WO2017170499A1 - Paddy work machine - Google Patents

Paddy work machine Download PDF

Info

Publication number
WO2017170499A1
WO2017170499A1 PCT/JP2017/012557 JP2017012557W WO2017170499A1 WO 2017170499 A1 WO2017170499 A1 WO 2017170499A1 JP 2017012557 W JP2017012557 W JP 2017012557W WO 2017170499 A1 WO2017170499 A1 WO 2017170499A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
groove
float
field
center float
Prior art date
Application number
PCT/JP2017/012557
Other languages
French (fr)
Japanese (ja)
Inventor
三宅 康司
小坂田 誠之
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017057702A external-priority patent/JP6726125B2/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201780004802.1A priority Critical patent/CN108882678B/en
Publication of WO2017170499A1 publication Critical patent/WO2017170499A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C7/00Sowing
    • A01C7/08Broadcast seeders; Seeders depositing seeds in rows
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings

Definitions

  • the present invention relates to a paddy field machine for transplanting seedlings in a field or supplying seed pods.
  • Patent Document 1 a sensor for detecting the surface of the field is provided immediately before the planting position, separately from the float for sensing the ground contact surface of the field, thereby detecting the amount of settlement of the float and correcting the deviation of the float sensing.
  • a machine is disclosed.
  • a U-shaped center float or an L-shaped center float for single-row planting was used to level the portion corresponding to the central strip as a fraction.
  • the sensor in Patent Document 1 is preferably arranged in a center float that is a sensing float, and a U-shaped float that is symmetric is preferable in consideration of the weight balance of the rice transplanter.
  • the present invention provides a center float that senses a ground contact surface in a paddy field work machine that supplies odd-numbered seedlings or seed pods to an agricultural field, such as an odd-numbered seedling transplanter or an odd-numbered seeding machine.
  • a technique for suppressing the accumulation of impurities on a provided field surface detection sensor is provided.
  • a paddy field working machine includes a main working unit that supplies odd-numbered seedlings or seed pods to a field, and a center float that detects a field ground contact surface in the main working unit, the center float, And a sensor for detecting the surface of the field immediately before the seedling planting position or the position for supplying the seed pod, and the center float performs leveling for three central strips, and the right and left 2 A portion corresponding to the strip has a shape opened to the side, and the sensor is disposed at a position corresponding to the two left and right strips.
  • the main working section includes a groove forming device for forming a groove for supplying the seed potato and a feeding portion for feeding the seed potato into the groove formed by the groove builder, on the surface of the field detected by the sensor. Accordingly, the main working unit is raised and lowered so that the groover forms a groove having a substantially constant depth.
  • the main working section includes a groove forming device for forming a groove for supplying the seed potato and a feeding portion for feeding the seed potato into the groove formed by the groove builder, on the surface of the field detected by the sensor. Accordingly, the main working portion is inclined in the rolling direction so that the groove groovers corresponding to each of the sensors form grooves of the same depth.
  • the sensors arranged at the positions corresponding to the two left and right strips of the center float are arranged inside the outermost side of the center float.
  • the present invention it is possible to suppress the accumulation of impurities on the field surface detection sensor provided in the center float that senses the field ground contact surface.
  • a rice transplanter 1 as an example of a paddy field work machine includes an engine 2, a power transmission unit 3, a planting unit 4, and an elevating unit 5.
  • the planting unit 4 is connected to the airframe via the lifting unit 5, and can be automatically moved up and down by controlling the operation of the lifting unit 5.
  • the planting part 4 is connected with the raising / lowering part 5 via the rolling axis
  • Power from the engine 2 is transmitted to the planting unit 4 via the power transmission unit 3.
  • the rice transplanter 1 plants seedlings in the field by the planting unit 4 while traveling by driving the engine 2.
  • the rice transplanter 1 of this embodiment is a seedling transplanter for odd-numbered planting, and the planting unit 4 as a main working unit is for planting odd-numbered seedlings such as 5, 7, 9, etc.
  • the driving force from the engine 2 is transmitted to the PTO shaft 7 through the transmission 6 in the power transmission unit 3.
  • the PTO shaft 7 is provided to protrude rearward from the transmission 6.
  • Power is transmitted from the PTO shaft 7 to the planting transmission case 8 through the universal joint, and the planting unit 4 is driven.
  • a drive shaft 9 is provided rearward from the transmission 6, and a driving force is transmitted from the drive shaft 9 to the rear axle case 10. Further, power is transmitted from the rear axle case 10 to the leveling device 20 disposed behind the rear axle case 10.
  • the planting part 4 includes a planting arm 11, a planting claw 12, a seedling stage 13, a float 14 and the like.
  • the planting claw 12 is attached to the planting arm 11.
  • the planting arm 11 is rotated by the power transmitted from the planting transmission case 8.
  • the seedling is supplied to the planting claw 12 from the seedling mount 13. With the rotational movement of the planting arm 11, the planting claws 12 are inserted into the field, and seedlings are planted so as to have a predetermined planting depth (the amount of nail protrusion of the planting claws 12).
  • a rotary planting claw is employed, but a crank type may be used.
  • the planting unit 4 includes a plurality of floats arranged in the left-right direction (this embodiment shows a seven-planted rice transplanter, and a center float 14A for leveling the central three segments, its It is provided with two side floats 14B) which are arranged on the side and level the two sides.
  • Each of the floats 14A and 14B is attached to a planting frame 15 constituting the planting unit 4. More specifically, the front end of each float is supported so as to be swingable in the vertical direction with respect to the planting frame 15, and the rear end of each float is linked to a rotation support shaft 16 provided on the planting frame 15. It is attached to be movable up and down via.
  • the center float 14A is a sensing float that detects the field ground contact surface at the center of the left and right sides of the body of the rice transplanter 1.
  • the center line of the center float 14 ⁇ / b> A is disposed so as to substantially coincide with the center line of the rice transplanter 1.
  • the center float 14A is formed in a cross-sectional shape when viewed from above.
  • the “ ⁇ shape” includes a left and right extension part extending in the left-right direction and two front and rear extension parts extending rearward of the left and right extension part, and the connection of the front and rear extension part to the left and right extension part
  • Each of the parts has a shape that is a predetermined distance from the left and right ends.
  • a portion corresponding to two left and right strips of the center float 14A has a shape opened to the side. And in center float 14A, planting is performed in a total of three places between the two front-back extension parts and the both outer sides. In this way, the center float 14A is formed in a cross-sectional shape when viewed from the top, and leveles a portion corresponding to the central three strips.
  • a leveling device 20 for headland leveling is provided in front of the float 14 (14A / 14B) in the front of the planting unit 4.
  • the leveling device 20 is supported by the planting frame 15 so that the height can be changed.
  • the height (rotor height) of the leveling device 20 is detected by an appropriate sensor.
  • a part of the power from the drive shaft 9 is branched to the leveling transmission shaft 21 via the rear axle case 10, and directed to both sides from the leveling transmission shaft 21 via the universal joint 22, the input shaft 23 and the leveling transmission case 24. Is transmitted to the extended drive shaft 25.
  • a plurality of rotors 26 are fixed to each drive shaft 25, and the rotor 26 is rotated by the rotational drive of the drive shaft 25 to level the field.
  • a leveling transmission case 24 is disposed in the center of the leveling device 20, and power is transmitted from the center to both sides.
  • the leveling device 20 is arranged such that the center is disposed forward and is inclined from the front toward the rear as it goes from the center to both sides.
  • the central portion is provided so as to be positioned in front of other portions, and is arranged in a letter C shape when viewed from above.
  • the leveling device 20 is configured to secure a space behind the central portion thereof, and the center float 14A can be placed forward using the space.
  • an appropriate sensor such as a potentiometer is attached to the rotation support shaft 16 or the link mechanism 17, and the link height h0 is calculated based on the detection value by the sensor.
  • the center float 14A arranged at the center is used as a float detection body for detecting the ground contact surface of the field.
  • the target angle of the float is determined based on the swing angle of the center float 14A that changes according to the unevenness of the field (the rotation angle in the pitching direction according to the resistance received on the front surface of the float: the float angle ⁇ ).
  • the planting part height (planting depth) is controlled so that the float angle ⁇ approaches the target angle.
  • a sensor 30 for detecting the field surface is provided immediately before the planting positions on both the left and right sides.
  • the sensor 30 extends from the front toward the rear.
  • the sensor 30 is supported by the planting frame 15 so as to be swingable in the pitching direction, and hangs down by gravity around the swing fulcrum, so that the rear end portion is in contact with the field surface. That is, the rice transplanter 1 advances so that the sensor 30 always follows the field surface.
