WO2017170646A1 - Method for forming film on metal surface - Google Patents

Method for forming film on metal surface Download PDF

Info

Publication number
WO2017170646A1
WO2017170646A1 PCT/JP2017/012822 JP2017012822W WO2017170646A1 WO 2017170646 A1 WO2017170646 A1 WO 2017170646A1 JP 2017012822 W JP2017012822 W JP 2017012822W WO 2017170646 A1 WO2017170646 A1 WO 2017170646A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
forming
metal surface
coating
Prior art date
Application number
PCT/JP2017/012822
Other languages
French (fr)
Japanese (ja)
Inventor
修平 三浦
千葉 裕
昌弘 粕谷
鈴木 一孝
真希 村松
Original Assignee
株式会社東亜電化
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東亜電化 filed Critical 株式会社東亜電化
Priority to KR1020187030110A priority Critical patent/KR102032078B1/en
Priority to CN201780020283.8A priority patent/CN108884554B/en
Publication of WO2017170646A1 publication Critical patent/WO2017170646A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present invention relates to a method for forming a coating on a metal surface, and in particular, by combining a vacuum deposition method, which is a dry method, to form a thin film having a two-layer structure of a modified resin having a modified resin surface and a resin on the metal surface.
  • the present invention also relates to a method for forming a metal surface film having excellent releasability and durability.
  • a film is formed on the mold to improve the releasability.
  • examples include TiC, TiCN, DLC, fluorine-based polymer polymer films, nickel fluoride films, PTFE-containing Ni plating, and self-lubricating Cr plating.
  • these coatings have a thickness of several ⁇ m or more, which is not preferable for producing a highly accurate optical product.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-140626
  • Patent Document 2 Japanese Patent Publication No. 2002-542392
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-9340
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-14584
  • a triazine thiol derivative is attached to a metal surface by, for example, a vacuum deposition method, and then irradiation with radiation such as heat or ultraviolet rays is performed, and a film such as a fluororesin is formed on the deposited film of the triazine thiol derivative.
  • the object of the present invention has been made in view of the above-mentioned problems, and can form a uniform film of a polymer thin film having excellent durability on a metal surface, has high releasability, and functionality of the thin film surface.
  • An object of the present invention is to provide a method for forming a film on a metal surface that can be applied to a wide range of applications by allowing the thin film to withstand long-term use while maintaining the above.
  • the present invention has the following technical features.
  • the resin surface is irradiated with a quantum beam, and then the triazine thiol derivative represented by the following chemical formula 1 or chemical formula 2 is more than 5 g / l and not more than 13 g / l
  • the triazine thiol derivative represented by the following chemical formula 1 or chemical formula 2 is more than 5 g / l and not more than 13 g / l
  • R1 is alkyne (—CH ⁇ CH—) or alkene (—C ⁇ C—)
  • R2 is —C m H 2m + 1 (m is an integer from 1 to 18), —C m H 2m ⁇ 1 (M is an integer from 1 to 18) or CH 2 ⁇ CH (CH 2 ) m COOCH 2 CH 2 — (m is an integer from 1 to 10), and M1 or M2 represents H or an alkali metal.
  • M1, M2, and M3 represent H or an alkali metal.
  • the resin is a fluorine-containing organic compound, and the fluorine-containing organic compound contains an amino group (—NH 2 ) or an amide group (—CONH 2 ) in the molecule. Alternatively, it has an unsaturated bond.
  • the resin of the resin film formed on the modified resin film is the same as the resin used for decorating with the triazine thiol derivative. It is a resin.
  • the resin and the triazine thiol derivative with which the surface is decorated are such that the triazine thiol derivative exceeds 5 g / l and is 13 g / l or less.
  • the method of forming a coating on a metal surface is characterized in that a ratio of 50 g of resin irradiated with a quantum beam is applied to 140 ml of a solution dissolved at a concentration of 5%.
  • the solution is water or a solution obtained by mixing at least one member selected from the group consisting of cyclohexane, benzene, carbon tetrachloride and diethyl ether in a solvent.
  • a solution in which a triazine thiol derivative is dissolved is set to 10 to 45 ° C., and the resin is immersed in the solution for 8 hours or more.
  • the vacuum deposition is performed by heating a metal substrate in advance.
  • a coating with a modified resin in which the surface of the resin is decorated with a triazine thiol derivative is formed on the metal surface by a dry method, and then a coating with a resin is further formed thereon.
  • a dry method to form a resin laminated film which facilitates the formation of a crosslinked film of the resin film formed on the metal surface, can form a uniform film, has high releasability, and is durable. An excellent film can be formed on the metal surface.
  • a vacuum deposition method is used as a dry method, and the vacuum deposition is combined with a heat treatment for heating the metal forming the coating to obtain a coating with higher durability.
  • the method for forming a coating on a metal surface of the present invention will be described based on the following embodiments, but is not limited thereto.
  • the resin surface is irradiated with a quantum beam, and then the triazine thiol derivative represented by the chemical formula 1 or chemical formula 2 is dissolved at a concentration of more than 5 g / l and not more than 13 g / l.
  • a modified resin in which the surface of the resin is decorated with the triazine thiol derivative is prepared, and the modified resin is deposited on the metal surface by a vacuum deposition method.
  • a metal surface is formed by forming a modified resin film and then forming a resin film on the modified resin film by further forming a resin film by vacuum deposition. This is a method of forming a film on the surface.
  • a thin film of a modified resin is first formed on the metal surface as a first layer.
  • the modified resin is prepared as follows.
  • the resin whose surface is modified is not particularly limited, and any commercially available thermoplastic resin or thermosetting resin can be used. Examples of the thermoplastic resin include carbonization such as polyethylene and polypropylene.
  • Hydrogen resin polyvinyl chloride, polyvinylidene chloride, tetrafluoropolytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • Halogen-containing resins such as fluorine-containing resins such as polymers (PFA) and ethylene-tetrafluoroethylene copolymers (ETFE)
  • polyamide-based resins such as nylon
  • polyether-based resins such as polyacetal, polysulfone, polycarbonate
  • polyethylene Polyester resin such as terephthalate
  • polymer Acrylic acid-based resin is exemplified such as methacrylate.
  • the thermosetting resin include polyimide resin, polyamideimide resin, polyetherimide resin, epoxy resin, melamine resin, silicon resin, and furan resin.
  • the fluorine-containing organic compound has an amino group (—NH 2 ), an amide group (—CONH 2 ), or an unsaturated group in the molecule, and has a molecular weight of 1000 or more.
  • FEP tetrafluoroethylene / hexafluoropolypyrene copolymer
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • the thing of arbitrary forms such as a resin film and resin powder
  • the powder having a fine average diameter smaller than the average diameter is likely to cause aggregation of the powder itself, and it may be difficult to uniformly dissolve the resin powder in the solvent.
  • the resin When the average diameter is larger than the above range, the resin It is preferable to use a powder resin having an average diameter in the above range because the ratio of the modified area of the powder becomes small and it may be difficult to obtain a strong bond strength with the metal at the time of film formation.
  • the resin surface is preferably preliminarily irradiated with a quantum beam to activate the resin surface, whereby the resin surface can be more easily decorated with a triazine thiol derivative.
  • the quantum beam indicates all electromagnetic waves and particle beams in a broad sense, but in the present invention, a quantum beam having an ionizing action on the irradiated resin can be preferably used. Examples of quantum beams include X-rays, ⁇ -rays, short-wavelength ultraviolet rays, fast charged particle beams, fast neutron beams, and other radiation, electron beams, ion beams, and the like.
  • the resin preferably the resin activated by irradiating the resin surface with a quantum beam, is immersed in a solution in which the triazine thiol derivative is dissolved to bond the triazine thiol derivative to the resin surface to decorate the resin surface.
  • a modified resin is obtained.
  • the triazine thiol derivative a triazine thiol derivative represented by the following chemical formula 3 or chemical formula 4 can be used. Utilizing the -SH characteristic of the triazine thiol derivative, a film having good adhesion to a metal is formed.
  • R1 is a substituent containing an unsaturated group such as alkyne (—CH ⁇ CH—) or alkene (—C ⁇ C—).
  • M1 and M2 each represent H or an alkali metal such as Li, Na, K, or Ca.
  • M1, M2, and M3 represent H or an alkali metal such as Li, Na, K, or Ca.
  • the triazine thiol derivative solution examples include water or a solution in which the triazine thiol derivative is dissolved in water using at least one of cyclohexane, benzene, carbon tetrachloride, and diethyl ether as a solvent.
  • the temperature of the solution is 10 to 45 ° C., because the surface of the resin can be uniformly decorated with the triazine thiol derivative.
  • the resin surface is decorated using a solution in which a triazine thiol derivative is dissolved at a concentration of more than 5 g / l and not more than 13 g / l, preferably 6 to 13 g / l.
  • a triazine thiol derivative is dissolved at a concentration of more than 5 g / l and not more than 13 g / l, preferably 6 to 13 g / l.
  • the resin preferably the resin is irradiated with a quantum beam and immersed in the solution, but the triazine thiol derivative contained in the triazine thiol derivative solution sufficiently decorates the surface of the resin immersed in the solution.
  • An arbitrary amount or the like can be set as long as the concentration and amount can be obtained.
  • a resin irradiated with a quantum beam preferably a resin having the above average diameter, is immersed in a ratio of 50 g in 140 ml of a solution in which a triazine thiol derivative is dissolved at a concentration of more than 5 g / l and not more than 13 g / l. It can be illustrated.
  • the immersion treatment is preferably performed for 8 hours or more. This process makes it possible to decorate the resin surface uniformly.
  • the triazine thiol derivative is surely bound to the resin surface in the solution.
  • the resin surface irradiated with the quantum beam emits electrons to become ions, or decomposes to generate radicals.
  • the generated ions and radicals act as reaction initiators.
  • the triazine thiol derivative in the solvent forms a thiyl radical by a reaction initiator on the resin surface, and the thiyl radical causes a double bond cleavage reaction of the allyl group by addition to a disulfide bond or an allyl group on the resin surface. .
  • a polymerized film is formed on the resin surface by causing a coupling with a thiyl radical or an addition reaction of all other molecules to an allyl group.
  • the resin whose surface is decorated with a triazine thiol derivative is dried.
  • the drying method is not particularly limited, and examples thereof include a method of evacuating to about 10 Pa with a vacuum dryer and drying at about 40 ° C. for 4 hours.
  • the resin is a powder
  • the solution is filtered with a filter paper
  • the resin powder and the liquid with a decorated surface are separated, and the resin powder on the filter paper is similarly vacuumed to about 10 Pa with a vacuum dryer. It is also possible to draw and dry at about 40 ° C. for 4 hours. Thereby, the modified resin with which the surface was decorated is obtained.
  • the modified resin thus obtained is fixed on the metal surface in a film, and the fixing method is not particularly limited as long as it is a dry method.
  • the modified resin is deposited by cold spraying or vacuum deposition.
  • the film can be formed on a metal.
  • the metal surfaces can be bonded and then fixed by heat treatment.
  • a powder form for example, by a cold spray method or a vacuum deposition method. It is also possible to fix it by vapor deposition and then heat treatment.
  • the metal is not particularly limited as long as it is a conductive metal, and iron and iron alloys (stainless steel, permalloy, etc.), copper and copper alloys, nickel, gold, silver, cobalt, aluminum, zinc, tin and tin alloys, Mention may be made of titanium or chromium.
  • Metal pre-treatment should be performed to remove foreign substances such as organic matter, but oxides are not a problem as long as the surface conductivity is not significantly reduced. And so on.
  • a known treatment can be applied as long as the treatment can clean the metal surface. For example, a treatment such as immersion in an acid can be exemplified.
  • Examples of the method for forming the modified resin film on the metal that has been pretreated as necessary include a dry method such as a cold spray method and a vacuum deposition method.
  • the modified resin is attached to the metal surface by a vacuum deposition apparatus.
  • the degree of vacuum is generally 1.0 to 1.0 ⁇ 10 ⁇ 6 Pa, preferably 1.0 ⁇ 10 ⁇ 1 to 1.0 ⁇ 10 ⁇ 4 Pa.
  • the temperature of the heater for heating the modified resin cannot be uniquely determined, it is, for example, 200 to 400 ° C., preferably 270 to 360 ° C., but the molecular weight and vacuum degree of the modified resin, the heater temperature, Therefore, the optimum deposition conditions can be determined.
  • the crucible of the evaporation source is heated with a heater to vaporize or sublimate the modified resin.
  • the shutter that covers the object that forms the film is closed, the shutter that covers the evaporation source is opened, and it is confirmed by using a crystal oscillator type film thickness meter or the like that the modified resin is vaporized or sublimated.
  • the evaporation rate is adjusted to a desired value, and when the adjustment is made, the shutter covering the object that forms the film is opened, and the vapor deposition is started. In this way, a predetermined film formation rate can be ensured, and uniform film formation can be achieved.
  • molecules of the modified resin are deposited on a solid surface such as metal by heating evaporation or sublimation in a vacuum.
  • a solid surface such as metal
  • Such vapor deposition may be performed by one or a plurality of times of vapor deposition. In order to improve the adherence to the shape, it is preferable to perform vapor deposition in multiple times while changing the work position and orientation. As the thickness of the modified resin film increases, the durability increases.
  • the vacuum deposition is preferably performed by heating the metal substrate in advance.
  • the bond between the triazine thiol derivative and a resin such as a fluorine-containing organic compound can be further strengthened.
  • the heating temperature depends on the selection of a resin such as a triazine thiol derivative and a fluorine-containing organic compound and the thickness of the coating, but is preferably about 150 to 400 ° C., 230 to 270 ° C., particularly about about 250 ° C.
  • a resin film is separately formed by a dry method such as a vacuum deposition method. In this way, by further forming a second-layer resin film to form a film having a two-layer laminated structure, it is possible to improve durability and obtain excellent release properties.
  • the resin any resin can be used as long as it is the resin used for preparing the modified resin. Even if the resin is the same type as the resin used for the modified resin, a different type of resin can be used. Even if it is, it is not particularly limited, but in particular, forming the second layer resin film using the same type of resin as that used for the modified resin improves the durability and further improves mold release properties. Is desirable because it can be obtained. Particularly preferably, a fluorine-containing organic compound is used.
  • the vacuum deposition method as a dry method for depositing the resin on the modified resin layer film, for example, the above-described vacuum deposition method in which the modified resin is deposited on the metal surface can be applied.
  • a vapor-deposited film of a fluorine-containing organic compound can be easily formed on the modified resin layer film.
  • the resin has the amino group or the like at the terminal, it is considered that the resin interacts with the triazine thiol derivative on the surface of the modified resin, and thus can be suitably used.
  • a compound containing a tertiary fluorocarbon such as FEP has a high mold release effect and can be suitably used.
  • the metal solid is heated to bond the triazine thiol derivative and the fluorine-containing organic compound on the surface of the modified resin.
  • the heating temperature depends on the selection of the materials of the triazine thiol derivative and the fluorine-containing organic compound and the thickness of the film, but is preferably about 150 to 400 ° C., 230 to 270 ° C., particularly about about 250 ° C.
  • the thin film of the resin film having the two-layer structure formed on the metal surface according to the present invention can easily form a crosslinked film of the polymer thin film formed on the metal surface, and the obtained thin film surface While maintaining this functionality, the sustainability of the long-term effect is improved particularly with respect to excellent peeling resistance.
  • the present invention is illustrated by the following examples, comparative examples and test examples, but is not limited thereto.
  • a commercially available nickel substrate manufactured by Niraco Co., Ltd., purity 99% or more
  • the nickel substrate is immersed in hydrochloric acid having a concentration of 10% by mass and a temperature of about 25 ° C. for 60 seconds, and then immersed in a hypophosphorous acid solution having a concentration of 0.1 g / l and a temperature of about 25 ° C. for 5 minutes. Then, the nickel substrate surface was cleaned.
  • an electron beam irradiation apparatus USHIO INC .: min-EB
  • an absorbed dose of 20 kGy is set in the reduced vacuum, and an electron beam obtained at an irradiation distance of 50 mm is applied for 5 minutes. Irradiated.
  • the irradiation dose at this time was about 100 kGy.
  • the electron beam irradiation apparatus has a structure in which an electron beam generator heated by a filament is disposed and sealed in a high vacuum. Electrons generated at the hot cathode were accelerated by a potential difference with the irradiation window (for example, acceleration voltage 60 kV), transmitted through the window, and irradiated with an electron beam onto the resin placed on the table in the irradiation chamber.
  • the resin powder the resin powders were arranged uniformly, and a stainless steel mesh was placed on the powder so that the powder was not scattered by charging by irradiation. After adjusting the irradiation distance to a predetermined height, the irradiation chamber was closed and evacuation was performed.
  • a powder resin of tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP) irradiated with an electron beam is dissolved in a solution in which a triazine thiol compound (DAN) represented by the following chemical formula 5 is dissolved in an aqueous solution (temperature: 23 ° C.). Then, it was immersed for a whole day and night (12 hours) and then dried to obtain a modified resin powder.
  • DAN triazine thiol compound represented by the following chemical formula 5
  • a powder resin film of tetrafluoroethylene / hexafluorinated polypyrene copolymer is further applied to the nickel substrate on which the thin film of the modified resin is formed using the vacuum deposition apparatus of FIG. Then, vapor deposition was carried out on the modified resin layer film, and it laminated
  • FEP tetrafluoroethylene / hexafluorinated polypyrene copolymer
  • Examples 1 and 2 and Comparative Examples 1 and 3 Influence of change in concentration of triazine thiol compound aqueous solution of modified resin film
  • a triazine thiol compound (DAN) shown in the above chemical formula 5 in which 50 g of a powder resin of tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP) irradiated with an electron beam is immersed.
  • the concentration (decorative concentration) of the aqueous solution (140 ml) is 1.0 g / l (Comparative Example 1), 2.5 g / l (Comparative Example 2), 5.0 g / l (Comparative Example 3), 7.5 g.
  • Each modified resin powder was prepared with various changes of / l (Example 1) and 10.0 g / l (Example 2).
  • the modified resin film is used as the first layer (thickness: about 16. 8 nm), and a FEP resin film as a second layer (thickness: about 35.3 nm) thereon, a resin film having a two-layer structure was formed.
  • the two-layer resin film-formed substrate was left for 5 minutes on a hot plate heated to 160 ° C. in an automatic simple molding tester.
  • a thermosetting epoxy resin (NT-600 manufactured by Nitto Denko Corporation) was applied thereon ( ⁇ 13 ⁇ 2 mm size) and heated for 2 minutes to cure the epoxy resin. After 2 minutes, the substrate was lowered from the hot plate and air-cooled.
  • a powder resin film of tetrafluoroethylene / hexafluoropolypyrene copolymer is further formed on the first film of the DAN compound formed on the nickel substrate by the wet electrolysis method as shown in FIG.
  • FEP tetrafluoroethylene / hexafluoropolypyrene copolymer
  • FIG. 8 (2): ⁇ indicates FEP resin the thickness of the first layer made of the DAN compound was about 5 nm
  • the total thickness of the laminated layer was about 33 nm together with the thickness of the second layer made of FEP.
  • Test Example 2 Durability test
  • substrate with which the resin film was obtained in each said Examples 3-7 and Comparative Examples 4-10 it uses an automatic simple molding test machine (Engineering System Co., Ltd. AIMT0101), and an adhesion test by an epoxy resin 4 to 7 show the test results for the number of adhesion tests performed.
  • the epoxy resin used was a thermosetting type (trade name: NT600 manufactured by Nitto Denko Corporation) that does not contain a commercially available release agent.
  • the two-layer resin film-formed substrate was left for 5 minutes on a hot plate heated to 160 ° C. in an automatic simple molding tester.
  • a thermosetting epoxy resin (NT-600 manufactured by Nitto Denko Corporation) was applied thereon ( ⁇ 13 ⁇ 2 mm size) and heated for 2 minutes to cure the epoxy resin. After 2 minutes, the substrate was lowered from the hot plate and air-cooled.
  • the triazine thiol compound solution concentration (decoration concentration) is 7.5 g / l or more, thereby forming a two-layer structure on the metal surface. It can be seen that the durability of the resin film formation is improved (the number of adherends exceeds 500) and the mold release is excellent.
  • the resin coating on the metal surface formed by the method for forming a coating on the metal surface of the present invention has good durability and excellent releasability, so a film for solar cells, a battery electrode film, an optical film, a cell culture film, etc.
  • the present invention can be applied to mass production of molded products having a fine shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention provides a method for forming a film on a metal surface with which it is possible to form on the metal surface a uniform, thin polymer film which has excellent durability and high detaching properties, and which withstands long-term use while retaining the functionality of the surface of the thin film. This method for forming a film on a metal surface is characterized by: irradiating a resin surface with particle beams and then immersing the resin irradiated with particle beams into a solution in which a triazinethiol derivative represented by chemical formula 1 or 2 is dissolved at a concentration of higher than 5 g/l and not higher than 13 g/l, thereby preparing a modified resin having a resin surface decorated with the triazinethiol derivative; and forming a film of the modified resin on a metal surface by vacuum deposition and then forming on the modified resin film a film of the same resin as the resin used for decoration with the triazinethiol derivative by vacuum deposition, thereby providing a resin layer laminate.

