JPH11140626A - Forming method of triazine dithiol derivative film and polymerizing method of film component - Google Patents
Forming method of triazine dithiol derivative film and polymerizing method of film componentInfo
- Publication number
- JPH11140626A JPH11140626A JP10230026A JP23002698A JPH11140626A JP H11140626 A JPH11140626 A JP H11140626A JP 10230026 A JP10230026 A JP 10230026A JP 23002698 A JP23002698 A JP 23002698A JP H11140626 A JPH11140626 A JP H11140626A
- Authority
- JP
- Japan
- Prior art keywords
- film
- triazinedithiol
- property
- coo
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Paints Or Removers (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は真空蒸着法やスパッ
タ−法により固体表面にトリアジンジチオ−ル誘導体の
被膜を生成させる方法、ならびにその被膜成分を重合す
る方法に関する。The present invention relates to a method for forming a film of a triazinedithiol derivative on a solid surface by a vacuum evaporation method or a sputtering method, and a method for polymerizing the film component.
【0002】[0002]
【従来の技術】本発明者らはさきに本発明で使用される
ごときトリアジンチオ−ル誘導体を合成し、金属表面上
に浸漬法や電解重合法およびトライボ重合法により、そ
の重合体からなる機能性薄膜を生成させることに成功し
ているが〔実務表面処理技術:35、595(198
8)、化学工業:42、1005(1991)、特開平
6−322595号など〕、これらはいずれも湿式法に
よる薄膜生成技術であり、これにともなう排水処理や対
象となる固体の種類に限界があった。BACKGROUND OF THE INVENTION The present inventors have previously synthesized a triazinethiol derivative as used in the present invention, and have a function comprising the polymer by immersion, electrolytic polymerization and tribopolymerization on a metal surface. Although it succeeded in producing a functional thin film, [Practical surface treatment technology: 35, 595 (198)
8), Chemical Industry: 42, 1005 (1991), JP-A-6-322595, etc.], all of which are thin film generation techniques by a wet method, and there is a limit to the wastewater treatment and the type of solid to be processed. there were.
【0003】[0003]
【発明が解決しようとする課題】本発明は金属表面のみ
ならず、ガラスなどのセラミックスやプラスチックスな
どの固体表面にトリアジンジチオ−ルにもとづく薄膜を
効果的に生成させ、かかる固体表面の非汚染性、非粘着
性、離型性、防曇性、潤滑性、接着性、塗装性および氷
結防止性等の性能向上をはかることを目的とするもので
ある。SUMMARY OF THE INVENTION The present invention effectively forms a triazinedithiol-based thin film not only on a metal surface but also on a solid surface such as ceramics such as glass or plastics, so that such a solid surface is not contaminated. The purpose of the present invention is to improve the performance such as adhesiveness, non-adhesiveness, releasability, anti-fogging property, lubricity, adhesiveness, paintability and anti-icing property.
【0004】[0004]
【課題を解決するための手段】ここにおいて本発明者ら
は、一般式Here, the present inventors have made the general formula
【0005】[0005]
【化1】Embedded image
【0006】〔式中、R1 、R2 はH、CH3 、C2 H
5 、C4 H9 、C6 H13、C8 H17、C10H21、C12H
25、C18H37、C20H41、C22H45、C24H49、CH2
=CHCH2 、CH2 =CH(CH2 )8 、CH2 =C
H(CH2 )9 、C8 H17CH2 =CHC8 H16、C6
H11、C6 H5 、C6 H5 CH2 、C6 H5 CH2 CH
2 、CH2 =CH(CH2 )4 COOCH2 CH2 、C
H2 =CH(CH2 )8COOCH2 CH2 、CH2 =
CH(CH2 )9 COOCH2 CH2 、CF3 C
6 H4 、C4 F9 C6 H4 、C6 F13C6 H4 、C8 F
17C6 H4 、C10F21C6 H4 、C6 F11OC6 H4 、
C9 F17OC6 H4 、C4 F9 CH2 、C6 F13C
H2 、C8 F17CH2 、C10F21CH2 、C4 FCH2
CH2 、C6 F13CH2 CH2 、C8 F1 CH2 C
H2 、C10F21CH2 CH2 、C4 F9 CH2 =CHC
H2 、C6 F13CH2 =CHCH2 、C8 F1 CH2 =
CHCH2 、C10F21CH2 =CHCH2 、C4 F9 C
H2 CH(OH)CH2 、C6 F13CH2 CH(OH)
CH2 、C8 F1 CH2 CH(OH)CH2 、C10F21
CH2 CH(OH)CH2 、CH2 =CH(CH2 )4
COO(CH2 CH2 )2 、CH2 =CH(CH2 )8
COO(CH2 CH2 )2 、CH2 =CH(CH2 )9
COO(CH2 CH2 )2 、C4 F9 COO(CH2 C
H2 )2 、C6 F13COO(CH2 CH2 )2 、C8 F
17COO(CH2 CH2 )2 、C10F21COO(CH2
CH2 )2 をさすが、R2 はこの中でC6 F11OC6 H
4 とC9 F17OC6 H4を含まない。またMはHおよび
Li、Na、K、Ceなどのアルカリ金属をさす。〕で
示されるトリアジンジチオ−ル誘導体の1種または2種
以上のそれぞれからなる各層の薄膜を蒸着あるいはスパ
ッタ−法により固体表面に生成させることを見出し、さ
らに、この方法により生成したトリアジンジチオ−ル誘
導体の被膜の成分を熱重合法、紫外線照射法および電解
重合法のいずれかにより単独または共重合させる方法を
見出すにいたった。[Wherein R 1 and R 2 are H, CH 3 , C 2 H
5, C 4 H 9, C 6 H 13, C 8 H 17, C 10 H 21, C 12 H
25, C 18 H 37, C 20 H 41, C 22 H 45, C 24 H 49, CH 2
CHCHCH 2 , CH 2 CHCH (CH 2 ) 8 , CH 2 CC
H (CH 2 ) 9 , C 8 H 17 CH 2 CHCHC 8 H 16 , C 6
H 11, C 6 H 5, C 6 H 5 CH 2, C 6 H 5 CH 2 CH
2 , CH 2 CHCH (CH 2 ) 4 COOCH 2 CH 2 , C
H 2 CHCH (CH 2 ) 8 COOCH 2 CH 2 , CH 2
CH (CH 2 ) 9 COOCH 2 CH 2 , CF 3 C
6 H 4 , C 4 F 9 C 6 H 4 , C 6 F 13 C 6 H 4 , C 8 F
17 C 6 H 4 , C 10 F 21 C 6 H 4 , C 6 F 11 OC 6 H 4 ,
C 9 F 17 OC 6 H 4 , C 4 F 9 CH 2 , C 6 F 13 C
H 2 , C 8 F 17 CH 2 , C 10 F 21 CH 2 , C 4 FCH 2
CH 2 , C 6 F 13 CH 2 CH 2 , C 8 F 1 CH 2 C
H 2, C 10 F 21 CH 2 CH 2, C 4 F 9 CH 2 = CHC
H 2 , C 6 F 13 CH 2 CHCHCH 2 , C 8 F 1 CH 2 =
CHCH 2 , C 10 F 21 CH 2 CHCHCH 2 , C 4 F 9 C
H 2 CH (OH) CH 2 , C 6 F 13 CH 2 CH (OH)
CH 2 , C 8 F 1 CH 2 CH (OH) CH 2 , C 10 F 21
CH 2 CH (OH) CH 2 , CH 2 CHCH (CH 2 ) 4
COO (CH 2 CH 2 ) 2 , CH 2 CHCH (CH 2 ) 8
COO (CH 2 CH 2 ) 2 , CH 2 CHCH (CH 2 ) 9
COO (CH 2 CH 2 ) 2 , C 4 F 9 COO (CH 2 C
H 2 ) 2 , C 6 F 13 COO (CH 2 CH 2 ) 2 , C 8 F
17 COO (CH 2 CH 2 ) 2 , C 10 F 21 COO (CH 2
CH 2 ) 2 , where R 2 is C 6 F 11 OC 6 H
4 and does not include C 9 F 17 OC 6 H 4 . M represents H and an alkali metal such as Li, Na, K, and Ce. ] It has been found that a thin film of each layer composed of one or more of the triazinedithiol derivatives represented by the formula (1) is formed on a solid surface by vapor deposition or sputtering. They have found a method of homo- or copolymerizing the components of the derivative coating by any one of thermal polymerization, ultraviolet irradiation and electrolytic polymerization.