  • the rotation angle of the sensor 30 is measured by an appropriate angle measurement device such as a potentiometer, and the sensor 30 and the field are measured using the height of the rotation shaft of the sensor 30 and the distance between the rear end of the sensor 30 and the rotation shaft. The positional relationship of is calculated. Then, the actual height of the field (the height of the field on which the seedling is planted) is detected. Thus, by detecting the actual height of the field with the sensor 30, the subsidence amount d of the center float 14A (the amount of subsidence into the mud field) can be measured.
  • the sensor 30 is provided separately from the center float 14A used for detecting the ground contact surface of the field, and the sensor 30 detects the height of the field surface in the vicinity of the planting position so that the center is a sensing float.
  • the actual planting depth is detected by calculating the amount of settlement of the float 14A. Then, by detecting the actual planting depth by the sensor 30, it is possible to determine whether or not the seedling is properly planted. That is, it is not necessary to adjust the sensitivity according to the field conditions, and the sensitivity adjustment is automatically performed by the elevation control using the sensor 30.
  • the planting position in this embodiment is the side of the rear end of the float that rotates via the link mechanism 17. Further, the position immediately before the planting position is a field after being leveled with a float for planting seedlings, and in order to sense such a stable field, the uneven shape appearing on the surface of the field is the sensor 30. And the influence of the muddy water flow generated by the float on the sensor 30 can be reduced. And by arrange
  • the side of the center float 14A is open, so that the muddy water flow from the side passes along the outer periphery of the float. That is, a water flow that flows out from the side of the center float 14A toward the planting position of the seedlings and eventually toward the sensor 30 is generated. As a result, contaminants accumulated on the sensor 30 can be easily removed by receiving a flow from the side of the center float 14A to the sensor 30 side.
  • the configuration in which impurities are difficult to deposit on the sensor 30 is realized by the shape of the center float 14 ⁇ / b> A and the arrangement of the sensor 30. Therefore, it is possible to reduce the possibility that impurities will affect the sensing by the sensor 30.
  • the sensor 30 is supported by a support portion 32 that is rotatably provided on the swing support shaft 31.
  • the support portion 32 is supported so as to be swingable in the pitching direction around the swing support shaft 31, and the sensor 30 follows the unevenness of the field surface by the support portion 32.
  • the rotation angle of the swing support shaft 31 is detected by a potentiometer 33, and the amount of settlement of the center float 14A is calculated based on the detected value.
  • the sensor 30 includes a stay 40 connected to the support portion 32, a grounding portion 41 that extends in a substantially horizontal direction and makes contact with the field surface, and the stay 40 and the grounding portion 41. And an extending portion 42 extending in the vertical direction so as to connect the two.
  • the extending part 42 and the grounding part 41 are extended from the stay 40 in a rake shape. Further, it is formed so as to be bent at a portion connected from the extending portion 42 to the grounding portion 41. By forming it in a rake shape, the influence of the fluid force due to the muddy water flow can be reduced, and the detection performance by the sensor 30 can be stabilized. Moreover, by forming it in a bent shape, the front-rear length can be reduced and the space can be compactly accommodated.
  • the sensor 30 is a resin member molded by integral molding or a light metal member molded by integral molding.
  • resin mass production can be easily performed and the cost of the sensor 30 can be reduced.
  • metal By making it metal, the lifetime of the sensor 30 can be improved.
  • the strength of the sensor 30 can be secured while reducing the weight of the sensor 30 by forming it in a hollow shape.
  • the cross-sectional shape of the grounding portion 41 is formed such that the lower portion is wide and the upper portion is narrow. That is, the contact area is increased by making the lower part in contact with the field surface wider.
  • the sensor 30 itself is configured to be thin while ensuring the surface pressure applied to the sensor 30.
  • the amount of mud, water, etc. staying on the ground contact portion 41 can be reduced by narrowing the upper part that does not contact the field surface. Thereby, disturbance of the water flow by the sensor 30 can be suppressed, and accumulation of mud or the like can be prevented.
  • the grounding portion 41 is configured to be vertically long, in other words, the vertical width is larger than the horizontal width. Thereby, the rigidity of the sensor 30 can be ensured.
  • the cross-sectional shape of the extending part 42 is formed so that the front part is narrow and the rear part is wide. That is, by narrowing the front side in the traveling direction that collides with muddy water, it is possible to reduce the influence of the fluid force of muddy water from the front, suppress the lift of the sensor 30, and suppress deterioration in detection accuracy.
  • the shape of the sensor 30 of the present embodiment it is possible to reduce the influence of the muddy water flow accompanying the progress of the rice transplanter 1, and to improve the sensing accuracy.
  • the seven-planted rice transplanter 1 is described as an example of an odd-numbered seedling transplanter.
  • the present invention is not limited to this. Can be similarly applied.
  • the rice transplanter 1 is demonstrated as an example of a seedling transplanter, if it is a paddy field work machine provided with the float for leveling and the center float for field contact surface detection of this embodiment, The configurations of the center float 14A and the sensor 30 can be similarly applied.
  • paddy field machines include seeding machines, transplanters, paddy field management machines, and the like.
  • a seeding machine 50 as an example of a paddy field working machine will be described with reference to FIGS. 6 and 7.
  • the basic configuration of the sowing machine 50 is substantially the same as the rice transplanter 1 having the planting unit 4 for planting odd-numbered seedlings in the field as the main working unit, but the odd-numbered seed pods in the field as the main working unit. The difference is that a seeding device 51 is provided.
  • a seeding device 51 is provided.
  • the seeding device 51 is connected to the machine body via the lifting unit 5 and is configured to be automatically lifted up and down by controlling the operation of the lifting unit 5.
  • the seeding device 51 is connected to the elevating unit 5 via a rolling shaft (not shown), and is configured to be tiltable in the rolling direction by rotating the rolling shaft.
  • the seeding machine 50 supplies seed pods to the field by the seeding device 51 while traveling by driving the engine 2.
  • the seeder 50 according to the present embodiment is a submerged seeder that supplies odd-numbered seeds, and the seeding device 51 as a main working unit supplies seeds to odd-numbered items such as 5, 7, 9, etc. It is.
  • the seeding device 51 includes a feeding device 52, a hopper 53, a float 54, a grooving device 55, and the like.
  • the feeding device 52 supplies the soy seeds stored in the hopper 53 to the field at a predetermined amount and at a predetermined timing.
  • the feeding device 52 is provided for the number of lines supplied by the seeding machine 50.
  • a plurality of floats 54 are arranged in the left-right direction, and include a center float 54A for leveling the central three segments, and two side floats disposed on the sides for leveling the two lateral segments.
  • the float 54 is attached to the sowing frame.
  • the center float 54A has the same configuration as the center float 14A of the rice transplanter 1.
  • the center float 54 ⁇ / b> A is formed in a “ ⁇ shape” in a top view, and is arranged so that the center line thereof substantially coincides with the center line of the seeding machine 50.
  • the sensor 30 is similarly provided in the center float 54A. That is, in the center float 54A, the sensor 30 is provided in front of the seed supply positions on the left and right sides. As described above, the sensor 30 realizes sensing at the position immediately before the supply of the seed soy, and the side of the center float 54A where the sensor 30 is disposed is opened, so that the muddy water flow from the side is generated.
  • a groove device 55 is attached to the float 54.
  • the grooving device 55 forms a groove in the field for supplying the seed meal fed by the feeding device 52.
  • the number of the groove forming devices 55 is the same as that of the feeding devices 52, that is, the number of grooves.
  • the actual planting depth is detected by calculating the settlement amount of the center float 14A using the detection result of the sensor 30. And the planting of the appropriate seedling is implement
  • FIG. On the other hand, in the seeder 50, the amount of settlement of the center float 54A is calculated using the detection result of the sensor 30, and the depth of the groove formed by the grooving device 55 is detected.
  • the raising / lowering control of the raising / lowering part 5 is performed so that the depth of the detected groove
  • each groove is formed on both sides of the center float 54A to which the sensor 30 is attached using the detection result of the sensor 30. It is also possible to control the inclination of the seeding device 51 in the rolling direction so that the grooves formed by the vessel 55 have the same depth. That is, by detecting the tilt in the rolling direction of the center float 54A arranged so as to substantially coincide with the center line of the aircraft by the sensors 30 provided on the left and right sides, the groove depths on the left and right sides of the aircraft center line can be determined. It is possible to control to be the same.
  • the present invention can be used for paddy field machines for supplying odd-numbered seedlings or seed pods.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Transplanting Machines (AREA)

