(新日鉄住金化学社製)、840、850(DIC社製)などのビスフェノールA型エポキシ樹脂、806、807(三菱化学社製)、YDF-170(新日鉄住金化学社製)、830、835、N-730A(DIC社製)などのビスフェノールF型エポキシ樹脂、ZX-1059(新日鉄住金化学社製)などのビスフェノールAとビスフェノールFの混合物、YX-8000、8034(三菱化学社製)ST-3000(新日鉄住金化学社製)などの水添ビスフェノールA型エポキシ樹脂、日本化薬社製のRE-306CA90、ダウケミカル社製のDEN431、DEN438等のノボラック型エポキシ樹脂、DIC社製のエピクロンHP-820等のアルキルフェノール型エポキシ樹脂が挙げられる。 (B-1) The bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower may be a known resin, but is preferably liquid at room temperature, for example. (B-1) Commercially available bifunctional or higher functional epoxy resins having a softening point of 40 ° C. or lower include, for example, Epicoat 834, 828 (manufactured by Mitsubishi Chemical Corporation), YD-128 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), 840, 850 Bisphenol A type epoxy resin such as DIC (manufactured by DIC), 806, 807 (manufactured by Mitsubishi Chemical), YDF-170 (manufactured by Nippon Steel & Sumikin Chemical), 830, 835, bisphenol F such as N-730A (manufactured by DIC) Type epoxy resin, mixture of bisphenol A and bisphenol F such as ZX-1059 (manufactured by Nippon Steel & Sumikin Chemical), hydrogenated bisphenol such as YX-8000 and 8034 (manufactured by Mitsubishi Chemical) ST-3000 (manufactured by Nippon Steel & Sumikin Chemical) Type A epoxy resin, Nippon Kayaku's RE-306CA90, Dow Chemical's DEN431, DEN438 and other novola Click type epoxy resin, DIC Corporation of EPICLON HP-820, etc. alkylphenol type epoxy resin and the like.
 (B-1)軟化点が40℃以下の2官能以上のエポキシ樹脂の含有量は、(A)アルカリ可溶性樹脂のアルカリ可溶性基1当量に対して、(B-1)軟化点が40℃以下の2官能以上のエポキシ樹脂のエポキシ基が好ましくは0.2~1.8当量となる範囲である。(B-1)軟化点が40℃以下の2官能以上のエポキシ樹脂における軟化点は、-80~30℃が好ましく、-70~20℃がより好ましい。Tanδの低下に効果がある(E)無機充填剤の高充填化において、軟化点が40℃以下の2官能以上のエポキシ樹脂を用いると配合設計の自由度を広げることができ、接着強度を増すことができる。 The content of the (B-1) bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower is such that (B-1) the softening point is 40 ° C. or lower with respect to 1 equivalent of the alkali-soluble group of the alkali-soluble resin. The epoxy group of the bifunctional or higher functional epoxy resin is preferably in the range of 0.2 to 1.8 equivalents. (B-1) The softening point of the bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower is preferably −80 to 30 ° C., more preferably −70 to 20 ° C. Effective in reducing Tan δ (E) In the high filling of inorganic fillers, the use of a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower can increase the degree of freedom in compounding design and increase the adhesive strength. be able to.
 (B-2)軟化点が40℃を超える2官能以上のエポキシ樹脂の市販品としては、例えば、日産化学社製のICTEP-S(軟化点:110℃)、TEPIC-H、N870、DIC社製のHP-7200(軟化点:60℃)、HP-4700(軟化点:90℃)、HP-4710(軟化点:96℃)、EXA-7241(軟化点:70℃)、三菱化学社製のYX-4000(軟化点:105℃)、日本化薬社製のNC-3000L(軟化点:52℃)、NC-7000L(軟化点:86℃)、CER-3000L(軟化点:93℃)、EPPN-502H(軟化点:67℃)、新日鉄住金化学社製のエポトートYSLV-80XY(軟化点:80℃)、EPICLON-N660(軟化点:61~69℃)、新日鉄住金化学社製エポトートYDC-1312(軟化点:140℃)等が挙げられる。 (B-2) Commercially available bifunctional or higher functional epoxy resins having a softening point exceeding 40 ° C. include, for example, ICTEP-S (softening point: 110 ° C.), TEPIC-H, N870, DIC manufactured by Nissan Chemical Co., Ltd. HP-7200 (softening point: 60 ° C), HP-4700 (softening point: 90 ° C), HP-4710 (softening point: 96 ° C), EXA-7241 (softening point: 70 ° C), manufactured by Mitsubishi Chemical Corporation YX-4000 (softening point: 105 ° C), NC-3000L (softening point: 52 ° C), NC-7000L (softening point: 86 ° C), CER-3000L (softening point: 93 ° C) manufactured by Nippon Kayaku Co., Ltd. EPPN-502H (softening point: 67 ° C.), Epototo YSLV-80XY (softening point: 80 ° C.) manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., EPICLON-N660 (softening point: 61 to 69 ° C.) YDC-1312 (softening point: 140 ° C.), and the like.
 (B-2)軟化点が40℃を超える2官能以上のエポキシ樹脂における軟化点は、50℃以上が好ましく、60℃以上がより好ましい。なお、(B-2)軟化点が40℃を超える2官能以上のエポキシ樹脂における軟化点の上限は、特に制限されないが、約400℃以下である。ドライフィルム化した際の加工性の観点から80℃以下であることが好ましい。 (B-2) The softening point of a bifunctional or higher functional epoxy resin having a softening point exceeding 40 ° C. is preferably 50 ° C. or higher, and more preferably 60 ° C. or higher. In addition, the upper limit of the softening point in the (B-2) bifunctional or higher functional epoxy resin having a softening point exceeding 40 ° C. is not particularly limited, but is about 400 ° C. or lower. It is preferable that it is 80 degrees C or less from a viewpoint of the workability at the time of forming into a dry film.
 (B-1)軟化点が40℃以下の2官能以上のエポキシ樹脂と(B-2)軟化点が40℃を超えるエポキシ樹脂の配合比は、(B-1)軟化点が40℃以下の2官能以上のエポキシ樹脂のエポキシ基(b-1)と(B-2)軟化点が60℃を超える2官能以上のエポキシ樹脂のエポキシ基(b-2)との当量比(b-1):(b-2)が、3:7~9:1であることが好ましく、さらに好ましくは、4:6~8:2である。エポキシ基(b-1)の比率が3~9であることにより、低Tanδ化と高Tg化の両立が図れる。 The blending ratio of (B-1) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or less and (B-2) an epoxy resin having a softening point of more than 40 ° C. is (B-1) the softening point is 40 ° C. or less. Equivalent ratio of epoxy group (b-1) of bifunctional or higher epoxy resin to (B-2) epoxy group (b-2) of bifunctional or higher epoxy resin having a softening point exceeding 60 ° C. (b-1) : (B-2) is preferably 3: 7 to 9: 1, more preferably 4: 6 to 8: 2. When the ratio of the epoxy group (b-1) is 3 to 9, it is possible to achieve both low Tanδ and high Tg.
 エポキシ当量が300g/eq.以下のエポキシ樹脂として、エポキシ樹脂の中でも、架橋密度を上げる観点から、3官能以上のエポキシ樹脂を含むことが特に好ましい。3官能以上のエポキシ樹脂の構造は特に限定されず、3個以上のエポキシ基を持つエポキシ樹脂であればよい。それらの中でも、架橋密度を更に上げる観点からエポキシ当量が200g/eq.以下の3官能以上のエポキシ樹脂であることがより好ましい。 Epoxy equivalent is 300 g / eq. As the following epoxy resin, it is particularly preferable to include a trifunctional or higher functional epoxy resin from the viewpoint of increasing the crosslinking density among the epoxy resins. The structure of the tri- or higher functional epoxy resin is not particularly limited as long as it is an epoxy resin having three or more epoxy groups. Among them, the epoxy equivalent is 200 g / eq. From the viewpoint of further increasing the crosslinking density. The following trifunctional or higher epoxy resins are more preferable.
 3官能以上のエポキシ基を持つエポキシ樹脂の市販品の具体例としては、3官能アミノフェノール型エポキシ樹脂の商品名「jER-630」(三菱化学社製)、3官能トリアジン骨格含有エポキシ樹脂の商品名「TEPIC-SP」(日産化学工業社製)、3官能芳香族エポキシ樹脂の商品名「テクモアVG3101」(プリンテック社製)、4官能芳香族エポキシ樹脂の商品名「GTR-1800」(日本化薬社製)、変性ノボラック型エポキシ樹脂の商品名「EPICLON-N740」(DIC社製)、ジシクロペンタジエン型エポキシ樹脂の商品名「EPICLON-HP7200H-75M」(DIC社製)、クレゾールノボラック型エポキシ樹脂の商品名「EPICLON-N660」(DIC社製)、フェノールノボラック型エポキシ樹脂の商品名「jER-152」(三菱化学社製)、ビフェニル骨格含有エポキシ樹脂の商品名「NC3000」(日本化薬社製)、「NC3000H」(日本化薬社製)、「NC3000L」(日本化薬社製)、ナフタレン型エポキシ樹脂の商品名「ESN-175S」(新日鉄住金化学社製)等が挙げられる。 As a specific example of a commercial product of an epoxy resin having a trifunctional or higher functional epoxy group, a product name of a trifunctional aminophenol type epoxy resin “jER-630” (manufactured by Mitsubishi Chemical Corporation), a product of a trifunctional triazine skeleton-containing epoxy resin The name “TEPIC-SP” (manufactured by Nissan Chemical Industries, Ltd.) The product name of trifunctional aromatic epoxy resin “Techmore VG3101” (manufactured by Printec Co., Ltd.) The product name of tetrafunctional aromatic epoxy resin “GTR-1800” (Japan) Kayaku Co., Ltd.), modified novolak epoxy resin trade name “EPICLON-N740” (DIC Corporation), dicyclopentadiene epoxy resin trade name “EPICLON-HP7200H-75M” (DIC Corporation), cresol novolak type Epoxy resin trade name “EPICLON-N660” (DIC), phenol novolat Type epoxy resin product name “jER-152” (manufactured by Mitsubishi Chemical Corporation), biphenyl skeleton-containing epoxy resin product name “NC3000” (manufactured by Nippon Kayaku Co., Ltd.), “NC3000H” (manufactured by Nippon Kayaku Co., Ltd.), “NC3000L (Manufactured by Nippon Kayaku Co., Ltd.), trade name of naphthalene type epoxy resin “ESN-175S” (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and the like.
 (B)熱硬化成分として、上記エポキシ樹脂の中でも、シルセスキオキサン骨格を有するエポキシ樹脂をより好適に用いることができる。シルセスキオキサン骨格を有するエポキシ樹脂を配合することにより、組成物の無機成分の割合が増加し、粘性成分が減少する。これにより、Tanδの最大値が小さくなり、硬化物が高温時に硬化収縮しにくくなる。シルセスキオキサン骨格を有するエポキシ樹脂としては、シルセスキオキサン、即ち、3官能性シランを加水分解することで得られる(RSiO1.5の構造を持つネットワーク型ポリマーまたは多面体クラスターであって、エポキシ基を含む基を有する化合物であれば特に限定されない。シルセスキオキサンの各シリコンは平均1.5個の酸素原子と1つの炭化水素基と結合している。 (B) Among the above epoxy resins, an epoxy resin having a silsesquioxane skeleton can be more suitably used as the thermosetting component. By blending an epoxy resin having a silsesquioxane skeleton, the proportion of the inorganic component of the composition increases and the viscosity component decreases. As a result, the maximum value of Tan δ is reduced, and the cured product is difficult to cure and shrink at high temperatures. The epoxy resin having a silsesquioxane skeleton is a silsesquioxane, that is, a network polymer or polyhedral cluster having a structure of (RSiO 1.5 ) n obtained by hydrolyzing a trifunctional silane. Any compound having an epoxy group-containing group is not particularly limited. Each silicon of silsesquioxane is bonded with an average of 1.5 oxygen atoms and one hydrocarbon group.
 シルセスキオキサン骨格を有するエポキシ樹脂は、下記一般式(1)で表されるシルセスキオキサン骨格を有することが好ましい。
Figure JPOXMLDOC01-appb-I000001
(式中、R~Rは、それぞれ独立して、SiO結合を有する基または有機基であり、R~Rのうち少なくとも一つがエポキシ基を有する基である。)ここで、有機基とは、炭素原子を含む基のことを言う。
The epoxy resin having a silsesquioxane skeleton preferably has a silsesquioxane skeleton represented by the following general formula (1).
Figure JPOXMLDOC01-appb-I000001
(Wherein R 1 to R 4 are each independently a group having a SiO bond or an organic group, and at least one of R 1 to R 4 is a group having an epoxy group) A group refers to a group containing a carbon atom.
 前記シルセスキオキサンの構造は特に限定されず、ランダム構造、ハシゴ構造、完全カゴ型構造、不完全カゴ型構造等の公知慣用の構造のシルセスキオキサンを用いることができる。 The structure of the silsesquioxane is not particularly limited, and a silsesquioxane having a known and conventional structure such as a random structure, a ladder structure, a complete cage structure, or an incomplete cage structure can be used.
 R~Rがとり得るSiO結合を有する基としては、特に限定されず、SiO結合と脂肪族骨格を有する基、SiO結合と芳香族骨格を有する基、SiO結合とヘテロ原子を有する基等が挙げられ、上記熱硬化性の官能基(エポキシ基)の当量の範囲内となるものであることが好ましい。 The group having an SiO bond that R 1 to R 4 can take is not particularly limited, a group having an SiO bond and an aliphatic skeleton, a group having an SiO bond and an aromatic skeleton, a group having an SiO bond and a hetero atom, and the like And is preferably within the range of the equivalent of the above thermosetting functional group (epoxy group).
 R~Rがとり得る炭素原子を含む有機基としては、特に限定されず、メチル基等の脂肪族基、フェニル基等の芳香族基、ヘテロ原子を有する基等が挙げられる。好ましくは炭素原子数1~30の有機基であり、上記熱硬化性の官能基(エポキシ基)の当量の範囲内となるものであることが好ましい。 The organic group containing a carbon atom that can be taken by R 1 to R 4 is not particularly limited, and examples thereof include an aliphatic group such as a methyl group, an aromatic group such as a phenyl group, and a group having a hetero atom. The organic group is preferably an organic group having 1 to 30 carbon atoms, and is preferably within an equivalent range of the thermosetting functional group (epoxy group).
 R~Rのうち少なくとも一つはエポキシ基を有する基であり、ここでエポキシ基を有する基としては、特に限定されず、SiO結合を有する基または有機基がエポキシ基を有すればよい。 At least one of R 1 to R 4 is a group having an epoxy group, and the group having an epoxy group is not particularly limited as long as the group having SiO bond or the organic group has an epoxy group. .
 (B)熱硬化成分の配合量は、(A)アルカリ可溶性樹脂100質量部に対し、例えば、1~100質量部であり、10~80質量部が好ましく、20~60質量部がより好ましい。(B)熱硬化成分の配合量が1質量部以上であると、クラック耐性および絶縁信頼性が向上し、100質量部以下であると、保存安定性が向上する。 (B) The blending amount of the thermosetting component is, for example, 1 to 100 parts by weight, preferably 10 to 80 parts by weight, and more preferably 20 to 60 parts by weight with respect to 100 parts by weight of the (A) alkali-soluble resin. (B) Crack resistance and insulation reliability will improve that the compounding quantity of a thermosetting component is 1 mass part or more, and storage stability will improve that it is 100 mass parts or less.
 本発明の硬化性樹脂組成物は、本発明の効果を損なわない範囲で、エポキシ当量が300g/eq.以下のエポキシ樹脂以外の公知の熱硬化成分を含有してもよい。例えば、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、シクロカーボネート化合物、エポキシ当量が300g/eq.を超えるエポキシ樹脂、オキセタン化合物、エピスルフィド樹脂、ビスマレイミド、カルボジイミド樹脂等の公知の化合物を使用することができる。特に好ましいのは、分子中に複数の環状エーテル基または環状チオエーテル基(以下、環状(チオ)エーテル基と略す)を有する化合物である。上記の分子中に複数の環状(チオ)エーテル基を有する化合物は、分子中に3、4または5員環の環状(チオ)エーテル基を複数有する化合物であり、例えば、分子内に複数のエポキシ基を有する化合物、すなわち多官能エポキシ化合物、分子内に複数のオキセタニル基を有する化合物、すなわち多官能オキセタン化合物、分子内に複数のチオエーテル基を有する化合物、すなわち多官能エピスルフィド樹脂等が挙げられる。 The curable resin composition of the present invention has an epoxy equivalent of 300 g / eq. Within the range not impairing the effects of the present invention. You may contain well-known thermosetting components other than the following epoxy resins. For example, amino resins such as melamine resin, benzoguanamine resin, melamine derivative, benzoguanamine derivative, isocyanate compound, block isocyanate compound, cyclocarbonate compound, epoxy equivalent is 300 g / eq. Known compounds such as epoxy resins, oxetane compounds, episulfide resins, bismaleimides, carbodiimide resins, and the like can be used. Particularly preferred are compounds having a plurality of cyclic ether groups or cyclic thioether groups (hereinafter abbreviated as cyclic (thio) ether groups) in the molecule. The compound having a plurality of cyclic (thio) ether groups in the molecule is a compound having a plurality of 3, 4 or 5-membered cyclic (thio) ether groups in the molecule. A compound having a group, that is, a polyfunctional epoxy compound, a compound having a plurality of oxetanyl groups in the molecule, that is, a polyfunctional oxetane compound, a compound having a plurality of thioether groups in the molecule, that is, a polyfunctional episulfide resin.
[(C)エチレン性不飽和基を有する化合物]
 本発明の硬化性樹脂組成物は、(C)エチレン性不飽和基を有する化合物を含有する。(C)エチレン性不飽和基を有する化合物としては、分子中に1個以上のエチレン性不飽和基を有する化合物が好ましく用いられる。エチレン性不飽和基を有する化合物としては、公知慣用のエチレン性不飽和基を有する化合物である光重合性オリゴマー、光重合性ビニルモノマー等を用いることができる。なお、ここで言う(C)エチレン性不飽和基を有する化合物には、エチレン性不飽和基を有する(A)アルカリ可溶性樹脂および(E)表面処理された無機充填剤は含まれないものとする。
[(C) Compound having ethylenically unsaturated group]
The curable resin composition of the present invention contains (C) a compound having an ethylenically unsaturated group. (C) As a compound having an ethylenically unsaturated group, a compound having one or more ethylenically unsaturated groups in the molecule is preferably used. As the compound having an ethylenically unsaturated group, a photopolymerizable oligomer, a photopolymerizable vinyl monomer, or the like, which is a conventionally known compound having an ethylenically unsaturated group, can be used. The compound (C) having an ethylenically unsaturated group mentioned here does not include (A) an alkali-soluble resin having an ethylenically unsaturated group and (E) a surface-treated inorganic filler. .