Description

金属表面の被膜形成方法Method for forming coating on metal surface
 本発明は、金属表面の被膜形成方法に関し、特に乾式法である真空蒸着法を組み合わせて、金属表面に、樹脂の表面を改質した改質樹脂と樹脂との2層構造の薄膜を形成させて、離型性に優れ、耐久性を有する、金属の表面被膜を形成する方法に関する。 The present invention relates to a method for forming a coating on a metal surface, and in particular, by combining a vacuum deposition method, which is a dry method, to form a thin film having a two-layer structure of a modified resin having a modified resin surface and a resin on the metal surface. The present invention also relates to a method for forming a metal surface film having excellent releasability and durability.
 従来、樹脂製品を成形する金型の離型性を改善する方法として、フィルム成形や金型への離型剤の塗布、又は成形材料への離型剤添加などが行なわれている。
 しかしながら、フィルム成形では、製品の厚みや形状が制限される上、製品として使用されないフィルム部分が多く、製造価格の増加、フィルムからの製品の取り外しにかかる作業性の低下などの問題を生じていた。光学製品用金型では、成形品の表面に微細形状の形成が必要であるのに対して、その転写性悪化の問題が生じている。
 また、金型への離型剤塗布は、製品への離型剤の付着や環境汚染などの問題を生じ、さらに成形材料への離型剤添加は、製品の特性低下や金型汚染の問題を生じていた。
Conventionally, as a method for improving the mold releasability of a mold for molding a resin product, film molding, application of a mold release agent to the mold, or addition of a mold release agent to a molding material has been performed.
However, in film molding, the thickness and shape of the product are limited, and there are many film parts that are not used as a product, causing problems such as an increase in manufacturing price and a decrease in workability for removing the product from the film. . In the mold for optical products, it is necessary to form a fine shape on the surface of the molded product, but there is a problem of deterioration in transferability.
In addition, application of a release agent to the mold causes problems such as adhesion of the release agent to the product and environmental pollution, and addition of the release agent to the molding material causes problems such as deterioration of product characteristics and mold contamination. Was produced.
 他方、離型剤を金型に塗布する代わりに、金型へ被膜形成を行ない、離型性を改善することも行なわれている。TiC、TiCN、DLC、フッ素系高分子重合膜、フッ化ニッケル膜、PTFE含有Niメッキ、自己潤滑Crメッキなどがある。しかしながら、これらの被膜は膜の厚みが数μm以上あり、高精度な光学製品を製造する上では好ましくない。 On the other hand, instead of applying a release agent to the mold, a film is formed on the mold to improve the releasability. Examples include TiC, TiCN, DLC, fluorine-based polymer polymer films, nickel fluoride films, PTFE-containing Ni plating, and self-lubricating Cr plating. However, these coatings have a thickness of several μm or more, which is not preferable for producing a highly accurate optical product.
 このため、LEDやマイクロレンズアレイフィルム(MLAF)等の光学製品などの高精度な製品を成型するには、数十nm以下の厚みを有する被膜であり、離型性が良く、金型表面に均一な厚みの膜が形成でき、耐久性が高く、膜形成にかかる作業負担の少ない、金属表面被膜の形成方法が求められている。 For this reason, in order to mold high-precision products such as LEDs and microlens array films (MLAF), it is a film having a thickness of several tens of nm or less, has a good releasability, and is applied to the mold surface. There is a need for a method for forming a metal surface coating that can form a film having a uniform thickness, has high durability, and has a low work burden for film formation.
 この種の金属表面の処理方法としては、例えば、特許文献1(特開平11-140626号公報)あるいは特許文献2(特表2002-542392号公報)に掲載された技術が知られている。これらの技術は、例えば真空技術でトリアジンを含む有機モノマーを、金属表面に形成させ、熱又は放射線照射下で、重合反応を起こさせ、高分子薄膜に変化させるものである。また、従来の技術としては、特許文献3(特開平2004-9340号公報)あるいは特許文献4(特開平2004-14584号公報)に記載のものがある。これらの技術は、例えば真空蒸着法によりトリアジンチオール誘導体を金属表面に付着し、その後、熱又は紫外線などの放射線照射を行なうとともに、トリアジンチオール誘導体の蒸着膜にフッ素樹脂などの被膜を形成する。 As a method for treating this type of metal surface, for example, a technique disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 11-140626) or Patent Document 2 (Japanese Patent Publication No. 2002-542392) is known. In these techniques, for example, an organic monomer containing triazine is formed on a metal surface by a vacuum technique, a polymerization reaction is caused under heat or radiation irradiation, and the polymer is converted into a polymer thin film. Further, conventional techniques include those described in Patent Document 3 (Japanese Patent Laid-Open No. 2004-9340) or Patent Document 4 (Japanese Patent Laid-Open No. 2004-14584). In these techniques, for example, a triazine thiol derivative is attached to a metal surface by, for example, a vacuum deposition method, and then irradiation with radiation such as heat or ultraviolet rays is performed, and a film such as a fluororesin is formed on the deposited film of the triazine thiol derivative.
 ところで、このような従来の金属表面の処理方法では、例えば半導体や発光ダイオード(LED)などをエポキシ樹脂やシリコン系樹脂で熱硬化して封止する金型に用いると、トリアジンチオール誘導体の分子間反応による重合膜が得られても、その高分子間の架橋は必ずしも満足のいくものは得られず、薄膜自体の強度や耐久性に欠けるという問題があり、長期間効果を持続させる被膜の形成方法については未だ十分ではない。 By the way, in such a conventional metal surface treatment method, for example, when a semiconductor or a light emitting diode (LED) is used for a mold that is thermally cured with an epoxy resin or a silicon-based resin and sealed, the triazine thiol derivative is intermolecular. Even if a polymerized film is obtained by reaction, the crosslinking between the polymers is not always satisfactory, and there is a problem that the strength and durability of the thin film itself are lacking, and the formation of a film that maintains the effect for a long time The method is still not enough.
 また、特許文献1又は2に開示された単独膜においては、離型性が十分に発現しておらず、他方、特許文献3又は4に開示された二層膜では、離型性は若干よくなるが、金型の立上り部やエッジ部への被膜の堆積が難しく、微細形状部を有する金型への均一成膜性に劣るという問題があった。 In addition, in the single film disclosed in Patent Document 1 or 2, the releasability is not sufficiently expressed, while in the two-layer film disclosed in Patent Document 3 or 4, the releasability is slightly improved. However, it is difficult to deposit a film on the rising part or edge part of the mold, and there is a problem that the uniform film forming property on the mold having a fine shape part is inferior.
特開平11-140626号公報JP-A-11-140626 特表2002-542392号公報Special Table 2002-542392 特開平2004-9340号公報Japanese Patent Laid-Open No. 2004-9340 特開平2004-14584号公報Japanese Patent Laid-Open No. 2004-14584
 本発明の目的は、このような上記問題点に鑑みてなされたもので、金属表面に耐久性に優れる高分子薄膜の均一な被膜が形成でき、離型性が高く、かつ薄膜表面の機能性を維持しつつ薄膜を長時間の使用に耐えるようにし、広範な用途に適用することができる、金属表面への被膜形成方法を提供することを目的とする。 The object of the present invention has been made in view of the above-mentioned problems, and can form a uniform film of a polymer thin film having excellent durability on a metal surface, has high releasability, and functionality of the thin film surface. An object of the present invention is to provide a method for forming a film on a metal surface that can be applied to a wide range of applications by allowing the thin film to withstand long-term use while maintaining the above.
 本発明は、以下の技術的特徴を備えるものである。
(1)本発明の金属表面の被膜形成方法は、樹脂表面に量子ビームを照射し、次いで、次の化1又は化2で表わされるトリアジンチオール誘導体が5g/lを超えて13g/l以下の濃度で溶解した溶液に、量子ビームが照射された前記樹脂を浸漬させることにより、前記樹脂の表面が前記トリアジンチオール誘導体で加飾された改質樹脂を調製し、改質樹脂を金属表面上に真空蒸着法によって成膜して改質樹脂膜を形成し、次いで、改質樹脂膜上に、更に、樹脂を真空蒸着法によって成膜して樹脂膜を形成して、積層樹脂層を設けることを特徴とする、金属表面の被膜形成方法である。
The present invention has the following technical features.
(1) In the method for forming a coating on a metal surface of the present invention, the resin surface is irradiated with a quantum beam, and then the triazine thiol derivative represented by the following chemical formula 1 or chemical formula 2 is more than 5 g / l and not more than 13 g / l By immersing the resin irradiated with a quantum beam in a solution dissolved at a concentration, a modified resin in which the surface of the resin is decorated with the triazine thiol derivative is prepared, and the modified resin is placed on the metal surface. Forming a modified resin film by forming a film by vacuum deposition, and then forming a resin film by forming a resin film by vacuum deposition on the modified resin film to provide a laminated resin layer This is a method for forming a coating on a metal surface.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (ただし、R1は、アルキン(-CH=CH-)又はアルケン(-C≡C-)、R2は、-C2m+1(mは1~18までの整数)、-C2m-1(mは1~18までの整数)又はCH=CH(CHCOOCHCH-(mは1~10までの整数)であり、M1又はM2は、Hもしくはアルカリ金属を示す。) (Where R1 is alkyne (—CH═CH—) or alkene (—C≡C—), R2 is —C m H 2m + 1 (m is an integer from 1 to 18), —C m H 2m−1 (M is an integer from 1 to 18) or CH 2 ═CH (CH 2 ) m COOCH 2 CH 2 — (m is an integer from 1 to 10), and M1 or M2 represents H or an alkali metal. )
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (ただし、M1、M2、M3は、Hもしくはアルカリ金属を示す。) (However, M1, M2, and M3 represent H or an alkali metal.)
(2)上記(1)の金属表面の被膜形成方法において、樹脂は含フッ素有機化合物であり、該含フッ素有機化合物は、分子内にアミノ基(-NH)、アミド基(-CONH)もしくは不飽和結合を有することを特徴とする。 (2) In the method for forming a coating on a metal surface of (1) above, the resin is a fluorine-containing organic compound, and the fluorine-containing organic compound contains an amino group (—NH 2 ) or an amide group (—CONH 2 ) in the molecule. Alternatively, it has an unsaturated bond.
(3)上記(1)又は(2)の金属表面の被膜形成方法において、改質樹脂膜の上に形成される樹脂膜の樹脂は、トリアジンチオール誘導体で加飾するのに用いた樹脂と同じ樹脂であることを特徴とする。 (3) In the method for forming a coating on a metal surface according to (1) or (2) above, the resin of the resin film formed on the modified resin film is the same as the resin used for decorating with the triazine thiol derivative. It is a resin.
(4)上記(1)乃至(3)いずれかの金属表面の被膜形成方法において、表面が加飾される樹脂とトリアジンチオール誘導体とは、トリアジンチオール誘導体が5g/lを超えて13g/l以下の濃度で溶解した溶液140mlに対して、量子ビームが照射された樹脂を50gの割合となるようにすることを特徴とする、金属表面の被膜形成方法である。 (4) In the method of forming a coating on a metal surface according to any one of (1) to (3) above, the resin and the triazine thiol derivative with which the surface is decorated are such that the triazine thiol derivative exceeds 5 g / l and is 13 g / l or less. The method of forming a coating on a metal surface is characterized in that a ratio of 50 g of resin irradiated with a quantum beam is applied to 140 ml of a solution dissolved at a concentration of 5%.
(5)上記(1)乃至(4)の金属表面の処理方法において、前記溶液は、水又は水にシクロヘキサン、ベンゼン、4塩化炭素、ジエチルエーテルから成る群の少なくとも1種を混合した溶液を溶媒として、トリアジンチオール誘導体を溶解させた溶液で、当該溶液を10~45℃とし、該溶液に樹脂を8時間以上浸漬することを特徴とする。 (5) In the method for treating a metal surface according to (1) to (4), the solution is water or a solution obtained by mixing at least one member selected from the group consisting of cyclohexane, benzene, carbon tetrachloride and diethyl ether in a solvent. As described above, a solution in which a triazine thiol derivative is dissolved is set to 10 to 45 ° C., and the resin is immersed in the solution for 8 hours or more.
(5)上記(1)乃至(5)いずれかの金属表面の被膜形成方法において、真空蒸着は、金属基板を予め加熱して実施することを特徴とする。 (5) In the method for forming a coating on a metal surface according to any one of (1) to (5), the vacuum deposition is performed by heating a metal substrate in advance.