Abstract

This invention is provided with a main work part for supplying an odd number of rows of seedlings or rice seeds to a field. The main work part is provided with: a center float for sensing the ground contact surface of the field; and sensors provided separately from the center float, the sensors sensing the surface of the field immediately in front of the position at which the seedlings are planted or the position to which the rice seeds are supplied. The center float prepares the soil corresponding to three center rows, and is shaped so that the sections corresponding to two rows to the left and to the right of the three center rows open sidewards. The sensors are disposed at positions corresponding to the two rows to the left and to the right.

Description

水田作業機Paddy field machine
 本発明は、圃場に苗を移植する若しくは種籾を供給する水田作業機に関する。 The present invention relates to a paddy field machine for transplanting seedlings in a field or supplying seed pods.
 特許文献1には、圃場接地面をセンシングするフロートとは別に、圃場表面を検知するセンサを植え付け位置の直前方に設けることで、フロートの沈下量を検知してフロートセンシングのズレを修正する田植機が開示されている。 In Patent Document 1, a sensor for detecting the surface of the field is provided immediately before the planting position, separately from the float for sensing the ground contact surface of the field, thereby detecting the amount of settlement of the float and correcting the deviation of the float sensing. A machine is disclosed.
特開2014-128220号公報JP 2014-128220 A
 一般的に、奇数条植えの田植機では、端数となる中央条に相当する部分を整地するために1条植え用のU字状センターフロート又はL字状センターフロートを使用していた。また、特許文献1におけるセンサは、センシングフロートとなるセンターフロートに配置することが好ましいとともに、田植機の重量バランスを考慮すると、左右対称形状となるU字状フロートが好ましい。 Generally, in an odd-numbered-planted rice transplanter, a U-shaped center float or an L-shaped center float for single-row planting was used to level the portion corresponding to the central strip as a fraction. In addition, the sensor in Patent Document 1 is preferably arranged in a center float that is a sensing float, and a U-shaped float that is symmetric is preferable in consideration of the weight balance of the rice transplanter.
 U字状フロートに特許文献1のセンサを採用した場合、植え付け位置の両側方がフロートに覆われていることから、センサ周辺の水の流れが弱くなり、センサ上に夾雑物が堆積し易くなってしまう。そして、センサ上に夾雑物が堆積すると、センサの検知結果に影響を与える可能性がある。以上のことを鑑み、本発明は、奇数条植えの苗移植機又は奇数条の播種機等、奇数条の苗若しくは種籾を圃場に供給する水田作業機において、圃場接地面をセンシングするセンターフロートに設けられた圃場表面検知用のセンサへの夾雑物の堆積を抑制する技術を提供する。 When the sensor of Patent Document 1 is adopted for the U-shaped float, since the both sides of the planting position are covered with the float, the flow of water around the sensor becomes weak, and contaminants easily accumulate on the sensor. End up. And if foreign matter accumulates on the sensor, it may affect the detection result of the sensor. In view of the above, the present invention provides a center float that senses a ground contact surface in a paddy field work machine that supplies odd-numbered seedlings or seed pods to an agricultural field, such as an odd-numbered seedling transplanter or an odd-numbered seeding machine. Provided is a technique for suppressing the accumulation of impurities on a provided field surface detection sensor.
 本発明の一実施形態に係る水田作業機は、奇数条の苗若しくは種籾を圃場に供給する主作業部を備え、前記主作業部に、圃場接地面を検知するセンターフロートと、当該センターフロートとは別に設けられ、前記苗の植え付け位置若しくは前記種籾を供給する位置の直前方で圃場表面を検知するセンサと、を備え、前記センターフロートは、中央3条分の整地を行うとともに、その左右2条分に相当する箇所が側方に開放された形状を有するとともに、前記センサを当該左右2条分に相当する位置に配置する。 A paddy field working machine according to an embodiment of the present invention includes a main working unit that supplies odd-numbered seedlings or seed pods to a field, and a center float that detects a field ground contact surface in the main working unit, the center float, And a sensor for detecting the surface of the field immediately before the seedling planting position or the position for supplying the seed pod, and the center float performs leveling for three central strips, and the right and left 2 A portion corresponding to the strip has a shape opened to the side, and the sensor is disposed at a position corresponding to the two left and right strips.
 前記主作業部は、前記種籾を供給する溝を形成する作溝器と、前記作溝器で作る溝内に種籾を繰り出す繰出部と、を条数分備え、前記センサが検知する圃場表面に応じて、前記作溝器が略一定の深さの溝を形成するように前記主作業部を昇降させる。 The main working section includes a groove forming device for forming a groove for supplying the seed potato and a feeding portion for feeding the seed potato into the groove formed by the groove builder, on the surface of the field detected by the sensor. Accordingly, the main working unit is raised and lowered so that the groover forms a groove having a substantially constant depth.
 前記主作業部は、前記種籾を供給する溝を形成する作溝器と、前記作溝器で作る溝内に種籾を繰り出す繰出部と、を条数分備え、前記センサが検知する圃場表面に応じて、前記センサの各々に対応する条の作溝器が同一の深さの溝を形成するように前記主作業部をローリング方向に傾斜させる。 The main working section includes a groove forming device for forming a groove for supplying the seed potato and a feeding portion for feeding the seed potato into the groove formed by the groove builder, on the surface of the field detected by the sensor. Accordingly, the main working portion is inclined in the rolling direction so that the groove groovers corresponding to each of the sensors form grooves of the same depth.
 前記センターフロートの左右2条分に相当する位置に配置されるセンサは、それぞれ前記センターフロートの最外側よりも内側に配置されている。 The sensors arranged at the positions corresponding to the two left and right strips of the center float are arranged inside the outermost side of the center float.
 本発明によれば、圃場接地面をセンシングするセンターフロートに設けられた圃場表面検知用のセンサへの夾雑物の堆積を抑制することができる。 According to the present invention, it is possible to suppress the accumulation of impurities on the field surface detection sensor provided in the center float that senses the field ground contact surface.
水田作業機の一例としての田植機の側面図Side view of rice transplanter as an example of paddy field machine 主作業部の一例としての植付部の上面図Top view of the planting part as an example of the main working part 植付部の側面図Side view of planting part センターフロート周りの水流を示す図Diagram showing the water flow around the center float センサの構造を示す図Diagram showing sensor structure 水田作業機の一例としての播種機の側面図Side view of seeder as an example of paddy field machine センターフロートの上面図Top view of center float
 図1に示すように、水田作業機の一例としての田植機1は、エンジン2、動力伝達部3、植付部4及び昇降部5を備える。植付部4は、昇降部5を介して機体に連結されており、昇降部5の作動を制御することによって上下方向に自動昇降可能である。また、植付部4は、昇降部5に対してローリング軸(不図示)を介して連結されており、ローリング方向に傾斜制御可能である。植付部4には、動力伝達部3を介してエンジン2からの動力が伝達される。田植機1は、エンジン2の駆動によって走行しながら、植付部4によって圃場に苗を植え付ける。本実施形態の田植機1は、奇数条植えの苗移植機であり、主作業部としての植付部4は5条、7条、9条等、奇数条の苗を植え付けるものである。 As shown in FIG. 1, a rice transplanter 1 as an example of a paddy field work machine includes an engine 2, a power transmission unit 3, a planting unit 4, and an elevating unit 5. The planting unit 4 is connected to the airframe via the lifting unit 5, and can be automatically moved up and down by controlling the operation of the lifting unit 5. Moreover, the planting part 4 is connected with the raising / lowering part 5 via the rolling axis | shaft (not shown), and can control inclination in a rolling direction. Power from the engine 2 is transmitted to the planting unit 4 via the power transmission unit 3. The rice transplanter 1 plants seedlings in the field by the planting unit 4 while traveling by driving the engine 2. The rice transplanter 1 of this embodiment is a seedling transplanter for odd-numbered planting, and the planting unit 4 as a main working unit is for planting odd-numbered seedlings such as 5, 7, 9, etc.
 エンジン2からの駆動力は、動力伝達部3においてトランスミッション6を介して、PTO軸7に伝達される。PTO軸7はトランスミッション6から後方に突出して設けられる。PTO軸7からユニバーサルジョイントを介して植付伝動ケース8に動力が伝達されて、植付部4が駆動される。また、トランスミッション6から後方に向けて駆動軸9が設けられ、駆動軸9からリアアクスルケース10に駆動力が伝達される。また、リアアクスルケース10から、その後方に配置される整地装置20に動力が伝達される。 The driving force from the engine 2 is transmitted to the PTO shaft 7 through the transmission 6 in the power transmission unit 3. The PTO shaft 7 is provided to protrude rearward from the transmission 6. Power is transmitted from the PTO shaft 7 to the planting transmission case 8 through the universal joint, and the planting unit 4 is driven. A drive shaft 9 is provided rearward from the transmission 6, and a driving force is transmitted from the drive shaft 9 to the rear axle case 10. Further, power is transmitted from the rear axle case 10 to the leveling device 20 disposed behind the rear axle case 10.