【0007】[0007]
【発明の実施の形態】機能性トリアジンジチオ−ル誘導
体は前記報告の方法で合成することができる。これらを
用い、真空蒸着法あるいはスパッタ−法により、固体表
面に低分子薄膜を形成させ、さらに、これを酸素存在
下、熱または紫外線照射下で、線状または三次元重合反
応を起こさせ、高分子薄膜に変化させる。DESCRIPTION OF THE PREFERRED EMBODIMENTS A functional triazinedithiol derivative can be synthesized by the method described above. Using these, a low molecular weight thin film is formed on the solid surface by a vacuum deposition method or a sputtering method, and further, a linear or three-dimensional polymerization reaction is caused in the presence of oxygen and under heat or ultraviolet irradiation to obtain a high molecular weight thin film. Change to molecular thin film.
【0008】〔固体表面〕固体表面とは、鉄、鋳鉄、お
よびステンレス、パ−マロイ、銅、黄銅、リン青銅、ニ
ッケル、キュプロニッケル、錫、鉛、コバルト、半田、
チタン、アルミニウム、クロム、金、銀、白金、パラジ
ウム、亜鉛などの金属表面とこれらの酸化物表面、リン
酸塩処理金属表面、クロム酸塩処理金属表面、シリコン
表面、カ−ボン表面、化合物半導体表面、酸化アルミナ
セラミックス表面、陶器表面、ガラス表面、石英ガラス
表面、超電導体セラミックス表面、木材表面、紙表面、
プラスチックス表面、エンジニアリングプラスチックス
表面、熱硬化性樹脂表面など何でも可能である。[Solid Surface] Solid surfaces include iron, cast iron, stainless steel, permalloy, copper, brass, phosphor bronze, nickel, cupronickel, tin, lead, cobalt, solder,
Metal surfaces such as titanium, aluminum, chromium, gold, silver, platinum, palladium, zinc and their oxide surfaces, phosphate treated metal surfaces, chromate treated metal surfaces, silicon surfaces, carbon surfaces, compound semiconductors Surface, alumina oxide ceramic surface, pottery surface, glass surface, quartz glass surface, superconductor ceramic surface, wood surface, paper surface,
Anything is possible, such as plastics surface, engineering plastics surface, thermosetting resin surface.
【0009】〔真空蒸着法〕真空蒸着法に用いる装置
は、例えば、図1に示されるようなモノマ−4であるト
リアジンジチオ−ル誘導体の入ったボックスとヒ−タ−
1、蒸着する固体および蒸着した被膜の厚さを計る膜厚
計2からなり、これに真空ポンプ(図示省略)が連結し
ている。真空蒸着法は真空中で薄膜にしようとする物質
を加熱蒸発させ、これをある面に付着させるという過程
である。したがって、この方法に必要な基本的な装置は
真空装置、加熱装置(蒸発源)および付着面(基板面)
である。電離真空計を用いて装置内を一定の真空度に調
整後、蒸発源のヒ−タ−1を加熱してモノマ−4を気化
させる。このとき、蒸発源と基板3との間にあるシャッ
タ−5は閉じておく。モノマ−4が気化していることを
水晶振動子膜厚計2により確認したならば、蒸発速度を
予定の値に調整し、整ったところでシャッタ−5を開
き、蒸発を開始する。目的の膜厚になったならば、シャ
ッタ−5を閉じて、蒸発源の加熱をやめる。そして、ヒ
−タ−1が充分に冷えたところで、大気ベントをおこな
い、基板3を取り出す。真空度は一般に1.0〜1.0
×10-6〔Pa〕、望ましくは、1.0×10-1〜1.
0×10-4〔Pa〕である。ヒ−タ−1の温度は室温か
ら250°C、望ましくは、50〜200°Cである
が、トリアジンジチオ−ルの分子量および真空度とヒ−
タ−温度との兼ね合いで最適な蒸着条件が決まり、一義
的に定めることはできない。一般に緻密な被膜を形成さ
せるためには低速で蒸着することが必要である。被膜の
成長速度は真空度が高いほど、ヒ−タ−温度が高いほ
ど、また分子量や凝集力が低いほど高くなる。被膜の成
長速度や被膜密度は目的に応じて決めることができる。[Vacuum Vapor Deposition Method] An apparatus used for the vacuum vapor deposition method is, for example, a box containing a triazinedithiol derivative as a monomer-4 as shown in FIG. 1 and a heater.
1, a solid film to be deposited and a film thickness meter 2 for measuring the thickness of the deposited film, to which a vacuum pump (not shown) is connected. The vacuum deposition method is a process in which a substance to be formed into a thin film is heated and evaporated in a vacuum, and the thin film is attached to a certain surface. Therefore, the basic equipment required for this method is a vacuum device, a heating device (evaporation source) and an adhesion surface (substrate surface).
It is. After adjusting the inside of the apparatus to a certain degree of vacuum using an ionization vacuum gauge, the heater-1 of the evaporation source is heated to vaporize the monomer-4. At this time, the shutter 5 between the evaporation source and the substrate 3 is closed. If it is confirmed by the crystal oscillator film thickness meter 2 that the monomer-4 is vaporized, the evaporation rate is adjusted to a predetermined value, and when it is set, the shutter 5 is opened to start evaporation. When the desired film thickness is reached, the shutter 5 is closed and the heating of the evaporation source is stopped. Then, when the heater-1 is sufficiently cooled, air venting is performed, and the substrate 3 is taken out. The degree of vacuum is generally 1.0 to 1.0
× 10 -6 [Pa], desirably 1.0 × 10 -1 to 1.
It is 0 × 10 −4 [Pa]. The temperature of the heater-1 is from room temperature to 250 ° C., preferably 50 to 200 ° C., but the molecular weight and the degree of vacuum of triazinedithiol and the heat
The optimum deposition conditions are determined in consideration of the temperature and cannot be uniquely determined. Generally, it is necessary to deposit at a low speed in order to form a dense film. The film growth rate increases as the degree of vacuum increases, as the heater temperature increases, and as the molecular weight and cohesive force decrease. The film growth rate and the film density can be determined according to the purpose.
