WO2017170688A1 - Light control system, light control device, light control film, method for driving light control film, and vehicle - Google Patents

Light control system, light control device, light control film, method for driving light control film, and vehicle Download PDF

Info

Publication number
WO2017170688A1
WO2017170688A1 PCT/JP2017/012884 JP2017012884W WO2017170688A1 WO 2017170688 A1 WO2017170688 A1 WO 2017170688A1 JP 2017012884 W JP2017012884 W JP 2017012884W WO 2017170688 A1 WO2017170688 A1 WO 2017170688A1
Authority
WO
WIPO (PCT)
Prior art keywords
light control
liquid crystal
control film
amplitude
wave signal
Prior art date
Application number
PCT/JP2017/012884
Other languages
French (fr)
Japanese (ja)
Inventor
岡部 将人
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016073053A external-priority patent/JP6135793B1/en
Priority claimed from JP2016176523A external-priority patent/JP6825274B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2017170688A1 publication Critical patent/WO2017170688A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings

Definitions

  • the present invention relates to a light control system, a light control device, a light control film, a method of driving the light control film, and a vehicle.
  • Patent Documents 1 and 2 various devices relating to a light control film that is attached to a window to control the transmission of external light have been proposed (Patent Documents 1 and 2).
  • One such light control film uses liquid crystal.
  • the light control film using the liquid crystal is prepared by sandwiching a liquid crystal material with a transparent film material having a transparent electrode and an alignment layer, and a liquid crystal cell between the linear polarizing plates.
  • the orientation of the liquid crystal can be changed by changing the electric field applied to the liquid crystal to block or transmit extraneous light, and further the amount of transmitted light can be changed. Control the transmission of extraneous light.
  • the light control film using this liquid crystal has the advantage of responding at high speed in principle as compared with a configuration using electrochromic or the like which is a similar configuration for controlling external light.
  • a liquid crystal display panel which is one of image display panels, includes a liquid crystal cell sandwiched between a pair of glass plates made of transparent electrodes and alignment films, and the liquid crystal cell is sandwiched between linear polarizing plates. Configured.
  • the liquid crystal display panel displays a desired image by changing the electric field applied to the liquid crystal in units of pixels by patterning the transparent electrode.
  • the light control film is configured to control the transmitted light by controlling the orientation of the liquid crystal molecules, so that various driving methods proposed for the image display panel can be used. It is done.
  • Various driving methods proposed for liquid crystal display panels can be applied to driving the liquid crystal cell.
  • a driving method such as a TN (Twisted Nematic) method, an IPS (In-Plane-Switching) method, or a VA (Virtual Alignment) method can be applied.
  • TN Transmission Nematic
  • IPS In-Plane-Switching
  • VA Virtual Alignment
  • the TN system is a system in which the alignment of liquid crystal molecules is changed between a vertical direction and a horizontal twist direction by applying an electric field, and the amount of transmitted light is controlled using the optical rotation of light.
  • the IPS method is a method of controlling the amount of transmitted light by rotating aligned liquid crystal molecules in a horizontal (horizontal) direction with respect to a substrate.
  • the VA method can be configured by a normally black method in which a non-transmission state (light-shielding state) is obtained when no electric field is applied, and has a feature of a high light-shielding rate in this light-shielding state.
  • a non-transmission state light-shielding state
  • the VA method is a method of controlling transmitted light by changing the alignment of liquid crystal molecules between vertical alignment and horizontal alignment.
  • the liquid crystal when no electric field is applied, the liquid crystal is vertically aligned, whereby the liquid crystal layer is sandwiched between the vertical alignment layers to form a liquid crystal cell, and the liquid crystal material is horizontally aligned by applying an electric field.
  • incident light is shielded by vertical alignment, and when an electric field is applied, incident light is transmitted by horizontal alignment.
  • the liquid crystal molecules related to the vertical alignment are tilted by a slight angle (a pretilt angle of the liquid crystal molecules, which is about 0.5 degrees) in a specific direction.
  • the long axis direction of the liquid crystal molecules is aligned horizontally with the direction related to the pretilt angle by this inclination, and the transmittance during light transmission is improved.
  • the light control film is used for blindfolding by being placed in a window, for example.
  • the VA method can obtain a high light shielding effect.
  • the VA type light control film is used by being attached to a sunroof of a vehicle, for example.
  • JP 03-47392 A Japanese Patent Laid-Open No. 08-184273
  • the present inventor has conducted intensive research to solve the above problems, and has come to the idea that the amplitude of the applied voltage is gradually increased, thus completing the present invention.
  • the present invention provides the following.
  • a light control film for controlling transmitted light by aligning liquid crystals of a liquid crystal cell sandwiched by linearly polarizing plates by a VA method;
  • a light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film;
  • the light control device is: By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied, A dimming system that gradually increases the amplitude of the rectangular wave signal when increasing the amplitude of the rectangular wave signal.
  • the light control device is: A dimming system that gradually increases the amplitude of the rectangular wave signal by sequentially increasing the amplitude in a plurality of cycles of the rectangular wave signal.
  • the luminance that is temporarily generated when the transmittance is variable by increasing the amplitude of the rectangular wave signal stepwise in a plurality of cycles or continuously in a plurality of cycles. Unevenness can be prevented.
  • the light control device is: A dimming system that gradually increases the amplitude of the rectangular wave signal by gradually increasing the amplitude in each period of the rectangular wave signal by a time constant circuit.
  • the amplitude of the rectangular wave signal can be gradually increased by dulling the rise and fall of each cycle by the time constant circuit, and the luminance temporarily generated when the transmittance is variable. Unevenness can be prevented.
  • the light control device is The rectangular wave signal is emitted to the light control film through a resistor
  • the time constant circuit is A light control system formed by at least the resistor and the capacitance of the light control film.
  • the amplitude of the rectangular wave signal can be gradually increased with a simple configuration by effectively using the capacitance of the light control film.
  • a light control film for controlling the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched between linearly polarizing plates by the VA method;
  • a light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film;
  • the light control device is: By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied,
  • the light control film is A first laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
  • a second laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
  • a dimming system further comprising a time constant circuit that gradually increases the amplitude of the rectangular wave signal applied to the transparent electrodes of the first and second laminates at least when the
  • the amplitude of the rectangular wave signal applied to the transparent electrode is gradually increased by the time constant circuit of the light control film, and the liquid crystal is tilted in a state where the directions of the major axis of the liquid crystal are aligned. it can. As a result, it is possible to shorten the time until the tilted liquid crystal orientations are aligned and to prevent uneven brightness that temporarily occurs when the transmittance is variable.
  • the time constant circuit is A dimming system formed by at least a resistor and a capacitance between the transparent electrodes of the first and second laminates.
  • the amplitude of the rectangular wave signal can be gradually increased with a simple configuration by effectively using the capacitance of the light control film.
  • a light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film
  • the light control film is Control the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched by the linear polarizing plate by the VA method
  • the light control device is: By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied, A dimming device that gradually increases the amplitude of the rectangular wave signal when increasing the amplitude of the rectangular wave signal.
  • the liquid crystal can be tilted in a state where the directions of the major axis directions of the liquid crystal are aligned. As a result, it is possible to shorten the time until the tilted liquid crystal orientations are aligned, and to prevent uneven brightness that temporarily occurs when the transmittance is variable.
  • a light control film that controls the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched between linearly polarizing plates by the VA method;
  • a light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film;
  • the light control device is: By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied, A dimming system that applies a voltage having a certain value with a certain polarity in advance for a certain period of time before increasing the amplitude of the rectangular wave signal.
  • the predetermined period is 5 milliseconds or more.
  • the predetermined period is 100 milliseconds or less.
  • a driving voltage is applied between the liquid crystal layer in which the liquid crystal molecules are disposed and the light control film having two planar electrodes disposed so as to face each other and sandwich the liquid crystal layer.
  • a control unit that controls the transmittance of the light control film according to the value of the driving voltage, and the control unit applies a preliminary voltage smaller than the driving voltage between the electrodes prior to the application of the driving voltage. Dimming system.
  • the preliminary voltage is a voltage for inclining the liquid crystal molecules 1 degree or more and 5 degrees or less from the normal line of the surface of the light control film.
  • the light control film is disposed on a sunroof of a vehicle, and the liquid crystal molecules fall when the light control film is viewed from below with the vehicle traveling direction set to 0 °.
  • the azimuth angle is not less than 45 degrees and not more than 90 degrees.
  • the light control film is disposed on a sunroof of a vehicle, and the liquid crystal layer is a first region in which the liquid crystal molecules are tilted in two directions different from each other by 90 degrees by the driving voltage. And the second region, the traveling direction of the vehicle is 0 °, and the azimuth angle of the liquid crystal molecules disposed in the first region when viewed from below is 0 ° or more and 30 ° Below 90 degrees and 90 degrees.
  • the light control film is held on a sunroof of a vehicle, and the liquid crystal layer is a first region in which the liquid crystal molecules are tilted in two directions different from each other by 180 degrees by the driving voltage. And the second region, the traveling direction of the vehicle is 0 °, and when the light control film is viewed from below, the azimuth angle of the liquid crystal molecules disposed in the first region is 45 degrees or less 130 Less than or equal to degrees.
  • a light control film having a liquid crystal layer in which liquid crystal molecules are arranged, and two planar electrodes arranged so as to face each other and sandwich the liquid crystal layer, and attached to a sunroof, and the electrode
  • a control unit that controls the transmittance of the light control film according to a value of a driving voltage applied between the electrodes, and the control unit applies a preliminary voltage smaller than the driving voltage prior to the application of the driving voltage to the electrode. Vehicle applied between.
  • a driving voltage applied between the electrodes in a light control film having liquid crystal layers in which liquid crystal molecules are disposed and two planar electrodes disposed so as to face each other and sandwich the liquid crystal layer A light control film driving method for controlling the transmittance of the light control film according to the value of the light control film, wherein a preliminary voltage smaller than the drive voltage is applied between the electrodes prior to the application of the drive voltage.
  • Driving method for controlling the transmittance of the light control film according to the value of the light control film, wherein a preliminary voltage smaller than the drive voltage is applied between the electrodes prior to the application of the drive voltage.
  • the present invention it is possible to prevent uneven brightness that temporarily occurs when the transmittance is variable in a light control film using liquid crystal.
  • (A) is a schematic sectional drawing of a light control film
  • (B) is a figure explaining the polar angle of a liquid crystal molecule
  • (c) is a liquid crystal It is a figure explaining the direction in which a molecule falls. It is a figure which shows the change of the transmittance
  • the light control film of 7th Embodiment it is a figure which shows the change of the transmittance
  • the light control film of 8th Embodiment it is a figure which shows the change of the transmittance
  • FIG. 1 is a cross-sectional view showing a light control film 10 applied to the light control system of the present invention.
  • the light control film 10 in this embodiment is affixed to a sunroof or the like of a vehicle, for example, and is at least 1 cm 2 per domain, that is, a size of 1 cm 2 or more per domain, preferably 10 cm. two or more of which is size.
  • One domain refers to a continuous region in which liquid crystals are aligned in the same direction after a certain period of time.
  • This light control film 10 is a film material that controls transmitted light using liquid crystal, and controls the transmitted light by changing the orientation of the liquid crystal by the VA method by changing the applied voltage.
  • the light control film 10 is configured by sandwiching a liquid crystal cell 14 for light control film between linear polarizing plates 12 and 13.
  • the linear polarizing plates 12 and 13 are formed by impregnating polyvinyl alcohol (PVA) with iodine or the like and then stretched to form an optical functional layer that performs an optical function as a linear polarizing plate.
  • PVA polyvinyl alcohol
  • TAC triacetyl cellulose
  • the optical functional layer is sandwiched between base materials made of a transparent film material such as the above.
  • the linearly polarizing plates 12 and 13 are arranged in the liquid crystal cell 14 by an adhesive layer made of an ultraviolet curable resin or the like in a crossed Nicol arrangement.
  • the linear polarizing plates 12 and 13 are provided with retardation films 12A and 13A for optical compensation on the liquid crystal cell 14 side, respectively, but the retardation films 12A and 13A may be omitted as necessary.
  • the liquid crystal cell 14 controls the polarization plane of transmitted light by an applied voltage to a transparent electrode described later.
  • the light control film 10 is comprised so that transmitted light can be controlled and various light control can be aimed at.
  • the liquid crystal cell 14 is configured by sandwiching a liquid crystal layer 18 between a lower laminate 15D and an upper laminate 15U which are first and second laminates in a film shape.
  • the lower laminate 15D is formed by forming the transparent electrode 21, the spacer 22, and the alignment layer 23 on the base material 16 made of a transparent film material.
  • the upper laminate 15U is formed by laminating a transparent electrode 26 and an alignment layer 27 on a substrate 25 made of a transparent film material.
  • the liquid crystal cell 14 controls the orientation of the liquid crystal provided in the liquid crystal layer 18 by the VA method by driving the transparent electrodes 21 and 26 provided in the lower stacked body 15D and the upper stacked body 15U. Control the plane of polarization.
  • the liquid crystal cell 14 is configured by a single domain method, but may be configured by a multi-domain method.
  • the transparent electrodes 21 and 26 are formed of a transparent electrode material made of ITO (Indium Tin Oxide).
  • the spacer 22 is provided to define the thickness of the liquid crystal layer 18 and various resin materials can be widely applied.
  • the spacer 22 is made of a photoresist, and is made of a transparent electrode 21. It is produced by applying a photoresist on 16 and exposing and developing.
  • the spacer 22 may be provided on the upper laminate 15U, or may be provided on both the upper laminate 15U and the lower laminate 15D.
  • the spacer 22 may be provided on the alignment layer 23. Further, a so-called bead spacer may be applied as the spacer.
  • the alignment layers 23 and 27 are formed of a photo-alignment layer.
  • the photo-alignment material applicable to the photo-alignment layer various materials to which the photo-alignment technique can be applied can be widely applied.
  • a photo-dimerization type material is used.
  • this light dimerization type material please refer to “M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov: Jpn. J. Appl. Phys., 31, 2155 (1992)”, “M. Schadt, H. Seiberle and A. Schuster: Nature, 381, 212 (1996) ".
  • liquid crystal materials applicable to this type of light control film can be widely applied to the liquid crystal layer 18.
  • a liquid crystal material such as MLC 2166 manufactured by Merck Co., for example, can be applied to the liquid crystal layer 18.
  • a sealing material 29 is disposed so as to surround the liquid crystal layer 18, and the upper stacked body 15 ⁇ / b> U and the lower stacked body 15 ⁇ / b> D are integrally held by the sealing material 29, thereby preventing leakage of the liquid crystal material.
  • the sealing material 29 for example, an epoxy resin, an ultraviolet curable resin, or the like can be applied.
  • no structure other than the spacer 22 is arranged in the liquid crystal layer 18.
  • the light control film 10 controls the alignment of the liquid crystal provided in the liquid crystal layer 18 by the applied voltage V1 between the transparent electrodes 21 and 26 of the upper laminate 15U and the lower laminate 15D.
  • the applied voltage V ⁇ b> 1 is applied between the transparent electrodes 21 and 26 by the drive power source S ⁇ b> 1 using a rectangular wave signal whose polarity is switched at regular time intervals.
  • the liquid crystal molecules of the liquid crystal layer 18 are vertically aligned when no electric field is applied when the amplitude of the drive power supply S1 is 0 V (when the applied voltage V1 is 0 V), Thereby, the light control film 10 light-shields incident light, and will be in the light-shielding state.
  • the amplitude of the driving power source S1 is increased and the applied voltage V1 is raised, the liquid crystal of the liquid crystal layer 18 is horizontally aligned, and the light control film 10 transmits incident light.
  • FIG. 2 is a diagram for explaining the light control film 10 used for checking luminance unevenness that occurs when the transmittance is variable.
  • the light control film 10 having the configuration described above with reference to FIG. 1 was manufactured with a size of 300 mm ⁇ 300 mm. Furthermore, this light control film 10 was divided equally in the horizontal direction, and five areas indicated by reference signs A1, A2, A3, A4, and A5 were set. In addition, each region set in the horizontal direction in this way was divided into equal parts in the vertical direction, and three regions indicated by reference numerals B1, B2, and B3 were set. Further, the change in transmittance with respect to the change in the applied voltage V1 was measured at the center of each region set in this way.
  • the driving power source S1 related to the applied voltage V1 was supplied from the center in the horizontal direction and the lower end in the vertical direction.
  • the liquid crystal molecules were set so as to be horizontally aligned in the direction from the upper left to the lower right.
  • 3 and 4 are charts showing the measurement results. 3 and 4 show the results of measuring the time required for the transmittance to change to a value corresponding to the rise of the amplitude after the amplitude of the applied voltage V1 is raised.
  • the time required for the change in transmittance described in FIGS. 3 and 4 is the time required until 90% of the transmittance corresponding to the raised amplitude is obtained. In the following, the time required to reach 90% will be appropriately referred to as response speed.
  • FIG. 3 is a measurement result of the response speed when the light control film is attached to the curved glass
  • FIG. 4 is a measurement result of the response speed when the light control film is attached to the flat glass.
  • the time required for the change in transmittance is from 22 milliseconds to 150 in both FIG. 3 and FIG. It turns out that it varies in the range up to milliseconds.
  • FIG. 5 shows the measurement results of the change ⁇ C in capacitance of the liquid crystal cell constituting the light control film and the change ⁇ T in transmittance of the light control film.
  • This measurement result of the transmittance is a measurement result of the central regions A3 and B2 when the light control film is attached to the flat glass.
  • the vertical axis represents the capacitance and transmittance expressed by normalizing the measured value at each time point by setting the capacitance and transmittance corresponding to the raised amplitude to a value of 1.
  • the capacitance of the liquid crystal cell is saturated in a very short time as shown by the period T1.
  • the period T2 it can be seen that the transmittance takes 300 msec or more until the saturation finally occurs after the period T1 elapses.
  • the liquid crystal molecules 18A of the liquid crystal layer 18 fall from the vertical alignment state to the horizontal alignment state in a short time by raising the amplitude of the applied voltage V1.
  • the period required for this collapse is a period T1 during which the capacitance changes.
  • the liquid crystal molecules 18A tilted in the horizontal direction vary in the direction of the major axis, and this variation is corrected by the alignment regulating force related to the pretilt of the alignment layers 23 and 27 as indicated by the arrows for the period T2.
  • the major axis direction of the liquid crystal molecules 18A is aligned with the direction related to the pretilt.
  • the period required for correction after falling down in the horizontal direction is the period T2, and as a result, the period T2 requires a time of about 200 msec at the maximum. Further, when this period T2 is different in each part, luminance unevenness occurs.
  • FIG. 6 is a diagram showing the behavior of the liquid crystal molecules 18A in the periods T1 and T2, the Z direction is the thickness direction of the liquid crystal layer 18, and the X direction and the Y direction are described above with reference to FIGS. Horizontal and vertical directions.
  • the period T2 can be shortened, and further, the period T2 can be prevented from varying.
  • luminance unevenness when the transmittance is reduced can be prevented.
  • the period T2 is shortened in this way, luminance unevenness can be made difficult to visually recognize.
  • the amplitude of the applied voltage is gradually increased, the orientation of the liquid crystal in the major axis direction does not vary when the liquid crystal falls down.
  • FIG. 7A shows a change in the amplitude of the applied voltage V1 during the measurement described above with reference to FIGS.
  • the transmittance is increased by raising the amplitude of the applied voltage V1 from 0 V to 10 V, the above-described luminance unevenness occurs, and the period T2 varies.
  • the light control film 10 is not disposed other than the spacer 22 in the liquid crystal layer 18 as described above. For this reason, such luminance unevenness occurs when the amplitude of the applied voltage V1 rises from 0V. That is, such luminance unevenness occurs when the transmittance is increased from the minimum state in the case of normally black, but the applied voltage from the intermediate value (halftone) state where the transmittance is not minimum.
  • 0 V in this case is not limited to a complete 0 V, but the voltage range of the threshold voltage of the liquid crystal (until the transmittance begins to change) is increased by increasing the amplitude of the applied voltage V 1 from 0 V. Including, generally 2V or less.
  • the amplitude of the drive voltage V1 is gradually increased by increasing the amplitude of the drive voltage V1 step by step, for example, in three steps at short time intervals.
  • the response speed could be 50 msec or less, and the luminance unevenness could not be visually recognized.
  • the liquid crystal molecules 18A fall down in three steps in the period T1 described in FIG.
  • the liquid crystal molecules 18A are tilted while being aligned in the same direction, and in this case, it is not necessary to change the orientation of the liquid crystal molecules 18A in the in-plane direction. it is conceivable that.
  • the increase in the amplitude may be continuously increased by the characteristic of the linear function, the characteristic of the logarithmic function, or the like instead of the stepwise increase.
  • the response speed may be 50 milliseconds or less. Although the response speed can be selected, a longer period can be selected depending on the application. For example, when the response speed is 100 to 300 milliseconds, an impression that the transmittance of the light control film changes instantaneously can be obtained. When the response speed is set to about 500 milliseconds to 3 seconds and the amplitude is gradually increased, the transmittance of the light control film gives an impression that it becomes brighter slowly.
  • the response speed When the response speed is increased from 300 milliseconds to 500 milliseconds and the amplitude is gradually increased at a frequency of 30 to 50 Hz, an impression that the transmittance of the light control film is naturally brightened is obtained.
  • the response speed can be appropriately set according to the use of the light control film. Note that when the response speed is longer than 3 seconds, the change in transmittance seems to be considerably slow, so the response speed is preferably set to 3 seconds or less. Further, if the drive voltage V1 has the same amplitude of 100 milliseconds or more in the middle of changing the transmittance, the change in the transmittance may seem unnatural. Less than milliseconds are preferred.
  • FIG. 8 is a diagram showing a light control system according to this embodiment.
  • the dimming system 1 is applied to, for example, a passenger car, and holds and holds the dimming film 10 on a curved surface glass of a sunroof, and the dimming system 1 is adjusted by operating up and down operators 2U and 2D provided in a console box or the like.
  • the transmittance of the light control film 10 is controlled by the optical device 3. For this reason, the light control device 3 outputs the drive power source S1 to the light control film 10, and varies the amplitude of the drive power source S1 in response to the operation of the operation elements 2U and 2D.
  • the drive power generation unit 5 is a power supply circuit that generates and outputs the drive power S1.
  • the drive power generation unit 5 generates the drive power S1 from a rectangular wave signal having a duty ratio of 50% and a frequency of 30 Hz, and outputs the drive power S1 to the light control film 10.
  • this frequency can be set to a low frequency in a range that does not cause deterioration of the liquid crystal in the light control film 10, and power loss due to the capacitance of the light control film 10 can be reduced. It is desirable to output at a frequency of 1 Hz to 120 Hz, more preferably 1 Hz to 30 Hz.
  • the drive power generator 5 varies the amplitude of the drive power S 1 under the control of the controller 4.
  • the controller 4 is a control circuit that controls the operation of the light control device 3, and records and holds information related to light control of the light control film 10 in a storage means (not shown).
  • the information related to the dimming control is information specifying the relationship between the amplitude of the drive power source S1 and the transmittance, for example.
  • the controller 4 changes the amplitude of the drive power source S1 so that the transmittance is sequentially changed by a constant value by the operation of the operation elements 2D and 2U based on the information relating to the light control stored and held in the storage means. To do.
  • the controller 4 gradually increases the amplitude of the rectangular wave signal, thereby preventing luminance unevenness.
  • the controller 4 gradually increases the amplitude of the rectangular wave signal in a plurality of cycles of the driving power source S1 that is a rectangular wave signal. That is, in the example of FIG. 9, the amplitude is increased in a linear function in three cycles of the drive power source S1. In this way, the change ⁇ T in the passage rate is changed to 90% transmittance in a period of approximately two cycles, which is three cycles or less, thereby preventing luminance unevenness.
  • FIG. 10 is a characteristic curve diagram showing the change in transmittance due to the amplitude change in FIG. 9 by comparison with the measurement result in FIG.
  • the measurement result in FIG. 5 is indicated by reference numeral T1
  • the change in transmittance in the example of FIG. 9 is indicated by reference numeral T2. According to FIG. 10, it is possible to confirm a marked improvement in response speed.
  • the orientation of the liquid crystal molecules 18A is in a range where the amplitude of the rectangular wave signal is 25% or more and 50% or less with respect to the amplitude of the rectangular wave signal having a modulation degree of 100%. It can be said that the change in transmittance due to the change is a large range. In this range, the period T2 becomes longer due to a sudden increase in amplitude, and the variation in the period T2 also increases.
  • the modulation degree is a ratio of the transmittance indicating that the transmittance is most increased as 100% modulation. When the transmittance is variable, the variation of the transmittance in each part increases.
  • the amplitude of the drive voltage V1 when the amplitude of the drive voltage V1 is increased so as to cross the range of 25% or more and 50% or less, the amplitude is increased in three cycles to ensure the response speed in the period of two cycles. , Brightness unevenness can be prevented.
  • the amplitude of the rectangular wave signal is gradually increased, such as by gradually increasing the amplitude of the rectangular wave signal only when the amplitude is varied within the range of 25% to 50%, for example, 10% or more.
  • the application conditions in the case of making them can be set variously as needed.
  • the liquid crystal molecules fall down while being aligned in the same direction, and thereby the orientation of the liquid crystal molecules is bothered. Since there is no need to change so as to align in the in-plane direction, the response speed can be improved and luminance unevenness can be prevented.
  • the luminance unevenness can be prevented by a specific configuration by sequentially increasing the amplitude in a plurality of cycles of the driving power source by the rectangular wave signal.
  • FIG. 11 is a diagram showing a light control system according to the second embodiment of the present invention.
  • the light control system 31 is configured in the same manner as the light control system 1 except that a light control device 33 is applied instead of the light control device 3.
  • the dimming device 33 the drive power generation unit 35 outputs the drive power S1 with the amplitude varied under the control of the controller 34.
  • the controller 34 responds to the operation of the operation elements 2U and 2D and controls each part. Control the behavior.
  • the light control device 33 includes a resistor R1 on the cold output line of the drive power source S1, and a rectangular wave is generated by a time constant circuit formed by the resistor R1 and the capacitance of the light control film 10. Brightness unevenness is prevented by gradually increasing the amplitude of the signal.
  • This embodiment has the same configuration as that of the first embodiment except that the configuration related to the rise of the amplitude is different.
  • the light control film 10 is held so that the transparent electrodes 21 and 26 are opposed to each other with an interval depending on the thickness of the liquid crystal layer 18, thereby providing a capacitance.
  • the resistor R1 is provided on the ground side (cold side) output line of the drive power source S1 and the drive power source S1 is supplied via the resistor R1
  • the time constant circuit is formed by the capacitance and the resistor R1.
  • the waveform of the driving power supply applied to the transparent electrodes 21 and 26 is blunted.
  • FIG. 12B by comparison with a state where the waveform is not blunted (FIG. 12A)
  • the polarity of the voltage V1 in each cycle of the driving power source S1 by the rectangular wave signal is changed.
  • the amplitude of the rectangular wave signal will gradually increase.
  • the waveform dullness of the drive power supply can be adjusted by the resistor R1.
  • the light control device 33 gradually increases the amplitude of the drive power source S1 to prevent uneven brightness.
  • the waveform of the drive power source S1 is dulled as described above, power is consumed by the resistor R1, and the power consumption increases. Therefore, the dimmer 33 is provided with a switch circuit 37 in parallel with the resistor R1, and both ends of the resistor R1 are short-circuited by the switch circuit 37 to prevent useless power consumption.
  • the switch circuit 37 is set to an ON state except when it is necessary to prevent luminance unevenness, thereby preventing wasteful power consumption.
  • the amplitude of the drive power source S1 is in the range of 25% to 50% with respect to the drive voltage with a modulation degree of 100%. In the case where the magnitude of the variable amplitude is 12.5% or more.
  • the switch circuit 37 is switched to an off state when the amplitude is increased and a certain time (for example, 200 msec) elapses. Prevents wasteful power consumption.
  • the resistor R1 and the switch circuit 37 may be provided on both of the drive power supply output lines or on the hot side.
  • resistance R1 can be suitably set according to the electrostatic capacitance of the light control film which changes with the magnitude
  • FIG. 13 is a characteristic curve diagram showing measurement results of transmittance and amplitude according to this embodiment.
  • the time constant was set from 0.5 milliseconds to 2 milliseconds, and the response speed could be set to about 0.03 seconds.
  • the same effect as that of the first embodiment can be obtained by gradually increasing the amplitude in each cycle of the drive power supply by the time constant circuit.
  • this time constant circuit with the resistor provided in the output line of the drive power supply of the light control device and the electrostatic capacity of the light control film, the electrostatic capacity of the light control film can be effectively achieved with a simple configuration. It is possible to prevent luminance unevenness by using it.
  • the resistor R1 described above for the second embodiment is provided on the light control film side.
  • the switch circuit 37 may also be provided on the light control film, and the on / off control may be performed by the light control device.
  • This embodiment has the same configuration as that of the second embodiment except that the configuration regarding the resistor R1 is different.
  • the light control device by providing a resistance to the light control film to form a time constant circuit, the light control device is commonly used in various light control films, and the same effect as in the second embodiment is obtained. be able to.
  • FIG. 14 is a diagram for explaining a light control system according to the fourth embodiment of the present invention.
  • the dimming system according to this embodiment has the same configuration as that of the above-described embodiment except that the method of increasing the amplitude at the time of starting the amplitude shown in FIG. 14 is different.
  • the driving power source when the amplitude is increased in a certain range, the driving power source is increased by a certain value VA with a certain polarity in advance for a certain period TA. Thereafter, in this embodiment, the drive power supply is raised to an amplitude corresponding to the user's instruction and driven by a rectangular wave signal.
  • the amplitude of the rectangular wave signal is gradually increased by two steps based on the predetermined constant value VA and the amplitude corresponding to the user's instruction, and luminance unevenness that temporarily occurs when the transmittance is variable is reduced.
  • the applied voltage when driven by a driving power source using a rectangular wave signal is denoted by reference symbol V1A, and the change in transmittance in this case is denoted by reference symbol ⁇ T1.
  • the fixed period TA is not related to the period of the rectangular wave signal, and is preferably 5 milliseconds or more, and more preferably 10 milliseconds or more. Moreover, it is preferably 100 milliseconds or less, more preferably 50 milliseconds or less. If a time shorter than 5 milliseconds is set, the liquid crystal molecules do not move and the effect of improving the response speed cannot be obtained. On the other hand, if the time is longer than 100 milliseconds, it is not preferable because the liquid crystal molecules can be visually recognized that the liquid crystal molecules operate to a modulation degree lower than a desired modulation degree and further operate to a desired transmittance in two stages.
  • the lower limit value is set to 5 milliseconds or more, more preferably 10 milliseconds or more, and the upper limit value is set to 100 milliseconds or less, more preferably 50 milliseconds or less. Desirably, in such a short time, the change in transmittance of the light control film seems to operate continuously.
  • the fixed period TA does not depend on the amplitude of the rectangular wave signal, and can be set to a desired preferable range.
  • the predetermined range for increasing the amplitude in advance is the same as the case where the amplitude of the rectangular wave signal according to the above-described embodiment is gradually increased, and there is a possibility that uneven brightness may occur.
  • the constant value VA is a voltage corresponding to a modulation degree of 0% or more and 80% or less. For example, a voltage that modulates about 20% according to a final amplitude value corresponding to a user's instruction. It can be set arbitrarily within the range.
  • the modulation degree of the liquid crystal molecules changes due to the change of the tilt angle.
  • the modulation degree is 1 and the tilt angle is 0 degree.
  • the modulation degree is zero.
  • the degree of modulation is 0% or more and 80% or less (the range indicated by the symbol M)
  • the light control film has a high effect of reducing luminance unevenness by gradually increasing the amplitude. This is a case where the degree of modulation exceeds 80%.
  • the liquid crystal molecules are largely inclined, the liquid crystal molecules are already oriented in various directions, so that even if the amplitude is gradually increased, the driving unevenness can be improved.
  • this range is a range M of 5 degrees or more and 55 degrees or less according to the tilt angle.
  • the amplitude of the rectangular wave signal is in the range of 2.5V to 5V.
  • the constant value VA is set to 2.5 V or more and 5 V or less by increasing the driving power source by a certain value VA with a certain polarity in advance.
  • the drive power supply is increased by a fixed value VA with a fixed polarity in advance for a fixed period TA, and then the amplitude of the rectangular wave signal is gradually increased by driving with the rectangular wave signal. Even if it does, the effect similar to the above-mentioned embodiment can be acquired.
  • FIG. 17 is a diagram for explaining a light control system according to a fifth embodiment of the present invention, in which (A) is a fifth embodiment, and (B) is a comparative embodiment.
  • the dimming system according to this embodiment is configured in the same way as the fourth embodiment except that the method of increasing the amplitude at the time of starting up the amplitude is different, and thus the description of the same part is omitted.
  • the dimming system has a clock inside, and the drive signal is transmitted based on the clock signal. That is, the timing at which the amplitude of the drive signal changes depends on the clock signal. That is, the amplitude of the drive signal is changed by the clock signal regardless of the timing when the user turns on the light control system in order to change the transmittance of the light control film.
  • a voltage having an amplitude VA2 smaller than the amplitude VC is applied to the light control film.
  • the time TA for applying the voltage of the amplitude VA2 to the light control film is set in a range where the lower limit value is 5 milliseconds or more and the upper limit value is 100 milliseconds or less, as in the fourth embodiment. Is preferred.
  • the frequency of the drive signal needs to be 30 Hz or higher in consideration of suppression of flicker (flicker), a case where one period is 33 milliseconds will be described.
  • the case where the amplitude of the drive signal in the cycle is VA2 and the amplitude of the drive voltage is VC from the second cycle will be described.
  • the remaining time t in the first cycle including the SW / ON time is TA.
  • the remaining time t (TA) in the first cycle is 0 ⁇ t (TA) ⁇ 33 milliseconds, and may be t (TA) ⁇ 5 milliseconds depending on the SW / ON timing. In this case, t (TA) deviates from the above-described preferable range, and the effect of improving the response speed cannot be obtained.
  • the SW / ON is performed from the time when the user turns on the switch of the dimming system (the SW / ON position in FIG. 17A).
  • the amplitude of the drive voltage in the first cycle and the second cycle including the time point is VA2, and the amplitude of the drive voltage is VC from the next third cycle.
  • TA is a time obtained by adding 33 milliseconds of the first cycle to the remaining time t of the first cycle including the SW / ON time point.
  • the remaining time t in the first cycle including the SW / ON time is 0 ⁇ t ⁇ 20 milliseconds, and therefore 20 ⁇ TA (t + 20) ⁇ 40 milliseconds.
  • TA is in the preferred range of 5 milliseconds to 100 milliseconds.
  • the TA is in the preferred range of 5 milliseconds to 100 milliseconds in this case when the length of one cycle is 5 milliseconds to 50 milliseconds.
  • FIG. 18 is a diagram illustrating a vehicle including the light control system according to the embodiment of the present invention.
  • the vehicle 130 includes a sunroof 132, and the light control film 10 is attached to the sunroof 132.
  • the vehicle 130 is provided with an opening 131 so as to cover the passenger's head, and a laminated body of the light control film 10 is disposed in the opening 131 to form a sunroof 132.
  • the attachment object of the light control film 10 is not limited to a sunroof like this embodiment, A show window, the other window in a vehicle, the window of a building, etc. are applicable.
  • the vehicle 130 according to the present embodiment is used as a laminated body in which the driver's seat is disposed at the right front portion of the vehicle, and the sunroof 132 is laminated on the transparent plate member forming the sunroof 132 with an adhesive, an adhesive, or the like.
  • the light control film may be disposed by applying to an intermediate material of laminated glass, for example.
  • the linearly polarizing plates 12 and 13 are arranged in the liquid crystal cell 14 by an adhesive layer such as an acrylic transparent adhesive resin.
  • a polycarbonate film having a thickness of 100 ⁇ m is applied to the base materials 16 and 25.
  • the alignment layers 23 and 27 may be produced by rubbing treatment instead of the photo-alignment layer, or may be produced by forming a fine line-shaped uneven shape.
  • the alignment layers 23 and 27 are formed by applying an alignment layer coating liquid, drying the film, and then exposing it to ultraviolet irradiation. In one of the alignment layers 23 and 27, a plurality of regions having different directions of alignment regulating force are created by repeated exposure processing using a mask in the irradiation of ultraviolet rays. In addition, the alignment layer 23 or 27 that remains is set to have a uniform alignment regulating force over the entire surface. Thereby, the light control film 10 drives the liquid crystal layer 18 by the multi-domain by two domains. Note that the present invention is not limited to the case of two domains, and may be applied to a multi-domain such as a 4-domain or a single domain.
  • a nematic liquid crystal can be applied to the liquid crystal layer 18.
  • a VA method Vertical Alignment, vertical alignment type or the like is applied.
  • the liquid crystal molecules of the liquid crystal layer 18 are vertically aligned when there is no electric field when the amplitude of the drive power supply 20 is 0 V (when the drive voltage is 0 V), whereby the light control film 10 blocks incident light. As a result, the light is blocked.
  • the drive voltage is increased by increasing the amplitude of the drive power supply 20
  • the liquid crystal layer of the liquid crystal layer 18 is horizontally aligned, and the light control film 10 transmits incident light.
  • the liquid crystal cell 14 is driven by a so-called single domain by patterning the photo-alignment layer or the like.
  • FIG. 19 is a block diagram of the light control system 200 showing the light control film 10 and the control unit 140 that drives the light control film 10.
  • the control unit 140 includes a drive power supply 20 and changes the amplitude in response to the operation of the operation element 141 to output the drive voltage V1.
  • the control unit 140 applies a rectangular wave driving voltage whose polarity is switched at regular time intervals between the lower transparent electrode 11 and the upper transparent electrode 16 of the light control film 10.
  • a driving voltage is applied between the lower transparent electrode 11 and the upper transparent electrode 16 from the control unit 140, an electric field is generated in the liquid crystal layer 18.
  • the alignment of the liquid crystal layer material provided in the liquid crystal layer 18 is controlled by the electric field generated in the liquid crystal layer 18. Thereby, the transmitted light of the light control film 10 can be controlled, and light control can be achieved.
  • FIG. 20 is a comparative example, and is a characteristic curve diagram illustrating the behavior of liquid crystal molecules when a driving voltage V1 of ⁇ 10 V is applied between the transparent electrodes 11 and 16 having a voltage of 0 V in the VA method.
  • the measurement result of FIG. 20 is a measurement result in the state (not a moving vehicle) where the light control film 10 is left still.
  • the transmittance When a drive voltage V1 of ⁇ 10 V is applied between the transparent electrodes 11 and 16 having a voltage of 0 V, the transmittance is about 1/3 of the saturation value after about 10 msec has elapsed (in FIG. It is about 02). Thereafter, the transmittance once decreases to about 0.01, then gradually increases, and saturates at about 0.055 after about 200 msec.
  • FIG. 21 is a diagram for explaining the behavior of the liquid crystal molecules 18A in the comparative form.
  • the same reference numerals as those of the present embodiment are used in the comparative embodiment.
  • the liquid crystal molecules 18A of the nemac liquid crystal used in the VA mode fluctuate relatively freely in the major axis direction even in the state where the light control film 10 is allowed to stand at the time of vertical alignment which is light shielding.
  • the liquid crystal molecules 18A have a certain distribution in which the direction in the major axis direction has a certain degree of spread around the direction related to the pretilt angle ⁇ .
  • the xy direction is the in-plane direction of the surface of the liquid crystal layer 8
  • the z direction is the thickness direction of the liquid crystal layer 18.
  • the pretilt angle ⁇ of the liquid crystal molecules 18A is about 0.5 degrees from the normal line of the surface of the light control film 10.
  • each liquid crystal molecule 18A first has a direction (vertical alignment) corresponding to the state during vertical alignment, as indicated by reference numeral A.
  • the major axis at the time falls in the xy plane) and is horizontally oriented.
  • the orientation in the in-plane direction of the major axis direction changes and aligns in a certain direction.
  • the liquid crystal molecules 18 ⁇ / b> A are horizontally aligned in the in-plane direction according to the state during vertical alignment, whereby the transmittance is temporarily reduced to about 1/3 of the saturation value. Stands up (FIG. 19).
  • the light control film 10 is gradually increased and saturated in a period until the orientations of the liquid crystal molecules 18A are aligned.
  • the magnitude of vibration is different in each part, the magnitude of fluctuation in the major axis direction during vertical alignment varies in various parts of the light control film 10.
  • the response time concerning the horizontal alignment of the liquid crystal molecules 18A differs in each part, and when the transmittance is changed, a distribution occurs in the transmittance and the transmittance becomes non-uniform.
  • the time until the horizontally aligned liquid crystal molecules 18A are aligned in the direction corresponding to the pretilt is shortened, thereby reducing response speed deterioration and nonuniform transmission.
  • FIG. 22 is a characteristic curve diagram showing the voltage applied between the transparent electrodes 11 and 16 and the transmittance of the light control film 10 at that time, and corresponds to FIG.
  • the drive voltage V1 of ⁇ 10V is applied after applying the preliminary voltage V2 of about 2.5V for a period of 10 msec.
  • the preliminary voltage is 2.5 V in the present embodiment, the preliminary voltage is not limited to this, and the preliminary voltage is a voltage value in which the angle at which the liquid crystal molecules tilt is 1 degree or more and 5 degrees or less from the normal line of the surface of the light control film 10. If it is.
  • the transmittance is changed in a short time by first applying the preliminary voltage.
  • the transmittance is temporarily reduced as described above.
  • such a temporary decrease in transmittance does not occur.
  • the transmittance is saturated at about 20 msec, and the response speed is shorter than that in FIG.
  • the reason for this is considered as follows.
  • the preliminary voltage V2 of about 2.5 V the liquid crystal molecules 18A slightly fall in the horizontal direction from the normal line of the surface of the light control film 10 corresponding to the preliminary voltage V2.
  • the driving voltage V1 the driving voltage
  • the liquid crystal molecules 18A are tilted in the horizontal direction in a state where the variation is already regulated. Therefore, when the drive voltage V1 is applied, it is considered that the movement of the liquid crystal molecules 18A in the in-plane direction is omitted and the response speed is shortened.
  • the passenger is seated, and the direction of the passenger's line of sight is forward for most of the period. Further, in the vehicle 130, it is rare that the passenger looks up from above and visually recognizes the light control film 10 provided on the sunroof 132 from the front.
  • the VA-type light control film 10 has a characteristic that the transmittance varies depending on the viewing direction.
  • the VA system and the characteristics of the vehicle are effectively used to sufficiently improve the response speed and to sufficiently shield the incident light, and further sufficiently as follows. Ensure transmittance.
  • FIG. 23 is a diagram illustrating the definition of polar angle and azimuth angle in the single domain method.
  • FIG. 23A is a schematic cross-sectional view of the light control film 10.
  • the state A shows the state of the liquid crystal molecules 18A when no electric field is generated between the transparent electrodes 11 and 16, and the liquid crystal molecules 18A are in a vertically aligned state in which the major axis direction is the vertical direction.
  • State B shows the direction in which the liquid crystal molecules 18A are inclined due to the generation of an electric field, and the liquid crystal molecules 18A start horizontal alignment so that the major axis direction of the liquid crystal molecules 18A is in the in-plane direction due to the electric field by the transparent electrodes 11 and 16.
  • FIG. 23B is a diagram for explaining the polar angle of the liquid crystal molecules 18A.
  • the polar angle is an inclination in the major axis direction of the liquid crystal molecules 18A from the normal direction (thickness direction) of the light control film 10 as illustrated.
  • FIG. 23C is a diagram for explaining the direction (azimuth angle) in which the liquid crystal molecules 18A are tilted.
  • the traveling direction of the vehicle 130 is assumed to be an azimuth angle 0.
  • the light control film 10 of this embodiment is a single domain VA light control film 10 that tilts all liquid crystal molecules in the same direction.
  • FIG. 24 is a diagram illustrating a change in transmittance when the direction (azimuth angle) of the liquid crystal molecules 18A is different in the light control film 10 of the present embodiment.
  • the tilt angle (azimuth angle) of the liquid crystal molecules 18A is the direction (azimuth angle) in the tilt direction of the liquid crystal molecules 18A when the traveling direction of the vehicle 130 is 0 ° and the light control film 10 is viewed from below. .
  • the transmittance is 3% or less.
  • the transmittance is higher than 3%, which is not suitable.
  • the maximum transmittance is about 25% when the front is viewed from the front, if the maximum transmittance is 22% or more, the passenger can sufficiently feel the increase in the transmittance. For this reason.
  • the allowable range is 22% or more.
  • the transmittance is 22% or more.
  • the maximum transmittance is less than 22%, which is not suitable.
  • FIG. 25 is a view for explaining a preferable range in the direction in which the liquid crystal molecules 18A are tilted in the sixth embodiment.
  • the tilt direction (azimuth angle) of the liquid crystal molecules 18A is preferably 45 degrees or more and 90 degrees or less (in the figure, diagonal lines).
  • the tilt direction (azimuth angle) of the liquid crystal molecules 18A is preferably 45 degrees or more and 90 degrees or less (in the figure, diagonal lines).
  • the transmittance can be changed in a short time (response speed is shortened) by first applying a preliminary voltage.
  • the liquid crystal molecules 18A are tilted in a direction (azimuth angle) of 45 degrees or more and 90 degrees or less, thereby applying a preliminary voltage of 2.5 V.
  • the light leakage at the time can be reduced, and the maximum transmittance can be reduced within an allowable range.
  • the direction in which the liquid crystal molecules are tilted is 45 ° obliquely forward, the utilization rate of the polarizing plate is good.
  • the seventh embodiment is a two-domain configuration in which the liquid crystal layer 18 is separated into two regions, and the liquid crystal molecules 18A of the respective liquid crystal layers 18 are inclined in different directions when moving from vertical to horizontal. Since the other configuration is the same as that of the sixth embodiment, the description of the same configuration is omitted, and the same configuration is described with the same reference numeral.
  • FIG. 26 is a diagram illustrating the direction in which the liquid crystal molecules 18A are tilted in the seventh embodiment.
  • the direction in which the liquid crystal molecules 18A1 in the first region are tilted is the first direction
  • the direction in which the liquid crystal molecules 18A2 in the second region is tilted is the second direction
  • the angle is 90 degrees.
  • the direction passing through the center of the included angle between the first direction and the second direction is the direction (azimuth angle) in which the liquid crystal molecules 18A are tilted. That is, the first direction and the second direction are at 45 degrees from the direction ⁇ .
  • FIG. 27 is a diagram showing a change in transmittance when the tilting direction of the liquid crystal molecules 18A is different in the light control film 10 of the seventh embodiment.
  • the allowable range is 22% or more.
  • the transmittance is 22% or more.
  • the directions (azimuth angles) of the liquid crystal molecules 18A are 45 degrees and 60 degrees, the maximum transmittance is less than 22%, which is not suitable.
  • FIG. 28 is a view for explaining a preferable range of the liquid crystal molecules 18A in the falling direction in the seventh embodiment.
  • the direction in which the liquid crystal molecules 18A are tilted is preferably about 0 to 30 degrees as described above.
  • this embodiment also has the same effects as the effects (1) and (2) of the sixth embodiment.
  • the direction (azimuth angle) in which the liquid crystal molecules 18A are tilted is set to 0 degrees to 30 degrees and 90 degrees.
  • the liquid crystal layer 18 is divided into two regions, and the liquid crystal molecules 18A of the respective liquid crystal layers 18 have two domains that are inclined in different directions when moving from the vertical direction to the horizontal direction. Since the other configuration is the same as that of the sixth embodiment, description of the same configuration is omitted.
  • FIG. 29 is a diagram illustrating the direction in which the liquid crystal molecules 18A are tilted in the eighth embodiment.
  • the direction in which the liquid crystal molecules 18A3 in the first region are tilted is the first direction
  • the direction in which the liquid crystal molecules 18A4 in the second region is tilted is the second direction
  • the first direction is a direction in which the liquid crystal molecules 18A are tilted.
  • FIG. 30 is a diagram showing a change in transmittance when the direction (azimuth angle) of the liquid crystal molecules 18A is different in the light control film 10 of the eighth embodiment.
  • the transmittance when a voltage of about 2.5 V is applied between the transparent electrodes 11 and 16 as a reserve voltage, if the transmittance is about 3% or less, Since it does not feel that the light-shielding state has changed so much from the complete light-shielding state and feels that almost no light leakage has occurred, it is set as an allowable range. In this case as well, it is more preferable to set the transmittance to about 1% or less because almost no change in the light shielding state is felt.
  • the direction in which the liquid crystal molecules 18A are tilted is 45 degrees to 135 degrees, the transmittance is 3% or less.
  • the tilting direction (azimuth angle) of the liquid crystal molecules 18A is smaller than 0 degree to 30 degrees or larger than 150 degrees, the transmittance is larger than 3%, which is not suitable.
  • the maximum transmittance is. If it is 175 or more, the passenger can fully feel the increase in transmittance. For this reason.
  • the allowable range is 22% or more.
  • the transmittance is 22% or more.
  • the tilt direction (azimuth angle) of the liquid crystal molecules 18A is smaller than 0 degree to 30 degrees or larger than 150 degrees, the transmittance is less than 22%, which is not suitable.
  • FIG. 31 is a diagram for explaining a preferable range of the liquid crystal molecules 18A in the falling direction in the eighth embodiment.
  • the direction in which the liquid crystal molecules 18A are tilted is preferably 45 degrees or more and 135 degrees or less as described above.
  • this embodiment also has the same effects as the effects (1) and (2) of the sixth embodiment.
  • the direction in which the liquid crystal molecules 18A tilt is 45 degrees or more and 135 degrees or less,
  • the maximum transmittance can also be reduced within an allowable range.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

According to the present invention, in relation to a light control film using liquid crystals, it is possible to prevent uneven luminance that occurs temporarily when a transmittance is variable. Provided are the following: a light control film 10 for controlling transmitted light by orienting, by a VA scheme, liquid crystals of liquid crystal cells 14 sandwiched between linear polarizing plates 12, 13; and a light control device 3 having a drive power source generation unit 5 for outputting a square wave signal to the light control film 10. The light control device 3 varies the transmittance of the light control film 10 by varying the amplitude of the square wave signal in response to operation of operation pieces 2U, 2D; when the amplitude of the square wave signal is to be increased, the amplitude of the square wave signal is increased gradually.

