JP2020073749A - Spun-bonded non-woven fabric - Google Patents
Spun-bonded non-woven fabric Download PDFInfo
- Publication number
- JP2020073749A JP2020073749A JP2020017313A JP2020017313A JP2020073749A JP 2020073749 A JP2020073749 A JP 2020073749A JP 2020017313 A JP2020017313 A JP 2020017313A JP 2020017313 A JP2020017313 A JP 2020017313A JP 2020073749 A JP2020073749 A JP 2020073749A
- Authority
- JP
- Japan
- Prior art keywords
- air
- nozzle
- flow
- filaments
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/02—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
- D04H3/03—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/088—Cooling filaments, threads or the like, leaving the spinnerettes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
- D01D5/0985—Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/724—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged forming webs during fibre formation, e.g. flash-spinning
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/732—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/736—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged characterised by the apparatus for arranging fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/005—Synthetic yarns or filaments
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D7/00—Collecting the newly-spun products
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/02—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
- D10B2321/021—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/02—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
- D10B2321/022—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Nonwoven Fabrics (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Woven Fabrics (AREA)
- Treatment Of Fiber Materials (AREA)
- Multicomponent Fibers (AREA)
Abstract
Description
本発明は、スパンボンド不織布に関する。 The present invention relates to spunbond nonwoven fabrics.
スパンボンド不織布などの不織布は、医療、衛生資材、土木資材及び包装資材等に多用されている。スパンボンド不織布は、熱可塑性樹脂を溶融紡糸したフィラメントに対して冷却風を用いた冷却処理、及び延伸風を用いた延伸処理を行った後、捕集媒体上に拡散させながら捕集堆積させることで得られるウェブから製造される。 Nonwoven fabrics such as spunbonded nonwoven fabrics are widely used in medical, sanitary, civil engineering and packaging materials. Spunbonded non-woven fabrics should be collected and deposited while being diffused on a collection medium after cooling the filaments that have been melt-spun with a thermoplastic resin using cooling air and stretching with drawing air. Manufactured from the web obtained in.
特許文献1には、水平方向における横断面が矩形状とされ、フィラメント走行方向において次第に横断面が縮小された冷却室、冷却室に接続され排出口における壁体に段状凹陥部が形成された延伸ノズル、及び延伸ノズルに接続された繊維載置装置を有し、空気力学的に延伸された合成樹脂フィラメントから紡糸繊維帯片を製造する装置が開示されている。この特許文献1の繊維載置装置は、水平方向において矩形状の横断面を有し、縦方向においてヴェンチュリー環状の流域、及びディフューザー出口を有するジェットポンプの形態を有し、繊維帯片載置フィルタベルトを挟んでディフューザー出口に対向された吸気管により自由空気吸入口から吸引される空気量が調整されるようにしている。 In Patent Document 1, a cross section in the horizontal direction has a rectangular shape, and the cross section is gradually reduced in the filament running direction. A cooling chamber is connected to the cooling chamber, and a stepped recess is formed in the wall at the discharge port. An apparatus for producing spun fiber strips from aerodynamically stretched synthetic resin filaments is disclosed that has a stretching nozzle and a fiber placement device connected to the stretching nozzle. The fiber placement device of Patent Document 1 has a rectangular cross section in the horizontal direction, has the form of a jet pump having a venturi annular flow region in the vertical direction, and a diffuser outlet. The amount of air sucked from the free air suction port is adjusted by the suction pipe facing the diffuser outlet with the filter belt interposed therebetween.