【0010】〔スパッタ−法〕スパッタ−法とは、例え
ば図2に示されるようなスパッタ−装置(RE RMC
−Eiko Corp.)を用いて、真空下で固体表面
にトリアジンジチオ−ル薄膜を形成させる方法である。
スパッタ−装置は真空ポンプ(図示省略)、タ−ゲット
6(陰極)および試料台7(陽極)上の基板3からな
る。トリアジンジチオ−ルとエタノ−ルなどの有機溶剤
を混合して、適当な流動性のときタ−ゲット6上に保持
する。室温で溶剤を自然蒸発により蒸発させて、トリア
ジンジチオ−ルのタ−ゲット6を作成する。10-1〜
1.0×10-3〔Torr〕の真空下、望ましくは5×
10-1〜5×10-2〔Torr〕で直流電流を0.1m
A〜10mA流しておこなう。このとき放電が起こり、
タ−ゲット6の分子が飛び、基板3に積層する。陰極の
タ−ゲット温度を調整するために、タ−ゲット6に冷却
水を流すこともできる。トリアジンジチオ−ルの分子量
や凝集力が低いほど、電流値が高いほど被膜成長速度が
高い。電流値を高くしすぎると、トリアジンジチオ−ル
の分解が起こり、均一な被膜成長が起こらない。[Sputtering method] The sputtering method refers to, for example, a sputtering apparatus (RE RMC shown in FIG. 2).
-Eiko Corp. ) Is to form a triazinedithiol thin film on a solid surface under vacuum.
The sputtering apparatus comprises a vacuum pump (not shown), a target 6 (cathode) and a substrate 3 on a sample stage 7 (anode). An organic solvent, such as triazinedithiol and ethanol, is mixed and held on target 6 at the appropriate fluidity. At room temperature, the solvent is evaporated by spontaneous evaporation to form the target 6 of triazinedithiol. 10 -1 ~
Under a vacuum of 1.0 × 10 −3 [Torr], desirably 5 ×
DC current of 0.1 m at 10 -1 to 5 × 10 -2 [Torr]
A to 10 mA is applied. Discharge occurs at this time,
The molecules of the target 6 fly and are stacked on the substrate 3. In order to adjust the target temperature of the cathode, cooling water can be supplied to the target 6. The lower the molecular weight and cohesion of triazinedithiol, the higher the current value, the higher the film growth rate. If the current value is too high, decomposition of triazinedithiol occurs, and uniform film growth does not occur.
【0011】〔トリアジンジチオ−ル被膜成分の重合〕
真空蒸着法やスパッタ−法により形成されたトリアジン
ジチオ−ル被膜の成分は熱重合法、紫外線照射法および
電解重合法により、線状または三次元重合体の被膜に変
化させることができる。[Polymerization of triazinedithiol film component]
The components of the triazinedithiol film formed by a vacuum deposition method or a sputtering method can be changed to a linear or three-dimensional polymer film by a thermal polymerization method, an ultraviolet irradiation method, or an electrolytic polymerization method.
【0012】〔熱重合法〕熱重合法は一般にトリアジン
ジチオ−ル誘導体が積層された固体を空気中または酸素
中で加熱することによっておこなわれる。加熱温度は5
0°C〜250°Cである。50°C以下では重合しな
いか、または重合に時間がかかりすぎて実用的でない。
また250°C以上ではトリアジンジチオ−ル誘導体が
輝散したり、分解して目的の重合被膜が生成しない場合
がある。望ましくは80°C〜200°Cである。加熱
時間は1秒〜120分間である。1秒以下では重合が不
充分であり、120分以上では実用上生産性が劣るとい
う問題がある。望ましくは5分から60分間である。重
合雰囲気は一般に空気中でおこなうが、重合しにくい場
合は酸素中でおこない、さらに重合しにくく揮発しやす
い場合には、加圧酸素中での重合も有効である。また、
フッ素化合物は揮発しやすいので、重合時には空気加圧
下または酸素加圧下でおこなうと熱重合する場合もあ
る。このときの圧力は大気圧の1気圧以上である必要が
あるが、容器の耐圧性の問題もあり、1〜20気圧程度
が望ましい。[Thermal polymerization method] The thermal polymerization method is generally carried out by heating a solid having a triazinedithiol derivative laminated thereon in the air or oxygen. Heating temperature is 5
0 ° C to 250 ° C. If the temperature is lower than 50 ° C., the polymerization is not carried out, or the polymerization takes too much time, which is not practical.
At 250 ° C. or higher, the triazinedithiol derivative may scatter or decompose to form no desired polymer film. Desirably, it is 80 ° C to 200 ° C. The heating time is from 1 second to 120 minutes. If the time is less than 1 second, the polymerization is insufficient, and if it is more than 120 minutes, there is a problem that the productivity is practically inferior. Desirably, it is 5 minutes to 60 minutes. The polymerization is generally carried out in air, but when polymerization is difficult, it is carried out in oxygen. When it is difficult to polymerize and it is easy to volatilize, polymerization in pressurized oxygen is also effective. Also,
Since a fluorine compound is easily volatilized, thermal polymerization may be carried out when the polymerization is performed under air pressure or oxygen pressure during polymerization. At this time, the pressure needs to be 1 atm or more of the atmospheric pressure, but there is also a problem with the pressure resistance of the container.
【0013】〔紫外線照射法〕紫外線重合はトリアジン
ジチオ−ル誘導体が積層された固体表面に空気中で、2
00nm〜450nmの波長を有する光を照射して比較
的高速でおこなう。雰囲気の温度は0°C〜100°C
である。0°C以下では重合速度が遅すぎて実用的でな
く、また100°C以上では分解などの副反応を併発す
る。望ましくは20°C〜60°Cである。照射時間は
0.01秒〜60分間である。0.01秒以下では重合
が不充分であり、また60分間以上では重合速度が遅す
ぎて実用的でない。光源はキセノンランプや水銀灯を使
用することができる。[Ultraviolet irradiation method] Ultraviolet polymerization is carried out in air on a solid surface on which a triazinedithiol derivative is laminated.
Irradiation with light having a wavelength of 00 nm to 450 nm is performed at a relatively high speed. Atmosphere temperature is 0 ° C ~ 100 ° C
It is. At 0 ° C or lower, the polymerization rate is too slow to be practical, and at 100 ° C or higher, side reactions such as decomposition occur simultaneously. Desirably, it is 20 ° C to 60 ° C. The irradiation time is 0.01 seconds to 60 minutes. If it is less than 0.01 second, the polymerization is insufficient, and if it is more than 60 minutes, the polymerization rate is too slow to be practical. As a light source, a xenon lamp or a mercury lamp can be used.