 光重合性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。 Examples of the photopolymerizable oligomer include unsaturated polyester oligomers and (meth) acrylate oligomers. Examples of (meth) acrylate oligomers include phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, epoxy (meth) acrylates such as bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, epoxy urethane (meta ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate, and the like.
 光重合性ビニルモノマーとしては、公知慣用のもの、例えば、スチレン、クロロスチレン、α-メチルスチレンなどのスチレン誘導体;酢酸ビニル、酪酸ビニルまたは安息香酸ビニルなどのビニルエステル類;ビニルイソブチルエーテル、ビニル-n-ブチルエーテル、ビニル-t-ブチルエーテル、ビニル-n-アミルエーテル、ビニルイソアミルエーテル、ビニル-n-オクタデシルエーテル、ビニルシクロヘキシルエーテル、エチレングリコールモノブチルビニルエーテル、トリエチレングリコールモノメチルビニルエーテルなどのビニルエーテル類;アクリルアミド、メタクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミドなどの(メタ)アクリルアミド類;トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリルなどのアリル化合物;2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、イソボロニル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなどの(メタ)アクリル酸のエステル類;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレートなどのアルコキシアルキレングリコールモノ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート類、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどのアルキレンポリオールポリ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレートなどのポリオキシアルキレングリコールポリ(メタ)アクリレート類;ヒドロキシピバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレートなどのポリ(メタ)アクリレート類;トリス[(メタ)アクリロキシエチル]イソシアヌレートなどのイソシアヌルレート型ポリ(メタ)アクリレート類などが挙げられる。これらは、要求特性に合わせて、単独で、または、2種以上を組み合わせて用いることができる。 As the photopolymerizable vinyl monomer, known and commonly used monomers, for example, styrene derivatives such as styrene, chlorostyrene and α-methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate or vinyl benzoate; vinyl isobutyl ether, vinyl- vinyl ethers such as n-butyl ether, vinyl-t-butyl ether, vinyl-n-amyl ether, vinyl isoamyl ether, vinyl-n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide, Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide (Meth) acrylamides such as rilamide and N-butoxymethylacrylamide; allyl compounds such as triallyl isocyanurate, diallyl phthalate and diallyl isophthalate; 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tetrahydrofurfuryl Esters of (meth) acrylic acid such as (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate; hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, pentaerythritol Hydroxyalkyl (meth) acrylates such as tri (meth) acrylate; Alkyl such as methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate Coxyalkylene glycol mono (meth) acrylates; ethylene glycol di (meth) acrylate, butanediol di (meth) acrylates, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tri Alkylene polyol poly (meth) acrylates such as methylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, Polyoxyalkylene glycol poly (such as ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane tri (meth) acrylate) Poly (meth) acrylates such as hydroxypivalic acid neopentyl glycol ester di (meth) acrylate; isocyanurate-type poly (meth) acrylates such as tris [(meth) acryloxyethyl] isocyanurate Can be mentioned. These can be used alone or in combination of two or more according to the required properties.
 (C)エチレン性不飽和基を有する化合物の配合量は、(A)アルカリ可溶性樹脂100質量部に対して20質量部未満であることが好ましく、より好ましくは5~18質量部であり、さらにより好ましくは10~15質量部である。(C)エチレン性不飽和基を有する化合物の配合量を少なくすることにより、硬化物中の未反応のエチレン性不飽和基を有する化合物を低減し、損失弾性率(粘性成分)を低下させることができる。 The compounding amount of the compound (C) having an ethylenically unsaturated group is preferably less than 20 parts by mass, more preferably 5 to 18 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin. More preferably, it is 10 to 15 parts by mass. (C) By reducing the compounding quantity of the compound which has an ethylenically unsaturated group, the compound which has an unreacted ethylenically unsaturated group in hardened | cured material is reduced, and a loss elastic modulus (viscous component) is reduced. Can do.
[(D)光重合開始剤]
 (D)光重合開始剤としては、光重合開始剤や光ラジカル発生剤として公知の光重合開始剤であれば、いずれのものを用いることもできる。
[(D) Photopolymerization initiator]
(D) Any photopolymerization initiator may be used as long as it is a known photopolymerization initiator as a photopolymerization initiator or a photoradical generator.
 光重合開始剤としては、例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(BASFジャパン社製IRGACURE819)等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(BASFジャパン社製IRGACURE TPO)等のモノアシルフォスフィンオキサイド類;1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。光重合開始剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でもモノアシルフォスフィンオキサイド類、オキシムエステル類が好ましく、高感度であるオキシムエステル類が最も好ましい。オキシムエステル類としては、オキシムエステル基を1つまたは2個以上有することが好ましく、例えば、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)がより好ましい。 Examples of the photopolymerization initiator include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2, 6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- ( 2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6- Trimethylbenzoyl) -phenylphosphine oxide Bisacylphosphine oxides such as (IRSFACURE 819 manufactured by BASF Japan); 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylphosphinic acid Monoacylphosphine oxides such as methyl ester, 2-methylbenzoyldiphenylphosphine oxide, pivaloylphenylphosphinic acid isopropyl ester, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (IRGACURE TPO manufactured by BASF Japan Ltd.) 1-hydroxy-cyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1 Propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one, 2-hydroxy-2 -Hydroxyacetophenones such as methyl-1-phenylpropan-1-one; benzoins such as benzoin, benzyl, benzoin methyl ether, benzoin ethyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n-butyl ether; benzoin alkyl Ethers; benzophenones such as benzophenone, p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bisdiethylaminobenzophenone; acetophenone, 2,2-dimeth Xyl-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino -1-propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl) -1- [ Acetophenones such as 4- (4-morpholinyl) phenyl] -1-butanone and N, N-dimethylaminoacetophenone; thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethyl Thioxanthone, 2-chlorothioxanthone, 2,4 Thioxanthones such as diisopropylthioxanthone; anthraquinones such as anthraquinone, chloroanthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone, 2-aminoanthraquinone; acetophenone Ketals such as dimethyl ketal and benzyl dimethyl ketal; benzoates such as ethyl-4-dimethylaminobenzoate, 2- (dimethylamino) ethyl benzoate and p-dimethylbenzoic acid ethyl ester; 1,2-octanedione, 1 -[4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]- Oxime esters such as 1- (O-acetyloxime); bis (η5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl ) Titanocenes such as titanium, bis (cyclopentadienyl) -bis [2,6-difluoro-3- (2- (1-pyr-1-yl) ethyl) phenyl] titanium; phenyl disulfide 2-nitrofluorene, Examples include butyroin, anisoin ethyl ether, azobisisobutyronitrile, tetramethylthiuram disulfide, and the like. A photoinitiator may be used individually by 1 type and may be used in combination of 2 or more type. Of these, monoacylphosphine oxides and oxime esters are preferable, and oxime esters having high sensitivity are most preferable. The oxime esters preferably have one or more oxime ester groups. For example, ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]- , 1- (O-acetyloxime) is more preferred.
 光重合開始剤の配合量は、(A)アルカリ可溶性樹脂100質量部に対して0.5~20質量部であることが好ましい。0.5質量部以上の場合、表面硬化性が良好となり、20質量部以下の場合、ハレーションが生じにくく良好な解像性が得られる。 The blending amount of the photopolymerization initiator is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin. When the amount is 0.5 parts by mass or more, the surface curability is good, and when the amount is 20 parts by mass or less, halation hardly occurs and good resolution is obtained.
[(E)表面処理された無機充填剤]
 本発明の硬化性樹脂組成物は、平均粒径100nm~1μmで且つ(A)アルカリ可溶性樹脂、(B)熱硬化成分および(C)エチレン性不飽和基を有する化合物の少なくともいずれか1種と反応可能な反応性基を有する(E)表面処理された無機充填剤を含有する。
[(E) Surface-treated inorganic filler]
The curable resin composition of the present invention has an average particle size of 100 nm to 1 μm and (A) an alkali-soluble resin, (B) a thermosetting component, and (C) at least one compound having an ethylenically unsaturated group, Contains (E) a surface-treated inorganic filler having a reactive group capable of reacting.
 無機充填剤としては、特に限定されず、公知慣用の充填剤、例えばシリカ、結晶性シリカ、ノイブルグ珪土、水酸化アルミニウム、ガラス粉末、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、天然マイカ、合成マイカ、水酸化アルミニウム、硫酸バリウム、チタン酸バリウム、酸化鉄、非繊維状ガラス、ハイドロタルサイト、ミネラルウール、アルミニウムシリケート、カルシウムシリケート、亜鉛華等の無機フィラーを用いることができる。中でも、シリカが好ましく、表面積が小さく、応力が全体に分散するためクラックの起点になりにくいことから、また、解像性に優れることから、球状シリカであることがより好ましい。 The inorganic filler is not particularly limited, and known and commonly used fillers such as silica, crystalline silica, Neuburg silica, aluminum hydroxide, glass powder, talc, clay, magnesium carbonate, calcium carbonate, natural mica, synthetic mica Inorganic fillers such as aluminum hydroxide, barium sulfate, barium titanate, iron oxide, non-fibrous glass, hydrotalcite, mineral wool, aluminum silicate, calcium silicate and zinc white can be used. Among these, silica is preferable, and since the surface area is small and stress is dispersed throughout, it is difficult to become a starting point of cracks, and from the viewpoint of excellent resolution, spherical silica is more preferable.
 (E)表面処理された無機充填剤の反応性基としては、例えば、(メタ)アクリロイル基、ビニル基、環状(チオ)エーテル基、酸性基、塩基性基が挙げられる。
 環状(チオ)エーテル基としては、例えば、エポキシ基、オキセタニル基、エピスルフィド基等が挙げられる。
 酸性基としては、例えば、カルボキシル基、フェノール性水酸基、アルコール性水酸基、チオール基、スルホン基、リン酸基等が挙げられる。
 塩基性基としては、例えば、アミノ基、アミド基、アンモニウム基等が挙げられる。
 (E)表面処理された無機充填剤の反応性基は、(メタ)アクリロイル基、ビニル基および環状(チオ)エーテル基のいずれか1種であることが好ましい。(E)表面処理された無機充填剤の反応性基が環状(チオ)エーテル基であると(A)アルカリ可溶性樹脂との反応性に優れ、(メタ)アクリロイル基またはビニル基であると(A)アルカリ可溶性樹脂のエチレン性不飽和基等との反応性に優れる。
Examples of the reactive group of the (E) surface-treated inorganic filler include (meth) acryloyl group, vinyl group, cyclic (thio) ether group, acidic group, and basic group.
Examples of the cyclic (thio) ether group include an epoxy group, an oxetanyl group, and an episulfide group.
Examples of the acidic group include a carboxyl group, a phenolic hydroxyl group, an alcoholic hydroxyl group, a thiol group, a sulfone group, and a phosphate group.
Examples of the basic group include an amino group, an amide group, and an ammonium group.
(E) The reactive group of the surface-treated inorganic filler is preferably any one of a (meth) acryloyl group, a vinyl group, and a cyclic (thio) ether group. (E) When the reactive group of the surface-treated inorganic filler is a cyclic (thio) ether group, it is excellent in (A) reactivity with an alkali-soluble resin, and is a (meth) acryloyl group or vinyl group (A) ) Excellent reactivity with the ethylenically unsaturated group of the alkali-soluble resin.
 無機充填剤に前記反応性基を導入する方法は特に限定されず、公知慣用の方法を用いて導入すればよく、前記反応性基を有する表面処理剤、例えば、前記反応性基を有するカップリング剤等で無機充填剤の表面を処理すればよい。 The method for introducing the reactive group into the inorganic filler is not particularly limited, and may be introduced using a known and commonly used method. The surface treatment agent having the reactive group, for example, the coupling having the reactive group. The surface of the inorganic filler may be treated with an agent or the like.
 無機充填剤の表面処理としては、カップリング剤による表面処理が好ましい。カップリング剤としては、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤等を用いることができる。中でも、シランカップリング剤が好ましい。 As the surface treatment of the inorganic filler, a surface treatment with a coupling agent is preferable. As the coupling agent, a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, or the like can be used. Among these, a silane coupling agent is preferable.
 前記反応性基を無機充填剤に導入可能なシランカップリング剤としては、ビニル基を有するシランカップリング剤、メタクリル基を有するシランカップリング剤、アクリル基を有するシランカップリング剤、エポキシ基を有するシランカップリング剤、カルボキシル基を有するシランカップリング剤等が挙げられ、中でも、(メタ)アクリル基およびビニル基の少なくともいずれかを有するシランカップリング剤が好ましい。 Examples of the silane coupling agent capable of introducing the reactive group into the inorganic filler include a silane coupling agent having a vinyl group, a silane coupling agent having a methacryl group, a silane coupling agent having an acrylic group, and an epoxy group. Examples of the silane coupling agent include a silane coupling agent and a carboxyl group-containing silane coupling agent, and among them, a silane coupling agent having at least one of a (meth) acryl group and a vinyl group is preferable.
 (E)表面処理された無機充填剤は、表面処理された状態で本発明の硬化性樹脂組成物に配合されていればよく、表面未処理の無機充填剤と表面処理剤とを別々に配合して組成物中で無機充填剤が表面処理されてもよいが、予め表面処理した無機充填剤を配合することが好ましい。予め表面処理した無機充填剤を配合することによって、別々に配合した場合に残存しうる表面処理で消費されなかった表面処理剤によるクラック耐性等の低下を防ぐことができる。予め表面処理する場合は、溶剤や樹脂成分に無機充填剤を予備分散した予備分散液を配合することが好ましく、表面処理した無機充填剤を溶剤に予備分散し、該予備分散液を組成物に配合するか、表面未処理の無機充填剤を溶剤に予備分散する際に十分に表面処理した後、該予備分散液を組成物に配合することがより好ましい。 (E) The surface-treated inorganic filler should just be mix | blended with the curable resin composition of this invention in the surface-treated state, and mix | blends the surface untreated inorganic filler and surface treatment agent separately. Then, although the inorganic filler may be surface-treated in the composition, it is preferable to blend an inorganic filler that has been surface-treated in advance. By blending the inorganic filler that has been surface-treated in advance, it is possible to prevent a decrease in crack resistance or the like due to the surface-treating agent that has not been consumed by the surface treatment that may remain when blended separately. When the surface treatment is performed in advance, it is preferable to blend a pre-dispersion liquid in which an inorganic filler is pre-dispersed in a solvent or a resin component. It is more preferable that the pre-dispersed liquid is blended in the composition after blending or sufficiently surface-treating when the surface-untreated inorganic filler is pre-dispersed in the solvent.
 (E)表面処理された無機充填剤の平均粒径は100~800nmであることが好ましく、100~700nmであることがより好ましく、200~700nmであることがさらにより好ましい。なお、本明細書において、(E)表面処理された無機充填剤の平均粒径は、一次粒子の粒径だけでなく、二次粒子(凝集体)の粒径も含めた平均粒径(D50)である。平均粒径は、レーザー回折式粒子径分布測定装置により求めることができる。レーザー回折法による測定装置としては、日機装社製Nanotrac waveなどが挙げられる。 (E) The average particle size of the surface-treated inorganic filler is preferably 100 to 800 nm, more preferably 100 to 700 nm, and even more preferably 200 to 700 nm. In this specification, (E) the average particle diameter of the surface-treated inorganic filler is not only the particle diameter of the primary particles but also the average particle diameter including the particle diameter of the secondary particles (aggregates) (D50 ). The average particle size can be determined by a laser diffraction particle size distribution measuring device. Examples of the measuring apparatus using the laser diffraction method include Nanotrac wave manufactured by Nikkiso Co., Ltd.