 本発明の金属表面の被膜形成方法によれば、トリアジンチオール誘導体により樹脂の表面が加飾された改質樹脂による被膜を金属表面上に乾式法により形成した後、更にその上に、樹脂による被膜を乾式法により形成して、樹脂積層膜を形成させることにより、金属表面に形成された当該樹脂膜の架橋膜形成が容易となり、均一な被膜が形成でき、離型性が高く、耐久性に優れる被膜を金属表面に形成することが可能となる。 According to the method for forming a coating on a metal surface of the present invention, a coating with a modified resin in which the surface of the resin is decorated with a triazine thiol derivative is formed on the metal surface by a dry method, and then a coating with a resin is further formed thereon. Is formed by a dry method to form a resin laminated film, which facilitates the formation of a crosslinked film of the resin film formed on the metal surface, can form a uniform film, has high releasability, and is durable. An excellent film can be formed on the metal surface.
 また、金属表面の被膜形成方法において、乾式法として真空蒸着法を用い、該真空蒸着には、被膜を形成する金属を加熱する加熱処理を併用することで、更に耐久性の高い被膜を得ることができる。
 従って、ナノオーダーの成形品を製造する金型に適用しても、離型性に優れ、耐久性に優れるため、微細構造を有する成形品を大量に製造することが容易となる。
 乾式成膜業界において有効に適用することができ、太陽電池用フィルム、電池電極フィルム、光学フィルム、細胞培養フィルム等の微細な形状を有する成形品の大量生産の用途に適用することが可能となる。
Further, in the method of forming a coating on the metal surface, a vacuum deposition method is used as a dry method, and the vacuum deposition is combined with a heat treatment for heating the metal forming the coating to obtain a coating with higher durability. Can do.
Therefore, even if it is applied to a mold for producing a nano-order molded article, it is easy to produce a large number of molded articles having a fine structure because of excellent mold release and durability.
It can be effectively applied in the dry film forming industry, and can be applied to mass production of molded products having fine shapes such as solar cell films, battery electrode films, optical films, cell culture films and the like. .
真空蒸着装置の一例を示す概略図である。It is the schematic which shows an example of a vacuum evaporation system. 実施例および比較例で得られた樹脂成膜の接着回数による耐久性の試験結果を示す図である。It is a figure which shows the durability test result by the frequency | count of adhesion | attachment of the resin film obtained by the Example and the comparative example. 実施例および比較例で得られた樹脂成膜の接着回数とトリアジンチオール化合物溶液濃度(加飾濃度)との関係を示す図である。It is a figure which shows the relationship between the frequency | count of adhesion of the resin film obtained by the Example and the comparative example, and the triazine thiol compound solution density | concentration (decoration density | concentration). 他の実施例および比較例で得られた樹脂成膜の接着回数による耐久性の試験結果を示す図である。It is a figure which shows the durability test result by the frequency | count of adhesion | attachment of the resin film-forming obtained by the other Example and the comparative example. 他の実施例および比較例で得られた樹脂成膜の接着回数による耐久性の試験結果を示す図である。It is a figure which shows the durability test result by the frequency | count of adhesion | attachment of the resin film-forming obtained by the other Example and the comparative example. 他の実施例および比較例で得られた樹脂成膜の接着回数による耐久性の試験結果を示す図である。It is a figure which shows the durability test result by the frequency | count of adhesion | attachment of the resin film-forming obtained by the other Example and the comparative example. 他の実施例および比較例で得られた樹脂成膜の接着回数とトリアジンチオール化合物溶液濃度(加飾濃度)との関係を示す図である。It is a figure which shows the relationship between the frequency | count of adhesion | attachment of the resin film obtained by the other Example and the comparative example, and the triazine thiol compound solution density | concentration (decoration density | concentration). 実施例及び比較例で得られた樹脂成膜のモデル図である。It is a model figure of the resin film formation obtained by the Example and the comparative example.
 本発明の金属表面の被膜形成方法について、以下の実施態様に基づき説明するが、これらに限定されるものではない。
 本発明の金属表面の被膜形成方法は、樹脂表面に量子ビームを照射し、次いで、上記化1又は化2で表わされるトリアジンチオール誘導体が5g/lを超えて13g/l以下の濃度で溶解した溶液に、量子ビームが照射された樹脂を浸漬させることにより、樹脂の表面が前記トリアジンチオール誘導体で加飾された改質樹脂を調製し、該改質樹脂を、金属表面上に真空蒸着法によって成膜して改質樹脂膜を形成し、次いで、改質樹脂膜上に、更に、樹脂を真空蒸着法によって成膜して樹脂膜を形成して、積層樹脂層を設けることにより、金属表面に被膜を形成する方法である。
The method for forming a coating on a metal surface of the present invention will be described based on the following embodiments, but is not limited thereto.
In the method for forming a coating on a metal surface according to the present invention, the resin surface is irradiated with a quantum beam, and then the triazine thiol derivative represented by the chemical formula 1 or chemical formula 2 is dissolved at a concentration of more than 5 g / l and not more than 13 g / l. By immersing the resin irradiated with the quantum beam in the solution, a modified resin in which the surface of the resin is decorated with the triazine thiol derivative is prepared, and the modified resin is deposited on the metal surface by a vacuum deposition method. A metal surface is formed by forming a modified resin film and then forming a resin film on the modified resin film by further forming a resin film by vacuum deposition. This is a method of forming a film on the surface.
(改質樹脂の調製)
 本発明の金属表面への被膜形成方法においては、まず金属表面に改質樹脂の薄膜を第1層として形成するが、改質樹脂は以下のようにして調製されるものを用いる。
 表面を改質される樹脂としては、特に限定されず、市場で入手し得る任意の熱可塑性樹脂又は熱硬化性樹脂を用いることができ、熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレンなどの炭化水素系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、4フッ化ポリテトラフルオロエチレン(PTFE)、4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)、4フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)の何れかの含フッ素樹脂などの含ハロゲン系樹脂、ナイロン等のポリアミド系樹脂、ポリアセタールなどのポリエーテル系樹脂、ポリサルホン、ポリカーボネート、ポリエチレンテレフタレートなどのポリエステル系樹脂、ポリメチルメタクリレートなどのアクリル酸系樹脂などが例示される。
 また、熱硬化性樹脂としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、エポキシ樹脂、メラミン樹脂、シリコン樹脂、フラン樹脂などが例示される。
(Preparation of modified resin)
In the method for forming a coating on a metal surface according to the present invention, a thin film of a modified resin is first formed on the metal surface as a first layer. The modified resin is prepared as follows.
The resin whose surface is modified is not particularly limited, and any commercially available thermoplastic resin or thermosetting resin can be used. Examples of the thermoplastic resin include carbonization such as polyethylene and polypropylene. Hydrogen resin, polyvinyl chloride, polyvinylidene chloride, tetrafluoropolytetrafluoroethylene (PTFE), tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer Halogen-containing resins such as fluorine-containing resins such as polymers (PFA) and ethylene-tetrafluoroethylene copolymers (ETFE), polyamide-based resins such as nylon, polyether-based resins such as polyacetal, polysulfone, polycarbonate, polyethylene Polyester resin such as terephthalate, polymer Acrylic acid-based resin is exemplified such as methacrylate.
Examples of the thermosetting resin include polyimide resin, polyamideimide resin, polyetherimide resin, epoxy resin, melamine resin, silicon resin, and furan resin.
 特に含フッ素有機化合物を用いることが望ましく、含フッ素有機化合物としては、分子内にアミノ基(-NH)、アミド基(-CONH)、若しくは不飽和基を有し、分子量は1000以上であることが好ましく、例えば、4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)、4フッ化エチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)等が例示でき、これらを単体でも混合物としても使用できる。
 また、末端に前記アミノ基等を有していると、トリアジンチオール誘導体と相互作用があると考えられるため、好適に使用できる。これにより、トリアジンチオール誘導体との結合性が高くなることが可能となる。
It is particularly desirable to use a fluorine-containing organic compound. The fluorine-containing organic compound has an amino group (—NH 2 ), an amide group (—CONH 2 ), or an unsaturated group in the molecule, and has a molecular weight of 1000 or more. For example, tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE) Etc., and these can be used alone or as a mixture.
Moreover, since it is thought that it has an interaction with a triazine thiol derivative when it has the said amino group etc. in the terminal, it can be used conveniently. Thereby, the binding property with the triazine thiol derivative can be increased.
 また、樹脂の形態としては、樹脂フィルム、樹脂粉末などの任意の形態のものを用いることが可能である。
 特に、樹脂が粉末の形態の場合には、例えば、樹脂粉末の平均径DがD=5μm~1mmの範囲であることが、より望ましくは、平均径DがD=50μm~500μmの範囲であることが好ましい。
 上記平均径より小さい平均径が微細な粉末は、粉末自体の凝集が起こり易く、樹脂粉末を溶媒へ均一に溶解させることが困難となる場合があり、また上記範囲より平均径が大きくなると、樹脂粉末の改質面積の比率が小さくなり、被膜形成時に金属との強固な固着強度が得られ難い場合もあることから、上記範囲の平均径を有する粉末樹脂を用いることが好ましい。
Moreover, as a form of resin, the thing of arbitrary forms, such as a resin film and resin powder, can be used.
In particular, when the resin is in the form of a powder, for example, the average diameter D of the resin powder is in the range of D = 5 μm to 1 mm, and more preferably the average diameter D is in the range of D = 50 μm to 500 μm. It is preferable.
The powder having a fine average diameter smaller than the average diameter is likely to cause aggregation of the powder itself, and it may be difficult to uniformly dissolve the resin powder in the solvent. When the average diameter is larger than the above range, the resin It is preferable to use a powder resin having an average diameter in the above range because the ratio of the modified area of the powder becomes small and it may be difficult to obtain a strong bond strength with the metal at the time of film formation.
 前記樹脂表面は、予め量子ビームを照射して、樹脂表面を活性化させておくことが好ましく、これによりトリアジンチオール誘導体による樹脂表面の加飾を、より容易に行うことができる。
 量子ビームは、広義には全ての電磁波および粒子線を示すが、本発明においては、特に、照射される樹脂に対して電離作用を有する量子ビームを好適に用いることができる。
 量子ビームとしては、例えば、X線、γ線、短波長の紫外線、高速荷電粒子線、高速中性子線などの放射線、電子線、イオンビーム等を例示することができる。
The resin surface is preferably preliminarily irradiated with a quantum beam to activate the resin surface, whereby the resin surface can be more easily decorated with a triazine thiol derivative.
The quantum beam indicates all electromagnetic waves and particle beams in a broad sense, but in the present invention, a quantum beam having an ionizing action on the irradiated resin can be preferably used.
Examples of quantum beams include X-rays, γ-rays, short-wavelength ultraviolet rays, fast charged particle beams, fast neutron beams, and other radiation, electron beams, ion beams, and the like.
 樹脂表面に量子ビームを照射すると、量子ビームが照射された樹脂表面から電子が放出されてイオンを形成したり、分解してラジカルを生成等することで、樹脂表面が活性化される。 When the resin surface is irradiated with a quantum beam, electrons are emitted from the resin surface irradiated with the quantum beam to form ions or decompose to generate radicals, thereby activating the resin surface.
 上記樹脂、好ましくは量子ビームを樹脂表面に照射して活性化された上記樹脂を、トリアジンチオール誘導体を溶解させた溶液に浸漬して樹脂表面にトリアジンチオール誘導体を結合させて、樹脂表面を加飾して改質樹脂を得る。
 トリアジンチオール誘導体としては、下記化3又は化4で示されるトリアジンチオール誘導体を用いることができる。トリアジンチオール誘導体の-SHの特徴を活用して、金属に密着性良好な被膜が形成される。
The resin, preferably the resin activated by irradiating the resin surface with a quantum beam, is immersed in a solution in which the triazine thiol derivative is dissolved to bond the triazine thiol derivative to the resin surface to decorate the resin surface. Thus, a modified resin is obtained.