【0014】〔電解重合法〕電解重合法については本発
明者らによる特許第1,840,482号にも示してい
るが、電解重合法は、電解質を含むトリアジンジチオ−
ル誘導体の水または有機溶液に処理金属を陽極とし、白
金やステンレス板を陰極として、サイクリック法、定電
流法、定電位法、パルス定電位法およびパルス定電流法
(以下、二者をパルス法という)等の電解法によって、
金属または導電体表面に三次元化されたパ−フロロ基含
有トリアジンジチオ−ルポリマ−の被膜を生成させる方
法である。ここで云う金属とは、導電性ある金属であれ
ば何でもよく、鉄および鉄合金(ステンレス、パ−マロ
イなど)、銅および銅合金、ニッケル、金、銀、プラチ
ナ、白金、コバルト、アルミニウム、亜鉛、鉛、錫およ
び錫合金、チタン、クロムなどをあげることができる。
導電体とは導電性被膜、ITO、カ−ボン、導電性ゴ
ム、有機導電体等である。電解質は溶剤に溶解し、通電
性を発揮し、かつ安定であれば何でもよいが、一般にN
aOH、Na2 CO3 、Na2 SO4 、K2SO3 、N
a2 SO3 、K2 CO3 、NaNO2 、KNO2 、Na
NO3 、NaClO4 、CH3 COONa、Na2 B2
O7 、 NaH2 PO2 、(NaPO3)6 、Na2 Mo
O4 、Na3 SiO3 等をあげることができる。これら
の濃度は一般に0.001M〜1M、望ましくは0.0
1M〜0.1Mの範囲である。溶剤は電解質とパ−フロ
ロ基含有トリアジンジチオ−ル誘導体を同時に溶解する
ものが望ましく、その組合わせは限定できないので、溶
剤を特定できないが、たとえば、水、メタノ−ル、エタ
ノ−ル、カルビト−ル、セルソルブ、ジメチルホルムア
ミド、メチルピロリドン、アクリルニトリル、エチレン
カ−ボナイトなどをあげることができる。不飽和基とパ
−フロロ基含有トリアジンジチオ−ル誘導体の濃度は
0.01mmol/L〜100mmol/L、望ましく
は0.1mmol/L〜10mmol/Lである。電解
液の温度は溶剤の凝固点や沸点と関係するので一義的に
特定できないが、たとえば、水溶液では1°C〜99°
C、好ましくは20°C〜80°Cである。対極(陰
極)材料は電解溶液と反応したり、導電性の著しく低い
ものでない限り、何でもよいが、一般にステンレス、白
金、カ−ボン等の不導電体が使用される。[Electropolymerization Method] The electropolymerization method is disclosed in Japanese Patent No. 1,840,482 by the present inventors.
Water or an organic solution of the derivative is treated with a metal as an anode, a platinum or stainless steel plate as a cathode, a cyclic method, a galvanostatic method, a galvanostatic method, a pulse galvanostatic method, and a pulse galvanostatic method. Method).
In this method, a three-dimensional perfluoro group-containing triazinedithiol polymer film is formed on a metal or conductor surface. The metal referred to herein may be any conductive metal, such as iron and iron alloys (stainless steel, permalloy, etc.), copper and copper alloys, nickel, gold, silver, platinum, platinum, cobalt, aluminum, zinc , Lead, tin and tin alloys, titanium, chromium, and the like.
The conductor is a conductive film, ITO, carbon, conductive rubber, an organic conductor, or the like. The electrolyte may be anything as long as it is dissolved in a solvent, exhibits electrical conductivity, and is stable.
aOH, Na 2 CO 3 , Na 2 SO 4 , K 2 SO 3 , N
a 2 SO 3 , K 2 CO 3 , NaNO 2 , KNO 2 , Na
NO 3 , NaClO 4 , CH 3 COONa, Na 2 B 2
O 7, NaH 2 PO 2 , (NaPO 3 ) 6 , Na 2 Mo
O 4 , Na 3 SiO 3 and the like can be mentioned. These concentrations are generally between 0.001M and 1M, preferably 0.01M.
It is in the range of 1M to 0.1M. It is desirable that the solvent simultaneously dissolves the electrolyte and the perfluoro group-containing triazinedithiol derivative, and the combination thereof cannot be limited. Therefore, the solvent cannot be specified. For example, water, methanol, ethanol, and carbitol , Cellsolve, dimethylformamide, methylpyrrolidone, acrylonitrile, ethylene carbonate and the like. The concentration of the triazinedithiol derivative containing an unsaturated group and a perfluoro group is 0.01 mmol / L to 100 mmol / L, preferably 0.1 mmol / L to 10 mmol / L. The temperature of the electrolytic solution cannot be uniquely specified because it is related to the freezing point and boiling point of the solvent.
C, preferably 20 ° C to 80 ° C. The counter electrode (cathode) material may be any material as long as it does not react with the electrolytic solution or has a remarkably low conductivity. In general, a non-conductive material such as stainless steel, platinum, and carbon is used.
【0015】〔サイクリック法〕サイクリック法は電位
幅が溶剤の分解しない範囲でおこなわれる。この範囲は
溶剤や電解質の種類等の影響を受けるので一義的に限定
できない。[Cyclic method] The cyclic method is performed in a range where the potential width does not decompose the solvent. This range cannot be uniquely limited because it is affected by the type of the solvent and the electrolyte.
【0016】〔定電位法、定電流法、パルス法〕定電位
法は−0.5〜2VvsCES、好ましくは自然電位か
ら酸化電位の範囲である。自然電位以下では全く重合し
ないし、酸化電位以上では溶剤の分解が起こる危険性が
ある。定電流法において電流密度は0.005〜50m
A/cm2 、好ましくは0.05〜5mA/cm2 が適
当である。0.05mA/cm2より少ないと、被膜成
長に時間がかかりすぎる。また5mA/cm2 より大き
いと、被膜に亀裂が生成したり、金属の溶出がみられ好
ましくない。パルス法における電解電位および電解電流
密度は上記の定電位法および定電流法におけるそれぞれ
と同じであるが、時間幅は0.01〜10分間、好まし
くは0.1〜2分間である。0.1分間より短くても、
また2分間より長くても、パルス法の効果が充分に発揮
されなくなる。金属に有機物などの異物が付着している
場合は、前処理として、これを除去しなければならない
が、酸化物等は表面の導電性を著しく低下させない限り
問題ない。もちろん活性化処理等も同様である。上記の
範囲はいずれも一つの目安であり、それぞれの条件因子
およびその組合わせが変化すると変わることは当然であ
る。[Constant potential method, constant current method, pulse method] The constant potential method is -0.5 to 2 V vs CES, preferably in the range of natural potential to oxidation potential. If the potential is lower than the natural potential, no polymerization occurs. If the potential is higher than the oxidation potential, there is a risk that the solvent may be decomposed. The current density is 0.005 to 50 m in the constant current method.
A / cm 2 , preferably 0.05 to 5 mA / cm 2 is suitable. If it is less than 0.05 mA / cm 2 , it takes too much time for the film to grow. On the other hand, if it is larger than 5 mA / cm 2 , cracks are formed in the coating and metal elution is observed, which is not preferable. The electrolytic potential and the electrolytic current density in the pulse method are the same as those in the above-mentioned constant potential method and constant current method, respectively, but the time width is 0.01 to 10 minutes, preferably 0.1 to 2 minutes. Even if shorter than 0.1 minute,
If the time is longer than 2 minutes, the effect of the pulse method cannot be sufficiently exhibited. If foreign matter such as organic matter is attached to the metal, it must be removed as a pretreatment, but there is no problem with oxides and the like as long as the surface conductivity is not significantly reduced. Of course, the same applies to the activation processing and the like. Each of the above ranges is only a guide, and it goes without saying that each of the condition factors and the combination thereof will change.