Description

調光システム、調光装置、調光フィルム、調光フィルムの駆動方法、及び車両Light control system, light control device, light control film, method of driving light control film, and vehicle
 本発明は、調光システム、調光装置、調光フィルム、調光フィルムの駆動方法、及び車両に関する。 The present invention relates to a light control system, a light control device, a light control film, a method of driving the light control film, and a vehicle.
 従来、例えば窓に貼り付けて外来光の透過を制御する調光フィルムに関する工夫が種々に提案されている(特許文献1、2)。
 このような調光フィルムの1つに、液晶を利用したものがある。
 この液晶を利用した調光フィルムは、透明電極、配向層を作製した透明フィルム材により液晶材料を挟持して液晶セルが作製され、この液晶セルを直線偏光板により挟持して作成される。
 これによりこの液晶を使用した調光フィルムでは、液晶に印加する電界の可変により液晶の配向を可変して外来光を遮光したり透過したりし、さらには透過光量を可変したりし、これらにより外来光の透過を制御する。
Conventionally, for example, various devices relating to a light control film that is attached to a window to control the transmission of external light have been proposed (Patent Documents 1 and 2).
One such light control film uses liquid crystal.
The light control film using the liquid crystal is prepared by sandwiching a liquid crystal material with a transparent film material having a transparent electrode and an alignment layer, and a liquid crystal cell between the linear polarizing plates.
As a result, in the light control film using this liquid crystal, the orientation of the liquid crystal can be changed by changing the electric field applied to the liquid crystal to block or transmit extraneous light, and further the amount of transmitted light can be changed. Control the transmission of extraneous light.
 この液晶を使用した調光フィルムは、同様の外来光を制御する構成であるエレクトロクロミック等を使用した構成に比して、原理的に高速に応答する優位性を備えている。 The light control film using this liquid crystal has the advantage of responding at high speed in principle as compared with a configuration using electrochromic or the like which is a similar configuration for controlling external light.
 また画像表示パネルの1つのである液晶表示パネルは、透明電極、配向膜を作製してなる1対のガラス板材により液晶を挟持して液晶セルが構成され、この液晶セルを直線偏光板により挟持して構成される。液晶表示パネルは、この透明電極のパターンニングにより、画素単位で、液晶に印加する電界を可変して所望の画像を表示する。 In addition, a liquid crystal display panel, which is one of image display panels, includes a liquid crystal cell sandwiched between a pair of glass plates made of transparent electrodes and alignment films, and the liquid crystal cell is sandwiched between linear polarizing plates. Configured. The liquid crystal display panel displays a desired image by changing the electric field applied to the liquid crystal in units of pixels by patterning the transparent electrode.
 調光フィルムは、液晶表示パネルと同様に、液晶分子の配向を制御して透過光を制御する構成であることにより、画像表示パネルで提案された種々の駆動方式を利用することができると考えられる。 Like the liquid crystal display panel, the light control film is configured to control the transmitted light by controlling the orientation of the liquid crystal molecules, so that various driving methods proposed for the image display panel can be used. It is done.
 液晶セルの駆動には、液晶表示パネルについて提案されている種々の駆動方法を適用することができる。具体的には、例えばTN(Twisted Nematic)方式、IPS(In-Plane-Switching)方式、VA(Virtical Alignment)方式等の駆動方式を適用することができる。 Various driving methods proposed for liquid crystal display panels can be applied to driving the liquid crystal cell. Specifically, for example, a driving method such as a TN (Twisted Nematic) method, an IPS (In-Plane-Switching) method, or a VA (Virtual Alignment) method can be applied.
 TN方式は、電界の印加により、液晶分子の配向を垂直方向と水平ねじれ方向とで変化させ、光の旋光性を利用して透過光量を制御する方式である。
 IPS方式は、配向させた液晶分子を基板に対して横(水平)方向に回転させることにより透過光量を制御する方式である。
The TN system is a system in which the alignment of liquid crystal molecules is changed between a vertical direction and a horizontal twist direction by applying an electric field, and the amount of transmitted light is controlled using the optical rotation of light.
The IPS method is a method of controlling the amount of transmitted light by rotating aligned liquid crystal molecules in a horizontal (horizontal) direction with respect to a substrate.
 VA方式は、電界を印加していない無電界時が非透過状態(遮光状態)となるノーマリブラック方式により構成することができ、またこの遮光状態における遮光率が高い特徴がある。
 これにより車両のサンルーフに適用して外来光の透過を制御する場合等においては、VA方式による調光フィルムを使用することが考えられる。
The VA method can be configured by a normally black method in which a non-transmission state (light-shielding state) is obtained when no electric field is applied, and has a feature of a high light-shielding rate in this light-shielding state.
Thus, in the case of controlling the transmission of extraneous light by applying to a sunroof of a vehicle, it is conceivable to use a VA-type light control film.
 VA方式は、垂直配向と水平配向との間で液晶分子の配向を変更して透過光を制御する方式である。一般的に、無電界時、液晶を垂直配向させることにより、液晶層を垂直配向層により挟持して液晶セルが構成され、電界の印加により液晶材料を水平配向させるように構成される。
 通常は、無電界時、垂直配向により入射光を遮光し、電界印加時、水平配向により入射光を透過させる。
 VA方式では、この垂直配向に係る液晶分子を特定方向に僅かな角度(液晶分子のプレチルト角であり、0.5度程度である)だけ傾ける。VA方式では、この傾きにより液晶分子の長軸方向をこのプレチルト角に係る方向に揃えて水平配向させ、透光時における透過率を向上する。
The VA method is a method of controlling transmitted light by changing the alignment of liquid crystal molecules between vertical alignment and horizontal alignment. In general, when no electric field is applied, the liquid crystal is vertically aligned, whereby the liquid crystal layer is sandwiched between the vertical alignment layers to form a liquid crystal cell, and the liquid crystal material is horizontally aligned by applying an electric field.
Usually, when no electric field is applied, incident light is shielded by vertical alignment, and when an electric field is applied, incident light is transmitted by horizontal alignment.
In the VA mode, the liquid crystal molecules related to the vertical alignment are tilted by a slight angle (a pretilt angle of the liquid crystal molecules, which is about 0.5 degrees) in a specific direction. In the VA system, the long axis direction of the liquid crystal molecules is aligned horizontally with the direction related to the pretilt angle by this inclination, and the transmittance during light transmission is improved.
 しかしながらVA方式により調光フィルムを構成して実験したところ、電界を印加して透過率を増大させる場合の遮光状態から透光状態への変化の速度が、調光フィルムの各部で異なり、これにより輝度ムラが一時的に発生することが判った。このような輝度ムラは、透過率の可変時、一時的に発生するものではあるものの、著しく調光の品位を低下させ、液晶による調光フィルムの高速で応答する長所を損なわせるものである。 However, when the light control film was configured by the VA method and experimented, the speed of change from the light-shielding state to the light-transmitting state when an electric field was applied to increase the transmittance was different in each part of the light control film. It was found that uneven brightness occurred temporarily. Such luminance unevenness occurs temporarily when the transmittance is variable, but it significantly reduces the quality of the light control and impairs the advantage of the liquid crystal light control film responding at high speed.
 また、調光フィルムは、例えば窓に配置して目隠しに利用される。特にVA方式は、高い遮光効果を得ること可能である。このため、VA方式の調光フィルムは、例えば車両のサンルーフに貼り付けて使用される。 Also, the light control film is used for blindfolding by being placed in a window, for example. In particular, the VA method can obtain a high light shielding effect. For this reason, the VA type light control film is used by being attached to a sunroof of a vehicle, for example.
 しかし、VA方式の調光フィルムを車両等のモビリティー製品に用いた場合、走行中の振動で分子が揺らぐ。このため、分子の倒れる方向が影響を受け、透過光量を変更する際の応答速度が劣化する。さらには透過率に分布が発生するなどの問題が発生する可能性がある。 However, when a VA-type light control film is used for a mobility product such as a vehicle, the molecules fluctuate due to vibration during traveling. For this reason, the direction in which the molecules fall is affected, and the response speed when changing the amount of transmitted light is deteriorated. Furthermore, there is a possibility that problems such as a distribution in the transmittance occur.
特開平03-47392号公報JP 03-47392 A 特開平08-184273号公報Japanese Patent Laid-Open No. 08-184273
 本発明はこのような状況に鑑みてなされたものであり、液晶による調光フィルムに関して、透過率の可変時に一時的に発生する輝度ムラを防止することを目的とする。
 また、本発明は、車両等での使用時における応答速度の劣化、透過率の不均一化を低減することができる調光システム、車両、及び調光フィルムの駆動方法を提供することを目的とする。
The present invention has been made in view of such a situation, and an object of the present invention is to prevent luminance unevenness that temporarily occurs when the transmittance is variable in a light control film using liquid crystal.
Another object of the present invention is to provide a light control system, a vehicle, and a method of driving a light control film that can reduce response speed degradation and non-uniform transmittance when used in a vehicle or the like. To do.
 本発明者は、上記課題を解決するために鋭意研究を重ね、印加電圧の振幅を徐々に増大させる、との着想に至り、本発明を完成するに至った。 The present inventor has conducted intensive research to solve the above problems, and has come to the idea that the amplitude of the applied voltage is gradually increased, thus completing the present invention.
 具体的には、本発明では、以下のようなものを提供する。 Specifically, the present invention provides the following.
 (1) 直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムと、
 前記調光フィルムに矩形波信号を出力する駆動電源生成部を有する調光装置とを備え、
 前記調光装置は、
 操作子の操作に応動して前記矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
 前記矩形波信号の振幅を増大させる際には、前記矩形波信号の振幅を徐々に増大させる
 調光システム。
(1) a light control film for controlling transmitted light by aligning liquid crystals of a liquid crystal cell sandwiched by linearly polarizing plates by a VA method;
A light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film;
The light control device is:
By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied,
A dimming system that gradually increases the amplitude of the rectangular wave signal when increasing the amplitude of the rectangular wave signal.
 (1)によれば、駆動電源からの矩形波信号の振幅(印可電圧の振幅)を徐々に増大させることにより、液晶の長軸方向の向きを揃えた状態で液晶を倒し込むことができる。これによりこの倒れ込んだ液晶の向きが揃うまでの時間を短縮して、透過率の可変時に一時的に発生する輝度ムラを防止することができる。ここで、「徐々に」とは連続的な増大に限られず、段階的な増大も含む意味である。 According to (1), by gradually increasing the amplitude of the rectangular wave signal from the drive power supply (the amplitude of the applied voltage), it is possible to tilt the liquid crystal in a state where the directions of the major axes of the liquid crystal are aligned. As a result, it is possible to shorten the time until the tilted liquid crystal orientations are aligned, and to prevent uneven brightness that temporarily occurs when the transmittance is variable. Here, “gradually” means not only continuous increase but also stepwise increase.
 (2) (1)において前記矩形波信号の振幅を徐々に増大させる時間は、3秒以下とする調光システム。 (2) A dimming system in which the time for gradually increasing the amplitude of the rectangular wave signal in (1) is 3 seconds or less.
 (3) (1)または(2)において、
 前記調光装置は、
 前記矩形波信号の複数周期で振幅を順次増大させることにより、前記矩形波信号の振幅を徐々に増大させる調光システム。
(3) In (1) or (2),
The light control device is:
A dimming system that gradually increases the amplitude of the rectangular wave signal by sequentially increasing the amplitude in a plurality of cycles of the rectangular wave signal.
 (3)によれば、矩形波信号の振幅を、複数周期で順次段階的に増大させたり、複数周期をかけて連続的に増大させたりして、透過率の可変時に一時的に発生する輝度ムラを防止することができる。 According to (3), the luminance that is temporarily generated when the transmittance is variable by increasing the amplitude of the rectangular wave signal stepwise in a plurality of cycles or continuously in a plurality of cycles. Unevenness can be prevented.
 (4) (1)または(2)において、
 前記調光装置は、
 時定数回路により前記矩形波信号の各周期でそれぞれ振幅を徐々に増大させることにより、前記矩形波信号の振幅を徐々に増大させる調光システム。
(4) In (1) or (2),
The light control device is:
A dimming system that gradually increases the amplitude of the rectangular wave signal by gradually increasing the amplitude in each period of the rectangular wave signal by a time constant circuit.
 (4)によれば、矩形波信号の振幅について、各周期の立ち上がり、立下りを時定数回路により鈍らせることにより、徐々に増大させることができ、透過率の可変時に一時的に発生する輝度ムラを防止することができる。 According to (4), the amplitude of the rectangular wave signal can be gradually increased by dulling the rise and fall of each cycle by the time constant circuit, and the luminance temporarily generated when the transmittance is variable. Unevenness can be prevented.
 (5) (4)において
 前記調光装置は、
 抵抗を介して前記矩形波信号を前記調光フィルムに出射し、
 前記時定数回路が、
 少なくとも前記抵抗と前記調光フィルムの静電容量とにより形成される調光システム。
(5) In (4), the light control device is
The rectangular wave signal is emitted to the light control film through a resistor,
The time constant circuit is
A light control system formed by at least the resistor and the capacitance of the light control film.
 (5)によれば、調光フィルムの静電容量を有効に利用して、簡易な構成により矩形波信号の振幅を徐々に増大させることができる。 According to (5), the amplitude of the rectangular wave signal can be gradually increased with a simple configuration by effectively using the capacitance of the light control film.
 (6) 直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムと、
 前記調光フィルムに矩形波信号を出力する駆動電源生成部を有する調光装置とを備え、
 前記調光装置は、
 操作子の操作に応動して前記矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
 前記調光フィルムは、
 透明フィルム材による基材に透明電極、配向層を配置してなる第1の積層体と、
 透明フィルム材による基材に透明電極、配向層を配置してなる第2の積層体と、
 前記第1及び第2の積層体により挟持された液晶層とを備え、
 前記第1及び第2の積層体の透明電極に前記矩形波信号を供給して透過光を制御し、
 少なくとも前記矩形波信号の振幅の増大時、前記第1及び第2の積層体の透明電極に印加する前記矩形波信号の振幅を徐々に増大させる時定数回路をさらに備える
 調光システム。
(6) a light control film for controlling the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched between linearly polarizing plates by the VA method;
A light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film;
The light control device is:
By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied,
The light control film is
A first laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
A second laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
A liquid crystal layer sandwiched between the first and second laminates,
Supplying the rectangular wave signal to the transparent electrodes of the first and second laminates to control the transmitted light;
A dimming system further comprising a time constant circuit that gradually increases the amplitude of the rectangular wave signal applied to the transparent electrodes of the first and second laminates at least when the amplitude of the rectangular wave signal is increased.
 (6)によれば、調光フィルムの時定数回路により透明電極に印加する矩形波信号の振幅を徐々に増大させて、液晶の長軸方向の向きを揃えた状態で液晶を倒し込むことができる。これにより倒れ込んだ液晶の向きが揃うまでの時間を短縮して、透過率の可変時に一時的に発生する輝度ムラを防止することができる。 According to (6), the amplitude of the rectangular wave signal applied to the transparent electrode is gradually increased by the time constant circuit of the light control film, and the liquid crystal is tilted in a state where the directions of the major axis of the liquid crystal are aligned. it can. As a result, it is possible to shorten the time until the tilted liquid crystal orientations are aligned and to prevent uneven brightness that temporarily occurs when the transmittance is variable.
 (7) (6)において、
 前記時定数回路が、
 少なくとも抵抗と、前記第1及び第2の積層体の透明電極間の静電容量とにより形成された調光システム。
(7) In (6),
The time constant circuit is
A dimming system formed by at least a resistor and a capacitance between the transparent electrodes of the first and second laminates.
 (7)によれば、調光フィルムの静電容量を有効に利用して、簡易な構成により矩形波信号の振幅を徐々に増大させることができる。 According to (7), the amplitude of the rectangular wave signal can be gradually increased with a simple configuration by effectively using the capacitance of the light control film.
 (8) 調光フィルムに矩形波信号を出力する駆動電源生成部を有する調光装置であって、
 前記調光フィルムは、
 直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御し、
 前記調光装置は、
 操作子の操作に応動して前記矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
 前記矩形波信号の振幅を増大させる際には、前記矩形波信号の振幅を徐々に増大させる
 調光装置。
(8) A light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film,
The light control film is
Control the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched by the linear polarizing plate by the VA method,
The light control device is:
By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied,
A dimming device that gradually increases the amplitude of the rectangular wave signal when increasing the amplitude of the rectangular wave signal.
 (8)によれば、矩形波信号の振幅を徐々に増大させることにより、液晶の長軸方向の向きを揃えた状態で液晶を倒し込むことができる。これによりこの倒れ込んだ液晶の向きが揃うまでの時間を短縮して、透過率の可変時に一時的に発生する輝度ムラを防止することができる。 According to (8), by gradually increasing the amplitude of the rectangular wave signal, the liquid crystal can be tilted in a state where the directions of the major axis directions of the liquid crystal are aligned. As a result, it is possible to shorten the time until the tilted liquid crystal orientations are aligned, and to prevent uneven brightness that temporarily occurs when the transmittance is variable.
 (9) 直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムにおいて、
 透明フィルム材による基材に透明電極、配向層を配置してなる第1の積層体と、
 透明フィルム材による基材に透明電極、配向層を配置してなる第2の積層体と、
 前記第1及び第2の積層体により挟持された液晶層とを備え、
 前記第1及び第2の積層体の透明電極に印加される矩形波信号に応じて透過光を制御し、
 前記矩形波信号の振幅の増大時、前記第1及び第2の積層体の透明電極に印加する前記矩形波信号の振幅を時定数回路により徐々に増大させる
 調光フィルム。
(9) In the light control film for controlling the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched between the linear polarizing plates by the VA method,
A first laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
A second laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
A liquid crystal layer sandwiched between the first and second laminates,
Controlling transmitted light according to a rectangular wave signal applied to the transparent electrodes of the first and second laminates,
The light control film which increases gradually the amplitude of the said rectangular wave signal applied to the transparent electrode of the said 1st and 2nd laminated body by a time constant circuit when the amplitude of the said rectangular wave signal increases.
 (9)によれば、矩形波信号の振幅を徐々に増大させることにより、液晶の長軸方向の向きを揃えた状態で液晶を倒し込むことができる。これによりこの倒れ込んだ液晶の向きが揃うまでの時間を短縮して、透過率の可変時に一時的に発生する輝度ムラを防止することができる。 (9) According to (9), by gradually increasing the amplitude of the rectangular wave signal, the liquid crystal can be tilted in a state where the directions of the major axis directions of the liquid crystal are aligned. As a result, it is possible to shorten the time until the tilted liquid crystal orientations are aligned, and to prevent uneven brightness that temporarily occurs when the transmittance is variable.
 (10) 直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムと、
 前記調光フィルムに矩形波信号を出力する駆動電源生成部を有する調光装置とを備え、
 前記調光装置は、
 操作子の操作に応動して前記矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
 前記矩形波信号の振幅を増大させる際には、事前に、一定期間、一定の極性の一定値の電圧を印加する
 調光システム。
(10) a light control film that controls the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched between linearly polarizing plates by the VA method;
A light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film;
The light control device is:
By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied,
A dimming system that applies a voltage having a certain value with a certain polarity in advance for a certain period of time before increasing the amplitude of the rectangular wave signal.
 (11) 前記一定期間は、5ミリ秒以上である。 (11) The predetermined period is 5 milliseconds or more.
 (12) 前記一定期間は、100ミリ秒以下である。 (12) The predetermined period is 100 milliseconds or less.
 (13) 直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムの駆動方法において、
 操作子の操作に応動して、前記調光フィルムに出力する矩形波信号による矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
 前記矩形波信号の振幅を増大させる際には、前記矩形波信号の振幅を徐々に増大させる
 調光フィルムの駆動方法。
(13) In the driving method of the light control film, which controls the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched by the linearly polarizing plates by the VA method.
In response to the operation of the operation element, by changing the amplitude of the rectangular wave signal by the rectangular wave signal output to the light control film, the transmittance of the light control film is changed,
A method for driving a light control film, wherein the amplitude of the rectangular wave signal is gradually increased when increasing the amplitude of the rectangular wave signal.
 (13)によれば、矩形波信号の振幅を徐々に増大させることにより、液晶の長軸方向の向きを揃えた状態で液晶を倒し込むことができる。これによりこの倒れ込んだ液晶の向きが揃うまでの時間を短縮して、透過率の可変時に一時的に発生する輝度ムラを防止することができる。 According to (13), by gradually increasing the amplitude of the rectangular wave signal, it is possible to tilt the liquid crystal in a state where the directions of the major axes of the liquid crystal are aligned. As a result, it is possible to shorten the time until the tilted liquid crystal orientations are aligned, and to prevent uneven brightness that temporarily occurs when the transmittance is variable.
 (14)液晶分子が配置された液晶層、及び、互いに対向し、前記液晶層を挟むようにして配置された2枚の面状の電極を有する調光フィルムと、前記電極間に駆動電圧を印加するとともに、前記駆動電圧の値によって調光フィルムの透過率を制御する制御部と、を備え、前記制御部は、前記駆動電圧の印加に先立って前記駆動電圧より小さい予備電圧を前記電極間に印加する、調光システム。 (14) A driving voltage is applied between the liquid crystal layer in which the liquid crystal molecules are disposed and the light control film having two planar electrodes disposed so as to face each other and sandwich the liquid crystal layer. And a control unit that controls the transmittance of the light control film according to the value of the driving voltage, and the control unit applies a preliminary voltage smaller than the driving voltage between the electrodes prior to the application of the driving voltage. Dimming system.
 (15) (14)において、前記予備電圧は、前記液晶分子を前記調光フィルムの表面の法線から1度以上5度以下傾ける電圧である。 (15) In (14), the preliminary voltage is a voltage for inclining the liquid crystal molecules 1 degree or more and 5 degrees or less from the normal line of the surface of the light control film.
 (16) (14)又は(15)において、前記調光フィルムは、車両のサンルーフに配置され、前記車両の進行方向を0°として調光フィルムを下から見たときの、記液晶分子の倒れる方位角が、45度以上90度以下である。 (16) In (14) or (15), the light control film is disposed on a sunroof of a vehicle, and the liquid crystal molecules fall when the light control film is viewed from below with the vehicle traveling direction set to 0 °. The azimuth angle is not less than 45 degrees and not more than 90 degrees.
 (17) (14)又は(15)において、前記調光フィルムは、車両のサンルーフに配置され、前記液晶層は、前記駆動電圧によって前記液晶分子が、互いに90度異なる2方向に倒れる第1領域と第2領域とを備え、前記車両の進行方向を0°とし、調光フィルムを下から見たときの、前記第1領域に配置された前記液晶分子の倒れる方位角が、0度以上30度以下、及び90度である。 (17) In (14) or (15), the light control film is disposed on a sunroof of a vehicle, and the liquid crystal layer is a first region in which the liquid crystal molecules are tilted in two directions different from each other by 90 degrees by the driving voltage. And the second region, the traveling direction of the vehicle is 0 °, and the azimuth angle of the liquid crystal molecules disposed in the first region when viewed from below is 0 ° or more and 30 ° Below 90 degrees and 90 degrees.
 (18) (14)又は(15)において、前記調光フィルムは、車両のサンルーフに保持され、前記液晶層は、前記駆動電圧によって前記液晶分子が、互いに180度異なる2方向に倒れる第1領域と第2領域とを備え、前記車両の進行方向を0°とし、調光フィルムを下から見たときの、前記第1領域に配置された前記液晶分子の倒れる方位角が、45度以下130度以下である。 (18) In (14) or (15), the light control film is held on a sunroof of a vehicle, and the liquid crystal layer is a first region in which the liquid crystal molecules are tilted in two directions different from each other by 180 degrees by the driving voltage. And the second region, the traveling direction of the vehicle is 0 °, and when the light control film is viewed from below, the azimuth angle of the liquid crystal molecules disposed in the first region is 45 degrees or less 130 Less than or equal to degrees.
 (19) 液晶分子が配置された液晶層、及び、互いに対向し、前記液晶層を挟むようにして配置された2枚の面状の電極を有し、サンルーフに取り付けられた調光フィルムと、前記電極間に印加する駆動電圧の値により、前記調光フィルムの透過率を制御する制御部と、を備え、前記制御部は、前記駆動電圧の印加に先立って前記駆動電圧より小さい予備電圧を前記電極間に印加する車両。 (19) A light control film having a liquid crystal layer in which liquid crystal molecules are arranged, and two planar electrodes arranged so as to face each other and sandwich the liquid crystal layer, and attached to a sunroof, and the electrode A control unit that controls the transmittance of the light control film according to a value of a driving voltage applied between the electrodes, and the control unit applies a preliminary voltage smaller than the driving voltage prior to the application of the driving voltage to the electrode. Vehicle applied between.
