WO2017170554A1 - Phase-difference scanning transmission electron microscope - Google Patents

Phase-difference scanning transmission electron microscope Download PDF

Info

Publication number
WO2017170554A1
WO2017170554A1 PCT/JP2017/012647 JP2017012647W WO2017170554A1 WO 2017170554 A1 WO2017170554 A1 WO 2017170554A1 JP 2017012647 W JP2017012647 W JP 2017012647W WO 2017170554 A1 WO2017170554 A1 WO 2017170554A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning transmission
electron microscope
transmission electron
microscope apparatus
phase
Prior art date
Application number
PCT/JP2017/012647
Other languages
French (fr)
Japanese (ja)
Inventor
幸則 永谷
Original Assignee
大学共同利用機関法人自然科学研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人自然科学研究機構 filed Critical 大学共同利用機関法人自然科学研究機構
Priority to JP2018508074A priority Critical patent/JP6842718B2/en
Publication of WO2017170554A1 publication Critical patent/WO2017170554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes

Definitions

  • the present invention relates to a transmission electron microscope apparatus, and more particularly to a phase-difference scanning transmission electron microscope apparatus (Scanning Transmission Electron Microscope: STEM) that scans an electron beam and observes a sample using a phase plate.
  • a phase-difference scanning transmission electron microscope apparatus Sccanning Transmission Electron Microscope: STEM
  • Transmission electron microscopes are widely used for observing the nanometer structure of a thin sample. This is done by irradiating a sample with an electron beam and enlarging and projecting the electron beam transmitted through the sample onto a detector. This is a technique for seeing through the structure inside the sample, and a projection image reflecting the absorbance of the electron beam inside the sample object is obtained. For example, it is already known from Patent Document 1 below.
  • phase-contrast electron microscopy and phase-contrast scanning transmission electron microscopy are used.
  • a so-called scanning transmission electron microscope apparatus that observes a sample to be inspected while scanning an electron beam emitted from an electron gun is already known, for example, from Patent Document 2 below. Yes.
  • the present invention includes, among the above-described phase-contrast electron microscopy and phase-contrast scanning transmission electron microscopy, because there is no transmission electron beam absorber between the sample and the detector because of its configuration.
  • the present invention relates to a phase-difference scanning transmission electron microscope that is advantageous for reducing electron beam exposure.
  • the heavier elements present in the sample object at a higher density the more the electron beam is scattered and a clearer contrast is obtained. This is due to the principle of absorption contrast.
  • an unstained living tissue or resin mainly composed of the same kind of light element is used as a target, there is a drawback in that it is difficult to contrast the image.
  • FIG. 11 phase difference electron microscope method
  • a carbon thin film type Zernike phase plate having a hole with a diameter of several hundred nm in the center of an amorphous carbon thin film having a thickness of several tens of nanometers, an amorphous carbon thin film as it is, and electron beam spot irradiation
  • a holeless carbon thin film type Zernike phase plate that uses the change in physical properties of the carbon thin film due to phase change for phase modulation, an Einzel lens type that generates a potential difference only at the center by silicon micromachining technology.
  • phase plates are placed in the vicinity of a strong electron beam spot on the focal plane, the physical properties of the phase plate change over time due to electron beam irradiation. As a result, there is a drawback that the phase contrast is not reproduced correctly, which is recognized as a charging phenomenon of the phase plate. Further, these phase plates are easily destroyed when exposed to a strong electron beam during operation of the apparatus.
  • phase plates have the side effect of absorbing the electron beam in addition to the original function of modulating the phase, and part of the electron beam transmitted through the sample is wasted. As a problem, there is a problem of increasing the electron beam exposure of the sample.
  • the present invention has been made in view of the circumstances in the above-described prior art, and the purpose thereof is to allow exposure of an electron beam of a smaller number of samples and to visualize a good document with a desired selectable contrast.
  • An object of the present invention is to provide a phase difference transmission electron microscope apparatus that is excellent in operability.
  • an electron gun a converging optical system for converging an electron beam emitted from the electron gun, and an electron beam from the converging optical system with respect to a sample Scanning means for deflecting so as to scan in the horizontal direction, an objective lens for irradiating the sample with the electron beam deflected by the scanning means, and means for detecting the intensity of the electron beam transmitted through the sample
  • a beam splitter is disposed between the electron gun and a converging optical system, and demultiplexes the electron beam emitted from the electron gun into a main probe wave and a reference wave at a preset ratio.
  • a phase difference scanning transmission electron microscope apparatus is provided.
  • the Fresnel zone plate demultiplexes the electron beam into at least two beams, passes one of them as the main probe wave, and converges or diverges the other as the reference wave, and In the Fresnel zone plate, the position where the converging reference wave is focused or the position where the diverging reference wave is focused by the lens system coincides with the focal point of the objective lens on the electron gun side. May be arranged.
  • one or more lenses are disposed between the Fresnel zone plate and the objective lens, and a focal position formed by the Fresnel zone plate coincides with a focal point on the electron gun side of the objective lens. You may arrange
  • the Fresnel zone plate has a function of demultiplexing into the main probe wave passing therethrough and a reference wave to be diverged (in a spreading direction), and includes at least one lens for converging the diverging reference wave.
  • the convergence point of the reference wave coincides with the focal point of the objective lens on the electron gun side.
  • the Fresnel zone plate is made of tungsten, platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum that absorbs an electron beam on a thin film made of silicon nitride, amorphous carbon, or graphene. It is preferable that it is composed of at least one or more concentric ring zones made of pure metal containing titanium, nickel or aluminum, or an alloy thereof.
  • the Fresnel zone plate is made of pure metal containing tungsten, platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum, titanium, nickel or aluminum, or an alloy thereof, which absorbs an electron beam. It may be a thin film composed of at least one or more concentric ring zones having a bridging portion.
  • the Fresnel zone plate is a phase type in which at least one or more concentric annular grooves for shifting the phase of an electron beam are formed on a thin film made of silicon nitride, amorphous carbon or graphene. Fresnel zone plate.
  • the Fresnel zone plate may be a phase / amplitude composite type Fresnel zone plate that modulates both phase and amplitude. That is, the absorption type Fresnel zone plate and the phase type Fresnel zone plate may be bonded together, or on the phase type Fresnel zone plate, tungsten that absorbs an electron beam, Form at least one or more concentric ring zones made of pure metals including platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum, titanium, nickel or aluminum, or alloys thereof. You may comprise by.
  • phase difference scanning transmission that images the phase change of the electron beam of the sample object while quantitatively measuring the distribution of the phase change of the electron beam while suppressing exposure of the electron beam to the sample object.
  • An electron microscope can be provided.
  • FIG. 1 is an overall configuration diagram of a phase difference scanning transmission electron microscope apparatus according to an embodiment of the present invention. It is a figure which shows the plane of the Fresnel zone plate of the said phase-difference scanning transmission electron microscope apparatus, and its cross section. It is a figure which shows the plane of the bridge
  • FIG. 5 is a cross-sectional view showing a phase type Fresnel zone plate and a phase / amplitude composite type Fresnel zone plate as another example. It is a whole block diagram of the phase-difference scanning transmission electron microscope apparatus which becomes other embodiment (Example 2) of this invention.
  • phase difference scanning transmission electron microscope apparatus which becomes further another embodiment (Example 3) of this invention. It is a whole block diagram of the phase difference scanning transmission electron microscope apparatus which becomes further another embodiment (Example 4) of this invention. It is a whole block diagram of the phase-difference scanning transmission electron microscope apparatus which becomes further another embodiment (Example 5) of this invention. It is a whole block diagram of the phase-difference scanning transmission electron microscope apparatus which becomes further another embodiment (Example 6) of this invention. It is a figure explaining the image generation principle of phase difference STEM which uses the electron beam obtained by using a Zernike phase plate etc. in a prior art. It is a figure explaining an example of the phase-contrast electron microscope in a prior art.
  • a normal STEM uses an electron beam from an electron gun as a dotted focused beam (main probe) and scans the focused beam in a direction parallel to the sample by a scanning coil. Although the absorptance at the convergence point and the differential phase inside the convergence point are visualized and observed, the (ultra) low frequency region of the phase cannot usually be visualized.
  • the phase is shifted by + ⁇ / 2 or ⁇ / 2 with respect to the dotted convergent beam (main probe) by using the above-mentioned Zernike phase plate or the like.
  • a reference plane wave beam reference beam
  • a Zernike phase plate having a perforation at the center of the phase plate is used to generate a reference wave, and the Zernike phase plate is directly inserted into the STEM focal plane.
  • the method is used.
  • the scattered wave used as the reference wave is limited to the scattered wave generated at the edge of the small-area hole at the center of the Zernike phase plate.
  • the probe wave passes through the entire area of the Zernike phase plate. For this reason, the intensity of the reference wave of the scattered wave generated at the edge portion of the hole is significantly smaller than that of the probe wave that passes as it is. As a result, the contrast due to interference is reduced.
  • the contrast of an image obtained using the above-described main probe wave and reference wave can be generally expressed by the following equation.
  • A 2 + B 2 + 2AB sin ⁇ (formula 1)
  • A is the main probe amplitude
  • B is the reference wave amplitude (in the sensor unit).
  • the phase contrast of the obtained image is maximized when A and B are balanced (equal).
  • the intensity ratio (B 2 / A 2) between the main probe that transmits the phase plate and the reference wave generated as a scattered wave thereby. ) Is a value close to 1, specifically, a desired value is selected and used within a range of 0.25 to 4, and the above-described problem can be solved.
  • FIG. 1 shows the overall configuration of a phase-difference scanning transmission electron microscope according to an embodiment (Embodiment 1) of the present invention. That is, the apparatus includes an electron gun 31, an irradiation optical system 32, a scan coil 33, a convergence. An optical system 34, an objective lens 35, and a bright field detector 36 for detecting the intensity of the electron beam are provided as detection means.
  • a so-called Fresnel zone plate 40 as shown in FIG. 2 is used as the beam splitter for generating the main probe wave and the reference wave.
  • the Fresnel zone plate 40 has a function of demultiplexing into a probe wave and a reference wave using an electron beam irradiated on the sample as a wave by scattering from the surface. More specifically, the zero-order scattered wave of the Fresnel zone plate 40, that is, the beam that has passed through the plate as it is becomes the main probe wave, and the component of the wave that converges as the first-order scattered wave becomes the reference wave.
  • the Fresnel zone plate 40 is arranged and adjusted so that the focal point of the reference wave, which is the convergent wave, coincides with the STEM focal plane, as is apparent from the drawing.