特許文献2には、多数のノズルを有するノズル板体、処理シャフト、搬送ユニット及び搬送コンベアを有し、処理シャフト及び搬送ユニットに処理空気が流入され、ノズル板体のノズル孔から無端繊維が流入されると共に空気と繊維の混合の形の無端繊維群として搬送コンベアに向かう放出運動により処理シャフト中に流入され、搬送ユニットが無端繊維群用の中央の流入導管及びこれに次ぐ、搬送コンベアまで伸長するディフューザ導管を具備し、放出運動とそれに重複するフリース形成運動が強制付与され、上記双方の導管が搬送コンベアベルトの走行方向を横切る方向に延びる熱可塑性樹脂無端繊維からスピンフリースウェブを製造する装置が開示されている。この特許文献2では、導入導管および/またはディフューザ導管は空気と繊維の混合用に用いられ、導管の幅にわたり搬送コンベアベルトの走行方向を横切って伸長する導管中に空気を追加導入するための流通スリット形状、並びに導管から空気を放出するための流出スリットの形状の空力学的等分配装置を具備し、付加的に追加給送されるべき流量および流出させるべき空気の流量を空気と繊維の混合中における繊維の等分配に影響を与える目的で制御ないし調整されるようにしている。また、特許文献2は、流入導管および/またはディフューザ導管の内部表面が導管縦断面における表面近傍に障害部材を具備し、その流動方向に対して後方に渦巻き領域が形成されている。 Patent Document 2 has a nozzle plate having a large number of nozzles, a processing shaft, a transport unit and a transport conveyor, processing air flows into the processing shaft and the transport unit, and endless fibers flow from nozzle holes of the nozzle plate. And is introduced into the processing shaft by the discharge movement towards the conveyor as an endless fiber group in the form of a mixture of air and fibers, the carrier unit extending to the central inlet conduit for the endless fiber group and then to the conveyor conveyor. An apparatus for producing a spin fleece web from thermoplastic resin endless fibers, comprising a diffuser conduit for discharging a forced discharge motion and a fleece forming motion overlapping therewith, both conduits extending in a direction transverse to the traveling direction of a conveyor belt. Is disclosed. In this document, an inlet conduit and / or a diffuser conduit is used for the mixing of air and fibers, a flow for the additional introduction of air into the conduit extending across the width of the conduit and across the direction of travel of the conveyor belt. An aerodynamic equalizing device in the form of a slit and in the form of an outflow slit for expelling air from the conduit, additionally with a flow rate to be additionally fed and a flow rate to be let out It is controlled or adjusted for the purpose of affecting the even distribution of the fibers therein. Further, in Patent Document 2, the inner surface of the inflow conduit and / or the diffuser conduit is provided with an obstacle member in the vicinity of the surface in the vertical section of the conduit, and a spiral region is formed rearward with respect to the flow direction thereof.
特許文献3には、フィラメントから形成されたスパンボンドを製造する装置として、フィラメントを形成する紡糸口金が設けられ、紡糸口金の下流にはフィラメントを冷却する処理空気を供給する冷却室があり、フィラメントを延伸する延伸ユニットが冷却室に接続されており、冷却室と延伸ユニットの間の接続領域が閉鎖されて、延伸ユニットは通路壁が延伸通路の長さの少なくとも一部上に分岐される延伸通路を有し、延伸ユニットでは、分岐延伸通路部分の上流端において追加的空気が、フィラメント束を機械方向において幅広く形成される条件により延伸通路に注入され、スパンボンドウェブのフィラメントを沈積させる沈積装置が設けられた装置が記載されている。また、特許文献3には、延伸ユニットの下流には沈積ユニットがあり、沈積ユニットが上流ディフューザと隣接下流ディフューザから成り、周囲空気入口スリットが上流ディフューザと下流ディフューザの間に設けられている記載があります。 In Patent Document 3, a spinneret for forming filaments is provided as an apparatus for producing a spunbond formed from filaments, and a cooling chamber for supplying process air for cooling the filaments is provided downstream of the spinneret. A stretching unit is connected to the cooling chamber, the connection region between the cooling chamber and the stretching unit is closed, and the stretching unit is configured such that the passage wall is branched over at least part of the length of the stretching passage. In the draw unit, in a draw unit, additional air at the upstream end of the branch draw passage section is injected into the draw passage by the condition that the bundle of filaments is formed wide in the machine direction to deposit the filaments of the spunbond web. A device provided with is described. Further, in Patent Document 3, there is a description in which there is a deposition unit downstream of the drawing unit, the deposition unit is composed of an upstream diffuser and an adjacent downstream diffuser, and an ambient air inlet slit is provided between the upstream diffuser and the downstream diffuser. There is.