As the triazine thiol derivative, a triazine thiol derivative represented by the following chemical formula 3 or chemical formula 4 can be used. Utilizing the -SH characteristic of the triazine thiol derivative, a film having good adhesion to a metal is formed.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 R1は、アルキン(-CH=CH-)、アルケン(-C≡C-)のような不飽和基を含む置換基である。R2は、-CH、-CH-CH等の-C2m+1、-CHCH=CH等の-C2m-1、CH=CH(CHCOOCHCH-等のCH=CH(CHCOOCHCH-(mは1~10までの整数)である。M1、M2は、HもしくはLi、Na、K、Ca等のアルカリ金属を示す。 R1 is a substituent containing an unsaturated group such as alkyne (—CH═CH—) or alkene (—C≡C—). R2 is, -CH 3, -C such -CH 2 -CH 3 m H 2m + 1, -C such -CH 2 CH = CH 2 m H 2m-1, CH 2 = CH (CH 2) 4 COOCH 2 CH 2 - (m is an integer from 1 to 10) - such as the CH 2 = CH (CH 2) m COOCH 2 CH 2. M1 and M2 each represent H or an alkali metal such as Li, Na, K, or Ca.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 M1、M2、M3は、HもしくはLi、Na、K、Ca等のアルカリ金属を示す。 M1, M2, and M3 represent H or an alkali metal such as Li, Na, K, or Ca.
 トリアジンチオール誘導体の溶液としては、水もしくは水にシクロヘキサン、ベンゼン、4塩化炭素、ジエチルエーテルの少なくとも1種を溶媒として、トリアジンチオール誘導体を溶解させた溶液が例示される。
 特に好ましくは、該溶液の温度は10~45℃とすることが、樹脂の表面を均一にトリアジンチオール誘導体で加飾することができるため望ましい。
Examples of the triazine thiol derivative solution include water or a solution in which the triazine thiol derivative is dissolved in water using at least one of cyclohexane, benzene, carbon tetrachloride, and diethyl ether as a solvent.
Particularly preferably, the temperature of the solution is 10 to 45 ° C., because the surface of the resin can be uniformly decorated with the triazine thiol derivative.
 かかる溶液には、トリアジンチオール誘導体が、5g/lを超えて13g/l以下の濃度、好ましくは6~13g/lの濃度で溶解している溶液を用いて、樹脂表面を加飾する。
 これにより、得られる2層構造の樹脂成膜の耐久性が向上し、優れた離型性能を発揮することが可能となる。
In such a solution, the resin surface is decorated using a solution in which a triazine thiol derivative is dissolved at a concentration of more than 5 g / l and not more than 13 g / l, preferably 6 to 13 g / l.
As a result, the durability of the resulting two-layered resin film formation is improved, and excellent mold release performance can be exhibited.
 次いで、上記樹脂、好ましくは量子ビームを照射して樹脂を、前記溶液に浸漬するが、前記トリアジンチオール誘導体溶液中に含まれるトリアジンチオール誘導体が、当該溶液に浸漬する樹脂の表面を十分に加飾できるような濃度と量であれば、任意の量等を設定することが可能である。例えば、トリアジンチオール誘導体が5g/lを超えて13g/l以下の濃度で溶解した溶液140mlに、量子ビームが照射された樹脂、好ましくは前記平均径を有する樹脂を50gの割合で浸漬させることを例示することができる。また、好ましくは8時間以上浸漬処理する。かかる工程により樹脂表面が均一に加飾されることが可能となる。 Subsequently, the resin, preferably the resin is irradiated with a quantum beam and immersed in the solution, but the triazine thiol derivative contained in the triazine thiol derivative solution sufficiently decorates the surface of the resin immersed in the solution. An arbitrary amount or the like can be set as long as the concentration and amount can be obtained. For example, a resin irradiated with a quantum beam, preferably a resin having the above average diameter, is immersed in a ratio of 50 g in 140 ml of a solution in which a triazine thiol derivative is dissolved at a concentration of more than 5 g / l and not more than 13 g / l. It can be illustrated. Further, the immersion treatment is preferably performed for 8 hours or more. This process makes it possible to decorate the resin surface uniformly.
 また、量子ビームを照射した樹脂表面は活性化されているので、溶液中で、樹脂表面にはトリアジンチオール誘導体が確実に結合する。量子ビームを照射された樹脂表面は、電子を放出しイオンになったり、分解してラジカルを生成したりする。生成したイオンやラジカルが反応開始剤として作用する。溶媒中のトリアジンチオール誘導体は、樹脂表面の反応開始剤によって、チイルラジカルを形成し、チイルラジカルは、樹脂表面上で、ジスルフィド結合、あるいはアリル基への付加により、アリル基の2重結合開裂反応を引き起こす。このようにチイルラジカルとのカップリングや他の分子のアリル基への付加反応などを引き起こし、樹脂表面に化学反応した重合膜を形成すると考えられる。 Also, since the resin surface irradiated with the quantum beam is activated, the triazine thiol derivative is surely bound to the resin surface in the solution. The resin surface irradiated with the quantum beam emits electrons to become ions, or decomposes to generate radicals. The generated ions and radicals act as reaction initiators. The triazine thiol derivative in the solvent forms a thiyl radical by a reaction initiator on the resin surface, and the thiyl radical causes a double bond cleavage reaction of the allyl group by addition to a disulfide bond or an allyl group on the resin surface. . In this way, it is considered that a polymerized film is formed on the resin surface by causing a coupling with a thiyl radical or an addition reaction of all other molecules to an allyl group.
 その後、トリアジンチオール誘導体で表面が加飾された前記樹脂を乾燥させる。乾燥方法は特に限定されないが、例えば真空乾燥機にて10Pa程度まで真空引きし、約40℃にて4時間乾燥する方法等が例示できる。樹脂が粉末の場合には、溶液を濾紙でろ過し、表面が加飾された樹脂粉末と液とを分離し、濾紙上の前記樹脂粉末を、同様に、真空乾燥機にて10Pa程度まで真空引きし、約40℃にて4時間乾燥することも可能である。これにより、表面が加飾された改質樹脂を得る。 Thereafter, the resin whose surface is decorated with a triazine thiol derivative is dried. The drying method is not particularly limited, and examples thereof include a method of evacuating to about 10 Pa with a vacuum dryer and drying at about 40 ° C. for 4 hours. When the resin is a powder, the solution is filtered with a filter paper, the resin powder and the liquid with a decorated surface are separated, and the resin powder on the filter paper is similarly vacuumed to about 10 Pa with a vacuum dryer. It is also possible to draw and dry at about 40 ° C. for 4 hours. Thereby, the modified resin with which the surface was decorated is obtained.
(金属表面への改質樹脂の成膜:第1層)
 このようにして得られた改質樹脂を、金属表面に成膜固着させるが、その固着方法は乾式法であれば特に限定されず、例えばコールドスプレー法、真空蒸着法により蒸着させて改質樹脂の成膜を金属上に形成することができる。
 例えば、改質樹脂の形態がフィルム形態の場合には、金属表面が接合して、その後加熱処理して固着させることができ、また粉末形態の場合には、例えばコールドスプレー法、真空蒸着法により蒸着してその後加熱処理して固着させることも可能である。
(Deposition of modified resin on metal surface: first layer)
The modified resin thus obtained is fixed on the metal surface in a film, and the fixing method is not particularly limited as long as it is a dry method. For example, the modified resin is deposited by cold spraying or vacuum deposition. The film can be formed on a metal.
For example, when the form of the modified resin is a film form, the metal surfaces can be bonded and then fixed by heat treatment. In the case of a powder form, for example, by a cold spray method or a vacuum deposition method. It is also possible to fix it by vapor deposition and then heat treatment.
 金属としては、導電性である金属であれば特に限定されず、鉄及び鉄合金(ステンレス、パーマロイなど)、銅及び銅合金、ニッケル、金、銀、コバルト、アルミニウム、亜鉛、錫及び錫合金、チタン又はクロムなどを挙げることができる。
 金属の前処理は有機物などの異物が付着している場合はこれを除去する前処理を実施しなければならないが、酸化物等は表面の導電性を著しく低下させない限り問題ではなく、活性化処理等も同様である。
 前処理としては、金属表面を清浄化できる処理であれば、公知の処理を適用でき、例えば、酸に浸漬等する処理が例示できる。
The metal is not particularly limited as long as it is a conductive metal, and iron and iron alloys (stainless steel, permalloy, etc.), copper and copper alloys, nickel, gold, silver, cobalt, aluminum, zinc, tin and tin alloys, Mention may be made of titanium or chromium.
Metal pre-treatment should be performed to remove foreign substances such as organic matter, but oxides are not a problem as long as the surface conductivity is not significantly reduced. And so on.
As the pretreatment, a known treatment can be applied as long as the treatment can clean the metal surface. For example, a treatment such as immersion in an acid can be exemplified.
 必要に応じて前処理を実施した金属に、上記改質樹脂膜を成膜させる方法としては、乾式法、例えば、コールドスプレー法、真空蒸着法等が例示される。
 一例としては、真空蒸着装置により、改質樹脂を金属表面に付着させる。真空度は一般に1.0~1.0×10-6Pa、望ましくは、1.0×10-1~1.0×10-4Paである。改質樹脂を加熱させるヒータの温度は、一義的に定めることはできないが、例えば、200~400℃、望ましくは、270~360℃であるが、改質樹脂の分子量および真空度とヒータ温度との兼ね合いで最適な蒸着条件を決定することができる。電離真空計を用いて真空蒸着装置内を一定の真空度に調整した後、蒸発源のるつぼをヒータで加熱して改質樹脂を気化又は昇華させる。このとき、被膜を形成する物を覆うシャッターは閉じておき、蒸発源を覆うシャッターは開けておき、改質樹脂が気化又は昇華していることを水晶振動子式膜厚計など利用して確認し、蒸発速度を所望する値に調整し、調整されたところで被膜を形成する物を覆うシャッターを開き、蒸着を開始する。このようにすることで、所定の成膜速度を確保することができ、均一な成膜が可能となる。
Examples of the method for forming the modified resin film on the metal that has been pretreated as necessary include a dry method such as a cold spray method and a vacuum deposition method.
As an example, the modified resin is attached to the metal surface by a vacuum deposition apparatus. The degree of vacuum is generally 1.0 to 1.0 × 10 −6 Pa, preferably 1.0 × 10 −1 to 1.0 × 10 −4 Pa. Although the temperature of the heater for heating the modified resin cannot be uniquely determined, it is, for example, 200 to 400 ° C., preferably 270 to 360 ° C., but the molecular weight and vacuum degree of the modified resin, the heater temperature, Therefore, the optimum deposition conditions can be determined. After adjusting the inside of the vacuum evaporation apparatus to a certain degree of vacuum using an ionization vacuum gauge, the crucible of the evaporation source is heated with a heater to vaporize or sublimate the modified resin. At this time, the shutter that covers the object that forms the film is closed, the shutter that covers the evaporation source is opened, and it is confirmed by using a crystal oscillator type film thickness meter or the like that the modified resin is vaporized or sublimated. Then, the evaporation rate is adjusted to a desired value, and when the adjustment is made, the shutter covering the object that forms the film is opened, and the vapor deposition is started. In this way, a predetermined film formation rate can be ensured, and uniform film formation can be achieved.
 かかる真空蒸着装置による蒸着においては、真空中で改質樹脂の分子を加熱蒸発又は昇華することによって、金属等の固体表面に堆積させる。これは、多くの金属表面に分子を堆積させて薄膜を作製することができる手法である。真空中で蒸発源から飛行し堆積する分子は、固体表面での結晶核の生成、固体表面での拡散などにより衝突、反応して薄膜が成長する。固体表面に均一に分散した結晶核の形成が、その後の膜成長状態に影響し、規則的に分子配列しながら膜成長する。
 また、かかる蒸着は、1回又は複数回の蒸着による手法としてもよい。形状への付着性を良好にするためには、ワーク位置、向きを変更しながら複数回に分けて蒸着することが好ましい。改質樹脂膜の厚みは、厚ければ耐久性が増していくこととなる。
In vapor deposition by such a vacuum vapor deposition apparatus, molecules of the modified resin are deposited on a solid surface such as metal by heating evaporation or sublimation in a vacuum. This is a technique in which molecules can be deposited on many metal surfaces to produce a thin film. Molecules flying and depositing from an evaporation source in vacuum collide and react due to generation of crystal nuclei on the solid surface, diffusion on the solid surface, etc., and a thin film grows. Formation of crystal nuclei uniformly dispersed on the solid surface affects the subsequent film growth state, and the film grows while regularly arranging molecules.
Such vapor deposition may be performed by one or a plurality of times of vapor deposition. In order to improve the adherence to the shape, it is preferable to perform vapor deposition in multiple times while changing the work position and orientation. As the thickness of the modified resin film increases, the durability increases.
 また、真空蒸着は、好ましくは予め金属基板を加熱して実施することが望ましい。