  • the sample 50 is disposed on the STEM image plane.
  • the electron beam emitted from the electron gun 31 is converted into parallel light by the irradiation optical system 32, and then the main probe wave is operated by the Fresnel zone plate 40. And the reference wave.
  • the main probe wave is focused on the surface of the sample 50 by the converging optical system 34, that is, becomes the main probe beam, while the reference wave is projected onto the sample 50 as a plane wave spreading in a circle. Irradiated and both pass through the sample 50. Both these beams are deflected by the scan coil 33 while keeping the beam shape, and scan the sample 50.
  • Both beams transmitted through the sample 50 are superimposed on the bright field detector 36, the intensity of which is detected, and then imaged together with the scanning by the scan coil 33. That is, the main probe wave transmitted through the sample and the reference wave are superimposed as a wave, and the interference intensity is detected. As a result, the intensity corresponding to the relative phase between the main probe wave transmitted through the point on the sample and the reference wave transmitted through the spread area on the sample is detected.
  • the Fresnel zone plate 40 is a hologram made from a spherical wave and a plane wave, and the intensity ratio and phase difference between the spherical wave and the plane wave obtained thereby can be designed freely. Is possible.
  • FIG. 2 shows a so-called sin-type FZP, which converts an incident plane wave into a combined wave of a plane wave and two spherical waves, and sets the relative phase difference between the plane wave and the spherical wave to 90 degrees.
  • a cos type FZP having a relative phase difference of 0 degree between a plane wave and a spherical wave is known.
  • the Fresnel zone plate 40 can be manufactured by pattern formation of a fine processing technique of semiconductor manufacturing. For example, on the surface of the disk-shaped thin film 41 made of silicon nitride (SiN), amorphous carbon or graphene, tungsten, platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum, which absorbs electrons, It can be formed by vapor-depositing at least one or more annular zones 42 concentrically using a pure metal containing titanium, nickel, or aluminum, or an alloy thereof.
  • the Fresnel zone plate 40 does not use the thin film 41 as a support film, and absorbs electrons, such as tungsten, platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum.
  • a thin film made of a pure metal containing titanium, nickel, or aluminum, or an alloy thereof is processed into a concentric annular zone 42 ′ with a bridging portion that supports the annular zone. You can also.
  • FIG. 2 and 3 show an example of a so-called absorption type (amplitude type) Fresnel zone plate composed of an annular zone that absorbs an electron beam.
  • FIG. 4B a phase-type Fresnel zone plate composed of the phase-shifting annular zone 43 or a phase-shifting annular zone 43 and an absorbing annular zone 42 are combined.
  • a composite amplitude type Fresnel zone plate may be used.
  • a relief type Fresnel zone plate whose phase or absorption amount continuously changes may be used. By adopting them, it is possible to generate a reference wave with higher accuracy and less secondary diffraction waves.
  • the intensity ratio of the probe wave and the reference wave generated here is arbitrarily determined by the design of the Fresnel zone plate 40.
  • the intensity ratio (R) of the main probe wave and the reference wave is set to a value close to 1, the contrast caused by interference can be maximized.
  • the Fresnel zone plate 40 by preparing a plurality of Fresnel zone plates with different intensity ratios (R) in advance and selecting and using a Fresnel zone plate with a suitable intensity ratio (R). The phase change of the sample can be imaged with a desired contrast.
  • the Fresnel zone plate that can be actually created has not only the effect of transmitting and converging the electron beam, but also the effect of absorbing the electron beam as a side effect thereof. Due to the structure of the scanning transmission electron microscope described above, the sample object is absorbed before being irradiated, so there is no fear that the electron beam exposure amount of the sample will increase.
  • the incident wave is split into at least three waves, a transmitted wave, a convergent wave and a divergent wave.
  • This unnecessary beam can be removed by inserting a pin stop type stop at the focal position of the unnecessary beam.
  • the pin stop type diaphragm which will be described later, is made of tungsten, platinum, gold, silver, copper, lead, iron, zinc, which absorbs electrons on the surface of a disk-shaped thin film made of silicon nitride, amorphous carbon or graphene.
  • It can be configured by forming a circular pattern made of pure metal including tin, molybdenum, titanium, nickel, or aluminum, or an alloy thereof, or placing spherical particles.
  • the incident wave is demultiplexed into a transmitted wave and either a convergent wave or a divergent wave. It is not necessary to insert a diaphragm.
  • FIG. 5 shows the overall configuration of a phase difference scanning transmission electron microscope according to another embodiment (Example 2) of the present invention.
  • the entire surface of the electron beam emitted from the electron gun 31 is irradiated on the Fresnel zone plate 40, so-called FZP is shown.
  • FZP Fresnel zone plate 40
  • a part of the electron beam is shown.
  • the reference wave irradiation region obtained is determined by the reciprocal of the groove width of the outermost annular zone (see FIG. 2), so that the reference wave irradiation region can be set as appropriate.
  • FIG. 6 shows the overall configuration of a phase-contrast scanning transmission electron microscope according to still another embodiment (Example 3) of the present invention.
  • the Fresnel zone plate 40 has a function of demultiplexing into a transmitting beam that is a main probe wave and a converging beam that is a reference wave.
  • the third embodiment has a function of demultiplexing into a transmitting beam (solid line in the figure) serving as a main probe wave and a diverging beam (dashed line in the figure) serving as a reference wave.
  • a beam (solid line in the figure) irradiated with an electron beam from the electron gun 31 above the Fresnel zone plate 40 to the Fresnel zone plate 40 is transmitted and converged as it is as a main probe wave.
  • the beam demultiplexed in the direction (solid line in the figure) is output as a parallel beam and becomes a reference wave.
  • FIG. 7 shows the overall configuration of a phase-contrast scanning transmission electron microscope according to still another embodiment (Example 4) of the present invention.
  • the Fresnel zone plate 40 has a transmitting beam (solid line in the figure) serving as a main probe wave and a diverging beam (in the figure) serving as a reference wave. And a function of branching to a broken line).
  • the converging electron beam is irradiated onto the Fresnel zone plate 40 by the irradiation optical system lens 32 above the Fresnel zone plate 40, and a beam (solid line in the figure) that is transmitted and converged as it is is the main probe.
  • a beam (broken line in the figure) demultiplexed in the diverging direction becomes a reference wave.
  • the reference wave demultiplexed in the direction diverged by the Fresnel zone plate 40 is also a convergent beam, but its focal position is lower than the focal position formed by the lens of the converging optical system 34.
  • FIG. 8 shows the overall configuration of a phase difference scanning transmission electron microscope according to still another embodiment (Embodiment 5) of the present invention.
  • the amplitude type zone plate is used in the configuration shown in FIG. 6 of the third embodiment, as shown in FIG. 8, in addition to the solid transmission beam and the broken reference beam, the convergence is indicated by the dotted line.
  • an unnecessary beam is generated. This unnecessary beam can be removed by inserting a pin stop type stop that does not transmit only the beam at the convergence point at the convergence point of the unnecessary beam.
  • FIG. 9 shows the overall configuration of a phase-contrast scanning transmission electron microscope according to still another embodiment (Example 6) of the present invention.
  • Example 6 shows the overall configuration of a phase-contrast scanning transmission electron microscope according to still another embodiment (Example 6) of the present invention.
  • the amplitude type zone plate is used in the configuration shown in FIG. 7 of the fourth embodiment, as shown in FIG. 9, in addition to the solid transmission beam and the broken reference beam, the convergence is indicated by the dotted line.
  • an unnecessary beam is generated.
  • this unnecessary beam can be removed in the same manner as in the fifth embodiment shown in FIG. 8 by inserting a pin stop type stop at the convergence point of the unnecessary beam.
  • the Fresnel zone plate can be removed and used at any time as a conventional STEM. It is also possible to easily convert a conventional STEM into a phase difference STEM by inserting a Fresnel zone plate into a diaphragm port of a conventional STEM irradiation system.
  • a Fresnel zone plate is used instead of the conventional Zernike phase plate inserted in the STEM focal plane at the upstream side of the STEM focal plane.
  • a Fresnel zone plate is used instead of the conventional Zernike phase plate inserted in the STEM focal plane at the upstream side of the STEM focal plane.
  • the above-mentioned problem is solved by inserting at a position where the direct focus of the zone plate or the focal point transferred or moved by the lens system comes to the STEM focal plane. That is, the present invention provides:
  • a scanning transmission electron microscope as an alternative function of a Zernike phase plate that is disposed between an electron gun, the electron beam source, and a converging optical system and through which an electron beam emitted from the electron beam source passes.
  • the Fresnel zone plate splits the electron beam into two or more beams, and one of the beams keeps an incident beam wavefront.
  • the beam is focused on the sample by the objective lens, the other beam becomes a convergent beam, the convergence point is located at the front focal plane of the objective lens, and on the sample plane, the beam spread by the objective lens become.
  • the Fresnel zone plate has a relative phase difference of zero (0), or an electron wave that passes while maintaining a wavefront, This is a positive or negative value and is a finite value including 90 degrees.
  • phase plate Technology by efficiently generating a pair of a main probe beam and a reference beam used for phase difference scanning transmission electron microscopy, a higher phase contrast, fewer electron beam exposures of a sample, a longer phase plate Technology is provided to achieve lifetime.
  • phase plate that uses the Fresnel zone plate as the phase plate for converting the passing electron beam into the main probe wave and the reference wave at a desired intensity ratio has been described in detail. It will be apparent to those skilled in the art that other materials may be used as long as they exhibit similar functions.
  • the present invention relates to a transmission electron microscope apparatus widely used for observing a nanometer structure of a thin sample, and in particular, a phase-difference type scanning transmission electron that scans an electron beam and observes a sample while using a phase plate. It can be used in a microscope apparatus.
  • SYMBOLS 31 Electron gun, 32 ... Irradiation optical system, 33 ... Scan coil, 34 ... Convergence optical system, 35 ... Objective lens, 36 ... Bright field detector, 40 ... Fresnel zone plate, 41 ... Disc-shaped thin film, 42 ... annular zone, 42 '... freestanding annular zone, 43 ... annular zone groove, 50 ... sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

[Problem] To provide a phase-difference scanning transmission electron microscope that has excellent operatability and that is capable of imaging the phase change of a sample with desired contrast while minimizing the electron beam exposure of the sample. [Solution] This phase-difference scanning transmission electron microscope is provided with: an electron gun 31; an irradiation optical system 32; a scan coil 33; a convergence optical system 34; an objective lens 35; and a bright field detector 36 that detects the intensity of an electron beam. A Fresnel zone plate 40 is arranged on the upstream side of a STEM focal plane such that the focus thereof is set on the STEM focal plane. Thus, electron beams including a reference wave and a main probe wave from the plate irradiate a sample object 50 placed between the convergence optical system 34 and the objective lens 35.