 (20) 液晶分子が配置された液晶層、及び、互いに対向し、前記液晶層を挟むようにして配置された間2枚の面状の電極を有する調光フィルムにおける、前記電極間に印加する駆動電圧の値により、前記調光フィルムの透過率を制御する調光フィルムの駆動方法であって、前記駆動電圧の印加に先立って前記駆動電圧より小さい予備電圧を前記電極間に印加する、調光フィルムの駆動方法。 (20) A driving voltage applied between the electrodes in a light control film having liquid crystal layers in which liquid crystal molecules are disposed and two planar electrodes disposed so as to face each other and sandwich the liquid crystal layer A light control film driving method for controlling the transmittance of the light control film according to the value of the light control film, wherein a preliminary voltage smaller than the drive voltage is applied between the electrodes prior to the application of the drive voltage. Driving method.
 本発明によれば、液晶による調光フィルムに関して、透過率の可変時に一時的に発生する輝度ムラを防止することができる。
 また、本発明によれば、車両等での使用時における応答速度の劣化、透過率の不均一化を低減することができる調光システム、車両、及び調光フィルムの駆動方法を提供することができる。
According to the present invention, it is possible to prevent uneven brightness that temporarily occurs when the transmittance is variable in a light control film using liquid crystal.
In addition, according to the present invention, it is possible to provide a light control system, a vehicle, and a light control film driving method capable of reducing deterioration in response speed and non-uniform transmittance when used in a vehicle or the like. it can.
本発明の第1実施形態に係る調光フィルムを示す断面図である。It is sectional drawing which shows the light control film which concerns on 1st Embodiment of this invention. 輝度ムラの計測の説明に供する図である。It is a figure where it uses for description of a measurement of brightness nonuniformity. 曲面ガラスに調光フィルムを貼り付けた場合の応答速度の計測結果を示す図表である。It is a graph which shows the measurement result of the response speed at the time of sticking a light control film on curved glass. 平面ガラスに調光フィルムを貼り付けた場合の応答速度の計測結果を示す図表である。It is a graph which shows the measurement result of the response speed at the time of sticking a light control film on plane glass. 静電容量の変化と調光フィルムの透過率の変化の計測結果を示す特性曲線図である。It is a characteristic curve figure which shows the measurement result of the change of an electrostatic capacitance, and the change of the transmittance | permeability of a light control film. 液晶の水平配向の挙動を示す図である。It is a figure which shows the behavior of the horizontal alignment of a liquid crystal. 矩形波信号の振幅を示す特性曲線図である。It is a characteristic curve figure which shows the amplitude of a rectangular wave signal. 本発明の第1実施形態に係る調光システムを示す図である。It is a figure which shows the light control system which concerns on 1st Embodiment of this invention. 図8の調光システムにおける駆動電源の説明に供する図である。It is a figure where it uses for description of the drive power supply in the light modulation system of FIG. 図9の駆動電源による透過率の変化を示す図である。It is a figure which shows the change of the transmittance | permeability by the drive power supply of FIG. 本発明の第2実施形態に係る調光システムを示す図である。It is a figure which shows the light control system which concerns on 2nd Embodiment of this invention. 図11の調光システムにおける駆動電源の説明に供する図である。It is a figure where it uses for description of the drive power supply in the light modulation system of FIG. 図12の駆動電源による透過率の変化を示す図である。It is a figure which shows the change of the transmittance | permeability by the drive power supply of FIG. 本発明の第4実施形態に係る駆動電源の立ち上げの説明に供する図である。It is a figure where it uses for description of starting of the drive power supply which concerns on 4th Embodiment of this invention. 変調度とチルト角との説明に供する図である。It is a figure where it uses for description of a modulation degree and a tilt angle. 矩形波信号の振幅値と透過率との関係を示す図である。It is a figure which shows the relationship between the amplitude value of a rectangular wave signal, and the transmittance | permeability. 本発明の第5実施形態に係る調光システムの説明に供する図であり、(A)は第5実施形態、(B)は比較形態である。It is a figure where it uses for description of the light control system which concerns on 5th Embodiment of this invention, (A) is 5th Embodiment, (B) is a comparison form. 本発明の実施形態に係る調光システムを備えた車両を示す図である。It is a figure which shows the vehicle provided with the light control system which concerns on embodiment of this invention. 調光フィルムと、その調光フィルムを駆動する制御部とを示す調光システムのブロック図である。It is a block diagram of the light control system which shows the light control film and the control part which drives the light control film. 比較形態において、電圧が0Vの透明電極間に、±10Vの駆動電圧を印加した際の、液晶分子の挙動を説明する特性曲線図である。In a comparative form, it is a characteristic curve figure explaining the behavior of a liquid crystal molecule when the drive voltage of +/- 10V is applied between the transparent electrodes whose voltage is 0V. 液晶分子の挙動を説明する図である。It is a figure explaining the behavior of a liquid crystal molecule. 第6実施形態において、透明電極間に印加される電圧と、その際の調光フィルムの透過率を示す特性曲線図である。In 6th Embodiment, it is a characteristic curve figure which shows the voltage applied between transparent electrodes, and the transmittance | permeability of the light control film in that case. シングルドメイン方式における極角と方位角の定義を説明する図であり、(A)は、調光フィルムの概略断面図、(B)は液晶分子の極角を説明する図、(c)は液晶分子の倒れる方向を説明する図である。It is a figure explaining the definition of the polar angle and azimuth in a single domain system, (A) is a schematic sectional drawing of a light control film, (B) is a figure explaining the polar angle of a liquid crystal molecule, (c) is a liquid crystal It is a figure explaining the direction in which a molecule falls. 液晶分子の倒れる方向が異なる場合の透過率の変化を示す図である。It is a figure which shows the change of the transmittance | permeability when the directions in which a liquid crystal molecule falls differ. 第6実施形態における液晶分子の倒れる方向の好ましい範囲を説明する図である。It is a figure explaining the preferable range of the direction in which the liquid crystal molecule falls in 6th Embodiment. 第7実施形態において液晶分子の倒れる方向を説明する図である。It is a figure explaining the direction in which a liquid crystal molecule falls in 7th Embodiment. 第7実施形態の調光フィルムにおいて、液晶分子の倒れる方向が異なる場合の透過率の変化を示す図である。In the light control film of 7th Embodiment, it is a figure which shows the change of the transmittance | permeability when the direction in which a liquid crystal molecule falls differs. 第7実施形態における液晶分子の倒れる方向の好ましい範囲を説明する図である。It is a figure explaining the preferable range of the direction in which the liquid crystal molecule falls in 7th Embodiment. 第8実施形態において液晶分子の倒れる方向を説明する図である。It is a figure explaining the direction in which a liquid crystal molecule falls in 8th Embodiment. 第8実施形態の調光フィルムにおいて、液晶分子の倒れる方向が異なる場合の透過率の変化を示す図である。In the light control film of 8th Embodiment, it is a figure which shows the change of the transmittance | permeability when the direction in which a liquid crystal molecule falls differs. 第8実施形態における液晶分子の倒れる方向の好ましい範囲を説明する図である。It is a figure explaining the preferable range of the direction in which the liquid crystal molecule falls in 8th Embodiment.
 〔第1実施形態〕
 〔調光フィルム〕
 図1は、本発明の調光システムに適用される調光フィルム10を示す断面図である。
 本実施形態における調光フィルム10は、例えば車両の、サンルーフ等に貼り付けられるもので、少なくとも1ドメインあたり、1cmであり、すなわち、1ドメインあたり1cm以上の大きさであり、好ましくは10cm以上の大きさである。なお、1ドメインとは、一定時間経過後、液晶が同じ方向に配向する連続した1領域を言う。
 この調光フィルム10は、液晶を利用して透過光を制御するフィルム材であり、印加電圧の可変によりVA方式により液晶の配向を可変して透過光を制御する。
[First Embodiment]
[Light control film]
FIG. 1 is a cross-sectional view showing a light control film 10 applied to the light control system of the present invention.
The light control film 10 in this embodiment is affixed to a sunroof or the like of a vehicle, for example, and is at least 1 cm 2 per domain, that is, a size of 1 cm 2 or more per domain, preferably 10 cm. two or more of which is size. One domain refers to a continuous region in which liquid crystals are aligned in the same direction after a certain period of time.
This light control film 10 is a film material that controls transmitted light using liquid crystal, and controls the transmitted light by changing the orientation of the liquid crystal by the VA method by changing the applied voltage.
 調光フィルム10は、直線偏光板12、13により調光フィルム用の液晶セル14を挟持して構成される。ここで直線偏光板12、13は、ポリビニルアルコール(PVA)にヨウ素等を含浸させた後、延伸して直線偏光板としての光学的機能を果たす光学機能層が形成され、TAC(トリアセチルセルロース)等の透明フィルム材による基材により光学機能層を挟持して作製される。
 直線偏光板12、13は、クロスニコル配置により、紫外線硬化性樹脂等による接着剤層により液晶セル14に配置される。なお直線偏光板12、13には、それぞれ液晶セル14側に光学補償に供する位相差フィルム12A、13Aが設けられるものの、位相差フィルム12A、13Aは、必要に応じて省略してもよい。
The light control film 10 is configured by sandwiching a liquid crystal cell 14 for light control film between linear polarizing plates 12 and 13. Here, the linear polarizing plates 12 and 13 are formed by impregnating polyvinyl alcohol (PVA) with iodine or the like and then stretched to form an optical functional layer that performs an optical function as a linear polarizing plate. TAC (triacetyl cellulose) The optical functional layer is sandwiched between base materials made of a transparent film material such as the above.
The linearly polarizing plates 12 and 13 are arranged in the liquid crystal cell 14 by an adhesive layer made of an ultraviolet curable resin or the like in a crossed Nicol arrangement. The linear polarizing plates 12 and 13 are provided with retardation films 12A and 13A for optical compensation on the liquid crystal cell 14 side, respectively, but the retardation films 12A and 13A may be omitted as necessary.
 液晶セル14は、後述する透明電極への印加電圧により透過光の偏光面を制御する。これにより調光フィルム10は、透過光を制御して種々に調光を図ることができるように構成される。 The liquid crystal cell 14 controls the polarization plane of transmitted light by an applied voltage to a transparent electrode described later. Thereby, the light control film 10 is comprised so that transmitted light can be controlled and various light control can be aimed at.
 〔液晶セル〕
 液晶セル14は、フィルム形状による第1及び第2の積層体である下側積層体15D及び上側積層体15Uにより液晶層18を挟持して構成される。
 下側積層体15Dは、透明フィルム材による基材16に、透明電極21、スペーサ22、配向層23を作製して形成される。上側積層体15Uは、透明フィルム材による基材25に、透明電極26、配向層27を積層して形成される。液晶セル14は、この下側積層体15D及び上側積層体15Uに設けられた透明電極21、26の駆動により、VA方式により液晶層18に設けられた液晶の配向を制御し、これにより透過光の偏光面を制御する。なお液晶セル14は、この実施形態では、シングルドメイン方式により構成されるものの、マルチドメイン方式により構成してもよい。
[Liquid crystal cell]
The liquid crystal cell 14 is configured by sandwiching a liquid crystal layer 18 between a lower laminate 15D and an upper laminate 15U which are first and second laminates in a film shape.
The lower laminate 15D is formed by forming the transparent electrode 21, the spacer 22, and the alignment layer 23 on the base material 16 made of a transparent film material. The upper laminate 15U is formed by laminating a transparent electrode 26 and an alignment layer 27 on a substrate 25 made of a transparent film material. The liquid crystal cell 14 controls the orientation of the liquid crystal provided in the liquid crystal layer 18 by the VA method by driving the transparent electrodes 21 and 26 provided in the lower stacked body 15D and the upper stacked body 15U. Control the plane of polarization. In this embodiment, the liquid crystal cell 14 is configured by a single domain method, but may be configured by a multi-domain method.
 基材16、25は、この種のフィルム材に適用可能な種々の透明フィルム材を適用することができるものの、光学異方性の小さなフィルム材を適用することが望ましい。この実施形態において、基材16、25は、ポリカーボネートフィルムが適用されるものの、COP(シクロオレフィンポリマー)フィルム等を適用してもよい。 Although various transparent film materials applicable to this kind of film material can be applied to the base materials 16 and 25, it is desirable to apply a film material with small optical anisotropy. In this embodiment, although a polycarbonate film is applied to the substrates 16 and 25, a COP (cycloolefin polymer) film or the like may be applied.
 透明電極21、26は、この種のフィルム材に適用される各種の電極材料を適用することができ、この実施形態ではITO(Indium Tin Oxide)による透明電極材により形成される。
 スペーサ22は、液晶層18の厚みを規定するために設けられ、各種の樹脂材料を広く適用することができるものの、この実施形態ではフォトレジストにより作製され、透明電極21を作製してなる基材16の上に、フォトレジストを塗工して露光、現像することにより作製される。なおスペーサ22は、上側積層体15Uに設けるようにしてもよく、上側積層体15U及び下側積層体15Dの双方に設けるようにしてもよい。またスペーサ22は、配向層23の上に設けるようにしてもよい。またスペーサは、いわゆるビーズスペーサを適用してもよい。
Various electrode materials applied to this kind of film material can be applied to the transparent electrodes 21 and 26. In this embodiment, the transparent electrodes 21 and 26 are formed of a transparent electrode material made of ITO (Indium Tin Oxide).
The spacer 22 is provided to define the thickness of the liquid crystal layer 18 and various resin materials can be widely applied. However, in this embodiment, the spacer 22 is made of a photoresist, and is made of a transparent electrode 21. It is produced by applying a photoresist on 16 and exposing and developing. The spacer 22 may be provided on the upper laminate 15U, or may be provided on both the upper laminate 15U and the lower laminate 15D. The spacer 22 may be provided on the alignment layer 23. Further, a so-called bead spacer may be applied as the spacer.
 配向層23、27は、光配向層により形成される。ここでこの光配向層に適用可能な光配向材料は、光配向の手法を適用可能な各種の材料を広く適用することができるものの、この実施形態では、例えば光二量化型の材料を使用する。この光二量化型の材料については、「M.Schadt, K.Schmitt, V. Kozinkov and V. Chigrinov : Jpn. J. Appl.Phys., 31, 2155 (1992)」、「M. Schadt, H. Seiberle and A. Schuster : Nature, 381, 212(1996)」等に開示されている。 The alignment layers 23 and 27 are formed of a photo-alignment layer. Here, as the photo-alignment material applicable to the photo-alignment layer, various materials to which the photo-alignment technique can be applied can be widely applied. However, in this embodiment, for example, a photo-dimerization type material is used. For this light dimerization type material, please refer to “M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov: Jpn. J. Appl. Phys., 31, 2155 (1992)”, “M. Schadt, H. Seiberle and A. Schuster: Nature, 381, 212 (1996) ".
 液晶層18は、この種の調光フィルムに適用可能な各種の液晶材料を広く適用することができる。具体的に、液晶層18には、例えばメルク社製MLC2166等の液晶材料を適用することができる。なお液晶セル14は、液晶層18を囲むように、シール材29が配置され、このシール材29により上側積層体15U、下側積層体15Dが一体に保持され、液晶材料の漏出が防止される。ここでシール材29は、例えばエポキシ樹脂、紫外線硬化性樹脂等を適用することができる。
 本実施形態において、液晶層18内には、スペーサ22以外の構造物は配置されていない。すなわち、例えば、1ドメインの液晶層18を構成する領域内に、例えば、ディスプレイの画素に配置されているような、TFT等の、ゲート電極、ソース電極等の規則性のある構造物は配置されていない。したがって、1ドメインの液晶層18を構成する領域内には、液晶分子が倒れる際の液晶の動きに対する障害物となるような構造物は配置されていない。
Various liquid crystal materials applicable to this type of light control film can be widely applied to the liquid crystal layer 18. Specifically, a liquid crystal material such as MLC 2166 manufactured by Merck Co., for example, can be applied to the liquid crystal layer 18. In the liquid crystal cell 14, a sealing material 29 is disposed so as to surround the liquid crystal layer 18, and the upper stacked body 15 </ b> U and the lower stacked body 15 </ b> D are integrally held by the sealing material 29, thereby preventing leakage of the liquid crystal material. . Here, as the sealing material 29, for example, an epoxy resin, an ultraviolet curable resin, or the like can be applied.
In the present embodiment, no structure other than the spacer 22 is arranged in the liquid crystal layer 18. That is, regular structures such as a gate electrode and a source electrode, such as a TFT, which are disposed in a pixel of a display, for example, are disposed in a region constituting the liquid crystal layer 18 of one domain. Not. Accordingly, no structure that is an obstacle to the movement of the liquid crystal when the liquid crystal molecules are tilted is disposed in the region constituting the one-domain liquid crystal layer 18.
 これらにより調光フィルム10は、上側積層体15U及び下側積層体15Dの透明電極21、26間の印加電圧V1により液晶層18に設けられた液晶の配向を制御する。ここで調光フィルム10は、一定の時間間隔で極性が切り替わる矩形波信号による駆動電源S1により、透明電極21、26間に印加電圧V1が印加される。この実施形態では、VA方式が適用されることにより、この駆動電源S1の振幅が0Vの場合(印加電圧V1が0Vの場合)である無電界時、液晶層18の液晶分子は垂直配向し、これにより調光フィルム10は、入射光を遮光して遮光状態となる。またこの駆動電源S1の振幅を増大させて印加電圧V1を立ち上げると、液晶層18の液晶は水平配向し、調光フィルム10は、入射光を透過させる。 Thus, the light control film 10 controls the alignment of the liquid crystal provided in the liquid crystal layer 18 by the applied voltage V1 between the transparent electrodes 21 and 26 of the upper laminate 15U and the lower laminate 15D. Here, the applied voltage V <b> 1 is applied between the transparent electrodes 21 and 26 by the drive power source S <b> 1 using a rectangular wave signal whose polarity is switched at regular time intervals. In this embodiment, by applying the VA method, the liquid crystal molecules of the liquid crystal layer 18 are vertically aligned when no electric field is applied when the amplitude of the drive power supply S1 is 0 V (when the applied voltage V1 is 0 V), Thereby, the light control film 10 light-shields incident light, and will be in the light-shielding state. Further, when the amplitude of the driving power source S1 is increased and the applied voltage V1 is raised, the liquid crystal of the liquid crystal layer 18 is horizontally aligned, and the light control film 10 transmits incident light.
 〔輝度ムラ〕
 図2は、透過率の可変時に発生する輝度ムラの確認に供した調光フィルム10の説明に供する図である。この確認では、300mm×300mmの大きさにより図1について上述した構成の調光フィルム10を作製した。さらにこの調光フィルム10を水平方向に等分に区分して符号A1、A2、A3、A4、A5により示す5つの領域を設定した。またこのようにして水平方向に設定した各領域をそれぞれ垂直方向に等分に区分して符号B1、B2、B3により示す3つの領域を設定した。またこのようにして設定した各領域の中央で、印加電圧V1の変化に対する透過率の変化をそれぞれ計測した。なおこの印加電圧V1に係る駆動電源S1は、水平方向の中央、垂直方向の下側端より供給した。また調光フィルム10では、左上方から右下方が長軸方向となる向きに液晶分子が水平配向するように設定した。
[Brightness unevenness]
FIG. 2 is a diagram for explaining the light control film 10 used for checking luminance unevenness that occurs when the transmittance is variable. In this confirmation, the light control film 10 having the configuration described above with reference to FIG. 1 was manufactured with a size of 300 mm × 300 mm. Furthermore, this light control film 10 was divided equally in the horizontal direction, and five areas indicated by reference signs A1, A2, A3, A4, and A5 were set. In addition, each region set in the horizontal direction in this way was divided into equal parts in the vertical direction, and three regions indicated by reference numerals B1, B2, and B3 were set. Further, the change in transmittance with respect to the change in the applied voltage V1 was measured at the center of each region set in this way. The driving power source S1 related to the applied voltage V1 was supplied from the center in the horizontal direction and the lower end in the vertical direction. In the light control film 10, the liquid crystal molecules were set so as to be horizontally aligned in the direction from the upper left to the lower right.
 図3及び図4は、この計測結果を示す図表である。この図3及び図4は、印加電圧V1の振幅を立ち上げた後、この振幅の立ち上げに対応する値に透過率が変化するまでに要する時間を計測した結果である。なおこの図3及び図4に記載の、透過率の変化に要する時間は、立ち上げた振幅に対応する透過率の90%の透過率が得られるまでに要した時間である。なおこの90%になるまでの時間を、以下においては、適宜、応答速度と呼ぶ。 3 and 4 are charts showing the measurement results. 3 and 4 show the results of measuring the time required for the transmittance to change to a value corresponding to the rise of the amplitude after the amplitude of the applied voltage V1 is raised. The time required for the change in transmittance described in FIGS. 3 and 4 is the time required until 90% of the transmittance corresponding to the raised amplitude is obtained. In the following, the time required to reach 90% will be appropriately referred to as response speed.
 図3は、曲面ガラスに調光フィルムを貼り付けた場合の、応答速度の計測結果であり、図4は、平面のガラスに調光フィルムを貼り付けた場合の、応答速度の計測結果である。この図3及び図4の計測結果においては、領域A3、B1及び領域A4、B1で相違が見られるものの、透過率の変化に要する時間は、図3及び図4で共に、22ミリ秒から150ミリ秒までの範囲でばらつくことが判る。
 調光フィルムでは、このばらつきにより、この変化に要する時間の短い領域では、既に遮光状態から透光状態に切り替わっているにも拘わらず、変化に要する時間の長い領域では、未だ遮光状態に維持されている期間が発生し、これにより透過率の可変時に一時的に輝度ムラが発生することが判った。なおこの輝度ムラは、電源供給箇所を変更しても発生することにより、電源供給箇所に依存するものでは無いことが確認された。また透明電極21、26の厚みを変化させても発生することにより、透明電極21、26の抵抗の影響によるものでもない。
FIG. 3 is a measurement result of the response speed when the light control film is attached to the curved glass, and FIG. 4 is a measurement result of the response speed when the light control film is attached to the flat glass. . In the measurement results of FIG. 3 and FIG. 4, although differences are seen in the regions A3 and B1 and the regions A4 and B1, the time required for the change in transmittance is from 22 milliseconds to 150 in both FIG. 3 and FIG. It turns out that it varies in the range up to milliseconds.
In the light control film, due to this variation, in the region where the time required for the change is short, the region where the time required for the change is still maintained in the light-shielded state even though the light-shielding state has already been switched from the light-shielding state to the light-transmitting state. As a result, it was found that uneven brightness occurred temporarily when the transmittance was variable. It has been confirmed that this luminance unevenness does not depend on the power supply location because it occurs even when the power supply location is changed. Further, even if the thickness of the transparent electrodes 21 and 26 is changed, it is not caused by the influence of the resistance of the transparent electrodes 21 and 26.
 これによりさらにこの駆動電源S1の立ち上げ時について検討を進めた。図5は、調光フィルムを構成する液晶セルの静電容量の変化ΔCと、調光フィルムの透過率の変化ΔTの計測結果である。この透過率の計測結果は、平板ガラスに調光フィルムを貼り付けた場合における中央の領域A3、B2の計測結果である。なおこの図5において、縦軸は、立ち上げた振幅に対応する静電容量及び透過率を値1に設定して、各時点における計測値を正規化して表した容量及び透過率である。 Thus, further investigation was made on the startup of this drive power supply S1. FIG. 5 shows the measurement results of the change ΔC in capacitance of the liquid crystal cell constituting the light control film and the change ΔT in transmittance of the light control film. This measurement result of the transmittance is a measurement result of the central regions A3 and B2 when the light control film is attached to the flat glass. In FIG. 5, the vertical axis represents the capacitance and transmittance expressed by normalizing the measured value at each time point by setting the capacitance and transmittance corresponding to the raised amplitude to a value of 1.
 この図5によれば、液晶セルの静電容量は、期間T1により示すように、非常に短時間で飽和していることが判る。これに対して透過率は、期間T2により示すように、期間T1の経過後、最終的に飽和するまで300msec以上の時間を要することが判る。 According to FIG. 5, it can be seen that the capacitance of the liquid crystal cell is saturated in a very short time as shown by the period T1. On the other hand, as shown by the period T2, it can be seen that the transmittance takes 300 msec or more until the saturation finally occurs after the period T1 elapses.
 ここで図6において矢印により示すように、調光フィルム10において、液晶層18の液晶分子18Aは、印加電圧V1の振幅の立ち上げにより垂直配向の状態から水平配向の状態に短時間で倒れ込む。 Here, as shown by the arrows in FIG. 6, in the light control film 10, the liquid crystal molecules 18A of the liquid crystal layer 18 fall from the vertical alignment state to the horizontal alignment state in a short time by raising the amplitude of the applied voltage V1.
 この倒れ込みに要する期間が、静電容量が変化する期間T1である。しかしながらこのように水平方向に倒れ込んだ液晶分子18Aは、長軸方向の向きがばらついており、期間T2について矢印により示すように、このばらつきが配向層23、27のプレチルトに係る配向規制力により補正されて、このプレチルトに係る方向に液晶分子18Aの長軸方向が揃うようになる。この水平方向に倒れ込んだ後の補正に要する期間が期間T2であり、その結果、この期間T2に最大で200msec程度の時間を要することになる。またこの期間T2が各部で異なることにより、輝度ムラが発生する。なおこの図6は、期間T1、T2における液晶分子18Aの挙動を示す図であり、Z方向は、液晶層18の厚み方向であり、X方向及びY方向は、それぞれ図3及び図4について上述した水平方向及び垂直方向である。 The period required for this collapse is a period T1 during which the capacitance changes. However, the liquid crystal molecules 18A tilted in the horizontal direction vary in the direction of the major axis, and this variation is corrected by the alignment regulating force related to the pretilt of the alignment layers 23 and 27 as indicated by the arrows for the period T2. Thus, the major axis direction of the liquid crystal molecules 18A is aligned with the direction related to the pretilt. The period required for correction after falling down in the horizontal direction is the period T2, and as a result, the period T2 requires a time of about 200 msec at the maximum. Further, when this period T2 is different in each part, luminance unevenness occurs. FIG. 6 is a diagram showing the behavior of the liquid crystal molecules 18A in the periods T1 and T2, the Z direction is the thickness direction of the liquid crystal layer 18, and the X direction and the Y direction are described above with reference to FIGS. Horizontal and vertical directions.
