WO2017170757A1 - Electrochromic dimming member, light-transmissive conductive film, and electrochromic dimming element - Google Patents

Electrochromic dimming member, light-transmissive conductive film, and electrochromic dimming element Download PDF

Info

Publication number
WO2017170757A1
WO2017170757A1 PCT/JP2017/013038 JP2017013038W WO2017170757A1 WO 2017170757 A1 WO2017170757 A1 WO 2017170757A1 JP 2017013038 W JP2017013038 W JP 2017013038W WO 2017170757 A1 WO2017170757 A1 WO 2017170757A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
light control
electrochromic
transmissive conductive
Prior art date
Application number
PCT/JP2017/013038
Other languages
French (fr)
Japanese (ja)
Inventor
秀行 米澤
望 藤野
健太 渡辺
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017063655A external-priority patent/JP6839581B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201780022157.6A priority Critical patent/CN109073948A/en
Priority to KR1020187026892A priority patent/KR102443755B1/en
Priority to US16/089,465 priority patent/US11460747B2/en
Priority to ES17775291T priority patent/ES2959787T3/en
Priority to EP17775291.2A priority patent/EP3438734B1/en
Publication of WO2017170757A1 publication Critical patent/WO2017170757A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Definitions

  • the present invention relates to an electrochromic light control member, a light-transmitting conductive film, and an electrochromic light control device, and more specifically, an electrochromic light control member, a light-transmitting conductive film for use therein, and an electrochromic light control device including the same It relates to an element.
  • an electrochromic element that includes a working electrode sheet, a counter electrode sheet, an electrochromic compound, and an electrolyte, and the working electrode sheet includes a glass sheet and a transparent conductive oxide film has been proposed (see, for example, Patent Document 1).
  • a single layer made of a crystalline ITO film is used as the transparent conductive oxide film.
  • the surface resistance value of the electrode substrate such as the working electrode sheet is required to be reduced (low resistance).
  • a method for reducing resistance a method of increasing the thickness of the ITO film is studied.
  • the thickness of the ITO film is increased, cracks are likely to occur when the electrode substrate is bent. Since the electrochromic element is current-driven, if a crack occurs in the electrode substrate, the redox function of the electrochromic compound at the crack is inhibited, resulting in a problem that the dimming function is significantly reduced. Specifically, for example, the uniformity at the time of coloring or decoloring is lowered, and color unevenness may occur.
  • An object of the present invention is to provide an electrochromic light control member, a light-transmitting conductive film, and an electrochromic light control device that are excellent in low resistance and bending resistance.
  • This invention [1] is equipped with a transparent base material, a transparent conductive layer, and an electrochromic light control layer in order, and the transparent conductive layer includes a first indium conductive oxide layer, a metal layer, And an electrochromic light control member comprising a second indium-based conductive oxide layer in order.
  • This invention [2] contains the electrochromic light control member as described in [1] whose surface resistance value of the said transparent conductive layer is 50 ohms / square or less.
  • This invention [3] contains the electrochromic light control member as described in [1] or [2] whose near-infrared average transmissivity in the said light transmissive conductive layer in 800 nm or more and 1500 nm or less is 80% or less. Yes.
  • the electrochromic tone according to any one of [1] to [3], wherein the light-transmitting conductive layer has an average near-infrared reflectance at 800 nm to 1500 nm of 10% or more. Includes a light member.
  • the light-transmitting conductive layer has a ratio (R 1 / R 0 ) between the initial surface resistance value R 0 and the surface resistance value R 1 after bending the light-transmitting conductive layer.
  • the electrochromic light control member according to any one of [1] to [4], which is 1.05 or less.
  • the transparent base material includes the electrochromic light control member according to any one of [1] to [5], which is a flexible film.
  • any one of the first indium conductive oxide layer and the second indium conductive oxide layer is an amorphous film.
  • the electrochromic light control member described in the item is included.
  • the present invention [8] is a light transmissive conductive film for use in the electrochromic light control member according to any one of [1] to [7], comprising a transparent substrate and a light transmissive conductive layer
  • the light-transmitting conductive layer includes a first indium-based conductive oxide layer, a metal layer, and a second indium-based conductive oxide layer in order from the transparent substrate. Includes film.
  • the present invention [9] is provided on the surface opposite to the electrochromic light control layer with respect to the electrochromic light control member according to any one of [1] to [7] and the transparent substrate. And an electrochromic light control device including the electrode substrate.
  • the electrochromic light control member, the light transmissive conductive film and the electrochromic light control element of the present invention since the light transmissive conductive layer is excellent in low resistance, the electrochromic light control layer is excellent in responsiveness and energy saving. In addition, since the light-transmitting conductive layer is excellent in bending resistance, the occurrence of cracks can be suppressed even when the light-transmitting conductive film is bent in the process of manufacturing or handling. Reduction can be suppressed.
  • FIG. 1 shows a cross-sectional view of one embodiment of the electrochromic light control member of the present invention.
  • FIG. 2 shows a cross-sectional view of one embodiment of the light-transmitting conductive film of the present invention constituting the electrochromic light control member shown in FIG.
  • FIG. 3 shows sectional drawing of one Embodiment of the electrochromic light control element of this invention provided with the electrochromic light control member shown in FIG.
  • FIG. 4 is a modification of the electrochromic light control member, and shows a cross-sectional view of the electrochromic light control member in which the first indium-based conductive oxide layer is directly disposed on the upper surface of the transparent substrate.
  • FIG. 5 is a modification of the electrochromic light control member, and shows a cross-sectional view of the electrochromic light control member in which the inorganic layer is interposed between the protective layer and the first indium-based conductive oxide layer.
  • FIG. 6 shows a schematic perspective view of a test for measuring the bending resistance of a light-transmitting conductive film.
  • the vertical direction of the paper is the vertical direction (thickness direction, first direction)
  • the upper side of the paper is the upper side (one side in the thickness direction, the first direction)
  • the lower side of the paper is the lower side (thickness direction).
  • the left-right direction on the paper surface is the left-right direction (width direction, second direction orthogonal to the first direction)
  • the left side on the paper surface is the left side (second side in the second direction)
  • the right side on the paper surface is the right side (the other side in the second direction).
  • the paper thickness direction is the front-rear direction (a third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (the third direction one side), and the back side of the paper surface is the rear side (the third direction). The other side). Specifically, it conforms to the direction arrow in each figure.
  • Electrochromic light control member An electrochromic light control member (hereinafter also referred to as EC light control member) has a film shape (including a sheet shape) having a predetermined thickness, and a predetermined direction (front-rear direction) orthogonal to the thickness direction. And it extends in the left-right direction, that is, the surface direction, and has a flat upper surface and a flat lower surface (two main surfaces).
  • the EC light control member is, for example, a component such as a light control panel provided in the light control device, that is, not the light control device. That is, the EC dimming member is a component for producing a dimming device and the like, and does not include a light source such as an LED or an external power source, and is a device that can be distributed and used industrially.
  • the EC light control member 1 includes, in order, a transparent substrate 2, a protective layer 3, a light-transmissive conductive layer 4, and an electrochromic light control layer 5 (hereinafter referred to as EC). And a light control layer.). That is, the EC light control member 1 includes a transparent base material 2, a protective layer 3 disposed above the transparent base material 2, a light transmissive conductive layer 4 disposed above the protective layer 3, and a light transmissive property. And an EC light control layer 5 disposed on the upper side of the conductive layer 4. Preferably, the EC light control member 1 includes only the transparent base material 2, the protective layer 3, the light transmissive conductive layer 4, and the EC light control layer 5.
  • each layer will be described in detail.
  • the transparent base material 2 is a part of the electrode substrate of the EC light control member 1, is the lowermost layer of the EC light control member 1, and is a support material that ensures the mechanical strength of the EC light control member 1. .
  • the transparent substrate 2 supports the light transmissive conductive layer 4 and the EC light control layer 5 together with the protective layer 3.
  • the transparent substrate 2 is made of, for example, a polymer film.
  • the polymer film has transparency and flexibility.
  • polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, for example, (meth) acrylic resins (acrylic resin and / or methacrylic resin) such as polymethacrylate, Olefin resins such as polyethylene, polypropylene, cycloolefin polymer (COP), for example, polycarbonate resin (PC), polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, polystyrene resin, norbornene resin Etc.
  • PC polycarbonate resin
  • PC polyether sulfone resin
  • polyarylate resin polyarylate resin
  • melamine resin polyamide resin
  • polyimide resin polyimide resin
  • cellulose resin polystyrene resin
  • norbornene resin Etc norbornene resin Etc.
  • the thickness of the transparent substrate 2 is, for example, 2 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and further preferably 80 ⁇ m or less.
  • the protective layer 3 is a part of the electrode substrate of the EC light control member 1 and makes it difficult to cause scratches on the upper surfaces of the light-transmissive conductive layer 4 and the EC light control layer 5 (that is, excellent scratch resistance).
  • the protective layer 3 is an optical adjustment layer that adjusts the optical physical properties of the EC light control member 1 in order to suppress visual recognition of the pattern when the light transmissive conductive layer 4 is formed in a pattern shape such as a wiring pattern. But there is.
  • the protective layer 3 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the transparent substrate 2 so as to be in contact with the upper surface of the transparent substrate 2.
  • the protective layer 3 is formed from a resin composition.
  • Resin composition contains, for example, resin, particles and the like.
  • the resin composition preferably contains a resin, and more preferably consists only of a resin.
  • the resin examples include a curable resin, a thermoplastic resin (for example, a polyolefin resin), and preferably a curable resin.
  • the curable resin examples include an active energy ray-curable resin that is cured by irradiation with active energy rays (specifically, ultraviolet rays, electron beams, etc.), for example, a thermosetting resin that is cured by heating, and the like.
  • active energy ray curable resin is used.
  • Examples of the active energy ray-curable resin include a polymer having a functional group having a polymerizable carbon-carbon double bond in the molecule.
  • Examples of such a functional group include a vinyl group and a (meth) acryloyl group (methacryloyl group and / or acryloyl group).
  • Examples of the active energy ray-curable resin include (meth) acrylic resin (acrylic resin and / or methacrylic resin) containing a functional group in the side chain.
  • These resins can be used alone or in combination of two or more.
  • Examples of the particles include inorganic particles and organic particles.
  • Examples of the inorganic particles include silica particles, for example, metal oxide particles made of zirconium oxide, titanium oxide, and the like, for example, carbonate particles such as calcium carbonate.
  • Examples of the organic particles include crosslinked acrylic resin particles.
  • the thickness of the protective layer 3 is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • the thickness of the protective layer 3 is measured by, for example, cross-sectional observation with a transmission electron microscope (TEM).
  • Light-transmissive conductive layer The light-transmissive conductive layer 4 is a part of the electrode substrate of the EC light control member 1, and is a conductive layer that supplies current from an external power source (not shown) to the EC light control layer 5. is there.
  • the light transmissive conductive layer 4 is also a transparent conductive layer.
  • the light transmissive conductive layer 4 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the protective layer 3 so as to be in contact with the upper surface of the protective layer 3. ing.
  • the light-transmitting conductive layer 4 includes, in order from the transparent substrate 2 side, a first indium-based conductive oxide layer 6 (hereinafter also abbreviated as a first oxide layer), a metal layer 7, and a second indium-based layer. And a conductive oxide layer 8 (hereinafter also abbreviated as a second oxide layer). That is, the light-transmissive conductive layer 4 is formed on the first oxide layer 6 disposed on the protective layer 3, the metal layer 7 disposed on the first oxide layer 6, and the metal layer 7. And a second oxide layer 8 to be disposed.
  • the light transmissive conductive layer 4 is preferably composed of only the first oxide layer 6, the metal layer 7, and the second oxide layer 8.
  • the surface resistance value of the light-transmitting conductive layer 4 is, for example, 50 ⁇ / ⁇ or less, preferably 30 ⁇ / ⁇ or less, more preferably 20 ⁇ . / ⁇ or less, more preferably 15 ⁇ / ⁇ or less, for example, 0.1 ⁇ / ⁇ or more, preferably 1 ⁇ / ⁇ or more, more preferably 5 ⁇ / ⁇ or more.
  • the ratio (R 1 / R 0 ) between the initial surface resistance value R 0 of the light transmissive conductive layer 4 and the surface resistance value R 1 after the light transmissive conductive layer 4 is bent is, for example, 1.05 or less. Preferably, it is 1.02 or less, More preferably, it is 1.00 or less, for example, 0.95 or more. By setting the ratio in the above range, the bending resistance is excellent and an increase in the surface resistance value due to bending can be suppressed.
  • the light-transmitting conductive layer 4 after bending is disposed on a mandrel having a diameter of 5 mm, with the light-transmitting conductive film 9 described later being placed outside.
  • the light-transmitting conductive layer 4 of the light-transmitting conductive film 9 is bent when a load of 50 g / mm is applied downward with respect to the width of the light-transmitting conductive film 9.
  • the surface resistance value of the light transmissive conductive layer 4 is measured, for example, on the surface of the light transmissive conductive layer 4 of the light transmissive conductive film 9 in accordance with the four-probe method of JIS K7194 (1994). Is obtained.
  • the specific resistance of the light-transmitting conductive layer 4 is, for example, 2.5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, preferably 2.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, more preferably 1.1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less, for example, 0.01 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or more, preferably 0.1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or more, more preferably 0.5 ⁇ 10 ⁇ 4. ⁇ ⁇ cm or more.
  • the specific resistance of the light transmissive conductive layer 4 depends on the thickness of the light transmissive conductive layer 4 (total thickness of the first oxide layer, the metal layer 7 and the second oxide layer 8) and the surface of the light transmissive conductive layer 4. It is calculated using the resistance value.
  • the thickness of the light-transmissive conductive layer 4, that is, the total thickness of the first oxide layer 6, the metal layer 7, and the second oxide layer 8 is, for example, 20 nm or more, preferably 40 nm or more, more preferably 60 nm or more. More preferably, it is 80 nm or more, and for example, 150 nm or less, preferably 120 nm or less, more preferably 100 nm or less.
  • the first oxide layer 6 is a conductive layer that imparts conductivity to the light-transmissive conductive layer 4 together with a metal layer 7 and a second oxide layer 8 described later.
  • the first oxide layer 6 is the lowermost layer in the light transmissive conductive layer 4 and has a film shape (including a sheet shape).
  • the first oxide layer 6 is in contact with the entire upper surface of the protective layer 3 and in contact with the upper surface of the protective layer 3. To be arranged.
  • the first oxide layer 6 contains indium oxide (In 2 O 3 ).
  • the first oxide layer 6 includes, for example, at least one metal selected from the group consisting of Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W. It may be doped with atoms.
  • the conductive oxide (indium conductive oxide) forming the first oxide layer 6 may contain only indium (In) as a metal element, and (half) other than indium (In) It may contain a metal element.
  • the main metal element is indium (In).
  • a conductive oxide whose main metal element is indium has excellent barrier properties.
  • the conductive oxide can further improve conductivity, transparency, and bending resistance by containing one or more (semi) metal elements as impurity elements.
  • the ratio of the number of impurity metal elements contained in the first oxide layer 6 to the number of atoms of the main metal element In (number of atoms of the impurity metal element / number of In atoms) is, for example, less than 0.50, preferably Is 0.40 or less, more preferably 0.30 or less, and still more preferably 0.20 or less. For example, 0.01 or more, preferably 0.05 or more, more preferably 0.00. 10 or more. Thereby, it is excellent in transparency and bending resistance.
  • the conductive oxide forming the first oxide layer 6 is preferably indium tin composite oxide (ITO), indium gallium composite oxide (IGO), or indium gallium zinc composite from the viewpoint of low resistance and transparency.
  • ITO indium tin composite oxide
  • IGO indium gallium composite oxide
  • IGZO indium gallium zinc composite
  • ITO is mentioned.
  • the content of tin oxide (SnO 2 ) contained in ITO is, for example, 0.5% by mass or more, preferably 3% by mass or more with respect to the total amount of tin oxide and indium oxide (In 2 O 3 ). More preferably, it is 6% by mass or more, more preferably 8% by mass or more, particularly preferably 10% by mass or more, and for example, 35% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 13% by mass or less.
  • the content of indium oxide (In 2 O 3 ) is the remainder of the content of tin oxide (SnO 2 ).
  • the conductive oxide of the first oxide layer 6 may be either crystalline or amorphous, but is preferably amorphous from the viewpoint of uniform formation of the metal layer 7. That is, the first oxide layer 6 is preferably an amorphous film, more preferably an amorphous ITO film.
  • the content ratio of ITO in the first oxide layer 6 is, for example, 95% by mass or more, preferably 98% by mass or more, more preferably 99% by mass or more, and for example, 100% by mass or less.
  • the thickness T1 of the first oxide layer 6 is, for example, 5 nm or more, preferably 20 nm or more, more preferably 30 nm or more, and for example, 60 nm or less, preferably 50 nm or less. If the thickness of the 1st oxide layer 6 is the said range, it will be easy to adjust the visible light transmittance
  • the thickness of the first oxide layer 6 is measured, for example, by cross-sectional observation with a transmission electron microscope (TEM).
  • the metal layer 7 is a conductive layer that imparts conductivity to the light transmissive conductive layer 4 together with the first oxide layer 6 and the second oxide layer 8.
  • the metal layer 7 is also a low resistance layer that lowers the surface resistance value of the light transmissive conductive layer 4.
  • the metal layer 7 is also preferably an infrared reflecting layer for imparting a high infrared reflectance (particularly, an average reflectance of near infrared rays).
  • the metal layer 7 has a film shape (including a sheet shape), and is disposed on the upper surface of the first oxide layer 6 so as to be in contact with the upper surface of the first oxide layer 6.
  • the metal forming the metal layer 7 is not limited as long as it has a small surface resistance.
  • An alloy containing these metals can be given.
  • the metal is preferably silver (Ag) or a silver alloy, more preferably a silver alloy. If the metal is silver or a silver alloy, the resistance value of the light-transmitting conductive layer 4 can be reduced, and in addition, the light-transmitting conductive layer 4 having a particularly high average reflectance in the near infrared region can be obtained. It can also be suitably applied to applications used outdoors or in windows.
  • the silver alloy contains silver as a main component and other metals as subcomponents, and specifically includes, for example, an Ag—Cu alloy, an Ag—Pd alloy, an Ag—Sn alloy, and an Ag—In alloy. , Ag-Pd-Cu alloy, Ag-Pd-Cu-Ge alloy, Ag-Cu-Au alloy, Ag-Cu-Sn alloy, Ag-Cu-In alloy, Ag-Ru-Cu alloy, Ag-Ru-Au An alloy, an Ag—Nd alloy, an Ag—Mg alloy, an Ag—Ca alloy, an Ag—Na alloy, and the like can be given. From the viewpoint of low resistance and wet heat durability, the silver alloy is preferably an Ag—Cu alloy, an Ag—Cu—In alloy, an Ag—Cu—Sn alloy, an Ag—Pd alloy, or an Ag—Pd—Cu alloy. It is done.
  • the silver content in the silver alloy is, for example, 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, and for example, 99.9% by mass or less.
  • the content ratio of the other metals in the silver alloy is the balance of the silver content ratio described above.
  • the thickness T3 of the metal layer 7 is, for example, 1 nm or more, preferably 5 nm or more, more preferably 8 nm or more, and for example, 20 nm or less, preferably 10 nm or less.
  • the thickness T3 of the metal layer 7 is measured by, for example, cross-sectional observation with a transmission electron microscope (TEM).
  • the second oxide layer 8 is a conductive layer that imparts conductivity to the light-transmissive conductive layer 4 together with the first oxide layer 6 and the metal layer 7.
  • the second oxide layer 8 is also an optical adjustment layer for suppressing the visible light reflectance of the metal layer 7 and improving the visible light transmittance of the light-transmissive conductive layer 4.
  • the second oxide layer 8 is the uppermost layer in the light transmissive conductive layer 4 and has a film shape (including a sheet shape).
  • the second oxide layer 8 is in contact with the entire upper surface of the metal layer 7 and the upper surface of the metal layer 7. To be arranged.
  • Examples of the conductive oxide that forms the second oxide layer 8 include the conductive oxides exemplified in the first oxide layer 6.
  • the conductive oxide whose main metal element is indium (In). Thing, More preferably, ITO is mentioned.
  • the second oxide layer 8 is preferably an amorphous film, more preferably an amorphous ITO film.
  • the conductive oxide that forms the second oxide layer 8 may be the same as or different from the conductive oxide that forms the first oxide layer 6, but from the viewpoint of flex resistance, conductivity, and transparency.
  • the conductive oxide is the same as the first oxide layer 6.
  • the ratio of the number of impurity metal element atoms to the number of atoms of the main metal element In (the number of impurity metal element atoms / the number of In atoms) It is equal to or greater than (number of element atoms / number of In atoms) (for example, 0.001 or more).
  • the content of tin oxide (SnO 2 ) contained in the ITO and the atomic ratio of Sn to In are the same as those of the first oxide layer 6.
  • the content ratio of ITO in the second oxide layer 8 is, for example, 95% by mass or more, preferably 98% by mass or more, more preferably 99% by mass or more, and for example, 100% by mass or less.
  • the thickness T2 of the second oxide layer 8 is, for example, 5 nm or more, preferably 20 nm or more, more preferably 30 nm or more, and for example, 60 nm or less, preferably 50 nm or less. If the thickness T2 of the second oxide layer 8 is in the above range, the visible light transmittance of the light transmissive conductive layer 4 can be easily adjusted to a high level.
  • the thickness T2 of the second oxide layer 8 is measured by, for example, cross-sectional observation with a transmission electron microscope (TEM).
  • the ratio (T2 / T1) of the thickness T2 of the second oxide layer 8 to the thickness T1 of the first oxide layer 6 is, for example, 0.5 or more, preferably 0.75 or more. 5 or less, preferably 1.25 or less.
  • the ratio (T2 / T3) of the thickness T2 of the second oxide layer 8 to the thickness T3 of the metal layer 7 is, for example, 2.0 or more, preferably 3.0 or more, and for example, 10 or less, Preferably, it is 8.0 or less.
  • the EC light control layer 5 is a light control layer whose light transmittance and color are changed by a current passed through the light transmissive conductive layer 4.
  • the EC light control layer 5 is the uppermost layer of the EC light control member 1 and has a film shape (including a sheet shape), and the light transmissive conductive layer 4 is formed on the entire upper surface of the light transmissive conductive layer 4. It arrange