Description

位相差走査透過電子顕微鏡装置Phase difference scanning transmission electron microscope
 本発明は、透過電子顕微鏡装置に関し、特に、電子線を走査し、かつ、位相板を用いながら試料を観察する位相差式の走査透過電子顕微鏡装置(Scanning Transmission Electron Microscope:STEM)に関する。 The present invention relates to a transmission electron microscope apparatus, and more particularly to a phase-difference scanning transmission electron microscope apparatus (Scanning Transmission Electron Microscope: STEM) that scans an electron beam and observes a sample using a phase plate.
 透過電子顕微鏡は、薄い試料のナノメートルの構造を観察する等において広く用いられており、これは、試料に電子線を照射し、当該試料を透過した電子線を、検出器上に拡大投影し、試料内部の構造を透かし観る手法であり、試料物体内部の電子線の吸収度を反映した投影像が得られるものであり、例えば、以下の特許文献1により既に知られている。 Transmission electron microscopes are widely used for observing the nanometer structure of a thin sample. This is done by irradiating a sample with an electron beam and enlarging and projecting the electron beam transmitted through the sample onto a detector. This is a technique for seeing through the structure inside the sample, and a projection image reflecting the absorbance of the electron beam inside the sample object is obtained. For example, it is already known from Patent Document 1 below.
 かかる透過型電子顕微鏡において、特に、電子線の吸収が少なくコントラストの付きにくい無染色の生体軟組織や樹脂などを対象とする場合には、試料物体を透過する電子線の位相をコントラストに変換して観察する、所謂、位相差電子顕微鏡法や位相差走査透過電子顕微鏡法が用いられている。なお、一般的に、電子銃から放出された電子線を走査しながら被検査対象である試料を観察する、所謂、走査透過電子顕微鏡装置については、例えば、以下の特許文献2によって既に知られている。 In such a transmission electron microscope, in particular, when the target is unstained soft tissue or resin that absorbs less electron beam and is difficult to contrast, the phase of the electron beam transmitted through the sample object is converted into contrast. So-called phase-contrast electron microscopy and phase-contrast scanning transmission electron microscopy are used. In general, a so-called scanning transmission electron microscope apparatus that observes a sample to be inspected while scanning an electron beam emitted from an electron gun is already known, for example, from Patent Document 2 below. Yes.
特開2012-3843号公報JP 2012-3843 A 特開2012-43563号公報JP 2012-43563 A
 本発明は、上述した位相差電子顕微鏡法および位相差走査透過電子顕微鏡法のうち、その構成から、試料と検出器との間に透過電子ビームの吸収体が存在しないことから、特に、試料の電子線被曝の低減を図るのに有利な位相差走査透過電子顕微鏡法に関するものである。 The present invention includes, among the above-described phase-contrast electron microscopy and phase-contrast scanning transmission electron microscopy, because there is no transmission electron beam absorber between the sample and the detector because of its configuration. The present invention relates to a phase-difference scanning transmission electron microscope that is advantageous for reducing electron beam exposure.
 ところで、本発明の関わる走査透過電子顕微鏡法においても、なお、試料物体中においてより重い元素がより高い密度で存在している程、より大きな電子線の散乱があり、より明瞭なコントラストが得られるという吸収コントラストの原理によるものである。しかしながら、同種の軽元素を主成分とする無染色の生体組織や樹脂などを対象とする場合には、像にコントラストが付きにくいという欠点があった。 By the way, also in the scanning transmission electron microscopy related to the present invention, the heavier elements present in the sample object at a higher density, the more the electron beam is scattered and a clearer contrast is obtained. This is due to the principle of absorption contrast. However, when an unstained living tissue or resin mainly composed of the same kind of light element is used as a target, there is a drawback in that it is difficult to contrast the image.
 従来、これを解決する手法として、以下にも詳細に説明するが、位相板を用いて試料物体を透過する電子線の位相をコントラストに変換して観察する、位相差電子顕微鏡法(図11を参照)が用いられている。なお、かかる位相板としては、これまでに、厚さ数10nmのアモルファス炭素薄膜の中心に直径数100nmの穴を開けた炭素薄膜型ゼルニケ位相板、アモルファス炭素薄膜をそのまま用い、電子線ビームスポット照射による炭素薄膜の物性変化を位相変調に用いる穴なし炭素薄膜型ゼルニケ位相板、シリコン微細加工技術により中心部だけに電位差を生じさせるアインツェルレンズ型などが提案されている。 Conventionally, as a technique for solving this problem, a phase difference electron microscope method (FIG. 11) is used, which will be described in detail below, in which the phase of an electron beam transmitted through a sample object is converted into contrast using a phase plate and observed. Reference) is used. As such a phase plate, a carbon thin film type Zernike phase plate having a hole with a diameter of several hundred nm in the center of an amorphous carbon thin film having a thickness of several tens of nanometers, an amorphous carbon thin film as it is, and electron beam spot irradiation There have been proposed a holeless carbon thin film type Zernike phase plate that uses the change in physical properties of the carbon thin film due to phase change for phase modulation, an Einzel lens type that generates a potential difference only at the center by silicon micromachining technology.
 しかしながら、これらの位相板は、焦点面上の強い強度の電子線スポット近傍に置かれるため、電子線照射により位相板の物性が経時変化してしまう。その結果として、位相コントラストが正しく再生されなくなってしまう欠点があり、位相板の帯電現象として認識されている。また、これらの位相板は、装置の操作などにおいて強い電子線を浴びると容易に破壊されてしまう。 However, since these phase plates are placed in the vicinity of a strong electron beam spot on the focal plane, the physical properties of the phase plate change over time due to electron beam irradiation. As a result, there is a drawback that the phase contrast is not reproduced correctly, which is recognized as a charging phenomenon of the phase plate. Further, these phase plates are easily destroyed when exposed to a strong electron beam during operation of the apparatus.
 加えて、これらの位相板は、位相を変調する本来の機能の他に、電子線を吸収してしまう副作用をも有しており、試料を透過した電子ビームの一部を無駄にし、その結果として、試料の電子線被曝を増大してしまうという課題も抱えている。 In addition, these phase plates have the side effect of absorbing the electron beam in addition to the original function of modulating the phase, and part of the electron beam transmitted through the sample is wasted. As a problem, there is a problem of increasing the electron beam exposure of the sample.
 本発明は、上述した従来技術における事情に鑑みてなされたものであり、その目的は、より少ない試料の電子線の被曝を可能にすると共に、選択可能な所望のコントラストで良好な資料の可視化を可能とした操作性にも優れた位相差透過型電子顕微鏡装置を提供することにある。 The present invention has been made in view of the circumstances in the above-described prior art, and the purpose thereof is to allow exposure of an electron beam of a smaller number of samples and to visualize a good document with a desired selectable contrast. An object of the present invention is to provide a phase difference transmission electron microscope apparatus that is excellent in operability.
 上記の目的を達成するため、本発明によれば、まず、電子銃と、前記電子銃から放射された電子線を収束する収束光学系と、前記収束光学系からの電子線を試料に対して水平方向に走査するように偏向するためのスキャニング手段と、前記スキャニング手段で偏向された電子線を前記試料に照射する対物レンズと、前記試料を透過した電子線の強度を検出する手段とを備え走査透過電子顕微鏡装置において、前記電子銃と収束光学系の間に配置され、前記電子銃から放射された電子線を予め設定された比率の主プローブ波と参照波とに分波するビームスプリッタを備えている位相差走査透過電子顕微鏡装置が提供される。 To achieve the above object, according to the present invention, first, an electron gun, a converging optical system for converging an electron beam emitted from the electron gun, and an electron beam from the converging optical system with respect to a sample Scanning means for deflecting so as to scan in the horizontal direction, an objective lens for irradiating the sample with the electron beam deflected by the scanning means, and means for detecting the intensity of the electron beam transmitted through the sample In the scanning transmission electron microscope apparatus, a beam splitter is disposed between the electron gun and a converging optical system, and demultiplexes the electron beam emitted from the electron gun into a main probe wave and a reference wave at a preset ratio. A phase difference scanning transmission electron microscope apparatus is provided.
 また、本発明によれば、前記に記載した走査透過電子顕微鏡装置において、前記ビームスプリッタにより変換される前記主プローブ波と前記参照波との強度比率は1:1もしくはそれに近い比率(1:4~1:0.25=0.25以上4以下)であることが好ましく、更には、前記ビームスプリッタは、フレネル・ゾーン・プレートを含むことが好ましい。更には、前記フレネル・ゾーン・プレートは、前記電子線を少なくとも2つのビームに分波し、その一方を通過させて前記主プローブ波とし、他方を前記参照波として収束、あるいは、発散し、かつ、当該フレネル・ゾーン・プレートは、前記収束する参照波の焦点を結ぶ位置、あるいは、発散する参照波がレンズ系により焦点を結ぶ位置が、前記対物レンズの前記電子銃側の焦点と一致するように配置されてもよい。 Further, according to the present invention, in the scanning transmission electron microscope apparatus described above, the intensity ratio between the main probe wave and the reference wave converted by the beam splitter is 1: 1 or a ratio close thereto (1: 4). It is preferable that ˜1: 0.25 = 0.25 or more and 4 or less, and it is preferable that the beam splitter includes a Fresnel zone plate. Further, the Fresnel zone plate demultiplexes the electron beam into at least two beams, passes one of them as the main probe wave, and converges or diverges the other as the reference wave, and In the Fresnel zone plate, the position where the converging reference wave is focused or the position where the diverging reference wave is focused by the lens system coincides with the focal point of the objective lens on the electron gun side. May be arranged.
 また、前記フレネル・ゾーン・プレートと前記対物レンズの間に、1つ以上のレンズを配置し、前記フレネル・ゾーン・プレートが結ぶ焦点位置を、前記対物レンズの前記電子銃側の焦点と一致するように移動もしくは転送するように配置してもよい。 Further, one or more lenses are disposed between the Fresnel zone plate and the objective lens, and a focal position formed by the Fresnel zone plate coincides with a focal point on the electron gun side of the objective lens. You may arrange | position so that it may move or forward.
 さらに、前記フレネル・ゾーン・プレートは、通過する前記主ブローブ波と、発散させる(広げる方向の)参照波とに分波する機能を持ち、前記発散する参照波を収束させる少なくとも1つのレンズを備える事により、参照波の収束点と前記対物レンズの前記電子銃側の焦点と一致させる配置をとってもよい。 Further, the Fresnel zone plate has a function of demultiplexing into the main probe wave passing therethrough and a reference wave to be diverged (in a spreading direction), and includes at least one lens for converging the diverging reference wave. Thus, an arrangement may be adopted in which the convergence point of the reference wave coincides with the focal point of the objective lens on the electron gun side.
 そして、前記フレネル・ゾーン・プレートは、窒化ケイ素、アモルファス炭素もしくはグラフェンを素材とする薄膜の上に、電子線を吸収するタングステン、白金、金、銀、銅、鉛、鉄、亜鉛、錫、モリブデン、チタン、ニッケル又はアルミニウムを含む純金属、若しくは、それらの合金を素材とする同心円状の少なくとも1本以上の輪帯より構成されている事が好ましい。 The Fresnel zone plate is made of tungsten, platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum that absorbs an electron beam on a thin film made of silicon nitride, amorphous carbon, or graphene. It is preferable that it is composed of at least one or more concentric ring zones made of pure metal containing titanium, nickel or aluminum, or an alloy thereof.
 また、前記フレネル・ゾーン・プレートは、電子線を吸収するタングステン、白金、金、銀、銅、鉛、鉄、亜鉛、錫、モリブデン、チタン、ニッケル又はアルミニウムを含む純金属、若しくは、それらの合金を素材とし、架橋部を備える同心円状の少なくとも1本以上の輪帯より構成される薄膜であってもよい。 In addition, the Fresnel zone plate is made of pure metal containing tungsten, platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum, titanium, nickel or aluminum, or an alloy thereof, which absorbs an electron beam. It may be a thin film composed of at least one or more concentric ring zones having a bridging portion.