 金属体を加熱することで、トリアジンチオール誘導体と含フッ素有機化合物等の樹脂の結合をより強固にすることが可能となる。加熱温度は、トリアジンチオール誘導体及び含フッ素有機化合物等の樹脂の選定、並びに被膜の厚さにも依存するが、例えば、150~400℃、230~270℃、特に約250℃程度が好ましい。
The vacuum deposition is preferably performed by heating the metal substrate in advance.
By heating the metal body, the bond between the triazine thiol derivative and a resin such as a fluorine-containing organic compound can be further strengthened. The heating temperature depends on the selection of a resin such as a triazine thiol derivative and a fluorine-containing organic compound and the thickness of the coating, but is preferably about 150 to 400 ° C., 230 to 270 ° C., particularly about about 250 ° C.
(樹脂膜の成膜:第2層)
 上記のようにして形成された改質樹脂層膜の上に、別途、樹脂膜を乾式法、例えば真空蒸着法により形成する。
 このように、更に第2層目の樹脂膜を形成して2層積層構造の被膜とすることで、耐久性を向上させて優れた離型性を得ることができる。
 ここで樹脂としては、上記改質樹脂を調製するために用いた上記樹脂であれば任意の樹脂を用いることができ、改質樹脂に用いた樹脂と同種の樹脂であっても別種の樹脂であっても特に限定されないが、特に、改質樹脂に用いた樹脂と同種の樹脂を用いて第2層の樹脂膜を形成することが、より耐久性を向上させて、更に優れた離型性を得ることができるため望ましい。特に望ましくは含フッ素有機化合物が用いられる。
(Deposition of resin film: second layer)
On the modified resin layer film formed as described above, a resin film is separately formed by a dry method such as a vacuum deposition method.
In this way, by further forming a second-layer resin film to form a film having a two-layer laminated structure, it is possible to improve durability and obtain excellent release properties.
As the resin, any resin can be used as long as it is the resin used for preparing the modified resin. Even if the resin is the same type as the resin used for the modified resin, a different type of resin can be used. Even if it is, it is not particularly limited, but in particular, forming the second layer resin film using the same type of resin as that used for the modified resin improves the durability and further improves mold release properties. Is desirable because it can be obtained. Particularly preferably, a fluorine-containing organic compound is used.
 前記樹脂を、改質樹脂層膜の上に成膜させる乾式法としての真空蒸着法は、例えば、改質樹脂を金属表面に蒸着させる上記真空蒸着の手法を適用することができ、前記樹脂、好ましくは含フッ素有機化合物の蒸着膜を、改質樹脂層膜上に、容易に形成することができる。
 また、樹脂が、末端に前記アミノ基等を有していると、改質樹脂表面のトリアジンチオール誘導体と相互作用があると考えられるため、好適に使用できる。例えば、FEPなどの3級フルオロカーボンを含有する化合物は、離型効果も高く好適に用いることができる。
As the vacuum deposition method as a dry method for depositing the resin on the modified resin layer film, for example, the above-described vacuum deposition method in which the modified resin is deposited on the metal surface can be applied. Preferably, a vapor-deposited film of a fluorine-containing organic compound can be easily formed on the modified resin layer film.
Further, if the resin has the amino group or the like at the terminal, it is considered that the resin interacts with the triazine thiol derivative on the surface of the modified resin, and thus can be suitably used. For example, a compound containing a tertiary fluorocarbon such as FEP has a high mold release effect and can be suitably used.
 更に望ましくは、真空蒸着により含フッ素有機化合物を付着させる際に及び/又は真空蒸着膜形成後に、金属固体を加熱することで、改質樹脂の表面のトリアジンチオール誘導体と含フッ素有機化合物との結合をより強固にすることが可能となる。加熱温度は、トリアジンチオール誘導体及び含フッ素有機化合物の材料の選定、並びに被膜の厚さにも依存するが、例えば、150~400℃、230~270℃、特に約250℃程度が好ましい。 More desirably, when the fluorine-containing organic compound is attached by vacuum deposition and / or after the formation of the vacuum-deposited film, the metal solid is heated to bond the triazine thiol derivative and the fluorine-containing organic compound on the surface of the modified resin. Can be made stronger. The heating temperature depends on the selection of the materials of the triazine thiol derivative and the fluorine-containing organic compound and the thickness of the film, but is preferably about 150 to 400 ° C., 230 to 270 ° C., particularly about about 250 ° C.
 このようにして本発明により金属表面に形成された2層構造の樹脂被膜の薄膜により、金属表面に形成された高分子薄膜の架橋膜形成を容易に行なうことができるとともに、得られた薄膜表面の機能性を維持しつつ、特に、優れた耐剥離性に関して、長期間の効果の持続性が向上する。 Thus, the thin film of the resin film having the two-layer structure formed on the metal surface according to the present invention can easily form a crosslinked film of the polymer thin film formed on the metal surface, and the obtained thin film surface While maintaining this functionality, the sustainability of the long-term effect is improved particularly with respect to excellent peeling resistance.
 本発明を以下の実施例、比較例及び試験例により説明するが、これらに限定されるものではない。
(1)前処理
 まず市販のニッケル基板(株式会社ニラコ製 純度99%以上)の表面を、以下の前処理を実施して、清浄化した。
 具体的には、前記ニッケル基板を濃度10質量%で温度が約25℃の塩酸に60秒間浸漬し、次いで濃度0.1g/lで温度が約25℃の次亜リン酸溶液に5分間浸漬して、ニッケル基板表面を清浄化した。
The present invention is illustrated by the following examples, comparative examples and test examples, but is not limited thereto.
(1) Pretreatment First, the surface of a commercially available nickel substrate (manufactured by Niraco Co., Ltd., purity 99% or more) was cleaned by performing the following pretreatment.
Specifically, the nickel substrate is immersed in hydrochloric acid having a concentration of 10% by mass and a temperature of about 25 ° C. for 60 seconds, and then immersed in a hypophosphorous acid solution having a concentration of 0.1 g / l and a temperature of about 25 ° C. for 5 minutes. Then, the nickel substrate surface was cleaned.
(2)改質樹脂の調製
 平均粒径DがD=150μm(粒径範囲:100~200μm)の4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)の粉末を、透明な袋に投入して、約10Pa程度に減圧した。
 なお、4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)の粉末としては、テフロン(登録商標)FEP-140J(三井デュポンフロロケミカル株式会社製)を用いた。
(2) Preparation of modified resin Powder of tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP) having an average particle diameter D of D = 150 μm (particle diameter range: 100 to 200 μm) is put into a transparent bag. The pressure was reduced to about 10 Pa.
Teflon (registered trademark) FEP-140J (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) was used as the powder of tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP).
 次いで、電子線照射装置(ウシオ電機株式会社製:min-EB)にて、前記減圧した真空中で、1回の吸収線量が20kGyに設定して、照射距離50mmで得られる電子線を5分間照射した。このときの照射線量は、約100kGyであった。 Next, with an electron beam irradiation apparatus (USHIO INC .: min-EB), an absorbed dose of 20 kGy is set in the reduced vacuum, and an electron beam obtained at an irradiation distance of 50 mm is applied for 5 minutes. Irradiated. The irradiation dose at this time was about 100 kGy.
 具体的には、電子線照射装置は、フィラメントで加熱される電子線発生部が配され、高真空で封止した構造を有する。熱カソードで発生した電子は、照射窓との間の電位差(例えば加速電圧60kV)によって加速され、窓を透過して、照射室のテーブル上に載置した樹脂に電子線を照射した。樹脂粉末の場合には、樹脂粉末を均一に並べ、照射による帯電で粉末が散らばらないように、粉末の上にステンレス製のメッシュを設置した。照射距離を所定の高さに調整した後、照射室を閉め、真空引きを行った。照射室が5×10-2Pa以下となったら、照射準備をし、所定の条件で照射を行った。照射を止め、照射室に窒素ガスを導入しながら大気開放した。 Specifically, the electron beam irradiation apparatus has a structure in which an electron beam generator heated by a filament is disposed and sealed in a high vacuum. Electrons generated at the hot cathode were accelerated by a potential difference with the irradiation window (for example, acceleration voltage 60 kV), transmitted through the window, and irradiated with an electron beam onto the resin placed on the table in the irradiation chamber. In the case of the resin powder, the resin powders were arranged uniformly, and a stainless steel mesh was placed on the powder so that the powder was not scattered by charging by irradiation. After adjusting the irradiation distance to a predetermined height, the irradiation chamber was closed and evacuation was performed. When the irradiation chamber became 5 × 10 −2 Pa or less, preparation for irradiation was performed and irradiation was performed under predetermined conditions. Irradiation was stopped and the atmosphere was released while introducing nitrogen gas into the irradiation chamber.
 電子線照射した4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)の粉末樹脂を、以下の化5で表わされるトリアジンチオール化合物(DAN)を水溶液(温度23℃)に溶解させた溶液に、一昼夜(12時間)浸漬し、その後、乾燥して改質樹脂粉末を得た。 A powder resin of tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP) irradiated with an electron beam is dissolved in a solution in which a triazine thiol compound (DAN) represented by the following chemical formula 5 is dissolved in an aqueous solution (temperature: 23 ° C.). Then, it was immersed for a whole day and night (12 hours) and then dried to obtain a modified resin powder.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(3)金属表面への2層構造の樹脂積層膜の形成
 図1に示される真空蒸着装置を用いて、該装置の室10内に上記(1)で表面を清浄化したニッケル基板Mを保持体7にセットした。図1に示される真空蒸着装置のバルブ11を介して真空ポンプを作動させ、電離真空計により真空度が5×10-4Paに達したら、蒸発源ヒータ2の温度を275℃まであげて、基板温度が250℃になったら、シャッター4を開け、るつぼ1に入れた上記(2)で得られた改質樹脂粉末3を成膜速度が約0.02nm/secであることを確認して、該ニッケル基板上に蒸着させて成膜させた。所定の成膜速度になったら更にメインシャッター5を開け、水晶振動子式膜厚計6にて計測して改質樹脂粉末の真空蒸着を行い、一定の厚みの改質樹脂層膜を得た。
(3) Formation of a resin laminated film having a two-layer structure on the metal surface Using the vacuum vapor deposition apparatus shown in FIG. 1, the nickel substrate M whose surface is cleaned in (1) above is held in the chamber 10 of the apparatus. Set on body 7. When the vacuum pump is operated through the valve 11 of the vacuum vapor deposition apparatus shown in FIG. 1 and the degree of vacuum reaches 5 × 10 −4 Pa by the ionization vacuum gauge, the temperature of the evaporation source heater 2 is increased to 275 ° C., When the substrate temperature reaches 250 ° C., the shutter 4 is opened and the film thickness of the modified resin powder 3 obtained in the above (2) placed in the crucible 1 is confirmed to be about 0.02 nm / sec. The film was deposited on the nickel substrate. When the predetermined film formation speed is reached, the main shutter 5 is further opened and the modified resin powder is vacuum-deposited by measurement with a quartz vibrator type film thickness meter 6 to obtain a modified resin layer film having a constant thickness. .
 次いで、上記改質樹脂の薄膜が形成されたニッケル基板に、更に、4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)の粉末樹脂膜を、図1の真空蒸着装置を用いて、同様にして、改質樹脂層膜上に蒸着させて積層し、ニッケル基板上に2層構造の樹脂積層膜を得た。 Next, a powder resin film of tetrafluoroethylene / hexafluorinated polypyrene copolymer (FEP) is further applied to the nickel substrate on which the thin film of the modified resin is formed using the vacuum deposition apparatus of FIG. Then, vapor deposition was carried out on the modified resin layer film, and it laminated | stacked, and the resin laminated film of the 2 layer structure was obtained on the nickel substrate.
(実施例1~2、比較例1~3:改質樹脂膜のトリアジンチオール化合物水溶液の濃度の変化による影響)
 上記(2)の改質樹脂粉末を調製するにあたり、電子線照射した4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)の粉末樹脂50gを浸漬する上記化5に示すトリアジンチオール化合物(DAN)水溶液(140ml)の濃度(加飾濃度)を、1.0g/l(比較例1)、2.5g/l(比較例2)、5.0g/l(比較例3)、7.5g/l(実施例1)、10.0g/l(実施例2)と種々変化させて各改質樹脂粉末を調製した。
(Examples 1 and 2 and Comparative Examples 1 and 3: Influence of change in concentration of triazine thiol compound aqueous solution of modified resin film)