  • the EC light control layer 5 includes, in order, a first electrochromic compound layer 10 (first EC layer), an electrolyte layer 11, and a second electrochromic compound layer 12 (second EC layer). That is, the EC light control layer 5 is disposed on the first EC layer 10 disposed on the light transmissive conductive layer 4, the electrolyte layer 11 disposed on the first EC layer 10, and the electrolyte layer 11.
  • the second EC layer 12 is provided.
  • the EC light control layer 5 preferably includes only the first EC layer 10, the electrolyte layer 11, and the second EC layer 12.
  • the thickness of the EC light control layer 5, that is, the total thickness of the first EC layer 10, the electrolyte layer 11, and the second EC layer 12 is, for example, 0.1 ⁇ m or more and 5000 ⁇ m or less.
  • the first EC layer 10 is a light control layer that changes its light transmittance and color according to the current flowing through the first EC layer 10 together with the second EC layer 12 described later.
  • the first EC layer 10 is the lowermost layer in the EC light control layer 5 and has a film shape (including a sheet shape).
  • the light transmissive conductive layer 4 is formed on the entire upper surface of the light transmissive conductive layer 4. It arrange
  • the electrochromic compound that forms the first EC layer 10 is not limited, and examples thereof include tungsten oxide (for example, WO 3 ), molybdenum oxide, vanadium oxide, vanadium oxide, indium oxide, iridium oxide, nickel oxide, and Prussian blue.
  • Inorganic electrochromic compounds for example, organic electrochromic compounds such as phthalocyanine compounds, styryl compounds, viologen compounds, polypyrrole, polyaniline, polythiophene (for example, poly (ethylenedioxythiophene) -poly (styrenesulfonic acid)) Etc.
  • tungsten oxide and polythiophene are used.
  • the thickness of the first EC layer 10 is, for example, 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, and for example, 3000 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 0 .5 ⁇ m or less.
  • Electrolyte Layer 11 is a layer that efficiently conducts electricity to the electrochromic compound in the first EC layer 10 and the second EC layer 12.
  • the electrolyte layer 11 is arranged on the entire upper surface of the first EC layer 10 so as to be in contact with the upper surface of the first EC layer 10.
  • the electrolyte layer 11 may be formed from a liquid electrolyte and a sealing material that seals the liquid electrolyte, or may be formed from a solid electrolyte membrane.
  • the electrolyte that forms the electrolyte layer 11 is not limited.
  • a quaternary ammonium salt, a quaternary phosphonium salt, etc. are mentioned.
  • an organic solvent is preferably used together with the electrolyte.
  • the organic solvent is not limited as long as the electrolyte can be dissolved, carbonates such as ethylene carbonate, propylene carbonate, and methyl carbonate; for example, furans such as tetrahydrofuran; for example, ⁇ -butyrolactone, 1,2-dimethoxyethane, 1, Examples include 3-dioxolane, 4-methyl-1,3-dioxolane, methyl formate, methyl acetate, methyl propionate, acetonitrile, propylene carbonate, N, N-dimethylformamide and the like.
  • the electrolyte layer 11 is preferably an electrolyte membrane containing an electrolyte, an organic solvent, and a binder resin.
  • Such an electrolyte layer can be obtained, for example, by mixing an electrolyte solution in which an electrolyte is dissolved in an organic solvent and a binder resin, and drying.
  • binder resin examples include acrylic resins such as polymethyl methacrylate.
  • the thickness of the electrolyte layer 11 is, for example, 0.01 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 3000 ⁇ m or less, preferably 1000 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the second EC layer 12 is a light control layer that changes its light transmittance and color in accordance with the current flowing through the second EC layer 12 together with the first EC layer 10.
  • the second EC layer 12 is the uppermost layer of the EC light control layer 5 and has a film shape (including a sheet shape) so that the entire upper surface of the electrolyte layer 11 is in contact with the upper surface of the electrolyte layer 11. Have been placed.
  • the electrochromic compound that forms the second EC layer 12 is not limited, and examples include the compounds exemplified in the first EC layer 10.
  • examples include the compounds exemplified in the first EC layer 10.
  • tungsten oxide and polythiophene are used.
  • the thickness of the second EC layer 12 is, for example, 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, and for example, 3000 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 10 ⁇ m or less, and still more preferably 0 .5 ⁇ m or less.
  • Light-transmissive conductive film Among the members constituting the EC light control member 1, the transparent substrate 2, the protective layer 3 and the light-transmissive conductive layer 4 constitute one embodiment of the light-transmissive conductive film 9 of the present invention. .
  • the light transmissive conductive film 9 is a laminated film including a transparent substrate 2, a protective layer 3, and a light transmissive conductive layer 4 in order. That is, the light transmissive conductive film 9 includes the transparent base material 2, the protective layer 3 disposed above the transparent base material 2, and the light transmissive conductive layer 4 disposed above the protective layer 3. Preferably, the light transmissive conductive film 9 includes only the transparent substrate 2, the protective layer 3, and the light transmissive conductive layer 4.
  • the light transmissive conductive film 9 has a film shape (including a sheet shape) having a predetermined thickness, extends in the surface direction, and has a flat upper surface and a flat lower surface.
  • the light transmissive conductive film 9 is a component for producing the EC light control member 1, specifically, an electrode substrate used for the EC light control member 1.
  • the light transmissive conductive film 9 does not include a light source such as an LED or an external power supply, and is a device that can be distributed industrially and used industrially.
  • the light transmissive conductive film 9 is a film that transmits visible light, and includes a transparent conductive film.
  • the light-transmitting conductive film 9 may be a heat-shrinkable light-transmitting conductive film 9 or may be a non-heated, that is, non-shrinkable light-transmitting conductive film 9. From the viewpoint of excellent bending resistance, the heat-transparent conductive film 9 is preferably heat-shrinked.
  • the total thickness of the light transmissive conductive film 9 is, for example, 2 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the EC light control member 1 To manufacture the EC light control member 1, first, the light transmissive conductive film 9 is produced, and then the EC light control layer 5 is disposed on the light transmissive conductive film 9.
  • the light transmissive conductive film 9 is obtained, for example, by disposing the protective layer 3 and the light transmissive conductive layer 4 on the transparent substrate 2 in the order described above.
  • a transparent substrate 2 is prepared.
  • the resin composition is disposed on the upper surface of the transparent substrate 2 by, for example, wet processing.
  • the resin composition is applied to the upper surface of the transparent substrate 2. Thereafter, when the resin composition contains an active energy ray-curable resin, the active energy ray is irradiated.
  • a film-shaped protective layer 3 is formed on the entire upper surface of the transparent substrate 2. That is, a transparent substrate with a protective layer comprising the transparent substrate 2 and the protective layer 3 is obtained.
  • the protective layer-equipped transparent base material is degassed.
  • the transparent substrate with a protective layer is, for example, 1 ⁇ 10 ⁇ 1 Pa or less, preferably 1 ⁇ 10 ⁇ 2 Pa or less, and for example, 1 ⁇ 10 Leave in a vacuum atmosphere of -3 Pa or higher.
  • the degassing process is performed using, for example, an exhaust device (specifically, a turbo molecular pump or the like) provided in a dry apparatus.
  • the light transmissive conductive layer 4 is disposed on the upper surface of the protective layer 3 by, for example, a dry method.
  • each of the first oxide layer 6, the metal layer 7, and the second oxide layer 8 is sequentially disposed by a dry method.
  • Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method.
  • a sputtering method is used.
  • a magnetron sputtering method can be mentioned.
  • the gas used in the sputtering method examples include an inert gas such as Ar.
  • reactive gas such as oxygen, can be used together as needed.
  • the flow rate ratio of the reactive gas is not particularly limited, and is a ratio of the reactive gas flow rate to the inert gas flow rate, for example, 0.1 / 100 or more, preferably 1/100 or more, and for example, 5/100 or less.
  • an inert gas and a reactive gas are preferably used in combination as the gas.
  • an inert gas is preferably used alone as the gas.
  • an inert gas and a reactive gas are preferably used in combination as the gas.
  • examples of the target material include the above-described conductive oxides or metals constituting each layer.
  • DC power supply used by sputtering method
  • MF / AC power supply used individually or together
  • RF power supply used individually or together
  • DC power supply is mentioned.
  • the transparent substrate 2 (and the protective layer 3) is cooled.
  • the transparent substrate 2 (and the protective layer 3) is cooled by bringing the lower surface of the transparent substrate 2 into contact with a cooling device (for example, a cooling roll).
  • a cooling device for example, a cooling roll.
  • the cooling temperature is, for example, ⁇ 30 ° C. or more, preferably ⁇ 10 ° C. or more, and for example, 60 ° C. or less, preferably 40 ° C. or less, more preferably 20 ° C. or less, and further preferably 0 ° C. Is less than.
  • the transparent base material 2, the protective layer 3, and the light transmissive conductive layer 4 are provided in order.
  • a light transmissive conductive film 9 is obtained.
  • a heating step is performed as necessary. That is, the light transmissive conductive film 9 is heated. Bending resistance can be improved by heating and shrinking the light-transmitting conductive film 9.
  • the heating temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, and for example, 180 ° C. or lower, preferably 140 ° C. or lower.
  • the heating time is, for example, 1 minute or more, preferably 10 minutes or more, and for example, 120 minutes or less, preferably 60 minutes or less.
  • Heating may be performed in any of air atmosphere, inert atmosphere, and vacuum.
  • the light transmissive conductive film 9 is obtained in which the light transmissive conductive film 9 is slightly contracted in at least one direction (preferably in any one direction) of the front and rear direction and the left and right direction.
  • the shrinkage rate is, for example, 0.1% or more, preferably 0.2% or more, with respect to the front-rear direction length or the left-right direction length 100% of the light-transmitting conductive film 9 before shrinkage, For example, it is 1.0% or less, preferably 0.5% or less, and more preferably 0.3% or less.
  • the EC light control layer 5 is disposed on the light transmissive conductive film 9.
  • a known material can be used for the EC light control layer 5.
  • the EC light control layer 5 is disposed on the upper surface of the light transmissive conductive film 9 so that the EC light control layer 5 and the second indium conductive oxide layer 8 are in contact with each other.
  • an EC light control member 1 including a transparent base material 2, a protective layer 3, a light-transmissive conductive layer 4, and an EC light control layer 5 in this order is obtained.
  • the above-described manufacturing method can be performed by a roll-to-roll method.
  • a part or all can also be implemented by a batch system.
  • the light transmissive conductive layer 4 can be formed into a pattern shape such as a wiring pattern by etching, if necessary.
  • the light-transmitting conductive layer 4 has a low surface resistance value and excellent low resistance. Therefore, the responsiveness and energy saving of the EC light control layer 5 are excellent. Moreover, since the EC light control member 1 is excellent in bending resistance, the occurrence of cracks in the light transmissive conductive layer 4 can be suppressed even when the EC light control member 1 is bent. Therefore, it is possible to suppress a decrease in the light control function of the EC light control layer 5.
  • both the first oxide layer 6 and the second oxide layer 8 are amorphous films, the bending resistance of the EC light control member 1 is further improved.
  • the light transmissive conductive layer 4 has a low surface resistance value and excellent low resistance. Therefore, the responsiveness and energy saving of the EC light control layer 5 arrange
  • the light transmissive conductive film 9 since the light transmissive conductive layer 4 including the first oxide layer 6 and the second oxide layer 8 is provided on the upper surface and the lower surface of the metal layer 7, the light transmissive conductive film 9 is provided.
  • the layer 4 generally includes a metal layer 7 having a high visible light reflectivity (specifically, for example, a metal layer 7 having a reflectivity of 15% or more, more preferably 30% or more at a wavelength of 550 nm). Visible light transmittance can be realized.
  • the visible light transmittance of the light transmissive conductive film 9 is, for example, 60% or more, preferably 80% or more, more preferably 85% or more, and for example, 95% or less. Thereby, it is excellent in transparency.
  • the light transmissive conductive layer 4 includes the metal layer 7 (for example, the metal layer 7 containing silver or silver alloy) having a high reflectance in the near infrared region.
  • the average reflectance is high, and heat rays such as sunlight can be blocked efficiently. Therefore, it can be suitably applied to a light control device used in an environment where the panel temperature is likely to rise (for example, outdoors, windows, etc.).
  • the average reflectance in the near infrared (wavelength 800 nm or more and 1500 nm or less) of the light-transmissive conductive film 9 is, for example, 10% or more, preferably 20% or more, more preferably 40% or more, and further preferably 50% or more. For example, it is 95% or less, preferably 90% or less.
  • the average transmittance of the light transmissive conductive film 9 in the near infrared is, for example, 80% or less, preferably 60% or less, more preferably 50% or less, and still more preferably 40% or less. Also, for example, 10% or more, preferably 20% or more.
  • the electrochromic dimming element 13 (hereinafter also abbreviated as EC dimming element) has a film shape (including a sheet shape) having a predetermined thickness, and a predetermined direction (front and back) orthogonal to the thickness direction. And a flat upper surface and a flat lower surface (two main surfaces).
  • the EC light control element 13 is a component such as a light control panel provided in the light control device, that is, it is not a light control device. That is, the EC dimming element 13 is a component for manufacturing a dimming device and the like, and does not include a light source such as an LED or an external power source, and is a device that can be distributed and used industrially.
  • the EC light control device 13 is a laminated film including the EC light control member 1 and an electrode substrate (upper electrode substrate) 15. That is, the EC light control element 13 includes the EC light control member 1 and the electrode substrate 15 disposed on the upper side of the EC light control member 1. Preferably, the EC light control element 13 includes only the EC light control member 1 and the electrode substrate 15.
  • each layer will be described in detail.
  • the electrode substrate 15 is preferably the light transmissive conductive film 9 described above, and includes the light transmissive conductive layer 4, the protective layer 3, and the transparent base material 2 in this order.
  • the electrode substrate 15 is disposed on the upper side of the EC light control member 1. Specifically, the electrode substrate 15 is formed on the entire surface of the EC light control layer 5 (the surface opposite to the transparent base material 2 of the lower light-transmitting conductive film 9) of the EC light control layer 5. It arrange
  • the two light transmissive conductive films 9 are disposed so as to face each other so that each light transmissive conductive layer 4 is in contact with the surface (lower surface or upper surface) of the EC light control layer 5. ing.
  • the light-transmitting conductive layer 4 has a low surface resistance value and excellent low resistance. Therefore, the responsiveness and energy saving of the EC light control layer 5 are excellent. Moreover, since the EC light control element 13 is excellent in bending resistance, the occurrence of cracks in the light transmissive conductive layer 4 can be suppressed even when the EC light control element 13 is bent. Therefore, it is possible to suppress a decrease in the light control function of the EC light control layer 5. That is, it is possible to suppress a decrease in uniformity during coloring or decoloring of the EC light control layer 5 and to suppress occurrence of color unevenness. Moreover, since the EC light control element 13 has a good near-infrared reflectance, it is also excellent in heat shielding properties.
  • the protective layer 3 is interposed between the transparent substrate 2 and the first oxide layer 6.
  • the first oxide layer 6 can be disposed directly on the upper surface of the transparent substrate 2. That is, the EC light control member 1 includes the transparent base material 2, the light transmissive conductive layer 4, and the EC light control layer 5 in this order. On the other hand, the EC light control member 1 does not include the protective layer 3.
  • the first oxide layer 6 is directly disposed on the upper surface of the protective layer 3 as shown in FIG.
  • the inorganic layer 16 can be interposed between the protective layer 3 and the first oxide layer 6.
  • the inorganic layer 16 is an optical adjustment layer that adjusts the optical physical properties of the EC light control member 1 so as to suppress the visual recognition of the wiring pattern in the light transmissive conductive layer 4 together with the protective layer 3.
  • the inorganic layer 16 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the protective layer 3 so as to be in contact with the upper surface of the protective layer 3.
  • the inorganic layer 16 has predetermined optical properties, and is prepared from inorganic materials such as oxides and fluorides, for example.
  • the thickness of the inorganic layer 16 is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and for example, 80 nm or less, preferably 40 nm or less, more preferably 25 nm or less.
  • the EC light control device 13 uses the light-transmitting conductive film 9 of the present invention as the upper electrode substrate 15.
  • the upper electrode substrate 15 is transparent. It can also be comprised from the base material 2 and a single conductive layer. Examples of the single conductive layer include an ITO film (crystalline ITO film, amorphous ITO film), an IGO film, and an IGZO film.
  • Example 1 Preparation of film substrate and formation of protective layer
  • a transparent substrate made of a long polyethylene terephthalate (PET) film and having a thickness of 50 ⁇ m was prepared.
  • an ultraviolet curable resin made of an acrylic resin was applied to the upper surface of the transparent substrate, and cured by ultraviolet irradiation to form a protective layer made of a cured resin layer and having a thickness of 2 ⁇ m.
  • the transparent base material roll with a protective layer provided with a transparent base material and a protective layer was obtained.
  • the transparent substrate roll with a protective layer was installed in a vacuum sputtering apparatus, and was evacuated until the atmospheric pressure when not transported was 4 ⁇ 10 ⁇ 3 Pa (degassing treatment). At this time, a part of the transparent substrate with a protective layer was transported without introducing the sputtering gas (Ar and O 2 ), and it was confirmed that the atmospheric pressure increased to 2 ⁇ 10 ⁇ 2 Pa. Thereby, it was confirmed that a sufficient amount of gas remained in the transparent substrate roll with a protective layer.
  • the sputtering gas Ar and O 2
  • a first indium conductive oxide layer made of amorphous ITO and having a thickness of 40 nm was formed on the upper surface of the cured resin layer by sputtering.
  • the lower surface of the transparent substrate roll with a protective layer (specifically, the lower surface of the transparent substrate) is brought into contact with a ⁇ 5 ° C. cooling roll. Then, the transparent substrate roll with a protective layer was cooled.
  • a metal layer made of an Ag—Cu alloy and having a thickness of 8 nm was formed on the upper surface of the first indium-based conductive oxide layer by sputtering.
  • an Ag alloy manufactured by Mitsubishi Materials, product number “No. 317” was sputtered using a direct current (DC) power source as a power source in a vacuum atmosphere of 0.3 Pa at which Ar was introduced.
  • DC direct current
  • a second indium-based conductive oxide layer made of amorphous ITO and having a thickness of 38 nm was formed on the upper surface of the metal layer by sputtering.
  • Example 2 The light transmissive conductive film obtained in Example 1 was subjected to a heating step under the atmosphere at 140 ° C. for 30 minutes. Thereby, each direction (conveyance direction) of the light-transmitting conductive film was contracted by 0.3% to obtain the light-transmitting conductive films of the examples.
  • Examples 3-7 Except having changed the thickness of a metal layer or a transparent base material into the thickness of Table 1, it carried out similarly to Example 1, and obtained the translucent conductive film of each Example.
  • Examples 8-9 A light-transmissive conductive film of each example was obtained in the same manner as in Example 1 except that the material of the transparent substrate was changed to the material shown in Table 1 (COP: cycloolefin polymer, PC: polycarbonate resin). .
  • Comparative Example 1 The light transmittance of Comparative Example 1 was the same as Example 1 except that the thickness of the first indium-based conductive oxide layer was 30 nm and the metal layer and the second indium-based conductive oxide layer were not formed. A conductive film was obtained.
  • Comparative Example 2 The light transmittance of Comparative Example 2 was the same as Example 1 except that the thickness of the first indium-based conductive oxide layer was 100 nm and the metal layer and the second indium-based conductive oxide layer were not formed. A conductive film was obtained.
  • Comparative Example 3 A light-transmitting conductive film was obtained in the same manner as in Example 1 except that the thickness of the first indium-based conductive oxide layer was 25 nm and the metal layer and the second indium-based conductive oxide layer were not formed. It was. Next, a heating step was performed on the light transmissive conductive film under the atmosphere at 140 ° C. for 60 minutes. Thereby, one direction (conveying direction) of the light transmissive conductive film was contracted by 0.3%, and the light transmissive conductive film of Comparative Example 3 was obtained.
  • the surface resistance value R 1 after bending is measured in the same manner as the above-mentioned four-probe method, and then the ratio (R 1 / R) between the initial surface resistance value R 0 and the surface resistance value R 1 after bending. 0 ) was calculated. The results are shown in Table 1.
  • the diameter of the mandrel 20 is changed, and the light transmissive conductive film 9 is bent by the same method (see FIG. 6) as described above to obtain the diameter (limit diameter) where R 1 / R 0 exceeds 1.05. It was. Specifically, the diameter of the mandrel 20 was changed from a large diameter to a small diameter every 1 mm, and the diameter of the mandrel 20 immediately before R 1 / R 0 exceeded 1.05 was measured. The results are shown in Table 1.
  • Example 1 Two light-transmitting conductive films of Example 1 were prepared and bent by a method similar to the above (see FIG. 6) using a mandrel having a diameter of 5 mm. These films were used as a lower electrode substrate and an upper electrode substrate, respectively.
  • EC light control layer laminated body of first electrochromic compound layer / electrolyte layer / second electrochromic compound layer
  • the EC light control layer is laminated between the lower electrode substrate and the upper electrode substrate so that each light-transmissive conductive layer is in contact with the surface (upper surface or lower surface) of the EC light control layer.
  • a light control element was manufactured (see FIG. 3).
  • the EC light control layer has a first EC compound layer of a WO 3 film having a thickness of 200 nm, and a second EC compound layer having a thickness of 60 nm of poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid). ) It was a membrane.
  • the electrolyte layer was an electrolyte membrane (thickness 80 ⁇ m) obtained by mixing polymethyl methacrylate with an electrolyte solution obtained by dissolving LiCF 3 SO 3 in acetonitrile / propylene carbonate solvent and drying.
  • Example 2 An EC light control device of each example was manufactured in the same manner as described above except that the light-transmitting conductive film of each example was used for each of the lower electrode substrate and the upper electrode substrate.
  • Color uniformity test (flexibility test) A current was passed through the EC light control elements of each Example and each Comparative Example, and changes in the color of the EC light control layer at the bent portion were confirmed.
  • The color of the EC light control element changed within 10 seconds to 1 minute after the voltage was applied.
  • the electrochromic light control member, the light-transmissive conductive film and the electrochromic light control element of the present invention can be applied to various industrial products, and can be suitably used for light control devices such as light control panels. .
  • Electrochromic light control member 1 Transparent base material 4
  • Electrochromic light control layer 6 1st indium type conductive oxide layer 7
  • Metal layer 8 2nd indium type conductive oxide layer 9
  • Electrochromic light control element 15 Electrode substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