 (E)表面処理された無機充填剤の配合量が多いほど貯蔵弾性率が増加し、Tanδが小さくなり、硬化物が膨張しにくくなることから、(E)表面処理された無機充填剤の配合量は、硬化性樹脂組成物の固形分の全量あたり35質量%以上であることが好ましい。より好ましくは38~80質量%である。 (E) Since the storage elastic modulus increases as the blending amount of the surface-treated inorganic filler increases, Tan δ decreases, and the cured product becomes difficult to expand. (E) Blending of the surface-treated inorganic filler The amount is preferably 35% by mass or more based on the total solid content of the curable resin composition. More preferably, it is 38 to 80% by mass.
(熱硬化触媒)
 本発明の硬化性樹脂組成物は、熱硬化触媒を含有することが好ましい。そのような熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物等が挙げられる。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもでき、好ましくはこれら密着性付与剤としても機能する化合物を熱硬化触媒と併用する。
(Thermosetting catalyst)
The curable resin composition of the present invention preferably contains a thermosetting catalyst. Examples of such thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole. Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine. Guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino S-triazine derivatives such as -S-triazine / isocyanuric acid adducts and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adducts can also be used. A compound that also functions in combination with a thermosetting catalyst.
 熱硬化触媒の配合量は、(B)熱硬化成分100質量部に対して、好ましくは0.05~20質量部、より好ましくは0.1~15質量部である。 The blending amount of the thermosetting catalyst is preferably 0.05 to 20 parts by mass, more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the (B) thermosetting component.
(硬化剤)
 本発明の硬化性樹脂組成物は硬化剤を含有することができる。硬化剤としては、フェノール樹脂、ポリカルボン酸およびその酸無水物、シアネートエステル樹脂、活性エステル樹脂、マレイミド化合物、脂環式オレフィン重合体等が挙げられる。硬化剤は1種を単独または2種以上を組み合わせて用いることができる。
(Curing agent)
The curable resin composition of the present invention can contain a curing agent. Examples of the curing agent include phenol resins, polycarboxylic acids and acid anhydrides thereof, cyanate ester resins, active ester resins, maleimide compounds, and alicyclic olefin polymers. A hardening | curing agent can be used individually by 1 type or in combination of 2 or more types.
(着色剤)
 本発明の硬化性樹脂組成物には、着色剤が含まれていてもよい。着色剤としては、赤、青、緑、黄、黒、白等の公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよい。但し、環境負荷低減並びに人体への影響の観点からハロゲンを含有しないことが好ましい。
(Coloring agent)
The curable resin composition of the present invention may contain a colorant. As the colorant, known colorants such as red, blue, green, yellow, black, and white can be used, and any of pigments, dyes, and pigments may be used. However, it is preferable not to contain a halogen from the viewpoint of reducing the environmental burden and affecting the human body.
 着色剤の添加量は特に制限はないが、(A)アルカリ可溶性樹脂100質量部に対して、好ましくは10質量部以下、特に好ましくは0.1~7質量部の割合で充分である。 The addition amount of the colorant is not particularly limited, but is preferably 10 parts by mass or less, particularly preferably 0.1 to 7 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin.
(有機溶剤)
 本発明の硬化性樹脂組成物には、組成物の調製や、基板やキャリアフィルムに塗布する際の粘度調整等の目的で、有機溶剤を含有させることができる。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤など、公知慣用の有機溶剤が使用できる。これらの有機溶剤は、単独で、または二種類以上組み合わせて用いることができる。
(Organic solvent)
The curable resin composition of the present invention can contain an organic solvent for the purpose of preparing the composition and adjusting the viscosity when applied to a substrate or a carrier film. Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether , Glycol ethers such as dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butylcarby Tall acetate, propylene glycol monomethyl ether acetate, dip Propylene glycol monomethyl ether acetate, esters such as propylene carbonate; octane, aliphatic hydrocarbons decane; petroleum ether, petroleum naphtha, and petroleum solvents such as solvent naphtha, organic solvents conventionally known can be used. These organic solvents can be used alone or in combination of two or more.
(その他の任意成分)
 さらに、本発明の硬化性樹脂組成物には、電子材料の分野において公知慣用の他の添加剤を配合してもよい。他の添加剤としては、熱重合禁止剤、紫外線吸収剤、シランカップリング剤、可塑剤、難燃剤、帯電防止剤、老化防止剤、抗菌・防黴剤、消泡剤、レベリング剤、増粘剤、密着性付与剤、チキソ性付与剤、光開始助剤、増感剤、熱可塑性樹脂、有機フィラー、離型剤、表面処理剤、分散剤、分散助剤、表面改質剤、安定剤、蛍光体、AB型またはABA型のブロック共重合体等が挙げられる。
(Other optional ingredients)
Furthermore, you may mix | blend the other well-known and usual additive in the field | area of an electronic material with the curable resin composition of this invention. Other additives include thermal polymerization inhibitors, UV absorbers, silane coupling agents, plasticizers, flame retardants, antistatic agents, anti-aging agents, antibacterial / antifungal agents, antifoaming agents, leveling agents, thickening agents Agent, adhesion imparting agent, thixotropic agent, photoinitiator aid, sensitizer, thermoplastic resin, organic filler, mold release agent, surface treatment agent, dispersant, dispersion aid, surface modifier, stabilizer , Phosphor, AB type or ABA type block copolymer, and the like.
 本発明の硬化性樹脂組成物は、ドライフィルム化して用いても液状として用いても良い。液状として用いる場合は、1液性でも2液性以上でもよい。 The curable resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more.
 次に、本発明のドライフィルムは、キャリアフィルム上に、本発明の硬化性樹脂組成物を塗布、乾燥させることにより得られる樹脂層を有する。ドライフィルムを形成する際には、まず、本発明の硬化性樹脂組成物を上記有機溶剤で希釈して適切な粘度に調整した上で、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等により、キャリアフィルム上に均一な厚さに塗布する。その後、塗布された組成物を、通常、40~130℃の温度で1~30分間乾燥することで、樹脂層を形成することができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、3~150μm、好ましくは5~60μmの範囲で適宜選択される。 Next, the dry film of the present invention has a resin layer obtained by applying and drying the curable resin composition of the present invention on a carrier film. When forming a dry film, first, the curable resin composition of the present invention is diluted with the above organic solvent to adjust to an appropriate viscosity, and then a comma coater, a blade coater, a lip coater, a rod coater, and a squeeze coater. Apply a uniform thickness on the carrier film using a reverse coater, transfer roll coater, gravure coater, spray coater or the like. Thereafter, the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer. The coating film thickness is not particularly limited, but in general, the film thickness after drying is appropriately selected in the range of 3 to 150 μm, preferably 5 to 60 μm.
 キャリアフィルムとしては、プラスチックフィルムが用いられ、例えば、ポリエチレンテレフタレート(PET)等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等を用いることができる。キャリアフィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。より好ましくは15~130μmの範囲である。 As the carrier film, a plastic film is used. For example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used. The thickness of the carrier film is not particularly limited, but is generally appropriately selected within the range of 10 to 150 μm. More preferably, it is in the range of 15 to 130 μm.
 キャリアフィルム上に本発明の硬化性樹脂組成物からなる樹脂層を形成した後、樹脂層の表面に塵が付着することを防ぐ等の目的で、さらに、樹脂層の表面に、剥離可能なカバーフィルムを積層することが好ましい。剥離可能なカバーフィルムとしては、例えば、ポリエチレンフィルムやポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができる。カバーフィルムとしては、カバーフィルムを剥離するときに、樹脂層とキャリアフィルムとの接着力よりも小さいものであればよい。 After the resin layer made of the curable resin composition of the present invention is formed on the carrier film, a cover that can be peeled off on the surface of the resin layer for the purpose of preventing dust from adhering to the surface of the resin layer. It is preferable to laminate films. As the peelable cover film, for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper, or the like can be used. As a cover film, what is necessary is just a thing smaller than the adhesive force of a resin layer and a carrier film when peeling a cover film.
 なお、本発明においては、上記カバーフィルム上に本発明の硬化性樹脂組成物を塗布、乾燥させることにより樹脂層を形成して、その表面にキャリアフィルムを積層するものであってもよい。すなわち、本発明においてドライフィルムを製造する際に本発明の硬化性樹脂組成物を塗布するフィルムとしては、キャリアフィルムおよびカバーフィルムのいずれを用いてもよい。 In the present invention, the resin layer may be formed by applying and drying the curable resin composition of the present invention on the cover film, and a carrier film may be laminated on the surface. That is, as the film to which the curable resin composition of the present invention is applied when producing a dry film in the present invention, either a carrier film or a cover film may be used.
 本発明のプリント配線板は、本発明の硬化性樹脂組成物、または、ドライフィルムの樹脂層から得られる硬化物を有するものである。本発明のプリント配線板の製造方法としては、例えば、本発明の硬化性樹脂組成物を、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。また、ドライフィルムの場合、ラミネーター等により樹脂層が基材と接触するように基材上に貼り合わせた後、キャリアフィルムを剥がすことにより、基材上に樹脂層を形成する。 The printed wiring board of the present invention has a curable resin composition of the present invention or a cured product obtained from a resin layer of a dry film. As a method for producing a printed wiring board of the present invention, for example, the curable resin composition of the present invention is adjusted to a viscosity suitable for a coating method using the organic solvent, and a dip coating method is performed on a substrate. After applying by a flow coating method, roll coating method, bar coater method, screen printing method, curtain coating method or the like, the organic solvent contained in the composition is volatilized and dried (temporary drying) at a temperature of 60 to 100 ° C. Thus, a tack-free resin layer is formed. Moreover, in the case of a dry film, after bonding together on a base material so that a resin layer may contact a base material with a laminator etc., a resin layer is formed on a base material by peeling a carrier film.
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキシド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、PETフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。 Examples of the base material include printed wiring boards and flexible printed wiring boards that have been previously formed with copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, glass cloth / paper epoxy. Using copper-clad laminates for high-frequency circuits using synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, etc., and copper-clad laminates of all grades (FR-4, etc.) Examples thereof include a plate, a metal substrate, a polyimide film, a PET film, a polyethylene naphthalate (PEN) film, a glass substrate, a ceramic substrate, and a wafer plate.
 本発明の硬化性樹脂組成物を塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。 Volatile drying performed after the application of the curable resin composition of the present invention is performed in a dryer using a hot air circulation drying furnace, an IR furnace, a hot plate, a convection oven or the like (equipped with a heat source of an air heating method using steam). The method can be carried out using a method in which hot air is brought into countercurrent contact and a method in which the hot air is blown onto the support.
 プリント配線板上に樹脂層を形成後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3質量%炭酸ソーダ水溶液)により現像して硬化物のパターンを形成する。さらに、硬化物に活性エネルギー線を照射後加熱硬化(例えば、100~220℃)、もしくは加熱硬化後活性エネルギー線を照射、または、加熱硬化のみで最終仕上げ硬化(本硬化)させることにより、密着性、硬度等の諸特性に優れた硬化膜を形成する。 After forming a resin layer on the printed wiring board, it is selectively exposed with active energy rays through a photomask having a predetermined pattern, and the unexposed portion is diluted with a dilute alkaline aqueous solution (for example, 0.3 to 3 mass% sodium carbonate aqueous solution). ) To form a cured product pattern. Further, the cured product is irradiated with active energy rays and then heat-cured (for example, 100 to 220 ° C.), irradiated with active energy rays after heat-curing, or is subjected to final finish curing (main curing) only by heat-curing. A cured film having excellent properties such as properties and hardness is formed.
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には10~1000mJ/cm、好ましくは20~800mJ/cmの範囲内とすることができる。 The exposure apparatus used for the active energy ray irradiation may be any apparatus that irradiates ultraviolet rays in the range of 350 to 450 nm, equipped with a high-pressure mercury lamp lamp, an ultra-high pressure mercury lamp lamp, a metal halide lamp, a mercury short arc lamp, etc. Furthermore, a direct drawing apparatus (for example, a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer) can also be used. The lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm. The exposure amount for image formation varies depending on the film thickness and the like, but can be generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
 上記現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。 The developing method can be a dipping method, a shower method, a spray method, a brush method, etc., and as a developing solution, potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, Alkaline aqueous solutions such as ammonia and amines can be used.
 本発明の硬化性樹脂組成物は、プリント配線板上に硬化膜を形成するために好適に使用され、より好適には、永久被膜を形成するために使用され、さらに好適には、ソルダーレジスト、層間絶縁層、カバーレイを形成するために使用される。また、高度な信頼性が求められるファインピッチの配線パターンを備えるプリント配線板、例えばパッケージ基板、特にFC-BGA用の永久被膜(特にソルダーレジスト)の形成に好適である。特に、本発明の硬化性樹脂組成物によれば、高温負荷がかかる時におけるクラック耐性に優れた硬化物を得ることができることから、車載用途等の高温状態に晒される用途に好適である。 The curable resin composition of the present invention is preferably used for forming a cured film on a printed wiring board, more preferably used for forming a permanent film, and more preferably a solder resist, Used to form interlayer insulation layers and coverlays. Further, it is suitable for forming a printed wiring board having a fine pitch wiring pattern which requires a high degree of reliability, such as a package substrate, particularly a permanent film (particularly a solder resist) for FC-BGA. In particular, according to the curable resin composition of the present invention, a cured product having excellent crack resistance when a high temperature load is applied can be obtained, which is suitable for applications exposed to high temperature conditions such as in-vehicle applications.
 以下、本発明を、実施例を用いてより詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. In the following description, “parts” and “%” are all based on mass unless otherwise specified.
[アルカリ可溶性樹脂A-1の合成]
 温度計、窒素導入装置兼アルキレンオキシド導入装置および撹拌装置を備えたオートクレーブに、ノボラック型クレゾール樹脂(商品名「ショーノールCRG951」、昭和高分子社製、OH当量:119.4)119.4部、水酸化カリウム1.19部およびトルエン119.4部を導入し、撹拌しつつ系内を窒素置換し、加熱昇温した。次に、プロピレンオキシド63.8部を徐々に滴下し、125~132℃、0~4.8kg/cmで16時間反応させた。その後、室温まで冷却し、この反応溶液に89%リン酸1.56部を添加混合して水酸化カリウムを中和し、不揮発分62.1%、水酸基価が182.2mgKOH/g(307.9g/eq.)であるノボラック型クレゾール樹脂のプロピレンオキシド反応溶液を得た。これは、フェノール性水酸基1当量当りプロピレンオキシドが平均1.08モル付加したものであった。
 得られたノボラック型クレゾール樹脂のプロピレンオキシド反応溶液293.0部、アクリル酸43.2部、メタンスルホン酸11.53部、メチルハイドロキノン0.18部およびトルエン252.9部を、撹拌機、温度計および空気吹き込み管を備えた反応器に導入し、空気を10ml/分の速度で吹き込み、撹拌しながら、110℃で12時間反応させた。反応により生成した水は、トルエンとの共沸混合物として、12.6部の水が留出した。その後、室温まで冷却し、得られた反応溶液を15%水酸化ナトリウム水溶液35.35部で中和し、次いで水洗した。その後、エバポレーターにてトルエンをジエチレングリコールモノエチルエーテルアセテート118.1部で置換しつつ留去し、ノボラック型アクリレート樹脂溶液を得た。次に、得られたノボラック型アクリレート樹脂溶液332.5部およびトリフェニルホスフィン1.22部を、撹拌器、温度計および空気吹き込み管を備えた反応器に導入し、空気を10ml/分の速度で吹き込み、撹拌しながら、テトラヒドロフタル酸無水物60.8部を徐々に加え、95~101℃で6時間反応させ、冷却後、取り出した。このようにして、不揮発分65%、固形物の酸価87.7mgKOH/gのカルボキシル基含有感光性樹脂A-1の溶液を得た。
[Synthesis of Alkali-soluble Resin A-1]