【0017】[0017]
【実施例】以下,実施例により本発明をさらに具体的に
説明する。 〔実施例1〜12、被膜の生成方法〕図1に示されるU
LBAC製真空蒸着装置を用い、トリアジンジチオ−ル
誘導体をボックスに入れ、ステンレス板(0.2×3×
5cm、アセトンで脱脂)を取付ける。真空ポンプを作
動させ、電離真空計により真空度が10-2Paに達した
ら、蒸発源のヒ−タ−温度を110°C〜160°Cま
であげて、蒸着速度と被膜厚さを測定した。The present invention will be described more specifically with reference to the following examples. [Examples 1 to 12, Method of Forming Coating] U shown in FIG.
Using a vacuum deposition apparatus manufactured by LBAC, a triazinedithiol derivative is put in a box, and a stainless plate (0.2 × 3 ×
5 cm, degreased with acetone). When the vacuum pump was turned on and the degree of vacuum reached 10 −2 Pa by the ionization vacuum gauge, the heater temperature of the evaporation source was increased to 110 ° C. to 160 ° C., and the deposition rate and film thickness were measured. .
【0018】また、図2に示されるスパッタ−装置(R
E RMC−Eiko Corp.)を用いて、真空下
でステンレス板(0.2×3×5cm、アセトンで脱
脂)表面にトリアジンジチオ−ル被膜を形成させた。ト
リアジンジチオ−ルとエタノ−ルを体積比1/1に混合
して、適当な流動性のときタ−ゲット上に保持する。室
温で溶剤を自然蒸発により蒸発させて、トリアジンジチ
オ−ル・タ−ゲットを作成する。室温で5.0×10-2
〔Torr〕の真空に保持し、直流電流を5Ma流すと
放電が起こり、タ−ゲットのトリアジンジチオ−ル分子
が飛び、基板に積層する。陰極のタ−ゲット温度を調整
するために、タ−ゲットに冷却水を流しながらおこな
う。いずれの場合も、分光エリプソメ−タ〔日本分光
(株)製 M−150i型〕により被膜成長開始10分
後の膜厚を測定した。A sputtering apparatus (R) shown in FIG.
E RMC-Eiko Corp. ) To form a triazinedithiol coating on the surface of a stainless steel plate (0.2 × 3 × 5 cm, degreased with acetone) under vacuum. The triazinedithiol and ethanol are mixed in a volume ratio of 1/1 and are kept on the target at the appropriate fluidity. At room temperature, the solvent is allowed to evaporate by spontaneous evaporation to form the triazinedithiol target. 5.0 × 10 -2 at room temperature
When a vacuum of [Torr] is maintained and a DC current of 5 Ma is applied, discharge occurs, and the target triazinedithiol molecule jumps and is laminated on the substrate. In order to adjust the target temperature of the cathode, this is performed while cooling water is flowing through the target. In each case, the film thickness 10 minutes after the start of film growth was measured by a spectroscopic ellipsometer [M-150i type manufactured by JASCO Corporation].
【0019】表1に示されるように、真空蒸着法および
スパッタ−法のいずれにおいても、ステンレス上にトリ
アジンジチオ−ルの被膜が生成することがわかった。昇
華温度を最低にしてあるので、被膜の生成速度は60Å
/min程度と低いが、昇華温度を高くすれば生成速度
を高くすることができる。As shown in Table 1, it was found that a triazinedithiol film was formed on stainless steel by both the vacuum deposition method and the sputtering method. Due to the lowest sublimation temperature, the rate of film formation is 60 °
/ Min, but the generation rate can be increased by increasing the sublimation temperature.
【0020】[0020]
【表1】 [Table 1]
【0021】〔実施例13〜15、被膜成分の熱重合方
法〕トリアジンジチオ−ルとして6−ジブチルアミノ−
1,3,5−トリアジン−2,4−ジチオ−ル(表1、
No.3)をスチ−ル板(0.2×3×5cm、アセト
ンで脱脂)上に表1の条件で真空蒸着し、厚さの異なる
被膜を作成した。これを空気中で加熱して重合し、アル
コ−ルに対する不溶率、すなわち重合率(W)と、熱重
合処理板をTHF(テトラヒドロフラン)に浸漬して得
られた重合体の数平均分子量(Mn)をゲルパ−ミエ−
ションクロマトグラフィ−(GPC)により測定した。
結果を表2に示す。これより、被膜の厚さの増大と共に
重合率および数平均分子量が減少し、重合温度の増大と
共に重合率および数平均分子量が増加することがわか
る。Examples 13 to 15, Method of Thermal Polymerization of Coating Component 6-dibutylamino-triazinedithiol
1,3,5-triazine-2,4-dithiol (Table 1,
No. 3) was vacuum-deposited on a steel plate (0.2 × 3 × 5 cm, degreased with acetone) under the conditions shown in Table 1 to form films having different thicknesses. This is heated in air to polymerize it, the insolubility in alcohol, ie, the polymerization rate (W), and the number average molecular weight (Mn) of the polymer obtained by immersing the heat-polymerized plate in THF (tetrahydrofuran) ) For gel permeer
It was measured by traction chromatography (GPC).
Table 2 shows the results. This shows that the polymerization rate and the number average molecular weight decrease as the thickness of the coating increases, and the polymerization rate and the number average molecular weight increase as the polymerization temperature increases.
【0022】[0022]
【表2】 [Table 2]
【0023】〔実施例16〜20、被膜成分の光重合方
法〕トリアジンジチオ−ルとして6−ジアリルアミノ−
1,3,5−トリアジン−2,4−ジチオ−ル(表1、
No.1、2)、6−ジデセニルカルボキシエチルアミ
ノ−1,3,5−トリアジン−2,4−ジチオ−ル(表
1、No.5)、およびアリルデシルパ−フロロエチル
アミノ−1,3,5−トリアジン−2,4−ジチオ−ル
(表1、No.11、13)を石英板(0.2×3×5
cm、アセトンで脱脂)上に表1の条件で真空蒸着また
はスパッタリングし、厚さの異なる被膜を作成した。こ
れにワコム製作所製万能型ランプハウス(HX−500
W)を用い、光源から30cmのところに試料をおき、
20°Cで光重合し、THFに対する不溶率、すなわち
三次元化率(G)を測定した。結果を表3に示す。Examples 16 to 20, Method for Photopolymerization of Coating Component 6-Diallylamino- as triazinedithiol
1,3,5-triazine-2,4-dithiol (Table 1,
No. 1,2), 6-didecenylcarboxyethylamino-1,3,5-triazine-2,4-dithiol (Table 1, No. 5), and allyldecyl perfluoroethylamino-1,3,5 -Triazine-2,4-dithiol (Table 1, Nos. 11 and 13) was placed on a quartz plate (0.2 × 3 × 5).
cm, degreased with acetone) under vacuum conditions or sputtering under the conditions shown in Table 1 to form films having different thicknesses. The universal lamp house manufactured by Wacom Seisakusho (HX-500)
Using W), place the sample 30 cm from the light source,
Photopolymerization was performed at 20 ° C., and the insolubility in THF, that is, the three-dimensional conversion (G) was measured. Table 3 shows the results.