This electrochromic dimming member is provided with, in order: a transparent base material; a light-transmissive conductive layer; and an electrochromic dimming layer. The light-transmissive conductive layer is provided with, in order: a first indium-based conductive oxide layer; a metal layer; and a second indium-based conductive oxide layer.

Description

エレクトロクロミック調光部材、光透過性導電フィルムおよびエレクトロクロミック調光素子Electrochromic light control member, light transmissive conductive film, and electrochromic light control device
 本発明は、エレクトロクロミック調光部材、光透過性導電フィルムおよびエレクトロクロミック調光素子、詳しくは、エレクトロクロミック調光部材、それに用いるための光透過性導電フィルム、および、それを備えるエレクトロクロミック調光素子に関する。 The present invention relates to an electrochromic light control member, a light-transmitting conductive film, and an electrochromic light control device, and more specifically, an electrochromic light control member, a light-transmitting conductive film for use therein, and an electrochromic light control device including the same It relates to an element.
 従来より、電気化学的な酸化還元反応により、光透過量や色彩などが変化するエレクトロクロミック材料を用いた電流駆動型の調光装置が知られている。 Conventionally, a current-driven dimmer using an electrochromic material whose light transmission amount, color, and the like change by an electrochemical redox reaction is known.
 例えば、作用電極シート、対極シート、エレクトロクロミック化合物および電解質を含み、作用電極シートがガラスシートおよび透明導電性酸化物膜を備えるエレクトロクロミック素子が提案されている(例えば、特許文献1参照)。特許文献1のエレクトロクロミック素子では、透明導電性酸化膜として、結晶性ITO膜からなる単層が用いられている。 For example, an electrochromic element that includes a working electrode sheet, a counter electrode sheet, an electrochromic compound, and an electrolyte, and the working electrode sheet includes a glass sheet and a transparent conductive oxide film has been proposed (see, for example, Patent Document 1). In the electrochromic element of Patent Document 1, a single layer made of a crystalline ITO film is used as the transparent conductive oxide film.
特開2015-172666号公報Japanese Patent Application Laid-Open No. 2015-172666
 しかるに、エレクトロクロミック素子においては、エレクトロクロミック化合物の応答性の改良、省エネルギーなどの観点から、作用電極シートなどの電極基板の表面抵抗値を低く(低抵抗化)することが求められている。低抵抗化の方法として、ITO膜の膜厚を厚くする方法が検討される。 However, in the electrochromic device, from the viewpoint of improving the responsiveness of the electrochromic compound and saving energy, the surface resistance value of the electrode substrate such as the working electrode sheet is required to be reduced (low resistance). As a method for reducing resistance, a method of increasing the thickness of the ITO film is studied.
 しかしながら、ITO膜の膜厚を厚くすると、電極基板を屈曲する際にクラックが生じ易くなる。エレクトロクロミック素子は、電流駆動であるため、電極基板にクラックが生じると、クラック部分におけるエレクトロクロミック化合物の酸化還元が阻害され、調光機能が著しく低下する不具合が生じる。具体的には、例えば、着色または脱色時の均一性が低下し、色ムラが発生する場合がある。 However, if the thickness of the ITO film is increased, cracks are likely to occur when the electrode substrate is bent. Since the electrochromic element is current-driven, if a crack occurs in the electrode substrate, the redox function of the electrochromic compound at the crack is inhibited, resulting in a problem that the dimming function is significantly reduced. Specifically, for example, the uniformity at the time of coloring or decoloring is lowered, and color unevenness may occur.
 本発明の目的は、低抵抗および耐屈曲性に優れるエレクトロクロミック調光部材、光透過性導電フィルムおよびエレクトロクロミック調光素子を提供することにある。 An object of the present invention is to provide an electrochromic light control member, a light-transmitting conductive film, and an electrochromic light control device that are excellent in low resistance and bending resistance.
 本発明[1]は、透明基材と、光透過性導電層と、エレクトロクロミック調光層と順に備え、前記光透過性導電層は、第1インジウム系導電性酸化物層と、金属層と、第2インジウム系導電性酸化物層とを順に備えるエレクトロクロミック調光部材を含んでいる。 This invention [1] is equipped with a transparent base material, a transparent conductive layer, and an electrochromic light control layer in order, and the transparent conductive layer includes a first indium conductive oxide layer, a metal layer, And an electrochromic light control member comprising a second indium-based conductive oxide layer in order.
 本発明[2]は、前記光透過性導電層の表面抵抗値が、50Ω/□以下である[1]に記載のエレクトロクロミック調光部材を含んでいる。 This invention [2] contains the electrochromic light control member as described in [1] whose surface resistance value of the said transparent conductive layer is 50 ohms / square or less.
 本発明[3]は、前記光透過性導電層の800nm以上1500nm以下における近赤外線平均透過率が、80%以下である、[1]または[2]に記載のエレクトロクロミック調光部材を含んでいる。 This invention [3] contains the electrochromic light control member as described in [1] or [2] whose near-infrared average transmissivity in the said light transmissive conductive layer in 800 nm or more and 1500 nm or less is 80% or less. Yes.
 本発明[4]は、前記光透過性導電層の800nm以上1500nm以下における近赤外線平均反射率が、10%以上である、[1]~[3]のいずれか一項に記載のエレクトロクロミック調光部材を含んでいる。 According to the present invention [4], the electrochromic tone according to any one of [1] to [3], wherein the light-transmitting conductive layer has an average near-infrared reflectance at 800 nm to 1500 nm of 10% or more. Includes a light member.
 本発明[5]は、前記光透過性導電層は、初期の表面抵抗値Rと、前記光透過性導電層を折り曲げた後の表面抵抗値Rとの比(R/R)が、1.05以下である[1]~[4]のいずれか一項に記載のエレクトロクロミック調光部材を含んでいる。 According to the present invention [5], the light-transmitting conductive layer has a ratio (R 1 / R 0 ) between the initial surface resistance value R 0 and the surface resistance value R 1 after bending the light-transmitting conductive layer. The electrochromic light control member according to any one of [1] to [4], which is 1.05 or less.
 本発明[6]は、前記透明基材が、可撓性を有するフィルムである[1]~[5]のいずれか一項に記載のエレクトロクロミック調光部材を含んでいる。 In the present invention [6], the transparent base material includes the electrochromic light control member according to any one of [1] to [5], which is a flexible film.
 本発明[7]は、前記第1インジウム系導電性酸化物層および前記第2インジウム系導電性酸化物層のいずれもが、非晶質膜である[1]~[6]のいずれか一項に記載のエレクトロクロミック調光部材を含んでいる。 According to the present invention [7], any one of the first indium conductive oxide layer and the second indium conductive oxide layer is an amorphous film. The electrochromic light control member described in the item is included.
 本発明[8]は、[1]~[7]のいずれか一項に記載のエレクトロクロミック調光部材に用いるための光透過性導電フィルムであって、透明基材と、光透過性導電層とを順に備え、前記光透過性導電層は、第1インジウム系導電性酸化物層と、金属層と、第2インジウム系導電性酸化物層とを前記透明基材から順に備える光透過性導電フィルムを含んでいる。 The present invention [8] is a light transmissive conductive film for use in the electrochromic light control member according to any one of [1] to [7], comprising a transparent substrate and a light transmissive conductive layer The light-transmitting conductive layer includes a first indium-based conductive oxide layer, a metal layer, and a second indium-based conductive oxide layer in order from the transparent substrate. Includes film.
 本発明[9]は、[1]~[7]のいずれか一項に記載のエレクトロクロミック調光部材と、前記透明基材に対して、前記エレクトロクロミック調光層の反対側の表面に設けられる電極基板とを備えるエレクトロクロミック調光素子を含んでいる。 The present invention [9] is provided on the surface opposite to the electrochromic light control layer with respect to the electrochromic light control member according to any one of [1] to [7] and the transparent substrate. And an electrochromic light control device including the electrode substrate.
 本発明のエレクトロクロミック調光部材、光透過性導電フィルムおよびエレクトロクロミック調光素子によれば、光透過性導電層の低抵抗に優れるため、エレクトロクロミック調光層の応答性および省エネルギーに優れる。また、光透過性導電層の耐屈曲性に優れるため、製造または取扱いの過程で、光透過性導電フィルムを屈曲した場合であっても、クラックの発生を抑制でき、その結果、調光機能の低下を抑制できる。 According to the electrochromic light control member, the light transmissive conductive film and the electrochromic light control element of the present invention, since the light transmissive conductive layer is excellent in low resistance, the electrochromic light control layer is excellent in responsiveness and energy saving. In addition, since the light-transmitting conductive layer is excellent in bending resistance, the occurrence of cracks can be suppressed even when the light-transmitting conductive film is bent in the process of manufacturing or handling. Reduction can be suppressed.
図1は、本発明のエレクトロクロミック調光部材の一実施形態の断面図を示す。FIG. 1 shows a cross-sectional view of one embodiment of the electrochromic light control member of the present invention. 図2は、図1に示すエレクトロクロミック調光部材を構成する本発明の光透過性導電フィルムの一実施形態の断面図を示す。FIG. 2 shows a cross-sectional view of one embodiment of the light-transmitting conductive film of the present invention constituting the electrochromic light control member shown in FIG. 図3は、図1に示すエレクトロクロミック調光部材を備える本発明のエレクトロクロミック調光素子の一実施形態の断面図を示す。FIG. 3: shows sectional drawing of one Embodiment of the electrochromic light control element of this invention provided with the electrochromic light control member shown in FIG. 図4は、エレクトロクロミック調光部材の変形例であって、透明基材の上面に、第1インジウム系導電性酸化物層が直接配置されたエレクトロクロミック調光部材の断面図を示す。FIG. 4 is a modification of the electrochromic light control member, and shows a cross-sectional view of the electrochromic light control member in which the first indium-based conductive oxide layer is directly disposed on the upper surface of the transparent substrate. 図5は、エレクトロクロミック調光部材の変形例であって、無機物層が保護層および第1インジウム系導電性酸化物層の間に介在されたエレクトロクロミック調光部材の断面図を示す。FIG. 5 is a modification of the electrochromic light control member, and shows a cross-sectional view of the electrochromic light control member in which the inorganic layer is interposed between the protective layer and the first indium-based conductive oxide layer. 図6は、光透過性導電フィルムの耐屈曲性を測定する試験の模式斜視図を示す。FIG. 6 shows a schematic perspective view of a test for measuring the bending resistance of a light-transmitting conductive film.
 図1において、紙面上下方向は、上下方向(厚み方向、第1方向)であって、紙面上側が、上側(厚み方向一方側、第1方向一方側)、紙面下側が、下側(厚み方向他方側、第1方向他方側)である。図1において、紙面左右方向は、左右方向(幅方向、第1方向に直交する第2方向)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。図1において、紙厚方向は、前後方向(第1方向および第2方向に直交する第3方向)であり、紙面手前側が前側(第3方向一方側)、紙面奥側が後側(第3方向他方側)である。具体的には、各図の方向矢印に準拠する。 In FIG. 1, the vertical direction of the paper is the vertical direction (thickness direction, first direction), the upper side of the paper is the upper side (one side in the thickness direction, the first direction), and the lower side of the paper is the lower side (thickness direction). The other side, the other side in the first direction). In FIG. 1, the left-right direction on the paper surface is the left-right direction (width direction, second direction orthogonal to the first direction), the left side on the paper surface is the left side (second side in the second direction), and the right side on the paper surface is the right side (the other side in the second direction). ). In FIG. 1, the paper thickness direction is the front-rear direction (a third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (the third direction one side), and the back side of the paper surface is the rear side (the third direction). The other side). Specifically, it conforms to the direction arrow in each figure.
 1. エレクトロクロミック調光部材
 エレクトロクロミック調光部材(以下、EC調光部材とも略する。)は、所定の厚みを有するフィルム形状(シート形状を含む)をなし、厚み方向と直交する所定方向(前後方向および左右方向、すなわち、面方向)に延び、平坦な上面および平坦な下面(2つの主面)を有する。EC調光部材は、例えば、調光装置に備えられる調光パネルなどの一部品であり、つまり、調光装置ではない。すなわち、EC調光部材は、調光装置などを作製するための部品であり、LEDなどの光源や外部電源を含まず、部品単独で流通し、産業上利用可能なデバイスである。
1. Electrochromic light control member An electrochromic light control member (hereinafter also referred to as EC light control member) has a film shape (including a sheet shape) having a predetermined thickness, and a predetermined direction (front-rear direction) orthogonal to the thickness direction. And it extends in the left-right direction, that is, the surface direction, and has a flat upper surface and a flat lower surface (two main surfaces). The EC light control member is, for example, a component such as a light control panel provided in the light control device, that is, not the light control device. That is, the EC dimming member is a component for producing a dimming device and the like, and does not include a light source such as an LED or an external power source, and is a device that can be distributed and used industrially.
 具体的には、図1に示すように、EC調光部材1は、順に、透明基材2と、保護層3と、光透過性導電層4と、エレクトロクロミック調光層5(以下、EC調光層とも略する。)とを備える積層フィルムである。つまり、EC調光部材1は、透明基材2と、透明基材2の上側に配置される保護層3と、保護層3の上側に配置される光透過性導電層4と、光透過性導電層4の上側に配置されるEC調光層5とを備える。好ましくは、EC調光部材1は、透明基材2と、保護層3と、光透過性導電層4と、EC調光層5とのみからなる。以下、各層について詳述する。 Specifically, as shown in FIG. 1, the EC light control member 1 includes, in order, a transparent substrate 2, a protective layer 3, a light-transmissive conductive layer 4, and an electrochromic light control layer 5 (hereinafter referred to as EC). And a light control layer.). That is, the EC light control member 1 includes a transparent base material 2, a protective layer 3 disposed above the transparent base material 2, a light transmissive conductive layer 4 disposed above the protective layer 3, and a light transmissive property. And an EC light control layer 5 disposed on the upper side of the conductive layer 4. Preferably, the EC light control member 1 includes only the transparent base material 2, the protective layer 3, the light transmissive conductive layer 4, and the EC light control layer 5. Hereinafter, each layer will be described in detail.
 2. 透明基材
 透明基材2は、EC調光部材1の電極基板の一部であり、EC調光部材1の最下層であって、EC調光部材1の機械強度を確保する支持材である。透明基材2は、保護層3とともに、光透過性導電層4およびEC調光層5を支持する。
2. Transparent base material The transparent base material 2 is a part of the electrode substrate of the EC light control member 1, is the lowermost layer of the EC light control member 1, and is a support material that ensures the mechanical strength of the EC light control member 1. . The transparent substrate 2 supports the light transmissive conductive layer 4 and the EC light control layer 5 together with the protective layer 3.
 透明基材2は、例えば、高分子フィルムからなる。 The transparent substrate 2 is made of, for example, a polymer film.
 高分子フィルムは、透明性および可撓性を有する。高分子フィルムの材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂、例えば、ポリメタクリレートなどの(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)、例えば、ポリエチレン、ポリプロピレン、シクロオレフィンポリマー(COP)などのオレフィン樹脂、例えば、ポリカーボネート樹脂(PC)、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂、ノルボルネン樹脂などが挙げられる。これら高分子フィルムは、単独使用または2種以上併用することができる。透明性、可撓性、耐熱性、機械特性などの観点から、好ましくは、ポリエステル樹脂、オレフィン樹脂、PCが挙げられ、より好ましくは、PET、COP、PCが挙げられる。 The polymer film has transparency and flexibility. Examples of the material of the polymer film include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, for example, (meth) acrylic resins (acrylic resin and / or methacrylic resin) such as polymethacrylate, Olefin resins such as polyethylene, polypropylene, cycloolefin polymer (COP), for example, polycarbonate resin (PC), polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, polystyrene resin, norbornene resin Etc. These polymer films can be used alone or in combination of two or more. From the viewpoints of transparency, flexibility, heat resistance, mechanical properties, etc., polyester resins, olefin resins, and PC are preferable, and PET, COP, and PC are more preferable.
 透明基材2の厚みは、例えば、2μm以上、好ましくは、20μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、150μm以下、さらに好ましくは、80μm以下である。透明基材2の厚みを上記範囲とすることにより、耐屈曲性ひいてはEC調光層5の着色均一性をより一層良好にできる。 The thickness of the transparent substrate 2 is, for example, 2 μm or more, preferably 20 μm or more, and for example, 300 μm or less, preferably 200 μm or less, more preferably 150 μm or less, and further preferably 80 μm or less. By setting the thickness of the transparent base material 2 within the above range, the bending resistance, and thus the color uniformity of the EC light control layer 5 can be further improved.
 3. 保護層
 保護層3は、EC調光部材1の電極基板の一部であり、光透過性導電層4やEC調光層5の上面に擦り傷を生じにくくする(すなわち、優れた耐擦傷性を得る)ための、擦傷保護層である。また、保護層3は、光透過性導電層4を配線パターンなどのパターン形状に形成した場合には、パターンの視認を抑制するために、EC調光部材1の光学物性を調整する光学調整層でもある。
3. Protective layer The protective layer 3 is a part of the electrode substrate of the EC light control member 1 and makes it difficult to cause scratches on the upper surfaces of the light-transmissive conductive layer 4 and the EC light control layer 5 (that is, excellent scratch resistance). A scratch-protecting layer. The protective layer 3 is an optical adjustment layer that adjusts the optical physical properties of the EC light control member 1 in order to suppress visual recognition of the pattern when the light transmissive conductive layer 4 is formed in a pattern shape such as a wiring pattern. But there is.
 保護層3は、フィルム形状(シート形状を含む)を有しており、透明基材2の上面全面に、透明基材2の上面に接触するように、配置されている。 The protective layer 3 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the transparent substrate 2 so as to be in contact with the upper surface of the transparent substrate 2.
 保護層3は、樹脂組成物から形成されている。 The protective layer 3 is formed from a resin composition.
 樹脂組成物は、例えば、樹脂、粒子などを含有する。樹脂組成物は、好ましくは、樹脂を含有し、より好ましくは、樹脂のみからなる。 Resin composition contains, for example, resin, particles and the like. The resin composition preferably contains a resin, and more preferably consists only of a resin.
 樹脂としては、硬化性樹脂、熱可塑性樹脂(例えば、ポリオレフィン樹脂)などが挙げられ、好ましくは、硬化性樹脂が挙げられる。 Examples of the resin include a curable resin, a thermoplastic resin (for example, a polyolefin resin), and preferably a curable resin.
 硬化性樹脂としては、例えば、活性エネルギー線(具体的には、紫外線、電子線など)の照射により硬化する活性エネルギー線硬化性樹脂、例えば、加熱により硬化する熱硬化性樹脂などが挙げられ、好ましくは、活性エネルギー線硬化性樹脂が挙げられる。 Examples of the curable resin include an active energy ray-curable resin that is cured by irradiation with active energy rays (specifically, ultraviolet rays, electron beams, etc.), for example, a thermosetting resin that is cured by heating, and the like. Preferably, an active energy ray curable resin is used.
 活性エネルギー線硬化性樹脂は、例えば、分子中に重合性炭素-炭素二重結合を有する官能基を有するポリマーが挙げられる。そのような官能基としては、例えば、ビニル基、(メタ)アクリロイル基(メタクリロイル基および/またはアクリロイル基)などが挙げられる。 Examples of the active energy ray-curable resin include a polymer having a functional group having a polymerizable carbon-carbon double bond in the molecule. Examples of such a functional group include a vinyl group and a (meth) acryloyl group (methacryloyl group and / or acryloyl group).
 活性エネルギー線硬化性樹脂としては、例えば、側鎖に官能基を含有する(メタ)アクリル樹脂(アクリル樹脂および/またはメタクリル樹脂)などが挙げられる。 Examples of the active energy ray-curable resin include (meth) acrylic resin (acrylic resin and / or methacrylic resin) containing a functional group in the side chain.
