WO2017170241A1 - Non-woven fabric manufacturing device, non-woven fabric manufacturing method, and non-woven fabric - Google Patents

Non-woven fabric manufacturing device, non-woven fabric manufacturing method, and non-woven fabric Download PDF

Info

Publication number
WO2017170241A1
WO2017170241A1 PCT/JP2017/012062 JP2017012062W WO2017170241A1 WO 2017170241 A1 WO2017170241 A1 WO 2017170241A1 JP 2017012062 W JP2017012062 W JP 2017012062W WO 2017170241 A1 WO2017170241 A1 WO 2017170241A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
nozzle
ejected
nonwoven fabric
main nozzle
Prior art date
Application number
PCT/JP2017/012062
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 ▲高▼久
鈴木 健一
尚佑 國本
敦之 川田
喬之 田中
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN201780021229.5A priority Critical patent/CN108884618B/en
Priority to EP17774778.9A priority patent/EP3438339B1/en
Priority to US16/089,266 priority patent/US20190106821A1/en
Priority to MYPI2018703555A priority patent/MY194230A/en
Priority to JP2018509251A priority patent/JPWO2017170241A1/en
Priority to DK17774778.9T priority patent/DK3438339T3/en
Priority to KR1020187028246A priority patent/KR20180117183A/en
Publication of WO2017170241A1 publication Critical patent/WO2017170241A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/724Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/736Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged characterised by the apparatus for arranging fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene

Definitions

  • the present invention relates to a nonwoven fabric manufacturing apparatus, a nonwoven fabric manufacturing method, and a nonwoven fabric.
  • Non-woven fabrics such as spunbonded non-woven fabrics are widely used for medical, hygiene materials, civil engineering materials and packaging materials.
  • Spunbond nonwoven fabric is collected and deposited while being diffused on the collection medium after the cooling treatment using the cooling air and the drawing treatment using the drawing air are performed on the filaments obtained by melt spinning the thermoplastic resin.
  • a horizontal cross section in a rectangular shape is formed into a rectangular shape, and a stepped depression is formed in a wall body at a discharge port connected to a cooling chamber and a cooling chamber which is gradually reduced in cross section in the filament running direction.
  • An apparatus for producing a spun fiber strip from an aerodynamically stretched synthetic resin filament having a stretch nozzle formed with a portion and a fiber placement device connected to the stretch nozzle is disclosed.
  • the fiber placement device of this document 1 has a rectangular cross section in the horizontal direction, and has a form of a jet pump having a venturi-shaped basin in the vertical direction and a diffuser outlet. The amount of air sucked from the free air suction port is adjusted by an intake pipe facing the diffuser outlet with the belt interposed therebetween.
  • Document 2 Japanese Patent No. 31354978 has a nozzle plate having a large number of nozzles, a processing shaft, a transport unit, and a transport conveyor. Processing air is introduced into the processing shaft and the transport unit, and the nozzle holes of the nozzle plate Endless fibers are fed from the end and are fed into the processing shaft by discharge movement toward the conveyor as endless fiber groups in the form of a mixture of air and fibers, and the transport unit follows the central inflow conduit for the endless fiber groups and this
  • An apparatus for manufacturing a web is disclosed.
  • an introduction conduit and / or a diffuser conduit is used for mixing air and fibers, and a flow slit for additionally introducing air into a conduit extending across the width of the conduit and across the direction of travel of the conveyor belt.
  • Aerodynamic equal distribution device in the form of an outflow slit for discharging air from the conduit and in addition to the flow of air to be additionally fed and the flow of air to be discharged during the mixing of air and fibers Is controlled or adjusted for the purpose of influencing the equal distribution of fibers.
  • the inner surface of the inflow conduit and / or the diffuser conduit includes an obstruction member in the vicinity of the surface in the longitudinal section of the conduit, and a spiral region is formed rearward with respect to the flow direction.
  • Document 3 Japanese Patent No. 5094588 is provided with a spinneret for forming a filament as an apparatus for producing a spunbond formed from a filament, and cooling for supplying processing air for cooling the filament downstream of the spinneret.
  • a drawing unit for drawing the filament is connected to the cooling chamber, the connection region between the cooling chamber and the drawing unit is closed, and the drawing unit has a passage wall on at least part of the length of the drawing passage.
  • additional air is injected into the drawing passage at the upstream end of the branch drawing passage portion so that the filament bundle is widely formed in the machine direction, and the filaments of the spunbond web
  • An apparatus is described which is provided with a deposition apparatus for depositing.
  • Reference 3 also describes that there is a sedimentation unit downstream of the stretching unit, the deposition unit consists of an upstream diffuser and an adjacent downstream diffuser, and an ambient air inlet slit is provided between the upstream diffuser and the downstream diffuser. .
  • the document 2 aims to obtain a nonwoven fabric with a uniform mesh size, but a nonwoven fabric with high uniformity may have insufficient filament entanglement and lower strength.
  • the present invention has been made in view of the above-described facts, and an object of the present invention is to provide a nonwoven fabric manufacturing apparatus, a nonwoven fabric manufacturing method, and a nonwoven fabric that can improve uniformity while suppressing a decrease in strength of the nonwoven fabric.
  • a collection unit that collects a filament ejected toward a collection medium on the collection medium, and air that is supplied together with the filament that is collected on the collection medium.
  • a main nozzle that is ejected toward the collection medium, and the filament is diffused by an airflow that flows while diffusing air that is ejected from the main nozzle together with the filament.
  • a non-woven fabric manufacturing apparatus comprising: a diffusing portion including a diffusing space; and an airflow generating means for generating an airflow in close proximity to the airflow around the airflow of air injected from the main nozzle into the diffusing space.
  • the air ejected from the main nozzle together with the filament is diffused between the main nozzle from which air is ejected together with the filament and the collection medium that collects the filament ejected from the main nozzle.
  • a method for producing a nonwoven fabric comprising: ejecting the filament together with air from the main nozzle toward the collection medium, and collecting and depositing the filament diffused in the diffusion space on the collection medium.
  • a filament is spun from a molten resin or the like, a spinning section (spinning process) for leading out a plurality of filaments, and a plurality of filaments introduced from the spinning section are cooled with air.
  • a cooling section for cooling by the above
  • a stretching section for stretching the cooled filaments by stretching air
  • a collecting section collecting and depositing the plurality of stretched filaments to generate a web
  • a non-woven fabric is produced from the collected web.
  • the manufacturing apparatus also includes a diffusion unit (diffusion process) that ejects the plurality of filaments introduced from the stretching unit toward the collection unit while diffusing the plurality of filaments.
  • the diffusion unit includes a main nozzle and a diffusion space provided between the main nozzle and the collection medium of the collection unit.
  • the diffusion space in the first and second aspects is preferably a space that can naturally diffuse without hindering the diffusion of the airflow from the air ejected from the main nozzle.
  • the diffusion space may be surrounded by the partition wall, but when surrounded by the partition wall, the partition wall may be provided away from the air flow so as not to affect the air flow caused by the air ejected from the main nozzle.
  • a plurality of filaments are arranged along the machine width direction, and the main nozzle has a long slit shape along the machine width direction.
  • the air ejected from the main nozzle becomes an air flow (jet) flowing to the collection medium while gradually expanding along the machine direction in the diffusion space.
  • the plurality of filaments ejected from the main nozzle together with air are collected in the collection medium by the filaments being diffused in the machine direction by the airflow formed in the diffusion space.
  • the diffusing section is provided with an airflow generating means, and an airflow is generated in the vicinity of the airflow around the airflow generated by the air blown from the main nozzle by the airflow generating means, and close to the airflow of the main nozzle.
  • the air flowing in the diffusion space suppresses the air (air) in the diffusion space from entering the air flow caused by the air ejected from the main nozzle together with the plurality of filaments.
  • the air flow jetted from the main nozzle has a flow velocity fluctuation inside, but an area in which the flow velocity fluctuation is larger than the surroundings is caused by the entry of air in the diffusion space.
  • the air in the diffusion space enters the airflow generated by the air ejected from the main nozzle by generating an airflow that is close to the airflow around the airflow generated by the air ejected from the main nozzle.
  • the region where the flow velocity fluctuation is larger than the surrounding area is narrowed, or the flow velocity fluctuation magnitude in the region where the flow velocity fluctuation is larger than the surrounding area is suppressed.
  • Each filament has a region where the flow velocity fluctuation is larger than the surrounding area, and the larger the flow velocity fluctuation in the region, the more the filaments are entangled and the bundle of filaments is generated, resulting in a decrease in uniformity.
  • the airflow generation means includes a sub nozzle that ejects air into the diffusion space.
  • the airflow generation means includes a sub nozzle that has an opening arranged alongside the opening of the main nozzle and ejects air to the diffusion space.
  • a sub nozzle in which an opening is arranged side by side with the opening of the main nozzle, and the air ejected from the sub nozzle causes the air around the air flow by the air ejected from the main nozzle. Creates an airflow along the airflow.
  • the sub nozzle is provided on the machine direction side of the main nozzle and on the opposite side to the machine direction.
  • the sub nozzle is provided on each of the machine direction side and the machine direction side with respect to the main nozzle.
  • the sixth aspect may be any one of the third to fifth aspects, wherein the flow velocity of the air ejected from the sub nozzle may be equal to or lower than the flow velocity of the air ejected from the main nozzle.
  • the seventh aspect is more preferably the sixth aspect, wherein the flow velocity of the air ejected from the sub nozzle is 1/10 or more of the flow velocity of the air ejected from the main nozzle.
  • Each of the first to seventh aspects is a nonwoven fabric that is improved in uniformity while suppressing a decrease in strength, and is stretched 5% in the machine direction relative to the strength when stretched 5% in the direction perpendicular to the machine direction. It is suitable for obtaining a nonwoven fabric having a strength ratio of 2.0 or less.
  • Each of the first to seventh aspects is suitable for producing a nonwoven fabric having a maximum strength when stretched in the machine direction of 35.0 (N / 25 mm) or more. Further, in each of the first to seventh aspects, the maximum strength when stretched in the machine direction of the produced nonwoven fabric is more preferably 37.5 (N / 25 mm) or more, and further preferably 40. 0.0 (N / 25 mm), most preferably 42.5 (N / 25 mm). Furthermore, each of the first to seventh aspects is suitable for producing a nonwoven fabric having a basis weight variation (%) of preferably 3.0% or less, more preferably 2.5% or less.
  • FIG. 1 the principal part of the manufacturing apparatus 10 of the nonwoven fabric which concerns on this Embodiment is shown.
  • the manufacturing apparatus 10 according to the present embodiment is used for manufacturing a spunbonded nonwoven fabric.
  • an MD (machine direction) direction indicates a machine direction (machine flow direction)
  • an UP direction indicates an upper direction.
  • a direction (direction perpendicular to the machine direction) orthogonal to each of the MD direction and the UP direction is expressed as a CD (cross machine direction) direction (machine width direction, not shown).
  • the manufacturing apparatus 10 includes a spinning unit 12 that generates a filament by spinning a molten resin in which a thermoplastic resin used for a spunbond nonwoven fabric is melted, a cooling unit 14 that performs a cooling process on the spun filament, and a filament. And a stretching section 16 for performing a stretching process. Moreover, the manufacturing apparatus 10 collects the filaments that have been subjected to the cooling treatment and the stretching treatment, and ejects the plurality of filaments toward the collection unit 18 that obtains a web to be a nonwoven fabric and the collection unit 18. A diffusion unit 20 is provided.
  • the spinning unit 12 includes a spinneret 22 in which a plurality of spinning nozzles are arranged, and a molten resin introduction tube 24 is connected to the spinneret 22.
  • the spinning unit 12 generates a filament by spinning the molten resin introduced into the spinneret 22 through the molten resin introduction tube 24 using a spinning nozzle. Further, the spinning unit 12 derives a plurality of filaments arranged in the CD direction by the spinneret 22 having a plurality of spinning nozzles.
  • the cooling unit 14 includes a cooling chamber 26 into which a plurality of spun filaments are introduced, and a cooling air supply duct 28 is connected to the cooling chamber 26. The cooling unit 14 uses the air supplied from the cooling air supply duct 28 as cooling air, and cools the plurality of filaments introduced into the cooling chamber 26 with the cooling air.
  • the extending section 16 includes an extending shaft 30 that has an opening cross section that is long in the CD direction (in FIG. 1, the front and back directions in the drawing) and short in the MD direction and extends in the vertical direction.
  • the stretching shaft 30 is connected to the cooling chamber 26, and a plurality of filaments are introduced from the cooling chamber 26 into the stretching shaft 30.
  • the drawing unit 16 uses cooling air introduced together with a plurality of filaments or air supplied into the drawing shaft 30 separately from the cooling air as drawing air, and draws the filament introduced from the cooling unit 14 by drawing air. To do.
  • the collecting unit 18 includes a moving band 32 as a collecting medium formed by mesh or punching metal, and suction means (not shown) provided below the moving band 32.
  • the diffusing unit 20 ejects the drawing air introduced from the drawing shaft 30 or air introduced separately from the drawing wind toward the moving zone 32 of the collection unit 18.
  • the collection unit 18 collects the plurality of ejected filaments on the collection surface 32A of the moving band 32 while sucking them by a suction unit, and generates a web that becomes a nonwoven fabric.
  • the spinning unit 12, the cooling unit 14, the stretching unit 16, and the collecting unit 18 of the manufacturing apparatus 10 generate a plurality of filaments by spinning the molten resin, a cooling stretching process for the generated plurality of filaments, and A known configuration for collecting a plurality of filaments can be applied.
  • FIG. 2 shows a schematic configuration of the diffusion unit 20 according to the present embodiment.
  • the diffusion unit 20 includes a jet nozzle 34 as a main nozzle.
  • an opening 34A at the tip as an opening serving as an ejection outlet is formed in a slit shape that is long in the CD direction, and is directed onto the moving band 32 of the collection unit 18. Further, the ejection nozzle 34 is continued to the stretching shaft 30 of the stretching section 16 and a plurality of filaments that have been subjected to cooling and stretching processing are introduced.
  • air is introduced into the ejection nozzle 34 separately from the air by the stretched air or the air of the stretched wind.
  • the diffusion unit 20 ejects air and a plurality of filaments introduced into the ejection nozzle 34 toward the moving band 32 of the collection unit 18 from the opening 34A.
  • the diffusing unit 20 sends a plurality of filaments ejected from the ejection nozzle 34 toward the collection unit 18 by the air current ejected from the ejection nozzle 34.
  • the air flow generated by the air ejected from the ejection nozzle 34 together with the plurality of filaments is referred to as a transport flow.
  • the diffusion unit 20 is provided with a diffusion space 36 between the ejection nozzle 34 and the collection surface 32 ⁇ / b> A of the moving band 32 of the collecting unit 18, and the carrier flow is directed toward the moving band 32 in the diffusion space 36.
  • the diffusion space 36 is a space that is not provided with a wall surface or the like that restricts the flow of the carrier flow by the air ejected from the ejection nozzle 34. That is, the diffusion space 36 is a space in which the carrier flow ejected from the ejection nozzle 34 is not affected by a structure such as a wall surface other than the collection unit 18.
  • the diffusion space may be partitioned by the partition wall as long as the partition wall is provided so as not to interfere with the airflow.
  • the carrier flow by the air ejected from the ejection nozzle 34 flows in the diffusion space 36 while gradually (naturally) expanding in the MD direction and the direction opposite to the MD direction. Further, the flow velocity of the transport flow gradually decreases as it approaches the moving zone 32.
  • the plurality of filaments ejected from the ejection nozzle 34 are diffused in the MD direction and in the direction opposite to the MD direction by the conveyance flow expanding in the diffusion space 36.
  • the filament is diffused and collected in a predetermined collection region on the collection surface 32 ⁇ / b> A of the moving band 32.
  • the manufacturing apparatus 10 generates the nonwoven fabric to be produced, the production speed of the nonwoven fabric, the width in the CD direction of the web produced by collecting the filaments in the collection unit 18, the opening width of the ejection nozzle 34, the opening length, The moving speed of the moving band 32 and the interval between the ejection nozzle 34 and the collecting surface 32A of the moving band 32 are determined.
  • the interval (height H) between the tip of the ejection nozzle 34 and the surface of the moving band 32 of the collecting unit 18 is set between 0.1 m and 1 m, and the interval H Is the height of the diffusion space 36.
  • the flow velocity of the air ejected from the ejection nozzle 34 or the air volume per unit time of the ejected air is determined, and in the following, the air flow velocity at the opening of the ejection nozzle 34 is the flow velocity Vm of the carrier flow. Is written.
  • the spread of the carrier flow in the diffusion space 36 changes according to the flow velocity Vm. When the flow velocity Vm is high, the spread of the carrier flow is smaller than when it is low.
  • the diffusion unit 20 is provided with the diffusion space 36 so that the carrier flow ejected from the ejection nozzle 34 reaches the moving band 32 while gradually spreading mainly along the MD direction.
  • the area of the conveyance flow in the diffusion space 36 is referred to as a conveyance flow area 38.
  • the conveyance basin 38 is shown virtually.
  • the diffusing section 20 is provided with a sub nozzle 40 as an airflow generating means.
  • the sub-nozzle 40 is provided with a slit-like opening 40A that is long in the CD direction as an opening.
  • the sub nozzle 40 is disposed on each of the ejection nozzle 34 on the MD direction side and the opposite side to the MD direction, and the opening 40 ⁇ / b> A of the sub nozzle 40 is aligned with the opening 34 ⁇ / b> A of the ejection nozzle 34.
  • the air supply pipe 42 is connected to the sub nozzle 40, and the air supplied through the air supply pipe 42 is ejected from the opening 40A.
  • the diffusing unit 20 is connected to the sub nozzle 40 via the air supply pipe 42 so that the air flow from the sub nozzle 40 becomes a flow velocity Vs determined according to the flow velocity Vm of the carrier flow ejected from the ejection nozzle 34.
  • the air supplied to is controlled.
  • the sub nozzle 40 is provided so that the air ejection direction is substantially parallel to the air ejection direction from the ejection nozzle 34.
  • the flow velocity Vs is preferably equal to or less than the flow velocity Vm (Vs ⁇ Vm), and more preferably equal to or greater than 1/10 of the flow velocity Vm (Vs ⁇ (Vm / 10)).
  • the opening 34A of the ejection nozzle 34 and the opening 40A of the sub nozzle 40 are arranged side by side.
  • the present invention is not limited to this, and one of the opening 34A of the ejection nozzle 34 and the opening 40A of the sub nozzle 40 is arranged. May be arranged with a step so as to be farther from the collection surface 32A of the moving band 32 than the other.
  • an air stream that is close to the transport flow is generated around the transport flow (transport flow area 38) in the diffusion space 36 by the air ejected from the sub nozzle 40.
  • the airflow generated by the air ejected from the sub nozzle 40 is virtually shown as an airflow layer 44.
  • a plurality of filaments spun from a molten resin and subjected to cooling processing and stretching processing are introduced into the ejection nozzle 34 of the diffusion unit 20.
  • the ejection nozzle 34 is introduced with air for generating a transport flow (stretching air or air supplied separately from the stretching air).
  • a diffusion space 36 is provided between the ejection nozzle 34 and the moving band 32 of the collection unit 18, and air and a plurality of filaments introduced into the ejection nozzle 34 are opened in the ejection nozzle 34. It is ejected from 34A toward the diffusion space 36. As a result, the plurality of filaments are sprayed onto the moving surface 32 of the collection unit 18 and collected on the collection surface 32 ⁇ / b> A while being diffused by the carrier flow by the air ejected from the ejection nozzle 34.
  • the diffusing section 20 is provided with a sub nozzle 40 together with the ejection nozzle 34, and the sub nozzle 40 ejects air supplied via the air supply pipe 42 to the diffusion space 36.
  • the diffusion space 36 an airflow is generated around the conveyance flow and close to the conveyance flow, and the air in the diffusion space 36 is suppressed from entering the conveyance flow (in the conveyance flow area 38).
  • the plurality of filaments transported in the diffusion space 36 by the transport flow cause fluctuations in the flow velocity inside the transport flow, but in regions where the flow velocity fluctuation is larger than the surroundings, the larger the flow velocity fluctuation, the greater the entanglement of the filament. Become.
  • the nonwoven fabric obtained from the web produced by collecting the filaments has high tensile strength.
  • the uniformity of the nonwoven fabric decreases.
  • the diffusing unit 20 provided with the sub nozzle 40, an air flow that is close to the transport flow is formed around the transport flow by the air ejected from the sub nozzle 40, and is generated inside the transport flow.
  • the magnitude of the flow velocity fluctuation is suppressed.
  • FIG. 3A corresponds to the diffusing section 20 of the present embodiment (below, Example 1) provided with the ejection nozzle 34 and the sub nozzle 40
  • FIG. 3B is a sub nozzle that is proportional (below, Comparative Example 1).
  • a diffusing portion 20A in which only the ejection nozzle 34 is provided without providing 40 is shown.
  • the flow rate fluctuation is obtained by calculating the speed difference of the flow rate for each sampling time from the flow rate for each sampling time set in advance, and using the root mean square (RMS) of the obtained speed difference.
  • RMS root mean square
  • the magnitude of the flow velocity fluctuation is suppressed in a region where the flow velocity fluctuation inside the air flow ejected from the ejection nozzle 34 is larger than that of the diffusing section 20A. Yes.
  • the diffusion part 20 the tangle of the filament in the web collected by the collection part 18 is suppressed from the diffusion part 20A.
  • the manufacturing apparatus 10 provided with the sub nozzle 40 of the diffusion unit 20 can obtain a non-woven fabric with improved uniformity as compared with the case where the sub nozzle 40 is not provided. Moreover, in the spreading
  • the flow velocity Vs of the sub nozzle 40 is halved with respect to the flow velocity Vm of the ejection nozzle 34.
  • the flow velocity Vs of the sub-nozzle 40 only needs to be equal to or less than the flow velocity Vm of the ejection nozzle 34, thereby suppressing the flow velocity fluctuation in the conveyance flow without suppressing the spread of the conveyance flow in the diffusion space 36. it can.
  • the flow velocity Vs of the sub nozzle 40 may be larger than the flow velocity Vm of the ejection nozzle 34 (Vs> Vm).
  • Vs> Vm the flow velocity Vs of the sub nozzle 40
  • the direction along the carrier flow that is, the direction of flowing in contact with the carrier flow may be used.
  • the sub nozzle 40 is provided on the MD direction side and the direction opposite to the MD direction with respect to the ejection nozzle 34, but the sub nozzle 40 places the sub nozzle 40 on the MD side relative to the ejection nozzle 34.
  • the sub nozzle 40 only needs to be provided with the sub nozzle 40 on at least one of the MD direction side and the direction opposite to the MD direction with respect to the ejection nozzle 34.
  • the sub nozzle 40 is provided as the air flow generation means.
  • the air flow generation means is not limited to the sub nozzle 40, and generates an air flow that is close to the transport flow around the transport flow. Anything is fine.
  • Example 1 The physical properties in the present embodiment (hereinafter referred to as Example 1) and the proportionality to the present embodiment (hereinafter referred to as Comparative Example 1) were measured by the following methods.
  • Example 1 As the first propylene polymer, a propylene homopolymer having a melting point of 162 ° C and MFR (measured at a temperature of 230 ° C and a load of 2.16 kg in accordance with ASTM D1238, the same applies hereinafter) 60 g / 10 min was used.
  • As the second propylene polymer a propylene / ethylene random copolymer having a melting point of 142 ° C., an MFR of 60 g / 10 min, and an ethylene unit component content of 4.0 mol% was used.
  • the obtained fiber was dispersed from the main nozzle (ejection nozzle 34) shown in FIG. 1 and then volume on the collection medium (moving zone 32).
  • the speed of the air ejected from the ejection nozzle 34 (main nozzle) is 107.3 m / sec, and the auxiliary speed provided at a position 38 mm away from the ejection outlet (opening 34A) of the ejection nozzle 34 in the horizontal direction.
  • the air ejected from the nozzle 40 (ejection width 12 mm) was set to 1/4 (26.8 m / sec) with respect to the speed of the air ejected from the ejection nozzle 34.
  • the embossed pattern is peeled from the collection medium, the embossed pattern has an area ratio of 6.7%, the embossed area is 0.19 m 2 , and is thermally bonded by heating embossing under conditions of a heating temperature of 130 ° C. and a linear pressure of 60 kg / cm, A spunbond nonwoven fabric was obtained.
  • the basis weight of the obtained spunbonded nonwoven fabric was 20.0 g / m 2 .
  • the obtained spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in FIG.
  • Example 1 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the air ejected from the sub nozzle 40 was changed to 0 (speed 0 m / sec). Basis weight of the resulting spunbonded nonwoven fabric was 20.2 g / m 2. The obtained spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in FIG.
  • Example 1 the variation in basis weight was 3.5 [%] in Comparative Example 1, while 2.0 [%] in Example 1.
  • the evaluation of the yarn bundle [point] in the non-woven fabric was Evaluation B for Comparative Example 1 while Example 1 was Evaluation B.
  • the MD5% strength is 4.3 [N / 25 mm] in Example 1 and 5.2 [N / 25 mm] in Comparative Example 1
  • the CD5% strength is 2.7 [N] in Example 1.
  • / 25 mm] and Comparative Example 1 were 1.2 [N / 25 mm].
  • the MD5% strength / CD5% strength was 1.6 in Example 1 and 4.3 in Comparative Example 1. From this, it can be seen that compared to Comparative Example 1, Example 1 has reduced strength reduction and improved uniformity.
  • the nonwoven fabric manufacturing apparatus and manufacturing method according to the present embodiment are suitable for manufacturing a nonwoven fabric in which strength reduction is suppressed and uniformity is improved.
  • the nonwoven fabric manufacturing apparatus and method according to the present embodiment is stretched 5% in the machine direction (MD direction) relative to the strength (CD 5% strength) when stretched 5% in the direction perpendicular to the machine direction (CD direction). It is suitable for the manufacture of a nonwoven fabric having a ratio of strength (MD5% strength) (MD5% strength / CD5% strength) of 2.0 or less.
  • the nonwoven fabric manufacturing apparatus and manufacturing method in the present embodiment is suitable for manufacturing a nonwoven fabric having a basis weight variation of preferably 3.0 [%] or less, more preferably 2.5 [%] or less.
  • the maximum strength (MD strength) when stretched in the machine direction is more preferably 37.5 [N / 25 mm] or more, and further preferably 40.0 [N / 25 mm], most preferably 42.5 [N / 25 mm].