119.4 parts of a novolac-type cresol resin (trade name “Shonol CRG951”, manufactured by Showa Polymer Co., Ltd., OH equivalent: 119.4) in an autoclave equipped with a thermometer, a nitrogen introduction device / alkylene oxide introduction device, and a stirring device. Then, 1.19 parts of potassium hydroxide and 119.4 parts of toluene were introduced, the inside of the system was replaced with nitrogen while stirring, and the temperature was increased by heating. Next, 63.8 parts of propylene oxide was gradually added dropwise and reacted at 125 to 132 ° C. and 0 to 4.8 kg / cm 2 for 16 hours. Thereafter, the reaction solution was cooled to room temperature, and 1.56 parts of 89% phosphoric acid was added to and mixed with the reaction solution to neutralize potassium hydroxide. The nonvolatile content was 62.1%, and the hydroxyl value was 182.2 mgKOH / g (307. 9 g / eq.) Of a novolak-type cresol resin propylene oxide reaction solution. This was an average of 1.08 mol of propylene oxide added per equivalent of phenolic hydroxyl group.
293.0 parts of a propylene oxide reaction solution of the obtained novolac-type cresol resin, 43.2 parts of acrylic acid, 11.53 parts of methanesulfonic acid, 0.18 part of methylhydroquinone and 252.9 parts of toluene were mixed with a stirrer and a temperature. It was introduced into a reactor equipped with a meter and an air blowing tube, and air was blown at a rate of 10 ml / min and reacted at 110 ° C. for 12 hours while stirring. 12.6 parts of water was distilled from the water produced by the reaction as an azeotrope with toluene. Thereafter, the reaction solution was cooled to room temperature, neutralized with 35.35 parts of a 15% aqueous sodium hydroxide solution, and then washed with water. Thereafter, toluene was distilled off while substituting 118.1 parts of diethylene glycol monoethyl ether acetate with an evaporator to obtain a novolak acrylate resin solution. Next, 332.5 parts of the obtained novolak acrylate resin solution and 1.22 parts of triphenylphosphine were introduced into a reactor equipped with a stirrer, a thermometer and an air blowing tube, and air was supplied at a rate of 10 ml / min. With stirring, 60.8 parts of tetrahydrophthalic anhydride was gradually added, reacted at 95 to 101 ° C. for 6 hours, cooled and taken out. In this way, a solution of a carboxyl group-containing photosensitive resin A-1 having a nonvolatile content of 65% and a solid acid value of 87.7 mgKOH / g was obtained.
[アルカリ可溶性樹脂A-2の合成]
 ジエチレングリコールモノエチルエーテルアセテート700gにオルソクレゾールノボラック型エポキシ樹脂(DIC社製、EPICLON N-695、軟化点95℃、エポキシ当量214、平均反応性基数7.6)1070g(グリシジル基数(芳香環総数):5.0モル)、アクリル酸360g(5.0モル)、およびハイドロキノン1.5gを仕込み、100℃に加熱攪拌し、均一溶解した。
 次いで、トリフェニルホスフィン4.3gを仕込み、110℃に加熱して2時間反応後、更にトリフェニルホスフィン1.6gを追加し、120℃に昇温してさらに12時間反応を行った。得られた反応液に芳香族系炭化水素(ソルベッソ150)562g、テトラヒドロ無水フタル酸684g(4.5モル)を仕込み、110℃で4時間反応を行った。さらに、得られた反応液にグリシジルメタクリレート142.0g(1.0モル)を仕込み、115℃で4時間反応を行い、カルボキシル基含有感光性樹脂溶液(A-2)を得た。
 このようにして得られた感光性樹脂溶液(A-2)の固形分は65%、固形分の酸価は87mgKOH/gであった。
[Synthesis of alkali-soluble resin A-2]
700 g of diethylene glycol monoethyl ether acetate and 1070 g of orthocresol novolac type epoxy resin (manufactured by DIC, EPICLON N-695, softening point 95 ° C., epoxy equivalent 214, average reactive group number 7.6): number of glycidyl groups (total number of aromatic rings): 5.0 mol), 360 g (5.0 mol) of acrylic acid, and 1.5 g of hydroquinone were charged, heated and stirred at 100 ° C., and uniformly dissolved.
Next, 4.3 g of triphenylphosphine was charged, heated to 110 ° C. and reacted for 2 hours, and further 1.6 g of triphenylphosphine was added, and the temperature was raised to 120 ° C. and reacted for another 12 hours. To the obtained reaction solution, 562 g of aromatic hydrocarbon (Sorvesso 150) and 684 g (4.5 mol) of tetrahydrophthalic anhydride were charged and reacted at 110 ° C. for 4 hours. Furthermore, 142.0 g (1.0 mol) of glycidyl methacrylate was added to the obtained reaction liquid, and the reaction was performed at 115 ° C. for 4 hours to obtain a carboxyl group-containing photosensitive resin solution (A-2).
The photosensitive resin solution (A-2) thus obtained had a solid content of 65% and an acid value of the solid content of 87 mgKOH / g.
[シルセスキオキサン骨格を有するエポキシ樹脂の合成B-1]
 γ-グリシドキシプロピルトリメトキシシラン90.0部、フェニルトリメトキシシラン3.0部、メチルトリメトキシシラン2.0部、メチルイソブチルケトン93部を反応容器に仕込み、80℃に昇温した。昇温後、0.1重量%水酸化カリウム水溶液21.6部を30分間かけて連続的に滴下した。滴下終了後、生成するメタノールを除去しながら80℃にて5時間反応させた。反応終了後、洗浄液が中性になるまで水洗を繰り返した。次いで減圧下で溶媒を除去することによりシルセスキオキサン骨格を有するエポキシ樹脂69部を得た。得られたエポキシ樹脂のエポキシ当量は176g/eq.、重量平均分子量は2200であった。
[Synthesis of epoxy resin having silsesquioxane skeleton B-1]
90.0 parts of γ-glycidoxypropyltrimethoxysilane, 3.0 parts of phenyltrimethoxysilane, 2.0 parts of methyltrimethoxysilane, and 93 parts of methyl isobutyl ketone were charged into a reaction vessel, and the temperature was raised to 80 ° C. After the temperature increase, 21.6 parts of a 0.1 wt% aqueous potassium hydroxide solution was continuously added dropwise over 30 minutes. After completion of the dropping, the reaction was carried out at 80 ° C. for 5 hours while removing the produced methanol. After completion of the reaction, washing with water was repeated until the washing solution became neutral. Next, 69 parts of an epoxy resin having a silsesquioxane skeleton was obtained by removing the solvent under reduced pressure. The epoxy equivalent of the obtained epoxy resin is 176 g / eq. The weight average molecular weight was 2200.
[表面処理された無機充填剤(シリカ)E-1の調整]
 球状シリカ(デンカ社製SFP-30M、平均粒径:600nm)70gと、溶剤としてPMA(プロピレングリコールモノメチルエーテルアセテート)28gと、メタクリル基を有するシランカップリング剤(信越化学工業社製KBM-503)2gとを均一分散させて、シリカ溶剤分散品E-1を得た。
[Preparation of surface-treated inorganic filler (silica) E-1]
70 g of spherical silica (SFP-30M manufactured by Denka Co., Ltd., average particle diameter: 600 nm), 28 g of PMA (propylene glycol monomethyl ether acetate) as a solvent, and a silane coupling agent having a methacryl group (KBM-503 manufactured by Shin-Etsu Chemical Co., Ltd.) 2 g was uniformly dispersed to obtain a silica solvent dispersion E-1.
[表面処理された無機充填剤(シリカ)E-2の調整]
 球状シリカ(デンカ社製SFP-20M、平均粒径:300nm)70gと、溶剤としてPMA(プロピレングリコールモノメチルエーテルアセテート)28gと、エポキシ基を有するシランカップリング剤(信越化学工業社製KBM-403)4gとを均一分散させて、シリカ溶剤分散品E-2を得た。
[Preparation of surface-treated inorganic filler (silica) E-2]
70 g of spherical silica (SFP-20M manufactured by Denka Co., Ltd., average particle size: 300 nm), 28 g of PMA (propylene glycol monomethyl ether acetate) as a solvent, and a silane coupling agent having an epoxy group (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) 4 g was uniformly dispersed to obtain a silica solvent dispersion E-2.
[実施例1~17、比較例1~5]
 上記の樹脂溶液(ワニス)を、表1~3に示す種々の成分とともに表1~3に示す割合(質量部)にて配合し、攪拌機にて予備混合した後、3本ロールミルで混練し、硬化性樹脂組成物を調製した。
[Examples 1 to 17, Comparative Examples 1 to 5]
The above resin solution (varnish) was blended together with various components shown in Tables 1 to 3 in proportions (parts by mass) shown in Tables 1 to 3, premixed with a stirrer, and then kneaded with a three-roll mill, A curable resin composition was prepared.
<ドライフィルムの作製>
 上記のようにして得られた硬化性樹脂組成物にメチルエチルケトン300gを加えて希釈し、攪拌機で15分間撹拌して塗工液を得た。塗工液を、算術表面粗さRa150nmである厚さ38μmのポリエチレンテレフタレートフィルム(ユニチカ社製エンブレットPTH-25)上に塗布し、通常、80℃の温度で15分間乾燥し、厚み20μmの感光性樹脂層を形成した。次いで、感光性樹脂層上に、厚み18μmのポリプロピレンフィルム(フタムラ社製OPP-FOA)を貼り合わせて、感光性ドライフィルムを作製した。
<Production of dry film>
The curable resin composition obtained as described above was diluted by adding 300 g of methyl ethyl ketone, and stirred for 15 minutes with a stirrer to obtain a coating solution. The coating solution is applied onto a 38 μm thick polyethylene terephthalate film (Embret PTH-25 manufactured by Unitika Co., Ltd.) having an arithmetic surface roughness Ra of 150 nm, usually dried at a temperature of 80 ° C. for 15 minutes, and a photosensitive material having a thickness of 20 μm. A functional resin layer was formed. Next, a 18 μm-thick polypropylene film (OPP-FOA manufactured by Futamura Co., Ltd.) was bonded onto the photosensitive resin layer to produce a photosensitive dry film.
<硬化塗膜の作製>
 ロープロファイルの銅箔上に、上記のようにして得られた感光性ドライフィルムからポリエチレンフィルムを剥離して、銅箔表面側に、感光性ドライフィルムの感光性樹脂層を貼り合わせ、続いて、真空ラミネーター(名機製作所製 MVLP-500)を用いて加圧度:0.8MPa、70℃、1分、真空度:133.3Paの条件で加熱ラミネートして、基板と感光性樹脂層とを密着させた。
 次に、高圧水銀灯(ショートアークランプ)搭載の露光装置を用いて、感光性ドライフィルム上から露光(露光量:400~600mJ/cm)した後、感光性ドライフィルムからポリエチレンテレフタレートフィルムを剥離し、感光性樹脂層を露出させた。その後、1重量%NaCO水溶液を用いて、30℃、スプレー圧2kg/cmの条件で60秒間現像を行い、所定のレジストパターンを有する樹脂層を形成した。続いて、高圧水銀灯を備えたUVコンベア炉にて1J/cmの露光量で樹脂層に照射した後、160℃で60分加熱して樹脂層を完全硬化させて硬化塗膜を作製した。
<Preparation of cured coating film>
On the low profile copper foil, the polyethylene film is peeled from the photosensitive dry film obtained as described above, and the photosensitive resin layer of the photosensitive dry film is bonded to the copper foil surface side. Using a vacuum laminator (MVLP-500 manufactured by Meiki Seisakusho Co., Ltd.), the substrate and the photosensitive resin layer were laminated by heating and laminating under conditions of pressure: 0.8 MPa, 70 ° C., 1 minute, and vacuum: 133.3 Pa. Adhered.
Next, using an exposure apparatus equipped with a high-pressure mercury lamp (short arc lamp), the photosensitive dry film is exposed (exposure amount: 400 to 600 mJ / cm 2 ), and then the polyethylene terephthalate film is peeled off from the photosensitive dry film. The photosensitive resin layer was exposed. Thereafter, development was performed for 60 seconds under conditions of 30 ° C. and a spray pressure of 2 kg / cm 2 using a 1 wt% Na 2 CO 3 aqueous solution to form a resin layer having a predetermined resist pattern. Subsequently, the resin layer was irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, and then heated at 160 ° C. for 60 minutes to completely cure the resin layer to prepare a cured coating film.
<Tanδ、Tg、貯蔵弾性率の評価>
 上記のようにして得られた硬化塗膜を銅箔より剥離し、測定サイズ(5mm×10mmのサイズ)が得られるようにサンプルを切り出し、日立ハイテック社製DMS6100にて25℃から300℃まで昇温5℃/分、周波数1Hz、引張り正弦波モードで測定した。
 Tanδは温度測定領域での最大値をとり、その時の温度をTgとし、貯蔵弾性率(E’)は、25℃(E’1)および150℃(E’2)のデータを取った。
 貯蔵弾性率(E’)の変化率は、上記2点の貯蔵弾性率を用い、(E’1-E’2)/E’1より算出して得た。
<Evaluation of Tan δ, Tg, storage elastic modulus>
The cured coating film obtained as described above was peeled off from the copper foil, and a sample was cut out to obtain a measurement size (5 mm × 10 mm size), and the temperature was increased from 25 ° C. to 300 ° C. with DMS6100 manufactured by Hitachi High-Tech. Measurement was performed at a temperature of 5 ° C./minute, a frequency of 1 Hz, and a tensile sine wave mode.
Tan δ took the maximum value in the temperature measurement region, the temperature at that time was Tg, and the storage elastic modulus (E ′) was 25 ° C. (E′1) and 150 ° C. (E′2).
The change rate of the storage elastic modulus (E ′) was obtained by calculating from (E′1−E′2) / E′1 using the storage elastic modulus at the two points.
<CTEの評価>
 上記のようにして得られた硬化塗膜を銅箔より剥離し、測定サイズ(3mm×10mmのサイズ)が得られるようにサンプルを切り出し、日立ハイテック社製TMA6100にてCTEを測定した。測定条件は、試験荷重5g、サンプルを10℃/分の昇温速度で室温より昇温することを2回繰り返し、2回目におけるTg以上の線膨張係数(CTE(α2))を得た。
<Evaluation of CTE>
The cured coating film obtained as described above was peeled off from the copper foil, a sample was cut out to obtain a measurement size (3 mm × 10 mm size), and CTE was measured with TMA6100 manufactured by Hitachi High-Tech. The measurement conditions were a test load of 5 g, and heating the sample from room temperature at a rate of 10 ° C./min was repeated twice to obtain a linear expansion coefficient (CTE (α2)) of Tg or more in the second time.
<クラック耐性(TCT耐性)>
 C4接続する250μmバンプピッチの回路形成された基板(50mm×50mm×0.4mmt)表面を化学研磨し、上記のようにして得られた感光性ドライフィルムからポリエチレンフィルムを剥離して、表面研磨された側の面に、感光性ドライフィルムの感光性樹脂層を貼り合わせ、続いて、真空ラミネーター(名機製作所製 MVLP-500)を用いて加圧度:0.8MPa、70℃、1分、真空度:133.3Paの条件で加熱ラミネートして、基板と感光性樹脂層とを密着させた。次に、高圧水銀灯(ショートアークランプ)搭載の露光装置を用いて、直径70μmのネガパターンを有する露光マスクを介して、感光性ドライフィルム上から露光した後、感光性ドライフィルムからポリエチレンテレフタレートフィルムを剥離し、感光性樹脂層を露出させた。その後、1重量%NaCO水溶液を用いて、30℃、スプレー圧2kg/cmの条件で60秒間現像を行い、所定のレジストパターンを有する樹脂層を形成した。続いて、高圧水銀灯を備えたUVコンベア炉にて1J/cmの露光量で樹脂層に照射した後、160℃で60分加熱して樹脂層を完全硬化させて硬化被膜を形成し、基板上に硬化被膜が設けられたTST評価基板を作製した。
 次に、C4工法により20mm角のチップを実装した後、プレコンディショニングとして125℃24時間で加熱処理し、60℃湿度60%48時間で加湿処理し、リフロー260℃を3回施した。得られた基板を-65℃と175℃の間の温度サイクルが行われる冷熱サイクル機に入れ、TCT(Thermal Cycle Test)を行った。そして、300サイクル時、600サイクル時および800サイクル時の外観を観察した。
 ◎◎:1000サイクル以上で異常なし。
 ◎:800サイクル以上で異常なし。
 ○:800サイクルでクラック発生。
 △:600サイクルでクラック発生。
 ×:300サイクルでクラック発生。
<Crack resistance (TCT resistance)>
The surface of a circuit board (50 mm × 50 mm × 0.4 mmt) with a 250 μm bump pitch to be connected to C4 is chemically polished, the polyethylene film is peeled off from the photosensitive dry film obtained as described above, and the surface is polished. Next, the photosensitive resin layer of the photosensitive dry film was bonded to the surface on the other side, and subsequently, using a vacuum laminator (MVLP-500, manufactured by Meiki Seisakusho), the degree of pressure was 0.8 MPa, 70 ° C., 1 minute, Vacuum lamination was performed under the condition of 133.3 Pa, and the substrate and the photosensitive resin layer were brought into close contact with each other. Next, using an exposure apparatus equipped with a high-pressure mercury lamp (short arc lamp), after exposing from the photosensitive dry film through an exposure mask having a negative pattern having a diameter of 70 μm, a polyethylene terephthalate film is formed from the photosensitive dry film. It peeled and the photosensitive resin layer was exposed. Thereafter, development was performed for 60 seconds under conditions of 30 ° C. and a spray pressure of 2 kg / cm 2 using a 1 wt% Na 2 CO 3 aqueous solution to form a resin layer having a predetermined resist pattern. Subsequently, the resin layer was irradiated with an exposure amount of 1 J / cm 2 in a UV conveyor furnace equipped with a high-pressure mercury lamp, and then heated at 160 ° C. for 60 minutes to completely cure the resin layer to form a cured film. A TST evaluation substrate provided with a cured coating thereon was produced.
Next, after mounting a 20 mm square chip by the C4 method, heat treatment was performed at 125 ° C. for 24 hours as preconditioning, and humidification treatment was performed at 60 ° C. and humidity 60% for 48 hours, and reflow 260 ° C. was performed three times. The obtained substrate was put into a thermal cycle machine in which a temperature cycle between −65 ° C. and 175 ° C. was performed, and TCT (Thermal Cycle Test) was performed. The appearance at 300 cycles, 600 cycles and 800 cycles was observed.
A: No abnormality after 1000 cycles.
A: No abnormality after 800 cycles.
○: Cracks occurred at 800 cycles.
Δ: Cracks occurred at 600 cycles.
X: Cracks occurred in 300 cycles.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