In preparing the modified resin powder of the above (2), a triazine thiol compound (DAN) shown in the above chemical formula 5 in which 50 g of a powder resin of tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP) irradiated with an electron beam is immersed. ) The concentration (decorative concentration) of the aqueous solution (140 ml) is 1.0 g / l (Comparative Example 1), 2.5 g / l (Comparative Example 2), 5.0 g / l (Comparative Example 3), 7.5 g. Each modified resin powder was prepared with various changes of / l (Example 1) and 10.0 g / l (Example 2).
 このようにして種々の改質樹脂粉末を用いて、上記(1)のニッケル基板上に、上記(3)に示すようにして、改質樹脂膜を第1層目とし(厚み:約16.8nm)、その上にFEP樹脂膜を第2層目(厚み:約35.3nm)として、2層積層構造の樹脂膜を成膜した。 Thus, using various modified resin powders, the modified resin film is used as the first layer (thickness: about 16. 8 nm), and a FEP resin film as a second layer (thickness: about 35.3 nm) thereon, a resin film having a two-layer structure was formed.
(試験例1:耐久性試験)
 上記各実施例1~2及び比較例1~3で得られた2層の樹脂成膜された各基板について、自動簡易成形試験機(エンジニアリング・システム(株)製 AIMT0101)を用いて、エポキシ樹脂により接着試験を行い、その非接着試験回数について調べた試験結果を、図2及び図3に示す。
 なお、エポキシ樹脂は市販の離型剤を含有しない熱硬化性タイプ(商品名:日東電工株式会社製 NT600)を用いた。
(Test Example 1: Durability test)
About each board | substrate with which two-layer resin film formation obtained in each said Examples 1-2 and Comparative Examples 1-3 was carried out using an automatic simple molding test machine (Engineering System Co., Ltd. AIMT0101), an epoxy resin FIG. 2 and FIG. 3 show the test results obtained by conducting the adhesion test and examining the number of non-adhesion tests.
The epoxy resin used was a thermosetting type (trade name: NT600 manufactured by Nitto Denko Corporation) that does not contain a commercially available release agent.
 具体的には、まず、自動簡易成形試験機中の160℃に加熱したホットプレートに、2層の樹脂成膜基板を5分間放置した。その上に熱硬化型エポキシ樹脂(日東電工株式会社製NT-600)を塗布し(φ13×2mmのサイズ)、2分間加熱して、エポキシ樹脂を硬化させた。2分後ホットプレートから基板を下して、空冷した。 Specifically, first, the two-layer resin film-formed substrate was left for 5 minutes on a hot plate heated to 160 ° C. in an automatic simple molding tester. A thermosetting epoxy resin (NT-600 manufactured by Nitto Denko Corporation) was applied thereon (φ13 × 2 mm size) and heated for 2 minutes to cure the epoxy resin. After 2 minutes, the substrate was lowered from the hot plate and air-cooled.
 室温まで冷却された後に、上記自動簡易成形試験機により、剥離荷重を計測しながら成形試験を繰り返し行った。剥離荷重が0.2Nを超えた場合を接着として、被接着回数による離型性の耐久性試験を行った。
 その結果を図2及び図3に示す。
After cooling to room temperature, the molding test was repeated with the peel load measured by the automatic simple molding tester. The case where the peeling load exceeded 0.2 N was used as adhesion, and a durability test of releasability according to the number of adhesion was performed.
The results are shown in FIGS.
 図2及び図3より、上記(2)で改質樹脂を調製するにあたり、表面が加飾される樹脂50gあたり、トリアジンチオール化合物の溶液濃度を7.5g/l以上とすることで、金属表面に成膜した2層構造の樹脂成膜の耐久性が向上して、離型性に優れることがわかる。 From FIG. 2 and FIG. 3, in preparing the modified resin in the above (2), by setting the solution concentration of the triazine thiol compound to 7.5 g / l or more per 50 g of the resin to be decorated, the metal surface It can be seen that the durability of the two-layered resin film formed in this way is improved and the mold release property is excellent.
(実施例3~7、比較例4~8)
 上記(2)の改質樹脂粉末を調製するにあたり、電子線照射した4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)の粉末樹脂50gを浸漬する、上記化5に示すトリアジンチオール化合物(DAN)水溶液(140ml)の濃度を、1g/l(比較例4)、2.5g/l(比較例5)、5g/l(比較例6)、6g/l(実施例3)、7.5g/l(実施例4)、10g/l(実施例5)、12.5g/l(実施例6)、15g/l(実施例7)、20g/l(比較例7)、30g/l(比較例8)に種々変化させて改質樹脂粉末を調製した。
(Examples 3 to 7, Comparative Examples 4 to 8)
In preparing the modified resin powder of the above (2), a triazine thiol compound represented by the above chemical formula 5 (50 g) immersed in an electron beam irradiated powder resin of tetrafluoroethylene / hexafluorinated polypyrene copolymer (FEP) 6. DAN) aqueous solution (140 ml) concentration of 1 g / l (Comparative Example 4), 2.5 g / l (Comparative Example 5), 5 g / l (Comparative Example 6), 6 g / l (Example 3), 5 g / l (Example 4), 10 g / l (Example 5), 12.5 g / l (Example 6), 15 g / l (Example 7), 20 g / l (Comparative Example 7), 30 g / l Modified resin powder was prepared by variously changing to (Comparative Example 8).
 このようにして得られた種々の改質樹脂粉末を用いて、上記(1)のニッケル基板上に、上記(3)に示すようにして2層構造の樹脂膜を成膜した(図8(1)):但し、○はFEP樹脂を示す)。
 但し、改質樹脂による第1層の膜厚は、約16nmで、FEPによる第2層の膜厚は約17nmとし、全体の積層膜厚は約33nmとした。
Using the various modified resin powders thus obtained, a resin film having a two-layer structure was formed on the nickel substrate of (1) as shown in (3) above (FIG. 8 ( 1)): However, (circle) shows FEP resin).
However, the film thickness of the first layer made of the modified resin was about 16 nm, the film thickness of the second layer made of FEP was about 17 nm, and the total laminated film thickness was about 33 nm.
(比較例9:DAN層膜+FEP樹脂層膜)
 上記(1)で前処理したニッケル基板に、上記化5で示すDAN化合物(5.5g/l)と電解質であるNaNO化合物(7g/l)とが溶解した電解溶液を、電解セルに入れて、温度40度で15分間、0.8Vの条件で電解処理を行って、上記化5で示すDAN化合物を該ニッケル基板上に形成した。但し、電解処理において、電解液槽中、処理金属基板を陽極とし、対極を陰極とした。
 電解処理後、水で洗浄して未反応物を除き乾燥させた。
(Comparative Example 9: DAN layer film + FEP resin layer film)
An electrolytic solution in which the DAN compound (5.5 g / l) shown in Chemical Formula 5 and the NaNO 3 compound (7 g / l) as an electrolyte are dissolved in the nickel substrate pretreated in (1) above is placed in an electrolytic cell. Then, electrolytic treatment was carried out at a temperature of 40 ° C. for 15 minutes under the condition of 0.8 V to form the DAN compound represented by the chemical formula 5 on the nickel substrate. However, in the electrolytic treatment, the treated metal substrate was used as the anode and the counter electrode was used as the cathode in the electrolytic bath.
After the electrolytic treatment, it was washed with water to remove unreacted materials and dried.
 次いで、上記湿式の電解法にてニッケル基板上に形成したDAN化合物の第1膜上に、更に、4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)の粉末樹脂膜を、図1の真空蒸着装置を用いて、FEPを蒸着させて積層し、ニッケル基板上に2層積層構造の樹脂積層膜を成膜した(図8(2):但し、○はFEP樹脂を示す)。
 但し、DAN化合物による第1層の膜厚は、約5nmで、FEPによる第2層の膜厚と併せて全体の積層膜厚は約33nmとした。
Next, a powder resin film of tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP) is further formed on the first film of the DAN compound formed on the nickel substrate by the wet electrolysis method as shown in FIG. Using a vacuum vapor deposition apparatus, FEP was vapor deposited and laminated, and a resin laminated film having a two-layer laminated structure was formed on a nickel substrate (FIG. 8 (2): ◯ indicates FEP resin).
However, the thickness of the first layer made of the DAN compound was about 5 nm, and the total thickness of the laminated layer was about 33 nm together with the thickness of the second layer made of FEP.
(比較例10:FEP樹脂層膜単体)
 (1)で前処理したニッケル基板上に、改質樹脂粉末の第1層を設けることなく、4フッ化エチレン・6フッ化ポリピレン共重合体(FEP)の粉末樹脂膜を、図1の真空蒸着装置を用いて、FEPを蒸着させて、ニッケル基板上にFEPの単層構造の樹脂膜を成膜した(図8(3)):但し、○はFEP樹脂を示す)。
 但し、積層膜厚は約33nmとした。
(Comparative Example 10: FEP resin layer film alone)
The powder resin film of tetrafluoroethylene / hexafluoropolypyrene copolymer (FEP) is formed on the nickel substrate pretreated in (1) without providing the first layer of the modified resin powder. Using a vapor deposition apparatus, FEP was vapor-deposited, and a resin film having a single-layer structure of FEP was formed on a nickel substrate (FIG. 8 (3)), where ◯ represents FEP resin.
However, the laminated film thickness was about 33 nm.
(試験例2:耐久性試験)
 上記各実施例3~7及び比較例4~10で得られた樹脂成膜された各基板について、自動簡易成形試験機(エンジニアリング・システム(株)製 AIMT0101)を用いて、エポキシ樹脂により接着試験を行い、その被接着試験回数について調べた試験結果を、それぞれ図4~7に示す。
 エポキシ樹脂は市販の離型剤を含有しない熱硬化性タイプ(商品名:日東電工株式会社製 NT600)を用いた。
(Test Example 2: Durability test)
About each board | substrate with which the resin film was obtained in each said Examples 3-7 and Comparative Examples 4-10, it uses an automatic simple molding test machine (Engineering System Co., Ltd. AIMT0101), and an adhesion test by an epoxy resin 4 to 7 show the test results for the number of adhesion tests performed.
The epoxy resin used was a thermosetting type (trade name: NT600 manufactured by Nitto Denko Corporation) that does not contain a commercially available release agent.
 具体的には、まず、自動簡易成形試験機中の160℃に加熱したホットプレートに、2層の樹脂成膜基板を5分間放置した。その上に熱硬化型エポキシ樹脂(日東電工株式会社製NT-600)を塗布し(φ13×2mmのサイズ)、2分間加熱して、エポキシ樹脂を硬化させた。2分後ホットプレートから基板を下して、空冷した。 Specifically, first, the two-layer resin film-formed substrate was left for 5 minutes on a hot plate heated to 160 ° C. in an automatic simple molding tester. A thermosetting epoxy resin (NT-600 manufactured by Nitto Denko Corporation) was applied thereon (φ13 × 2 mm size) and heated for 2 minutes to cure the epoxy resin. After 2 minutes, the substrate was lowered from the hot plate and air-cooled.
 室温まで冷却された後に、上記自動簡易成形試験機により、剥離荷重を計測しながら成形試験を繰り返し行った。剥離荷重が0.2Nを超えた場合を接着として、被接着回数による離型性の耐久性試験を行った。
 その結果を図4~7に示す。
After cooling to room temperature, the molding test was repeated with the peel load measured by the automatic simple molding tester. The case where the peeling load exceeded 0.2 N was used as adhesion, and a durability test of releasability according to the number of adhesion was performed.
The results are shown in FIGS.
 図4~7より、上記(2)で改質樹脂を調製するにあたり、トリアジンチオール化合物溶液濃度(加飾濃度)を7.5g/l以上とすることで、金属表面に成膜した2層構造の樹脂成膜の耐久性が向上して(被接着回数が500回を超える)、離型性に優れることがわかる。 4 to 7, when preparing the modified resin in the above (2), the triazine thiol compound solution concentration (decoration concentration) is 7.5 g / l or more, thereby forming a two-layer structure on the metal surface. It can be seen that the durability of the resin film formation is improved (the number of adherends exceeds 500) and the mold release is excellent.
 本発明の金属表面の被膜形成方法により形成された金属表面の樹脂被膜は、耐久性が良好で、離型性にも優れるため、太陽電池用フィルム、電池電極フィルム、光学フィルム、細胞培養フィルム等の微細な形状を有する成形品の大量生産に適用することができる。 The resin coating on the metal surface formed by the method for forming a coating on the metal surface of the present invention has good durability and excellent releasability, so a film for solar cells, a battery electrode film, an optical film, a cell culture film, etc. The present invention can be applied to mass production of molded products having a fine shape.
 1  るつぼ
 2  ヒータ
 3  蒸着物質
 4  サブシャッター
 5  メインシャッター
 6  水晶振動子式膜厚計
 7  保持体
 8  ガス導入バルブ
 9  ランプヒーター
 10 室
 11 真空引きバルブ
 M  基板
DESCRIPTION OF SYMBOLS 1 Crucible 2 Heater 3 Vapor deposition material 4 Sub shutter 5 Main shutter 6 Quartz crystal type film thickness meter 7 Holder 8 Gas introduction valve 9 Lamp heater 10 Chamber 11 Vacuum drawing valve M Substrate