Abstract

In a scattering part of a non-woven manufacturing device, a scattering space is provided between a spray nozzle and a travelling belt of a collector, the openings of auxiliary nozzles are positioned next to the opening of the spray nozzle, and the auxiliary nozzles spray air from the opening. The spray nozzle sprays, together with air, a plurality of filaments towards the travelling belt. The air sprayed from the spray nozzle forms a transportation flow flowing so as to gradually spread in the scattering space, and the plurality of filaments are transported towards the travelling belt while being caused to scatter by the transportation flow and collected. The air sprayed from the auxiliary nozzles flows, around the transportation flow and along the airflow, and inhibits the air in the scattering space from entering the transportation flow.

Description

不織布の製造装置、不織布の製造方法及び不織布Nonwoven fabric manufacturing apparatus, nonwoven fabric manufacturing method, and nonwoven fabric
  本発明は、不織布の製造装置、不織布の製造方法及び不織布に関する。 The present invention relates to a nonwoven fabric manufacturing apparatus, a nonwoven fabric manufacturing method, and a nonwoven fabric.
 スパンボンド不織布などの不織布は、医療、衛生資材、土木資材及び包装資材等に多用されている。スパンボンド不織布は、熱可塑性樹脂を溶融紡糸したフィラメントに対して冷却風を用いた冷却処理、及び延伸風を用いた延伸処理を行った後、捕集媒体上に拡散させながら捕集堆積させることで得られるウェブから製造される。 Non-woven fabrics such as spunbonded non-woven fabrics are widely used for medical, hygiene materials, civil engineering materials and packaging materials. Spunbond nonwoven fabric is collected and deposited while being diffused on the collection medium after the cooling treatment using the cooling air and the drawing treatment using the drawing air are performed on the filaments obtained by melt spinning the thermoplastic resin. Manufactured from the web obtained in
 文献1(特許第2556953号)には、水平方向における横断面が矩形状とされ、フィラメント走行方向において次第に横断面が縮小された冷却室、冷却室に接続され排出口における壁体に段状凹陥部が形成された延伸ノズル、及び延伸ノズルに接続された繊維載置装置を有し、空気力学的に延伸された合成樹脂フィラメントから紡糸繊維帯片を製造する装置が開示されている。この文献1の繊維載置装置は、水平方向において矩形状の横断面を有し、縦方向においてヴェンチュリー環状の流域、及びディフューザー出口を有するジェットポンプの形態を有し、繊維帯片載置フィルタベルトを挟んでディフューザー出口に対向された吸気管により自由空気吸入口から吸引される空気量が調整されるようにしている。 In Document 1 (Japanese Patent No. 2556953), a horizontal cross section in a rectangular shape is formed into a rectangular shape, and a stepped depression is formed in a wall body at a discharge port connected to a cooling chamber and a cooling chamber which is gradually reduced in cross section in the filament running direction. An apparatus for producing a spun fiber strip from an aerodynamically stretched synthetic resin filament having a stretch nozzle formed with a portion and a fiber placement device connected to the stretch nozzle is disclosed. The fiber placement device of this document 1 has a rectangular cross section in the horizontal direction, and has a form of a jet pump having a venturi-shaped basin in the vertical direction and a diffuser outlet. The amount of air sucked from the free air suction port is adjusted by an intake pipe facing the diffuser outlet with the belt interposed therebetween.
 文献2(特許第3135498号)には、多数のノズルを有するノズル板体、処理シャフト、搬送ユニット及び搬送コンベアを有し、処理シャフト及び搬送ユニットに処理空気が流入され、ノズル板体のノズル孔から無端繊維が流入されると共に空気と繊維の混合の形の無端繊維群として搬送コンベアに向かう放出運動により処理シャフト中に流入され、搬送ユニットが無端繊維群用の中央の流入導管及びこれに次ぐ、搬送コンベアまで伸長するディフューザ導管を具備し、放出運動とそれに重複するフリース形成運動が強制付与され、上記双方の導管が搬送コンベアベルトの走行方向を横切る方向に延びる熱可塑性樹脂無端繊維からスピンフリースウェブを製造する装置が開示されている。この文献2では、導入導管および/またはディフューザ導管は空気と繊維の混合用に用いられ、導管の幅にわたり搬送コンベアベルトの走行方向を横切って伸長する導管中に空気を追加導入するための流通スリット形状、並びに導管から空気を放出するための流出スリットの形状の空力学的等分配装置を具備し、付加的に追加給送されるべき流量および流出させるべき空気の流量を空気と繊維の混合中における繊維の等分配に影響を与える目的で制御ないし調整されるようにしている。また、特許文献2は、流入導管および/またはディフューザ導管の内部表面が導管縦断面における表面近傍に障害部材を具備し、その流動方向に対して後方に渦巻き領域が形成されている。 Document 2 (Japanese Patent No. 3135498) has a nozzle plate having a large number of nozzles, a processing shaft, a transport unit, and a transport conveyor. Processing air is introduced into the processing shaft and the transport unit, and the nozzle holes of the nozzle plate Endless fibers are fed from the end and are fed into the processing shaft by discharge movement toward the conveyor as endless fiber groups in the form of a mixture of air and fibers, and the transport unit follows the central inflow conduit for the endless fiber groups and this A spine fleece from a thermoplastic endless fiber having a diffuser conduit extending to the conveyor, forcing a discharge motion and an overlapping fleece forming motion, both conduits extending in a direction transverse to the direction of travel of the conveyor belt An apparatus for manufacturing a web is disclosed. In this document 2, an introduction conduit and / or a diffuser conduit is used for mixing air and fibers, and a flow slit for additionally introducing air into a conduit extending across the width of the conduit and across the direction of travel of the conveyor belt. Aerodynamic equal distribution device in the form of an outflow slit for discharging air from the conduit and in addition to the flow of air to be additionally fed and the flow of air to be discharged during the mixing of air and fibers Is controlled or adjusted for the purpose of influencing the equal distribution of fibers. In Patent Document 2, the inner surface of the inflow conduit and / or the diffuser conduit includes an obstruction member in the vicinity of the surface in the longitudinal section of the conduit, and a spiral region is formed rearward with respect to the flow direction.
 文献3(特許第5094588号)には、フィラメントから形成されたスパンボンドを製造する装置として、フィラメントを形成する紡糸口金が設けられ、紡糸口金の下流にはフィラメントを冷却する処理空気を供給する冷却室があり、フィラメントを延伸する延伸ユニットが冷却室に接続されており、冷却室と延伸ユニットの間の接続領域が閉鎖されて、延伸ユニットは通路壁が延伸通路の長さの少なくとも一部上に分岐される延伸通路を有し、延伸ユニットでは、分岐延伸通路部分の上流端において追加的空気が、フィラメント束を機械方向において幅広く形成される条件により延伸通路に注入され、スパンボンドウェブのフィラメントを沈積させる沈積装置が設けられた装置が記載されている。また、文献3には、延伸ユニットの下流には沈積ユニットがあり、沈積ユニットが上流ディフューザと隣接下流ディフューザから成り、周囲空気入口スリットが上流ディフューザと下流ディフューザの間に設けられている記載があります。 Document 3 (Japanese Patent No. 5094588) is provided with a spinneret for forming a filament as an apparatus for producing a spunbond formed from a filament, and cooling for supplying processing air for cooling the filament downstream of the spinneret. A drawing unit for drawing the filament is connected to the cooling chamber, the connection region between the cooling chamber and the drawing unit is closed, and the drawing unit has a passage wall on at least part of the length of the drawing passage. In the drawing unit, additional air is injected into the drawing passage at the upstream end of the branch drawing passage portion so that the filament bundle is widely formed in the machine direction, and the filaments of the spunbond web An apparatus is described which is provided with a deposition apparatus for depositing. Reference 3 also describes that there is a sedimentation unit downstream of the stretching unit, the deposition unit consists of an upstream diffuser and an adjacent downstream diffuser, and an ambient air inlet slit is provided between the upstream diffuser and the downstream diffuser. .
 ところで、不織布の品質に関わる重要な特性として、均一性及び強度がある。例えば、文献2では、メッシュ寸法が均一な不織布を得ることを目的としているが、均一性が高い不織布では、フィラメントの絡みが不足し、強度が低下してしまうことがある。 By the way, there are uniformity and strength as important characteristics related to the quality of the nonwoven fabric. For example, the document 2 aims to obtain a nonwoven fabric with a uniform mesh size, but a nonwoven fabric with high uniformity may have insufficient filament entanglement and lower strength.
 本発明は上記事実に鑑みてなされたものであり、不織布の強度低下を抑制しながら均一性の向上が図られる不織布の製造装置、不織布の製造方法及び不織布を提供することを目的とする。 The present invention has been made in view of the above-described facts, and an object of the present invention is to provide a nonwoven fabric manufacturing apparatus, a nonwoven fabric manufacturing method, and a nonwoven fabric that can improve uniformity while suppressing a decrease in strength of the nonwoven fabric.
 上記目的を達成するための具体的手段には、以下の態様が含まれる。
 第1の態様は、捕集媒体へ向けて噴出されるフィラメントを前記捕集媒体上に捕集する捕集部と、前記捕集媒体に捕集される前記フィラメントと共に供給されるエアを前記捕集媒体へ向けて噴出する主ノズル、及び前記主ノズルと前記捕集媒体との間に設けられ、前記フィラメントと共に前記主ノズルから噴出されるエアが拡散しながら流れる気流により前記フィラメントが拡散される拡散空間を含む拡散部と、前記主ノズルから前記拡散空間に噴出された前記エアの気流の周囲において該気流に近接して沿う気流を生じさせる気流生成手段と、を含む不織布の製造装置である。
Specific means for achieving the above object includes the following aspects.
According to a first aspect of the present invention, there is provided a collection unit that collects a filament ejected toward a collection medium on the collection medium, and air that is supplied together with the filament that is collected on the collection medium. A main nozzle that is ejected toward the collection medium, and the filament is diffused by an airflow that flows while diffusing air that is ejected from the main nozzle together with the filament. A non-woven fabric manufacturing apparatus comprising: a diffusing portion including a diffusing space; and an airflow generating means for generating an airflow in close proximity to the airflow around the airflow of air injected from the main nozzle into the diffusing space. .
 第2の態様は、フィラメントと共にエアが噴出される主ノズルと前記主ノズルから噴出されたフィラメントを捕集する捕集媒体との間に、前記フィラメントと共に前記主ノズルから噴出されるエアが拡散しながら流れる気流により前記フィラメントが拡散される拡散空間を設け、気流生成手段により前記主ノズルから前記拡散空間に噴出された前記エアの気流の周囲において該気流に近接して沿う気流を生じさせながら、前記主ノズルからエアと共に前記フィラメントを前記捕集媒体へ向けて噴出させて、前記拡散空間で拡散された前記フィラメントを前記捕集媒体上に捕集堆積する、ことを含む不織布の製造方法である。 In the second aspect, the air ejected from the main nozzle together with the filament is diffused between the main nozzle from which air is ejected together with the filament and the collection medium that collects the filament ejected from the main nozzle. While providing a diffusion space in which the filament is diffused by the flowing air flow, and generating an air flow in close proximity to the air flow around the air flow of air blown from the main nozzle to the diffusion space by the air flow generation means, A method for producing a nonwoven fabric, comprising: ejecting the filament together with air from the main nozzle toward the collection medium, and collecting and depositing the filament diffused in the diffusion space on the collection medium. .
 第1の態様及び第2の態様においては、溶融樹脂等からフィラメントを紡糸して、複数のフィラメントを導出する紡出部(紡出工程)、紡出部から導入される複数のフィラメントを冷却風により冷却する冷却部(冷却工程)、冷却された複数のフィラメントを延伸風により延伸する延伸部(延伸工程)、及び延伸された複数のフィラメントを捕集堆積させてウェブを生成する捕集部(捕集工程)を含み、捕集されたウェブから不織布が製造される。また、製造装置は、延伸部から導入される複数のフィラメントを拡散させながら捕集部へ向けて噴出する拡散部(拡散工程)を含む。 In the first aspect and the second aspect, a filament is spun from a molten resin or the like, a spinning section (spinning process) for leading out a plurality of filaments, and a plurality of filaments introduced from the spinning section are cooled with air. A cooling section (cooling process) for cooling by the above, a stretching section (stretching process) for stretching the cooled filaments by stretching air, and a collecting section (collecting and depositing the plurality of stretched filaments to generate a web) A non-woven fabric is produced from the collected web. The manufacturing apparatus also includes a diffusion unit (diffusion process) that ejects the plurality of filaments introduced from the stretching unit toward the collection unit while diffusing the plurality of filaments.
 拡散部は、主ノズル、及び主ノズルと捕集部の捕集媒体との間に設けたれた拡散空間を含む。第1及び第2の態様における拡散空間は、主ノズルから噴出されるエアによる気流が拡散するのを妨げることなく自然に拡散可能とする空間であることが好ましい。拡散空間は、隔壁により囲われていても良いが、隔壁により囲う場合、主ノズルから噴出されるエアによる気流に影響を与えることがないように隔壁が気流から離れて設けられていれば良い。また、フィラメントは、複数が機械幅方向に沿って配列されており、主ノズルは、機械幅方向に沿って長いスリット状となっている。 The diffusion unit includes a main nozzle and a diffusion space provided between the main nozzle and the collection medium of the collection unit. The diffusion space in the first and second aspects is preferably a space that can naturally diffuse without hindering the diffusion of the airflow from the air ejected from the main nozzle. The diffusion space may be surrounded by the partition wall, but when surrounded by the partition wall, the partition wall may be provided away from the air flow so as not to affect the air flow caused by the air ejected from the main nozzle. A plurality of filaments are arranged along the machine width direction, and the main nozzle has a long slit shape along the machine width direction.
 これにより、主ノズルから噴出されるエアは、拡散空間内で機械方向に沿って徐々に拡がりながら捕集媒体へ流れる気流(噴流)となる。エアと共に主ノズルから噴出される複数のフィラメントは、拡散空間内に形成される気流によりフィラメントが機械方向に拡散されて捕集媒体に捕集される。 Thereby, the air ejected from the main nozzle becomes an air flow (jet) flowing to the collection medium while gradually expanding along the machine direction in the diffusion space. The plurality of filaments ejected from the main nozzle together with air are collected in the collection medium by the filaments being diffused in the machine direction by the airflow formed in the diffusion space.
 ここで、拡散部には、気流生成手段が設けられ、気流生成手段により主ノズルから噴出されたエアによる気流の周囲において該気流に近接して沿う気流が生成され、主ノズルの気流に近接して沿う気流により拡散空間内の空気(エア)が複数のフィラメントと共に主ノズルから噴出されたエアによる気流内に入り込むのが抑制される。主ノズルから噴出されたエアの気流は、内部に流速変動が生じるが、拡散空間内の空気が入り込むことで流速変動が周囲よりも大きくなる領域が生じる。これに対して、主ノズルから噴出されるエアによる気流の周囲において該気流に近接して沿う気流を生じさせることで、主ノズルから噴出されるエアによる気流内に拡散空間の空気が入り込むのが抑制され、流速変動が周囲よりも大きくなる領域が狭められる、或いは流速変動が周囲よりも大きくなる領域における流速変動の大きさが抑制される。 Here, the diffusing section is provided with an airflow generating means, and an airflow is generated in the vicinity of the airflow around the airflow generated by the air blown from the main nozzle by the airflow generating means, and close to the airflow of the main nozzle. The air flowing in the diffusion space suppresses the air (air) in the diffusion space from entering the air flow caused by the air ejected from the main nozzle together with the plurality of filaments. The air flow jetted from the main nozzle has a flow velocity fluctuation inside, but an area in which the flow velocity fluctuation is larger than the surroundings is caused by the entry of air in the diffusion space. On the other hand, the air in the diffusion space enters the airflow generated by the air ejected from the main nozzle by generating an airflow that is close to the airflow around the airflow generated by the air ejected from the main nozzle. The region where the flow velocity fluctuation is larger than the surrounding area is narrowed, or the flow velocity fluctuation magnitude in the region where the flow velocity fluctuation is larger than the surrounding area is suppressed.