 また、前記フレネル・ゾーン・プレートは、窒化ケイ素、アモルファス炭素もしくはグラフェンを素材とする薄膜の上に、電子線の位相をシフトさせる同心円状の少なくとも1本以上の輪状の溝が形成された位相型のフレネル・ゾーン・プレートであってもよい。 The Fresnel zone plate is a phase type in which at least one or more concentric annular grooves for shifting the phase of an electron beam are formed on a thin film made of silicon nitride, amorphous carbon or graphene. Fresnel zone plate.
 さらに、前記フレネル・ゾーン・プレートは、位相および振幅の双方を変調する位相・振幅複合型のフレネル・ゾーン・プレートであってもよい。即ち、前記吸収型フレネル・ゾーン・プレートと前記位相型フレネル・ゾーン・プレートを貼り合せる事によって構成してもよいし、前記位相型のフレネル・ゾーン・プレート上に、電子線を吸収するタングステン、白金、金、銀、銅、鉛、鉄、亜鉛、錫、モリブデン、チタン、ニッケル又はアルミニウムを含む純金属、若しくは、それらの合金を素材とする同心円状の少なくとも1本以上の輪帯を形成することにより構成してもよい。 Furthermore, the Fresnel zone plate may be a phase / amplitude composite type Fresnel zone plate that modulates both phase and amplitude. That is, the absorption type Fresnel zone plate and the phase type Fresnel zone plate may be bonded together, or on the phase type Fresnel zone plate, tungsten that absorbs an electron beam, Form at least one or more concentric ring zones made of pure metals including platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum, titanium, nickel or aluminum, or alloys thereof. You may comprise by.
 上述した本発明によれば、試料物体への電子線被曝を抑えつつ、試料物体の電子線の位相変化を画像化し、電子線の位相変化の分布を定量的に計測する位相差走査型の透過電子顕微鏡を提供することが可能となる。 According to the present invention described above, phase difference scanning transmission that images the phase change of the electron beam of the sample object while quantitatively measuring the distribution of the phase change of the electron beam while suppressing exposure of the electron beam to the sample object. An electron microscope can be provided.
本発明の一実施の形態になる位相差走査透過電子顕微鏡装置の全体構成図である。1 is an overall configuration diagram of a phase difference scanning transmission electron microscope apparatus according to an embodiment of the present invention. 上記位相差走査透過電子顕微鏡装置のフレネル・ゾーン・プレートの平面とその断面を示す図である。It is a figure which shows the plane of the Fresnel zone plate of the said phase-difference scanning transmission electron microscope apparatus, and its cross section. 上記位相差走査透過電子顕微鏡装置の架橋型のフレネル・ゾーン・プレートの平面とその断面を示す図である。It is a figure which shows the plane of the bridge | crosslinking type Fresnel zone plate of the said phase-difference scanning transmission electron microscope apparatus, and its cross section. その他の例として、位相型フレネル・ゾーン・プレートと位相・振幅複合型のフレネル・ゾーン・プレートを示す断面図である。FIG. 5 is a cross-sectional view showing a phase type Fresnel zone plate and a phase / amplitude composite type Fresnel zone plate as another example. 本発明の他の実施形態(実施例2)になる位相差走査透過電子顕微鏡装置の全体構成図である。It is a whole block diagram of the phase-difference scanning transmission electron microscope apparatus which becomes other embodiment (Example 2) of this invention. 本発明の更に他の実施形態(実施例3)になる位相差走査透過電子顕微鏡装置の全体構成図である。It is a whole block diagram of the phase difference scanning transmission electron microscope apparatus which becomes further another embodiment (Example 3) of this invention. 本発明の更に他の実施形態(実施例4)になる位相差走査透過電子顕微鏡装置の全体構成図である。It is a whole block diagram of the phase difference scanning transmission electron microscope apparatus which becomes further another embodiment (Example 4) of this invention. 本発明の更に他の実施形態(実施例5)になる位相差走査透過電子顕微鏡装置の全体構成図である。It is a whole block diagram of the phase-difference scanning transmission electron microscope apparatus which becomes further another embodiment (Example 5) of this invention. 本発明の更に他の実施形態(実施例6)になる位相差走査透過電子顕微鏡装置の全体構成図である。It is a whole block diagram of the phase-difference scanning transmission electron microscope apparatus which becomes further another embodiment (Example 6) of this invention. 従来技術において、ゼルニケ位相板などを用いることにより得られる電子ビームを使用する位相差STEMの像生成原理を説明する図である。It is a figure explaining the image generation principle of phase difference STEM which uses the electron beam obtained by using a Zernike phase plate etc. in a prior art. 従来技術における位相差電子顕微鏡法の一例を説明する図である。It is a figure explaining an example of the phase-contrast electron microscope in a prior art.
 以下、添付の図面を参照しながら本発明を実施するための形態について詳細に説明するが、それに先立ち、本発明の基本的な特徴や考え方等について簡単に述べる。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. Prior to that, basic features and concepts of the present invention will be briefly described.
(位相差STEMの像生成原理)
 通常のSTEMは、図10(A)にも示すように、電子銃からの電子線を点状の収束ビーム(主プローブ)とし、当該収束ビームをスキャニングコイルにより試料に平行方向に走査しながら、収束点の吸収率と収束点内部の微分位相を可視化して観察するものであるが、通常、位相の(超)低周波数域は可視化することができない。
(Principle of phase difference STEM image generation)
As shown in FIG. 10A, a normal STEM uses an electron beam from an electron gun as a dotted focused beam (main probe) and scans the focused beam in a direction parallel to the sample by a scanning coil. Although the absorptance at the convergence point and the differential phase inside the convergence point are visualized and observed, the (ultra) low frequency region of the phase cannot usually be visualized.
 そこで、図10(B)にも示すように、上述したゼルニケ位相板などを用いることにより、点状の収束ビーム(主プローブ)に対し、位相を+π/2もしくは-π/2だけ移相した参照平面波ビーム(参照ビーム)を重ね合わせた電子ビームを使用して走査することにより、半径Rの参照波の広がり程度の超低周波数域をも可視化可能とするものである。 Therefore, as shown in FIG. 10B, the phase is shifted by + π / 2 or −π / 2 with respect to the dotted convergent beam (main probe) by using the above-mentioned Zernike phase plate or the like. By scanning using an electron beam on which a reference plane wave beam (reference beam) is superposed, an ultra-low frequency region of the extent of a reference wave having a radius R can be visualized.
 しかしながら、単にSTEMの前方回折面にゼルニケ位相板などを挿入するだけでは、主プローブ波の振幅(A)に対し、参照波の振幅Bが圧倒的に不足してしまい、十分なコントラストが得られないことが分かった。なお、上記に替え、例えばヒルベルト位相板を挿入することにより多少の改善が見られたが、しかしながら、得られる像の解釈が困難である等、なお不十分なものであった。 However, if a Zernike phase plate or the like is simply inserted into the front diffraction surface of the STEM, the amplitude B of the reference wave is overwhelmingly insufficient with respect to the amplitude (A) of the main probe wave, and sufficient contrast is obtained. I found that there was no. In place of the above, for example, a slight improvement was observed by inserting a Hilbert phase plate, however, it was still insufficient, for example, it was difficult to interpret the obtained image.
 より詳細には、位相差走査透過電子顕微鏡では、参照波を生成するために、位相板の中心に穿孔を施したゼルニケ位相板を用い、当該ゼルニケ位相板をSTEM焦点面に、直接、挿入する手法が用いられている。しかしながら、この場合には、参照波として用いられる散乱波は、ゼルニケ位相板の中心の小面積の穴のエッジ部分で生じる散乱波に限定されてしまう。一方、プローブ波はゼルニケ位相板の全域をそのまま通過する。そのため、穴のエッジ部分で生じる散乱波は、そのまま通過するプローブ波に比べて参照波の強度が著しく小さくなってしまう。その結果、干渉によるコントラストが小さくなってしまう。 More specifically, in the phase-contrast scanning transmission electron microscope, a Zernike phase plate having a perforation at the center of the phase plate is used to generate a reference wave, and the Zernike phase plate is directly inserted into the STEM focal plane. The method is used. However, in this case, the scattered wave used as the reference wave is limited to the scattered wave generated at the edge of the small-area hole at the center of the Zernike phase plate. On the other hand, the probe wave passes through the entire area of the Zernike phase plate. For this reason, the intensity of the reference wave of the scattered wave generated at the edge portion of the hole is significantly smaller than that of the probe wave that passes as it is. As a result, the contrast due to interference is reduced.
 その為、従来、例えば、投影光学系を調節して検出器に入射するプローブ波を制限する等により、コントラストを得るなどの対策が取られるが、しかしながら、この事は、試料を透過したプローブ波を無駄にする事にもなってしまい、試料被曝が増大すると言う問題を生じてしまう。 Therefore, conventionally, for example, measures such as obtaining contrast by adjusting the projection optical system and limiting the probe wave incident on the detector have been taken. As a result, the sample exposure increases.
 発明者の検討によれば、上述した主プローブ波と参照波を用いて得られる像のコントラストは、一般に、以下の式で表すことができる。
   I∝|Aeiφ+Bein/2|=A+B+2ABsinφ・・・(式1)
ここで、A:主プローブ振幅、B:参照波振幅(於センサ部)である。
According to the inventor's study, the contrast of an image obtained using the above-described main probe wave and reference wave can be generally expressed by the following equation.
I∝ | Ae + Be in / 2 | = A 2 + B 2 + 2AB sinφ (formula 1)
Here, A is the main probe amplitude, and B is the reference wave amplitude (in the sensor unit).
 更に、上記式1を平均強度(A+B)で規格化することによれば、以下の式(2)が得られる。
   I∝1+2・{(A/B)+(B/A)}-1・sinφ・・・(式2)
Furthermore, the following formula (2) is obtained by normalizing the above formula 1 with the average intensity (A 2 + B 2 ).
I∝1 + 2 · {(A / B) + (B / A)} −1 · sinφ (Formula 2)
 即ち、上記のAとBとがバランスする(等しい)時に、得られる像の位相コントラストが最大化することが分かる。換言すれば、STEMの前方焦点面に挿入される位相板と同等の機能を果たす装置として、それを透過する主プローブとそれにより散乱波として生じる参照波との強度の比率(B/A)が1に近い値、具体的には0.25以上4以下の範囲において所望のものを選択して採用することにより、上述の問題を解消することが可能となる。 That is, it can be seen that the phase contrast of the obtained image is maximized when A and B are balanced (equal). In other words, as a device that performs the same function as a phase plate inserted in the front focal plane of the STEM, the intensity ratio (B 2 / A 2) between the main probe that transmits the phase plate and the reference wave generated as a scattered wave thereby. ) Is a value close to 1, specifically, a desired value is selected and used within a range of 0.25 to 4, and the above-described problem can be solved.
 本発明は、上述した知見に基づいて達成されたものであり、以下に、添付図面を参照しながら、本発明を実施するための形態(以下、「実施形態」と称する)により詳細に説明する。実施形態の説明の全体を通して同じ要素には同じ番号を付している。なお、以下の説明では、電子顕微鏡を構成する各種の電子レンズは、実際には電磁場を形成するための電磁コイルにより構成されるが、以下の説明では、説明の簡素化のため、単にレンズを呼び、図中においても通常の光学レンズと同様の形態で示す。
<実施例1>
The present invention has been achieved on the basis of the above-described findings, and will be described in detail below with reference to the accompanying drawings in the form for carrying out the present invention (hereinafter referred to as “embodiment”). . The same number is attached | subjected to the same element through the whole description of embodiment. In the following description, the various electron lenses constituting the electron microscope are actually configured by electromagnetic coils for forming an electromagnetic field. However, in the following description, in order to simplify the description, lenses are simply used. In the figure, it is shown in the same form as a normal optical lens.
<Example 1>
(位相差走査透過電子顕微鏡の全体構成)
 図1は、本発明の一実施例(実施例1)になる位相差走査透過電子顕微鏡の全体構成を示しており、即ち、装置は、電子銃31、照射光学系32、スキャンコイル33、収束光学系34、対物レンズ35、そして、検出手段として、電子線の強度を検出する明視野検出器36を備えている。
(Overall configuration of phase difference scanning transmission electron microscope)
FIG. 1 shows the overall configuration of a phase-difference scanning transmission electron microscope according to an embodiment (Embodiment 1) of the present invention. That is, the apparatus includes an electron gun 31, an irradiation optical system 32, a scan coil 33, a convergence. An optical system 34, an objective lens 35, and a bright field detector 36 for detecting the intensity of the electron beam are provided as detection means.