 植付部4は、植付アーム11、植付爪12、苗載台13、フロート14等を備える。植付爪12は、植付アーム11に取り付けられている。植付アーム11は、植付伝動ケース8から伝達される動力によって回転する。 The planting part 4 includes a planting arm 11, a planting claw 12, a seedling stage 13, a float 14 and the like. The planting claw 12 is attached to the planting arm 11. The planting arm 11 is rotated by the power transmitted from the planting transmission case 8.
 植付爪12には、苗載台13から苗が供給される。植付アーム11の回転運動に伴って、植付爪12が圃場内に挿入され、所定の植深さ(植付爪12の爪出量)となるように苗が植え付けられる。なお、本実施形態では、ロータリ式の植付爪を採用しているが、クランク式のものを用いても良い。 The seedling is supplied to the planting claw 12 from the seedling mount 13. With the rotational movement of the planting arm 11, the planting claws 12 are inserted into the field, and seedlings are planted so as to have a predetermined planting depth (the amount of nail protrusion of the planting claws 12). In this embodiment, a rotary planting claw is employed, but a crank type may be used.
 図2に示すように、植付部4は、左右方向に配置される複数のフロート(本実施形態は7条植えの田植機を示しており、中央3条分を整地するセンターフロート14A、その側方に配置され、側方2条分を整地する二つのサイドフロート14B)を備える。各フロート14A・14Bは、植付部4を構成する植付フレーム15に取り付けられる。より具体的には、各フロートの前端は植付フレーム15に対して上下方向に揺動可能に支持され、各フロートの後端は植付フレーム15に設けられる回動支軸16にリンク機構17を介して昇降可能に取り付けられる。 As shown in FIG. 2, the planting unit 4 includes a plurality of floats arranged in the left-right direction (this embodiment shows a seven-planted rice transplanter, and a center float 14A for leveling the central three segments, its It is provided with two side floats 14B) which are arranged on the side and level the two sides. Each of the floats 14A and 14B is attached to a planting frame 15 constituting the planting unit 4. More specifically, the front end of each float is supported so as to be swingable in the vertical direction with respect to the planting frame 15, and the rear end of each float is linked to a rotation support shaft 16 provided on the planting frame 15. It is attached to be movable up and down via.
 センターフロート14Aは、田植機1の機体の左右中央で圃場接地面を検知するセンシングフロートである。センターフロート14Aの中心線は、田植機1の中心線と略一致するように配置される。センターフロート14Aは、上面視Π字状に形成される。「Π字状」とは、左右方向に延びる左右延出部と左右延出部の後方に延びる二本の前後延出部とを含み、かつ、前後延出部の左右延出部への接続部がそれぞれ左右方向端から所定距離だけ離れた位置となる形状である。つまり、センターフロート14Aの左右2条分に相当する箇所が側方に開放された形状となる。そして、センターフロート14Aでは、二本の前後延出部の間、及び、その両外側方の計3箇所で植え付けが行われる。このように、センターフロート14Aは、上面視Π字状に形成され、中央の3条分に相当する箇所を整地する。 The center float 14A is a sensing float that detects the field ground contact surface at the center of the left and right sides of the body of the rice transplanter 1. The center line of the center float 14 </ b> A is disposed so as to substantially coincide with the center line of the rice transplanter 1. The center float 14A is formed in a cross-sectional shape when viewed from above. The “Π shape” includes a left and right extension part extending in the left-right direction and two front and rear extension parts extending rearward of the left and right extension part, and the connection of the front and rear extension part to the left and right extension part Each of the parts has a shape that is a predetermined distance from the left and right ends. That is, a portion corresponding to two left and right strips of the center float 14A has a shape opened to the side. And in center float 14A, planting is performed in a total of three places between the two front-back extension parts and the both outer sides. In this way, the center float 14A is formed in a cross-sectional shape when viewed from the top, and leveles a portion corresponding to the central three strips.
 植付部4の前部であって、フロート14(14A・14B)の前方には、枕地整地用の整地装置20が設けられている。整地装置20は、植付フレーム15に対して高さ変更可能に支持される。なお、整地装置20の高さ(ロータ高さ)は、適宜のセンサによって検出されている。 A leveling device 20 for headland leveling is provided in front of the float 14 (14A / 14B) in the front of the planting unit 4. The leveling device 20 is supported by the planting frame 15 so that the height can be changed. The height (rotor height) of the leveling device 20 is detected by an appropriate sensor.
 駆動軸9からの動力の一部がリアアクスルケース10を介して整地伝動軸21に分岐され、整地伝動軸21からユニバーサルジョイント22、入力軸23及び整地伝動ケース24を介して、両側方に向けて延出される駆動軸25に伝達される。各駆動軸25には、複数のロータ26が固定され、駆動軸25の回転駆動によってロータ26が回転して圃場が整地される。整地装置20の中央には整地伝動ケース24が配置され、中央から両側方に動力が伝達される。 A part of the power from the drive shaft 9 is branched to the leveling transmission shaft 21 via the rear axle case 10, and directed to both sides from the leveling transmission shaft 21 via the universal joint 22, the input shaft 23 and the leveling transmission case 24. Is transmitted to the extended drive shaft 25. A plurality of rotors 26 are fixed to each drive shaft 25, and the rotor 26 is rotated by the rotational drive of the drive shaft 25 to level the field. A leveling transmission case 24 is disposed in the center of the leveling device 20, and power is transmitted from the center to both sides.
 整地装置20は、中央が前方に配置され、中央から両側方に向かうに従ってそれぞれ前方から後方に向けて傾斜するように配置される。つまり、中央部が他の部位よりも前方に位置するように設けられており、上面視ハの字状に配置されている。整地装置20によって、その中央部の後方にスペースを確保する構成であり、センターフロート14Aをそのスペースを利用して前方に寄せて配置することを可能としている。 The leveling device 20 is arranged such that the center is disposed forward and is inclined from the front toward the rear as it goes from the center to both sides. In other words, the central portion is provided so as to be positioned in front of other portions, and is arranged in a letter C shape when viewed from above. The leveling device 20 is configured to secure a space behind the central portion thereof, and the center float 14A can be placed forward using the space.
 図3に示すように、回動支軸16又はリンク機構17には、ポテンショメータ等の適宜のセンサが取り付けられており、該センサによる検出値に基づいてリンク高さh0が算出される。このリンク高さh0は、植付爪12の爪出量(植付爪12の先端部とフロート底面との距離)として検出される。そして、後述のようにセンターフロート14Aの沈下量dを用いて、実植付深さh(h=h0+d)として検出される。 As shown in FIG. 3, an appropriate sensor such as a potentiometer is attached to the rotation support shaft 16 or the link mechanism 17, and the link height h0 is calculated based on the detection value by the sensor. This link height h0 is detected as the amount of protrusion of the planting claw 12 (the distance between the tip of the planting claw 12 and the bottom surface of the float). Then, as will be described later, the actual planting depth h (h = h0 + d) is detected using the settlement amount d of the center float 14A.
 中央に配置されるセンターフロート14Aは、圃場接地面検知用のフロート検知体として利用される。具体的には、圃場の凹凸に応じて変化するセンターフロート14Aの揺動角(フロート前面で受ける抵抗に応じたピッチング方向の回動角度:フロート角α)に基づいてフロートの目標角を決定し、フロート角αが目標角に近付くように植付部高さ(植深さ)が制御されている。 The center float 14A arranged at the center is used as a float detection body for detecting the ground contact surface of the field. Specifically, the target angle of the float is determined based on the swing angle of the center float 14A that changes according to the unevenness of the field (the rotation angle in the pitching direction according to the resistance received on the front surface of the float: the float angle α). The planting part height (planting depth) is controlled so that the float angle α approaches the target angle.
 図2及び図3に示すように、中央3条分を整地するセンターフロート14Aにおいて、左右両側の植え付け位置の直前方には、圃場表面を検知するセンサ30が設けられる。センサ30は、前方から後方に向けて延出される。センサ30は、植付フレーム15にピッチング方向に揺動自在に支持され、その揺動支点を中心として重力によって垂れ下がるため、後端部が圃場表面に接触した状態が維持される。つまり、センサ30が常に圃場表面を追従するように田植機1が進行する。 As shown in FIGS. 2 and 3, in the center float 14A for leveling the central three sections, a sensor 30 for detecting the field surface is provided immediately before the planting positions on both the left and right sides. The sensor 30 extends from the front toward the rear. The sensor 30 is supported by the planting frame 15 so as to be swingable in the pitching direction, and hangs down by gravity around the swing fulcrum, so that the rear end portion is in contact with the field surface. That is, the rice transplanter 1 advances so that the sensor 30 always follows the field surface.
 ポテンショメータ等の適宜の角度計測機器によってセンサ30の揺動角度を計測し、センサ30の揺動支軸の高さ及びセンサ30の後端と揺動支軸の距離を用いて、センサ30と圃場の位置関係を算出する。そして、圃場の実高さ(苗を植え付ける田面高さ)を検知する。このように、センサ30によって圃場の実高さを検出することによって、センターフロート14Aの沈下量d(泥状の圃場への沈み込み量)を計測できる。 The rotation angle of the sensor 30 is measured by an appropriate angle measurement device such as a potentiometer, and the sensor 30 and the field are measured using the height of the rotation shaft of the sensor 30 and the distance between the rear end of the sensor 30 and the rotation shaft. The positional relationship of is calculated. Then, the actual height of the field (the height of the field on which the seedling is planted) is detected. Thus, by detecting the actual height of the field with the sensor 30, the subsidence amount d of the center float 14A (the amount of subsidence into the mud field) can be measured.