*1:上記で合成したカルボキシル基含有樹脂A-1(アルカリ可溶性基当量:701.3g/eq.)
*2:上記で合成したカルボキシル基含有樹脂A-2(アルカリ可溶性基当量:579g/eq.)
*3:日本化薬社製のPCR-1170H(フェノールノボラック型エポキシ樹脂を出発原料とするカルボキシル基含有樹脂)(アルカリ可溶性基当量:656g/eq.)
*4:上記で合成したシルセスキオキサン骨格を有するエポキシ樹脂B-1(エポキシ当量:176g/eq.、2官能、軟化点:-50℃)
*5:DIC社製エピクロンN-740(フェノールノボラック型エポキシ樹脂、エポキシ当量:180g/eq.、3官能、軟化点:30℃)
*6:DIC社製エピクロンHP-7200H(ジシクロペンタジエン骨格を有するエポキシ樹脂、エポキシ当量:280g/eq.、2官能、軟化点:75~90℃)
*7:DIC社製エピクロンHP-820(アルキルフェノール型エポキシ樹脂、エポキシ当量:225g/eq.、2官能、液状)
*8:新日鉄住金化学社製エポトートYDC-1312(ハイドロキノン型エポキシ樹脂、エポキシ当量:178g/eq.、2官能、軟化点:140℃)
*9:新日鉄住金化学社製エポトートYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキシ当量:195g/eq.、2官能、軟化点:80℃)
*10:DIC社製エピクロン152(テトラブロモビスフェノールA型エポキシ樹脂、エポキシ当量:360g/eq.、2官能、軟化点:56~66℃)
*11:三菱化学社製jER1001(ビスフェノールA型エポキシ樹脂、エポキシ当量:475g/eq.、2官能、軟化点:64℃)
*12:四国化成社製2PHZ(2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
*13:ジシアンジアミド
*14:日本化薬社製DPHA(ジペンタエリスリトールヘキサアクリレート)
*15:BASFジャパン社製イルガキュアTPO(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド)
*16:BASFジャパン社製イルガキュアOXE02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)
*17:上記で調整した表面処理されたシリカ溶剤分散品E-1(反応性基としてメタクリル基を有するシリカ)(シリカ含有量70質量%(固形分))(平均粒径600nm)(表中の数値は固形分量を示す)
*18:上記で調整した表面処理されたシリカ溶剤分散品E-2(反応性基としてエポキシ基を有するシリカ)(シリカ含有量68.6質量%(固形分))(平均粒径300nm)(表中の数値は固形分量を示す)
*19:アドマテックス社製アドマナノYA050C-SV2(反応性基としてビニル基を有するシリカ)(平均粒径50nm)
*20:アドマテックス社製アドマファインSO-C2(球状シリカ、平均粒径0.5μm)
*21:アドマテックス社製アドマファインSO-C5(球状シリカ、平均粒径1.5μm)
*22:日本化薬社製NC-3000L(ビフェニレン型エポキシ樹脂、エポキシ当量:273g/eq.、2官能、軟化点:52℃)
*23:DIC社製EXA-7241(トリフェニルメタン型エポキシ樹脂、エポキシ当量:168g/eq.、3官能、軟化点:70℃)、
*24:DIC社製EPICLON-N660(クレゾールノボラック型エポキシ樹脂、エポキシ当量:210g/eq.、2官能、軟化点:61~69℃)
Figure JPOXMLDOC01-appb-T000004