 そして、本実施例では、上述した主プローブ波と参照波とを生成するためのビームスプリッタとして、図2に示すような、所謂、フレネル・ゾーン・プレート40を採用している。なお、フレネル・ゾーン・プレート40は、その面からの散乱により、試料に照射される電子線を波動としてプローブ波と参照波に分波する機能をもっている。より具体的には、フレネル・ゾーン・プレート40の0次の散乱波、即ち、プレートをそのまま通過したビームが主プローブ波となり、1次の散乱波として収束する波の成分が参照波となる。そして、このフレネル・ゾーン・プレート40は、図からも明らかなように、その収束波である参照波の焦点がSTEM焦点面と一致するように配置・調整される。 In this embodiment, a so-called Fresnel zone plate 40 as shown in FIG. 2 is used as the beam splitter for generating the main probe wave and the reference wave. The Fresnel zone plate 40 has a function of demultiplexing into a probe wave and a reference wave using an electron beam irradiated on the sample as a wave by scattering from the surface. More specifically, the zero-order scattered wave of the Fresnel zone plate 40, that is, the beam that has passed through the plate as it is becomes the main probe wave, and the component of the wave that converges as the first-order scattered wave becomes the reference wave. The Fresnel zone plate 40 is arranged and adjusted so that the focal point of the reference wave, which is the convergent wave, coincides with the STEM focal plane, as is apparent from the drawing.
 一方、試料50は、STEM像面に配置される。 On the other hand, the sample 50 is disposed on the STEM image plane.
 即ち、上述した構成の位相差走査透過電子顕微鏡では、電子銃31から放射された電子ビームは、照射光学系32により平行光となった後、フレネル・ゾーン・プレート40の働きにより、主プローブ波と参照波とも分離される。その後、主プローブ波は、収束光学系34により、試料50の面上で微小な焦点となり、即ち、主プローブビームとなり、他方、参照波は、円形に広がった平面波として、試料50上に投影・照射され、双方ともに試料50を透過する。なお、これら双方のビームは、共にビーム形状を保ったまま、それぞれ、スキャンコイル33によって偏向され、試料50上を走査する。 That is, in the phase difference scanning transmission electron microscope having the above-described configuration, the electron beam emitted from the electron gun 31 is converted into parallel light by the irradiation optical system 32, and then the main probe wave is operated by the Fresnel zone plate 40. And the reference wave. After that, the main probe wave is focused on the surface of the sample 50 by the converging optical system 34, that is, becomes the main probe beam, while the reference wave is projected onto the sample 50 as a plane wave spreading in a circle. Irradiated and both pass through the sample 50. Both these beams are deflected by the scan coil 33 while keeping the beam shape, and scan the sample 50.
 試料50を透過した双方のビームは、明視野検出器36上で重ね合わされ、その強度が検出され、その後、スキャンコイル33による走査と併せて画像化される。即ち、試料を透過した主ブローブ波と参照波とが、波として重ね合わされ、その干渉強度を検出する。これにより、試料上の点を透過した主プローブ波と、試料上の広がった領域を透過した参照波との相対位相に応じた強度が検出される。 Both beams transmitted through the sample 50 are superimposed on the bright field detector 36, the intensity of which is detected, and then imaged together with the scanning by the scan coil 33. That is, the main probe wave transmitted through the sample and the reference wave are superimposed as a wave, and the interference intensity is detected. As a result, the intensity corresponding to the relative phase between the main probe wave transmitted through the point on the sample and the reference wave transmitted through the spread area on the sample is detected.
<フレネル・ゾーン・プレート(FZP)>
 フレネル・ゾーン・プレート40は、上記の図2からも明らかなように、球面波と平面波から作るホログラムであり、それにより得られる球面波と平面波の強度比や位相差は、自在に設計することが可能である。なお、この図2に示すのは、所謂、sin型FZPであり、入射した平面波を、平面波と2つの球面波の合成波に変換し、かつ、平面波と球面波の相対位相差を90度にする機能をもっている、その他、平面波と球面波の相対位相差が0度となるcos型FZPなどが知られている。
<Fresnel Zone Plate (FZP)>
As apparent from FIG. 2, the Fresnel zone plate 40 is a hologram made from a spherical wave and a plane wave, and the intensity ratio and phase difference between the spherical wave and the plane wave obtained thereby can be designed freely. Is possible. FIG. 2 shows a so-called sin-type FZP, which converts an incident plane wave into a combined wave of a plane wave and two spherical waves, and sets the relative phase difference between the plane wave and the spherical wave to 90 degrees. In addition, a cos type FZP having a relative phase difference of 0 degree between a plane wave and a spherical wave is known.
 また、フレネル・ゾーン・プレート40は、半導体製造の微細加工技術のパターン形成により製造することが可能である。例えば、窒化ケイ素(SiN)、アモルファス炭素もしくはグラフェンを素材とする円盤状の薄膜41の表面上に、電子を吸収するタングステン、白金、金、銀、銅、鉛、鉄、亜鉛、錫、モリブデン、チタン、ニッケル、若しくは、アルミニウムを含む純金属、若しくは、それらの合金を素材として、同心円状に、少なくとも1本以上の輪帯42を蒸着することにより形成することができる。 Further, the Fresnel zone plate 40 can be manufactured by pattern formation of a fine processing technique of semiconductor manufacturing. For example, on the surface of the disk-shaped thin film 41 made of silicon nitride (SiN), amorphous carbon or graphene, tungsten, platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum, which absorbs electrons, It can be formed by vapor-depositing at least one or more annular zones 42 concentrically using a pure metal containing titanium, nickel, or aluminum, or an alloy thereof.
 また、フレネル・ゾーン・プレート40は、図3に示す様に、支持膜となる薄膜41を用いず、電子を吸収するタングステン、白金、金、銀、銅、鉛、鉄、亜鉛、錫、モリブデン、チタン、ニッケル、若しくは、アルミニウムを含む純金属、若しくは、それらの合金を素材とする薄膜を、輪帯を支持する架橋部を伴った、同心円状の輪帯42'に加工して形成することもできる。 Further, as shown in FIG. 3, the Fresnel zone plate 40 does not use the thin film 41 as a support film, and absorbs electrons, such as tungsten, platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum. A thin film made of a pure metal containing titanium, nickel, or aluminum, or an alloy thereof is processed into a concentric annular zone 42 ′ with a bridging portion that supports the annular zone. You can also.
 図2および図3には、電子線を吸収する輪帯より構成される、所謂、吸収型(振幅型)フレネル・ゾーン・プレートの例を示したが、更には、図4(A)に示すように、位相シフトの輪帯43より構成される位相型フレネル・ゾーン・プレートや、図4(B)に示すように、位相シフトの輪帯43と吸収の輪帯42を組み合わせた、位相・振幅複合型のフレネル・ゾーン・プレートを用いてもよい。また、位相あるいは吸収量が連続的に変化するレリーフ型のフレネル・ゾーン・プレートを用いてもよい。これらの採用により、より精度が高く副次的な回折波の少ない参照波を生成することができる。 2 and 3 show an example of a so-called absorption type (amplitude type) Fresnel zone plate composed of an annular zone that absorbs an electron beam. Further, FIG. As shown in FIG. 4B, a phase-type Fresnel zone plate composed of the phase-shifting annular zone 43 or a phase-shifting annular zone 43 and an absorbing annular zone 42 are combined. A composite amplitude type Fresnel zone plate may be used. Further, a relief type Fresnel zone plate whose phase or absorption amount continuously changes may be used. By adopting them, it is possible to generate a reference wave with higher accuracy and less secondary diffraction waves.
 特に、ここで生成されるプローブ波の強度と参照波の強度比は、フレネル・ゾーン・プレート40の設計により任意に定められる事が重要である。例えば、主プローブ波の強度と参照波の強度比(R)を1に近い値に定める事により、干渉により生じるコントラストを最大にとる事ができる。或いは、予め複数の強度比(R)の異なるフレネル・ゾーン・プレートを用意しておき、それらの中から好適な強度比(R)のフレネル・ゾーン・プレートを選択して使用することによれば、所望のコントラストで試料の相変化を画像化することが可能となる。 In particular, it is important that the intensity ratio of the probe wave and the reference wave generated here is arbitrarily determined by the design of the Fresnel zone plate 40. For example, by setting the intensity ratio (R) of the main probe wave and the reference wave to a value close to 1, the contrast caused by interference can be maximized. Alternatively, by preparing a plurality of Fresnel zone plates with different intensity ratios (R) in advance and selecting and using a Fresnel zone plate with a suitable intensity ratio (R). The phase change of the sample can be imaged with a desired contrast.
 なお、現実に作成可能なフレネル・ゾーン・プレートは、電子線を透過し収束する効果だけではなく、電子線を吸収する効果もその副作用として有しているが、この吸収される電子線は、上述した走査透過電子顕微鏡の構造上、試料物体に照射される前に吸収されるため、試料の電子線の被曝量が増大する怖れはない。 In addition, the Fresnel zone plate that can be actually created has not only the effect of transmitting and converging the electron beam, but also the effect of absorbing the electron beam as a side effect thereof. Due to the structure of the scanning transmission electron microscope described above, the sample object is absorbed before being irradiated, so there is no fear that the electron beam exposure amount of the sample will increase.
 吸収型(振幅型)フレネル・ゾーン・プレートを用いる場合、入射波は、そのまま透過する波、収束波と発散波の少なくとも3つの波に分波されるが、収束波もしくは発散波のうちどちらか一方は不要なビームとなる。この不要なビームは、不要ビームの焦点位置にピンストップ型の絞りの挿入により除去することができる。後にも述べるピンストップ型の絞りは、窒化ケイ素、アモルファス炭素もしくはグラフェンを素材とする円盤状の薄膜の表面上に、電子を吸収するタングステン、白金、金、銀、銅、鉛、鉄、亜鉛、錫、モリブデン、チタン、ニッケル、若しくは、アルミニウムを含む純金属、若しくは、それらの合金を素材とする円形状のパターンを形成もしくは球形状の粒子を載せる事により構成できる。位相・振幅複合型のフレネル・ゾーン・プレートを用いれば、入射波は、透過波と、収束波もしくは発散波の選択可能などちらか一方の2つの波に分波されるため、ピンストップ型の絞りの挿入は不要となる。
<実施例2>
In the case of using an absorption type (amplitude type) Fresnel zone plate, the incident wave is split into at least three waves, a transmitted wave, a convergent wave and a divergent wave. One becomes an unnecessary beam. This unnecessary beam can be removed by inserting a pin stop type stop at the focal position of the unnecessary beam. The pin stop type diaphragm, which will be described later, is made of tungsten, platinum, gold, silver, copper, lead, iron, zinc, which absorbs electrons on the surface of a disk-shaped thin film made of silicon nitride, amorphous carbon or graphene. It can be configured by forming a circular pattern made of pure metal including tin, molybdenum, titanium, nickel, or aluminum, or an alloy thereof, or placing spherical particles. Using a combined phase / amplitude type Fresnel zone plate, the incident wave is demultiplexed into a transmitted wave and either a convergent wave or a divergent wave. It is not necessary to insert a diaphragm.
<Example 2>
 図5は、本発明の他の実施例(実施例2)になる位相差走査透過電子顕微鏡の全体構成を示している。なお、上記の実施例1では、電子銃31から放射された電子ビーム全体をフレネル・ゾーン・プレート40に照射する、所謂、全面FZPについて示したが、この実施例2では、電子ビームの一部をフレネル・ゾーン・プレート40に照射する、所謂、部分FZPを示す。なお、この場合、得られる参照波の照射領域は、最外輪帯(図2を参照)の溝幅の逆数によって決まることから、参照波の照射領域を、適宜、設定することが可能となる。 FIG. 5 shows the overall configuration of a phase difference scanning transmission electron microscope according to another embodiment (Example 2) of the present invention. In the first embodiment, the entire surface of the electron beam emitted from the electron gun 31 is irradiated on the Fresnel zone plate 40, so-called FZP is shown. However, in the second embodiment, a part of the electron beam is shown. Shows a so-called partial FZP in which the Fresnel zone plate 40 is irradiated. In this case, the reference wave irradiation region obtained is determined by the reciprocal of the groove width of the outermost annular zone (see FIG. 2), so that the reference wave irradiation region can be set as appropriate.
 即ち、上記の実施例2になる位相差走査透過電子顕微鏡によれば、電子銃31から放射された電子ビームの一部を主プローブ波と参照波に変換することにより、それらの間の強度比(R)をより自在に設定することを可能とすることができる。
<実施例3>
That is, according to the phase difference scanning transmission electron microscope according to the second embodiment, a part of the electron beam radiated from the electron gun 31 is converted into a main probe wave and a reference wave, whereby an intensity ratio between them is obtained. It is possible to set (R) more freely.
<Example 3>