 ここでこの期間T2のばらつきは、種々の原因が考えられる。しかしながら液晶の長軸方向の向きがばらつかないようにして液晶が倒れ込むようにすれば(水平配向させれば)、期間T2を短縮し、さらには期間T2がばらつかないようにすることができ、これにより透過率の低下時における輝度ムラを防止できると考えられる。またこのように期間T2を短縮すれば、輝度ムラを視認困難とすることができる。このためには、印加電圧の振幅を徐々に増大させれば、液晶が倒れ込む際に、液晶の長軸方向の向きがばらつかないようにすることができると考えられる。 Here, there are various causes for the variation in the period T2. However, if the liquid crystal is tilted so that the orientation of the major axis direction of the liquid crystal does not vary (horizontal alignment), the period T2 can be shortened, and further, the period T2 can be prevented from varying. Thus, it is considered that luminance unevenness when the transmittance is reduced can be prevented. Further, if the period T2 is shortened in this way, luminance unevenness can be made difficult to visually recognize. For this purpose, it is considered that if the amplitude of the applied voltage is gradually increased, the orientation of the liquid crystal in the major axis direction does not vary when the liquid crystal falls down.
 ここで図2、図3について上述した計測時における印加電圧V1の振幅の変化を図7(A)に示す。図2、図3の例では、印加電圧V1の振幅を0Vから10Vに立ち上げて透過率を増大させ、上述した輝度ムラが発生し、また期間T2がばらついた。
 ここで、調光フィルム10は、上述したように、液晶層18内に、スペーサ22以外配置されていない。このため、このような輝度ムラは、印加電圧V1の振幅を0Vから立ち上げる際に発生するものである。すなわち、このような輝度ムラは、ノーマリブラックの場合において、透過率を、最小の状態から上げていく際に発生するが、透過率が最小でない中間の値(中間調)の状態から印加電圧V1の振幅を上げ、透過率を更に上げていく場合には発生しない。
 なお、この場合の0Vとは、完全な0Vだけに限らず、印加電圧V1の振幅を0Vから上げていき、液晶のしきい値電圧(透過率が変化し始める前まで)の電圧の範囲を含むものをいい、一般的には2V以下である。
Here, FIG. 7A shows a change in the amplitude of the applied voltage V1 during the measurement described above with reference to FIGS. In the examples of FIGS. 2 and 3, the transmittance is increased by raising the amplitude of the applied voltage V1 from 0 V to 10 V, the above-described luminance unevenness occurs, and the period T2 varies.
Here, the light control film 10 is not disposed other than the spacer 22 in the liquid crystal layer 18 as described above. For this reason, such luminance unevenness occurs when the amplitude of the applied voltage V1 rises from 0V. That is, such luminance unevenness occurs when the transmittance is increased from the minimum state in the case of normally black, but the applied voltage from the intermediate value (halftone) state where the transmittance is not minimum. It does not occur when the amplitude of V1 is increased and the transmittance is further increased.
Note that 0 V in this case is not limited to a complete 0 V, but the voltage range of the threshold voltage of the liquid crystal (until the transmittance begins to change) is increased by increasing the amplitude of the applied voltage V 1 from 0 V. Including, generally 2V or less.
 そこでこの実施形態では、図7(B)により示すように、短い時間間隔で、例えば3段階により段階的に駆動電圧V1の振幅を増大せることにより、駆動電圧V1の振幅を徐々に増大させる。ここでこの段階的な振幅の立ち上げに係る時間間隔を変化させて実験した結果によれば、応答速度を50msec以下とすることができ、輝度ムラを視認できないようにすることができた。 Therefore, in this embodiment, as shown in FIG. 7B, the amplitude of the drive voltage V1 is gradually increased by increasing the amplitude of the drive voltage V1 step by step, for example, in three steps at short time intervals. Here, according to the results of experiments conducted by changing the time interval related to the step-up of the amplitude, the response speed could be 50 msec or less, and the luminance unevenness could not be visually recognized.
 このように徐々に振幅を立ち上げる場合にあって、図7(B)に示すように3段階により振幅を立ち上げる場合、図6で説明した期間T1における液晶分子18Aの倒れ込みが、3段階で実行されることになり、液晶分子18Aが同じ方向に揃いながら倒れ込み、この場合、液晶分子18Aの向きがわざわざ面内方向で揃うように変化する必要が無いことによし、輝度ムラを防止できるものと考えられる。 In the case where the amplitude is gradually increased as described above, when the amplitude is increased in three steps as shown in FIG. 7B, the liquid crystal molecules 18A fall down in three steps in the period T1 described in FIG. The liquid crystal molecules 18A are tilted while being aligned in the same direction, and in this case, it is not necessary to change the orientation of the liquid crystal molecules 18A in the in-plane direction. it is conceivable that.
 ここでこの振幅の増大は、図7(C)により示すように、段階的な増大に代えて、一次関数の特性、対数関数の特性等により連続的に増大させるようにしてもよい。 Here, as shown in FIG. 7C, the increase in the amplitude may be continuously increased by the characteristic of the linear function, the characteristic of the logarithmic function, or the like instead of the stepwise increase.
 ここで、図7(B)のように多段階により振幅を増大させる場合、また、図7(C)のように連続的に振幅を増大させる場合、応答速度を50ミリ秒以下とすることができるが、応答速度は、用途に応じて、より長い期間を選択することができる。
 例えば、応答速度が100~300ミリ秒の場合、調光フィルムの透過率は、瞬時に変わる印象が得られる。
 応答速度を500ミリ秒~3秒程度として徐々に振幅を増加させると、調光フィルムの透過率は、ゆっくりと明るくなる印象が得られる。
 応答速度を300ミリ秒から500ミリ秒として30~50Hzの周波数で徐々に振幅を増加させると、調光フィルムの透過率が自然に明るくなる印象が得られる。応答速度の設定は、調光フィルムの用途に応じて適宜設定することができる。
 なお、応答速度を3秒より長くした場合、透過率の変化がかなり遅く感じられるので、応答速度は、3秒以下に設定されるのが好ましい。また、透過率を変化させている途中で、駆動電圧V1の振幅を100ミリ秒以上同じにすると、透過率の変化が不自然に見える可能性があるので、同一の振幅を連続させる場合は100ミリ秒以下が好ましい。
Here, when the amplitude is increased in multiple steps as shown in FIG. 7B, or when the amplitude is continuously increased as shown in FIG. 7C, the response speed may be 50 milliseconds or less. Although the response speed can be selected, a longer period can be selected depending on the application.
For example, when the response speed is 100 to 300 milliseconds, an impression that the transmittance of the light control film changes instantaneously can be obtained.
When the response speed is set to about 500 milliseconds to 3 seconds and the amplitude is gradually increased, the transmittance of the light control film gives an impression that it becomes brighter slowly.
When the response speed is increased from 300 milliseconds to 500 milliseconds and the amplitude is gradually increased at a frequency of 30 to 50 Hz, an impression that the transmittance of the light control film is naturally brightened is obtained. The response speed can be appropriately set according to the use of the light control film.
Note that when the response speed is longer than 3 seconds, the change in transmittance seems to be considerably slow, so the response speed is preferably set to 3 seconds or less. Further, if the drive voltage V1 has the same amplitude of 100 milliseconds or more in the middle of changing the transmittance, the change in the transmittance may seem unnatural. Less than milliseconds are preferred.
 〔調光システム〕
 図8は、この実施形態に係る調光システムを示す図である。この調光システム1は、例えば乗用車に適用されて、サンルーフに係る曲面ガラスに調光フィルム10を貼り付けて保持し、コンソールボックス等に設けられたアップダウンの操作子2U、2Dの操作により調光装置3で調光フィルム10の透過率を制御する。このため調光装置3は、駆動電源S1を調光フィルム10に出力するようにして、操作子2U、2Dの操作に応動してこの駆動電源S1の振幅を可変する。
[Light control system]
FIG. 8 is a diagram showing a light control system according to this embodiment. The dimming system 1 is applied to, for example, a passenger car, and holds and holds the dimming film 10 on a curved surface glass of a sunroof, and the dimming system 1 is adjusted by operating up and down operators 2U and 2D provided in a console box or the like. The transmittance of the light control film 10 is controlled by the optical device 3. For this reason, the light control device 3 outputs the drive power source S1 to the light control film 10, and varies the amplitude of the drive power source S1 in response to the operation of the operation elements 2U and 2D.
 すなわちこの調光装置3において、駆動電源生成部5は、駆動電源S1を生成して出力する電源回路である。駆動電源生成部5は、デユーティー比50%、周波数30Hzの矩形波信号により駆動電源S1を生成して調光フィルム10に出力する。なおこの周波数は、調光フィルム10における液晶の劣化を招来しない範囲で低い周波数に設定して、調光フィルム10の静電容量による電力損失を低減することができ、これにより駆動電源S1は、周波数1Hz以上120Hz以下により、より好ましくは1Hz以上30Hz以下により出力することが望ましい。駆動電源生成部5は、この駆動電源S1の振幅をコントローラ4の制御により可変する。 That is, in the dimming device 3, the drive power generation unit 5 is a power supply circuit that generates and outputs the drive power S1. The drive power generation unit 5 generates the drive power S1 from a rectangular wave signal having a duty ratio of 50% and a frequency of 30 Hz, and outputs the drive power S1 to the light control film 10. In addition, this frequency can be set to a low frequency in a range that does not cause deterioration of the liquid crystal in the light control film 10, and power loss due to the capacitance of the light control film 10 can be reduced. It is desirable to output at a frequency of 1 Hz to 120 Hz, more preferably 1 Hz to 30 Hz. The drive power generator 5 varies the amplitude of the drive power S 1 under the control of the controller 4.
 コントローラ4は、調光装置3の動作を制御する制御回路であり、図示しない記憶手段に、調光フィルム10の調光制御に係る情報を記録して保持する。ここでこの調光制御に係る情報は、例えば駆動電源S1の振幅と透過率の関係を特定する情報である。コントローラ4は、この車両から電源の供給が開始されると、ディフォルトの設定により駆動電源S1を出力する。これによりこの調光システム1では、例えば電源遮断時の設定により駆動電源S1を出力し、または遮光状態となるように駆動電源S1を出力する。 The controller 4 is a control circuit that controls the operation of the light control device 3, and records and holds information related to light control of the light control film 10 in a storage means (not shown). Here, the information related to the dimming control is information specifying the relationship between the amplitude of the drive power source S1 and the transmittance, for example. When the supply of power from the vehicle is started, the controller 4 outputs the drive power S1 according to the default setting. Thereby, in this light control system 1, for example, the drive power supply S1 is output according to the setting at the time of power-off, or the drive power supply S1 is output so as to be in a light shielding state.
 このように駆動電源S1を出力して、アップの操作子2U、またダウンの操作子2Dが押圧操作されると、この操作に対応するように、駆動電源S1の振幅を増減し、これにより操作子2U、2Dの操作に応動して透過率を可変する。この処理において、コントローラ4は、記憶手段に記憶して保持した調光制御に係る情報により、操作子2D、2Uの操作により一定値により透過率が順次変化するように駆動電源S1の振幅を可変する。 When the drive power source S1 is output in this way and the up operation element 2U or the down operation element 2D is pressed, the amplitude of the drive power supply S1 is increased or decreased to correspond to this operation, and the operation is thereby performed. The transmittance is varied in response to the operation of the children 2U and 2D. In this process, the controller 4 changes the amplitude of the drive power source S1 so that the transmittance is sequentially changed by a constant value by the operation of the operation elements 2D and 2U based on the information relating to the light control stored and held in the storage means. To do.
 これに対して操作子2D、2Uが長押しされた場合等にあっては、大きく透過率が変化するように駆動電源S1の振幅を可変する。この駆動電源S1の振幅の可変において、振幅を増大させる場合、コントローラ4は、徐々に矩形波信号の振幅を増大させ、これにより輝度ムラを防止する。 On the other hand, when the operation elements 2D and 2U are pressed for a long time, the amplitude of the drive power source S1 is varied so that the transmittance changes greatly. In increasing the amplitude of the drive power source S1, when increasing the amplitude, the controller 4 gradually increases the amplitude of the rectangular wave signal, thereby preventing luminance unevenness.
 具体的に、図9に示すように、コントローラ4は、矩形波信号である駆動電源S1の複数周期で徐々に矩形波信号の振幅を増大させる。すなわちこの図9の例では、駆動電源S1の3周期で、一次関数的に振幅を増大させる。このようにすると、通過率の変化ΔTは、この3周期以下の、ほぼ2周期の期間で、90%の透過率に変化し、これにより輝度ムラを防止することができる。 Specifically, as shown in FIG. 9, the controller 4 gradually increases the amplitude of the rectangular wave signal in a plurality of cycles of the driving power source S1 that is a rectangular wave signal. That is, in the example of FIG. 9, the amplitude is increased in a linear function in three cycles of the drive power source S1. In this way, the change ΔT in the passage rate is changed to 90% transmittance in a period of approximately two cycles, which is three cycles or less, thereby preventing luminance unevenness.
 図10は、この図9の振幅変化における透過率の変化を、図5の計測結果との比較により示す特性曲線図である。図5の計測結果を符号T1により示し、図9の例による透過率の変化を符号T2により示す。この図10によれば、格段的に応答速度の向上を確認することができる。 FIG. 10 is a characteristic curve diagram showing the change in transmittance due to the amplitude change in FIG. 9 by comparison with the measurement result in FIG. The measurement result in FIG. 5 is indicated by reference numeral T1, and the change in transmittance in the example of FIG. 9 is indicated by reference numeral T2. According to FIG. 10, it is possible to confirm a marked improvement in response speed.
 なおAV方式により液晶を駆動する場合にあっては、変調度100%の矩形波信号の振幅に対して、矩形波信号の振幅が25%以上50%以下の範囲が、液晶分子18Aの配向の変化による透過率の変化が大きい範囲であると言え、この範囲では、急激な振幅の増大により、期間T2が長くなり、また期間T2のバラツキも大きくなる。なお変調度とは、最も透過率が増大した状態を変調度100%として示す透過率の割合である。透過率の可変時、各部における透過率のばらつきが大きくなる。 When the liquid crystal is driven by the AV method, the orientation of the liquid crystal molecules 18A is in a range where the amplitude of the rectangular wave signal is 25% or more and 50% or less with respect to the amplitude of the rectangular wave signal having a modulation degree of 100%. It can be said that the change in transmittance due to the change is a large range. In this range, the period T2 becomes longer due to a sudden increase in amplitude, and the variation in the period T2 also increases. The modulation degree is a ratio of the transmittance indicating that the transmittance is most increased as 100% modulation. When the transmittance is variable, the variation of the transmittance in each part increases.
 図9の例では、この25%以上50%以下の範囲を跨ぐように駆動電圧V1の振幅を増大する場合にあって、3周期で振幅を増大して2周期の期間の応答速度を確保し、輝度ムラを防止できる。これによりこの25%以上50%以下の範囲で、例えば10%以上振幅を可変する場合に限って、徐々に矩形波信号の振幅を増大させるようにする等、矩形波信号の振幅を徐々に増大させる場合の適用条件は、必要に応じて種々に設定することができる。 In the example of FIG. 9, when the amplitude of the drive voltage V1 is increased so as to cross the range of 25% or more and 50% or less, the amplitude is increased in three cycles to ensure the response speed in the period of two cycles. , Brightness unevenness can be prevented. As a result, the amplitude of the rectangular wave signal is gradually increased, such as by gradually increasing the amplitude of the rectangular wave signal only when the amplitude is varied within the range of 25% to 50%, for example, 10% or more. The application conditions in the case of making them can be set variously as needed.
 この実施形態によれば、矩形波信号の振幅を増大させる際には、矩形波信号の振幅を徐々に増大させることにより、液晶分子が同じ方向に揃いながら倒れ込み、これにより液晶分子の向きがわざわざ面内方向で揃うように変化する必要が無いことにより、応答速度を向上し、輝度ムラを防止することができる。 According to this embodiment, when the amplitude of the rectangular wave signal is increased, by gradually increasing the amplitude of the rectangular wave signal, the liquid crystal molecules fall down while being aligned in the same direction, and thereby the orientation of the liquid crystal molecules is bothered. Since there is no need to change so as to align in the in-plane direction, the response speed can be improved and luminance unevenness can be prevented.
 またこのとき矩形波信号による駆動電源の複数周期で振幅を順次増大させることにより、具体的構成により輝度ムラを防止することができる。 Further, at this time, the luminance unevenness can be prevented by a specific configuration by sequentially increasing the amplitude in a plurality of cycles of the driving power source by the rectangular wave signal.
 〔第2実施形態〕
 図11は、本発明の第2実施形態に係る調光システムを示す図である。この調光システム31は、調光装置3に代えて調光装置33が適用される点を除いて調光システム1と同一に構成される。ここで調光装置33において、駆動電源生成部35は、コントローラ34の制御により、振幅を可変して駆動電源S1を出力し、コントローラ34は、操作子2U、2Dの操作に応動して各部の動作を制御する。この実施形態において調光装置33は、この駆動電源S1のコールド側出力ラインに抵抗R1を備え、この抵抗R1と、調光フィルム10の静電容量とにより形成される時定数回路により、矩形波信号の振幅を徐々に増大させて輝度ムラを防止する。この実施形態では、この振幅の立ち上げに関する構成が異なる点を除いて、第1実施形態と同一に構成される。
[Second Embodiment]
FIG. 11 is a diagram showing a light control system according to the second embodiment of the present invention. The light control system 31 is configured in the same manner as the light control system 1 except that a light control device 33 is applied instead of the light control device 3. Here, in the dimming device 33, the drive power generation unit 35 outputs the drive power S1 with the amplitude varied under the control of the controller 34. The controller 34 responds to the operation of the operation elements 2U and 2D and controls each part. Control the behavior. In this embodiment, the light control device 33 includes a resistor R1 on the cold output line of the drive power source S1, and a rectangular wave is generated by a time constant circuit formed by the resistor R1 and the capacitance of the light control film 10. Brightness unevenness is prevented by gradually increasing the amplitude of the signal. This embodiment has the same configuration as that of the first embodiment except that the configuration related to the rise of the amplitude is different.
 すなわち調光フィルム10は、液晶層18の厚みによる間隔を隔てて、透明電極21、26が対向するように保持されており、これにより静電容量を備えている。これにより駆動電源S1のグランド側(コールド側)出力ラインに抵抗R1を設け、この抵抗R1を介して駆動電源S1を供給するようにすれば、静電容量とこの抵抗R1とにより時定数回路が構成され、透明電極21、26に印加する駆動電源の波形を鈍らせることになる。その結果、何ら波形鈍りしていない状態(図12(A))との対比により図12(B)により示すように、矩形波信号による駆動電源S1の各周期における電圧V1の極性の切り替わりで、矩形波信号の振幅が徐々に増大することになる。ここでこの駆動電源の波形鈍りは、抵抗R1により調整することができる。 That is, the light control film 10 is held so that the transparent electrodes 21 and 26 are opposed to each other with an interval depending on the thickness of the liquid crystal layer 18, thereby providing a capacitance. Thus, if the resistor R1 is provided on the ground side (cold side) output line of the drive power source S1 and the drive power source S1 is supplied via the resistor R1, the time constant circuit is formed by the capacitance and the resistor R1. Thus, the waveform of the driving power supply applied to the transparent electrodes 21 and 26 is blunted. As a result, as shown in FIG. 12B by comparison with a state where the waveform is not blunted (FIG. 12A), the polarity of the voltage V1 in each cycle of the driving power source S1 by the rectangular wave signal is changed. The amplitude of the rectangular wave signal will gradually increase. Here, the waveform dullness of the drive power supply can be adjusted by the resistor R1.
 係る原理により、調光装置33は、駆動電源S1の振幅を徐々に立ち上げ、輝度ムラを防止する。しかしながらこのように駆動電源S1の波形を鈍らせる場合には、抵抗R1により電力消費することになり、消費電力が増大することになる。そこで調光装置33は、抵抗R1に並列に、スイッチ回路37が設けられ、このスイッチ回路37により抵抗R1の両端を短絡し、無駄な電力消費を防止する。具体的に、輝度ムラの防止を図る必要がある場合を除いて、スイッチ回路37をオン状態に設定し、これにより無駄な電力消費を防止する。なおこの輝度ムラの防止を図る必要がある場合は、例えば第1実施形態について上述したように、駆動電源S1の振幅を、変調度100%の駆動電圧に対して25%以上50%以下の範囲で可変する場合にあって、可変する振幅の大きさが12.5%以上の場合等である。 Based on this principle, the light control device 33 gradually increases the amplitude of the drive power source S1 to prevent uneven brightness. However, when the waveform of the drive power source S1 is dulled as described above, power is consumed by the resistor R1, and the power consumption increases. Therefore, the dimmer 33 is provided with a switch circuit 37 in parallel with the resistor R1, and both ends of the resistor R1 are short-circuited by the switch circuit 37 to prevent useless power consumption. Specifically, the switch circuit 37 is set to an ON state except when it is necessary to prevent luminance unevenness, thereby preventing wasteful power consumption. When it is necessary to prevent this luminance unevenness, for example, as described above with respect to the first embodiment, the amplitude of the drive power source S1 is in the range of 25% to 50% with respect to the drive voltage with a modulation degree of 100%. In the case where the magnitude of the variable amplitude is 12.5% or more.
 また輝度ムラの防止を係るためにスイッチ回路37をオフ状態に設定した場合にあっても、振幅を増大させて、一定時間(例えば200msec)が経過すると、スイッチ回路37をオフ状態に切り替え、これによっても無駄な電力消費を防止する。なおここで抵抗R1、スイッチ回路37は、駆動電源出力ラインの双方に設けるようにしてもよく、ホット側に設けるようにしてもよい。なお抵抗R1は、所望する時定数に応じて、調光フィルムの大きさにより変化する調光フィルムの静電容量に応じて適宜設定することができる。なおスイッチ回路37は、必要に応じて省略してもよい。 Further, even when the switch circuit 37 is set to an off state in order to prevent uneven brightness, the switch circuit 37 is switched to an off state when the amplitude is increased and a certain time (for example, 200 msec) elapses. Prevents wasteful power consumption. Here, the resistor R1 and the switch circuit 37 may be provided on both of the drive power supply output lines or on the hot side. In addition, resistance R1 can be suitably set according to the electrostatic capacitance of the light control film which changes with the magnitude | size of a light control film according to the time constant desired. Note that the switch circuit 37 may be omitted as necessary.
 図13は、この実施形態に係る透過率と振幅との計測結果を示す特性曲線図である。この図13の計測結果においては、時定数を0.5ミリ秒から2ミリ秒に設定し、応答速度を0.03秒程度に設定することができた。これによりこのように時定数回路により駆動電源の各周期でそれぞれ振幅を徐々に増大させる場合には、単純に、液晶分子が揃って倒れ込むことにより各部での応答速度のばらつきを低減し、輝度ムラを防止できると考えられる。 FIG. 13 is a characteristic curve diagram showing measurement results of transmittance and amplitude according to this embodiment. In the measurement result of FIG. 13, the time constant was set from 0.5 milliseconds to 2 milliseconds, and the response speed could be set to about 0.03 seconds. As a result, when the amplitude is gradually increased in each cycle of the drive power source by the time constant circuit in this way, the variation in response speed in each part is simply reduced by the liquid crystal molecules falling together, and the luminance unevenness is reduced. Can be prevented.
 この実施形態によれば、時定数回路により駆動電源の各周期でそれぞれ振幅を徐々に増大させるようにして、第1実施形態と同様の効果を得ることができる。 According to this embodiment, the same effect as that of the first embodiment can be obtained by gradually increasing the amplitude in each cycle of the drive power supply by the time constant circuit.
 またこの時定数回路を、調光装置の駆動電源の出力ラインに設けた抵抗と、調光フィルムの静電容量とにより形成することにより、簡易な構成で調光フィルムの静電容量を有効に利用して輝度ムラを防止することができる。 In addition, by forming this time constant circuit with the resistor provided in the output line of the drive power supply of the light control device and the electrostatic capacity of the light control film, the electrostatic capacity of the light control film can be effectively achieved with a simple configuration. It is possible to prevent luminance unevenness by using it.
 〔第3実施形態〕
 この実施形態では、第2実施形態について上述した抵抗R1を、調光フィルム側に設ける。なおこの場合、スイッチ回路37を併せて調光フィルムに設け、調光装置によりオンオフ制御してもよい。この実施形態では、この抵抗R1に関する構成が異なる点を除いて、第2実施形態と同一に構成される。
[Third Embodiment]
In this embodiment, the resistor R1 described above for the second embodiment is provided on the light control film side. In this case, the switch circuit 37 may also be provided on the light control film, and the on / off control may be performed by the light control device. This embodiment has the same configuration as that of the second embodiment except that the configuration regarding the resistor R1 is different.
 この実施形態では、調光フィルムに抵抗を設けて時定数回路を構成することにより、種々の調光フィルムで調光装置を共通に使用するようにして、第2実施形態と同一の効果を得ることができる。 In this embodiment, by providing a resistance to the light control film to form a time constant circuit, the light control device is commonly used in various light control films, and the same effect as in the second embodiment is obtained. be able to.
 〔第4実施形態〕
 図14は、本発明の第4実施形態に係る調光システムの説明に供する図である。この実施形態に係る調光システムでは、この図14に示す振幅立ち上げ時における振幅の増大方法が異なる点を除いて、上述の実施形態と同一に構成される。
[Fourth Embodiment]
FIG. 14 is a diagram for explaining a light control system according to the fourth embodiment of the present invention. The dimming system according to this embodiment has the same configuration as that of the above-described embodiment except that the method of increasing the amplitude at the time of starting the amplitude shown in FIG. 14 is different.