【0024】これによれば、置換基の長さが短いほど重
合しやすい傾向がある。とくに被膜が結晶性または異方
性を有している場合は、重合速度が低くなることが推察
される。表3のデ−タは20°Cにおける光重合の場合
であるが、重合温度を40°Cにすると重合速度(表3
中カッコで示される)が著しく上昇する。According to this, the shorter the length of the substituent, the more the polymerization tends to occur. In particular, when the coating has crystallinity or anisotropy, it is presumed that the polymerization rate is reduced. The data in Table 3 is for the case of photopolymerization at 20 ° C. When the polymerization temperature is set to 40 ° C, the polymerization rate (Table 3)
(Indicated by curly braces) rise significantly.
【0025】[0025]
【表3】 [Table 3]
【0026】〔実施例21〜22、被膜成分の共重合方
法〕アルミニウム板(0.2×3×5cm、アセトンで
脱脂)にまずトリアジンジチオ−ルとして6−ジアリル
アミノ−1,3,5−トリアジン−2,4−ジチオ−ル
膜250Å、つぎに6−ジブチルアミノ−1,3,5−
トリアジン−2,4−ジチオ−ル膜250Åを蒸着して
二層膜(DA/DB膜)を、また6−ジブチルアミノ−
1,3,5−トリアジン−2,4−ジチオ−ル膜250
Å、つぎに6−ジアリルアミノ−1,3,5−トリアジ
ン−2,4−ジチオ−ル膜250Åを蒸着して二層膜
(DB/DA膜)をそれぞれ形成した。これを空気中、
160°Cで加熱して重合率(アルコ−ル不溶率)と三
次元化率(THF不溶率)を求め、共重合性を検討し、
結果を表4に示す。重合率はアルコ−ルに20°Cで2
4時間浸漬し乾燥後、また三次元化率はTHFに20°
Cで24時間浸漬し乾燥後、膜厚をエリプソメ−タによ
り測定し、それぞれを求めた。Examples 21 to 22, Method of Copolymerizing Coating Components First, 6-diallylamino-1,3,5-triazinedithiol was applied to an aluminum plate (0.2 × 3 × 5 cm, degreased with acetone). Triazine-2,4-dithiol film 250 ° followed by 6-dibutylamino-1,3,5-
A triazine-2,4-dithiol film 250 DEG is deposited to form a two-layer film (DA / DB film) and 6-dibutylamino-
1,3,5-triazine-2,4-dithiol film 250
{Next, a 6-diallylamino-1,3,5-triazine-2,4-dithiol film 250} was deposited to form two-layer films (DB / DA films). In the air,
By heating at 160 ° C., the polymerization rate (alcohol insolubility rate) and the three-dimensional conversion rate (THF insolubility rate) were determined, and the copolymerizability was examined.
Table 4 shows the results. The polymerization rate is 2 in alcohol at 20 ° C.
After immersing for 4 hours and drying, the three-dimensional conversion rate is 20 ° in THF.
After immersion in C for 24 hours and drying, the film thickness was measured by an ellipsometer to obtain each value.
【0027】[0027]
【表4】 [Table 4]
【0028】重合率はDAまたはDBの混合物がどの程
度重合したかを示す。三次元化率はDAとDBが共重合
しているかどうかの目安となる。DA/DB膜およびD
B/DA膜は時間とともに重合率、三次元化率が高くな
り、重合していることがわかる。この場合、不飽和基を
上層にしたほうが共重合性が高くなることもわかる。The conversion indicates the degree of polymerization of the mixture of DA and DB. The three-dimensional ratio is a measure of whether DA and DB are copolymerized. DA / DB film and D
The polymerization rate and the three-dimensional conversion rate of the B / DA film increased with time, indicating that the B / DA film was polymerized. In this case, it can be seen that the copolymerizability is higher when the unsaturated group is formed in the upper layer.
【0029】〔実施例23〜24、被膜成分の電解重合
方法〕表1で示されるように、トリアジンジチオ−ル誘
導体を2000Å真空蒸着またはスパッタ−してトリア
ジンジチオ−ルの薄膜を金属の両面に生成させた試料を
作成した。つぎに、0.3MのNaNO2 水溶液を電解
溶液として、陰極に白金(参照極)、陽極(作用極)に
上記試料を用い、0.1mA/cm2 の電流密度で電解
重合を40°Cで20分間おこなった。重合率、数平均
分子量、三次元化率は前記のようにして測定した。結果
を表5に示す。Examples 23 and 24, Method for Electropolymerizing Coating Components As shown in Table 1, a triazinedithiol derivative was vacuum deposited or sputtered at 2000 ° to form a thin film of triazinedithiol on both surfaces of a metal. The generated sample was created. Next, using a 0.3 M aqueous solution of NaNO 2 as an electrolytic solution, platinum (reference electrode) as a cathode and the above-mentioned sample as an anode (working electrode) were subjected to electrolytic polymerization at a current density of 0.1 mA / cm 2 at 40 ° C. For 20 minutes. The polymerization rate, number average molecular weight, and three-dimensional conversion rate were measured as described above. Table 5 shows the results.
【0030】[0030]
【表5】 [Table 5]
【0031】以上のように、導電体の表面のトリアジン
ジチオ−ル薄膜の成分は電解重合によっても重合させる
ことが可能であり、この方法により、従来の電解重合に
みられた浴槽の汚染や高価なモノマ−の損失を防ぐこと
ができる。As described above, the components of the triazinedithiol thin film on the surface of the conductor can also be polymerized by electrolytic polymerization, and this method makes it possible to contaminate the bathtub and increase the cost of conventional electrolytic polymerization. Loss of the monomer can be prevented.
【0032】[0032]
【発明の効果】トリアジンジチオ−ル誘導体に対し真空
蒸着法やスパッタ−法を用いることにより、固体表面に
その薄膜を形成させることができ、さらに、その薄膜の
成分は熱、紫外線および電気化学的エネルギ−を用いて
重合させることができる。これはドライシステムにより
固体表面に機能を付与する新しい方法として注目され
る。すなわち、このようにして得られる被膜は耐蝕性、
潤滑性、非汚染性、接着性、密着性、非粘着性、防曇性
および氷結防止性、撥水性等が要求される種々の製品、
たとえばコネクタ−材料、金属ギア、装飾用金属製品、
金属鏡、金属金型、ハ−ドデスク、磁気テ−プ、時計の
針、金属食器などに応用可能である。さらに、この被膜
はトリアジンジチオ−ルの種類を選択することにより、
低自由エネルギ−から高自由エネルギ−表面に変化させ
ることができ、プラスチックスや窓ガラス等セラミック
スの表面改質にも有効である。According to the present invention, a thin film can be formed on a solid surface by using a vacuum deposition method or a sputtering method on a triazinedithiol derivative, and the components of the thin film are thermally, ultraviolet and electrochemically. Polymerization can be performed using energy. This is attracting attention as a new method for imparting functions to solid surfaces by a dry system. That is, the coating thus obtained has corrosion resistance,
Various products that require lubricity, non-staining, adhesion, adhesion, non-adhesion, anti-fogging and anti-icing properties, water repellency, etc.,
For example, connector materials, metal gears, decorative metal products,
It can be applied to metal mirrors, metal molds, hard desks, magnetic tapes, clock hands, metal tableware and the like. Furthermore, this coating is selected by selecting the type of triazinedithiol.