 図6は、本発明の更に他の実施例(実施例3)になる位相差走査透過電子顕微鏡の全体構成を示している。なお、上記の実施例1では、フレネル・ゾーン・プレート40は、主プローブ波となる透過するビームと、参照波となる収束するビームとに分波する機能を備えていたが、これに対し、本実施例3では、主プローブ波となる透過するビーム(図の実線)と、参照波となる発散するビーム(図の破線)とに分波する機能を備えている。 FIG. 6 shows the overall configuration of a phase-contrast scanning transmission electron microscope according to still another embodiment (Example 3) of the present invention. In the first embodiment, the Fresnel zone plate 40 has a function of demultiplexing into a transmitting beam that is a main probe wave and a converging beam that is a reference wave. The third embodiment has a function of demultiplexing into a transmitting beam (solid line in the figure) serving as a main probe wave and a diverging beam (dashed line in the figure) serving as a reference wave.
 フレネル・ゾーン・プレート40の上方の電子銃31からフレネル・ゾーン・プレート40には、電子ビームが照射され、そのまま透過し収束してゆくビーム(図の実線)が主プローブ波となり、他方、発散する方向に分波されたビーム(図の実線)が平行ビームとして出力されて参照波となる。
<実施例4>
A beam (solid line in the figure) irradiated with an electron beam from the electron gun 31 above the Fresnel zone plate 40 to the Fresnel zone plate 40 is transmitted and converged as it is as a main probe wave. The beam demultiplexed in the direction (solid line in the figure) is output as a parallel beam and becomes a reference wave.
<Example 4>
 図7は、本発明の更に他の実施例(実施例4)になる位相差走査透過電子顕微鏡の全体構成を示している。なお、本実施例においても、上記の実施例3と同様に、フレネル・ゾーン・プレート40は、主プローブ波となる透過するビーム(図の実線)と、参照波となる発散するビーム(図の破線)とに分波する機能を備えている。 FIG. 7 shows the overall configuration of a phase-contrast scanning transmission electron microscope according to still another embodiment (Example 4) of the present invention. In the present embodiment as well, as in the third embodiment, the Fresnel zone plate 40 has a transmitting beam (solid line in the figure) serving as a main probe wave and a diverging beam (in the figure) serving as a reference wave. And a function of branching to a broken line).
 フレネル・ゾーン・プレート40の上方の照射光学系レンズ32により、フレネル・ゾーン・プレート40には収束してゆく電子ビームが照射され、そのまま透過し収束してゆくビーム(図の実線)が主プローブ波となり、他方、発散する方向に分波されたビーム(図の破線)が参照波となる。フレネル・ゾーン・プレート40で発散される方向に分波された参照波も収束ビームとなるが、その焦点位置は収束光学系34のレンズが作る焦点位置よりもより下側に来る。この下側に移動した参照波の焦点を、STEM焦点面の焦点位置に合わせる事により、試料には、収束する主プローブ波と平面波の参照波が照射され、スキャン機能により位相差STEM像が得られる。
<実施例5>
The converging electron beam is irradiated onto the Fresnel zone plate 40 by the irradiation optical system lens 32 above the Fresnel zone plate 40, and a beam (solid line in the figure) that is transmitted and converged as it is is the main probe. On the other hand, a beam (broken line in the figure) demultiplexed in the diverging direction becomes a reference wave. The reference wave demultiplexed in the direction diverged by the Fresnel zone plate 40 is also a convergent beam, but its focal position is lower than the focal position formed by the lens of the converging optical system 34. By focusing the reference wave that has moved downward to the focal point of the STEM focal plane, the sample is irradiated with the reference wave of the main probe wave and plane wave that converge, and a phase difference STEM image is obtained by the scanning function. It is done.
<Example 5>
 図8は、本発明の更に他の実施例(実施例5)になる位相差走査透過電子顕微鏡の全体構成を示している。このように、実施例3の図6に示す構成に、振幅型ゾーンプレートを用いた場合、図8に示すように、実線の透過ビームと破線の発散する参照ビームに加え、点線で示す収束する不要なビームが生じてしまう欠点を持っている。この不要なビームは、不要なビームの収束点に、収束点のビームだけを透過しないピンストップ型の絞りを挿入することにより除去することができる。 FIG. 8 shows the overall configuration of a phase difference scanning transmission electron microscope according to still another embodiment (Embodiment 5) of the present invention. As described above, when the amplitude type zone plate is used in the configuration shown in FIG. 6 of the third embodiment, as shown in FIG. 8, in addition to the solid transmission beam and the broken reference beam, the convergence is indicated by the dotted line. There is a disadvantage that an unnecessary beam is generated. This unnecessary beam can be removed by inserting a pin stop type stop that does not transmit only the beam at the convergence point at the convergence point of the unnecessary beam.
 即ち、不要ビームの焦点位置にピンストップ型の絞りを正確に挿入することにより、不要ビームをほぼ完全に除去されるにも関わらず、透過ビームおよび参照ビームにはほとんど影響を与えず、理想的なプローブビームが生成される。
<実施例6>
In other words, by inserting a pin-stop-type stop accurately at the focal position of the unwanted beam, the unwanted beam is almost completely removed, but the transmitted beam and the reference beam are hardly affected. Probe beam is generated.
<Example 6>
 更に、図9は、本発明の更に他の実施例(実施例6)になる位相差走査透過電子顕微鏡の全体構成を示している。このように、実施例4の図7に示す構成に、振幅型ゾーンプレートを用いた場合、図9に示すように、実線の透過ビームと破線の発散する参照ビームに加え、点線で示す収束する不要なビームが生じてしまう欠点を持っている。 Furthermore, FIG. 9 shows the overall configuration of a phase-contrast scanning transmission electron microscope according to still another embodiment (Example 6) of the present invention. As described above, when the amplitude type zone plate is used in the configuration shown in FIG. 7 of the fourth embodiment, as shown in FIG. 9, in addition to the solid transmission beam and the broken reference beam, the convergence is indicated by the dotted line. There is a disadvantage that an unnecessary beam is generated.
 しかしながら、この不要なビームは、不要なビームの収束点にピンストップ型の絞りを挿入することにより、上記図8に示した実施例5と同様にして、除去することができる。 However, this unnecessary beam can be removed in the same manner as in the fifth embodiment shown in FIG. 8 by inserting a pin stop type stop at the convergence point of the unnecessary beam.
 これらの実施例3~6によっても、やはり、上記の実施例1や2に示した位相差走査透過電子顕微鏡と同様の効果が得られることは、当業者にとっては明らかであろう。 It will be apparent to those skilled in the art that the effects similar to those of the phase difference scanning transmission electron microscopes shown in the first and second embodiments can be obtained by these third to sixth embodiments.
 なお、以上に述べた実施例の全てにおいては、フレネル・ゾーン・プレートを取り除く事により、いつでも従来型のSTEMとして用いる事が出来る。また、従来型のSTEMの照射系の絞りポート等にフレネル・ゾーン・プレートを挿入することによって、従来型のSTEMを位相差STEMに容易に改造することも可能である。 In all of the embodiments described above, the Fresnel zone plate can be removed and used at any time as a conventional STEM. It is also possible to easily convert a conventional STEM into a phase difference STEM by inserting a Fresnel zone plate into a diaphragm port of a conventional STEM irradiation system.
 以上に詳細に述べたように、上述した実施例では、STEM焦点面より上流側において、STEM焦点面に挿入される従来のゼルニケ位相板に替えて、一例として、フレネル・ゾーン・プレートを、フレネル・ゾーン・プレートの直接の焦点が、もしくは、レンズ系により転送あるいは移動した先の焦点が、STEM焦点面に来る様な位置において挿入することにより、上述した問題を解決している。即ち、本発明は: As described in detail above, in the embodiment described above, instead of the conventional Zernike phase plate inserted in the STEM focal plane at the upstream side of the STEM focal plane, as an example, a Fresnel zone plate is used. The above-mentioned problem is solved by inserting at a position where the direct focus of the zone plate or the focal point transferred or moved by the lens system comes to the STEM focal plane. That is, the present invention provides:
(1)走査透過電子顕微鏡であって、電子銃と、前記電子線源と収束光学系の間に配置され、前記電子線源から放射された電子線が通過するゼルニケ位相板の代替機能として、フレネル・ゾーン・プレートを利用し、前記対物レンズの背後に配置された試料物体を透過した電子ビームの強度を検出する手段とを備える。 (1) A scanning transmission electron microscope as an alternative function of a Zernike phase plate that is disposed between an electron gun, the electron beam source, and a converging optical system and through which an electron beam emitted from the electron beam source passes. Means for detecting the intensity of an electron beam transmitted through a sample object disposed behind the objective lens using a Fresnel zone plate.
(2)上記(1)の構成において、前記フレネル・ゾーン・プレートは、前記電子線を2つ以上のビームに分波させ、その一方のビームは入射ビーム波面を保ったままであり、当該一方のビームは対物レンズにより試料上に焦点を結んでおり、他方のビームは収束ビームとなり、その収束点は対物レンズの前方焦点面に配置され、そして、試料面上では、対物レンズによって広がったビームとなる。 (2) In the configuration of the above (1), the Fresnel zone plate splits the electron beam into two or more beams, and one of the beams keeps an incident beam wavefront. The beam is focused on the sample by the objective lens, the other beam becomes a convergent beam, the convergence point is located at the front focal plane of the objective lens, and on the sample plane, the beam spread by the objective lens Become.
(3)上記(1)の構成において、前記フレネル・ゾーン・プレートは、波面を保ったまま通過する電子波と、収束する電子波との相対的な位相の差が、ゼロ(0)、又は、正もしくは負の値であり、90度を含む有限の値となる。 (3) In the configuration of (1), the Fresnel zone plate has a relative phase difference of zero (0), or an electron wave that passes while maintaining a wavefront, This is a positive or negative value and is a finite value including 90 degrees.
 即ち、本発明では、位相差走査透過電子顕微鏡法に用いる主プローブビームと参照ビームの対を効率的に生成することにより、より高い位相コントラスト、より少ない試料の電子線被曝、より長い位相板の寿命を実現する為の技術が提供される。 That is, in the present invention, by efficiently generating a pair of a main probe beam and a reference beam used for phase difference scanning transmission electron microscopy, a higher phase contrast, fewer electron beam exposures of a sample, a longer phase plate Technology is provided to achieve lifetime.
 なお、上記の実施例では、通過する電子線を所望の強度比で主プローブ波と参照波に変換する位相板として、フレネル・ゾーン・プレートを使用したものについて詳述したが、しかしながら、本発明はこれにのみ限定されるものではなく、同様の機能を発揮するものであれば、他の物であっても構わないことは、当業者であれば明らかであろう。 In the above embodiment, the phase plate that uses the Fresnel zone plate as the phase plate for converting the passing electron beam into the main probe wave and the reference wave at a desired intensity ratio has been described in detail. It will be apparent to those skilled in the art that other materials may be used as long as they exhibit similar functions.
 以上、本発明の実施例になる位相差走査透過電子顕微鏡装置について種々述べた。しかしながら、本発明は、上述した実施例のみに限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In the foregoing, various phase difference scanning transmission electron microscope apparatuses according to embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments are described in detail for the entire system in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 本発明は、薄い試料のナノメートルの構造を観察する等において広く用いられる透過電子顕微鏡装置、特に、電子線を走査し、かつ、位相板を用いながら試料を観察する位相差式の走査透過電子顕微鏡装置において利用可能である。 The present invention relates to a transmission electron microscope apparatus widely used for observing a nanometer structure of a thin sample, and in particular, a phase-difference type scanning transmission electron that scans an electron beam and observes a sample while using a phase plate. It can be used in a microscope apparatus.
31…電子銃、32…照射光学系、33…スキャンコイル、34…収束光学系、35…対物レンズ、36…明視野検出器、40…フレネル・ゾーン・プレート、41…円盤状の薄膜、42…輪帯、42'…自立型の輪帯、43…輪帯状の溝、50…試料。 DESCRIPTION OF SYMBOLS 31 ... Electron gun, 32 ... Irradiation optical system, 33 ... Scan coil, 34 ... Convergence optical system, 35 ... Objective lens, 36 ... Bright field detector, 40 ... Fresnel zone plate, 41 ... Disc-shaped thin film, 42 ... annular zone, 42 '... freestanding annular zone, 43 ... annular zone groove, 50 ... sample.