 これら樹脂は、単独使用または2種以上併用することができる。 These resins can be used alone or in combination of two or more.
 粒子としては、例えば、無機粒子、有機粒子などが挙げられる。無機粒子としては、例えば、シリカ粒子、例えば、酸化ジルコニウム、酸化チタンなどからなる金属酸化物粒子、例えば、炭酸カルシウムなどの炭酸塩粒子などが挙げられる。有機粒子としては、例えば、架橋アクリル樹脂粒子などが挙げられる。 Examples of the particles include inorganic particles and organic particles. Examples of the inorganic particles include silica particles, for example, metal oxide particles made of zirconium oxide, titanium oxide, and the like, for example, carbonate particles such as calcium carbonate. Examples of the organic particles include crosslinked acrylic resin particles.
 保護層3の厚みは、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、10μm以下、好ましくは、5μm以下である。保護層3の厚みは、例えば、透過型電子顕微鏡(TEM)による断面観察により測定される。 The thickness of the protective layer 3 is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 10 μm or less, preferably 5 μm or less. The thickness of the protective layer 3 is measured by, for example, cross-sectional observation with a transmission electron microscope (TEM).
 4. 光透過性導電層
 光透過性導電層4は、EC調光部材1の電極基板の一部であり、外部電源(図示せず)からの電流を、EC調光層5に通電させる導電層である。また、光透過性導電層4は、透明導電層でもある。
4). Light-transmissive conductive layer The light-transmissive conductive layer 4 is a part of the electrode substrate of the EC light control member 1, and is a conductive layer that supplies current from an external power source (not shown) to the EC light control layer 5. is there. The light transmissive conductive layer 4 is also a transparent conductive layer.
 図1に示すように、光透過性導電層4は、フィルム形状(シート形状を含む)を有しており、保護層3の上面全面に、保護層3の上面に接触するように、配置されている。 As shown in FIG. 1, the light transmissive conductive layer 4 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the protective layer 3 so as to be in contact with the upper surface of the protective layer 3. ing.
 光透過性導電層4は、透明基材2側から順に、第1インジウム系導電性酸化物層6(以下、第1酸化物層とも略する。)と、金属層7と、第2インジウム系導電性酸化物層8(以下、第2酸化物層とも略する。)とを備える。つまり、光透過性導電層4は、保護層3の上に配置される第1酸化物層6と、第1酸化物層6の上に配置される金属層7と、金属層7の上に配置される第2酸化物層8とを備えている。光透過性導電層4は、好ましくは、第1酸化物層6と、金属層7と、第2酸化物層8とのみからなる。 The light-transmitting conductive layer 4 includes, in order from the transparent substrate 2 side, a first indium-based conductive oxide layer 6 (hereinafter also abbreviated as a first oxide layer), a metal layer 7, and a second indium-based layer. And a conductive oxide layer 8 (hereinafter also abbreviated as a second oxide layer). That is, the light-transmissive conductive layer 4 is formed on the first oxide layer 6 disposed on the protective layer 3, the metal layer 7 disposed on the first oxide layer 6, and the metal layer 7. And a second oxide layer 8 to be disposed. The light transmissive conductive layer 4 is preferably composed of only the first oxide layer 6, the metal layer 7, and the second oxide layer 8.
 光透過性導電層4の表面抵抗値(初期の表面抵抗値Rおよび折り曲げ後の表面抵抗値R)は、例えば、50Ω/□以下、好ましくは、30Ω/□以下、より好ましくは、20Ω/□以下、さらに好ましくは、15Ω/□以下であり、また、例えば、0.1Ω/□以上、好ましくは、1Ω/□以上、より好ましくは、5Ω/□以上である。 The surface resistance value of the light-transmitting conductive layer 4 (initial surface resistance value R 0 and surface resistance value R 1 after bending) is, for example, 50Ω / □ or less, preferably 30Ω / □ or less, more preferably 20Ω. / Ω or less, more preferably 15Ω / □ or less, for example, 0.1Ω / □ or more, preferably 1Ω / □ or more, more preferably 5Ω / □ or more.
 光透過性導電層4の初期の表面抵抗値Rと、光透過性導電層4を折り曲げた後の表面抵抗値Rとの比(R/R)は、例えば、1.05以下、好ましくは、1.02以下、より好ましくは、1.00以下であり、また、例えば、0.95以上である。上記比を上記範囲とすることにより、耐屈曲性に優れ、屈曲による表面抵抗値の増加を抑制することができる。 The ratio (R 1 / R 0 ) between the initial surface resistance value R 0 of the light transmissive conductive layer 4 and the surface resistance value R 1 after the light transmissive conductive layer 4 is bent is, for example, 1.05 or less. Preferably, it is 1.02 or less, More preferably, it is 1.00 or less, for example, 0.95 or more. By setting the ratio in the above range, the bending resistance is excellent and an increase in the surface resistance value due to bending can be suppressed.
 折り曲げ後の光透過性導電層4とは、図6に示すように、後述する光透過性導電フィルム9を、光透過性導電層4が外側となる状態で、直径5mmのマンドレルの上に配置し、光透過性導電フィルム9の幅に対して50g/mmの荷重を下側に向かって印加して、折り曲げた際の光透過性導電フィルム9の光透過性導電層4である。 As shown in FIG. 6, the light-transmitting conductive layer 4 after bending is disposed on a mandrel having a diameter of 5 mm, with the light-transmitting conductive film 9 described later being placed outside. The light-transmitting conductive layer 4 of the light-transmitting conductive film 9 is bent when a load of 50 g / mm is applied downward with respect to the width of the light-transmitting conductive film 9.
 光透過性導電層4の表面抵抗値は、例えば、光透過性導電フィルム9の光透過性導電層4表面に対して、JIS K7194(1994年)の4探針法に準拠して測定することにより得られる。 The surface resistance value of the light transmissive conductive layer 4 is measured, for example, on the surface of the light transmissive conductive layer 4 of the light transmissive conductive film 9 in accordance with the four-probe method of JIS K7194 (1994). Is obtained.
 光透過性導電層4の比抵抗は、例えば、2.5×10-4Ω・cm以下、好ましくは、2.0×10-4Ω・cm以下、より好ましくは、1.1×10-4Ω・cm以下であり、また、例えば、0.01×10-4Ω・cm以上、好ましくは、0.1×10-4Ω・cm以上、より好ましくは、0.5×10-4Ω・cm以上である。 The specific resistance of the light-transmitting conductive layer 4 is, for example, 2.5 × 10 −4 Ω · cm or less, preferably 2.0 × 10 −4 Ω · cm or less, more preferably 1.1 × 10 − 4 Ω · cm or less, for example, 0.01 × 10 −4 Ω · cm or more, preferably 0.1 × 10 −4 Ω · cm or more, more preferably 0.5 × 10 −4. Ω · cm or more.
 光透過性導電層4の比抵抗は、光透過性導電層4の厚み(第1酸化物層、金属層7、第2酸化物層8の総厚み)と、光透過性導電層4の表面抵抗値とを用いて算出される。 The specific resistance of the light transmissive conductive layer 4 depends on the thickness of the light transmissive conductive layer 4 (total thickness of the first oxide layer, the metal layer 7 and the second oxide layer 8) and the surface of the light transmissive conductive layer 4. It is calculated using the resistance value.
 光透過性導電層4の厚み、すなわち、第1酸化物層6、金属層7および第2酸化物層8の総厚みは、例えば、20nm以上、好ましくは、40nm以上、より好ましくは、60nm以上、さらに好ましくは、80nm以上であり、また、例えば、150nm以下、好ましくは、120nm以下、より好ましくは、100nm以下である。 The thickness of the light-transmissive conductive layer 4, that is, the total thickness of the first oxide layer 6, the metal layer 7, and the second oxide layer 8 is, for example, 20 nm or more, preferably 40 nm or more, more preferably 60 nm or more. More preferably, it is 80 nm or more, and for example, 150 nm or less, preferably 120 nm or less, more preferably 100 nm or less.
 5. 第1インジウム系導電性酸化物層
 第1酸化物層6は、後述する金属層7および第2酸化物層8とともに、光透過性導電層4に導電性を付与する導電層である。また、第1酸化物層6は、後述する第2酸化物層8とともに、金属層7の可視光反射率を抑制し、光透過性導電層4の可視光透過率を向上させるための光学調整層でもある。
5). First Indium-Based Conductive Oxide Layer The first oxide layer 6 is a conductive layer that imparts conductivity to the light-transmissive conductive layer 4 together with a metal layer 7 and a second oxide layer 8 described later. The first oxide layer 6, together with the second oxide layer 8 to be described later, suppresses the visible light reflectance of the metal layer 7 and optical adjustment for improving the visible light transmittance of the light-transmissive conductive layer 4. It is also a layer.
 第1酸化物層6は、光透過性導電層4における最下層であって、フィルム形状(シート形状を含む)を有しており、保護層3の上面全面に、保護層3の上面に接触するように、配置されている。 The first oxide layer 6 is the lowermost layer in the light transmissive conductive layer 4 and has a film shape (including a sheet shape). The first oxide layer 6 is in contact with the entire upper surface of the protective layer 3 and in contact with the upper surface of the protective layer 3. To be arranged.
 第1酸化物層6は、インジウム酸化物(In)を含有する。第1酸化物層6には、例えば、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属原子をドープされていてもよい。 The first oxide layer 6 contains indium oxide (In 2 O 3 ). The first oxide layer 6 includes, for example, at least one metal selected from the group consisting of Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, and W. It may be doped with atoms.
 第1酸化物層6を形成する導電性酸化物(インジウム系導電性酸化物)は、金属元素としてインジウム(In)のみを含有していてもよく、また、インジウム(In)以外の(半)金属元素を含んでいてもよい。好ましくは、主金属元素がインジウム(In)である。主金属元素がインジウムである導電性酸化物は、優れたバリヤ性などを有する。 The conductive oxide (indium conductive oxide) forming the first oxide layer 6 may contain only indium (In) as a metal element, and (half) other than indium (In) It may contain a metal element. Preferably, the main metal element is indium (In). A conductive oxide whose main metal element is indium has excellent barrier properties.
 導電性酸化物は、単数または複数の(半)金属元素を不純物元素として含有することにより、導電性、透明性、耐屈曲性をより一層向上させることができる。第1酸化物層6中の、主金属元素Inの原子数に対する不純物金属元素の含有原子数比(不純物金属元素の原子数/Inの原子数)は、例えば、0.50未満であり、好ましくは、0.40以下、より好ましくは、0.30以下、さらに好ましくは、0.20以下であり、また、例えば、0.01以上、好ましくは、0.05以上、より好ましくは、0.10以上である。これにより、透明性、耐屈曲性に優れる。 The conductive oxide can further improve conductivity, transparency, and bending resistance by containing one or more (semi) metal elements as impurity elements. The ratio of the number of impurity metal elements contained in the first oxide layer 6 to the number of atoms of the main metal element In (number of atoms of the impurity metal element / number of In atoms) is, for example, less than 0.50, preferably Is 0.40 or less, more preferably 0.30 or less, and still more preferably 0.20 or less. For example, 0.01 or more, preferably 0.05 or more, more preferably 0.00. 10 or more. Thereby, it is excellent in transparency and bending resistance.
 第1酸化物層6を形成する導電性酸化物としては、低抵抗および透明性の観点から、好ましくは、インジウムスズ複合酸化物(ITO)、インジウムガリウム複合酸化物(IGO)、インジウムガリウム亜鉛複合酸化物(IGZO)などが挙げられ、より好ましくは、ITOが挙げられる。 The conductive oxide forming the first oxide layer 6 is preferably indium tin composite oxide (ITO), indium gallium composite oxide (IGO), or indium gallium zinc composite from the viewpoint of low resistance and transparency. An oxide (IGZO) etc. are mentioned, More preferably, ITO is mentioned.
 ITOに含有される酸化スズ(SnO)の含有量は、酸化スズおよび酸化インジウム(In)の合計量に対して、例えば、0.5質量%以上、好ましくは、3質量%以上、より好ましくは、6質量%以上、さらに好ましくは、8質量%以上、特に好ましくは、10質量%以上であり、また、例えば、35質量%以下、好ましくは、20質量%以下、より好ましくは、15質量%以下、さらに好ましくは、13質量%以下である。酸化インジウムの含有量(In)は、酸化スズ(SnO)の含有量の残部である。ITOに含有される酸化スズ(SnO)の含有量を、好適な範囲とすることにより、ITO膜の経時での膜質変化を抑制しやすい。 The content of tin oxide (SnO 2 ) contained in ITO is, for example, 0.5% by mass or more, preferably 3% by mass or more with respect to the total amount of tin oxide and indium oxide (In 2 O 3 ). More preferably, it is 6% by mass or more, more preferably 8% by mass or more, particularly preferably 10% by mass or more, and for example, 35% by mass or less, preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 13% by mass or less. The content of indium oxide (In 2 O 3 ) is the remainder of the content of tin oxide (SnO 2 ). By setting the content of tin oxide (SnO 2 ) contained in ITO within a suitable range, it is easy to suppress film quality change over time of the ITO film.
 第1酸化物層6の導電性酸化物は、結晶質および非晶質のいずれであってもよいが、金属層7の均一形成の観点から、好ましくは、非晶質である。すなわち、第1酸化物層6は、好ましくは、非晶質膜であり、より好ましくは、非晶質ITO膜である。 The conductive oxide of the first oxide layer 6 may be either crystalline or amorphous, but is preferably amorphous from the viewpoint of uniform formation of the metal layer 7. That is, the first oxide layer 6 is preferably an amorphous film, more preferably an amorphous ITO film.
 本発明では、25,000倍での平面TEM画像において、結晶粒が占める面積割合が80%以下(好ましくは、0%以上50%以下)である場合に、非晶質であるとし、80%超過である場合に、結晶質であるとする。 In the present invention, in a planar TEM image at a magnification of 25,000 times, when the area ratio occupied by crystal grains is 80% or less (preferably 0% or more and 50% or less), it is assumed to be amorphous and 80% If it is over, it is assumed to be crystalline.
 第1酸化物層6におけるITOの含有割合は、例えば、95質量%以上、好ましくは、98質量%以上、より好ましくは、99質量%以上であり、また、例えば、100質量%以下である。 The content ratio of ITO in the first oxide layer 6 is, for example, 95% by mass or more, preferably 98% by mass or more, more preferably 99% by mass or more, and for example, 100% by mass or less.
 第1酸化物層6の厚みT1は、例えば、5nm以上、好ましくは、20nm以上、より好ましくは、30nm以上であり、また、例えば、60nm以下、好ましくは、50nm以下である。第1酸化物層6の厚みが上記範囲であれば、光透過性導電層4の可視光透過率を高い水準に調整しやすい。第1酸化物層6の厚みは、例えば、透過型電子顕微鏡(TEM)による断面観察により測定される。 The thickness T1 of the first oxide layer 6 is, for example, 5 nm or more, preferably 20 nm or more, more preferably 30 nm or more, and for example, 60 nm or less, preferably 50 nm or less. If the thickness of the 1st oxide layer 6 is the said range, it will be easy to adjust the visible light transmittance | permeability of the transparent conductive layer 4 to a high level. The thickness of the first oxide layer 6 is measured, for example, by cross-sectional observation with a transmission electron microscope (TEM).
 6. 金属層
 金属層7は、第1酸化物層6および第2酸化物層8とともに、光透過性導電層4に導電性を付与する導電層である。また、金属層7は、光透過性導電層4の表面抵抗値を低くする低抵抗化層でもある。また、金属層7は、好ましくは、高い赤外線反射率(特に、近赤外線の平均反射率)を付与するための赤外線反射層でもある。
6). Metal Layer The metal layer 7 is a conductive layer that imparts conductivity to the light transmissive conductive layer 4 together with the first oxide layer 6 and the second oxide layer 8. The metal layer 7 is also a low resistance layer that lowers the surface resistance value of the light transmissive conductive layer 4. The metal layer 7 is also preferably an infrared reflecting layer for imparting a high infrared reflectance (particularly, an average reflectance of near infrared rays).
 金属層7は、フィルム形状(シート形状を含む)を有しており、第1酸化物層6の上面に、第1酸化物層6の上面に接触するように、配置されている。 The metal layer 7 has a film shape (including a sheet shape), and is disposed on the upper surface of the first oxide layer 6 so as to be in contact with the upper surface of the first oxide layer 6.
 金属層7を形成する金属は、表面抵抗値が小さい金属であれば限定的でないが、例えば、Ti,Si,Nb,In,Zn,Sn,Au,Ag,Cu,Al,Co,Cr,Ni,Pb,Pd,Pt,Cu、Ge、Ru、Nd、Mg、Ca、Na、W,Zr,TaおよびHfからなる群から選択される1種の金属からなるか、または、それらの2種以上の金属を含有する合金が挙げられる。 The metal forming the metal layer 7 is not limited as long as it has a small surface resistance. For example, Ti, Si, Nb, In, Zn, Sn, Au, Ag, Cu, Al, Co, Cr, Ni , Pb, Pd, Pt, Cu, Ge, Ru, Nd, Mg, Ca, Na, W, Zr, Ta, and Hf, or one or more of them An alloy containing these metals can be given.
 金属として、好ましくは、銀(Ag)、銀合金が挙げられ、より好ましくは、銀合金が挙げられる。金属が、銀または銀合金であれば、光透過性導電層4の抵抗値を小さくすることができるのに加えて、近赤外線領域の平均反射率が特に高い光透過性導電層4が得られ、屋外や窓に使用される用途にも好適に適用できる。 The metal is preferably silver (Ag) or a silver alloy, more preferably a silver alloy. If the metal is silver or a silver alloy, the resistance value of the light-transmitting conductive layer 4 can be reduced, and in addition, the light-transmitting conductive layer 4 having a particularly high average reflectance in the near infrared region can be obtained. It can also be suitably applied to applications used outdoors or in windows.
 銀合金は、銀を主成分として含有し、その他の金属を副成分として含有しており、具体的には、例えば、Ag-Cu合金、Ag-Pd合金、Ag-Sn合金、Ag-In合金、Ag-Pd-Cu合金、Ag-Pd-Cu-Ge合金、Ag-Cu-Au合金、Ag-Cu-Sn合金、Ag-Cu-In合金、Ag-Ru-Cu合金、Ag-Ru-Au合金、Ag-Nd合金、Ag-Mg合金、Ag-Ca合金、Ag-Na合金などが挙げられる。低抵抗、湿熱耐久性の観点から、銀合金として、好ましくは、Ag-Cu合金、Ag-Cu-In合金、Ag-Cu-Sn合金、Ag-Pd合金、Ag-Pd-Cu合金などが挙げられる。 The silver alloy contains silver as a main component and other metals as subcomponents, and specifically includes, for example, an Ag—Cu alloy, an Ag—Pd alloy, an Ag—Sn alloy, and an Ag—In alloy. , Ag-Pd-Cu alloy, Ag-Pd-Cu-Ge alloy, Ag-Cu-Au alloy, Ag-Cu-Sn alloy, Ag-Cu-In alloy, Ag-Ru-Cu alloy, Ag-Ru-Au An alloy, an Ag—Nd alloy, an Ag—Mg alloy, an Ag—Ca alloy, an Ag—Na alloy, and the like can be given. From the viewpoint of low resistance and wet heat durability, the silver alloy is preferably an Ag—Cu alloy, an Ag—Cu—In alloy, an Ag—Cu—Sn alloy, an Ag—Pd alloy, or an Ag—Pd—Cu alloy. It is done.
 銀合金における銀の含有割合は、例えば、80質量%以上、好ましくは、90質量%以上、より好ましくは、95質量%以上であり、また、例えば、99.9質量%以下である。銀合金におけるその他の金属の含有割合は、上記した銀の含有割合の残部である。 The silver content in the silver alloy is, for example, 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, and for example, 99.9% by mass or less. The content ratio of the other metals in the silver alloy is the balance of the silver content ratio described above.
 金属層7の厚みT3は、例えば、1nm以上、好ましくは、5nm以上、より好ましくは、8nm以上であり、また、例えば、20nm以下、好ましくは、10nm以下である。金属層7の厚みを上記範囲とすることにより、光透過性導電層4の表面抵抗値および耐屈曲性が良好であるとともに、可視光透過率および赤外線反射率もより一層良好にすることができる。その結果、EC調光素子13の着色均一性、応答性、遮熱性が優れる。金属層7の厚みT3は、例えば、透過型電子顕微鏡(TEM)による断面観察により測定される。 The thickness T3 of the metal layer 7 is, for example, 1 nm or more, preferably 5 nm or more, more preferably 8 nm or more, and for example, 20 nm or less, preferably 10 nm or less. By setting the thickness of the metal layer 7 in the above range, the surface resistance value and the bending resistance of the light-transmitting conductive layer 4 are good, and the visible light transmittance and infrared reflectance can be further improved. . As a result, the color uniformity, responsiveness, and heat shielding properties of the EC light control device 13 are excellent. The thickness T3 of the metal layer 7 is measured by, for example, cross-sectional observation with a transmission electron microscope (TEM).
 7. 第2インジウム系導電性酸化物層
 第2酸化物層8は、第1酸化物層6および金属層7とともに、光透過性導電層4に導電性を付与する導電層である。また、第2酸化物層8は、金属層7の可視光反射率を抑制し、光透過性導電層4の可視光透過率を向上させるための光学調整層でもある。
7). Second Indium-Based Conductive Oxide Layer The second oxide layer 8 is a conductive layer that imparts conductivity to the light-transmissive conductive layer 4 together with the first oxide layer 6 and the metal layer 7. The second oxide layer 8 is also an optical adjustment layer for suppressing the visible light reflectance of the metal layer 7 and improving the visible light transmittance of the light-transmissive conductive layer 4.
 第2酸化物層8は、光透過性導電層4における最上層であって、フィルム形状(シート形状を含む)を有しており、金属層7の上面全面に、金属層7の上面に接触するように、配置されている。 The second oxide layer 8 is the uppermost layer in the light transmissive conductive layer 4 and has a film shape (including a sheet shape). The second oxide layer 8 is in contact with the entire upper surface of the metal layer 7 and the upper surface of the metal layer 7. To be arranged.