 この実施形態では、符号V1Bにより示すように、一定範囲で振幅を増大させる際に、一定期間TAの間、事前に駆動電源を一定の極性により一定値VAだけ増大させる。その後、この実施形態では、ユーザーの指示に対応する振幅に駆動電源を立ち上げて矩形波信号により駆動する。これによりこの実施形態では、事前の一定値VAと、ユーザーの指示に対応する振幅とによる2段階により矩形波信号の振幅を徐々に増大させ、透過率の可変時に一時的に発生する輝度ムラを防止する。なおこの図14においては、矩形波信号による駆動電源により駆動する場合の印加電圧を符号V1Aにより示し、この場合の透過率の変化を符号ΔT1により示す。 In this embodiment, as indicated by reference numeral V1B, when the amplitude is increased in a certain range, the driving power source is increased by a certain value VA with a certain polarity in advance for a certain period TA. Thereafter, in this embodiment, the drive power supply is raised to an amplitude corresponding to the user's instruction and driven by a rectangular wave signal. As a result, in this embodiment, the amplitude of the rectangular wave signal is gradually increased by two steps based on the predetermined constant value VA and the amplitude corresponding to the user's instruction, and luminance unevenness that temporarily occurs when the transmittance is variable is reduced. To prevent. In FIG. 14, the applied voltage when driven by a driving power source using a rectangular wave signal is denoted by reference symbol V1A, and the change in transmittance in this case is denoted by reference symbol ΔT1.
 ここでこの一定期間TAは、矩形波信号の周期と関連しておらず、好ましくは5ミリ秒以上であり、より好ましくは10ミリ秒以上である。また、好ましくは100ミリ秒以下であり、より好ましくは50ミリ秒以下である。
 5ミリ秒より短い時間を設定すると液晶分子が動かず応答速度改善の効果が得られない。また、100ミリ秒より長くすると、液晶分子が所望の変調度よりも低い変調度まで動作し、さらに所望の透過率まで2段階で動作したことが視認出来てしまうので好ましくない。したがって、一定期間TAは、上述のように下限値を5ミリ秒以上、より好ましくは10ミリ秒以上とし、また、上限値を100ミリ秒以下、より好ましくは50ミリ秒以下に設定するのが望ましく、この程度の短時間であれば調光フィルムの透過率の変化が連続で動作しているように見える。
Here, the fixed period TA is not related to the period of the rectangular wave signal, and is preferably 5 milliseconds or more, and more preferably 10 milliseconds or more. Moreover, it is preferably 100 milliseconds or less, more preferably 50 milliseconds or less.
If a time shorter than 5 milliseconds is set, the liquid crystal molecules do not move and the effect of improving the response speed cannot be obtained. On the other hand, if the time is longer than 100 milliseconds, it is not preferable because the liquid crystal molecules can be visually recognized that the liquid crystal molecules operate to a modulation degree lower than a desired modulation degree and further operate to a desired transmittance in two stages. Therefore, for the fixed period TA, as described above, the lower limit value is set to 5 milliseconds or more, more preferably 10 milliseconds or more, and the upper limit value is set to 100 milliseconds or less, more preferably 50 milliseconds or less. Desirably, in such a short time, the change in transmittance of the light control film seems to operate continuously.
 本実施形態によると一定期間TAは、矩形波信号の振幅に依存しないので、所望の好ましい範囲に設定することができる。 According to the present embodiment, the fixed period TA does not depend on the amplitude of the rectangular wave signal, and can be set to a desired preferable range.
 またこの事前の振幅の増大に供する一定範囲は、上述の実施例に係る矩形波信号の振幅を徐々に増大させる場合と同一の場合であり、輝度ムラが発生する恐れのある場合である。 Further, the predetermined range for increasing the amplitude in advance is the same as the case where the amplitude of the rectangular wave signal according to the above-described embodiment is gradually increased, and there is a possibility that uneven brightness may occur.
 またこの一定値VAは、0%以上80%以下の変調度に対応する電圧であり、ユーザーの指示に対応する最終的な振幅値に応じて、例えば20%程度変調する電圧のように上記の範囲で任意に設定することができる。 The constant value VA is a voltage corresponding to a modulation degree of 0% or more and 80% or less. For example, a voltage that modulates about 20% according to a final amplitude value corresponding to a user's instruction. It can be set arbitrarily within the range.
 ここで図15に示すように、液晶分子は、チルト角の変化により変調度が変化し、チルト角が90となって液晶分子が水平配向した場合、変調度は1となり、チルト角が0度である垂直配向の場合、変調度が0となる。ここで変調度が0%以上80%以下の場合(符号Mにより示す範囲である)に、調光フィルムでは、振幅を徐々に増大させて輝度ムラの低減効果が高い。これは変調度が80%を超える場合である液晶分子が大きく傾いた場合には、既に液晶分子が種々の方向を向いていることにより、徐々に振幅を増大させても駆動ムラの改善効果が低いのに対し、変調度が80%以下の場合、液晶分子が大きく傾いていない場合であり、徐々に矩形波信号の振幅を立ち上げて充分に液晶分子を揃えて倒すことができ、輝度ムラを低減できるものと考えられる。ここでこの範囲は、チルト角によれば5度以上55度以下の範囲Mである。 Here, as shown in FIG. 15, the modulation degree of the liquid crystal molecules changes due to the change of the tilt angle. When the tilt angle is 90 and the liquid crystal molecules are horizontally aligned, the modulation degree is 1 and the tilt angle is 0 degree. In the case of vertical alignment, the modulation degree is zero. Here, when the degree of modulation is 0% or more and 80% or less (the range indicated by the symbol M), the light control film has a high effect of reducing luminance unevenness by gradually increasing the amplitude. This is a case where the degree of modulation exceeds 80%. When the liquid crystal molecules are largely inclined, the liquid crystal molecules are already oriented in various directions, so that even if the amplitude is gradually increased, the driving unevenness can be improved. On the other hand, when the degree of modulation is 80% or less, the liquid crystal molecules are not tilted greatly, and the amplitude of the rectangular wave signal can be gradually raised to sufficiently align the liquid crystal molecules and bring down the brightness unevenness. Can be reduced. Here, this range is a range M of 5 degrees or more and 55 degrees or less according to the tilt angle.
 ここでこのチルト角の範囲にあっては、図16に示すように、矩形波信号の振幅が2.5V以上5V以下の範囲である。 Here, in this tilt angle range, as shown in FIG. 16, the amplitude of the rectangular wave signal is in the range of 2.5V to 5V.
 これによりこの実施形態では、事前に駆動電源を一定の極性により一定値VAだけ増大させるようにして、この一定値VAを2.5V以上5V以下に設定する。 Thus, in this embodiment, the constant value VA is set to 2.5 V or more and 5 V or less by increasing the driving power source by a certain value VA with a certain polarity in advance.
 この実施形態によれば、一定期間TAの間、事前に駆動電源を一定の極性により一定値VAだけ増大させ、その後、矩形波信号により駆動することにより、矩形波信号の振幅を徐々に増大させるようにしても、上述の実施形態と同様の効果を得ることができる。 According to this embodiment, the drive power supply is increased by a fixed value VA with a fixed polarity in advance for a fixed period TA, and then the amplitude of the rectangular wave signal is gradually increased by driving with the rectangular wave signal. Even if it does, the effect similar to the above-mentioned embodiment can be acquired.
 〔第5実施形態〕
 図17は、本発明の第5実施形態に係る調光システムの説明に供する図であり、(A)は第5実施形態、(B)は比較形態である。この実施形態に係る調光システムでは、振幅立ち上げ時における振幅の増大方法が異なる点を除いて、第4実施形態と同一に構成されるので同一の部分の説明は省略する。
 調光システムは、内部にクロックを有しており、駆動信号は、そのクロック信号に基づいて発信される。すなわち、駆動信号の振幅が変化するタイミングはクロック信号による。
 すなわち、ユーザーが調光フィルムの透過率を変えるために調光システムをオンにするタイミングにかかわらず、駆動信号の振幅はクロック信号によって変化している。
[Fifth Embodiment]
FIG. 17 is a diagram for explaining a light control system according to a fifth embodiment of the present invention, in which (A) is a fifth embodiment, and (B) is a comparative embodiment. The dimming system according to this embodiment is configured in the same way as the fourth embodiment except that the method of increasing the amplitude at the time of starting up the amplitude is different, and thus the description of the same part is omitted.
The dimming system has a clock inside, and the drive signal is transmitted based on the clock signal. That is, the timing at which the amplitude of the drive signal changes depends on the clock signal.
That is, the amplitude of the drive signal is changed by the clock signal regardless of the timing when the user turns on the light control system in order to change the transmittance of the light control film.
 本実施形態において、ユーザーの指示に対応する振幅VCを調光フィルムに加える前に、振幅VCより小さい振幅VA2の電圧を調光フィルムに加える。本実施形態においても、振幅VA2の電圧を調光フィルムに加える時間TAは、第4実施形態と同様に、下限値が5ミリ秒以上であり上限値が100ミリ秒以下の範囲に設定されるのが好ましい。 In this embodiment, before applying the amplitude VC corresponding to the user's instruction to the light control film, a voltage having an amplitude VA2 smaller than the amplitude VC is applied to the light control film. Also in this embodiment, the time TA for applying the voltage of the amplitude VA2 to the light control film is set in a range where the lower limit value is 5 milliseconds or more and the upper limit value is 100 milliseconds or less, as in the fourth embodiment. Is preferred.
 ここで、駆動信号の周波数は、フリッカー(ちらつき)の抑制を考慮すると、30Hz以上の周波数が必要であるので、1周期が33ミリ秒の場合について説明する。 Here, since the frequency of the drive signal needs to be 30 Hz or higher in consideration of suppression of flicker (flicker), a case where one period is 33 milliseconds will be described.
 まず、図17(B)に示す比較形態としてユーザーが調光システムのスイッチをオンにした時点(図17(B)のSW/ONの位置)から、そのSW/ONがされた時点を含む1周期目の駆動信号の振幅をVA2とし、次の2周期目から、駆動電圧の振幅をVCとした場合について説明する。
 この比較形態においては、SW/ONの時点を含む1周期目の残り時間tが、TAとなる。1周期目の残り時間t(TA)は、0≦t(TA)≦33ミリ秒であり、SW/ONのタイミングによってはt(TA)<5ミリ秒となる場合がある。その場合、t(TA)が上述の好ましい範囲から外れてしまい、応答速度改善の効果が得られなくなるので、好ましくない。
First, as a comparative form shown in FIG. 17B, the time including the time when the SW / ON is performed from the time when the user turns on the switch of the dimming system (the SW / ON position in FIG. 17B). The case where the amplitude of the drive signal in the cycle is VA2 and the amplitude of the drive voltage is VC from the second cycle will be described.
In this comparative form, the remaining time t in the first cycle including the SW / ON time is TA. The remaining time t (TA) in the first cycle is 0 ≦ t (TA) ≦ 33 milliseconds, and may be t (TA) <5 milliseconds depending on the SW / ON timing. In this case, t (TA) deviates from the above-described preferable range, and the effect of improving the response speed cannot be obtained.
 このため、本実施形態では、図17(A)に示すようにユーザーが調光システムのスイッチをオンにした時点(図17(A)のSW/ONの位置)から、そのSW/ONがされた時点を含む1周期目と2周期目の駆動電圧の振幅をVA2とし、次の3周期目から、駆動電圧の振幅をVCとする。
 本実施形態においては、SW/ONの時点を含む1周期目の残り時間tに1周期目の33ミリ秒を足した時間がTAとなる。tは、0≦t≦33ミリ秒であるので、33≦TA(t+33)≦66ミリ秒となり、SW/ONのタイミングによらず、TAは好ましい範囲である5ミリ秒以上100ミリ秒以下となる。
Therefore, in this embodiment, as shown in FIG. 17A, the SW / ON is performed from the time when the user turns on the switch of the dimming system (the SW / ON position in FIG. 17A). The amplitude of the drive voltage in the first cycle and the second cycle including the time point is VA2, and the amplitude of the drive voltage is VC from the next third cycle.
In the present embodiment, TA is a time obtained by adding 33 milliseconds of the first cycle to the remaining time t of the first cycle including the SW / ON time point. Since t is 0 ≦ t ≦ 33 milliseconds, 33 ≦ TA (t + 33) ≦ 66 milliseconds, and TA is a preferable range of 5 milliseconds to 100 milliseconds regardless of the SW / ON timing. Become.
 なお、蛍光灯等の外光との干渉を考えると、駆動電圧の周波数が50Hzになる可能性が高い。この場合、本実施形態によると、SW/ONの時点を含む1周期目の残り時間tは、0≦t≦20ミリ秒であるので、20≦TA(t+20)≦40ミリ秒となり、この場合も、SW/ONのタイミングによらず、TAは好ましい範囲である5ミリ秒以上100ミリ秒以下となる。 In addition, when considering interference with external light such as a fluorescent lamp, there is a high possibility that the frequency of the driving voltage is 50 Hz. In this case, according to the present embodiment, the remaining time t in the first cycle including the SW / ON time is 0 ≦ t ≦ 20 milliseconds, and therefore 20 ≦ TA (t + 20) ≦ 40 milliseconds. However, regardless of the SW / ON timing, TA is in the preferred range of 5 milliseconds to 100 milliseconds.
 なお、このようにTAが好ましい範囲である5ミリ秒以上100ミリ秒以下となるのは、1周期の長さが5ミリ秒以上50ミリ秒以下の場合である。 Note that the TA is in the preferred range of 5 milliseconds to 100 milliseconds in this case when the length of one cycle is 5 milliseconds to 50 milliseconds.
 〔第6実施形態〕
 〔車両〕
 図18は、本発明の実施形態に係る調光システムを備えた車両を示す図である。車両130は、サンルーフ132を備え、このサンルーフ132に調光フィルム10が貼り付けられている。車両130には、搭乗者の頭上を覆うように開口131が設けられ、この開口131に、調光フィルム10の積層体が配置されてサンルーフ132が形成されている。
 なお、調光フィルム10の取付対象は、本実施形態のようにサンルーフに限定されず、ショーウィンド、車両におけるその他の窓、建物の窓等も適用可能である。
[Sixth Embodiment]
〔vehicle〕
FIG. 18 is a diagram illustrating a vehicle including the light control system according to the embodiment of the present invention. The vehicle 130 includes a sunroof 132, and the light control film 10 is attached to the sunroof 132. The vehicle 130 is provided with an opening 131 so as to cover the passenger's head, and a laminated body of the light control film 10 is disposed in the opening 131 to form a sunroof 132.
In addition, the attachment object of the light control film 10 is not limited to a sunroof like this embodiment, A show window, the other window in a vehicle, the window of a building, etc. are applicable.
 本実施形態の車両130は、運転席が車両の右側前部に配置され、サンルーフ132が、サンルーフ132を形成する透明板部材に、粘着剤、接着剤等により積層した積層体として用いられている。なお貼り付けにより保持するだけでなく、例えば合わせガラスの中間材に適用して調光フィルムを配置してもよい。 The vehicle 130 according to the present embodiment is used as a laminated body in which the driver's seat is disposed at the right front portion of the vehicle, and the sunroof 132 is laminated on the transparent plate member forming the sunroof 132 with an adhesive, an adhesive, or the like. . In addition to being held by pasting, the light control film may be disposed by applying to an intermediate material of laminated glass, for example.
 調光フィルム10の基本構成は第6実施形態の調光フィルム10と同様であるので同様の符号を付し、重複する部分の説明は省略する。本実施形態で直線偏光板12,13は、アクリル系透明粘着樹脂等の接着剤層によって液晶セル14に配置される。また、本実施形態において、基材16,25は、厚み100μmのポリカーボネートフィルムが適用される。
 配向層23,27は、光配向層に代えてラビング処理により配向層を作製してもよく、微細なライン状凹凸形状を賦型処理して配向層を作製してもよい。
Since the basic structure of the light control film 10 is the same as that of the light control film 10 of 6th Embodiment, the same code | symbol is attached | subjected and description of the overlapping part is abbreviate | omitted. In this embodiment, the linearly polarizing plates 12 and 13 are arranged in the liquid crystal cell 14 by an adhesive layer such as an acrylic transparent adhesive resin. In the present embodiment, a polycarbonate film having a thickness of 100 μm is applied to the base materials 16 and 25.
The alignment layers 23 and 27 may be produced by rubbing treatment instead of the photo-alignment layer, or may be produced by forming a fine line-shaped uneven shape.
 配向層23,27は、配向層の塗工液を塗工した後、乾燥させ、その後、紫外線の照射により露光して作成される。配向層23,27のうちの1方の配向層は、この紫外線の照射において、マスクを使用した繰り返しの露光処理により、配向規制力の方向が異なる複数の領域が作成される。また残る配向層23又は27は、配向規制力が全面で均一に設定される。これにより調光フィルム10は、2ドメインによるマルチドメインにより液晶層18が駆動される。なお本発明は、2ドメインによる場合に限らず、4ドメイン等のマルチドメインに適用してもよく、シングルドメインに適用してもよい。 The alignment layers 23 and 27 are formed by applying an alignment layer coating liquid, drying the film, and then exposing it to ultraviolet irradiation. In one of the alignment layers 23 and 27, a plurality of regions having different directions of alignment regulating force are created by repeated exposure processing using a mask in the irradiation of ultraviolet rays. In addition, the alignment layer 23 or 27 that remains is set to have a uniform alignment regulating force over the entire surface. Thereby, the light control film 10 drives the liquid crystal layer 18 by the multi-domain by two domains. Note that the present invention is not limited to the case of two domains, and may be applied to a multi-domain such as a 4-domain or a single domain.
 液晶層18は、ネマチック液晶を適用することができる。
 実施形態の調光フィルム10における液晶層18の配向制御には、VA方式(Vertical Alignment,垂直配向型)等が適用される。
 VA方式では、駆動電源20の振幅が0Vの場合(駆動電圧が0Vの場合)である無電界時、液晶層18の液晶分子は垂直配向し、これにより調光フィルム10は、入射光を遮光して遮光状態となる。また、この駆動電源20の振幅を増大させて駆動電圧を立ち上げると、液晶層18の液晶層は水平配向し、調光フィルム10は、入射光を透過させる。
 なお液晶セル14は、光配向層のパターンニング等により、本実施形態においては、いわゆるシングルドメインにより駆動する。
A nematic liquid crystal can be applied to the liquid crystal layer 18.
For the alignment control of the liquid crystal layer 18 in the light control film 10 of the embodiment, a VA method (Vertical Alignment, vertical alignment type) or the like is applied.
In the VA system, the liquid crystal molecules of the liquid crystal layer 18 are vertically aligned when there is no electric field when the amplitude of the drive power supply 20 is 0 V (when the drive voltage is 0 V), whereby the light control film 10 blocks incident light. As a result, the light is blocked. When the drive voltage is increased by increasing the amplitude of the drive power supply 20, the liquid crystal layer of the liquid crystal layer 18 is horizontally aligned, and the light control film 10 transmits incident light.
In the present embodiment, the liquid crystal cell 14 is driven by a so-called single domain by patterning the photo-alignment layer or the like.
 図19は、調光フィルム10と、その調光フィルム10を駆動する制御部140とを示す調光システム200のブロック図である。
 制御部140は駆動電源20を備え、操作子141の操作に応動して振幅を変更して駆動電圧V1を出力する。
FIG. 19 is a block diagram of the light control system 200 showing the light control film 10 and the control unit 140 that drives the light control film 10.
The control unit 140 includes a drive power supply 20 and changes the amplitude in response to the operation of the operation element 141 to output the drive voltage V1.
 制御部140は、調光フィルム10の下側透明電極11と上側透明電極16との間に、一定の時間間隔で極性が切り替わる矩形波の駆動電圧を印加する。
 制御部140より下側透明電極11と上側透明電極16との間に駆動電圧が加えられると、液晶層18に電界が生じる。液晶層18に生じた電界により、液晶層18に設けられた液晶層材料の配向が制御される。これにより、調光フィルム10の透過光を制御可能となり、調光を図ることができる。
The control unit 140 applies a rectangular wave driving voltage whose polarity is switched at regular time intervals between the lower transparent electrode 11 and the upper transparent electrode 16 of the light control film 10.
When a driving voltage is applied between the lower transparent electrode 11 and the upper transparent electrode 16 from the control unit 140, an electric field is generated in the liquid crystal layer 18. The alignment of the liquid crystal layer material provided in the liquid crystal layer 18 is controlled by the electric field generated in the liquid crystal layer 18. Thereby, the transmitted light of the light control film 10 can be controlled, and light control can be achieved.
 〔比較形態〕
 〔静置時の挙動〕
 図20は、比較形態であり、VA方式において、電圧が0Vの透明電極11,16間に、±10Vの駆動電圧V1を印加した際の、液晶分子の挙動を説明する特性曲線図である。なお、図20の計測結果は、調光フィルム10を静置した状態(移動中の車両ではなく)での計測結果である。
[Comparison form]
[Behavior when standing still]
FIG. 20 is a comparative example, and is a characteristic curve diagram illustrating the behavior of liquid crystal molecules when a driving voltage V1 of ± 10 V is applied between the transparent electrodes 11 and 16 having a voltage of 0 V in the VA method. In addition, the measurement result of FIG. 20 is a measurement result in the state (not a moving vehicle) where the light control film 10 is left still.
 電圧が0Vの透明電極11,16間に、±10Vの駆動電圧V1を印加すると、透過率は、約10msec経過、一時的に飽和値の1/3程度の値(図19では、値0.02程度である)に立ち上がる。透過率は、その後、一旦、0.01程度に低下した後、徐々に増大して約200msec経過後に0.055程度で飽和する。 When a drive voltage V1 of ± 10 V is applied between the transparent electrodes 11 and 16 having a voltage of 0 V, the transmittance is about 1/3 of the saturation value after about 10 msec has elapsed (in FIG. It is about 02). Thereafter, the transmittance once decreases to about 0.01, then gradually increases, and saturates at about 0.055 after about 200 msec.
 この様な挙動を示す理由は以下のように考えられる。
 図21は、比較形態での液晶分子18Aの挙動を説明する図である。以下、理解容易のため、比較形態においても本実施形態と同じ符号を用いる。図示するように、VA方式で使用されるネマック液晶の液晶分子18Aは、遮光時である垂直配向時、調光フィルム10を静置した状態であっても長軸方向が比較的自由に揺らぐ。そして、液晶分子18Aは、長軸方向の向きがプレチルト角θに係る向きを中心に、ある程度の広がりを有する一定の分布を持つ。
 なお図21において、xy方向は、液晶層8の表面の面内方向であり、z方向は液晶層18の厚み方向である。また液晶分子18Aのプレチルト角θは、調光フィルム10の表面の法線から0.5度程度である。
The reason for such behavior is considered as follows.
FIG. 21 is a diagram for explaining the behavior of the liquid crystal molecules 18A in the comparative form. Hereinafter, for the sake of easy understanding, the same reference numerals as those of the present embodiment are used in the comparative embodiment. As shown in the figure, the liquid crystal molecules 18A of the nemac liquid crystal used in the VA mode fluctuate relatively freely in the major axis direction even in the state where the light control film 10 is allowed to stand at the time of vertical alignment which is light shielding. The liquid crystal molecules 18A have a certain distribution in which the direction in the major axis direction has a certain degree of spread around the direction related to the pretilt angle θ.
In FIG. 21, the xy direction is the in-plane direction of the surface of the liquid crystal layer 8, and the z direction is the thickness direction of the liquid crystal layer 18. The pretilt angle θ of the liquid crystal molecules 18A is about 0.5 degrees from the normal line of the surface of the light control film 10.
 このような状態から、透明電極21,26間に電圧を印加して水平配向させると、各液晶分子18Aは、まず、符号Aで示すように、垂直配向時の状態に応じた方向(垂直配向時における長軸の、xy面内における方向)に倒れて水平配向する。
 その後、符号Bで示すように、長軸方向の面内方向における向きが変化して一定の方向に揃う。
 調光フィルム10では、符号Aで示すように、垂直配向時の状態に応じた面内方向に液晶分子18Aが水平配向することにより、一時的に飽和値の1/3程度の値に透過率が立ち上がる(図19)。その後、符号Bで示すように、液晶分子18Aの向きが揃うまでの期間で、調光フィルム10は、透過率が一旦低下した後、徐々に増大して飽和する。
From such a state, when a voltage is applied between the transparent electrodes 21 and 26 to cause horizontal alignment, each liquid crystal molecule 18A first has a direction (vertical alignment) corresponding to the state during vertical alignment, as indicated by reference numeral A. The major axis at the time falls in the xy plane) and is horizontally oriented.
Thereafter, as indicated by reference numeral B, the orientation in the in-plane direction of the major axis direction changes and aligns in a certain direction.
In the light control film 10, as indicated by the symbol A, the liquid crystal molecules 18 </ b> A are horizontally aligned in the in-plane direction according to the state during vertical alignment, whereby the transmittance is temporarily reduced to about 1/3 of the saturation value. Stands up (FIG. 19). Thereafter, as indicated by reference numeral B, the light control film 10 is gradually increased and saturated in a period until the orientations of the liquid crystal molecules 18A are aligned.
 〔振動時の挙動〕
 車両130に搭載して使用する場合、車両130の走行等により調光フィルム10は振動し、その結果、垂直配向時における長軸方向の揺らぎが静置時に比して格段に大きくなる。従って水平配向時において倒れ込む液晶分子18Aの向き(長軸方向の向き)も、静置時よりも大きくばらつく。したがって車載では、透過率を変更する際の応答速度が一段と増大する。
[Behavior during vibration]
When mounted on the vehicle 130 and used, the light control film 10 vibrates due to traveling of the vehicle 130 and the like, and as a result, the fluctuation in the major axis direction in the vertical orientation becomes much larger than that in the stationary state. Therefore, the direction of the liquid crystal molecules 18A that fall down during horizontal alignment (the direction of the long axis direction) also varies more greatly than when it is stationary. Therefore, in a vehicle, the response speed when changing the transmittance further increases.
 また振動の大きさが各部で異なったりすることから、垂直配向時における長軸方向の揺らぎの大きさも調光フィルム10の各部で種々に変化する。これにより調光フィルム10では、液晶分子18Aの水平配向に係る応答時間が各部で相違し、透過率を変化させた際に透過率に分布が発生して透過率が不均一化する。 In addition, since the magnitude of vibration is different in each part, the magnitude of fluctuation in the major axis direction during vertical alignment varies in various parts of the light control film 10. Thereby, in the light control film 10, the response time concerning the horizontal alignment of the liquid crystal molecules 18A differs in each part, and when the transmittance is changed, a distribution occurs in the transmittance and the transmittance becomes non-uniform.
 〔本実施形態〕
 そこで、本実施形態では、水平配向した液晶分子18Aが、プレチルトに対応する方向に揃うまでの時間を短縮することにより、車載時における応答速度の劣化、透過率の不均一化を低減する。
[This embodiment]
Thus, in the present embodiment, the time until the horizontally aligned liquid crystal molecules 18A are aligned in the direction corresponding to the pretilt is shortened, thereby reducing response speed deterioration and nonuniform transmission.
 図22は、本実施形態において、透明電極11,16間に印加される電圧と、その際の調光フィルム10の透過率を示す特性曲線図であり、図20に対応している。
 本実施形態では、10msecの期間、予備電圧V2を2.5V程度印加した後、±10Vの駆動電圧V1を印加する。
 なお、予備電圧は本実施形態では2.5Vとしたが、これに限定されず予備電圧は、液晶分子が傾く角度が調光フィルム10の表面の法線から1度以上5度以下の電圧値であればよい。
FIG. 22 is a characteristic curve diagram showing the voltage applied between the transparent electrodes 11 and 16 and the transmittance of the light control film 10 at that time, and corresponds to FIG.