Claims (13)

  1.  電子銃と、
     前記電子銃から放射された電子線を収束する収束光学系と、
     前記収束光学系からの電子線を試料に対して水平方向に走査するように偏向するためのスキャニング手段と、
     前記スキャニング手段で偏向された電子線を前記試料に照射する対物レンズと、
     前記試料を透過した電子線の強度を検出する手段とを備えた走査透過電子顕微鏡装置において、
     前記電子銃と前記対物レンズの間の、対物レンズ前方焦点面とは異なった位置に配置され、前記電子銃から放射された電子線を予め設定された比率の主プローブ波と参照波に変換するビームスプリッタを備え、前記主プローブ波と参照波は異なった焦点位置をもっている電子波であることを特徴とする位相差走査透過電子顕微鏡装置。
    An electron gun,
    A converging optical system for converging the electron beam emitted from the electron gun;
    Scanning means for deflecting the electron beam from the converging optical system so as to scan the sample in a horizontal direction;
    An objective lens for irradiating the sample with the electron beam deflected by the scanning means;
    In a scanning transmission electron microscope apparatus provided with a means for detecting the intensity of an electron beam transmitted through the sample,
    An electron beam radiated from the electron gun, which is disposed at a position different from the front focal plane of the objective lens between the electron gun and the objective lens, is converted into a main probe wave and a reference wave having a preset ratio. A phase difference scanning transmission electron microscope apparatus comprising a beam splitter, wherein the main probe wave and the reference wave are electron waves having different focal positions.
  2.  前記請求項1に記載した走査透過電子顕微鏡装置において、前記ビームスプリッタにより変換される前記主プローブ波と前記参照波との比率は0.25以上4以下であることを特徴とする位相差走査透過電子顕微鏡装置。 2. The scanning transmission electron microscope apparatus according to claim 1, wherein a ratio between the main probe wave and the reference wave converted by the beam splitter is 0.25 or more and 4 or less. apparatus.
  3.  前記請求項2に記載した走査透過電子顕微鏡装置において、前記ビームスプリッタは、フレネル・ゾーン・プレートを含むことを特徴とする位相差走査透過電子顕微鏡装置。 3. The scanning transmission electron microscope apparatus according to claim 2, wherein the beam splitter includes a Fresnel zone plate.
  4.  前記請求項3に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートは、前記電子線を少なくとも2つのビームに分波し、その一方を通過させて前記主プローブ波とし、他方を前記参照波として収束、あるいは、発散し、かつ、当該フレネル・ゾーン・プレートは、前記収束する参照波の焦点を結ぶ位置、あるいは、発散する参照波がレンズ系により焦点を結ぶ位置が、前記対物レンズの前記電子銃側の焦点と一致するように配置されていることを特徴とする位相差走査透過電子顕微鏡装置。 4. The scanning transmission electron microscope apparatus according to claim 3, wherein the Fresnel zone plate demultiplexes the electron beam into at least two beams, passes one of them as the main probe wave, and sets the other as the main probe wave. The objective lens converges or diverges as a reference wave, and the Fresnel zone plate has a position where the converged reference wave is focused or a position where the diverging reference wave is focused by a lens system. The phase difference scanning transmission electron microscope apparatus is arranged so as to coincide with the focal point on the electron gun side.
  5.  前記請求項4に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートは、前記電子線の全体を分波するように配置されていることを特徴とする位相差走査透過電子顕微鏡装置。 5. The scanning transmission electron microscope apparatus according to claim 4, wherein the Fresnel zone plate is arranged so as to demultiplex the entire electron beam.
  6.  前記請求項4に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートは、前記電子線の一部を分波するように配置されていることを特徴とする位相差走査透過電子顕微鏡装置。 5. The scanning transmission electron microscope apparatus according to claim 4, wherein the Fresnel zone plate is arranged so as to demultiplex a part of the electron beam. .
  7.  前記請求項4に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートと前記対物レンズの間に、1つ以上のレンズを設け、当該レンズを、前記フレネル・ゾーン・プレートが結ぶ焦点位置を、前記対物レンズの前記電子銃側の焦点と一致するように移動もしくは転送する位置に配置したことを特徴とする位相差走査透過電子顕微鏡装置。 5. The scanning transmission electron microscope apparatus according to claim 4, wherein one or more lenses are provided between the Fresnel zone plate and the objective lens, and the lens is connected to the Fresnel zone plate. Is arranged at a position to move or transfer so as to coincide with the focal point of the objective lens on the electron gun side.
  8.  前記請求項4に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートは、通過する前記主ブローブ波と、発散させる前記参照波とに分波する機能を持ち、更に、前記発散する参照波を収束させる少なくとも1つのレンズを設け、当該レンズを、備える事により、前記参照波の収束点と前記対物レンズの前記電子銃側の焦点とを一致させる位置に配置したことを特徴とする位相差走査透過電子顕微鏡装置。 5. The scanning transmission electron microscope apparatus according to claim 4, wherein the Fresnel zone plate has a function of demultiplexing the main probe wave to pass through and the reference wave to diverge, and further diverges the reference. A position in which at least one lens for converging waves is provided, and the lens is provided so that the convergence point of the reference wave and the focal point on the electron gun side of the objective lens coincide with each other. Phase difference scanning transmission electron microscope apparatus.
  9.  前記請求項3に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートは、窒化ケイ素、アモルファス炭素もしくはグラフェンを素材とする薄膜の上に、電子線を吸収するタングステン、白金、金、銀、銅、鉛、鉄、亜鉛、錫、モリブデン、チタン、ニッケル又はアルミニウム、若しくは、それらの合金を素材とする同心円状の少なくとも1本以上の輪帯より構成されている事を特徴とする位相差走査透過電子顕微鏡装置。 4. The scanning transmission electron microscope apparatus according to claim 3, wherein the Fresnel zone plate is formed on a thin film made of silicon nitride, amorphous carbon or graphene, and absorbs an electron beam tungsten, platinum, gold, silver. A phase difference characterized by comprising at least one or more concentric annular zones made of copper, lead, iron, zinc, tin, molybdenum, titanium, nickel, aluminum, or an alloy thereof. Scanning transmission electron microscope apparatus.
  10.  前記請求項3に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートは、電子線を吸収するタングステン、白金、金、銀、銅、鉛、鉄、亜鉛、錫、モリブデン、チタン、ニッケル又はアルミニウム、若しくは、それらの合金を素材とし、架橋部を備える同心円状の少なくとも1本以上の輪帯より構成される薄膜である事を特徴とする位相差走査透過電子顕微鏡装置。 4. The scanning transmission electron microscope apparatus according to claim 3, wherein the Fresnel zone plate is made of tungsten, platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum, titanium, nickel that absorbs an electron beam. Alternatively, a phase-contrast scanning transmission electron microscope apparatus characterized by being a thin film made of at least one or more concentric ring zones made of aluminum or an alloy thereof and having a bridging portion.
  11.  前記請求項3に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートは、窒化ケイ素、アモルファス炭素もしくはグラフェンを素材とする薄膜の上に、電子線の位相をシフトする同心円状の少なくとも1本以上の輪帯状の溝より構成されている事を特徴とする位相差走査透過電子顕微鏡装置。 4. The scanning transmission electron microscope apparatus according to claim 3, wherein the Fresnel zone plate has at least one concentric circle for shifting the phase of an electron beam on a thin film made of silicon nitride, amorphous carbon, or graphene. A phase-contrast scanning transmission electron microscope apparatus comprising at least one ring-shaped groove.
  12.  前記請求項9に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートは、更に、窒化ケイ素、アモルファス炭素もしくはグラフェンを素材とする薄膜の上に、電子線の位相をシフトする同心円状の少なくとも1本以上の輪帯状の溝より構成された吸収型フレネル・ゾーン・プレートを貼り合せた構成である事を特徴とする位相差走査透過電子顕微鏡装置。 10. The scanning transmission electron microscope apparatus according to claim 9, wherein the Fresnel zone plate is a concentric circle that shifts the phase of an electron beam on a thin film made of silicon nitride, amorphous carbon, or graphene. A phase-difference scanning transmission electron microscope apparatus characterized in that an absorption type Fresnel zone plate composed of at least one ring-shaped groove is bonded.
  13.  前記請求項11に記載した走査透過電子顕微鏡装置において、前記フレネル・ゾーン・プレートは、更に、その上に、窒化ケイ素、アモルファス炭素もしくはグラフェンを素材とする薄膜の上に、電子線を吸収するタングステン、白金、金、銀、銅、鉛、鉄、亜鉛、錫、モリブデン、チタン、ニッケル又はアルミニウム、若しくは、それらの合金を素材とする同心円状の少なくとも1本以上の輪帯を形成することにより構成している事を特徴とする位相差走査透過電子顕微鏡装置。 12. The scanning transmission electron microscope apparatus according to claim 11, wherein the Fresnel zone plate further includes tungsten absorbing an electron beam on a thin film made of silicon nitride, amorphous carbon, or graphene. , Platinum, gold, silver, copper, lead, iron, zinc, tin, molybdenum, titanium, nickel or aluminum, or by forming at least one concentric ring zone made of an alloy thereof A phase-contrast scanning transmission electron microscope apparatus.
PCT/JP2017/012647 2016-03-30 2017-03-28 Phase-difference scanning transmission electron microscope WO2017170554A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018508074A JP6842718B2 (en) 2016-03-30 2017-03-28 Phase-difference scanning transmission electron microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-068958 2016-03-30
JP2016068958 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170554A1 true WO2017170554A1 (en) 2017-10-05