Claims (6)

  1.  樹脂表面に量子ビームを照射し、次いで、次の化1又は化2で表わされるトリアジンチオール誘導体が5g/lを超えて13g/l以下の濃度で溶解した溶液に、量子ビームが照射された樹脂を浸漬させることにより、樹脂の表面が前記トリアジンチオール誘導体で加飾された改質樹脂を調製し、該改質樹脂を、金属表面上に真空蒸着法によって成膜して改質樹脂膜を形成し、次いで、改質樹脂膜上に、更に、樹脂を真空蒸着法によって成膜して樹脂膜を形成して積層樹脂層を設けることを特徴とする、金属表面の被膜形成方法。
    Figure JPOXMLDOC01-appb-I000001
     (ただし、R1は、アルキン(-CH=CH-)又はアルケン(-C≡C-)、R2は、-C2m+1(mは1~18までの整数)、-C2m-1(mは1~18までの整数)又はCH=CH(CHCOOCHCH-(mは1~10までの整数)であり、M1又はM2は、Hもしくはアルカリ金属を示す。)
    Figure JPOXMLDOC01-appb-I000002
     (ただし、M1、M2、M3は、Hもしくはアルカリ金属を示す。)
    The resin surface was irradiated with a quantum beam, and then the resin in which the triazine thiol derivative represented by the following chemical formula 1 or chemical formula 2 was dissolved at a concentration of more than 5 g / l and not more than 13 g / l was irradiated with the quantum beam. To prepare a modified resin whose resin surface is decorated with the triazine thiol derivative, and form the modified resin film on the metal surface by vacuum deposition. Then, a method for forming a coating film on a metal surface, further comprising forming a resin film by forming a resin film on the modified resin film by a vacuum deposition method to form a laminated resin layer.
    Figure JPOXMLDOC01-appb-I000001
    (Where R1 is alkyne (—CH═CH—) or alkene (—C≡C—), R2 is —C m H 2m + 1 (m is an integer from 1 to 18), —C m H 2m−1 (M is an integer from 1 to 18) or CH 2 ═CH (CH 2 ) m COOCH 2 CH 2 — (m is an integer from 1 to 10), and M1 or M2 represents H or an alkali metal. )
    Figure JPOXMLDOC01-appb-I000002
    (However, M1, M2, and M3 represent H or an alkali metal.)
  2.  請求項1記載の金属表面の被膜形成方法において、樹脂は含フッ素有機化合物であり、該含フッ素有機化合物は、分子内にアミノ基(-NH)、アミド基(-CONH)もしくは不飽和結合を有することを特徴とする、金属表面の被膜形成方法。 2. The method for forming a coating on a metal surface according to claim 1, wherein the resin is a fluorine-containing organic compound, and the fluorine-containing organic compound has an amino group (—NH 2 ), an amide group (—CONH 2 ) or an unsaturated group in the molecule. A method for forming a coating on a metal surface, comprising bonding.
  3.  請求項1又は2記載の金属表面の被膜形成方法において、改質樹脂膜の上に形成される樹脂膜の樹脂は、トリアジンチオール誘導体で加飾するのに用いた樹脂と同じ樹脂であることを特徴とする、金属表面の被膜形成方法。 3. The method for forming a coating on a metal surface according to claim 1, wherein the resin of the resin film formed on the modified resin film is the same resin as that used for decorating with the triazine thiol derivative. A method for forming a coating on a metal surface, which is characterized.
  4.  請求項1乃至3いずれかの項記載の金属表面の被膜形成方法において、表面が加飾される樹脂とトリアジンチオール誘導体とは、トリアジンチオール誘導体が5g/lを超えて13g/l以下の濃度で溶解した溶液140mlに対して、量子ビームが照射された樹脂を50gの割合となるようにすることを特徴とする、金属表面の被膜形成方法。 The method for forming a coating on a metal surface according to any one of claims 1 to 3, wherein the resin and the triazine thiol derivative whose surface is decorated have a concentration of the triazine thiol derivative exceeding 5 g / l and not more than 13 g / l. A method for forming a coating on a metal surface, wherein the amount of resin irradiated with a quantum beam is 50 g with respect to 140 ml of a dissolved solution.
  5.  請求項1乃至4いずれかの項記載の金属表面の処理方法において、前記溶液は、水又は水にシクロヘキサン、ベンゼン、4塩化炭素、ジエチルエーテルから成る群の少なくとも1種を混合した溶液を溶媒として、トリアジンチオール誘導体を溶解させた溶液で、当該溶液を10~45℃とし、該溶液に樹脂を8時間以上浸漬することを特徴とする、金属表面の被膜形成方法。 5. The method for treating a metal surface according to claim 1, wherein the solution is water or a solution obtained by mixing at least one member selected from the group consisting of cyclohexane, benzene, carbon tetrachloride, and diethyl ether in water. A method for forming a film on a metal surface, comprising: dissolving a triazine thiol derivative at a temperature of 10 to 45 ° C. and immersing the resin in the solution for 8 hours or more.
  6.  請求項1乃至5いずれかの項記載の金属表面の被膜形成方法において、真空蒸着は、金属基板を予め加熱して実施することを特徴とする、金属表面の被膜形成方法。 6. The method for forming a coating on a metal surface according to claim 1, wherein the vacuum deposition is performed by heating a metal substrate in advance.
PCT/JP2017/012822 2016-03-31 2017-03-29 Method for forming film on metal surface WO2017170646A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187030110A KR102032078B1 (en) 2016-03-31 2017-03-29 Method of forming film on metal surface
CN201780020283.8A CN108884554B (en) 2016-03-31 2017-03-29 The film formation method of metal surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-072635 2016-03-31
JP2016072635A JP6562402B2 (en) 2016-03-31 2016-03-31 Method for forming coating on metal surface