It can be changed from low free energy to high free energy surface, and is also effective for surface modification of ceramics such as plastics and window glass.
【図1】 真空蒸着装置の説明図である。FIG. 1 is an explanatory diagram of a vacuum evaporation apparatus.
【図2】 スパッタ−装置の説明図である。FIG. 2 is an explanatory view of a sputtering apparatus.
1 ヒ−タ− 2 膜厚計 3 基板 4 モノマ− 5 シャッタ− 6 タ−ゲット 7 試料台 DESCRIPTION OF SYMBOLS 1 Heater 2 Film thickness gauge 3 Substrate 4 Monomer 5 Shutter 6 Target 7 Sample stand
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成10年11月21日[Submission date] November 21, 1998
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0005[Correction target item name] 0005
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0005】[0005]
【化2】 Embedded image
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 邦夫 岩手県盛岡市高松3丁目3−16 (72)発明者 ▲濱▼田 忠行 千葉県船橋市三咲二丁目11番1号 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kunio Mori, Inventor 3- 3-16 Takamatsu, Morioka-shi, Iwate Prefecture
Claims (4)
4 H9 、C6 H13、C8 H17、C10H21、C12H25、C
18H37、C20H41、C22H45、C24H49、CH2 =CH
CH2 、CH2 =CH(CH2 )8 、CH2 =CH(C
H2 )9 、C8 H17CH2 =CHC8 H16、C6 H11、
C6 H5 、C6 H5 CH2 、C6 H5 CH2 CH2 、C
H2 =CH(CH2 )4 COOCH2 CH2 、CH2 =
CH(CH2 )8COOCH2 CH2 、CH2 =CH
(CH2 )9 COOCH2 CH2 、CF3 C6 H4 、C
4 F9 C6 H4 、C6 F13C6 H4 、C8 F17C
6 H4 、C10F21C6 H4 、C6 F11OC6 H4 、C9
F17OC6 H4 、C4 F9 CH2 、C6 F13CH2 、C
8 F17CH2 、C10F21CH2 、C4 FCH2 CH2 、
C6 F13CH2 CH2 、C8 F1 CH2 CH2 、C10F
21CH2 CH2 、C4 F9 CH2 =CHCH2 、C6 F
13CH2 =CHCH2 、C8 F1 CH2 =CHCH2 、
C10F21CH2 =CHCH2 、C4 F9 CH2 CH(O
H)CH2 、C6 F13CH2 CH(OH)CH2 、C8
F1 CH2 CH(OH)CH2 、C10F21CH2 CH
(OH)CH2 、CH2 =CH(CH2 )4 COO(C
H2 CH2 )2 、CH2 =CH(CH2 )8 COO(C
H2 CH2 )2 、CH2 =CH(CH2 )9 COO(C
H2 CH2 )2 、C4 F9 COO(CH2 CH2 )2 、
C6 F13COO(CH2 CH2 )2 、C8 F17COO
(CH2 CH2 )2 、C10F21COO(CH2CH2 )
2 をさすが、R2 はこの中でC6 F11OC6 H4 とC9
F17OC6 H4を含まない。またMはHおよびアルカリ
金属をさす。〕で示されるトリアジンジチオ−ル誘導体
の薄膜を蒸着あるいはスパッタ−法により固体表面に生
成させることからなるトリアジンジチオ−ル誘導体の被
膜生成方法。1. A compound of the general formula [Wherein R 1 and R 2 are H, CH 3 , C 2 H 5 , C
4 H 9, C 6 H 13 , C 8 H 17, C 10 H 21, C 12 H 25, C
18 H 37, C 20 H 41 , C 22 H 45, C 24 H 49, CH 2 = CH
CH 2 , CH 2 CHCH (CH 2 ) 8 , CH 2 CHCH (C
H 2 ) 9 , C 8 H 17 CH 2 CHCHC 8 H 16 , C 6 H 11 ,
C 6 H 5 , C 6 H 5 CH 2 , C 6 H 5 CH 2 CH 2 , C
H 2 = CH (CH 2) 4 COOCH 2 CH 2, CH 2 =
CH (CH 2 ) 8 COOCH 2 CH 2 , CH 2 CHCH
(CH 2 ) 9 COOCH 2 CH 2 , CF 3 C 6 H 4 , C
4 F 9 C 6 H 4, C 6 F 13 C 6 H 4, C 8 F 17 C
6 H 4 , C 10 F 21 C 6 H 4 , C 6 F 11 OC 6 H 4 , C 9
F 17 OC 6 H 4 , C 4 F 9 CH 2 , C 6 F 13 CH 2 , C
8 F 17 CH 2 , C 10 F 21 CH 2 , C 4 FCH 2 CH 2 ,
C 6 F 13 CH 2 CH 2 , C 8 F 1 CH 2 CH 2 , C 10 F
21 CH 2 CH 2 , C 4 F 9 CH 2 CHCHCH 2 , C 6 F
13 CH 2 CHCHCH 2 , C 8 F 1 CH 2 CHCHCH 2 ,
C 10 F 21 CH 2 CHCHCH 2 , C 4 F 9 CH 2 CH (O
H) CH 2, C 6 F 13 CH 2 CH (OH) CH 2, C 8
F 1 CH 2 CH (OH) CH 2 , C 10 F 21 CH 2 CH
(OH) CH 2 , CH 2 CHCH (CH 2 ) 4 COO (C
H 2 CH 2 ) 2 , CH 2 CHCH (CH 2 ) 8 COO (C
H 2 CH 2 ) 2 , CH 2 CHCH (CH 2 ) 9 COO (C
H 2 CH 2) 2, C 4 F 9 COO (CH 2 CH 2) 2,
C 6 F 13 COO (CH 2 CH 2 ) 2 , C 8 F 17 COO
(CH 2 CH 2 ) 2 , C 10 F 21 COO (CH 2 CH 2 )
2 wherein R 2 is C 6 F 11 OC 6 H 4 and C 9
It does not include the F 17 OC 6 H 4. M represents H and an alkali metal. A method for forming a film of a triazinedithiol derivative, comprising forming a thin film of the triazinedithiol derivative represented by the formula (1) on a solid surface by vapor deposition or sputtering.
誘導体2種以上のそれぞれからなる各層の薄膜を蒸着あ
るいはスパッタ−法により段階的に固体表面に生成させ
ることからなるトリアジンジチオ−ル誘導体の被膜生成
方法。2. A film formation of a triazinedithiol derivative, wherein a thin film of each layer comprising at least two of the triazinedithiol derivatives according to claim 1 is formed stepwise on a solid surface by vapor deposition or sputtering. Method.
オ−ル誘導体の被膜の成分を熱重合法、紫外線照射法お
よび電解重合法のいずれかにより重合させることからな
るトリアジンジチオ−ル誘導体被膜成分の重合方法。3. A polymerization of a triazinedithiol derivative coating component, which comprises polymerizing the component of the triazinedithiol derivative coating film formed according to claim 1 by any of a thermal polymerization method, an ultraviolet irradiation method and an electrolytic polymerization method. Method.