 以上のように、圃場接地面の検知用に用いられるセンターフロート14Aとは別にセンサ30を設けて、センサ30によって植え付け位置の近傍で圃場表面の高さを検知することで、センシングフロートであるセンターフロート14Aの沈下量を算出して実植付深さを検知している。そして、センサ30によって実植付深さを検知することで、苗の植え付けが適正に行われているか否かを判定することが可能となる。つまり、圃場条件に応じて感度調整を行う必要がなく、センサ30を用いた昇降制御によってオートマチックに感度調整が行われることとなる。 As described above, the sensor 30 is provided separately from the center float 14A used for detecting the ground contact surface of the field, and the sensor 30 detects the height of the field surface in the vicinity of the planting position so that the center is a sensing float. The actual planting depth is detected by calculating the amount of settlement of the float 14A. Then, by detecting the actual planting depth by the sensor 30, it is possible to determine whether or not the seedling is properly planted. That is, it is not necessary to adjust the sensitivity according to the field conditions, and the sensitivity adjustment is automatically performed by the elevation control using the sensor 30.
 また、センサ30によって苗の植え付け直前でのセンシングを実現することで、センシング精度の向上を図ることができる。本実施形態における植え付け位置とは、リンク機構17を介して回動するフロートの後端部の側方である。また、植え付け位置の直前方位置とは、苗を植え付けるためにフロートで整地された後の圃場であり、そのような安定した状態の圃場をセンシングするため、圃場の表面に現れる凹凸形状がセンサ30に与える影響及びフロートによって生じる泥水流がセンサ30に与える影響を低減できる。そして、センサ30をセンターフロート14Aの最外側よりも内側に配置することによって、センサ30がフロートによって生じる曳き波の影響を受けにくくすることができ、センシング精度の低下を防いでいる。 Further, by realizing sensing immediately before planting seedlings with the sensor 30, it is possible to improve the sensing accuracy. The planting position in this embodiment is the side of the rear end of the float that rotates via the link mechanism 17. Further, the position immediately before the planting position is a field after being leveled with a float for planting seedlings, and in order to sense such a stable field, the uneven shape appearing on the surface of the field is the sensor 30. And the influence of the muddy water flow generated by the float on the sensor 30 can be reduced. And by arrange | positioning the sensor 30 inside the outermost side of the center float 14A, the sensor 30 can be made hard to receive the influence of the whirling wave which arises by a float, and the fall of sensing accuracy is prevented.
 さらに、図4に示すように、センターフロート14Aの側方が開放されていることで、側方からの泥水流がフロート外周に沿って内方側を通ることとなる。つまり、センターフロート14Aの側方から苗の植え付け位置、ひいてはセンサ30側に向かい、流れ抜ける水流が生じることとなる。これにより、センサ30上に堆積する夾雑物が、センターフロート14Aの側方からセンサ30側への流れを受けて取れやすくなる。以上のように、センターフロート14Aの形状及びセンサ30の配置によって、センサ30上に夾雑物が堆積し難い構成を実現している。従って、夾雑物がセンサ30によるセンシングに影響を及ぼす可能性を低減できる。 Furthermore, as shown in FIG. 4, the side of the center float 14A is open, so that the muddy water flow from the side passes along the outer periphery of the float. That is, a water flow that flows out from the side of the center float 14A toward the planting position of the seedlings and eventually toward the sensor 30 is generated. As a result, contaminants accumulated on the sensor 30 can be easily removed by receiving a flow from the side of the center float 14A to the sensor 30 side. As described above, the configuration in which impurities are difficult to deposit on the sensor 30 is realized by the shape of the center float 14 </ b> A and the arrangement of the sensor 30. Therefore, it is possible to reduce the possibility that impurities will affect the sensing by the sensor 30.
 図3に示すように、センサ30は、揺動支軸31に回動自在に設けられる支持部32によって支持される。支持部32は、揺動支軸31回りにピッチング方向に揺動自在に支持されており、支持部32によってセンサ30が圃場表面の凹凸に倣って追従する。揺動支軸31の回動角は、ポテンショメータ33によって検出され、その検出値に基づいてセンターフロート14Aの沈下量が算出される。なお、センサ30の微小な回動を検知するために、揺動支軸31とポテンショメータ33との間に減速ギア等を介在させることで検出能を向上することが可能である。 As shown in FIG. 3, the sensor 30 is supported by a support portion 32 that is rotatably provided on the swing support shaft 31. The support portion 32 is supported so as to be swingable in the pitching direction around the swing support shaft 31, and the sensor 30 follows the unevenness of the field surface by the support portion 32. The rotation angle of the swing support shaft 31 is detected by a potentiometer 33, and the amount of settlement of the center float 14A is calculated based on the detected value. In order to detect minute rotation of the sensor 30, it is possible to improve the detection capability by interposing a reduction gear or the like between the swing support shaft 31 and the potentiometer 33.
 図3及び図5に示すように、センサ30は、支持部32と連結されるステー40と、略水平方向に延出され、圃場表面と接地する接地部41と、ステー40と接地部41とを接続するように縦方向に延出される延出部42とによって構成される。 As shown in FIGS. 3 and 5, the sensor 30 includes a stay 40 connected to the support portion 32, a grounding portion 41 that extends in a substantially horizontal direction and makes contact with the field surface, and the stay 40 and the grounding portion 41. And an extending portion 42 extending in the vertical direction so as to connect the two.
 延出部42及び接地部41は、ステー40から熊手状に延出される。また、延出部42から接地部41に接続される部位で屈曲するように形成されている。熊手状に形成することで、泥水流による流体力の影響を低減し、センサ30による検出性能を安定させることができる。また、屈曲状に形成することで前後長を小さくでき、空間制限のある中でコンパクトに収めることができる。 The extending part 42 and the grounding part 41 are extended from the stay 40 in a rake shape. Further, it is formed so as to be bent at a portion connected from the extending portion 42 to the grounding portion 41. By forming it in a rake shape, the influence of the fluid force due to the muddy water flow can be reduced, and the detection performance by the sensor 30 can be stabilized. Moreover, by forming it in a bent shape, the front-rear length can be reduced and the space can be compactly accommodated.
 センサ30は、一体成形によって成形される樹脂製の部材、又は、一体成形によって成形される重量の軽い金属製の部材である。樹脂製とすることで、容易に大量生産できるとともに、センサ30のコストを低くすることができる。金属製とすることで、センサ30の寿命を向上することができる。金属製のものを採用する場合は、例えば中空に成形する等でセンサ30の重量を軽く抑えつつ強度も確保することができる。 The sensor 30 is a resin member molded by integral molding or a light metal member molded by integral molding. By using resin, mass production can be easily performed and the cost of the sensor 30 can be reduced. By making it metal, the lifetime of the sensor 30 can be improved. In the case of adopting a metal one, for example, the strength of the sensor 30 can be secured while reducing the weight of the sensor 30 by forming it in a hollow shape.
 図5に示すように、接地部41の断面形状は、下部が幅広、かつ、上部が幅狭となるように形成されている。つまり、圃場表面と接触する下部を幅広とすることで、接地面積をより大きくしている。これにより、センサ30にかかる面圧を確保しつつ、センサ30自体を細く構成している。また、圃場表面とは接触しない上部を幅狭とすることで、接地部41上に滞留する泥、水等の量を少なくすることができる。これにより、センサ30による水流の乱れを抑制し、泥土等の堆積を防止することが可能である。また、本実施形態では、接地部41を縦長、言い換えれば横幅に対して縦幅が大きくなるように構成している。これにより、センサ30の剛性を確保することが可能である。 As shown in FIG. 5, the cross-sectional shape of the grounding portion 41 is formed such that the lower portion is wide and the upper portion is narrow. That is, the contact area is increased by making the lower part in contact with the field surface wider. Thus, the sensor 30 itself is configured to be thin while ensuring the surface pressure applied to the sensor 30. Moreover, the amount of mud, water, etc. staying on the ground contact portion 41 can be reduced by narrowing the upper part that does not contact the field surface. Thereby, disturbance of the water flow by the sensor 30 can be suppressed, and accumulation of mud or the like can be prevented. In the present embodiment, the grounding portion 41 is configured to be vertically long, in other words, the vertical width is larger than the horizontal width. Thereby, the rigidity of the sensor 30 can be ensured.
 図5に示すように、延出部42の断面形状は、前部が幅狭、かつ、後部が幅広となるように形成されている。つまり、泥水と衝突する進行方向前側を幅狭とすることで、前方からの泥水の流体力の影響を低減し、センサ30の浮き上がりを押さえて検出精度の悪化を抑制することができる。このように、本実施形態のセンサ30の形状によれば、田植機1の進行に伴う泥水の水流の影響を低減でき、センシング精度を向上することが可能である。 As shown in FIG. 5, the cross-sectional shape of the extending part 42 is formed so that the front part is narrow and the rear part is wide. That is, by narrowing the front side in the traveling direction that collides with muddy water, it is possible to reduce the influence of the fluid force of muddy water from the front, suppress the lift of the sensor 30, and suppress deterioration in detection accuracy. Thus, according to the shape of the sensor 30 of the present embodiment, it is possible to reduce the influence of the muddy water flow accompanying the progress of the rice transplanter 1, and to improve the sensing accuracy.