Family

ID=59965657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012647 WO2017170554A1 (en) 2016-03-30 2017-03-28 Phase-difference scanning transmission electron microscope

Country Status (2)

Country Link
JP (1) JP6842718B2 (en)
WO (1) WO2017170554A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164861A (en) * 2004-12-10 2006-06-22 Hitachi High-Technologies Corp Scanning interference electron microscope
JP2014049444A (en) * 2012-08-30 2014-03-17 Fei Co Method of visualizing sample in tem equipped with phase plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164861A (en) * 2004-12-10 2006-06-22 Hitachi High-Technologies Corp Scanning interference electron microscope
JP2014049444A (en) * 2012-08-30 2014-03-17 Fei Co Method of visualizing sample in tem equipped with phase plate

Also Published As

Publication number Publication date
JP6842718B2 (en) 2021-03-17
JPWO2017170554A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP5116321B2 (en) Phase contrast electron microscope
US10153062B2 (en) Illumination and imaging device for high-resolution X-ray microscopy with high photon energy
CN103560067B (en) Improvement phase-plate for TEM
JP4896106B2 (en) electronic microscope
US9864114B2 (en) Zone plate having annular or spiral shape and Y-shaped branching edge dislocation
US20150055745A1 (en) Phase Contrast Imaging Using Patterned Illumination/Detector and Phase Mask
JP6568646B2 (en) electronic microscope
JP4372425B2 (en) Electron microscope with annular illumination aperture
JP5160500B2 (en) Hybrid phase plate
JP6351633B2 (en) High resolution amplitude contrast imaging
US20150170876A1 (en) Method of investigating the wavefront of a charged-particle beam
JP5714861B2 (en) X-ray image capturing method and X-ray image capturing apparatus
WO2008004679A1 (en) Microscope device
Beiersdorfer et al. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer
WO2007058182A1 (en) Phase contrast electron microscope
JP5380366B2 (en) Transmission interference microscope
JP4920370B2 (en) Information transmission limit measurement method of transmission electron microscope and transmission electron microscope to which this measurement method is applied
WO2017170554A1 (en) Phase-difference scanning transmission electron microscope
JP5934513B2 (en) Transmission electron microscope
JP2021163753A (en) Methods and systems for acquiring 3D diffraction data
JP6931931B2 (en) Particle beam device, observation method, and diffraction grating
JP2016122027A (en) Phase difference microscope
JP2005108545A (en) Electron/secondary ion microscope device
JP7156754B1 (en) Electron beam modulator and electron beam modulation method
KR100607874B1 (en) Objective aperture for eliminating background noise of high resolution image and pattern forming apparatus using thereof

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2018508074

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775091

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775091

Country of ref document: EP

Kind code of ref document: A1