In the present embodiment, the drive voltage V1 of ± 10V is applied after applying the preliminary voltage V2 of about 2.5V for a period of 10 msec.
Although the preliminary voltage is 2.5 V in the present embodiment, the preliminary voltage is not limited to this, and the preliminary voltage is a voltage value in which the angle at which the liquid crystal molecules tilt is 1 degree or more and 5 degrees or less from the normal line of the surface of the light control film 10. If it is.
 本実施形態によると、図示するように、始めに予備電圧を印加することにより、短時間で透過率が変化する。図20においては、上述したように一時的に透過率が低下しているが、本実施形態ではそのような一時的な透過率低下は生じない。本実施形態によると、図22に示すように、20msec程度で、透過率が飽和しており、図20の場合と比べて応答速度が短くなっている。 According to the present embodiment, as shown in the figure, the transmittance is changed in a short time by first applying the preliminary voltage. In FIG. 20, the transmittance is temporarily reduced as described above. However, in the present embodiment, such a temporary decrease in transmittance does not occur. According to the present embodiment, as shown in FIG. 22, the transmittance is saturated at about 20 msec, and the response speed is shorter than that in FIG.
 この理由については以下のように考える。
 2.5V程度の予備電圧V2を印加すると、液晶分子18Aは、予備電圧V2に対応して調光フィルム10の表面の法線から水平方向に若干倒れる。比較形態では図21において符号Bを使用して説明した、面内方向における液晶分子18Aの移動による個々のばらつきの抑制が、本実施形態ではこの予備電圧V2を加える時点で行われると考えられる。
 その後、駆動電圧V1が印加される際には、すでにばらつきが規制された状態で、液晶分子18Aが水平方向に倒れる。したがって、駆動電圧V1が印加される際には、面内方向における液晶分子18Aの移動が省略され、応答速度が短縮されていると考えられる。
The reason for this is considered as follows.
When the preliminary voltage V2 of about 2.5 V is applied, the liquid crystal molecules 18A slightly fall in the horizontal direction from the normal line of the surface of the light control film 10 corresponding to the preliminary voltage V2. In the comparative embodiment, it is considered that the suppression of individual variations due to the movement of the liquid crystal molecules 18A in the in-plane direction, which is described using the symbol B in FIG. 21, is performed at the time of applying this preliminary voltage V2.
After that, when the driving voltage V1 is applied, the liquid crystal molecules 18A are tilted in the horizontal direction in a state where the variation is already regulated. Therefore, when the drive voltage V1 is applied, it is considered that the movement of the liquid crystal molecules 18A in the in-plane direction is omitted and the response speed is shortened.
 〔液晶分子の傾きの設定〕
 ここで、予備電圧V2を印加した際の液晶分子18Aの傾きが小さすぎると、十分に応答速度を向上することが困難になる。
 しかし、予備電圧V2を印加している状態は、搭乗者が、調光フィルム10の透過率の操作を開始する前の状態である。したがって、本実施形態のような液晶に電圧がかかっていない時に透過率が最小(遮光)となる場合、この予備電圧V2を印加している状態でも、十分に遮光状態を保っていることが好ましい。
[Setting the tilt of liquid crystal molecules]
Here, if the inclination of the liquid crystal molecules 18A when the preliminary voltage V2 is applied is too small, it is difficult to sufficiently improve the response speed.
However, the state in which the preliminary voltage V <b> 2 is applied is a state before the occupant starts operating the transmittance of the light control film 10. Therefore, when the transmittance is minimum (light-shielding) when no voltage is applied to the liquid crystal as in the present embodiment, it is preferable that the light-shielding state is sufficiently maintained even when the preliminary voltage V2 is applied. .
 ところで、車両130において、搭乗者は着席しており、搭乗者の視線の向きはほとんどの期間、前方となる。また車両130では、搭乗者が上方を見上げてサンルーフ132に設けられた調光フィルム10を正面より視認する場合は、稀である。
 一方、VA方式の調光フィルム10は、見る方向により透過率が種々に変化するという特徴がある。
By the way, in the vehicle 130, the passenger is seated, and the direction of the passenger's line of sight is forward for most of the period. Further, in the vehicle 130, it is rare that the passenger looks up from above and visually recognizes the light control film 10 provided on the sunroof 132 from the front.
On the other hand, the VA-type light control film 10 has a characteristic that the transmittance varies depending on the viewing direction.
 そこで、本実施形態では、このようなVA方式及び車両の特性を有効利用して、以下のようにすることで十分に応答速度を向上しつつ、十分に入射光を遮光し、さらには十分に透過率を確保する。 Therefore, in the present embodiment, the VA system and the characteristics of the vehicle are effectively used to sufficiently improve the response speed and to sufficiently shield the incident light, and further sufficiently as follows. Ensure transmittance.
 〔角度の説明〕
 まず、液晶分子の傾きの角度の説明をする。図23は、シングルドメイン方式における極角と方位角の定義を説明する図である。
 図23(A)は、調光フィルム10の概略断面図である。状態Aは、上述の透明電極11,16間に電界が生じていない場合の液晶分子18Aの状態を示し、液晶分子18Aは、長軸方向が垂直方向である垂直配向の状態である。状態Bは、電界が生じて液晶分子18Aが傾く方向を示し、透明電極11,16による電界により液晶分子18Aの長軸方向が面内方向となるように液晶分子18Aが水平配向を開始している。
 図23(B)は液晶分子18Aの極角を説明する図である。極角は、図示するように、調光フィルム10の法線方向(厚み方向)からの、液晶分子18Aの長軸方向の傾きである。
 図23(c)は液晶分子18Aの倒れる方向(方位角)を説明する図である。ここで車両130の進行方向を方位角0とする。
[Description of angle]
First, the tilt angle of the liquid crystal molecules will be described. FIG. 23 is a diagram illustrating the definition of polar angle and azimuth angle in the single domain method.
FIG. 23A is a schematic cross-sectional view of the light control film 10. The state A shows the state of the liquid crystal molecules 18A when no electric field is generated between the transparent electrodes 11 and 16, and the liquid crystal molecules 18A are in a vertically aligned state in which the major axis direction is the vertical direction. State B shows the direction in which the liquid crystal molecules 18A are inclined due to the generation of an electric field, and the liquid crystal molecules 18A start horizontal alignment so that the major axis direction of the liquid crystal molecules 18A is in the in-plane direction due to the electric field by the transparent electrodes 11 and 16. Yes.
FIG. 23B is a diagram for explaining the polar angle of the liquid crystal molecules 18A. The polar angle is an inclination in the major axis direction of the liquid crystal molecules 18A from the normal direction (thickness direction) of the light control film 10 as illustrated.
FIG. 23C is a diagram for explaining the direction (azimuth angle) in which the liquid crystal molecules 18A are tilted. Here, the traveling direction of the vehicle 130 is assumed to be an azimuth angle 0.
 本実施形態の調光フィルム10は、全ての液晶分子を同じ方向に倒すシングルドメインによるVA方式の調光フィルム10である。
 図24は、本実施形態の調光フィルム10において、液晶分子18Aの倒れる方向(方位角)が異なる場合の透過率の変化を示す図である。
 なお、液晶分子18Aの倒れる角度(方位角)とは、車両130の進行方向を0°とし、調光フィルム10を下から見たときの液晶分子18Aの倒れる方向の方向(方位角)である。
The light control film 10 of this embodiment is a single domain VA light control film 10 that tilts all liquid crystal molecules in the same direction.
FIG. 24 is a diagram illustrating a change in transmittance when the direction (azimuth angle) of the liquid crystal molecules 18A is different in the light control film 10 of the present embodiment.
The tilt angle (azimuth angle) of the liquid crystal molecules 18A is the direction (azimuth angle) in the tilt direction of the liquid crystal molecules 18A when the traveling direction of the vehicle 130 is 0 ° and the light control film 10 is viewed from below. .
 〔予備電圧印加時〕
 予備電圧として約2.5Vの電圧を透明電極11,16間に印加したときに、透過率が3%程度以下であれは、搭乗者は、0Vにおける完全な遮光状態から、それほど遮光状態が変化したことを感じず、光漏れはほとんど生じていないと感じている為、許容範囲とする。なお、透過率1%程度以下とすると、遮光状態の変化はほとんど感じられない為、より好ましい。
[When preliminary voltage is applied]
When a voltage of about 2.5 V is applied between the transparent electrodes 11 and 16 as a reserve voltage, if the transmittance is about 3% or less, the occupant changes the light shielding state so much from the complete light shielding state at 0 V. Since it is felt that almost no light leakage has occurred, it is within the allowable range. Note that it is more preferable that the transmittance is about 1% or less because almost no change in the light shielding state is felt.
 図24に示すように、液晶分子18Aの倒れる方向(方位角)が0度~90度の場合、透過率が3%以下である。
 これに対して液晶分子18Aの倒れる方向(方位角)が135度以上の場合、透過率は3%より大きくなるので、不適である。
As shown in FIG. 24, when the tilting direction (azimuth angle) of the liquid crystal molecules 18A is 0 degree to 90 degrees, the transmittance is 3% or less.
On the other hand, when the direction in which the liquid crystal molecules 18A are tilted (azimuth angle) is 135 degrees or more, the transmittance is higher than 3%, which is not suitable.
 〔駆動電圧印加時〕
 最大透過率は、正面を見たときの最大透過率が25%程度の場合、22%以上であれば、搭乗者は透過率の上昇を十分に感じることができる。このため。22%以上を許容範囲とする。
 液晶分子18Aの倒れる方向(方位角)が45度以上の場合、透過率が22%以上である。
 これに対して液晶分子18Aの倒れる方向(方位角)が30度以上の場合、最大透過率は22%より小さくなるので、不適である。
[When driving voltage is applied]
When the maximum transmittance is about 25% when the front is viewed from the front, if the maximum transmittance is 22% or more, the passenger can sufficiently feel the increase in the transmittance. For this reason. The allowable range is 22% or more.
When the direction in which the liquid crystal molecules 18A are tilted (azimuth angle) is 45 degrees or more, the transmittance is 22% or more.
On the other hand, when the direction in which the liquid crystal molecules 18A are tilted (azimuth angle) is 30 degrees or more, the maximum transmittance is less than 22%, which is not suitable.
 〔好ましい範囲〕
 図25は、第6実施形態における液晶分子18Aの倒れる方向の好ましい範囲を説明する図である。全ての液晶分子を同じ方向に倒すシングルドメインによるVA方式の調光フィルム10では、液晶分子18Aの倒れる方向(方位角)は、上述のように45度以上の90度以下が好ましい(図中斜線で示す)。なお、液晶分子を前方斜め45°方向に倒す場合、偏光板の利用率から考えると、最も効率がよい。
[Preferred range]
FIG. 25 is a view for explaining a preferable range in the direction in which the liquid crystal molecules 18A are tilted in the sixth embodiment. In the VA-type light control film 10 by a single domain that tilts all liquid crystal molecules in the same direction, the tilt direction (azimuth angle) of the liquid crystal molecules 18A is preferably 45 degrees or more and 90 degrees or less (in the figure, diagonal lines). ). In addition, when tilting the liquid crystal molecules in the forward oblique 45 ° direction, it is most efficient in view of the utilization rate of the polarizing plate.
(1)以上、本実施形態によると、VA方式による調光フィルム10に関して、始めに予備電圧を印加することにより、短時間で透過率を変化させること(応答速度の短縮化)ができる。 (1) As described above, according to the present embodiment, with respect to the light control film 10 based on the VA method, the transmittance can be changed in a short time (response speed is shortened) by first applying a preliminary voltage.
(2)また、調光フィルム10の応答速度が短縮化されるので、液晶分子18Aの応答時間のばらつきを低減することができ、これにより車両等での使用時における透過率の不均一化を低減することができる。 (2) Moreover, since the response speed of the light control film 10 is shortened, the dispersion | variation in the response time of the liquid crystal molecule 18A can be reduced, thereby making the transmittance non-uniform when used in a vehicle or the like. Can be reduced.
(3)本実施形態のシングルドメインによるVA方式の調光フィルム10において、液晶分子18Aの倒れる方向(方位角)を、45度以上の90度以下とすることにより、2.5Vの予備電圧印加時における遮光漏れを小さくすることができ、且つ、最高透過率の低減も許容範囲に収めることができる。さらに、液晶分子の倒れる方向を前方斜め45°にした場合、偏光板の利用率がよい。 (3) In the VA type light control film 10 by the single domain of this embodiment, the liquid crystal molecules 18A are tilted in a direction (azimuth angle) of 45 degrees or more and 90 degrees or less, thereby applying a preliminary voltage of 2.5 V. The light leakage at the time can be reduced, and the maximum transmittance can be reduced within an allowable range. Furthermore, when the direction in which the liquid crystal molecules are tilted is 45 ° obliquely forward, the utilization rate of the polarizing plate is good.
 〔第7実施形態〕
 次に、本発明の第7実施形態について説明する。第7実施形態は、液晶層18が2つの領域に分離されており、それぞれの液晶層18の液晶分子18Aが垂直から水平方向へと行き来する際に傾く方向が異なる2ドメインの形態である。他の構成については第6実施形態と同様であるので、同様な構成の説明は省略するとともに、同一の構成は同一の符号で説明する。
[Seventh Embodiment]
Next, a seventh embodiment of the present invention will be described. The seventh embodiment is a two-domain configuration in which the liquid crystal layer 18 is separated into two regions, and the liquid crystal molecules 18A of the respective liquid crystal layers 18 are inclined in different directions when moving from vertical to horizontal. Since the other configuration is the same as that of the sixth embodiment, the description of the same configuration is omitted, and the same configuration is described with the same reference numeral.
 第7実施形態において液晶分子18Aの倒れる方向は、全て同じではなく、2方向に倒れる。図26は第7実施形態において液晶分子18Aの倒れる方向を説明する図である。第1の領域の液晶分子18A1が倒れる方向を第1の方向、第2の領域の液晶分子18A2が倒れる方向を第2の方向としたとき、第1の方向と第2の方向との間の角度は90度である。
 図示するように、第1の方向と第2の方向との間の挟角の中央を通る方向を、液晶分子18Aが倒れる方向(方位角)とする。すなわち、第1の方向と第2の方向とは、方向φから45度にある。
In the seventh embodiment, the directions in which the liquid crystal molecules 18A are tilted are not all the same, but are tilted in two directions. FIG. 26 is a diagram illustrating the direction in which the liquid crystal molecules 18A are tilted in the seventh embodiment. When the direction in which the liquid crystal molecules 18A1 in the first region are tilted is the first direction, and the direction in which the liquid crystal molecules 18A2 in the second region is tilted is the second direction, it is between the first direction and the second direction. The angle is 90 degrees.
As shown in the figure, the direction passing through the center of the included angle between the first direction and the second direction is the direction (azimuth angle) in which the liquid crystal molecules 18A are tilted. That is, the first direction and the second direction are at 45 degrees from the direction φ.
 図27は、第7実施形態の調光フィルム10において、液晶分子18Aの倒れる方向が異なる場合の透過率の変化を示す図である。 FIG. 27 is a diagram showing a change in transmittance when the tilting direction of the liquid crystal molecules 18A is different in the light control film 10 of the seventh embodiment.
 〔予備電圧印加時〕
 第6実施形態と同様に、予備電圧として約2.5Vの電圧を透明電極11,16間に印加したときに、透過率が3%程度以下であれは、搭乗者は、0Vにおける完全な遮光状態から、それほど遮光状態が変化したことを感じず、光漏れはほとんど生じていないと感じている為、許容範囲とする。なお、この場合も、透過率1%程度以下とすると、遮光状態の変化はほとんど感じられない為、より好ましい。
 液晶分子18Aの倒れる方向が0度~90度の場合、透過率が3%以下である。
 これに対して液晶分子18Aの倒れる方向(方位角)が120度以上の場合、透過率は3%より大きくなるので、不適である。
[When preliminary voltage is applied]
Similar to the sixth embodiment, when a voltage of about 2.5 V is applied between the transparent electrodes 11 and 16 as a preliminary voltage, if the transmittance is about 3% or less, the occupant can completely shield light at 0 V. From the state, since it does not feel that the light shielding state has changed so much and feels that almost no light leakage has occurred, it is set as an allowable range. In this case as well, it is more preferable to set the transmittance to about 1% or less because almost no change in the light shielding state is felt.
When the direction in which the liquid crystal molecules 18A are tilted is 0 to 90 degrees, the transmittance is 3% or less.
On the other hand, when the direction in which the liquid crystal molecules 18A are tilted (azimuth angle) is 120 degrees or more, the transmittance is higher than 3%, which is not suitable.
 〔駆動電圧印加時〕
 第6実施形態と同様に、22%以上であれば、搭乗者は透過率の上昇を十分に感じることができる。このため、22%以上を許容範囲とする。
 液晶分子18Aの倒れる方向(方位角)が0度、30度、90度以上の場合、透過率が22%以上である。
 これに対して液晶分子18Aの倒れる方向(方位角)が45度と60度の場合、最大透過率は22%より小さくなるので、不適である。
[When driving voltage is applied]
Similarly to the sixth embodiment, if it is 22% or more, the passenger can sufficiently feel the increase in transmittance. Therefore, the allowable range is 22% or more.
When the direction in which the liquid crystal molecules 18A are tilted (azimuth angle) is 0 degree, 30 degrees, 90 degrees or more, the transmittance is 22% or more.
On the other hand, when the directions (azimuth angles) of the liquid crystal molecules 18A are 45 degrees and 60 degrees, the maximum transmittance is less than 22%, which is not suitable.
 〔好ましい範囲〕
 図28は、第7実施形態における液晶分子18Aの倒れる方向の好ましい範囲を説明する図である。図示するように、互いの間が90度の2ドメインによるVA方式の調光フィルム10では、液晶分子18Aの倒れる方向は、上述のように0度以上30度以下と、90度程度が好ましい。
[Preferred range]
FIG. 28 is a view for explaining a preferable range of the liquid crystal molecules 18A in the falling direction in the seventh embodiment. As shown in the drawing, in the VA mode light control film 10 having two domains of 90 degrees between each other, the direction in which the liquid crystal molecules 18A are tilted is preferably about 0 to 30 degrees as described above.
(1)以上、本実施形態においても、第6実施形態の効果(1)、(2)と同様の効果を有する。 (1) As described above, this embodiment also has the same effects as the effects (1) and (2) of the sixth embodiment.
(2)また、本実施形態の、90度の間隔の2ドメインによるVA方式の調光フィルム10において、液晶分子18Aの倒れる方向(方位角)を、0度から30度、90度と、することにより、2.5Vの予備電圧印加時における遮光漏れを小さくすることができるとともに、最高透過率の低減も許容範囲に収めることができる。 (2) Further, in the VA mode light control film 10 having two domains at intervals of 90 degrees according to the present embodiment, the direction (azimuth angle) in which the liquid crystal molecules 18A are tilted is set to 0 degrees to 30 degrees and 90 degrees. As a result, it is possible to reduce the light-shielding leakage at the time of applying the preliminary voltage of 2.5 V, and to reduce the maximum transmittance within an allowable range.
 〔第8実施形態〕
 次に、本発明の第8実施形態について説明する。
 第8実施形態は、液晶層18が2つの領域に分離されており、それぞれの液晶層18の液晶分子18Aが垂直から水平方向へと行き来する際に傾く方向異なる2ドメインの形態である。
 他の構成については第6実施形態と同様であるので、同様な構成の説明は省略する。
[Eighth Embodiment]
Next, an eighth embodiment of the present invention will be described.
In the eighth embodiment, the liquid crystal layer 18 is divided into two regions, and the liquid crystal molecules 18A of the respective liquid crystal layers 18 have two domains that are inclined in different directions when moving from the vertical direction to the horizontal direction.
Since the other configuration is the same as that of the sixth embodiment, description of the same configuration is omitted.
 第8実施形態において液晶分子18Aの倒れる方向は、全て同じでなく、2方向に倒れる。図29は第8実施形態において液晶分子18Aの倒れる方向を説明する図である。第1の領域の液晶分子18A3が倒れる方向を第1の方向、第2の領域の液晶分子18A4が倒れる方向を第2の方向としたとき、第1の方向と第2の方向との間の角度は180度である。図示するように、第1の方向を、液晶分子18Aが倒れる方向とする。 In the eighth embodiment, the directions in which the liquid crystal molecules 18A are tilted are not all the same, but are tilted in two directions. FIG. 29 is a diagram illustrating the direction in which the liquid crystal molecules 18A are tilted in the eighth embodiment. When the direction in which the liquid crystal molecules 18A3 in the first region are tilted is the first direction, and the direction in which the liquid crystal molecules 18A4 in the second region is tilted is the second direction, it is between the first direction and the second direction. The angle is 180 degrees. As illustrated, the first direction is a direction in which the liquid crystal molecules 18A are tilted.
 図30は、第8実施形態の調光フィルム10において、液晶分子18Aの倒れる方向(方位角)が異なる場合の透過率の変化を示す図である。 FIG. 30 is a diagram showing a change in transmittance when the direction (azimuth angle) of the liquid crystal molecules 18A is different in the light control film 10 of the eighth embodiment.
 〔予備電圧印加時〕
 第1,第7実施形態と同様に、予備電圧として約2.5Vの電圧を透明電極11,16間に印加したときに、透過率が3%程度以下であれは、搭乗者は、0Vにおける完全な遮光状態から、それほど遮光状態が変化したことを感じず、光漏れはほとんど生じていないと感じている為、許容範囲とする。なお、この場合も、透過率1%程度以下とすると、遮光状態の変化はほとんど感じられない為、より好ましい。
 液晶分子18Aの倒れる方向(方位角)が45度~135度の場合、透過率が3%以下である。
 これに対して液晶分子18Aの倒れる方向(方位角)が0度から30度より小さい場合、150度より大きい場合、透過率は3%より大きくなるので、不適である。
[When preliminary voltage is applied]
As in the first and seventh embodiments, when a voltage of about 2.5 V is applied between the transparent electrodes 11 and 16 as a reserve voltage, if the transmittance is about 3% or less, Since it does not feel that the light-shielding state has changed so much from the complete light-shielding state and feels that almost no light leakage has occurred, it is set as an allowable range. In this case as well, it is more preferable to set the transmittance to about 1% or less because almost no change in the light shielding state is felt.
When the direction in which the liquid crystal molecules 18A are tilted (azimuth angle) is 45 degrees to 135 degrees, the transmittance is 3% or less.
On the other hand, when the tilting direction (azimuth angle) of the liquid crystal molecules 18A is smaller than 0 degree to 30 degrees or larger than 150 degrees, the transmittance is larger than 3%, which is not suitable.
 〔駆動電圧印加時〕
 最大透過率は.175以上であれば、搭乗者は透過率の上昇を十分に感じることができる。このため。22%以上を許容範囲とする。
 液晶分子18Aの倒れる方向(方位角)が45度~135度の場合、透過率が22%以上である。
 これに対して液晶分子18Aの倒れる方向(方位角)が0度から30度より小さい場合、150度より大きい場合、透過率は22%より小さくなるので、不適である。
[When driving voltage is applied]
The maximum transmittance is. If it is 175 or more, the passenger can fully feel the increase in transmittance. For this reason. The allowable range is 22% or more.
When the direction in which the liquid crystal molecules 18A are tilted (azimuth angle) is 45 degrees to 135 degrees, the transmittance is 22% or more.
On the other hand, when the tilt direction (azimuth angle) of the liquid crystal molecules 18A is smaller than 0 degree to 30 degrees or larger than 150 degrees, the transmittance is less than 22%, which is not suitable.
 〔好ましい範囲〕
 図31は、第8実施形態における液晶分子18Aの倒れる方向の好ましい範囲を説明する図である。図示するように、互いの間が180度の2ドメインによるVA方式の調光フィルム10では、液晶分子18Aの倒れる方向は、上述のように45度以上135度以下が好ましい。なお、液晶分子を前方斜め45°方向に倒す場合、偏光板の利用率から考えると、最も効率がよい。
[Preferred range]
FIG. 31 is a diagram for explaining a preferable range of the liquid crystal molecules 18A in the falling direction in the eighth embodiment. As shown in the drawing, in the VA mode light control film 10 having two domains of 180 degrees between each other, the direction in which the liquid crystal molecules 18A are tilted is preferably 45 degrees or more and 135 degrees or less as described above. In addition, when tilting the liquid crystal molecules in the forward oblique 45 ° direction, it is most efficient in view of the utilization rate of the polarizing plate.
(1)以上、本実施形態においても、第6実施形態の効果(1)、(2)と同様の効果を有する。 (1) As described above, this embodiment also has the same effects as the effects (1) and (2) of the sixth embodiment.
(2)また、本実施形態の、180度の間隔の2ドメインによるVA方式の調光フィルム10において、液晶分子18Aの倒れる方向(方位角)を、45度以上の135度以下することにより、2.5Vの予備電圧印加時における遮光漏れを小さくすることができるとともに、最高透過率の低減も許容範囲に収めることができる。 (2) Further, in the VA mode light control film 10 having two domains with an interval of 180 degrees of the present embodiment, the direction in which the liquid crystal molecules 18A tilt (azimuth angle) is 45 degrees or more and 135 degrees or less, In addition to reducing light shielding leakage when applying a 2.5 V preliminary voltage, the maximum transmittance can also be reduced within an allowable range.
〔他の実施形態〕
 以上、本発明の実施に好適な具体的な構成を詳述したが、本発明は、本発明の趣旨を逸脱しない範囲で、上述の実施形態を種々に組合せたり、さらには変更することができる。
[Other Embodiments]
The specific configuration suitable for the implementation of the present invention has been described in detail above. However, the present invention can be variously combined and further modified without departing from the spirit of the present invention. .
 1、31、200 調光システム
 2D、2U 操作子
 3、33 調光装置
 4、34 コントローラ
 5、35 駆動電源生成部
 10 調光フィルム
 12、13 直線偏光板
 12A、13A 位相差フィルム
 14 液晶セル
 15D 下側積層体
 15U 上側積層体
 16、25 基材
 18 液晶層
 18A 液晶分子
 21、26 透明電極
 21 調光システム
 22 スペーサ
 23、27 配向層
 29 シール材
 37 スイッチ回路
 130  車両
 132  サンルーフ
 140  制御部
DESCRIPTION OF SYMBOLS 1, 31, 200 Light control system 2D, 2U Operator 3, 33 Light control device 4, 34 Controller 5, 35 Driving power generation part 10 Light control film 12, 13 Linearly polarizing plate 12A, 13A Phase difference film 14 Liquid crystal cell 15D Lower laminated body 15U Upper laminated body 16, 25 Base material 18 Liquid crystal layer 18A Liquid crystal molecule 21, 26 Transparent electrode 21 Dimming system 22 Spacer 23, 27 Alignment layer 29 Sealing material 37 Switch circuit 130 Vehicle 132 Sunroof 140 Controller