 第2酸化物層8を形成する導電性酸化物としては、第1酸化物層6にて例示した導電性酸化物が挙げられ、好ましくは、主金属元素がインジウム(In)である導電性酸化物が挙げられ、より好ましくは、ITOが挙げられる。また、第2酸化物層8は、好ましくは、非晶質膜であり、より好ましくは、非晶質ITO膜である。 Examples of the conductive oxide that forms the second oxide layer 8 include the conductive oxides exemplified in the first oxide layer 6. Preferably, the conductive oxide whose main metal element is indium (In). Thing, More preferably, ITO is mentioned. The second oxide layer 8 is preferably an amorphous film, more preferably an amorphous ITO film.
 第2酸化物層8を形成する導電性酸化物は、第1酸化物層6を形成する導電性酸化物と同一または異なっていてもよいが、耐屈曲性、導電性、透明性の観点から、好ましくは、第1酸化物層6と同一の導電性酸化物である。 The conductive oxide that forms the second oxide layer 8 may be the same as or different from the conductive oxide that forms the first oxide layer 6, but from the viewpoint of flex resistance, conductivity, and transparency. Preferably, the conductive oxide is the same as the first oxide layer 6.
 第2酸化物層8中の、主金属元素Inの原子数に対する不純物金属元素の含有原子数比(不純物金属元素の原子数/Inの原子数)は、第1酸化物層6における「不純物金属元素の原子数/Inの原子数」と同一またはそれ以上(例えば、0.001以上)である。 In the second oxide layer 8, the ratio of the number of impurity metal element atoms to the number of atoms of the main metal element In (the number of impurity metal element atoms / the number of In atoms) It is equal to or greater than (number of element atoms / number of In atoms) (for example, 0.001 or more).
 第2酸化物層8がITOからなる場合、ITOに含有される酸化スズ(SnO)の含有量およびInに対するSnの原子数比は、第1酸化物層6と同様である。 When the second oxide layer 8 is made of ITO, the content of tin oxide (SnO 2 ) contained in the ITO and the atomic ratio of Sn to In are the same as those of the first oxide layer 6.
 第2酸化物層8におけるITOの含有割合は、例えば、95質量%以上、好ましくは、98質量%以上、より好ましくは、99質量%以上であり、また、例えば、100質量%以下である。 The content ratio of ITO in the second oxide layer 8 is, for example, 95% by mass or more, preferably 98% by mass or more, more preferably 99% by mass or more, and for example, 100% by mass or less.
 第2酸化物層8の厚みT2は、例えば、5nm以上、好ましくは、20nm以上、さらに好ましくは、30nm以上であり、また、例えば、60nm以下、好ましくは、50nm以下である。第2酸化物層8の厚みT2が上記範囲であれば、光透過性導電層4の可視光透過率を高い水準に調整しやすい。第2酸化物層8の厚みT2は、例えば、透過型電子顕微鏡(TEM)による断面観察により測定される。 The thickness T2 of the second oxide layer 8 is, for example, 5 nm or more, preferably 20 nm or more, more preferably 30 nm or more, and for example, 60 nm or less, preferably 50 nm or less. If the thickness T2 of the second oxide layer 8 is in the above range, the visible light transmittance of the light transmissive conductive layer 4 can be easily adjusted to a high level. The thickness T2 of the second oxide layer 8 is measured by, for example, cross-sectional observation with a transmission electron microscope (TEM).
 第2酸化物層8の厚みT2の、第1酸化物層6の厚みT1に対する比(T2/T1)は、例えば、0.5以上、好ましくは、0.75以上、また、例えば、1.5以下、好ましくは、1.25以下である。 The ratio (T2 / T1) of the thickness T2 of the second oxide layer 8 to the thickness T1 of the first oxide layer 6 is, for example, 0.5 or more, preferably 0.75 or more. 5 or less, preferably 1.25 or less.
 第2酸化物層8の厚みT2の、金属層7の厚みT3に対する比(T2/T3)は、例えば、2.0以上、好ましくは、3.0以上であり、また、例えば、10以下、好ましくは、8.0以下である。 The ratio (T2 / T3) of the thickness T2 of the second oxide layer 8 to the thickness T3 of the metal layer 7 is, for example, 2.0 or more, preferably 3.0 or more, and for example, 10 or less, Preferably, it is 8.0 or less.
 8. EC調光層
 EC調光層5は、光透過性導電層4を介して通電される電流によって、光透過率や色彩を変化する調光層である。
8). EC Light Control Layer The EC light control layer 5 is a light control layer whose light transmittance and color are changed by a current passed through the light transmissive conductive layer 4.
 EC調光層5は、EC調光部材1の最上層であって、フィルム形状(シート形状を含む)を有しており、光透過性導電層4の上面全面に、光透過性導電層4の上面に接触するように、配置されている。 The EC light control layer 5 is the uppermost layer of the EC light control member 1 and has a film shape (including a sheet shape), and the light transmissive conductive layer 4 is formed on the entire upper surface of the light transmissive conductive layer 4. It arrange | positions so that the upper surface of may be contacted.
 EC調光層5は、順に、第1エレクトロクロミック化合物層10(第1EC層)と、電解質層11と、第2エレクトロクロミック化合物層12(第2EC層)とを備える。つまり、EC調光層5は、光透過性導電層4の上に配置される第1EC層10と、第1EC層10の上に配置される電解質層11と、電解質層11の上に配置される第2EC層12とを備えている。EC調光層5は、好ましくは、第1EC層10と、電解質層11と、第2EC層12とのみからなる。 The EC light control layer 5 includes, in order, a first electrochromic compound layer 10 (first EC layer), an electrolyte layer 11, and a second electrochromic compound layer 12 (second EC layer). That is, the EC light control layer 5 is disposed on the first EC layer 10 disposed on the light transmissive conductive layer 4, the electrolyte layer 11 disposed on the first EC layer 10, and the electrolyte layer 11. The second EC layer 12 is provided. The EC light control layer 5 preferably includes only the first EC layer 10, the electrolyte layer 11, and the second EC layer 12.
 EC調光層5の厚み、すなわち、第1EC層10、電解質層11および第2EC層12の総厚みは、例えば、0.1μm以上5000μm以下である。 The thickness of the EC light control layer 5, that is, the total thickness of the first EC layer 10, the electrolyte layer 11, and the second EC layer 12 is, for example, 0.1 μm or more and 5000 μm or less.
 9. 第1エレクトロクロミック化合物層
 第1EC層10は、後述する第2EC層12とともに、第1EC層10に流れる電流に応じて、その光透過率や色彩を変化する調光層である。
9. First Electrochromic Compound Layer The first EC layer 10 is a light control layer that changes its light transmittance and color according to the current flowing through the first EC layer 10 together with the second EC layer 12 described later.
 第1EC層10は、EC調光層5における最下層であって、フィルム形状(シート形状を含む)を有しており、光透過性導電層4の上面全面に、光透過性導電層4の上面に接触するように、配置されている。 The first EC layer 10 is the lowermost layer in the EC light control layer 5 and has a film shape (including a sheet shape). The light transmissive conductive layer 4 is formed on the entire upper surface of the light transmissive conductive layer 4. It arrange | positions so that an upper surface may be contacted.
 第1EC層10を形成するエレクトロクロミック化合物としては限定されず、例えば、酸化タングステン(例えば、WO)、酸化モリブデン、酸化バナジウム、酸化バナジウム、酸化インジウム、酸化イリジウム、酸化ニッケル、プルシアオンブルーなどの無機系エレクトロクロミック化合物;例えば、フタロシアニン系化合物、スチリル系化合物、ビオロゲン系化合物、ポリピロール、ポリアニリン、ポリチオフェン(例えば、ポリ(エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))などの有機系エレクトロクロミック化合物などが挙げられる。好ましくは、酸化タングステン、ポリチオフェンが挙げられる。 The electrochromic compound that forms the first EC layer 10 is not limited, and examples thereof include tungsten oxide (for example, WO 3 ), molybdenum oxide, vanadium oxide, vanadium oxide, indium oxide, iridium oxide, nickel oxide, and Prussian blue. Inorganic electrochromic compounds; for example, organic electrochromic compounds such as phthalocyanine compounds, styryl compounds, viologen compounds, polypyrrole, polyaniline, polythiophene (for example, poly (ethylenedioxythiophene) -poly (styrenesulfonic acid)) Etc. Preferably, tungsten oxide and polythiophene are used.
 第1EC層10の厚みは、例えば、0.01μm以上、好ましくは、0.05μm以上であり、また、例えば、3000μm以下、好ましくは、100μm以下、より好ましくは、10μm以下、さらに好ましくは、0.5μm以下である。 The thickness of the first EC layer 10 is, for example, 0.01 μm or more, preferably 0.05 μm or more, and for example, 3000 μm or less, preferably 100 μm or less, more preferably 10 μm or less, still more preferably 0 .5 μm or less.
 10. 電解質層
 電解質層11は、第1EC層10および第2EC層12内部のエレクトロクロミック化合物に効率よく通電させる層である。
10. Electrolyte Layer The electrolyte layer 11 is a layer that efficiently conducts electricity to the electrochromic compound in the first EC layer 10 and the second EC layer 12.
 電解質層11は、第1EC層10の上面全面に、第1EC層10の上面に接触するように、配置されている。 The electrolyte layer 11 is arranged on the entire upper surface of the first EC layer 10 so as to be in contact with the upper surface of the first EC layer 10.
 電解質層11は、液状電解質およびその液状電解質を封止する封止材から形成されていてもよく、また、固体状電解質膜から形成されていてもよい。 The electrolyte layer 11 may be formed from a liquid electrolyte and a sealing material that seals the liquid electrolyte, or may be formed from a solid electrolyte membrane.
 電解質層11を形成する電解質としては限定されず、例えば、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiCFCOO、KCl、NaClO、NaCl、NaBF、NaSCN、KBF、Mg(ClO)、Mg(BF)などのアルカリ金属塩またはアルカリ土類金属塩などが挙げられる。また、4級アンモニウム塩、4級ホスホニウム塩なども挙げられる。 The electrolyte that forms the electrolyte layer 11 is not limited. For example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 COO, KCl, NaClO 3 , NaCl, NaBF 4 , NaSCN, KBF 4 , Mg (ClO 4 ) 2 , Mg (BF 4 ) 2 and other alkali metal salts or alkaline earth metal salts. Moreover, a quaternary ammonium salt, a quaternary phosphonium salt, etc. are mentioned.
 電解質層11として液状電解質を用いる場合は、好ましくは、電解質とともに有機溶媒を併用する。有機溶媒は、電解質を溶解可能できれば限定的でなく、エチレンカーボネート、プロピレンカーボネート、メチルカーボネートなどのカーボネート類;例えば、テトラヒドロフランなどのフラン類;例えば、γ-ブチロラクトン、1,2-ジメトキシエタン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、ギ酸メチル、酢酸メチル、プロピオン酸メチル、アセトニトリル、炭酸プロピレン、N,N-ジメチルホルムアミドなどが挙げられる。 When a liquid electrolyte is used as the electrolyte layer 11, an organic solvent is preferably used together with the electrolyte. The organic solvent is not limited as long as the electrolyte can be dissolved, carbonates such as ethylene carbonate, propylene carbonate, and methyl carbonate; for example, furans such as tetrahydrofuran; for example, γ-butyrolactone, 1,2-dimethoxyethane, 1, Examples include 3-dioxolane, 4-methyl-1,3-dioxolane, methyl formate, methyl acetate, methyl propionate, acetonitrile, propylene carbonate, N, N-dimethylformamide and the like.
 電解質層11としては、好ましくは、電解質、有機溶媒およびバインダー樹脂を含有する電解質膜が挙げられる。このような電解質層は、例えば、電解質を有機溶媒に溶解させた電解質溶液と、バインダー樹脂とを混合し、乾燥することにより得られる。 The electrolyte layer 11 is preferably an electrolyte membrane containing an electrolyte, an organic solvent, and a binder resin. Such an electrolyte layer can be obtained, for example, by mixing an electrolyte solution in which an electrolyte is dissolved in an organic solvent and a binder resin, and drying.
 バインダー樹脂としては、例えば、ポリメチルメタクリレートなどのアクリル樹脂などが挙げられる。 Examples of the binder resin include acrylic resins such as polymethyl methacrylate.
 電解質層11の厚みは、例えば、0.01μm以上、好ましくは、1μm以上であり、また、例えば、3000μm以下、好ましくは、1000μm以下、より好ましくは、100μm以下である。 The thickness of the electrolyte layer 11 is, for example, 0.01 μm or more, preferably 1 μm or more, and for example, 3000 μm or less, preferably 1000 μm or less, more preferably 100 μm or less.
 11. 第2エレクトロクロミック化合物層
 第2EC層12は、第1EC層10とともに、第2EC層12に流れる電流に応じて、その光透過率や色彩を変化する調光層である。
11. Second Electrochromic Compound Layer The second EC layer 12 is a light control layer that changes its light transmittance and color in accordance with the current flowing through the second EC layer 12 together with the first EC layer 10.
 第2EC層12は、EC調光層5における最上層であって、フィルム形状(シート形状を含む)を有しており、電解質層11の上面全面に、電解質層11の上面に接触するように、配置されている。 The second EC layer 12 is the uppermost layer of the EC light control layer 5 and has a film shape (including a sheet shape) so that the entire upper surface of the electrolyte layer 11 is in contact with the upper surface of the electrolyte layer 11. Have been placed.
 第2EC層12を形成するエレクトロクロミック化合物としては限定されず、第1EC層10にて例示した化合物が挙げられる。好ましくは、酸化タングステン、ポリチオフェンが挙げられる。 The electrochromic compound that forms the second EC layer 12 is not limited, and examples include the compounds exemplified in the first EC layer 10. Preferably, tungsten oxide and polythiophene are used.
 第2EC層12の厚みは、例えば、0.01μm以上、好ましくは、0.05μm以上であり、また、例えば、3000μm以下、好ましくは、100μm以下、より好ましくは、10μm以下、さらに好ましくは、0.5μm以下である。 The thickness of the second EC layer 12 is, for example, 0.01 μm or more, preferably 0.05 μm or more, and for example, 3000 μm or less, preferably 100 μm or less, more preferably 10 μm or less, and still more preferably 0 .5 μm or less.
 12. 光透過性導電フィルム
 EC調光部材1を構成する部材のうち、透明基材2、保護層3および光透過性導電層4は、本発明の光透過性導電フィルム9の一実施形態を構成する。
12 Light-transmissive conductive film Among the members constituting the EC light control member 1, the transparent substrate 2, the protective layer 3 and the light-transmissive conductive layer 4 constitute one embodiment of the light-transmissive conductive film 9 of the present invention. .
 すなわち、図2に示すように、光透過性導電フィルム9は、順に、透明基材2と、保護層3と、光透過性導電層4とを備える積層フィルムである。つまり、光透過性導電フィルム9は、透明基材2と、透明基材2の上側に配置される保護層3と、保護層3の上側に配置される光透過性導電層4とを備える。好ましくは、光透過性導電フィルム9は、透明基材2と、保護層3と、光透過性導電層4とのみからなる。 That is, as shown in FIG. 2, the light transmissive conductive film 9 is a laminated film including a transparent substrate 2, a protective layer 3, and a light transmissive conductive layer 4 in order. That is, the light transmissive conductive film 9 includes the transparent base material 2, the protective layer 3 disposed above the transparent base material 2, and the light transmissive conductive layer 4 disposed above the protective layer 3. Preferably, the light transmissive conductive film 9 includes only the transparent substrate 2, the protective layer 3, and the light transmissive conductive layer 4.
 光透過性導電フィルム9は、所定の厚みを有するフィルム形状(シート形状を含む)をなし、面方向に延び、平坦な上面および平坦な下面を有する。光透過性導電フィルム9は、EC調光部材1を作製するための部品であり、具体的には、EC調光部材1に用いられる電極基板である。光透過性導電フィルム9は、LEDなどの光源や外部電源を含まず、部品単独で流通し、産業上利用可能なデバイスである。また、光透過性導電フィルム9は、可視光を透過するフィルムであって、透明導電性フィルムを含む。 The light transmissive conductive film 9 has a film shape (including a sheet shape) having a predetermined thickness, extends in the surface direction, and has a flat upper surface and a flat lower surface. The light transmissive conductive film 9 is a component for producing the EC light control member 1, specifically, an electrode substrate used for the EC light control member 1. The light transmissive conductive film 9 does not include a light source such as an LED or an external power supply, and is a device that can be distributed industrially and used industrially. The light transmissive conductive film 9 is a film that transmits visible light, and includes a transparent conductive film.
 光透過性導電フィルム9は、熱収縮された光透過性導電フィルム9であってもよく、非加熱、すなわち、未収縮の光透過性導電フィルム9であってもよい。耐屈曲性に優れる観点から、好ましくは、熱収縮された光透過性導電フィルム9である。 The light-transmitting conductive film 9 may be a heat-shrinkable light-transmitting conductive film 9 or may be a non-heated, that is, non-shrinkable light-transmitting conductive film 9. From the viewpoint of excellent bending resistance, the heat-transparent conductive film 9 is preferably heat-shrinked.
 光透過性導電フィルム9の総厚みは、例えば、2μm以上、好ましくは、20μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、150μm以下である。 The total thickness of the light transmissive conductive film 9 is, for example, 2 μm or more, preferably 20 μm or more, and for example, 300 μm or less, preferably 200 μm or less, more preferably 150 μm or less.
 13. EC調光部材の製造方法
 次に、EC調光部材1を製造する方法を説明する。
13. Next, a method for manufacturing the EC light control member 1 will be described.
 EC調光部材1を製造するには、まず、光透過性導電フィルム9を作製し、次いで、光透過性導電フィルム9にEC調光層5を配置する。 To manufacture the EC light control member 1, first, the light transmissive conductive film 9 is produced, and then the EC light control layer 5 is disposed on the light transmissive conductive film 9.
 光透過性導電フィルム9は、例えば、透明基材2の上に、保護層3と、光透過性導電層4とを、上記した順序で配置することにより、得られる。 The light transmissive conductive film 9 is obtained, for example, by disposing the protective layer 3 and the light transmissive conductive layer 4 on the transparent substrate 2 in the order described above.
 この方法では、図1が参照されるように、まず、透明基材2を用意する。 In this method, as shown in FIG. 1, first, a transparent substrate 2 is prepared.
 次いで、樹脂組成物を透明基材2の上面に、例えば、湿式により、配置する。 Next, the resin composition is disposed on the upper surface of the transparent substrate 2 by, for example, wet processing.
 具体的には、まず、樹脂組成物を透明基材2の上面に塗布する。その後、樹脂組成物が活性エネルギー線硬化性樹脂を含有する場合には、活性エネルギー線を照射する。 Specifically, first, the resin composition is applied to the upper surface of the transparent substrate 2. Thereafter, when the resin composition contains an active energy ray-curable resin, the active energy ray is irradiated.
 これによって、フィルム形状の保護層3を、透明基材2の上面全面に形成する。つまり、透明基材2と保護層3とを備える保護層付透明基材を得る。 Thereby, a film-shaped protective layer 3 is formed on the entire upper surface of the transparent substrate 2. That is, a transparent substrate with a protective layer comprising the transparent substrate 2 and the protective layer 3 is obtained.
 その後、必要により、保護層付透明基材を脱ガス処理する。 Then, if necessary, the protective layer-equipped transparent base material is degassed.
 保護層付透明基材を脱ガス処理するには、保護層付透明基材を、例えば、1×10-1Pa以下、好ましくは、1×10-2Pa以下、また、例えば、1×10-3Pa以上の減圧雰囲気下に放置する。脱ガス処理は、例えば、乾式の装置に備えられる排気装置(具体的には、ターボ分子ポンプなど)を用いて、実施される。 In order to degas the transparent substrate with a protective layer, the transparent substrate with a protective layer is, for example, 1 × 10 −1 Pa or less, preferably 1 × 10 −2 Pa or less, and for example, 1 × 10 Leave in a vacuum atmosphere of -3 Pa or higher. The degassing process is performed using, for example, an exhaust device (specifically, a turbo molecular pump or the like) provided in a dry apparatus.
 この脱ガス処理によって、透明基材2に含有される水の一部や、保護層3に含有される有機物の一部が、外部に放出される。 By this degassing treatment, a part of the water contained in the transparent substrate 2 and a part of the organic substance contained in the protective layer 3 are released to the outside.
 次いで、光透過性導電層4を保護層3の上面に、例えば、乾式により、配置する。 Next, the light transmissive conductive layer 4 is disposed on the upper surface of the protective layer 3 by, for example, a dry method.
 具体的には、第1酸化物層6、金属層7および第2酸化物層8のそれぞれを、順に、乾式により、配置する。 Specifically, each of the first oxide layer 6, the metal layer 7, and the second oxide layer 8 is sequentially disposed by a dry method.
 乾式としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。好ましくは、スパッタリング法が挙げられる。具体的には、マグネトロンスパッタリング法が挙げられる。 Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method. Preferably, a sputtering method is used. Specifically, a magnetron sputtering method can be mentioned.
 スパッタリング法で用いられるガスとしては、例えば、Arなどの不活性ガスが挙げられる。また、必要に応じて、酸素などの反応性ガスを併用することができる。反応性ガスを併用する場合において、反応性ガスの流量比は、特に限定されず、反応性ガスの流量の、不活性ガスの流量に対する比で、例えば、0.1/100以上、好ましくは、1/100以上であり、また、例えば、5/100以下である。 Examples of the gas used in the sputtering method include an inert gas such as Ar. Moreover, reactive gas, such as oxygen, can be used together as needed. When the reactive gas is used in combination, the flow rate ratio of the reactive gas is not particularly limited, and is a ratio of the reactive gas flow rate to the inert gas flow rate, for example, 0.1 / 100 or more, preferably 1/100 or more, and for example, 5/100 or less.