Publications (1)

Publication Number Publication Date
WO2017170646A1 true WO2017170646A1 (en) 2017-10-05

Family

ID=59965834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012822 WO2017170646A1 (en) 2016-03-31 2017-03-29 Method for forming film on metal surface

Country Status (5)

Country Link
JP (1) JP6562402B2 (en)
KR (1) KR102032078B1 (en)
CN (1) CN108884554B (en)
TW (1) TWI750159B (en)
WO (1) WO2017170646A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274296A (en) * 2005-03-28 2006-10-12 Iwate Industrial Research Center Metal surface treatment method
JP2008246992A (en) * 2007-03-30 2008-10-16 Iwate Industrial Research Center Metal-surface film formation method, and film obtained by the method
JP2009226329A (en) * 2008-03-24 2009-10-08 Iwate Industrial Research Center Method for forming resin coated film, and solid having resin coated film
JP2009227857A (en) * 2008-03-24 2009-10-08 Iwate Industrial Research Center Method for modifying resin surface, and surface-modified resin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140626A (en) 1997-09-01 1999-05-25 Kunio Mori Forming method of triazine dithiol derivative film and polymerizing method of film component
JP2002542392A (en) 1999-04-15 2002-12-10 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Release coatings, their production and use
JP2004014584A (en) * 2002-06-04 2004-01-15 T & K:Kk Surface-treated metallic plate
JP2004009340A (en) 2002-06-04 2004-01-15 T & K:Kk Metal mask and its producing process
CN101531080A (en) * 2004-05-27 2009-09-16 三菱树脂株式会社 Mold releasing laminated film
CN101087687B (en) * 2004-10-29 2011-11-16 大日本印刷株式会社 Laminated products and secondary battery
CN103038390B (en) * 2010-10-04 2015-01-07 森邦夫 Process for forming metal film, and product equipped with metal film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274296A (en) * 2005-03-28 2006-10-12 Iwate Industrial Research Center Metal surface treatment method
JP2008246992A (en) * 2007-03-30 2008-10-16 Iwate Industrial Research Center Metal-surface film formation method, and film obtained by the method
JP2009226329A (en) * 2008-03-24 2009-10-08 Iwate Industrial Research Center Method for forming resin coated film, and solid having resin coated film
JP2009227857A (en) * 2008-03-24 2009-10-08 Iwate Industrial Research Center Method for modifying resin surface, and surface-modified resin

Also Published As

Publication number Publication date
TW201807224A (en) 2018-03-01
TWI750159B (en) 2021-12-21
KR102032078B1 (en) 2019-10-14
CN108884554B (en) 2019-07-12
JP2017179552A (en) 2017-10-05
JP6562402B2 (en) 2019-08-21
KR20180119685A (en) 2018-11-02
CN108884554A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
US9849483B2 (en) Methods for coating articles
KR101331521B1 (en) Method for manufacturing graphene thin film
Abu-Thabit et al. Fundamental of smart coatings and thin films: Synthesis, deposition methods, and industrial applications
Li et al. Thin film deposition technologies and processing of biomaterials
JP6360043B2 (en) Structure having DLC layer and method for generating DLC layer
Shelemin et al. Preparation of biomimetic nano-structured films with multi-scale roughness
JP4059480B2 (en) Laminated body and method for producing the same
Han et al. Development of superhydrophobic surface on glass substrate by multi-step atmospheric pressure plasma treatment
Nikiforov et al. Plasma technology in antimicrobial surface engineering
JP6562402B2 (en) Method for forming coating on metal surface
Grytsenko et al. Protective applications of vacuum-deposited perfluoropolymer films
JP7095276B2 (en) Fluororesin coating and its manufacturing method
JP4567019B2 (en) Metal surface film forming method
JP2012228786A (en) Gas barrier film, and method for manufacturing the same
JP7131885B2 (en) Polyparaxylylene vapor deposition method and vapor deposition body
Chung et al. Self-assembled perpendicular growth of organic nanoneedles via simple vapor-phase deposition: one-step fabrication of a superhydrophobic surface
Kuroki et al. Nonthermal Plasma Hybrid Process for Preparation of Organic Electroluminescence Fluoropolymer Film Devices
Khaleel et al. Surface modifications of high density polycarbonate by argon plasma
JP7078178B2 (en) Fluororesin coating and its manufacturing method
JPH0649244A (en) Surface-modified fluororesin molding and its production
İpek et al. Rare Earth Element Doped ZnO Thin Films and Applications
Gytsenko et al. Polymeric dye film deposition in vacuum
Cho et al. Surface modification of polymers by ion-assisted
Mesnage et al. Graftfast©: Towards the Control of Surface Properties of any Type of Materials by the Grafting of Polymers
Artemenko XPS analysis of plasma polymers and nanocomposite films without breaking vacuum

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187030110

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775183

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775183

Country of ref document: EP

Kind code of ref document: A1