* 1: Carboxyl group-containing resin A-1 synthesized above (alkali-soluble group equivalent: 701.3 g / eq.)
* 2: Carboxyl group-containing resin A-2 synthesized above (alkali-soluble group equivalent: 579 g / eq.)
* 3: PCR-1170H (carboxyl group-containing resin starting from phenol novolac type epoxy resin) manufactured by Nippon Kayaku Co., Ltd. (alkali-soluble group equivalent: 656 g / eq.)
* 4: Epoxy resin B-1 having a silsesquioxane skeleton synthesized above (epoxy equivalent: 176 g / eq., Bifunctional, softening point: −50 ° C.)
* 5: Epicron N-740 manufactured by DIC (phenol novolac type epoxy resin, epoxy equivalent: 180 g / eq., Trifunctional, softening point: 30 ° C.)
* 6: Epicron HP-7200H manufactured by DIC (epoxy resin having a dicyclopentadiene skeleton, epoxy equivalent: 280 g / eq., Bifunctional, softening point: 75 to 90 ° C.)
* 7: Epicron HP-820 manufactured by DIC (alkylphenol type epoxy resin, epoxy equivalent: 225 g / eq., Bifunctional, liquid)
* 8: Epototo YDC-1312 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. (hydroquinone type epoxy resin, epoxy equivalent: 178 g / eq., Bifunctional, softening point: 140 ° C.)
* 9: Epototo YSLV-80XY manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. (bisphenol F type epoxy resin, epoxy equivalent: 195 g / eq., Bifunctional, softening point: 80 ° C.)
* 10: Epicron 152 (Tetrabromobisphenol A type epoxy resin, epoxy equivalent: 360 g / eq., Bifunctional, softening point: 56 to 66 ° C.) manufactured by DIC
* 11: jER1001 manufactured by Mitsubishi Chemical Corporation (bisphenol A type epoxy resin, epoxy equivalent: 475 g / eq., Bifunctional, softening point: 64 ° C.)
* 12: Shikoku Chemicals 2PHZ (2-phenyl-4,5-dihydroxymethylimidazole)
* 13: Dicyandiamide * 14: DPHA (dipentaerythritol hexaacrylate) manufactured by Nippon Kayaku Co., Ltd.
* 15: Irgacure TPO (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) manufactured by BASF Japan
* 16: Irgacure OXE02 manufactured by BASF Japan Ltd. (Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (o-acetyloxime)
* 17: Surface-treated silica solvent dispersion E-1 prepared above (silica having a methacryl group as a reactive group) (silica content 70% by mass (solid content)) (average particle size 600 nm) (in the table) The numerical value indicates the solid content)
* 18: Surface-treated silica solvent dispersion E-2 prepared above (silica having an epoxy group as a reactive group) (silica content 68.6% by mass (solid content)) (average particle size 300 nm) ( (The numbers in the table indicate the solid content)
* 19: Admanex YAMANO YA050C-SV2 (silica having a vinyl group as a reactive group) (average particle size 50 nm)
* 20: Admafine SO-C2 manufactured by Admatechs (spherical silica, average particle size 0.5 μm)
* 21: Admafine SO-C5 manufactured by Admatechs (spherical silica, average particle size 1.5 μm)
* 22: Nippon Kayaku Co., Ltd. NC-3000L (biphenylene type epoxy resin, epoxy equivalent: 273 g / eq., Bifunctional, softening point: 52 ° C.)
* 23: EXA-7241 manufactured by DIC (triphenylmethane type epoxy resin, epoxy equivalent: 168 g / eq., Trifunctional, softening point: 70 ° C.)
* 24: EPICLON-N660 manufactured by DIC (cresol novolac type epoxy resin, epoxy equivalent: 210 g / eq., Bifunctional, softening point: 61 to 69 ° C.)
 上記表中に示す結果から、本発明の実施例1~17の硬化性樹脂組成物の硬化物は、クラック耐性に優れることがわかる。これに対し、比較例1~5の硬化性樹脂組成物の硬化物では、Tanδの最大値が0.15を超えており、クラック耐性を得ることができなかった。
 