 具体的には、第1酸化物層6の形成において、ガスとして、好ましくは、不活性ガスおよび反応性ガスが併用される。金属層7の形成において、ガスとして、好ましくは、不活性ガスが単独使用される。第2酸化物層8の形成において、ガスとして、好ましくは、不活性ガスおよび反応性ガスが併用される。 Specifically, in the formation of the first oxide layer 6, an inert gas and a reactive gas are preferably used in combination as the gas. In forming the metal layer 7, an inert gas is preferably used alone as the gas. In the formation of the second oxide layer 8, an inert gas and a reactive gas are preferably used in combination as the gas.
 スパッタリング法を採用する場合、ターゲット材としては、各層を構成する上述の導電性酸化物または金属が挙げられる。 When employing the sputtering method, examples of the target material include the above-described conductive oxides or metals constituting each layer.
 スパッタリング法で用いられる電源には限定はなく、例えば、DC電源、MF/AC電源およびRF電源の単独使用または併用が挙げられ、好ましくは、DC電源が挙げられる。 There is no limitation in the power supply used by sputtering method, For example, DC power supply, MF / AC power supply, and RF power supply are used individually or together, Preferably, DC power supply is mentioned.
 また、好ましくは、第1酸化物層6をスパッタリング法で形成するとき、透明基材2(および保護層3)を冷却する。具体的には、透明基材2の下面を、冷却装置(例えば、冷却ロール)などに接触させて、透明基材2(および保護層3)を冷却する。これによって、第1酸化物層6を形成するときに、スパッタリングにより生じる蒸着熱などで透明基材2に含有される水、および、保護層3に含有される有機物が放出され、水が第1酸化物層6に過剰に含まれることを抑制することができる。冷却温度は、例えば、-30℃以上、好ましくは、-10℃以上であり、また、例えば、60℃以下、好ましくは、40℃以下、より好ましくは、20℃以下、さらに好ましくは、0℃未満である。 Also preferably, when the first oxide layer 6 is formed by a sputtering method, the transparent substrate 2 (and the protective layer 3) is cooled. Specifically, the transparent substrate 2 (and the protective layer 3) is cooled by bringing the lower surface of the transparent substrate 2 into contact with a cooling device (for example, a cooling roll). Thereby, when the first oxide layer 6 is formed, water contained in the transparent substrate 2 and organic matter contained in the protective layer 3 are released by vapor deposition heat generated by sputtering, and the water is first. Excessive inclusion in the oxide layer 6 can be suppressed. The cooling temperature is, for example, −30 ° C. or more, preferably −10 ° C. or more, and for example, 60 ° C. or less, preferably 40 ° C. or less, more preferably 20 ° C. or less, and further preferably 0 ° C. Is less than.
 これによって、図2に示すように、透明基材2と、保護層3と、光透過性導電層4(第1酸化物層6、金属層7および第2酸化物層8)とを順に備える光透過性導電フィルム9が得られる。 Thereby, as shown in FIG. 2, the transparent base material 2, the protective layer 3, and the light transmissive conductive layer 4 (the 1st oxide layer 6, the metal layer 7, and the 2nd oxide layer 8) are provided in order. A light transmissive conductive film 9 is obtained.
 次いで、必要に応じて加熱工程を実施する。すなわち、光透過性導電フィルム9を加熱する。光透過性導電フィルム9を加熱して、収縮させることにより、耐屈曲性を向上させることができる。 Next, a heating step is performed as necessary. That is, the light transmissive conductive film 9 is heated. Bending resistance can be improved by heating and shrinking the light-transmitting conductive film 9.
 加熱条件としては、加熱温度は、例えば、50℃以上、好ましくは、80℃以上であり、また、例えば、180℃以下、好ましくは、140℃以下である。加熱時間は、例えば、1分以上、好ましくは、10分以上であり、また、例えば、120分以下、好ましくは、60分以下である。加熱条件を上記範囲とすることにより、第1酸化物層6および第2酸化物層8の非晶質性を維持しつつ、光透過性導電フィルム9を収縮させやすい。 As heating conditions, the heating temperature is, for example, 50 ° C. or higher, preferably 80 ° C. or higher, and for example, 180 ° C. or lower, preferably 140 ° C. or lower. The heating time is, for example, 1 minute or more, preferably 10 minutes or more, and for example, 120 minutes or less, preferably 60 minutes or less. By setting the heating condition within the above range, the light transmissive conductive film 9 can be easily contracted while maintaining the amorphousness of the first oxide layer 6 and the second oxide layer 8.
 加熱は、大気雰囲気下、不活性雰囲気下および真空下のいずれで実施してもよい。 Heating may be performed in any of air atmosphere, inert atmosphere, and vacuum.
 この加熱工程により、光透過性導電フィルム9が前後方向および左右方向の少なくとも一方向に(好ましくは、いずれか一方向に)僅かに収縮した光透過性導電フィルム9が得られる。 By this heating step, the light transmissive conductive film 9 is obtained in which the light transmissive conductive film 9 is slightly contracted in at least one direction (preferably in any one direction) of the front and rear direction and the left and right direction.
 収縮率は、収縮前の光透過性導電フィルム9の前後方向長さまたは左右方向長さ100%に対して、例えば、0.1%以上、好ましくは、0.2%以上であり、また、例えば、1.0%以下、好ましくは、0.5%以下、より好ましくは、0.3%以下である。 The shrinkage rate is, for example, 0.1% or more, preferably 0.2% or more, with respect to the front-rear direction length or the left-right direction length 100% of the light-transmitting conductive film 9 before shrinkage, For example, it is 1.0% or less, preferably 0.5% or less, and more preferably 0.3% or less.
 次いで、光透過性導電フィルム9に、EC調光層5を配置する。 Next, the EC light control layer 5 is disposed on the light transmissive conductive film 9.
 EC調光層5は、公知の材料を用いることができる。 A known material can be used for the EC light control layer 5.
 EC調光層5と、第2インジウム系導電性酸化物層8とが接触するように、EC調光層5を光透過性導電フィルム9の上面に配置する。 The EC light control layer 5 is disposed on the upper surface of the light transmissive conductive film 9 so that the EC light control layer 5 and the second indium conductive oxide layer 8 are in contact with each other.
 これによって、図1に示すように、透明基材2と、保護層3と、光透過性導電層4と、EC調光層5とを順に備えるEC調光部材1が得られる。 Thereby, as shown in FIG. 1, an EC light control member 1 including a transparent base material 2, a protective layer 3, a light-transmissive conductive layer 4, and an EC light control layer 5 in this order is obtained.
 なお、上記した製造方法を、ロールトゥロール方式で実施できる。また、一部または全部をバッチ方式で実施することもできる。 In addition, the above-described manufacturing method can be performed by a roll-to-roll method. Moreover, a part or all can also be implemented by a batch system.
 また、光透過性導電層4は、必要に応じて、エッチングによって、配線パターンなどのパターン形状に形成することもできる。 Further, the light transmissive conductive layer 4 can be formed into a pattern shape such as a wiring pattern by etching, if necessary.
 14. 作用効果
 EC調光部材1によれば、光透過性導電層4の表面抵抗値が低く、低抵抗に優れる。そのため、EC調光層5の応答性および省エネルギーに優れる。また、EC調光部材1の耐屈曲性に優れるため、EC調光部材1を屈曲した場合であっても、光透過性導電層4のクラックの発生を抑制できる。そのため、EC調光層5の調光機能の低下を抑制できる。
14 Action Effect According to the EC light control member 1, the light-transmitting conductive layer 4 has a low surface resistance value and excellent low resistance. Therefore, the responsiveness and energy saving of the EC light control layer 5 are excellent. Moreover, since the EC light control member 1 is excellent in bending resistance, the occurrence of cracks in the light transmissive conductive layer 4 can be suppressed even when the EC light control member 1 is bent. Therefore, it is possible to suppress a decrease in the light control function of the EC light control layer 5.
 また、第1酸化物層6および第2酸化物層8のいずれもが、非晶質膜であれば、EC調光部材1の耐屈曲性がより一層優れる。 In addition, if both the first oxide layer 6 and the second oxide layer 8 are amorphous films, the bending resistance of the EC light control member 1 is further improved.
 また、EC調光部材1に用いられる光透過性導電フィルム9によれば、光透過性導電層4の表面抵抗値が低く、低抵抗に優れる。そのため、光透過性導電フィルム9の表面に配置されるEC調光層5の応答性および省エネルギーを向上させることができる。また、光透過性導電フィルム9の耐屈曲性に優れるため、光透過性導電フィルム9を屈曲した場合であっても、光透過性導電層4のクラックの発生を抑制できる。そのため、光透過性導電フィルム9の表面に配置されるEC調光層5の調光機能の低下を抑制できる。 Further, according to the light transmissive conductive film 9 used for the EC light control member 1, the light transmissive conductive layer 4 has a low surface resistance value and excellent low resistance. Therefore, the responsiveness and energy saving of the EC light control layer 5 arrange | positioned on the surface of the transparent conductive film 9 can be improved. Moreover, since the light transmissive conductive film 9 is excellent in bending resistance, the occurrence of cracks in the light transmissive conductive layer 4 can be suppressed even when the light transmissive conductive film 9 is bent. Therefore, the fall of the light control function of the EC light control layer 5 arrange | positioned on the surface of the transparent conductive film 9 can be suppressed.
 また、この光透過性導電フィルム9によれば、金属層7の上面および下面に第1酸化物層6および第2酸化物層8を備える光透過性導電層4を備えるため、光透過性導電層4が、概して可視光反射率の高い金属層7(具体的には、例えば、波長550nmの反射率が、15%以上、さらには、30%以上の金属層7)を含んでいても高い可視光透過率を実現できる。光透過性導電フィルム9の可視光透過率は、例えば、60%以上、好ましくは、80%以上、より好ましくは、85%以上であり、また、例えば、95%以下である。これにより、透明性に優れる。 Further, according to the light transmissive conductive film 9, since the light transmissive conductive layer 4 including the first oxide layer 6 and the second oxide layer 8 is provided on the upper surface and the lower surface of the metal layer 7, the light transmissive conductive film 9 is provided. The layer 4 generally includes a metal layer 7 having a high visible light reflectivity (specifically, for example, a metal layer 7 having a reflectivity of 15% or more, more preferably 30% or more at a wavelength of 550 nm). Visible light transmittance can be realized. The visible light transmittance of the light transmissive conductive film 9 is, for example, 60% or more, preferably 80% or more, more preferably 85% or more, and for example, 95% or less. Thereby, it is excellent in transparency.
 また、この光透過性導電フィルム9によれば、光透過性導電層4に近赤外線領域の反射率が高い金属層7(例えば、銀または銀合金を含む金属層7)を備えるため、近赤外線の平均反射率が高く、太陽光などの熱線を効率的に遮断できる。そのため、パネル温度が上昇しやすい環境(例えば、屋外、窓など)で使用される調光装置にも好適に適用できる。 Further, according to the light transmissive conductive film 9, the light transmissive conductive layer 4 includes the metal layer 7 (for example, the metal layer 7 containing silver or silver alloy) having a high reflectance in the near infrared region. The average reflectance is high, and heat rays such as sunlight can be blocked efficiently. Therefore, it can be suitably applied to a light control device used in an environment where the panel temperature is likely to rise (for example, outdoors, windows, etc.).
 光透過性導電フィルム9の近赤外線(波長800nm以上1500nm以下)における平均反射率は、例えば、10%以上、好ましくは、20%以上、より好ましくは、40%以上、さらに好ましくは、50%以上であり、また、例えば、95%以下、好ましくは、90%以下である。 The average reflectance in the near infrared (wavelength 800 nm or more and 1500 nm or less) of the light-transmissive conductive film 9 is, for example, 10% or more, preferably 20% or more, more preferably 40% or more, and further preferably 50% or more. For example, it is 95% or less, preferably 90% or less.
 光透過性導電フィルム9の近赤外線(波長800nm以上1500nm以下)における平均透過率は、例えば、80%以下、好ましくは、60%以下、より好ましくは、50%以下、さらに好ましくは、40%以下であり、また、例えば、10%以上、好ましくは、20%以上である。 The average transmittance of the light transmissive conductive film 9 in the near infrared (wavelength 800 nm or more and 1500 nm or less) is, for example, 80% or less, preferably 60% or less, more preferably 50% or less, and still more preferably 40% or less. Also, for example, 10% or more, preferably 20% or more.
 15.エレクトロクロミック調光素子
 エレクトロクロミック調光素子13(以下、EC調光素子とも略する。)は、所定の厚みを有するフィルム形状(シート形状を含む)をなし、厚み方向と直交する所定方向(前後方向および左右方向、すなわち、面方向)に延び、平坦な上面および平坦な下面(2つの主面)を有する。EC調光素子13は、例えば、調光装置に備えられる調光パネルなどの一部品であり、つまり、調光装置ではない。すなわち、EC調光素子13は、調光装置などを作製するための部品であり、LEDなどの光源や外部電源を含まず、部品単独で流通し、産業上利用可能なデバイスである。
15. Electrochromic Dimming Element The electrochromic dimming element 13 (hereinafter also abbreviated as EC dimming element) has a film shape (including a sheet shape) having a predetermined thickness, and a predetermined direction (front and back) orthogonal to the thickness direction. And a flat upper surface and a flat lower surface (two main surfaces). The EC light control element 13 is a component such as a light control panel provided in the light control device, that is, it is not a light control device. That is, the EC dimming element 13 is a component for manufacturing a dimming device and the like, and does not include a light source such as an LED or an external power source, and is a device that can be distributed and used industrially.
 具体的には、図3に示すように、EC調光素子13は、EC調光部材1および電極基板(上側電極基板)15を備える積層フィルムである。つまり、EC調光素子13は、EC調光部材1と、EC調光部材1の上側に配置される電極基板15とを備える。好ましくは、EC調光素子13は、EC調光部材1と、電極基板15とのみからなる。以下、各層について詳述する。 Specifically, as shown in FIG. 3, the EC light control device 13 is a laminated film including the EC light control member 1 and an electrode substrate (upper electrode substrate) 15. That is, the EC light control element 13 includes the EC light control member 1 and the electrode substrate 15 disposed on the upper side of the EC light control member 1. Preferably, the EC light control element 13 includes only the EC light control member 1 and the electrode substrate 15. Hereinafter, each layer will be described in detail.
 電極基板15は、好ましくは、上述した光透過性導電フィルム9であり、順に、光透過性導電層4、保護層3および透明基材2を備える。電極基板15は、EC調光部材1の上側に配置されている。具体的には、電極基板15は、EC調光層5の上面(下側の光透過性導電フィルム9の透明基材2に対して反対側の表面)の全面に、EC調光層5の上面と光透過性導電層4の下面とが接触するように、配置されている。 The electrode substrate 15 is preferably the light transmissive conductive film 9 described above, and includes the light transmissive conductive layer 4, the protective layer 3, and the transparent base material 2 in this order. The electrode substrate 15 is disposed on the upper side of the EC light control member 1. Specifically, the electrode substrate 15 is formed on the entire surface of the EC light control layer 5 (the surface opposite to the transparent base material 2 of the lower light-transmitting conductive film 9) of the EC light control layer 5. It arrange | positions so that the upper surface and the lower surface of the transparent conductive layer 4 may contact.
 すなわち、EC調光素子13では、2枚の光透過性導電フィルム9が、それぞれの光透過性導電層4がEC調光層5の表面(下面または上面)と接触するように、対向配置されている。 That is, in the EC light control element 13, the two light transmissive conductive films 9 are disposed so as to face each other so that each light transmissive conductive layer 4 is in contact with the surface (lower surface or upper surface) of the EC light control layer 5. ing.
 EC調光素子13によれば、光透過性導電層4の表面抵抗値が低く、低抵抗に優れる。そのため、EC調光層5の応答性および省エネルギーに優れる。また、EC調光素子13の耐屈曲性に優れるため、EC調光素子13を屈曲した場合であっても、光透過性導電層4のクラックの発生を抑制できる。そのため、EC調光層5の調光機能の低下を抑制できる。すなわち、EC調光層5の着色または脱色時の均一性の低下を抑制し、色ムラの発生を抑制することができる。また、EC調光素子13は、近赤外線の反射率が良好であるため、遮熱性にも優れる。 According to the EC light control device 13, the light-transmitting conductive layer 4 has a low surface resistance value and excellent low resistance. Therefore, the responsiveness and energy saving of the EC light control layer 5 are excellent. Moreover, since the EC light control element 13 is excellent in bending resistance, the occurrence of cracks in the light transmissive conductive layer 4 can be suppressed even when the EC light control element 13 is bent. Therefore, it is possible to suppress a decrease in the light control function of the EC light control layer 5. That is, it is possible to suppress a decrease in uniformity during coloring or decoloring of the EC light control layer 5 and to suppress occurrence of color unevenness. Moreover, since the EC light control element 13 has a good near-infrared reflectance, it is also excellent in heat shielding properties.
 16. 変形例
 変形例において、上記した実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
16. Modified Example In the modified example, the same reference numerals are assigned to the same members and steps as those in the above-described embodiment, and the detailed description thereof is omitted.
 EC調光部材1の一実施形態では、図1に示すように、保護層3を、透明基材2および第1酸化物層6の間に介在させている。しかし、例えば、図4に示すように、第1酸化物層6を透明基材2の上面に直接配置することもできる。つまり、EC調光部材1は、順に、透明基材2、光透過性導電層4およびEC調光層5を備えている。一方、EC調光部材1は、保護層3を備えていない。 In one embodiment of the EC light control member 1, as shown in FIG. 1, the protective layer 3 is interposed between the transparent substrate 2 and the first oxide layer 6. However, for example, as shown in FIG. 4, the first oxide layer 6 can be disposed directly on the upper surface of the transparent substrate 2. That is, the EC light control member 1 includes the transparent base material 2, the light transmissive conductive layer 4, and the EC light control layer 5 in this order. On the other hand, the EC light control member 1 does not include the protective layer 3.
 EC調光部材1の一実施形態では、図1に示すように、第1酸化物層6を保護層3の上面に直接配置している。しかし、例えば、図5に示すように、無機物層16を、保護層3および第1酸化物層6の間に介在させることもできる。 In one embodiment of the EC light control member 1, the first oxide layer 6 is directly disposed on the upper surface of the protective layer 3 as shown in FIG. However, for example, as shown in FIG. 5, the inorganic layer 16 can be interposed between the protective layer 3 and the first oxide layer 6.
 無機物層16は、保護層3とともに、光透過性導電層4における配線パターンの視認を抑制するように、EC調光部材1の光学物性を調整する光学調整層である。無機物層16は、フィルム形状(シート形状を含む)を有しており、保護層3の上面全面に、保護層3の上面に接触するように、配置されている。無機物層16は、所定の光学物性を有し、例えば、酸化物、フッ化物などの無機物から調製されている。無機物層16の厚みは、1nm以上、好ましくは、5nm以上、より好ましくは、10nm以上であり、また、例えば、80nm以下、好ましくは、40nm以下、より好ましくは、25nm以下である。 The inorganic layer 16 is an optical adjustment layer that adjusts the optical physical properties of the EC light control member 1 so as to suppress the visual recognition of the wiring pattern in the light transmissive conductive layer 4 together with the protective layer 3. The inorganic layer 16 has a film shape (including a sheet shape), and is disposed on the entire upper surface of the protective layer 3 so as to be in contact with the upper surface of the protective layer 3. The inorganic layer 16 has predetermined optical properties, and is prepared from inorganic materials such as oxides and fluorides, for example. The thickness of the inorganic layer 16 is 1 nm or more, preferably 5 nm or more, more preferably 10 nm or more, and for example, 80 nm or less, preferably 40 nm or less, more preferably 25 nm or less.
 なお、上記変形例は、EC調光部材1について説明したが、光透過性導電フィルム9およびEC調光素子13についても同様である。 In addition, although the said modification demonstrated EC light control member 1, it is the same also about the transparent conductive film 9 and the EC light control element 13. FIG.