オ−ル誘導体の被膜の成分を熱重合法、紫外線照射法お
よび電解重合法のいずれかにより共重合させることから
なるトリアジンジチオ−ル誘導体被膜成分の共重合方
法。4. A triazinedithiol derivative coating component formed by copolymerizing the components of the triazinedithiol derivative coating film produced according to claim 2 by any of a thermal polymerization method, an ultraviolet irradiation method and an electrolytic polymerization method. Copolymerization method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10230026A JPH11140626A (en) | 1997-09-01 | 1998-08-01 | Forming method of triazine dithiol derivative film and polymerizing method of film component |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25128497 | 1997-09-01 | ||
JP9-251284 | 1997-09-01 | ||
JP10230026A JPH11140626A (en) | 1997-09-01 | 1998-08-01 | Forming method of triazine dithiol derivative film and polymerizing method of film component |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11140626A true JPH11140626A (en) | 1999-05-25 |
Family
ID=26529107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10230026A Pending JPH11140626A (en) | 1997-09-01 | 1998-08-01 | Forming method of triazine dithiol derivative film and polymerizing method of film component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11140626A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19935181A1 (en) * | 1999-07-27 | 2001-02-08 | Fraunhofer Ges Forschung | Organic protective layer for vacuum processed products |
JP2001110442A (en) * | 1999-10-13 | 2001-04-20 | Matsushita Electric Ind Co Ltd | Nonaqueous electrochemical device |
WO2004101662A1 (en) * | 2003-05-15 | 2004-11-25 | Dsm Ip Assets B.V. | Process for preparing a composite material |
JP2006194917A (en) * | 2005-01-11 | 2006-07-27 | Alps Electric Co Ltd | Photo-molded body and method for manufacturing the same |
JP2007131919A (en) * | 2005-11-10 | 2007-05-31 | Iwate Univ | Method for producing electroforming die |
JP2009227857A (en) * | 2008-03-24 | 2009-10-08 | Iwate Industrial Research Center | Method for modifying resin surface, and surface-modified resin |
JP2009226329A (en) * | 2008-03-24 | 2009-10-08 | Iwate Industrial Research Center | Method for forming resin coated film, and solid having resin coated film |
WO2010009569A1 (en) * | 2008-07-25 | 2010-01-28 | Clariant International Ag | Freezing point-lowering surface coatings |
JP2010064335A (en) * | 2008-09-10 | 2010-03-25 | Ricoh Co Ltd | Thermal head |
KR20180119685A (en) | 2016-03-31 | 2018-11-02 | 토아덴카 코퍼레이션 | Method of forming film on metal surface |
-
1998
- 1998-08-01 JP JP10230026A patent/JPH11140626A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19935181C5 (en) * | 1999-07-27 | 2004-05-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for protecting a vacuum-processed substrate and use of the process |
DE19935181A1 (en) * | 1999-07-27 | 2001-02-08 | Fraunhofer Ges Forschung | Organic protective layer for vacuum processed products |
JP2001110442A (en) * | 1999-10-13 | 2001-04-20 | Matsushita Electric Ind Co Ltd | Nonaqueous electrochemical device |
US7794786B2 (en) | 2003-05-15 | 2010-09-14 | Dsm Ip Assets B.V. | Composite material and process for preparing a composite material |
WO2004101662A1 (en) * | 2003-05-15 | 2004-11-25 | Dsm Ip Assets B.V. | Process for preparing a composite material |
KR101130147B1 (en) * | 2003-05-15 | 2012-03-28 | 디에스엠 아이피 어셋츠 비.브이. | Process for preparing a composite material |
JP2007508161A (en) * | 2003-05-15 | 2007-04-05 | ディーエスエム アイピー アセッツ ビー.ブイ. | Method for preparing composite material |
US7998527B2 (en) | 2003-05-15 | 2011-08-16 | Dsm Ip Assets B.V. | Composite material and process for preparing a composite material |
JP4734250B2 (en) * | 2003-05-15 | 2011-07-27 | ディーエスエム アイピー アセッツ ビー.ブイ. | Method for preparing composite material |
JP4688134B2 (en) * | 2005-01-11 | 2011-05-25 | アルプス電気株式会社 | Stereolithography body and manufacturing method thereof |
JP2006194917A (en) * | 2005-01-11 | 2006-07-27 | Alps Electric Co Ltd | Photo-molded body and method for manufacturing the same |
JP2007131919A (en) * | 2005-11-10 | 2007-05-31 | Iwate Univ | Method for producing electroforming die |
JP2009226329A (en) * | 2008-03-24 | 2009-10-08 | Iwate Industrial Research Center | Method for forming resin coated film, and solid having resin coated film |
JP2009227857A (en) * | 2008-03-24 | 2009-10-08 | Iwate Industrial Research Center | Method for modifying resin surface, and surface-modified resin |
WO2010009569A1 (en) * | 2008-07-25 | 2010-01-28 | Clariant International Ag | Freezing point-lowering surface coatings |
JP2010064335A (en) * | 2008-09-10 | 2010-03-25 | Ricoh Co Ltd | Thermal head |
KR20180119685A (en) | 2016-03-31 | 2018-11-02 | 토아덴카 코퍼레이션 | Method of forming film on metal surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0030732B1 (en) | Transparent electrically conductive film and process for production thereof | |
Hansen et al. | Formation of polymer films by pulsed laser evaporation | |
US20100080903A1 (en) | Fluoropolymer thin film and method for its production | |
Rao et al. | Optical properties of electron‐beam evaporated TiO2 films deposited in an ionized oxygen medium | |
JPH11140626A (en) | Forming method of triazine dithiol derivative film and polymerizing method of film component | |
WO2010093010A1 (en) | Multilayer body, method for producing same, electronic device member, and electronic device | |
US5192580A (en) | Process for making thin polymer film by pulsed laser evaporation | |
EP3478779B1 (en) | Fluorocarbon release coating | |
CN113684453A (en) | Film with low secondary electron emission coefficient and preparation method thereof | |
RU2698809C1 (en) | Method of producing composite material based on carbon fibers | |
JP3128554B2 (en) | Method for forming oxide optical thin film and apparatus for forming oxide optical thin film | |
JP4124471B2 (en) | Metal surface treatment method | |
US3677800A (en) | Anti-thrombogenic coatings and products | |
Choudhury et al. | Studies of physical and chemical properties of styrene-based plasma polymer films deposited by radiofrequency Ar/styrene glow discharge | |
JP3672519B2 (en) | Method for forming thin film of triazine thiol derivative | |
Sikkens et al. | The development of high performance, low cost solar-selective absorbers | |
Cho et al. | Physical and optical properties of plasma polymerized thin films deposited by PECVD method | |
Thiry et al. | Tailoring the chemistry and the nano‐architecture of organic thin films using cold plasma processes | |
JP4567019B2 (en) | Metal surface film forming method | |
JP2000192237A (en) | Production of high transparent gas barrier film | |
JP2006348376A (en) | Vacuum deposition method, and vacuum deposition system | |
JP3015221B2 (en) | Organic thin film manufacturing method | |
CN109943818B (en) | Method for preparing ultra-coarse film in situ | |
US7713635B2 (en) | Copper oxide thin film low-friction material and film-forming method therefor | |
TWI750159B (en) | Method for forming a film on a metal surface |