 なお、本実施形態では、奇数条の苗移植機の一例として、7条植えの田植機1について説明しているが、これに限らず、5条植え、9条植え等の田植機に対しても同様に適用することが可能である。また、本実施形態では、苗移植機の一例として、田植機1について説明しているが、整地用のフロート及び圃場接地面検知用のセンターフロートを備える水田作業機であれば、本実施形態のセンターフロート14A及びセンサ30の構成を同様に適用することが可能である。水田作業機としては、播種機、移植機、水田管理作業機等が挙げられる。 In the present embodiment, the seven-planted rice transplanter 1 is described as an example of an odd-numbered seedling transplanter. However, the present invention is not limited to this. Can be similarly applied. Moreover, in this embodiment, although the rice transplanter 1 is demonstrated as an example of a seedling transplanter, if it is a paddy field work machine provided with the float for leveling and the center float for field contact surface detection of this embodiment, The configurations of the center float 14A and the sensor 30 can be similarly applied. Examples of paddy field machines include seeding machines, transplanters, paddy field management machines, and the like.
 次に、図6及び図7を用いて、水田作業機の一例としての播種機50について説明する。播種機50の基本的な構成は、主作業部として奇数条の苗を圃場に植え付ける植付部4を備えた田植機1と略同じであるが、主作業部として奇数条の種籾を圃場に供給する播種装置51を備える点で異なっている。以下、異なる点について説明する。 Next, a seeding machine 50 as an example of a paddy field working machine will be described with reference to FIGS. 6 and 7. The basic configuration of the sowing machine 50 is substantially the same as the rice transplanter 1 having the planting unit 4 for planting odd-numbered seedlings in the field as the main working unit, but the odd-numbered seed pods in the field as the main working unit. The difference is that a seeding device 51 is provided. Hereinafter, different points will be described.
 播種装置51は、昇降部5を介して機体に連結され、昇降部5の作動を制御することで上下方向に自動昇降可能に構成されている。また、播種装置51は、ローリング軸(不図示)を介して昇降部5に連結され、ローリング軸を回動させることで、ローリング方向に傾斜制御可能に構成されている。播種機50は、エンジン2の駆動によって走行しながら、播種装置51によって圃場に種籾を供給する。本実施形態の播種機50は、奇数条の種籾を供給する湛水播種機であり、主作業部としての播種装置51は5条、7条、9条等、奇数条に種籾を供給するものである。 The seeding device 51 is connected to the machine body via the lifting unit 5 and is configured to be automatically lifted up and down by controlling the operation of the lifting unit 5. The seeding device 51 is connected to the elevating unit 5 via a rolling shaft (not shown), and is configured to be tiltable in the rolling direction by rotating the rolling shaft. The seeding machine 50 supplies seed pods to the field by the seeding device 51 while traveling by driving the engine 2. The seeder 50 according to the present embodiment is a submerged seeder that supplies odd-numbered seeds, and the seeding device 51 as a main working unit supplies seeds to odd-numbered items such as 5, 7, 9, etc. It is.
 播種装置51は、繰出装置52、ホッパ53、フロート54、作溝器55等を備える。繰出装置52は、ホッパ53に収容される種籾を所定量、かつ、所定のタイミングで圃場に供給する。繰出装置52は、播種機50によって供給される条数分設けられている。フロート54は、左右方向に複数配置され、中央3条分を整地するセンターフロート54A、その側方に配置され、側方2条分を整地する二つのサイドフロートを備える。フロート54は播種フレームに取り付けられる。 The seeding device 51 includes a feeding device 52, a hopper 53, a float 54, a grooving device 55, and the like. The feeding device 52 supplies the soy seeds stored in the hopper 53 to the field at a predetermined amount and at a predetermined timing. The feeding device 52 is provided for the number of lines supplied by the seeding machine 50. A plurality of floats 54 are arranged in the left-right direction, and include a center float 54A for leveling the central three segments, and two side floats disposed on the sides for leveling the two lateral segments. The float 54 is attached to the sowing frame.
 センターフロート54Aは、田植機1のセンターフロート14Aと同様の構成を有する。つまり、センターフロート54Aは、上面視「Π字状」に形成されているとともに、その中心線が播種機50の中心線と略一致するように配置されている。そして、センターフロート54Aにセンサ30が同様に設けられている。つまり、センターフロート54Aにおいて、左右両側の種籾供給位置の直前方にセンサ30を設けている。このように、センサ30によって種籾の供給直前位置でのセンシングを実現しているとともに、センサ30が配置されているセンターフロート54Aの側方が開放されていることで、側方からの泥水流がフロート外周に沿って内方側を通ることとなる。その際、センサ30をセンターフロート54Aの最外側よりも内側に配置していることで、フロートの曳き波の影響を低減でき、センシング精度を向上することができる。 The center float 54A has the same configuration as the center float 14A of the rice transplanter 1. In other words, the center float 54 </ b> A is formed in a “Π shape” in a top view, and is arranged so that the center line thereof substantially coincides with the center line of the seeding machine 50. The sensor 30 is similarly provided in the center float 54A. That is, in the center float 54A, the sensor 30 is provided in front of the seed supply positions on the left and right sides. As described above, the sensor 30 realizes sensing at the position immediately before the supply of the seed soy, and the side of the center float 54A where the sensor 30 is disposed is opened, so that the muddy water flow from the side is generated. It will pass the inner side along the outer periphery of the float. At that time, by arranging the sensor 30 on the inner side of the outermost side of the center float 54A, the influence of the whirling wave of the float can be reduced, and the sensing accuracy can be improved.
 フロート54には、作溝器55が取り付けられている。作溝器55は、繰出装置52によって繰り出される種籾を供給するための溝を圃場に形成する。作溝器55は、繰出装置52と同数、つまり条数分設けられている。 A groove device 55 is attached to the float 54. The grooving device 55 forms a groove in the field for supplying the seed meal fed by the feeding device 52. The number of the groove forming devices 55 is the same as that of the feeding devices 52, that is, the number of grooves.
 田植機1では、センサ30による検知結果を用いて、センターフロート14Aの沈下量を算出することで実植付深さを検知している。そして、実植付深さを検知し、昇降部5を昇降制御することで、適正な苗の植え付けを実現している。これに対して、播種機50では、センサ30による検知結果を用いて、センターフロート54Aの沈下量を算出し、作溝器55によって形成される溝の深さを検知している。検知される溝の深さが所定の深さとなるように、昇降部5の昇降制御が行われる。つまり、センサ30が検知する圃場表面に応じて、作溝器55が略一定の深さの溝を形成するように播種装置51を昇降させる。 In the rice transplanter 1, the actual planting depth is detected by calculating the settlement amount of the center float 14A using the detection result of the sensor 30. And the planting of the appropriate seedling is implement | achieved by detecting the actual planting depth and carrying out raising / lowering control of the raising / lowering part 5. FIG. On the other hand, in the seeder 50, the amount of settlement of the center float 54A is calculated using the detection result of the sensor 30, and the depth of the groove formed by the grooving device 55 is detected. The raising / lowering control of the raising / lowering part 5 is performed so that the depth of the detected groove | channel may become predetermined depth. That is, according to the field surface detected by the sensor 30, the seeding device 51 is moved up and down so that the groove producing device 55 forms a groove having a substantially constant depth.
 また、播種装置51は昇降部5に対してローリング方向に傾斜可能に取り付けられていることから、センサ30による検知結果を用いて、センサ30が取り付けられたセンターフロート54Aの両側方における各作溝器55によって形成される溝の深さが同一となるように播種装置51をローリング方向に傾斜制御することも可能である。つまり、機体の中心線と略一致するように配置されたセンターフロート54Aのローリング方向の傾斜を左右両側に設けられたセンサ30によって検知することで、機体中心線の左側と右側における溝深さが同一となるように制御することが可能である。 In addition, since the seeding device 51 is attached to the elevating unit 5 so as to be tiltable in the rolling direction, each groove is formed on both sides of the center float 54A to which the sensor 30 is attached using the detection result of the sensor 30. It is also possible to control the inclination of the seeding device 51 in the rolling direction so that the grooves formed by the vessel 55 have the same depth. That is, by detecting the tilt in the rolling direction of the center float 54A arranged so as to substantially coincide with the center line of the aircraft by the sensors 30 provided on the left and right sides, the groove depths on the left and right sides of the aircraft center line can be determined. It is possible to control to be the same.
 本発明は、奇数条の苗若しくは種籾を供給する水田作業機に利用可能である。 The present invention can be used for paddy field machines for supplying odd-numbered seedlings or seed pods.
 1:田植機(水田作業機)、4:植付部(主作業部)、5:昇降部、12:植付爪、14:フロート、14A:センターフロート、15:植付フレーム、30:センサ、50:播種機(水田作業機)、51:播種装置(主作業部)、52:繰出装置、54:フロート、54A:センターフロート、55:作溝器 1: Rice transplanter (paddy field machine), 4: Planting part (main work part), 5: Lifting part, 12: Planting claw, 14: Float, 14A: Center float, 15: Planting frame, 30: Sensor , 50: seeding machine (paddy field machine), 51: seeding device (main working part), 52: feeding device, 54: float, 54A: center float, 55: groover