From the results shown in the above table, it can be seen that the cured products of the curable resin compositions of Examples 1 to 17 of the present invention are excellent in crack resistance. In contrast, in the cured products of the curable resin compositions of Comparative Examples 1 to 5, the maximum value of Tan δ exceeded 0.15, and crack resistance could not be obtained.

Claims (11)

  1. (A)アルカリ可溶性樹脂、
    (B)熱硬化成分、
    (C)エチレン性不飽和基を有する化合物、
    (D)光重合開始剤、および、
    (E)表面処理された無機充填剤を含有する樹脂組成物であって、
     前記(E)表面処理された無機充填剤は、平均粒径100nm~1μmであり、且つ、前記(A)アルカリ可溶性樹脂、前記(B)熱硬化成分および前記(C)エチレン性不飽和基を有する化合物の少なくともいずれか1種と反応可能な反応性基を有し、
     前記(B)熱硬化成分として、エポキシ当量300g/eq.以下のエポキシ樹脂を含み、
     前記樹脂組成物から得られる厚さ40μmの硬化物において、周波数1Hz、昇温速度5℃/minの条件下で25℃~300℃まで動的粘弾性測定した場合におけるTanδの最大値が0.15以下であることを特徴とする硬化性樹脂組成物。
    (A) an alkali-soluble resin,
    (B) thermosetting component,
    (C) a compound having an ethylenically unsaturated group,
    (D) a photopolymerization initiator, and
    (E) a resin composition containing a surface-treated inorganic filler,
    The (E) surface-treated inorganic filler has an average particle diameter of 100 nm to 1 μm, and contains the (A) alkali-soluble resin, the (B) thermosetting component, and the (C) ethylenically unsaturated group. Having a reactive group capable of reacting with at least one of the compounds having
    As said (B) thermosetting component, epoxy equivalent 300g / eq. Including the following epoxy resin,
    In a cured product having a thickness of 40 μm obtained from the resin composition, the maximum value of Tan δ in a dynamic viscoelasticity measurement from 25 ° C. to 300 ° C. under a condition of a frequency of 1 Hz and a temperature increase rate of 5 ° C./min is 0. A curable resin composition, which is 15 or less.
  2.  前記エポキシ当量300g/eq.以下のエポキシ樹脂として、(B-1)軟化点40℃以下の2官能以上のエポキシ樹脂と(B-2)軟化点40℃を超える2官能以上のエポキシ樹脂を含むことを特徴とする請求項1記載の硬化性樹脂組成物。 The epoxy equivalent 300 g / eq. The following epoxy resin includes (B-1) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower and (B-2) a bifunctional or higher functional epoxy resin having a softening point of 40 ° C. or lower. The curable resin composition according to 1.
  3.  前記(C)エチレン性不飽和基を有する化合物の配合量が、前記(A)アルカリ可溶性樹脂100質量部に対し20質量部未満であることを特徴とする請求項1記載の硬化性樹脂組成物。 2. The curable resin composition according to claim 1, wherein the compounding amount of the compound (C) having an ethylenically unsaturated group is less than 20 parts by mass with respect to 100 parts by mass of the (A) alkali-soluble resin. .
  4.  前記(E)表面処理された無機充填剤の配合量が、硬化性樹脂組成物の固形分中で35質量%以上であることを特徴とする請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the amount of the (E) surface-treated inorganic filler is 35% by mass or more in the solid content of the curable resin composition.
  5.  前記硬化物の周波数1Hz、昇温速度5℃/minの条件下で25℃~300℃まで動的粘弾性測定した場合における、150℃の貯蔵弾性率が1GPa以上であり、且つ、25℃~150℃までの貯蔵弾性率の変化率が70%以内であることを特徴とする請求項1記載の硬化性樹脂組成物。 When the dynamic viscoelasticity measurement is performed from 25 ° C. to 300 ° C. under the conditions of a frequency of 1 Hz and a heating rate of 5 ° C./min, the storage elastic modulus at 150 ° C. is 1 GPa or more and 25 ° C. to The curable resin composition according to claim 1, wherein the rate of change in storage modulus up to 150 ° C is within 70%.
  6.  前記硬化物のCTEα2が110ppm以下であることを特徴とする請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein CTEα2 of the cured product is 110 ppm or less.
  7.  前記硬化物のTgが160℃以上であることを特徴とする請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein Tg of the cured product is 160 ° C or higher.
  8.  ソルダーレジスト形成用であることを特徴とする請求項1記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, which is used for forming a solder resist.
  9.  請求項1記載の硬化性樹脂組成物をフィルムに塗布、乾燥して得られる樹脂層を有することを特徴とするドライフィルム。 A dry film comprising a resin layer obtained by applying the curable resin composition according to claim 1 to a film and drying the film.
  10.  請求項1~8のいずれか一項に記載の硬化性樹脂組成物、または、請求項9記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 A curable resin composition according to any one of claims 1 to 8, or a cured product obtained by curing the resin layer of the dry film according to claim 9.
  11.  請求項10記載の硬化物を有することを特徴とするプリント配線板。
     