 また、EC調光素子13では、図3に示すように、上側電極基板15として、本発明の光透過性導電フィルム9を用いているが、例えば、図示しないが、上側電極基板15は、透明基材2と、単一の導電層とから構成することもできる。単一の導電層としては、例えば、ITO膜(結晶質ITO膜、非晶質ITO膜)、IGO膜、IGZO膜などが挙げられる。 Further, as shown in FIG. 3, the EC light control device 13 uses the light-transmitting conductive film 9 of the present invention as the upper electrode substrate 15. For example, although not shown, the upper electrode substrate 15 is transparent. It can also be comprised from the base material 2 and a single conductive layer. Examples of the single conductive layer include an ITO film (crystalline ITO film, amorphous ITO film), an IGO film, and an IGZO film.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to an Example and a comparative example at all. In addition, specific numerical values such as a blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and a blending ratio corresponding to them ( Substituting the upper limit value (numerical value defined as “less than” or “less than”) or the lower limit value (number defined as “greater than” or “exceeded”) such as content ratio), physical property values, parameters, etc. be able to.
  [光透過性導電フィルム]
  実施例1
  (フィルム基材の用意、および、保護層の形成)
 まず、長尺状ポリエチレンテレフタレート(PET)フィルムからなり、厚みが50μmである透明基材を用意した。
[Light transmissive conductive film]
Example 1
(Preparation of film substrate and formation of protective layer)
First, a transparent substrate made of a long polyethylene terephthalate (PET) film and having a thickness of 50 μm was prepared.
 次いで、透明基材の上面に、アクリル樹脂からなる紫外線硬化性樹脂を塗布し、紫外線照射により硬化させて、硬化樹脂層からなり、厚みが2μmである保護層を形成した。これにより、透明基材と、保護層とを備える保護層付透明基材ロールを得た。 Next, an ultraviolet curable resin made of an acrylic resin was applied to the upper surface of the transparent substrate, and cured by ultraviolet irradiation to form a protective layer made of a cured resin layer and having a thickness of 2 μm. Thereby, the transparent base material roll with a protective layer provided with a transparent base material and a protective layer was obtained.
 (第1インジウム系導電性酸化物層の形成)
 次いで、保護層付透明基材ロールを真空スパッタ装置に設置して、未搬送時の気圧が4×10-3Paとなるまで真空排気した(脱ガス処理)。この時、スパッタリングガス(ArおよびO)を導入しない状態で、保護層付透明基材の一部を搬送し、2×10-2Paまで気圧が上がることを確認した。これにより、保護層付透明基材ロールに十分な量のガスが残存していることを確認した。
(Formation of first indium-based conductive oxide layer)
Next, the transparent substrate roll with a protective layer was installed in a vacuum sputtering apparatus, and was evacuated until the atmospheric pressure when not transported was 4 × 10 −3 Pa (degassing treatment). At this time, a part of the transparent substrate with a protective layer was transported without introducing the sputtering gas (Ar and O 2 ), and it was confirmed that the atmospheric pressure increased to 2 × 10 −2 Pa. Thereby, it was confirmed that a sufficient amount of gas remained in the transparent substrate roll with a protective layer.
 次いで、保護層付透明基材ロールを繰り出しながら、硬化樹脂層の上面に、スパッタリングにより、非晶質ITOからなり、厚みが40nmである第1インジウム系導電性酸化物層を形成した。 Next, while feeding the transparent base material roll with a protective layer, a first indium conductive oxide layer made of amorphous ITO and having a thickness of 40 nm was formed on the upper surface of the cured resin layer by sputtering.
 具体的には、ArおよびOを導入した気圧0.3Paの真空雰囲気下(流量比はAr:O=100:1.4)で、直流(DC)電源を用いて、12質量%の酸化スズと88質量%の酸化インジウムとの焼結体からなるターゲットをスパッタリングした。 Specifically, using a direct current (DC) power source under a vacuum atmosphere of Ar pressure and a pressure of 0.3 Pa into which Ar and O 2 were introduced (flow rate ratio: Ar: O 2 = 100: 1.4) A target made of a sintered body of tin oxide and 88% by mass of indium oxide was sputtered.
 なお、スパッタリングにより第1インジウム系導電性酸化物層を形成するとき、保護層付透明基材ロールの下面(具体的には、透明基材の下面)を、-5℃の冷却ロールに接触させて、保護層付透明基材ロールを冷却した。 When the first indium conductive oxide layer is formed by sputtering, the lower surface of the transparent substrate roll with a protective layer (specifically, the lower surface of the transparent substrate) is brought into contact with a −5 ° C. cooling roll. Then, the transparent substrate roll with a protective layer was cooled.
 (金属層の形成)
 Ag-Cu合金からなり、厚みが8nmである金属層を、スパッタリングにより、第1インジウム系導電性酸化物層の上面に形成した。
(Formation of metal layer)
A metal layer made of an Ag—Cu alloy and having a thickness of 8 nm was formed on the upper surface of the first indium-based conductive oxide layer by sputtering.
 具体的には、Arを導入した気圧0.3Paの真空雰囲気で、電源として、直流(DC)電源を用い、Ag合金(三菱マテリアル社製、品番「No.317」)をスパッタリングした。 Specifically, an Ag alloy (manufactured by Mitsubishi Materials, product number “No. 317”) was sputtered using a direct current (DC) power source as a power source in a vacuum atmosphere of 0.3 Pa at which Ar was introduced.
  (第2インジウム系導電性酸化物層の形成)
 非晶質ITOからなり、厚みが38nmである第2インジウム系導電性酸化物層を、金属層の上面に、スパッタリングにより、形成した。
(Formation of second indium-based conductive oxide layer)
A second indium-based conductive oxide layer made of amorphous ITO and having a thickness of 38 nm was formed on the upper surface of the metal layer by sputtering.
 具体的には、ArおよびOを導入した気圧0.4Paの真空雰囲気下(流量比はAr:O=100:1.5)で、直流(DC)電源を用いて、12質量%の酸化スズと88質量%の酸化インジウムとの焼結体からなるターゲットをスパッタリングした。 Specifically, using a direct current (DC) power source in a vacuum atmosphere at a pressure of 0.4 Pa into which Ar and O 2 were introduced (flow rate ratio: Ar: O 2 = 100: 1.5), A target made of a sintered body of tin oxide and 88% by mass of indium oxide was sputtered.
 これによって、透明基材の上に、順に、保護層、第1インジウム系導電性酸化物層、金属層および第2インジウム系導電性酸化物層が形成された光透過性導電フィルムを得た(図2参照)。 As a result, a light-transmitting conductive film in which a protective layer, a first indium-based conductive oxide layer, a metal layer, and a second indium-based conductive oxide layer were sequentially formed on the transparent substrate was obtained ( (See FIG. 2).
  実施例2
 実施例1で得られた光透過性導電フィルムを、大気雰囲気下で140℃、30分の条件で、加熱工程を実施した。これにより、光透過性導電フィルムの一方向(搬送方向)をそれぞれ0.3%収縮させて、実施例の光透過性導電フィルムを得た。
Example 2
The light transmissive conductive film obtained in Example 1 was subjected to a heating step under the atmosphere at 140 ° C. for 30 minutes. Thereby, each direction (conveyance direction) of the light-transmitting conductive film was contracted by 0.3% to obtain the light-transmitting conductive films of the examples.
  実施例3~7
 金属層または透明基材の厚みを表1に記載の厚みに変更した以外は、実施例1と同様にして、各実施例の光透過性導電フィルムを得た。
Examples 3-7
Except having changed the thickness of a metal layer or a transparent base material into the thickness of Table 1, it carried out similarly to Example 1, and obtained the translucent conductive film of each Example.
  実施例8~9
 透明基材の材料を表1に記載の材料(COP:シクロオレフィンポリマー、PC:ポリカーボネート樹脂)に変更した以外は、実施例1と同様にして、各実施例の光透過性導電フィルムを得た。
Examples 8-9
A light-transmissive conductive film of each example was obtained in the same manner as in Example 1 except that the material of the transparent substrate was changed to the material shown in Table 1 (COP: cycloolefin polymer, PC: polycarbonate resin). .
  比較例1
 第1インジウム系導電性酸化物層の厚みを30nmとし、金属層および第2インジウム系導電性酸化物層を形成しなかった以外は、実施例1と同様にして、比較例1の光透過性導電フィルムを得た。
Comparative Example 1
The light transmittance of Comparative Example 1 was the same as Example 1 except that the thickness of the first indium-based conductive oxide layer was 30 nm and the metal layer and the second indium-based conductive oxide layer were not formed. A conductive film was obtained.
  比較例2
 第1インジウム系導電性酸化物層の厚みを100nmとし、金属層および第2インジウム系導電性酸化物層を形成しなかった以外は、実施例1と同様にして、比較例2の光透過性導電フィルムを得た。
Comparative Example 2
The light transmittance of Comparative Example 2 was the same as Example 1 except that the thickness of the first indium-based conductive oxide layer was 100 nm and the metal layer and the second indium-based conductive oxide layer were not formed. A conductive film was obtained.
  比較例3
 第1インジウム系導電性酸化物層の厚みを25nmとし、金属層および第2インジウム系導電性酸化物層を形成しなかった以外は、実施例1と同様にして、光透過性導電フィルムを得た。次いで、この光透過性導電フィルムを、大気雰囲気下で140℃、60分の条件で、加熱工程を実施した。これにより、光透過性導電フィルムの一方向(搬送方向)を0.3%収縮させて、比較例3の光透過性導電フィルムを得た。
Comparative Example 3
A light-transmitting conductive film was obtained in the same manner as in Example 1 except that the thickness of the first indium-based conductive oxide layer was 25 nm and the metal layer and the second indium-based conductive oxide layer were not formed. It was. Next, a heating step was performed on the light transmissive conductive film under the atmosphere at 140 ° C. for 60 minutes. Thereby, one direction (conveying direction) of the light transmissive conductive film was contracted by 0.3%, and the light transmissive conductive film of Comparative Example 3 was obtained.
  (測定)
 (1)厚み
 保護層、第1インジウム系導電性酸化物層、金属層および第2インジウム系導電性酸化物層の厚みを、透過型電子顕微鏡(日立社製、HF-2000)を用いた断面観察により測定した。また、透明基材の厚みを、膜厚計(Peacock社製 デジタルダイアルゲージDG-205)を用いて測定した。
(Measurement)
(1) Thickness Sections of the protective layer, the first indium conductive oxide layer, the metal layer, and the second indium conductive oxide layer using a transmission electron microscope (manufactured by Hitachi, Ltd., HF-2000) It was measured by observation. Further, the thickness of the transparent substrate was measured using a film thickness meter (Digital Dial Gauge DG-205 manufactured by Peacock).
 (2)光透過性導電層の表面抵抗値
 JIS K7194(1994年)の4探針法に準拠して、光透過性導電層の初期の表面抵抗値Rを測定した。その結果を表1に示す。
(2) Surface resistance value of light-transmitting conductive layer The initial surface resistance value R0 of the light-transmitting conductive layer was measured according to the four-probe method of JIS K7194 (1994). The results are shown in Table 1.
 (3)耐屈曲性試験
 各実施例および各比較例の光透過性導電フィルムをそれぞれ幅10mm、長さ150mmに切断した。この切断した光透過性導電フィルム9を、光透過性導電層4が外側となる状態かつ透明基材2がマンドレル20と接触する状態となるように、直径5mmのマンドレル20の上に配置した。続いて、光透過性導電フィルム9の長さ方向の両端をクリップ21で留め、そのクリップ21の中央に500gの重り22を取り付けた(図6参照)。すなわち、光透過性導電フィルム9の幅に対して50g/mmの荷重を、下側に向かって印加して、光透過性導電フィルム9を折り曲げた。この折り曲げ状態を10秒間持続させた。
(3) Flexural resistance test The light transmissive conductive films of each Example and each Comparative Example were cut into a width of 10 mm and a length of 150 mm, respectively. The cut light-transmitting conductive film 9 was placed on the mandrel 20 having a diameter of 5 mm so that the light-transmitting conductive layer 4 was on the outside and the transparent substrate 2 was in contact with the mandrel 20. Subsequently, both ends of the light transmissive conductive film 9 in the length direction were fastened with clips 21, and a 500 g weight 22 was attached to the center of the clip 21 (see FIG. 6). That is, the light transmissive conductive film 9 was bent by applying a load of 50 g / mm toward the width of the light transmissive conductive film 9 downward. This bent state was maintained for 10 seconds.
 折り曲げ後の表面抵抗値Rを上記の4探針法と同様にして測定し、続いて、初期の表面抵抗値Rと、折り曲げ後の表面抵抗値Rとの比(R/R)を計算した。その結果を表1に示す。 The surface resistance value R 1 after bending is measured in the same manner as the above-mentioned four-probe method, and then the ratio (R 1 / R) between the initial surface resistance value R 0 and the surface resistance value R 1 after bending. 0 ) was calculated. The results are shown in Table 1.
 また、マンドレル20の直径を変更し、上記と同様の方法(図6参照)で光透過性導電フィルム9を折り曲げて、R/Rが1.05を超過する直径(限界径)を求めた。具体的には、マンドレル20の直径を大径から小径に1mmごとに変更していき、R/Rが1.05を超過する直前におけるマンドレル20の直径を測定した。その結果を表1に示す。 Further, the diameter of the mandrel 20 is changed, and the light transmissive conductive film 9 is bent by the same method (see FIG. 6) as described above to obtain the diameter (limit diameter) where R 1 / R 0 exceeds 1.05. It was. Specifically, the diameter of the mandrel 20 was changed from a large diameter to a small diameter every 1 mm, and the diameter of the mandrel 20 immediately before R 1 / R 0 exceeded 1.05 was measured. The results are shown in Table 1.
 (4)可視光透過率
 ヘーズメーター(スガ試験機社製、装置名「HGM-2DP」)を用いて、光透過性導電フィルムの全光線透過率を測定し、可視光透過率とした。その結果を表1に示す。
(4) Visible light transmittance Using a haze meter (manufactured by Suga Test Instruments Co., Ltd., device name “HGM-2DP”), the total light transmittance of the light transmissive conductive film was measured and taken as the visible light transmittance. The results are shown in Table 1.
 (5)近赤外線平均透過率、近赤外線平均反射率
 分光光度計(日立計測器社製、装置名「U-4100」)を用いて、波長800~1500nmにおいて、光透過性導電フィルムの平均透過率および平均反射率を測定した。その結果を表1に示す。
(5) Near-infrared average transmittance, near-infrared average reflectance Using a spectrophotometer (manufactured by Hitachi Keiki Co., Ltd., device name “U-4100”), the average transmittance of the light-transmitting conductive film at a wavelength of 800-1500 nm. The rate and average reflectance were measured. The results are shown in Table 1.
 [EC調光素子]
 (実施例1)
 実施例1の光透過性導電フィルムを2枚用意し、直径5mmのマンドレルを用いて上記と同様の方法(図6参照)で折り曲げた。これらのフィルムを、それぞれ下側電極基板および上側電極基板とした。
[EC light control device]
Example 1
Two light-transmitting conductive films of Example 1 were prepared and bent by a method similar to the above (see FIG. 6) using a mandrel having a diameter of 5 mm. These films were used as a lower electrode substrate and an upper electrode substrate, respectively.
 EC調光層(第1エレクトロクロミック化合物層/電解質層/第2エレクトロクロミック化合物層の積層体)を用意した。それぞれの光透過性導電層がEC調光層の表面(上面または下面)と接触するように、EC調光層を、下側電極基板および上側電極基板の間に積層し、実施例1のEC調光素子を製造した(図3参照)。 EC light control layer (laminated body of first electrochromic compound layer / electrolyte layer / second electrochromic compound layer) was prepared. The EC light control layer is laminated between the lower electrode substrate and the upper electrode substrate so that each light-transmissive conductive layer is in contact with the surface (upper surface or lower surface) of the EC light control layer. A light control element was manufactured (see FIG. 3).
 なお、EC調光層は、その第1EC化合物層が、厚み200nmのWO膜であり、第2EC化合物層が、厚み60nmのポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)膜であった。また、電解質層は、LiCFSOをアセトニトリル/炭酸プロピレン溶媒に溶解した電解質液に、ポリメチルメタクリレートを混合し、乾燥してなる電解質膜(厚み80μm)であった。 The EC light control layer has a first EC compound layer of a WO 3 film having a thickness of 200 nm, and a second EC compound layer having a thickness of 60 nm of poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid). ) It was a membrane. The electrolyte layer was an electrolyte membrane (thickness 80 μm) obtained by mixing polymethyl methacrylate with an electrolyte solution obtained by dissolving LiCF 3 SO 3 in acetonitrile / propylene carbonate solvent and drying.
 (実施例2~9)
 下側電極基板および上側電極基板のそれぞれに、各実施例の光透過性導電フィルムを用いた以外は、上記と同様にして、各実施例のEC調光素子を製造した。
(Examples 2 to 9)
An EC light control device of each example was manufactured in the same manner as described above except that the light-transmitting conductive film of each example was used for each of the lower electrode substrate and the upper electrode substrate.
 (比較例1~3)
 下側電極基板および上側電極基板のそれぞれに、各比較例の光透過性導電フィルムを用いた以外は、上記と同様にして、各比較例のEC調光素子を製造した。
(Comparative Examples 1 to 3)
An EC light control device of each comparative example was manufactured in the same manner as described above except that the light-transmissive conductive film of each comparative example was used for each of the lower electrode substrate and the upper electrode substrate.
 (1)着色均一性試験(耐屈曲性試験)
 各実施例および各比較例のEC調光素子に電流を流し、折り曲げ部におけるEC調光層の色彩の変化を確認した。
(1) Color uniformity test (flexibility test)
A current was passed through the EC light control elements of each Example and each Comparative Example, and changes in the color of the EC light control layer at the bent portion were confirmed.
 折り曲げ部において、EC調光層が均一に変化した場合を○と評価し、EC調光層の変化に僅かにムラが生じた場合を△と評価し、EC調光層の変化にムラが生じた場合を×と評価した。その結果を表1に示す。 When the EC light control layer is uniformly changed in the bent portion, it is evaluated as ◯, and when the EC light control layer is slightly uneven, it is evaluated as △, and the EC light control layer is uneven. The case was evaluated as x. The results are shown in Table 1.
 (2)応答性試験
 光透過性導電フィルムに対してマンドレル折り曲げを実施せずに、上記と同様にして各実施例および各比較例のEC調光素子を製造した。各EC調光素子に、電流を流し、EC調光層の応答性を測定したところ、光透過性導電層の表面抵抗値の低さに応じて、優れた応答性を示したことを確認した。
(2) Responsiveness test The EC light control device of each Example and each Comparative Example was manufactured in the same manner as described above, without performing mandrel bending on the light transmissive conductive film. When current was passed through each EC light control element and the responsiveness of the EC light control layer was measured, it was confirmed that excellent response was exhibited according to the low surface resistance value of the light transmissive conductive layer. .
 具体的には、下記のように評価した。その結果を表1に示す。 Specifically, the evaluation was as follows. The results are shown in Table 1.
 〇:電圧を印加してから10秒以内に、EC調光素子の色が変化した。 O: The color of the EC light control element changed within 10 seconds after the voltage was applied.
 △:電圧を印加してから10秒~1分の間に、EC調光素子の色が変化した。 Δ: The color of the EC light control element changed within 10 seconds to 1 minute after the voltage was applied.
 ×:電圧を印加した後、1分を超過しても、EC調光素子の色に変化がなかった。 X: The color of the EC light control element did not change even after 1 minute after the voltage was applied.
 (3)遮熱性試験
 光透過性導電フィルムに対してマンドレル折り曲げを実施せずに、上記と同様にして各実施例および各比較例のEC調光素子を製造した。各EC調光素子の着色時における遮熱性を測定した。具体的には、着色時のEC調光素子に赤外ランプを照射して、EC調光素子を通過してくる熱を手で官能評価した。そのとき、熱さが感じられなかった場合を○と評価し、熱さが僅かに感じられた場合を△と評価し、熱さがはっきりと感じられた場合を×と評価した。その結果を表1に示す。
(3) Heat-shielding test EC dimming elements of Examples and Comparative Examples were produced in the same manner as described above without performing mandrel bending on the light-transmitting conductive film. The heat shielding property at the time of coloring of each EC light control element was measured. Specifically, the EC light control device during coloring was irradiated with an infrared lamp, and the heat passing through the EC light control device was subjected to sensory evaluation by hand. At that time, the case where heat was not felt was evaluated as “◯”, the case where heat was slightly felt was evaluated as “Δ”, and the case where heat was clearly felt was evaluated as “X”. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
本発明のエレクトロクロミック調光部材、光透過性導電フィルムおよびエレクトロクロミック調光素子は、各種の工業製品に適用することができ、例えば、調光パネルなどの調光装置に好適に用いることができる。 The electrochromic light control member, the light-transmissive conductive film and the electrochromic light control element of the present invention can be applied to various industrial products, and can be suitably used for light control devices such as light control panels. .
1   エレクトロクロミック調光部材
2   透明基材
4   光透過性導電層
5   エレクトロクロミック調光層
6   第1インジウム系導電性酸化物層
7   金属層
8   第2インジウム系導電性酸化物層
9   光透過性導電フィルム
13  エレクトロクロミック調光素子
15  電極基板
 