 それぞれのフィラメントは、流速変動が周囲よりも大きくなる領域が生じることで、当該領域における流速変動が大きければ大きい程フィラメント同士の絡みが多くなり、フィラメントの束が発生して均一性が低下するが、流速変動の大きさが抑制されることでフィラメントの束の発生が抑えられて均一性の向上が図られる。 Each filament has a region where the flow velocity fluctuation is larger than the surrounding area, and the larger the flow velocity fluctuation in the region, the more the filaments are entangled and the bundle of filaments is generated, resulting in a decrease in uniformity. By suppressing the magnitude of the flow rate fluctuation, the occurrence of bundles of filaments can be suppressed and the uniformity can be improved.
 また、第3の態様は、気流生成手段は、エアを拡散空間へ噴出する副ノズルを含むことが好ましい。また、第4の態様は、前記気流生成手段は、前記主ノズルの開口部と並んで開口部が配置されエアを前記拡散空間へ噴出する副ノズルを含む。 Further, in the third aspect, it is preferable that the airflow generation means includes a sub nozzle that ejects air into the diffusion space. In the fourth aspect, the airflow generation means includes a sub nozzle that has an opening arranged alongside the opening of the main nozzle and ejects air to the diffusion space.
 第3の態様及び第4の態様では、主ノズルの開口部と並んで開口部が配置された副ノズルを備え、副ノズルから噴出するエアにより、主ノズルから噴出するエアによる気流の周囲において該気流に近接して沿う気流を生じさせる。 In the third aspect and the fourth aspect, there is provided a sub nozzle in which an opening is arranged side by side with the opening of the main nozzle, and the air ejected from the sub nozzle causes the air around the air flow by the air ejected from the main nozzle. Creates an airflow along the airflow.
 これにより、拡散空間内の空気が主ノズルから噴出されるエアによる気流内に入り込むのが抑制されるので、容易に不織布の均一性の向上が図られる。 Thereby, since the air in the diffusion space is prevented from entering the air flow by the air ejected from the main nozzle, the uniformity of the nonwoven fabric can be easily improved.
 また、第5の態様は、第3及び第4の態様において、前記副ノズルが前記主ノズルの機械方向側及び機械方向とは反対側に設けられている。 Further, in the fifth aspect, in the third and fourth aspects, the sub nozzle is provided on the machine direction side of the main nozzle and on the opposite side to the machine direction.
 第5の態様では、主ノズルに対して機械方向側及び機械方向とは反対側の各々に副ノズルを設けている。これにより、拡散空間内の空気が、主ノズルから噴出されたエアの気流に対して、機械方向側及び機械方向とは反対側の各々から入り込むのが抑制されるので、主ノズルから噴出されたエアの流速変動が大きくなるのが効果的に抑制される。 In the fifth aspect, the sub nozzle is provided on each of the machine direction side and the machine direction side with respect to the main nozzle. As a result, the air in the diffusion space is prevented from entering from the machine direction side and the opposite side to the machine direction with respect to the air flow jetted from the main nozzle, so that the air is jetted from the main nozzle. An increase in air flow rate fluctuation is effectively suppressed.
 第6の態様は、第3の態様から第5の態様の何れかにおいて、前記副ノズルから噴出されるエアの流速が前記主ノズルから噴出されるエアの流速以下であっても良い。また、第7の態様は、第6の態様において、前記副ノズルから噴出されるエアの流速が前記主ノズルから噴出されるエアの流速の1/10以上であることがより好適である。 The sixth aspect may be any one of the third to fifth aspects, wherein the flow velocity of the air ejected from the sub nozzle may be equal to or lower than the flow velocity of the air ejected from the main nozzle. The seventh aspect is more preferably the sixth aspect, wherein the flow velocity of the air ejected from the sub nozzle is 1/10 or more of the flow velocity of the air ejected from the main nozzle.
 第1の態様から第7の態様の各々は、強度低下を抑制しながら均一性の向上が図られた不織布として、機械方向と垂直な方向に5%伸長時の強度に対する機械方向に5%伸長時の強度の比が2.0以下である不織布を得るのに好適である。
 第1の態様から第7の態様の各々は、機械方向に伸長時の最大強度が35.0(N/25mm)以上である不織布の製造に好適である。また、第1の態様から第7の態様の各々は、製造される不織布の機械方向に伸長時の最大強度は、37.5(N/25mm)以上であることがより好ましく、さらに好ましくは40.0(N/25mm)であり、最も好ましくは42.5(N/25mm)である。
 さらに、第1の態様から第7の態様の各々は、目付バラツキ(%)は、好ましくは3.0%以下であり、より好ましくは2.5%以下である不織布の製造に好適である。
Each of the first to seventh aspects is a nonwoven fabric that is improved in uniformity while suppressing a decrease in strength, and is stretched 5% in the machine direction relative to the strength when stretched 5% in the direction perpendicular to the machine direction. It is suitable for obtaining a nonwoven fabric having a strength ratio of 2.0 or less.
Each of the first to seventh aspects is suitable for producing a nonwoven fabric having a maximum strength when stretched in the machine direction of 35.0 (N / 25 mm) or more. Further, in each of the first to seventh aspects, the maximum strength when stretched in the machine direction of the produced nonwoven fabric is more preferably 37.5 (N / 25 mm) or more, and further preferably 40. 0.0 (N / 25 mm), most preferably 42.5 (N / 25 mm).
Furthermore, each of the first to seventh aspects is suitable for producing a nonwoven fabric having a basis weight variation (%) of preferably 3.0% or less, more preferably 2.5% or less.
 本明細書の実施の形態によれば、強度低下を抑制しながら均一性の向上が図られた不織布が得られる、という効果がある。 According to the embodiment of the present specification, there is an effect that a non-woven fabric with improved uniformity can be obtained while suppressing a decrease in strength.
本実施の形態に係る製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus which concerns on this Embodiment. 拡散部を示す概略構成図である。It is a schematic block diagram which shows a spreading | diffusion part. 本実施の形態における流速変動のシミュレーション結果の一例を示す分布図である。It is a distribution map which shows an example of the simulation result of the flow-velocity fluctuation | variation in this Embodiment. 対比例における流速変動のシミュレーション結果の一例を示す分布図である。It is a distribution map which shows an example of the simulation result of the flow velocity fluctuation | variation in contrast. 実施例に係る製造条件及び物性の比較を示す図表である。It is a graph which shows the comparison of the manufacturing conditions and physical property which concern on an Example.
 以下、図面を参照して本発明の一実施の形態を詳細に説明する。図1には、本実施の形態に係る不織布の製造装置10の要部を示している。本実施の形態に係る製造装置10は、スパンボンド不織布の製造に用いられる。なお、以下の説明において、MD(machine direction)方向は、機械方向(機械の流れ方向)を示し、UP方向は、上下方向の上方を示している。また、以下の説明において、MD方向及びUP方向の各々と直交する方向(機械方向と垂直な方向)をCD(cross  machine direction)方向(機械幅方向。図示省略)と表記する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In FIG. 1, the principal part of the manufacturing apparatus 10 of the nonwoven fabric which concerns on this Embodiment is shown. The manufacturing apparatus 10 according to the present embodiment is used for manufacturing a spunbonded nonwoven fabric. In the following description, an MD (machine direction) direction indicates a machine direction (machine flow direction), and an UP direction indicates an upper direction. Further, in the following description, a direction (direction perpendicular to the machine direction) orthogonal to each of the MD direction and the UP direction is expressed as a CD (cross machine direction) direction (machine width direction, not shown).
 製造装置10は、スパンボンド不織布に用いる熱可塑性樹脂が溶融された溶融樹脂を紡糸してフィラメントを生成する紡出部12、紡糸したフィラメントに対して冷却処理を行う冷却部14、及びフィラメントに対して延伸処理を行う延伸部16を備える。また、製造装置10は、冷却処理及び延伸処理されたフィラメントを捕集して、不織布となるウェブを得る捕集部18、及び捕集部18へ向けて複数のフィラメントを拡散するように噴出する拡散部20を備える。 The manufacturing apparatus 10 includes a spinning unit 12 that generates a filament by spinning a molten resin in which a thermoplastic resin used for a spunbond nonwoven fabric is melted, a cooling unit 14 that performs a cooling process on the spun filament, and a filament. And a stretching section 16 for performing a stretching process. Moreover, the manufacturing apparatus 10 collects the filaments that have been subjected to the cooling treatment and the stretching treatment, and ejects the plurality of filaments toward the collection unit 18 that obtains a web to be a nonwoven fabric and the collection unit 18. A diffusion unit 20 is provided.
 紡出部12は、複数の紡糸ノズルが配列された紡糸口金22を備え、紡糸口金22に溶融樹脂導入管24が接続されている。紡出部12は、溶融樹脂導入管24を介して紡糸口金22に導入される溶融樹脂を紡糸ノズルにより紡糸してフィラメントを生成する。また、紡出部12は、紡糸口金22が複数の紡糸ノズルを備えることで、CD方向に配列された複数のフィラメントを導出する。冷却部14は、紡糸された複数のフィラメントが導入される冷却室26を備え、冷却室26に冷却風供給ダクト28が接続されている。冷却部14は、冷却風供給ダクト28から供給されるエアを冷却風とし、冷却室26に導入された複数のフィラメントを冷却風により冷却する。 The spinning unit 12 includes a spinneret 22 in which a plurality of spinning nozzles are arranged, and a molten resin introduction tube 24 is connected to the spinneret 22. The spinning unit 12 generates a filament by spinning the molten resin introduced into the spinneret 22 through the molten resin introduction tube 24 using a spinning nozzle. Further, the spinning unit 12 derives a plurality of filaments arranged in the CD direction by the spinneret 22 having a plurality of spinning nozzles. The cooling unit 14 includes a cooling chamber 26 into which a plurality of spun filaments are introduced, and a cooling air supply duct 28 is connected to the cooling chamber 26. The cooling unit 14 uses the air supplied from the cooling air supply duct 28 as cooling air, and cools the plurality of filaments introduced into the cooling chamber 26 with the cooling air.
 延伸部16は、開口断面がCD方向(図1では、紙面表裏方向)に長くMD方向に短い挟幅とされて上下方向に延びる延伸シャフト30を備える。延伸部16は、延伸シャフト30が冷却室26に接続され、冷却室26から延伸シャフト30に複数のフィラメントが導入される。延伸部16は、複数のフィラメントと共に導入される冷却風或いは冷却風とは別に延伸シャフト30内に供給されるエアを延伸風とし、延伸風により冷却部14から導入されたフィラメントを延伸しながら導出する。 The extending section 16 includes an extending shaft 30 that has an opening cross section that is long in the CD direction (in FIG. 1, the front and back directions in the drawing) and short in the MD direction and extends in the vertical direction. In the stretching section 16, the stretching shaft 30 is connected to the cooling chamber 26, and a plurality of filaments are introduced from the cooling chamber 26 into the stretching shaft 30. The drawing unit 16 uses cooling air introduced together with a plurality of filaments or air supplied into the drawing shaft 30 separately from the cooling air as drawing air, and draws the filament introduced from the cooling unit 14 by drawing air. To do.
 捕集部18は、メッシュ或いはパンチングメタルなどにより形成された捕集媒体としての移動帯32、及び移動帯32の下方に設けられた図示しない吸引手段を備える。また、拡散部20は、延伸シャフト30から導入される延伸風或いは延伸風とは別に導入されるエアを捕集部18の移動帯32へ向けて噴出する。捕集部18は、噴出された複数のフィラメントを、吸引手段により吸引しながら移動帯32の捕集面32A上に捕集し、不織布となるウェブを生成する。なお、製造装置10の紡出部12、冷却部14、延伸部16、及び捕集部18は、溶融樹脂を紡糸することによる複数のフィラメントの生成、生成した複数のフィラメントの冷却延伸処理、及び複数のフィラメントの捕集を行う公知の構成を適用し得る。 The collecting unit 18 includes a moving band 32 as a collecting medium formed by mesh or punching metal, and suction means (not shown) provided below the moving band 32. In addition, the diffusing unit 20 ejects the drawing air introduced from the drawing shaft 30 or air introduced separately from the drawing wind toward the moving zone 32 of the collection unit 18. The collection unit 18 collects the plurality of ejected filaments on the collection surface 32A of the moving band 32 while sucking them by a suction unit, and generates a web that becomes a nonwoven fabric. In addition, the spinning unit 12, the cooling unit 14, the stretching unit 16, and the collecting unit 18 of the manufacturing apparatus 10 generate a plurality of filaments by spinning the molten resin, a cooling stretching process for the generated plurality of filaments, and A known configuration for collecting a plurality of filaments can be applied.
 図2には、本実施の形態に係る拡散部20の概略構成を示している。拡散部20は、主ノズルとしての噴出ノズル34を備える。噴出ノズル34は、噴出口となる開口部としての先端の開口34AがCD方向に長いスリット状に形成され捕集部18の移動帯32上に向けられている。また、噴出ノズル34は、延伸部16の延伸シャフト30に連続され、冷却延伸処理された複数のフィラメントが導入される。また、拡散部20は、噴出ノズル34に延伸風によるエア或いは延伸風のエアとは別にエアが導入される。 FIG. 2 shows a schematic configuration of the diffusion unit 20 according to the present embodiment. The diffusion unit 20 includes a jet nozzle 34 as a main nozzle. In the ejection nozzle 34, an opening 34A at the tip as an opening serving as an ejection outlet is formed in a slit shape that is long in the CD direction, and is directed onto the moving band 32 of the collection unit 18. Further, the ejection nozzle 34 is continued to the stretching shaft 30 of the stretching section 16 and a plurality of filaments that have been subjected to cooling and stretching processing are introduced. In addition, in the diffusing unit 20, air is introduced into the ejection nozzle 34 separately from the air by the stretched air or the air of the stretched wind.
 拡散部20は、噴出ノズル34に導入されるエア及び複数のフィラメントを、開口34Aから捕集部18の移動帯32上へ向けて噴出する。拡散部20は、噴出ノズル34から噴出されるエアの気流により、噴出ノズル34から噴出される複数のフィラメントを捕集部18へ向けて送る。以下、噴出ノズル34から複数のフィラメントと共に噴出されるエアにより生じる気流を搬送流という。 The diffusion unit 20 ejects air and a plurality of filaments introduced into the ejection nozzle 34 toward the moving band 32 of the collection unit 18 from the opening 34A. The diffusing unit 20 sends a plurality of filaments ejected from the ejection nozzle 34 toward the collection unit 18 by the air current ejected from the ejection nozzle 34. Hereinafter, the air flow generated by the air ejected from the ejection nozzle 34 together with the plurality of filaments is referred to as a transport flow.
 拡散部20には、噴出ノズル34と捕集部18の移動帯32の捕集面32Aとの間に、拡散空間36が設けられており、搬送流が拡散空間36内を移動帯32へ向けて流れる。拡散空間36は、噴出ノズル34から噴出されるエアによる搬送流の流れを規制する壁面等が設けられていない空間とされている。即ち、拡散空間36は、噴出ノズル34から噴出される搬送流が捕集部18以外の壁面などの構造物による影響を受けない空間となっている。この拡散空間は、隔壁が気流の流れに干渉しないように設けられていれば、隔壁により区画されていても良い。 The diffusion unit 20 is provided with a diffusion space 36 between the ejection nozzle 34 and the collection surface 32 </ b> A of the moving band 32 of the collecting unit 18, and the carrier flow is directed toward the moving band 32 in the diffusion space 36. Flowing. The diffusion space 36 is a space that is not provided with a wall surface or the like that restricts the flow of the carrier flow by the air ejected from the ejection nozzle 34. That is, the diffusion space 36 is a space in which the carrier flow ejected from the ejection nozzle 34 is not affected by a structure such as a wall surface other than the collection unit 18. The diffusion space may be partitioned by the partition wall as long as the partition wall is provided so as not to interfere with the airflow.