Claims (20)

  1.  直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムと、
     前記調光フィルムに矩形波信号を出力する駆動電源生成部を有する調光装置とを備え、
     前記調光装置は、
     操作子の操作に応動して前記矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
     前記矩形波信号の振幅を増大させる際には、前記矩形波信号の振幅を徐々に増大させる
     調光システム。
    A light control film for controlling the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched by the linear polarizing plates by the VA method;
    A light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film;
    The light control device is:
    By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied,
    A dimming system that gradually increases the amplitude of the rectangular wave signal when increasing the amplitude of the rectangular wave signal.
  2.  前記矩形波信号の振幅を徐々に増大させる時間は、3秒以下とする
     請求項1に記載の調光システム。
    The light control system according to claim 1, wherein a time for gradually increasing the amplitude of the rectangular wave signal is 3 seconds or less.
  3.  前記調光装置は、
     前記矩形波信号の複数周期で振幅を順次増大させることにより、前記矩形波信号の振幅を徐々に増大させる
     請求項1または2に記載の調光システム。
    The light control device is:
    The dimming system according to claim 1 or 2, wherein the amplitude of the rectangular wave signal is gradually increased by sequentially increasing the amplitude in a plurality of cycles of the rectangular wave signal.
  4.  前記調光装置は、
     時定数回路により前記矩形波信号の各周期でそれぞれ振幅を徐々に増大させることにより、前記矩形波信号の振幅を徐々に増大させる
     請求項1または2に記載の調光システム。
    The light control device is:
    3. The dimming system according to claim 1, wherein the amplitude of the rectangular wave signal is gradually increased by gradually increasing the amplitude in each period of the rectangular wave signal by a time constant circuit.
  5.  前記調光装置は、
     抵抗を介して前記矩形波信号を前記調光フィルムに出射し、
     前記時定数回路が、
     少なくとも前記抵抗と前記調光フィルムの静電容量とにより形成される
     請求項4に記載の調光システム。
    The light control device is:
    The rectangular wave signal is emitted to the light control film through a resistor,
    The time constant circuit is
    The light control system according to claim 4, wherein the light control system is formed by at least the resistor and a capacitance of the light control film.
  6.  直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムと、
     前記調光フィルムに矩形波信号を出力する駆動電源生成部を有する調光装置とを備え、
     前記調光装置は、
     操作子の操作に応動して前記矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
     前記調光フィルムは、
     透明フィルム材による基材に透明電極、配向層を配置してなる第1の積層体と、
     透明フィルム材による基材に透明電極、配向層を配置してなる第2の積層体と、
     前記第1及び第2の積層体により挟持された液晶層とを備え、
     前記第1及び第2の積層体の透明電極に前記矩形波信号を供給して透過光を制御し、
     少なくとも前記矩形波信号の振幅の増大時、前記第1及び第2の積層体の透明電極に印加する前記矩形波信号の振幅を徐々に増大させる時定数回路をさらに備える
     調光システム。
    A light control film for controlling the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched by the linear polarizing plates by the VA method;
    A light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film;
    The light control device is:
    By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied,
    The light control film is
    A first laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
    A second laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
    A liquid crystal layer sandwiched between the first and second laminates,
    Supplying the rectangular wave signal to the transparent electrodes of the first and second laminates to control the transmitted light;
    A dimming system further comprising a time constant circuit that gradually increases the amplitude of the rectangular wave signal applied to the transparent electrodes of the first and second laminates at least when the amplitude of the rectangular wave signal is increased.
  7.  前記時定数回路が、
     少なくとも抵抗と、前記第1及び第2の積層体の透明電極間の静電容量とにより形成された
     請求項6に記載の調光システム。
    The time constant circuit is
    The light control system according to claim 6, wherein the light control system is formed by at least a resistor and a capacitance between the transparent electrodes of the first and second stacked bodies.
  8.  調光フィルムに矩形波信号を出力する駆動電源生成部を有する調光装置であって、
     前記調光フィルムは、
     直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御し、
     前記調光装置は、
     操作子の操作に応動して前記矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
     前記矩形波信号の振幅を増大させる際には、前記矩形波信号の振幅を徐々に増大させる
     調光装置。
    A light control device having a drive power generation unit that outputs a rectangular wave signal to a light control film,
    The light control film is
    Control the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched by the linear polarizing plate by the VA method,
    The light control device is:
    By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied,
    A dimming device that gradually increases the amplitude of the rectangular wave signal when increasing the amplitude of the rectangular wave signal.
  9.  直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムにおいて、
     透明フィルム材による基材に透明電極、配向層を配置してなる第1の積層体と、
     透明フィルム材による基材に透明電極、配向層を配置してなる第2の積層体と、
     前記第1及び第2の積層体により挟持された液晶層とを備え、
     前記第1及び第2の積層体の透明電極に印加される矩形波信号に応じて透過光を制御し、
     前記矩形波信号の振幅の増大時、前記第1及び第2の積層体の透明電極に印加する前記矩形波信号の振幅を時定数回路により徐々に増大させる
     調光フィルム。
    In the light control film for controlling the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched by the linear polarizing plates by the VA method,
    A first laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
    A second laminate in which a transparent electrode and an alignment layer are arranged on a substrate made of a transparent film material;
    A liquid crystal layer sandwiched between the first and second laminates,
    Controlling transmitted light according to a rectangular wave signal applied to the transparent electrodes of the first and second laminates,
    The light control film which increases gradually the amplitude of the said rectangular wave signal applied to the transparent electrode of the said 1st and 2nd laminated body by a time constant circuit when the amplitude of the said rectangular wave signal increases.
  10.  直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムと、
     前記調光フィルムに矩形波信号を出力する駆動電源生成部を有する調光装置とを備え、
     前記調光装置は、
     操作子の操作に応動して前記矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
     前記矩形波信号の振幅を増大させる際には、事前に、一定期間、一定の極性の一定値の電圧を印加する
     調光システム。
    A light control film for controlling the transmitted light by aligning the liquid crystal of the liquid crystal cell sandwiched by the linear polarizing plates by the VA method;
    A light control device having a drive power generation unit that outputs a rectangular wave signal to the light control film;
    The light control device is:
    By varying the amplitude of the rectangular wave signal in response to the operation of the operation element, the transmittance of the light control film is varied,
    A dimming system that applies a voltage having a certain value with a certain polarity in advance for a certain period of time before increasing the amplitude of the rectangular wave signal.
  11.  前記一定期間は、5ミリ秒以上である、
     請求項10に記載の調光システム。
    The predetermined period is 5 milliseconds or more;
    The light control system according to claim 10.
  12.  前記一定期間は、100ミリ秒以下である、
     請求項10に記載の調光システム。
    The predetermined period is 100 milliseconds or less.
    The light control system according to claim 10.
  13.  直線偏光板により挟持された液晶セルの液晶をVA方式により配向させて透過光を制御する調光フィルムの駆動方法において、
     操作子の操作に応動して、前記調光フィルムに出力する矩形波信号による矩形波信号の振幅を可変することにより、前記調光フィルムの透過率を可変し、
     前記矩形波信号の振幅を増大させる際には、前記矩形波信号の振幅を徐々に増大させる
     調光フィルムの駆動方法。
    In the drive method of the light control film which controls the transmitted light by orienting the liquid crystal of the liquid crystal cell sandwiched between the linear polarizing plates by the VA method,
    In response to the operation of the operation element, by changing the amplitude of the rectangular wave signal by the rectangular wave signal output to the light control film, the transmittance of the light control film is changed,
    A method for driving a light control film, wherein the amplitude of the rectangular wave signal is gradually increased when increasing the amplitude of the rectangular wave signal.
  14.  液晶分子が配置された液晶層、及び、互いに対向し、前記液晶層を挟むようにして配置された2枚の面状の電極を有する調光フィルムと、
     前記電極間に駆動電圧を印加するとともに、前記駆動電圧の値によって調光フィルムの透過率を制御する制御部と、を備え、
     前記制御部は、
     前記駆動電圧の印加に先立って前記駆動電圧より小さい予備電圧を前記電極間に印加する、
     調光システム。
    A light control film having a liquid crystal layer in which liquid crystal molecules are disposed, and two planar electrodes disposed so as to face each other and sandwich the liquid crystal layer;
    A control unit that applies a driving voltage between the electrodes and controls the transmittance of the light control film according to the value of the driving voltage;
    The controller is
    Prior to application of the drive voltage, a preliminary voltage smaller than the drive voltage is applied between the electrodes,
    Dimming system.
  15.  前記予備電圧は、前記液晶分子を前記調光フィルムの表面の法線から1度以上5度以下傾ける電圧である、
     請求項14に記載の調光システム。
    The preliminary voltage is a voltage for tilting the liquid crystal molecules from 1 degree to 5 degrees from the normal line of the surface of the light control film.
    The light control system of Claim 14.
  16.  前記調光フィルムは、車両のサンルーフに配置され、
     前記車両の進行方向を0°として調光フィルムを下から見たときの、記液晶分子の倒れる方位角が、45度以上90度以下である、
     請求項14又は15に記載の調光システム。
    The light control film is disposed on a sunroof of a vehicle,
    The azimuth angle at which the liquid crystal molecules fall when the light control film is viewed from below with the traveling direction of the vehicle being 0 ° is 45 ° or more and 90 ° or less,
    The light control system of Claim 14 or 15.
  17.  前記調光フィルムは、車両のサンルーフに配置され、
     前記液晶層は、前記駆動電圧によって前記液晶分子が、互いに90度異なる2方向に倒れる第1の領域と第2の領域とを備え、
     前記車両の進行方向を0°とし、調光フィルムを下から見たときの、前記第1の領域に配置された前記液晶分子の倒れる方位角が、0度以上30度以下、及び90度である、
     請求項14又は15に記載の調光システム。
    The light control film is disposed on a sunroof of a vehicle,
    The liquid crystal layer includes a first region and a second region in which the liquid crystal molecules are tilted in two directions different from each other by 90 degrees by the driving voltage,
    When the traveling direction of the vehicle is 0 °, and the light control film is viewed from below, the azimuth angles of the liquid crystal molecules disposed in the first region are from 0 degrees to 30 degrees and 90 degrees. is there,
    The light control system of Claim 14 or 15.
  18.  前記調光フィルムは、車両のサンルーフに保持され、
     前記液晶層は、前記駆動電圧によって前記液晶分子が、互いに180度異なる2方向に倒れる第1の領域と第2の領域とを備え、
     前記車両の進行方向を0°とし、調光フィルムを下から見たときの、前記第1の領域に配置された前記液晶分子の倒れる方位角が、
    45度以下130度以下である
     請求項14又は15に記載の調光システム。
    The light control film is held on a sunroof of a vehicle,
    The liquid crystal layer includes a first region and a second region in which the liquid crystal molecules are tilted in two directions different from each other by 180 degrees by the driving voltage,
    When the traveling direction of the vehicle is 0 ° and the light control film is viewed from below, the azimuth angle of the liquid crystal molecules disposed in the first region is tilted,
    The light control system according to claim 14 or 15, wherein the light control system is 45 degrees or less and 130 degrees or less.
  19.  液晶分子が配置された液晶層、及び、互いに対向し、前記液晶層を挟むようにして配置された2枚の面状の電極を有し、サンルーフに取り付けられた調光フィルムと、
     前記電極間に印加する駆動電圧の値により、前記調光フィルムの透過率を制御する制御部と、を備え、
     前記制御部は、前記駆動電圧の印加に先立って前記駆動電圧より小さい予備電圧を前記電極間に印加する車両。
    A light control film having a liquid crystal layer in which liquid crystal molecules are disposed, and two planar electrodes disposed to face each other and sandwich the liquid crystal layer, and attached to a sunroof;
    A control unit for controlling the transmittance of the light control film according to the value of the drive voltage applied between the electrodes,
    The vehicle, wherein the control unit applies a reserve voltage smaller than the drive voltage between the electrodes prior to application of the drive voltage.
  20.  液晶分子が配置された液晶層、及び、互いに対向し、前記液晶層を挟むようにして配置された間2枚の面状の電極を有する調光フィルムにおける、前記電極間に印加する駆動電圧の値により、前記調光フィルムの透過率を制御する調光フィルムの駆動方法であって、
     前記駆動電圧の印加に先立って前記駆動電圧より小さい予備電圧を前記電極間に印加する、
     調光フィルムの駆動方法。
    In a light control film having a liquid crystal layer in which liquid crystal molecules are disposed and two planar electrodes disposed so as to face each other and sandwich the liquid crystal layer, the value of the drive voltage applied between the electrodes A drive method of the light control film for controlling the transmittance of the light control film,
    Prior to application of the drive voltage, a preliminary voltage smaller than the drive voltage is applied between the electrodes,
    Driving method of light control film.
PCT/JP2017/012884 2016-03-31 2017-03-29 Light control system, light control device, light control film, method for driving light control film, and vehicle WO2017170688A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016073053A JP6135793B1 (en) 2016-03-31 2016-03-31 Light control system, light control device, light control film, and light control film driving method
JP2016-073053 2016-03-31
JP2016176523A JP6825274B2 (en) 2016-09-09 2016-09-09 How to drive the dimming system, vehicle, and dimming film
JP2016-176523 2016-09-09