Claims (4)

  1.  奇数条の苗若しくは種籾を圃場に供給する主作業部を備え、
     前記主作業部に、圃場接地面を検知するセンターフロートと、当該センターフロートとは別に設けられ、前記苗の植え付け位置若しくは前記種籾を供給する位置の直前方で圃場表面を検知するセンサと、を備え、
     前記センターフロートは、中央3条分の整地を行うとともに、その左右2条分に相当する箇所が側方に開放された形状を有するとともに、前記センサを当該左右2条分に相当する位置に配置することを特徴とする水田作業機。
    It has a main working part that supplies odd-numbered seedlings or seed pods to the field,
    A center float for detecting a ground contact surface on the main working unit, and a sensor that is provided separately from the center float and that detects the field surface immediately before the planting position of the seedling or the position for supplying the seed pods. Prepared,
    The center float performs leveling for three central strips and has a shape corresponding to the two left and right strips opened to the side, and the sensor is disposed at a position corresponding to the two left and right strips. Paddy field work machine characterized by doing.
  2.  前記主作業部は、前記種籾を供給する溝を形成する作溝器と、前記作溝器で作る溝内に種籾を繰り出す繰出部と、を条数分備え、
     前記センサが検知する圃場表面に応じて、前記作溝器が略一定の深さの溝を形成するように前記主作業部を昇降させる請求項1に記載の水田作業機。
    The main working part includes a groove forming device for forming a groove for supplying the seed soup, and a feeding portion for feeding the seed soot into the groove formed by the groove making device, for a number of lines,
    The paddy field work machine according to claim 1, wherein the main working unit is moved up and down so that the groover forms a groove having a substantially constant depth in accordance with a field surface detected by the sensor.
  3.  前記主作業部は、前記種籾を供給する溝を形成する作溝器と、前記作溝器で作る溝内に種籾を繰り出す繰出部と、を条数分備え、
     前記センサが検知する圃場表面に応じて、前記センサの各々に対応する条の作溝器が同一の深さの溝を形成するように前記主作業部をローリング方向に傾斜させる請求項1に記載の水田作業機。
    The main working part includes a groove forming device for forming a groove for supplying the seed soup, and a feeding portion for feeding the seed soot into the groove formed by the groove making device, for a number of lines,
    The main working part is inclined in a rolling direction so that a groove grooving device corresponding to each of the sensors forms a groove having the same depth according to a field surface detected by the sensor. Paddy field machine.
  4.  前記センターフロートの左右2条分に相当する位置に配置されるセンサは、それぞれ前記センターフロートの最外側よりも内側に配置されている請求項1から3の何れか一項に記載の水田作業機。 The paddy field work machine according to any one of claims 1 to 3, wherein the sensors arranged at positions corresponding to the two left and right strips of the center float are respectively arranged on the inner side of the outermost side of the center float. .
PCT/JP2017/012557 2016-03-28 2017-03-28 Paddy work machine WO2017170499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780004802.1A CN108882678B (en) 2016-03-28 2017-03-28 Paddy field working machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016064758 2016-03-28
JP2016-064758 2016-03-28
JP2017-057702 2017-03-23
JP2017057702A JP6726125B2 (en) 2016-03-28 2017-03-23 Paddy work machine