 これにより、拡散部20では、拡散空間36において、噴出ノズル34から噴出されるエアによる搬送流がMD方向及びMD方向とは反対方向へ徐々に(自然に)拡がりながら流れる。また、搬送流は、移動帯32へ近づくにしたがって流速が徐々に低下する。噴出ノズル34から噴出された複数のフィラメントは、拡散空間36内で搬送流が拡がることで、フィラメントがMD方向及びMD方向とは反対方向へ拡散される。これにより、製造装置10は、フィラメントが移動帯32の捕集面32A上の予め定められている捕集領域に拡散されて捕集される。 Thereby, in the diffusing section 20, the carrier flow by the air ejected from the ejection nozzle 34 flows in the diffusion space 36 while gradually (naturally) expanding in the MD direction and the direction opposite to the MD direction. Further, the flow velocity of the transport flow gradually decreases as it approaches the moving zone 32. The plurality of filaments ejected from the ejection nozzle 34 are diffused in the MD direction and in the direction opposite to the MD direction by the conveyance flow expanding in the diffusion space 36. As a result, in the manufacturing apparatus 10, the filament is diffused and collected in a predetermined collection region on the collection surface 32 </ b> A of the moving band 32.
 製造装置10は、生成する不織布、不織布の製造速度、フィラメントが捕集部18で捕集されて生成されるウェブのCD方向の幅などに応じて、噴出ノズル34の開口幅、開口長さ、移動帯32の移動速度、及び噴出ノズル34と移動帯32の捕集面32Aとの間隔等が定められている。拡散部20では、噴出ノズル34の先端と捕集部18の移動帯32の表面との間の間隔(高さH)が、0.1m以上、1m未満の間で定められており、間隔Hが拡散空間36の高さとなっている。 The manufacturing apparatus 10 generates the nonwoven fabric to be produced, the production speed of the nonwoven fabric, the width in the CD direction of the web produced by collecting the filaments in the collection unit 18, the opening width of the ejection nozzle 34, the opening length, The moving speed of the moving band 32 and the interval between the ejection nozzle 34 and the collecting surface 32A of the moving band 32 are determined. In the diffusing unit 20, the interval (height H) between the tip of the ejection nozzle 34 and the surface of the moving band 32 of the collecting unit 18 is set between 0.1 m and 1 m, and the interval H Is the height of the diffusion space 36.
 また、製造装置10は、噴出ノズル34から噴出するエアの流速或いは噴出するエアの単位時間当たりの風量が定められており、以下では、噴出ノズル34の開口におけるエアの流速を搬送流の流速Vmと表記する。拡散部20では、流速Vmに応じて拡散空間36内での搬送流の拡がりが変化し、流速Vmが高い場合は、低い場合より搬送流の拡がりが小さくなる。 Further, in the manufacturing apparatus 10, the flow velocity of the air ejected from the ejection nozzle 34 or the air volume per unit time of the ejected air is determined, and in the following, the air flow velocity at the opening of the ejection nozzle 34 is the flow velocity Vm of the carrier flow. Is written. In the diffusing section 20, the spread of the carrier flow in the diffusion space 36 changes according to the flow velocity Vm. When the flow velocity Vm is high, the spread of the carrier flow is smaller than when it is low.
 拡散部20は、拡散空間36が設けられることで噴出ノズル34から噴出される搬送流が、主にMD方向に沿って徐々に拡がりながら移動帯32上に達する。以下の説明では、拡散空間36内における搬送流の領域を搬送流域38という。図2では、搬送流域38を仮想的に示している。 The diffusion unit 20 is provided with the diffusion space 36 so that the carrier flow ejected from the ejection nozzle 34 reaches the moving band 32 while gradually spreading mainly along the MD direction. In the following description, the area of the conveyance flow in the diffusion space 36 is referred to as a conveyance flow area 38. In FIG. 2, the conveyance basin 38 is shown virtually.
 図1及び図2に示すように、拡散部20には、気流生成手段としての副ノズル40が設けられている。副ノズル40は、開口部としてCD方向に長いスリット状の開口40Aが設けられている。拡散部20は、噴出ノズル34のMD方向側及びMD方向とは反対側の各々に副ノズル40が配置され、副ノズル40の開口40Aが噴出ノズル34の開口34Aと並べられている。 As shown in FIGS. 1 and 2, the diffusing section 20 is provided with a sub nozzle 40 as an airflow generating means. The sub-nozzle 40 is provided with a slit-like opening 40A that is long in the CD direction as an opening. In the diffusing section 20, the sub nozzle 40 is disposed on each of the ejection nozzle 34 on the MD direction side and the opposite side to the MD direction, and the opening 40 </ b> A of the sub nozzle 40 is aligned with the opening 34 </ b> A of the ejection nozzle 34.
 副ノズル40には、空気供給管42が接続されており、空気供給管42を介して供給されるエアを開口40Aから噴出する。拡散部20は、副ノズル40から噴出されるエアによる気流が噴出ノズル34から噴出される搬送流の流速Vmに応じて定められた流速Vsとなるように空気供給管42を介して副ノズル40に供給するエアが制御されている。拡散部20では、エアの噴出方向が噴出ノズル34からエアの噴出方向と略平行となるように副ノズル40が設けられている。ここで、流速Vsは、流速Vm以下であることが好ましく(Vs≦Vm)、流速Vmの1/10以上であることがより好ましい(Vs≧(Vm/10)。ここから、拡散部20は、流速Vsを流速Vmの1/2(Vs=Vm/2)となるように副ノズル40へのエアの供給が制御されている。 The air supply pipe 42 is connected to the sub nozzle 40, and the air supplied through the air supply pipe 42 is ejected from the opening 40A. The diffusing unit 20 is connected to the sub nozzle 40 via the air supply pipe 42 so that the air flow from the sub nozzle 40 becomes a flow velocity Vs determined according to the flow velocity Vm of the carrier flow ejected from the ejection nozzle 34. The air supplied to is controlled. In the diffusing unit 20, the sub nozzle 40 is provided so that the air ejection direction is substantially parallel to the air ejection direction from the ejection nozzle 34. Here, the flow velocity Vs is preferably equal to or less than the flow velocity Vm (Vs ≦ Vm), and more preferably equal to or greater than 1/10 of the flow velocity Vm (Vs ≧ (Vm / 10)). The supply of air to the sub nozzle 40 is controlled so that the flow velocity Vs becomes 1/2 of the flow velocity Vm (Vs = Vm / 2).
 なお、本実施の形態では、噴出ノズル34の開口34Aと副ノズル40の開口40Aとを並べて配置しているが、これに限らず、噴出ノズル34の開口34A及び副ノズル40の開口40Aの一方が他方より移動帯32の捕集面32Aから離れるように段差を持って配置されても良い。 In this embodiment, the opening 34A of the ejection nozzle 34 and the opening 40A of the sub nozzle 40 are arranged side by side. However, the present invention is not limited to this, and one of the opening 34A of the ejection nozzle 34 and the opening 40A of the sub nozzle 40 is arranged. May be arranged with a step so as to be farther from the collection surface 32A of the moving band 32 than the other.
 これにより、図2に示すように、拡散部20では、副ノズル40から噴出するエアにより拡散空間36内の搬送流(搬送流域38)の周囲に搬送流に近接して沿う気流が生じるようにしている。なお、図2では、副ノズル40から噴出するエアによって生じる気流を気流層44として仮想的に示している。 As a result, as shown in FIG. 2, in the diffusing section 20, an air stream that is close to the transport flow is generated around the transport flow (transport flow area 38) in the diffusion space 36 by the air ejected from the sub nozzle 40. ing. In FIG. 2, the airflow generated by the air ejected from the sub nozzle 40 is virtually shown as an airflow layer 44.
 このように構成されている製造装置10は、溶融樹脂から紡糸され冷却処理及び延伸処理された複数のフィラメントが拡散部20の噴出ノズル34に導入される。また、噴出ノズル34には、搬送流を生成するためのエア(延伸風のエア或いは延伸風とは別に供給されるエア)が導入される。 In the manufacturing apparatus 10 configured as described above, a plurality of filaments spun from a molten resin and subjected to cooling processing and stretching processing are introduced into the ejection nozzle 34 of the diffusion unit 20. The ejection nozzle 34 is introduced with air for generating a transport flow (stretching air or air supplied separately from the stretching air).
 拡散部20には、噴出ノズル34と捕集部18の移動帯32との間に拡散空間36が設けられており、噴出ノズル34に導入されたエア及び複数のフィラメントが、噴出ノズル34の開口34Aから拡散空間36へ向けて噴出される。これにより、複数のフィラメントは、噴出ノズル34から噴出されるエアによる搬送流により拡散されながら捕集部18の移動帯32上へ吹き付けられて捕集面32Aに捕集される。 In the diffusing unit 20, a diffusion space 36 is provided between the ejection nozzle 34 and the moving band 32 of the collection unit 18, and air and a plurality of filaments introduced into the ejection nozzle 34 are opened in the ejection nozzle 34. It is ejected from 34A toward the diffusion space 36. As a result, the plurality of filaments are sprayed onto the moving surface 32 of the collection unit 18 and collected on the collection surface 32 </ b> A while being diffused by the carrier flow by the air ejected from the ejection nozzle 34.
 ところで、拡散部20には、噴出ノズル34と共に副ノズル40が設けられており、副ノズル40が空気供給管42を介して供給されるエアを拡散空間36へ噴出する。これにより、拡散空間36内には、搬送流の周囲に搬送流に近接して沿う気流が生じ、拡散空間36内の空気が搬送流内(搬送流域38内)に入り込むのが抑制される。 Incidentally, the diffusing section 20 is provided with a sub nozzle 40 together with the ejection nozzle 34, and the sub nozzle 40 ejects air supplied via the air supply pipe 42 to the diffusion space 36. As a result, in the diffusion space 36, an airflow is generated around the conveyance flow and close to the conveyance flow, and the air in the diffusion space 36 is suppressed from entering the conveyance flow (in the conveyance flow area 38).
 搬送流によって拡散空間36内を搬送される複数のフィラメントは、搬送流の内部で流速の変動が生じるが、流速変動が周囲より大きい領域においては、流速変動が大きければ大きいのどフィラメントの絡まりが多くなる。これにより、フィラメントが捕集されて生成されたウェブから得られる不織布は、引張強度が高くなる。しかし、捕集されたウェブにおいて、フィラメントの絡まりが多くなると、不織布の均一性が低下する。 The plurality of filaments transported in the diffusion space 36 by the transport flow cause fluctuations in the flow velocity inside the transport flow, but in regions where the flow velocity fluctuation is larger than the surroundings, the larger the flow velocity fluctuation, the greater the entanglement of the filament. Become. Thereby, the nonwoven fabric obtained from the web produced by collecting the filaments has high tensile strength. However, in the collected web, when the entanglement of filaments increases, the uniformity of the nonwoven fabric decreases.
 これに対して、副ノズル40が設けられた拡散部20は、副ノズル40から噴出するエアにより搬送流の周囲に該搬送流に近接して沿う空気流が形成され、搬送流の内部で生じる流速変動の大きな領域において、流速変動の大きさが抑えられる。これにより、捕集部18において捕集されたウェブでは、フィラメントの絡まりが多くなるのが抑制され、均一性の向上が図られた不織布が得られる。 On the other hand, in the diffusing unit 20 provided with the sub nozzle 40, an air flow that is close to the transport flow is formed around the transport flow by the air ejected from the sub nozzle 40, and is generated inside the transport flow. In a region where the flow velocity fluctuation is large, the magnitude of the flow velocity fluctuation is suppressed. Thereby, in the web collected in the collection part 18, it is suppressed that the tangle of a filament increases, and the nonwoven fabric by which the improvement of the uniformity was achieved is obtained.
 ここで、図3A及び図3Bには、拡散空間36内における気流の流速変動(速度変動)のシミュレーション結果を流速変動の分布によって示している。図3Aは、噴出ノズル34及び副ノズル40を設けた本実施の形態(下記、実施例1)の拡散部20に対応し、図3Bは、対比例(下記、比較例1)とする副ノズル40を設けずに噴出ノズル34のみとした拡散部20Aを示す。 Here, in FIG. 3A and FIG. 3B, the simulation result of the flow velocity fluctuation (speed fluctuation) of the air flow in the diffusion space 36 is shown by the distribution of the flow velocity fluctuation. FIG. 3A corresponds to the diffusing section 20 of the present embodiment (below, Example 1) provided with the ejection nozzle 34 and the sub nozzle 40, and FIG. 3B is a sub nozzle that is proportional (below, Comparative Example 1). A diffusing portion 20A in which only the ejection nozzle 34 is provided without providing 40 is shown.
 流速変動のシミュレーションにおいて、拡散部20、20Aは、噴出ノズル34から噴出するエアの流速を同一の流速Vmとし、また、拡散部20は、副ノズル40から噴出するエアの流速Vsを流速Vmの1/2(Vs=Vm/2)とし、噴出ノズル34からのエアの噴出方向と平行にエアを噴出するように設定している。また、流速変動は、予め設定したサンプリング時間ごとの流速からサンプリング時間毎の流速の速度差を求め、求めた速度差の二乗平均平方根(root mean square:RMS)を用いている。 In the simulation of the flow velocity fluctuation, the diffusing sections 20 and 20A set the flow velocity of air ejected from the ejection nozzle 34 to the same flow velocity Vm, and the diffusing section 20 sets the flow velocity Vs of air ejected from the sub nozzle 40 to the flow velocity Vm. It is set to 1/2 (Vs = Vm / 2), and the air is jetted in parallel with the jet direction of the air from the jet nozzle 34. In addition, the flow rate fluctuation is obtained by calculating the speed difference of the flow rate for each sampling time from the flow rate for each sampling time set in advance, and using the root mean square (RMS) of the obtained speed difference.
 図3Bに示す対比例の拡散部20Aでは、噴出ノズル34から噴出される気流の内部に流速変動が周囲に比べて極めて大きい領域が生じている。このような流速変動が極めて大きい領域が生じることで、不織布は、引張強度が向上されるが、フィラメントにより形成されるメッシュ目の均一性が低くなる。 In the comparative diffusion unit 20A shown in FIG. 3B, a region in which the flow velocity fluctuation is extremely large as compared with the surroundings is generated inside the airflow ejected from the ejection nozzle 34. By producing such a region where the flow rate fluctuation is extremely large, the nonwoven fabric is improved in tensile strength, but the uniformity of the mesh formed by the filament is lowered.
 これに対し、図3Aに示す実施例1の拡散部20では、拡散部20Aと比較して噴出ノズル34から噴出される気流の内部の流速変動の大きい領域において流速変動の大きさが抑えられている。これにより、拡散部20は、捕集部18に捕集されるウェブにおけるフィラメントの絡まりが拡散部20Aより抑えられる。 On the other hand, in the diffusing unit 20 of the first embodiment shown in FIG. 3A, the magnitude of the flow velocity fluctuation is suppressed in a region where the flow velocity fluctuation inside the air flow ejected from the ejection nozzle 34 is larger than that of the diffusing section 20A. Yes. Thereby, as for the diffusion part 20, the tangle of the filament in the web collected by the collection part 18 is suppressed from the diffusion part 20A.
 従って、拡散部20の副ノズル40が設けられた製造装置10は、副ノズル40が設けられていいない場合よりも均一性が向上された不織布が得られる。また、本実施例の拡散部20では、搬送流内に周囲より流速変動の大きい領域が残っていることで、不織布の引張強度の低下が抑制されている。 Therefore, the manufacturing apparatus 10 provided with the sub nozzle 40 of the diffusion unit 20 can obtain a non-woven fabric with improved uniformity as compared with the case where the sub nozzle 40 is not provided. Moreover, in the spreading | diffusion part 20 of a present Example, the fall of the tensile strength of a nonwoven fabric is suppressed because the area | region where a flow velocity fluctuation | variation is larger than the periphery remains in a conveyance flow.
 なお、以上説明した本実施の形態では、噴出ノズル34の流速Vmに対して、副ノズル40の流速Vsを1/2としたが、これに限るものではない。副ノズル40の流速Vsは、噴出ノズル34の流速Vm以下であれば良く、これにより、拡散空間36内での搬送流の拡がりを抑制することなく、搬送流内の流速変動を抑制することができる。 In the present embodiment described above, the flow velocity Vs of the sub nozzle 40 is halved with respect to the flow velocity Vm of the ejection nozzle 34. However, the present invention is not limited to this. The flow velocity Vs of the sub-nozzle 40 only needs to be equal to or less than the flow velocity Vm of the ejection nozzle 34, thereby suppressing the flow velocity fluctuation in the conveyance flow without suppressing the spread of the conveyance flow in the diffusion space 36. it can.