Publications (1)

Publication Number Publication Date
WO2017170688A1 true WO2017170688A1 (en) 2017-10-05

Family

ID=59964538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012884 WO2017170688A1 (en) 2016-03-31 2017-03-29 Light control system, light control device, light control film, method for driving light control film, and vehicle

Country Status (1)

Country Link
WO (1) WO2017170688A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320185A (en) * 2018-03-30 2019-10-11 天马日本株式会社 The control method of polarization analysis device and polarization analysis device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160823A (en) * 1992-11-18 1994-06-07 Ricoh Co Ltd Light control element and light control system
JP2001142047A (en) * 1999-11-12 2001-05-25 Sony Corp Light control device, image pickup device and their driving method
JP2004093873A (en) * 2002-08-30 2004-03-25 Asahi Glass Co Ltd Light control window
JP2016126289A (en) * 2015-01-08 2016-07-11 大日本印刷株式会社 Liquid crystal cell, light control material, and laminated glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160823A (en) * 1992-11-18 1994-06-07 Ricoh Co Ltd Light control element and light control system
JP2001142047A (en) * 1999-11-12 2001-05-25 Sony Corp Light control device, image pickup device and their driving method
JP2004093873A (en) * 2002-08-30 2004-03-25 Asahi Glass Co Ltd Light control window
JP2016126289A (en) * 2015-01-08 2016-07-11 大日本印刷株式会社 Liquid crystal cell, light control material, and laminated glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110320185A (en) * 2018-03-30 2019-10-11 天马日本株式会社 The control method of polarization analysis device and polarization analysis device
JP2019178891A (en) * 2018-03-30 2019-10-17 Tianma Japan株式会社 Polarization analyzer and method for controlling polarization analyzer
JP7174528B2 (en) 2018-03-30 2022-11-17 Tianma Japan株式会社 Polarization analyzer and control method for polarization analyzer
CN110320185B (en) * 2018-03-30 2024-02-09 天马日本株式会社 Polarization analysis device and control method for polarization analysis device

Similar Documents

Publication Publication Date Title
CN110662996B (en) Display device
US7522242B2 (en) Liquid crystal display device and method of controlling viewing angle thereof
US9618779B2 (en) LCD viewing angle control method, LCD panel and LCD
CN105739195B (en) Liquid crystal display device and its driving method
US20210325737A1 (en) Display panel, display apparatus and anti-peeping method
JP2022043240A (en) Photochromic system and method for driving photochromic film
JP6135793B1 (en) Light control system, light control device, light control film, and light control film driving method
CN110618547B (en) Liquid crystal display device and driving method thereof
CN1702517A (en) Display
US7808604B2 (en) Liquid crystal display device of in-plane switching mode, method of fabricating the same, and method of driving the same
JP7467220B2 (en) Display system and vehicle
WO2018021571A1 (en) Light control film, light control member, vehicle, and electricity supply method for light control film
WO2017170688A1 (en) Light control system, light control device, light control film, method for driving light control film, and vehicle
US20200257143A1 (en) Liquid crystal display device
US20150116374A1 (en) Display apparatus
JP6119908B1 (en) Light control film, light control film laminate and vehicle
JPH0643452A (en) Liquid crystal display device
JP6825274B2 (en) How to drive the dimming system, vehicle, and dimming film
JP7124897B2 (en) Light control system, vehicle, and method for driving light control film
JP2018049260A (en) vehicle
JP6206539B1 (en) Dimmer film mounting method and vehicle
JP5482451B2 (en) Liquid crystal display
JP2017090847A (en) Light control system, vehicle, method of driving light control film
JP2010066717A (en) Liquid crystal device
US20130335659A1 (en) In-plane-switching mode liquid crystal panel, manufacturing process and display device thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775222

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775222

Country of ref document: EP

Kind code of ref document: A1