DESCRIPTION OF SYMBOLS 1 Electrochromic light control member 2 Transparent base material 4 Light transmission conductive layer 5 Electrochromic light control layer 6 1st indium type conductive oxide layer 7 Metal layer 8 2nd indium type conductive oxide layer 9 Light transmission conductive Film 13 Electrochromic light control element 15 Electrode substrate

Claims (9)

  1.  透明基材と、光透過性導電層と、エレクトロクロミック調光層と順に備え、
     前記光透過性導電層は、第1インジウム系導電性酸化物層と、金属層と、第2インジウム系導電性酸化物層とを順に備えることを特徴とする、エレクトロクロミック調光部材。
    A transparent base material, a light transmissive conductive layer, and an electrochromic light control layer are provided in this order.
    The electrochromic light control member, wherein the light transmissive conductive layer includes a first indium conductive oxide layer, a metal layer, and a second indium conductive oxide layer in order.
  2.  前記光透過性導電層の表面抵抗値が、50Ω/□以下であることを特徴とする、請求項1に記載のエレクトロクロミック調光部材。 The electrochromic light control member according to claim 1, wherein a surface resistance value of the light transmissive conductive layer is 50Ω / □ or less.
  3.  前記光透過性導電層の800nm以上1500nm以下における近赤外線平均透過率が、80%以下であることを特徴とする、請求項1に記載のエレクトロクロミック調光部材。 The electrochromic light-modulating member according to claim 1, wherein the light-transmitting conductive layer has an average near-infrared transmittance of 800 nm or more and 1500 nm or less of 80% or less.
  4.  前記光透過性導電層の800nm以上1500nm以下における近赤外線平均反射率が、10%以上であることを特徴とする、請求項1に記載のエレクトロクロミック調光部材。 The electrochromic light control member according to claim 1, wherein a near-infrared average reflectance at 800 nm to 1500 nm of the light transmissive conductive layer is 10% or more.
  5.  前記光透過性導電層は、初期の表面抵抗値Rと、前記光透過性導電層を折り曲げた後の表面抵抗値Rとの比(R/R)が、1.05以下であることを特徴とする、請求項1に記載のエレクトロクロミック調光部材。 The light-transmitting conductive layer has a ratio (R 1 / R 0 ) between the initial surface resistance value R 0 and the surface resistance value R 1 after bending the light-transmitting conductive layer is 1.05 or less. The electrochromic light control member according to claim 1, wherein the electrochromic light control member is provided.
  6.  前記透明基材は、可撓性を有するフィルムであることを特徴とする、請求項1に記載のエレクトロクロミック調光部材。 The electrochromic light control member according to claim 1, wherein the transparent substrate is a flexible film.
  7.  前記第1インジウム系導電性酸化物層および前記第2インジウム系導電性酸化物層のいずれもが、非晶質膜であることを特徴とする、請求項1に記載のエレクトロクロミック調光部材。 2. The electrochromic light control member according to claim 1, wherein each of the first indium conductive oxide layer and the second indium conductive oxide layer is an amorphous film.
  8.  請求項1に記載のエレクトロクロミック調光部材に用いるための光透過性導電フィルムであって、
     透明基材と、光透過性導電層とを順に備え、
     前記光透過性導電層は、第1インジウム系導電性酸化物層と、金属層と、第2インジウム系導電性酸化物層とを前記透明基材から順に備えることを特徴とする、光透過性導電フィルム。
    A light transmissive conductive film for use in the electrochromic light control member according to claim 1,
    A transparent base material and a light-transmitting conductive layer are provided in order,
    The light transmissive conductive layer includes a first indium conductive oxide layer, a metal layer, and a second indium conductive oxide layer in order from the transparent base material. Conductive film.
  9.  請求項1に記載のエレクトロクロミック調光部材と、
     前記透明基材に対して、前記エレクトロクロミック調光層の反対側の表面に設けられる電極基板と
     を備えることを特徴とする、エレクトロクロミック調光素子。
    The electrochromic light control member according to claim 1;
    An electrochromic light control device comprising: an electrode substrate provided on a surface opposite to the electrochromic light control layer with respect to the transparent substrate.
PCT/JP2017/013038 2016-04-01 2017-03-29 Electrochromic dimming member, light-transmissive conductive film, and electrochromic dimming element WO2017170757A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780022157.6A CN109073948A (en) 2016-04-01 2017-03-29 Electrochromism dims component, light-permeable conductive film and electrochromism Light modulating device
KR1020187026892A KR102443755B1 (en) 2016-04-01 2017-03-29 Electrochromic light control member, light-transmitting conductive film and electrochromic light control element
US16/089,465 US11460747B2 (en) 2016-04-01 2017-03-29 Electrochromic light adjusting member, light transmitting electrically conductive film, and electrochromic light adjusting element
ES17775291T ES2959787T3 (en) 2016-04-01 2017-03-29 Electrochromic dimming organ and electrochromic dimming element
EP17775291.2A EP3438734B1 (en) 2016-04-01 2017-03-29 Electrochromic dimming member and electrochromic dimming element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-074488 2016-04-01
JP2016074488 2016-04-01
JP2017063655A JP6839581B2 (en) 2016-04-01 2017-03-28 Electrochromic dimming member, light transmissive conductive film and electrochromic dimming element
JP2017-063655 2017-03-28

Publications (1)

Publication Number Publication Date
WO2017170757A1 true WO2017170757A1 (en) 2017-10-05

Family

ID=59964635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013038 WO2017170757A1 (en) 2016-04-01 2017-03-29 Electrochromic dimming member, light-transmissive conductive film, and electrochromic dimming element

Country Status (2)

Country Link
ES (1) ES2959787T3 (en)
WO (1) WO2017170757A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161767A (en) * 2018-02-11 2019-08-23 宁波祢若电子科技有限公司 A kind of composite transparent conductive layer and the large area electrochromic device of uniform response
JP2020001232A (en) * 2018-06-27 2020-01-09 ロック技研工業株式会社 ITO film and transparent conductive film
JP2021034204A (en) * 2019-08-22 2021-03-01 日東電工株式会社 Transparent conductive film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520654A (en) * 1998-07-09 2002-07-09 サン−ゴバン ビトラージュ Glazing with electrically controllable optical / energy properties
JP2007086771A (en) * 2005-08-26 2007-04-05 Mitsui Chemicals Inc Electrode substrate for flexible display
JP2008070900A (en) * 2001-10-16 2008-03-27 Ppg Ind Ohio Inc Polymeric electrochromic device
JP2009529151A (en) * 2006-03-03 2009-08-13 ジェンテックス コーポレイション Electro-optic element including metal film and application method thereof
US20130286458A1 (en) * 2010-07-13 2013-10-31 Sage Electrochromics, Inc. Electrochromic device
WO2015146292A1 (en) * 2014-03-28 2015-10-01 株式会社カネカ Transparent electroconductive film and process for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520654A (en) * 1998-07-09 2002-07-09 サン−ゴバン ビトラージュ Glazing with electrically controllable optical / energy properties
JP2008070900A (en) * 2001-10-16 2008-03-27 Ppg Ind Ohio Inc Polymeric electrochromic device
JP2007086771A (en) * 2005-08-26 2007-04-05 Mitsui Chemicals Inc Electrode substrate for flexible display
JP2009529151A (en) * 2006-03-03 2009-08-13 ジェンテックス コーポレイション Electro-optic element including metal film and application method thereof
US20130286458A1 (en) * 2010-07-13 2013-10-31 Sage Electrochromics, Inc. Electrochromic device
WO2015146292A1 (en) * 2014-03-28 2015-10-01 株式会社カネカ Transparent electroconductive film and process for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110161767A (en) * 2018-02-11 2019-08-23 宁波祢若电子科技有限公司 A kind of composite transparent conductive layer and the large area electrochromic device of uniform response
JP2020001232A (en) * 2018-06-27 2020-01-09 ロック技研工業株式会社 ITO film and transparent conductive film
JP7116994B2 (en) 2018-06-27 2022-08-12 ロック技研工業株式会社 ITO film and transparent conductive film
JP2021034204A (en) * 2019-08-22 2021-03-01 日東電工株式会社 Transparent conductive film

Also Published As

Publication number Publication date
ES2959787T3 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
JP6839581B2 (en) Electrochromic dimming member, light transmissive conductive film and electrochromic dimming element
TWI716379B (en) Translucent film
TWI755384B (en) Liquid crystal light-adjusting member, light-transmitting conductive film, and liquid crystal light-adjusting element
JP6934308B2 (en) Light transmissive film
JP2022176332A (en) Electrochromic lighting control member, light-transmissive conductive glass film, and electrochromic lighting control element
WO2017170757A1 (en) Electrochromic dimming member, light-transmissive conductive film, and electrochromic dimming element
JP7046497B2 (en) Liquid crystal dimming member, light transmissive conductive film, and liquid crystal dimming element
KR102328764B1 (en) A liquid crystal light control member, a light transmissive conductive film, and a liquid crystal light control element
WO2017170760A1 (en) Translucent film
TWI839594B (en) Transparent conductive layer, transparent conductive sheet, touch sensor, dimming element, photoelectric conversion element, thermal radiation control component, antenna, electromagnetic wave shielding component and image display device
KR20140039399A (en) Touch screen with improved transmittance by forming anti-reflection and low-reflection coating layer
CN114127865A (en) Transparent conductive film
KR20200098500A (en) Light-transmitting conductive film, its manufacturing method, dimming film, and dimming member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187026892

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775291

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775291

Country of ref document: EP

Kind code of ref document: A1