 また、副ノズル40の流速Vsは、噴出ノズル34の流速Vmより大きくても良い(Vs>Vm)。この場合、副ノズル40からのエアの噴出方向を、噴出ノズル34からのエアの噴出方向と略平行となるようにすると、副ノズル40から噴出するエアが、拡散空間36内における搬送流の拡がりを規制してしまう可能性がある。ここから、副ノズル40の流速Vsを噴出ノズル34の流速Vmより大きくする場合(Vs>Vm)、副ノズル40は、開口40Aの向き又はエアの噴出方向が、噴出ノズル34から噴出されるエアによる搬送流の周囲において搬送流に沿う方向、即ち、搬送流の流れに接して流れる方向となるようにすれば良い。 Further, the flow velocity Vs of the sub nozzle 40 may be larger than the flow velocity Vm of the ejection nozzle 34 (Vs> Vm). In this case, when the direction in which the air is ejected from the sub nozzle 40 is substantially parallel to the direction in which the air is ejected from the ejection nozzle 34, the air ejected from the sub nozzle 40 spreads the transport flow in the diffusion space 36. May be regulated. From this point, when the flow velocity Vs of the sub nozzle 40 is made larger than the flow velocity Vm of the ejection nozzle 34 (Vs> Vm), the sub nozzle 40 has air that is ejected from the ejection nozzle 34 in the direction of the opening 40A or the air ejection direction. In the vicinity of the carrier flow, the direction along the carrier flow, that is, the direction of flowing in contact with the carrier flow may be used.
 また、本実施の形態では、噴出ノズル34に対して副ノズル40をMD方向側及びMD方向とは反対方向側に設けたが、副ノズル40は、噴出ノズル34に対して副ノズル40をMD方向側又はMD方向とは反対方向側に設けても良い。即ち、副ノズル40は、噴出ノズル34に対して副ノズル40をMD方向側及びMD方向とは反対方向側の少なくとも一方に設けたものであれば良い。 Further, in the present embodiment, the sub nozzle 40 is provided on the MD direction side and the direction opposite to the MD direction with respect to the ejection nozzle 34, but the sub nozzle 40 places the sub nozzle 40 on the MD side relative to the ejection nozzle 34. You may provide in the direction side opposite to a direction side or MD direction. In other words, the sub nozzle 40 only needs to be provided with the sub nozzle 40 on at least one of the MD direction side and the direction opposite to the MD direction with respect to the ejection nozzle 34.
 さらに、本実施の形態では、気流生成手段として副ノズル40を設けたが、気流生成手段は、副ノズル40に限らず、搬送流の周囲において搬送流に近接して沿う気流の流れを生じさせるものであれば良い。 Further, in the present embodiment, the sub nozzle 40 is provided as the air flow generation means. However, the air flow generation means is not limited to the sub nozzle 40, and generates an air flow that is close to the transport flow around the transport flow. Anything is fine.
 以下、実施例により本発明を更に具体的に説明する。本発明は、これらの実施例に限定されるものではない。
 本実施の形態(以下、実施例1という)及び本実施の形態に対する対比例(以下、比較例1という)における物性は、以下の方法により測定した。
Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
The physical properties in the present embodiment (hereinafter referred to as Example 1) and the proportionality to the present embodiment (hereinafter referred to as Comparative Example 1) were measured by the following methods.
 (1.目付〔g/m〕)
 不織布から100mm(MD)×100mm(CD)の試験片を5点採取した。なお、試験片の採取場所(採取位置)は任意の5箇所としている。
 次いで、採取した各試験片に対して上皿電子天秤(研精工業社製)を用いて、各試験片の質量を測定し、各試験片の質量の平均値を求めた。求めた平均値から1m当たりの質量〔g〕に換算し、小数点以下第2位(小数第2位)を四捨五入して各試験片サンプルの目付〔g/m〕とした。
(1. basis weight [g / m 2 ])
Five test pieces of 100 mm (MD) × 100 mm (CD) were collected from the nonwoven fabric. In addition, the sampling place (sampling position) of the test piece is arbitrarily set at five places.
Subsequently, the mass of each test piece was measured with respect to each collected test piece using an upper plate electronic balance (manufactured by Kensei Kogyo Co., Ltd.), and the average value of the mass of each test piece was determined. Calculated from the mean values obtained in the mass [g] per 1 m 2, and a second decimal point basis weight of each specimen sample was rounded to 2 decimal places [g / m 2].
 (2.目付バラツキ〔%〕)
 不織布から50mm(MD)×50mm(CD)の試験片を100点採取した。なお、採取場所は、不織布の幅方向(CD)に10箇所を、流れ方向(MD)に10回とした。
 次いで、採取した各試験片に対して上皿電子天秤(研精工業社製)を用いて、それぞれの質量〔g〕を測定し、各試験片の質量の平均値及び標準偏差を求めた。標準偏差を平均値で除した値を各不織布サンプルの目付バラツキ〔%〕とした。
(2. Weight variation per unit [%])
100 test pieces of 50 mm (MD) × 50 mm (CD) were collected from the nonwoven fabric. In addition, the sampling place was 10 places in the width direction (CD) of the nonwoven fabric, and 10 times in the flow direction (MD).
Next, each mass [g] was measured for each collected test piece using an upper plate electronic balance (manufactured by Kensei Kogyo Co., Ltd.), and the average value and standard deviation of the mass of each test piece were obtained. The value obtained by dividing the standard deviation by the average value was defined as the basis weight variation [%] of each nonwoven fabric sample.
 (3.繊維径〔μm〕)
 不織布から10mm(MD)×10mm(CD)の試験片を5点採取した。なお、採取場所は、任意の1箇所とした。
 次いで、試験片を光学顕微鏡を用いて、倍率200倍で撮影し、撮影画像を画像寸法計測ソフトウェア(イノテック社製:Pixs2000 Version2.0)により解析した。各試験片について10本の繊維径を測定し、各試験片の繊維径ン平均値を求め、小数点以下第2位を四捨五入して各不織布サンプルの繊維径〔μm〕とした。
(3. Fiber diameter [μm])
Five test pieces of 10 mm (MD) × 10 mm (CD) were collected from the nonwoven fabric. In addition, the collection place was one arbitrary place.
Next, the test piece was photographed at a magnification of 200 times using an optical microscope, and the photographed image was analyzed with image dimension measurement software (Innotech Co., Ltd .: Pixes2000 Version 2.0). Ten fiber diameters were measured for each test piece, the fiber diameter average value of each test piece was determined, and the second decimal place was rounded off to obtain the fiber diameter [μm] of each nonwoven fabric sample.
 (4.不織布の糸束〔点〕)
 不織布から250mm(MD)×200mm(CD)の試験片を1点採取した。なお、採取場所は、任意の1箇所とした。
 次いで、不織布を目視確認し、2本以上の繊維が束状に絡まっている箇所(糸束)の数をカウントし、下記基準で評価した。
A:糸束が0箇所
B:糸束が1箇所以上20箇所未満
C:糸束が20箇所以上
(4. Nonwoven yarn bundles [points])
One test piece of 250 mm (MD) × 200 mm (CD) was collected from the nonwoven fabric. In addition, the collection place was one arbitrary place.
Next, the nonwoven fabric was visually confirmed, and the number of locations (yarn bundles) where two or more fibers were entangled in a bundle was counted and evaluated according to the following criteria.
A: 0 yarn bundle B: 1 or more and less than 20 yarn bundles C: 20 or more yarn bundles
 (5.MD5%強度及びMD強度〔N/25mm〕)
 不織布から25mm(CD)×200(MD)のMD試験片を各5点採取した。なお、採取場所は、任意の5箇所とした。
 次いで、採取した各試験片を、万能引張試験機(インテスコ社製、IM-201型)を用いて、チャック間100mm、引張速度100mm/minの条件にて引っ張って伸長し、チャック間が105mmとなった時点での荷重〔N〕、及び最大荷重〔N〕を測定した。各試験片のそれぞれの平均値を求め、小数点以下第2位を四捨五入して各不織布サンプルのMD5%強度〔N/25mm〕及びMD強度〔N/25mm〕とした。MD5%強度は、機械方向に5%伸長時の強度に対応し、MD強度は、機械方向に伸長時の最大強度に対応する。
(5. MD5% strength and MD strength [N / 25mm])
Five MD test pieces of 25 mm (CD) × 200 (MD) were collected from the nonwoven fabric. In addition, sampling places were arbitrary five places.
Next, each collected specimen was stretched by using a universal tensile testing machine (IM-201, manufactured by Intesco) under the conditions of a chuck distance of 100 mm and a tension speed of 100 mm / min. At that time, the load [N] and the maximum load [N] were measured. The average value of each test piece was obtained, and the second decimal place was rounded off to obtain the MD 5% strength [N / 25 mm] and MD strength [N / 25 mm] of each nonwoven fabric sample. The MD 5% strength corresponds to the strength when stretched 5% in the machine direction, and the MD strength corresponds to the maximum strength when stretched in the machine direction.
 (6.CD5%強度及びCD強度〔N/25mm〕)
 不織布から25mm(MD)×200mm(CD)のCD試験片を各5点採取した。なお、採取場所は、任意の5箇所とした。
 次いで、採取した各試験片を、万能引張試験機(インテスコ社製、IM-201型)を用いて、チャック間100mm、引張速度100mm/minの条件にて引っ張って伸長し、チャック間が105mmとなった時点での荷重〔N〕、及び最大荷重〔N〕を測定した。各試験片のそれぞれの平均値を求め、小数点以下第2位を四捨五入して各不織布サンプルのCD5%強度〔N/25mm〕及びCD強度〔N/25mm〕とした。CD5%強度は、機械方向と垂直な方向に5%伸長時の強度に対応し、CD強度は、機械方向と垂直な方向に伸長時の最大強度に対応する。
(6. CD 5% strength and CD strength [N / 25mm])
Five pieces of 25 mm (MD) × 200 mm (CD) CD test pieces were collected from the nonwoven fabric. In addition, sampling places were arbitrary five places.
Next, each collected specimen was stretched by using a universal tensile testing machine (IM-201, manufactured by Intesco) under the conditions of a chuck distance of 100 mm and a tension speed of 100 mm / min. At that time, the load [N] and the maximum load [N] were measured. The average value of each test piece was obtained, and the second decimal place was rounded off to obtain the CD 5% strength [N / 25 mm] and CD strength [N / 25 mm] of each nonwoven fabric sample. The CD 5% strength corresponds to the strength when stretched 5% in the direction perpendicular to the machine direction, and the CD strength corresponds to the maximum strength when stretched in the direction perpendicular to the machine direction.
 (実施例1)
 第1のプロピレン重合体としては、融点162°C、MFR(ASTM D1238に準拠し、温度230°C、荷重2.16kgで測定、以下同様)60g/10分のプロピレン単独重合体を用いた。第2のプロピレン系重合体としては、融点142°C、MFR60g/10分、エチレン単位成分含量4.0モル%のプロピレン・エチレンランダム共重合体を用いた。第1のプロピレン重合体と第2のプロピレン系重合体とを用いて、スパンボンド法により複合溶融紡糸を行い、芯部がプロピレン単独重合体であり、鞘部がプロピレン・エチレンランダム共重合体(芯部/鞘部=20/80(重量比))である偏芯の芯鞘型複合長繊維を繊維(フィラメント)として得た。
Example 1
As the first propylene polymer, a propylene homopolymer having a melting point of 162 ° C and MFR (measured at a temperature of 230 ° C and a load of 2.16 kg in accordance with ASTM D1238, the same applies hereinafter) 60 g / 10 min was used. As the second propylene polymer, a propylene / ethylene random copolymer having a melting point of 142 ° C., an MFR of 60 g / 10 min, and an ethylene unit component content of 4.0 mol% was used. Using the first propylene polymer and the second propylene polymer, composite melt spinning is performed by a spunbond method, the core is a propylene homopolymer, and the sheath is a propylene / ethylene random copolymer ( An eccentric core-sheath type composite continuous fiber having a core part / sheath part = 20/80 (weight ratio) was obtained as a fiber (filament).
 得られた繊維を図1に示す主ノズル(噴出ノズル34)から分散させ、捕集媒体(移動帯32)上に体積した。なお、このとき、噴出ノズル34(主ノズル)から噴出するエアの速度は、107.3m/secであり、噴出ノズル34の噴出口(開口34A)から水平方向に38mm離した位置に設けた副ノズル40(噴出幅12mm)から噴出するエアを、噴出ノズル34から噴出するエアの速度に対して1/4(26.8m/sec)とした。 The obtained fiber was dispersed from the main nozzle (ejection nozzle 34) shown in FIG. 1 and then volume on the collection medium (moving zone 32). At this time, the speed of the air ejected from the ejection nozzle 34 (main nozzle) is 107.3 m / sec, and the auxiliary speed provided at a position 38 mm away from the ejection outlet (opening 34A) of the ejection nozzle 34 in the horizontal direction. The air ejected from the nozzle 40 (ejection width 12 mm) was set to 1/4 (26.8 m / sec) with respect to the speed of the air ejected from the ejection nozzle 34.
 その後、捕集媒体から剥離させ、エンボスパターンが面積率6.7%、エンボス面積0.19mであり、加熱温度130°C、線圧60kg/cmの条件の加熱エンボスにて熱接着し、スパンボンド不織布を得た。得られたスパンボンド不織布の目付は20.0g/mであった。得られたスパンボンド不織布を上記記載の方法で評価した。評価結果を図4に示す。 Thereafter, the embossed pattern is peeled from the collection medium, the embossed pattern has an area ratio of 6.7%, the embossed area is 0.19 m 2 , and is thermally bonded by heating embossing under conditions of a heating temperature of 130 ° C. and a linear pressure of 60 kg / cm, A spunbond nonwoven fabric was obtained. The basis weight of the obtained spunbonded nonwoven fabric was 20.0 g / m 2 . The obtained spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in FIG.
 (比較例1)
 副ノズル40から噴出するエアを0(速度0m/sec)とした以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の目付は20.2g/mであった。得られたスパンボンド不織布を上記記載の方法で評価した。評価結果を図4に示す。
(Comparative Example 1)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the air ejected from the sub nozzle 40 was changed to 0 (speed 0 m / sec). Basis weight of the resulting spunbonded nonwoven fabric was 20.2 g / m 2. The obtained spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in FIG.
 ここで、目付バラツキは、比較例1が3.5〔%〕であったのに対し、実施例1が2.0〔%〕であった。また、不織布中の糸束〔点〕の評価は、実施例1が評価Bであったのに対し、比較例1が評価Cとなっていた。このとき、MD5%強度は、実施例1が4.3〔N/25mm〕、比較例1が5.2〔N/25mm〕であり、CD5%強度は、実施例1が2.7〔N/25mm〕、比較例1が1.2〔N/25mm〕であった。また、MD5%強度/CD5%強度は、実施例1が1.6であったのに対し、比較例1が4.3であった。ここから、比較例1と比較して実施例1は、強度低下が抑制されかつ均一性が向上されていることがわかる。 Here, the variation in basis weight was 3.5 [%] in Comparative Example 1, while 2.0 [%] in Example 1. In addition, the evaluation of the yarn bundle [point] in the non-woven fabric was Evaluation B for Comparative Example 1 while Example 1 was Evaluation B. At this time, the MD5% strength is 4.3 [N / 25 mm] in Example 1 and 5.2 [N / 25 mm] in Comparative Example 1, and the CD5% strength is 2.7 [N] in Example 1. / 25 mm] and Comparative Example 1 were 1.2 [N / 25 mm]. In addition, the MD5% strength / CD5% strength was 1.6 in Example 1 and 4.3 in Comparative Example 1. From this, it can be seen that compared to Comparative Example 1, Example 1 has reduced strength reduction and improved uniformity.
 従って、本実施の形態に係る不織布の製造装置及び製造方法は、強度低下が抑制されかつ均一性が向上された不織布を製造するのに好適である。また、本実施の形態に係る不織布の製造装置及び製造方法は、機械方向と垂直な方向(CD方向)に5%伸長時の強度(CD5%強度)に対する機械方向(MD方向)に5%伸長時の強度(MD5%強度)の比(MD5%強度/CD5%強度)が2.0以下である不織布の製造に好適である。 Therefore, the nonwoven fabric manufacturing apparatus and manufacturing method according to the present embodiment are suitable for manufacturing a nonwoven fabric in which strength reduction is suppressed and uniformity is improved. In addition, the nonwoven fabric manufacturing apparatus and method according to the present embodiment is stretched 5% in the machine direction (MD direction) relative to the strength (CD 5% strength) when stretched 5% in the direction perpendicular to the machine direction (CD direction). It is suitable for the manufacture of a nonwoven fabric having a ratio of strength (MD5% strength) (MD5% strength / CD5% strength) of 2.0 or less.
 さらに、本実施の形態における不織布の製造装置及び製造方法は、目付バラツキが好ましくは3.0〔%〕以下、より好ましくは2.5〔%〕以下の不織布の製造に好適である。
 また、本実施の形態における不織布の製造装置及び製造方法は、機械方向に伸長時の最大強度(MD強度)が37.5〔N/25mm〕以上、より好ましく、さらに好ましくは40.0〔N/25mm〕、最も好ましくは42.5〔N/25mm〕である不織布の製造に好適である。
Furthermore, the nonwoven fabric manufacturing apparatus and manufacturing method in the present embodiment is suitable for manufacturing a nonwoven fabric having a basis weight variation of preferably 3.0 [%] or less, more preferably 2.5 [%] or less.
Further, in the nonwoven fabric manufacturing apparatus and manufacturing method in the present embodiment, the maximum strength (MD strength) when stretched in the machine direction is more preferably 37.5 [N / 25 mm] or more, and further preferably 40.0 [N / 25 mm], most preferably 42.5 [N / 25 mm].
 日本国特許出願2016-020144号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2016-020144 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (13)