    A printed wiring board comprising the cured product according to claim 10.
PCT/JP2017/013453 2016-03-31 2017-03-30 Curable resin composition, dry film, cured product and printed wiring board WO2017170958A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780018353.6A CN109073969B (en) 2016-03-31 2017-03-30 Curable resin composition, dry film, cured product, and printed wiring board
KR1020187031079A KR102369508B1 (en) 2016-03-31 2017-03-30 Curable resin composition, dry film, cured product and printed wiring board
JP2018509482A JP6967508B2 (en) 2016-03-31 2017-03-30 Curable resin composition, dry film, cured product and printed wiring board
JP2021173393A JP2022009428A (en) 2016-03-31 2021-10-22 Curable resin composition, dry film, cured article, and printed circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073297 2016-03-31
JP2016-073297 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170958A1 true WO2017170958A1 (en) 2017-10-05

Family

ID=59965940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013453 WO2017170958A1 (en) 2016-03-31 2017-03-30 Curable resin composition, dry film, cured product and printed wiring board

Country Status (5)

Country Link
JP (2) JP6967508B2 (en)
KR (1) KR102369508B1 (en)
CN (1) CN109073969B (en)
TW (2) TWI745366B (en)
WO (1) WO2017170958A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123695A1 (en) * 2016-12-28 2018-07-05 太陽インキ製造株式会社 Curable composition, base resin, curing agent, dry film, cured product, and printed wiring board
JP2018151628A (en) * 2017-03-10 2018-09-27 日本化薬株式会社 Photosensitive resin composition and cured product of the same, and article
WO2019131353A1 (en) * 2017-12-25 2019-07-04 ペルノックス株式会社 Thermosetting composition and paste
JP2019178304A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP2020052362A (en) * 2018-09-28 2020-04-02 太陽インキ製造株式会社 Production method of cured product, photosensitive resin composition used for the same, dry film, cured product and electronic component
KR20200055123A (en) * 2018-08-27 2020-05-20 고오 가가쿠고교 가부시키가이샤 Photosensitive resin composition, dry film, and printed wiring board
JP2022037501A (en) * 2020-08-25 2022-03-09 味の素株式会社 Photosensitive resin composition
JP7306343B2 (en) 2020-07-17 2023-07-11 味の素株式会社 Photosensitive resin composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316071B2 (en) * 2019-03-18 2023-07-27 太陽ホールディングス株式会社 Curable resin compositions, dry films, cured products and electronic components
WO2021182365A1 (en) * 2020-03-09 2021-09-16 リンテック株式会社 Resin composition and resin sheet
WO2023190455A1 (en) * 2022-03-29 2023-10-05 太陽ホールディングス株式会社 Photosensitive resin composition, cured product, printed circuit board, and method for producing printed circuit board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164270A (en) * 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film, cured article, and printed wiring board
WO2013022068A1 (en) * 2011-08-10 2013-02-14 日立化成工業株式会社 Photosensitive resin composition, photosensitive film, permanent resist and method for producing permanent resist
JP2013228722A (en) * 2012-03-27 2013-11-07 Taiyo Ink Mfg Ltd Fire retardant curable resin composition, dry film, fire retardant coating and print circuit board
JP2014156601A (en) * 2013-01-15 2014-08-28 Taiyo Ink Mfg Ltd Curable resin composition, dry film and cured product thereof, and printed wiring board using the same
JP2014160271A (en) * 2014-04-16 2014-09-04 Hitachi Chemical Co Ltd Photosensitive resin composition, photosensitive film, and permanent resist
JP2016038587A (en) * 2014-08-08 2016-03-22 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and printed wiring board
JP2016177174A (en) * 2015-03-20 2016-10-06 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247091B2 (en) 1997-11-28 2002-01-15 日立化成工業株式会社 Photocurable resin composition and photosensitive element using the same
CN1325532C (en) * 2002-04-15 2007-07-11 东亚合成株式会社 Actinic radiation hardenable resin composition and hardening product thereof
JP4997038B2 (en) * 2007-07-27 2012-08-08 株式会社ブリヂストン Tread for retreaded tire and retreaded tire
JP2012073601A (en) * 2010-08-31 2012-04-12 Fujifilm Corp Photosensitive composition and photosensitive film, permanent pattern, method for forming permanent pattern, and printed substrate
JP5620017B2 (en) * 2011-12-27 2014-11-05 太陽インキ製造株式会社 Dry film, laminated structure, printed wiring board, and method for producing laminated structure
KR101473556B1 (en) * 2012-03-27 2014-12-16 다이요 잉키 세이조 가부시키가이샤 Flame-retardant curable resin composition, dry film, flame-retardant coat and printed wiring board
CN104205256B (en) * 2012-03-29 2017-04-26 株式会社村田制作所 Coil component
TWI584070B (en) * 2012-04-23 2017-05-21 日立化成股份有限公司 Photosensitive resin composition, photosensitive film, permanent mask resist and method for manufacturing permanent mask resist
JP6240399B2 (en) * 2012-05-29 2017-11-29 太陽インキ製造株式会社 Photosensitive composition and printed wiring board having cured layer thereof
JP5576545B1 (en) * 2013-03-11 2014-08-20 太陽インキ製造株式会社 Photocurable resin composition, dry film and cured product thereof, and printed wiring board having cured film formed using the same
JP5572737B1 (en) * 2013-06-04 2014-08-13 太陽インキ製造株式会社 Photo-curing thermosetting resin composition, cured product, and printed wiring board
JP5660692B2 (en) * 2013-12-02 2015-01-28 太陽ホールディングス株式会社 Photosensitive dry film and laminated structure using the same
JP6799462B2 (en) * 2014-06-12 2020-12-16 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164270A (en) * 2010-02-08 2011-08-25 Taiyo Holdings Co Ltd Photocurable resin composition, dry film, cured article, and printed wiring board
WO2013022068A1 (en) * 2011-08-10 2013-02-14 日立化成工業株式会社 Photosensitive resin composition, photosensitive film, permanent resist and method for producing permanent resist
JP2013228722A (en) * 2012-03-27 2013-11-07 Taiyo Ink Mfg Ltd Fire retardant curable resin composition, dry film, fire retardant coating and print circuit board
JP2014156601A (en) * 2013-01-15 2014-08-28 Taiyo Ink Mfg Ltd Curable resin composition, dry film and cured product thereof, and printed wiring board using the same
JP2014160271A (en) * 2014-04-16 2014-09-04 Hitachi Chemical Co Ltd Photosensitive resin composition, photosensitive film, and permanent resist
JP2016038587A (en) * 2014-08-08 2016-03-22 太陽インキ製造株式会社 Curable resin composition, dry film, cured product, and printed wiring board
JP2016177174A (en) * 2015-03-20 2016-10-06 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123695A1 (en) * 2016-12-28 2018-07-05 太陽インキ製造株式会社 Curable composition, base resin, curing agent, dry film, cured product, and printed wiring board
JP2018151628A (en) * 2017-03-10 2018-09-27 日本化薬株式会社 Photosensitive resin composition and cured product of the same, and article
WO2019131353A1 (en) * 2017-12-25 2019-07-04 ペルノックス株式会社 Thermosetting composition and paste
JP6596611B1 (en) * 2017-12-25 2019-10-23 ペルノックス株式会社 Thermosetting composition and paste
JP2019178304A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
KR20200055123A (en) * 2018-08-27 2020-05-20 고오 가가쿠고교 가부시키가이샤 Photosensitive resin composition, dry film, and printed wiring board
CN111295621A (en) * 2018-08-27 2020-06-16 互应化学工业株式会社 Photosensitive resin composition, dry film and printed wiring board
JPWO2020045024A1 (en) * 2018-08-27 2020-12-17 互応化学工業株式会社 Photosensitive resin composition, dry film, and printed wiring board
JP7197924B2 (en) 2018-08-27 2022-12-28 互応化学工業株式会社 Photosensitive resin composition, dry film, and printed wiring board
KR102506139B1 (en) * 2018-08-27 2023-03-03 고오 가가쿠고교 가부시키가이샤 Photosensitive resin composition, dry film, and printed wiring board
JP2020052362A (en) * 2018-09-28 2020-04-02 太陽インキ製造株式会社 Production method of cured product, photosensitive resin composition used for the same, dry film, cured product and electronic component
JP7306343B2 (en) 2020-07-17 2023-07-11 味の素株式会社 Photosensitive resin composition
JP2022037501A (en) * 2020-08-25 2022-03-09 味の素株式会社 Photosensitive resin composition
JP7354963B2 (en) 2020-08-25 2023-10-03 味の素株式会社 Photosensitive resin composition

Also Published As

Publication number Publication date
CN109073969A (en) 2018-12-21
JPWO2017170958A1 (en) 2019-02-14
TWI745366B (en) 2021-11-11
KR20180129868A (en) 2018-12-05
JP6967508B2 (en) 2021-11-17
CN109073969B (en) 2022-09-13
TWI793795B (en) 2023-02-21
TW202204435A (en) 2022-02-01
JP2022009428A (en) 2022-01-14
TW201809028A (en) 2018-03-16
KR102369508B1 (en) 2022-03-04

Similar Documents

Publication Publication Date Title
KR102369508B1 (en) Curable resin composition, dry film, cured product and printed wiring board
JP2013522687A (en) Photocurable and thermosetting resin composition, and dry film solder resist
JP6702617B2 (en) Photocurable and thermosetting resin composition and dry film solder resist
JP6951323B2 (en) Curable resin composition, dry film, cured product and printed wiring board
JP2013539072A (en) Photosensitive resin composition, dry film solder resist and circuit board
JP2017003967A (en) Alkali developable resin composition, dry film, cured article and printed wiring board
KR102167486B1 (en) Curable resin composition, dry film, cured product and printed wiring board
JPWO2020066601A1 (en) Curable resin composition, dry film, cured product, printed wiring board and electronic components
JP2020166207A (en) Curable resin composition, dry film, cured product and printed wiring board
JP2018173609A (en) Curable resin composition, dry film, cured product, and printed wiring board
JPWO2018123695A1 (en) Curable composition, main agent and curing agent, dry film, cured product, and printed wiring board
JP7216483B2 (en) Curable resin composition, dry film, cured product and printed wiring board
TWI814970B (en) Curable resin compositions, dry films, hardened materials and electronic parts
JP6724097B2 (en) Curable resin composition, dry film, cured product, printed wiring board and electronic component
WO2021157282A1 (en) Curable composition, and dry film and cured object obtained therefrom
JP2007112908A (en) Acid-modified polyesterimide resin, photosensitive resin composition, method for forming resist pattern, printed circuit board and semiconductor element
JP7339103B2 (en) Curable resin composition, dry film, cured product, and electronic component
JP6774185B2 (en) Laminated structure and printed wiring board
JP2018049048A (en) Curable resin composition, dry film, printed wiring board, and method for manufacturing printed wiring board
JP2021144097A (en) Curable resin composition, dry film, cured product, and electronic component
JP2022155116A (en) Photosensitive resin composition, dry film, hardened material, and electronic component
KR20240047321A (en) Curable resin composition, dry film, cured product, and printed wiring board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187031079

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775492

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775492

Country of ref document: EP

Kind code of ref document: A1