Publications (1)

Publication Number Publication Date
WO2017170499A1 true WO2017170499A1 (en) 2017-10-05

Family

ID=59964607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012557 WO2017170499A1 (en) 2016-03-28 2017-03-28 Paddy work machine

Country Status (1)

Country Link
WO (1) WO2017170499A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131306A (en) * 1980-03-14 1981-10-14 Iseki Agricult Mach Riding type rice transplanter
JPS6398023U (en) * 1986-12-16 1988-06-24
JP2001069824A (en) * 1999-08-31 2001-03-21 Iseki & Co Ltd Seedling transplanter
JP2007209260A (en) * 2006-02-09 2007-08-23 Kubota Corp Paddy working machine
JP2014128220A (en) * 2012-12-28 2014-07-10 Yanmar Co Ltd Rice transplanting machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131306A (en) * 1980-03-14 1981-10-14 Iseki Agricult Mach Riding type rice transplanter
JPS6398023U (en) * 1986-12-16 1988-06-24
JP2001069824A (en) * 1999-08-31 2001-03-21 Iseki & Co Ltd Seedling transplanter
JP2007209260A (en) * 2006-02-09 2007-08-23 Kubota Corp Paddy working machine
JP2014128220A (en) * 2012-12-28 2014-07-10 Yanmar Co Ltd Rice transplanting machine

Similar Documents

Publication Publication Date Title
JP5487578B2 (en) Direct seeding machine
JP6261862B2 (en) Rice transplanter
CN101261522A (en) Lifting controller for agricultural working machine
JP2009118846A (en) Riding-type rice transplanter
JP5954468B2 (en) Ride type rice transplanter
WO2017170499A1 (en) Paddy work machine
KR101835947B1 (en) Rice transplanter
CN105050379A (en) Rice planting machine
JP2008271880A (en) Ground working machine
JP6726125B2 (en) Paddy work machine
JP4998223B2 (en) Seedling transplanter
JP2008228638A (en) Direct seeder
JP5056677B2 (en) Seedling transplanter
JP6546523B2 (en) Rice transplanter
JP2009261330A (en) Seedling transplanter
JP5590017B2 (en) Ride type rice transplanter
JP6104117B2 (en) Paddy field machine
JP6624238B2 (en) Transplant machine
JP6692240B2 (en) Passenger rice transplanter
JP2016149974A (en) Work vehicle
JP5761309B2 (en) Ride type rice transplanter
JP2015096043A (en) Rice transplanter
JP2022034762A (en) Sulky-type seedling transplanter
JP2016163595A5 (en)
JP2015173637A (en) Rice transplanter

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775036

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775036

Country of ref document: EP

Kind code of ref document: A1