  1.  捕集媒体へ向けて噴出されるフィラメントを前記捕集媒体上に捕集する捕集部と、
     前記捕集媒体に捕集される前記フィラメントと共に供給されるエアを前記捕集媒体へ向けて噴出する主ノズル、及び前記主ノズルと前記捕集媒体との間に設けられ、前記フィラメントと共に前記主ノズルから噴出されるエアが拡散しながら流れる気流により前記フィラメントが拡散される拡散空間を含む拡散部と、
     前記主ノズルから前記拡散空間に噴出された前記エアの気流の周囲において該気流に近接して沿う気流を生じさせる気流生成手段と、
     を含む不織布の製造装置。
    A collection unit for collecting the filament ejected toward the collection medium on the collection medium;
    A main nozzle that blows air supplied together with the filament collected by the collection medium toward the collection medium, and the main nozzle and the collection medium; A diffusion portion including a diffusion space in which the filament is diffused by an airflow flowing while air ejected from the nozzle diffuses;
    An airflow generating means for generating an airflow in close proximity to the airflow around the airflow of the air ejected from the main nozzle into the diffusion space;
    Manufacturing apparatus for nonwoven fabrics.
  2.  前記気流生成手段は、エアを前記拡散空間へ噴出する副ノズルを含む請求項1記載の不織布の製造装置。 The non-woven fabric manufacturing apparatus according to claim 1, wherein the airflow generation means includes a sub-nozzle that ejects air into the diffusion space.
  3.  前記気流生成手段は、前記主ノズルの開口部と並んで開口部が配置されエアを前記拡散空間へ噴出する副ノズルを含む請求項1又は請求項2記載の不織布の製造装置。 The non-woven fabric manufacturing apparatus according to claim 1 or 2, wherein the airflow generation means includes a sub nozzle that has an opening arranged in parallel with the opening of the main nozzle and jets air into the diffusion space.
  4.  前記副ノズルが前記主ノズルの機械方向側及び機械方向とは反対側に設けられている請求項2又は請求項3記載の不織布の製造装置。 The non-woven fabric manufacturing apparatus according to claim 2 or 3, wherein the sub nozzle is provided on the machine direction side and the machine direction side of the main nozzle.
  5.  前記副ノズルから噴出されるエアの流速が前記主ノズルから噴出されるエアの流速以下である請求項2から請求項4の何れか1項記載の不織布の製造装置。 The apparatus for producing a nonwoven fabric according to any one of claims 2 to 4, wherein a flow velocity of air ejected from the sub nozzle is equal to or less than a flow velocity of air ejected from the main nozzle.
  6.  前記副ノズルから噴出されるエアの流速が前記主ノズルから噴出されるエアの流速の1/10以上である請求項5記載の不織布の製造装置。 The apparatus for producing a nonwoven fabric according to claim 5, wherein a flow velocity of air ejected from the sub nozzle is 1/10 or more of a flow velocity of air ejected from the main nozzle.
  7.  フィラメントと共にエアが噴出される主ノズルと前記主ノズルから噴出されたフィラメントを捕集する捕集媒体との間に、前記フィラメントと共に前記主ノズルから噴出されるエアが拡散しながら流れる気流により前記フィラメントが拡散される拡散空間を設け、
     気流生成手段により前記主ノズルから前記拡散空間に噴出された前記エアの気流の周囲において該気流に近接して沿う気流を生じさせながら、
     前記主ノズルからエアと共に前記フィラメントを前記捕集媒体へ向けて噴出させて、
     前記拡散空間で拡散された前記フィラメントを前記捕集媒体上に捕集堆積する、
     ことを含む不織布の製造方法。
    The filament is flown between the main nozzle from which air is ejected together with the filament and the collection medium for collecting the filament ejected from the main nozzle while the air ejected from the main nozzle is diffused together with the filament. Providing a diffusion space where
    While generating an air flow in close proximity to the air flow around the air flow of the air ejected from the main nozzle to the diffusion space by the air flow generating means,
    The filament is ejected together with air from the main nozzle toward the collection medium,
    Collecting and depositing the filaments diffused in the diffusion space on the collection medium;
    The manufacturing method of the nonwoven fabric including this.
  8.  前記主ノズルの開口部と並んで開口部が配置された副ノズルからエアを前記拡散空間へ噴出して、前記主ノズルから前記拡散空間に噴出された前記エアの気流の周囲において該気流に近接して沿う気流を生じさせすることを含む請求項7記載の不織布の製造方法。 Air is spouted from the sub nozzle in which the opening is arranged alongside the opening of the main nozzle to the diffusion space, and close to the air flow around the air flow of air from the main nozzle to the diffusion space The manufacturing method of the nonwoven fabric of Claim 7 including producing the airflow which goes along.
  9.  前記副ノズルを前記主ノズルの機械方向側及び機械方向とは反対側に設けている請求項8記載の不織布の製造方法。 The method for producing a nonwoven fabric according to claim 8, wherein the sub nozzle is provided on the machine direction side and the machine direction side of the main nozzle.
  10.  前記副ノズルから噴出されるエアの流速を前記主ノズルから噴出されるエアの流速以下としている請求項8又は請求項9記載の不織布の製造方法。 The method for producing a nonwoven fabric according to claim 8 or 9, wherein a flow velocity of air ejected from the sub nozzle is set to be equal to or lower than a flow velocity of air ejected from the main nozzle.
  11.  前記副ノズルから噴出されるエアの流速を前記主ノズルから噴出されるエアの流速の1/10以上としている請求項10記載の不織布の製造方法。 The method for producing a nonwoven fabric according to claim 10, wherein the flow velocity of air ejected from the sub nozzle is set to 1/10 or more of the flow velocity of air ejected from the main nozzle.
  12.  機械方向に5%伸長時の強度と機械方向と垂直な方向に5%伸長時の強度との比が2.0以下である不織布。 A nonwoven fabric in which the ratio of the strength at 5% elongation in the machine direction to the strength at 5% elongation in the direction perpendicular to the machine direction is 2.0 or less.
  13.  機械方向に伸長時の最大強度が35.0(N/25mm)以上である請求項12記載の不織布。 The nonwoven fabric according to claim 12, wherein the maximum strength when stretched in the machine direction is 35.0 (N / 25mm) or more.
PCT/JP2017/012062 2016-03-30 2017-03-24 Non-woven fabric manufacturing device, non-woven fabric manufacturing method, and non-woven fabric WO2017170241A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201780021229.5A CN108884618B (en) 2016-03-30 2017-03-24 Apparatus for producing nonwoven fabric, method for producing nonwoven fabric, and nonwoven fabric
EP17774778.9A EP3438339B1 (en) 2016-03-30 2017-03-24 Non-woven fabric manufacturing device, non-woven fabric manufacturing method, and non-woven fabric
US16/089,266 US20190106821A1 (en) 2016-03-30 2017-03-24 Apparatus for manufacturing non-woven fabric, method of manufacturing non-woven fabric, and non-woven fabric
MYPI2018703555A MY194230A (en) 2016-03-30 2017-03-24 Apparatus for manufacturing non-woven fabric and method of manufacturing non-woven fabric
JP2018509251A JPWO2017170241A1 (en) 2016-03-30 2017-03-24 Nonwoven fabric manufacturing apparatus, nonwoven fabric manufacturing method, and nonwoven fabric
DK17774778.9T DK3438339T3 (en) 2016-03-30 2017-03-24 INSTRUCTIONS FOR THE MANUFACTURE OF NON-WOVEN FABRICS, METHOD OF MANUFACTURE OF NON-WOVEN FABRICS AND NON-WOVEN FABRICS
KR1020187028246A KR20180117183A (en) 2016-03-30 2017-03-24 Nonwoven fabric manufacturing apparatus, nonwoven fabric manufacturing method, and nonwoven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-068804 2016-03-30
JP2016068804 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170241A1 true WO2017170241A1 (en) 2017-10-05

Family

ID=59965631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012062 WO2017170241A1 (en) 2016-03-30 2017-03-24 Non-woven fabric manufacturing device, non-woven fabric manufacturing method, and non-woven fabric

Country Status (8)

Country Link
US (1) US20190106821A1 (en)
EP (1) EP3438339B1 (en)
JP (3) JPWO2017170241A1 (en)
KR (1) KR20180117183A (en)
CN (1) CN108884618B (en)
DK (1) DK3438339T3 (en)
MY (1) MY194230A (en)
WO (1) WO2017170241A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254587A (en) * 2020-04-21 2020-06-09 大连天马可溶制品有限公司 Triangular box type net laying device
CN114075718A (en) * 2021-11-15 2022-02-22 大连瑞源非织造布有限公司 Water-absorbing composite non-woven fabric and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336517A (en) * 1999-05-27 2000-12-05 Suetomi Engineering:Kk Spinning die for melt-blown type nonwoven fabric
JP2001008713A (en) * 1999-04-26 2001-01-16 Unitika Ltd Nonwoven fabric for hook-and-loop fastener female material and its production
JP2006083511A (en) * 2004-09-17 2006-03-30 Reifenhaeuser Gmbh & Co Kg Maschinenfabrik Mechanism for producing filament from thermoplastic synthetic material
JP2011241510A (en) * 2010-05-19 2011-12-01 Toyota Boshoku Corp Melt-spinning method and melt-spinning apparatus
JP2013087412A (en) * 2011-10-22 2013-05-13 Oerlikon Textile Gmbh & Co Kg Apparatus and method for guiding and depositing synthetic filament to form fleece
JP2015183308A (en) * 2014-03-24 2015-10-22 日本バイリーン株式会社 Ultrafine fiber non-woven fabric and apparatus for producing non-woven fabric

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155764A (en) * 1984-01-25 1985-08-15 旭化成株式会社 Production of non-woven web
DE4332345C2 (en) * 1993-09-23 1995-09-14 Reifenhaeuser Masch Process and fleece blowing system for the production of a spunbonded web with high filament speed
DE19504953C2 (en) * 1995-02-15 1999-05-20 Reifenhaeuser Masch Plant for the production of a spunbonded nonwoven web from thermoplastic continuous filaments
JPH08246319A (en) * 1995-03-07 1996-09-24 New Oji Paper Co Ltd Production unit for spunbonded nonwoven fabric
JP3108012B2 (en) * 1996-06-07 2000-11-13 帝人株式会社 Manufacturing method of long fiber web
FR2792656B1 (en) * 1999-04-23 2001-06-01 Icbt Perfojet Sa DEVICE FOR PROVIDING THE OPENING AND DISTRIBUTION OF A FILM HARNESS DURING THE PRODUCTION OF A NONWOVEN TEXTILE TABLECLOTH
JP3322868B1 (en) * 2001-08-09 2002-09-09 宇部日東化成株式会社 Fibers for nonwoven fabrics and nonwoven fabrics and methods for producing them
US7807591B2 (en) * 2006-07-31 2010-10-05 3M Innovative Properties Company Fibrous web comprising microfibers dispersed among bonded meltspun fibers
KR101483475B1 (en) * 2007-07-31 2015-01-16 도레이 카부시키가이샤 Support for separation membrane, and method for production thereof
WO2011122277A1 (en) * 2010-03-30 2011-10-06 三井化学株式会社 Nonwoven fabric
US9863067B2 (en) * 2010-04-16 2018-01-09 Mitsui Chemicals, Inc. Crimped conjugated fiber and non-woven fabric comprising the fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008713A (en) * 1999-04-26 2001-01-16 Unitika Ltd Nonwoven fabric for hook-and-loop fastener female material and its production
JP2000336517A (en) * 1999-05-27 2000-12-05 Suetomi Engineering:Kk Spinning die for melt-blown type nonwoven fabric
JP2006083511A (en) * 2004-09-17 2006-03-30 Reifenhaeuser Gmbh & Co Kg Maschinenfabrik Mechanism for producing filament from thermoplastic synthetic material
JP2011241510A (en) * 2010-05-19 2011-12-01 Toyota Boshoku Corp Melt-spinning method and melt-spinning apparatus
JP2013087412A (en) * 2011-10-22 2013-05-13 Oerlikon Textile Gmbh & Co Kg Apparatus and method for guiding and depositing synthetic filament to form fleece
JP2015183308A (en) * 2014-03-24 2015-10-22 日本バイリーン株式会社 Ultrafine fiber non-woven fabric and apparatus for producing non-woven fabric

Also Published As

Publication number Publication date
CN108884618B (en) 2021-10-26
MY194230A (en) 2022-11-23
DK3438339T3 (en) 2021-04-26
EP3438339B1 (en) 2021-03-24
JP2020073749A (en) 2020-05-14
JPWO2017170241A1 (en) 2018-10-04
JP2022010113A (en) 2022-01-14
EP3438339A4 (en) 2019-08-21
US20190106821A1 (en) 2019-04-11
KR20180117183A (en) 2018-10-26
EP3438339A1 (en) 2019-02-06
CN108884618A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
JP7219245B2 (en) nonwoven web
US8246898B2 (en) Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit
US9303334B2 (en) Apparatus for forming a non-woven web
JP3725866B2 (en) Spunbond nonwoven fabric manufacturing process and manufacturing system thereof
JP4488980B2 (en) Equipment for continuous production of nonwoven webs made of filaments made of thermoplastic synthetic resin
US9309612B2 (en) Process for forming a non-woven web
JP2022010113A (en) Spun-bonded non-woven fabric
US20150322602A1 (en) Non-woven web
JP6842577B2 (en) Non-woven fabric manufacturing equipment and non-woven fabric manufacturing method
JP4334342B2 (en) Filament drawing jet apparatus and method
JP2002371428A (en) Yarn-drawing apparatus
EP3655577A1 (en) A spun-blown non-woven web
KR20240035437A (en) Manufacturing device and manufacturing method of nonwoven fabric

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509251

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187028246

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774778

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774778

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774778

Country of ref document: EP

Kind code of ref document: A1