ところで、不織布の品質に関わる重要な特性として、均一性及び強度がある。例えば、特許文献2では、メッシュ寸法が均一な不織布を得ることを目的としているが、均一性が高い不織布では、フィラメントの絡みが不足し、強度が低下してしまうことがある。 By the way, uniformity and strength are important properties relating to the quality of the nonwoven fabric. For example, Patent Document 2 aims to obtain a nonwoven fabric having a uniform mesh size. However, in a highly uniform nonwoven fabric, the entanglement of filaments may be insufficient and the strength may be reduced.
本発明は上記事実に鑑みてなされたものであり、強度低下が抑制されながら均一性の向上が図られたスパンボンド不織布を提供することを目的とする。 The present invention has been made in view of the above facts, and an object of the present invention is to provide a spunbonded non-woven fabric in which the reduction in strength is suppressed and the uniformity is improved.
上記目的を達成するための具体的手段には、以下の態様が含まれる。
第1の態様のスパンボンド不織布は、機械方向に5%伸長時の強度の機械方向と垂直な方向に5%伸長時の強度に対する比が2.0以下、かつ目付バラツキが3.0%以下であるスパンボンド不織布である。
Specific means for achieving the above object include the following aspects.
In the spunbonded nonwoven fabric of the first aspect, the ratio of the strength at 5% elongation in the machine direction to the strength at 5% elongation in the direction perpendicular to the machine direction is 2.0 or less, and the areal variation is 3.0% or less. Is a spunbond nonwoven fabric.
第2の態様のスパンボンド不織布は、第1の態様において、機械方向に伸長時の最大強度が35.0(N/25mm)以上である請求項1記載のスパンボンド不織布である。 The spunbonded nonwoven fabric according to the second aspect is the spunbonded nonwoven fabric according to the first aspect, wherein the maximum strength when stretched in the machine direction is 35.0 (N / 25 mm) or more.
第1の態様及び第2の態様におけるスパンボンド不織布の製造には、溶融樹脂等からフィラメントを紡糸して、複数のフィラメントを導出する紡出部(紡出工程)、紡出部から導入される複数のフィラメントを冷却風により冷却する冷却部(冷却工程)、冷却された複数のフィラメントを延伸風により延伸する延伸部(延伸工程)、及び延伸された複数のフィラメントを捕集堆積させてウェブを生成する捕集部(捕集工程)を含み、捕集されたウェブから不織布が製造される。また、製造装置は、延伸部から導入される複数のフィラメントを拡散させながら捕集部へ向けて噴出する拡散部(拡散工程)を含んでもよい。 In the production of the spunbonded nonwoven fabric according to the first aspect and the second aspect, a filament is spun from a molten resin or the like, and a spinning section (spinning step) for leading out a plurality of filaments is introduced from the spinning section. A cooling unit (cooling process) for cooling a plurality of filaments with a cooling air, a stretching unit (drawing process) for stretching a cooled plurality of filaments with a stretching air, and a plurality of stretched filaments are collected and deposited to form a web. A non-woven fabric is manufactured from the collected web, including a collecting portion (collecting step) to be generated. Further, the manufacturing apparatus may include a diffusing unit (diffusing step) for ejecting the filaments introduced from the drawing unit toward the collecting unit while diffusing the filaments.
拡散部は、主ノズル、及び主ノズルと捕集部の捕集媒体との間に設けたれた拡散空間を含む。第1及び第2の態様における拡散空間は、主ノズルから噴出されるエアによる気流が拡散するのを妨げることなく自然に拡散可能とする空間であることが好ましい。拡散空間は、隔壁により囲われていても良いが、隔壁により囲う場合、主ノズルから噴出されるエアによる気流に影響を与えることがないように隔壁が気流から離れて設けられていれば良い。また、フィラメントは、複数が機械幅方向に沿って配列されており、主ノズルは、機械幅方向に沿って長いスリット状となっている。 The diffusion unit includes a main nozzle and a diffusion space provided between the main nozzle and the collection medium of the collection unit. It is preferable that the diffusion space in the first and second aspects is a space that can naturally diffuse without hindering the diffusion of the air flow caused by the air ejected from the main nozzle. The diffusion space may be surrounded by a partition wall, but when surrounded by a partition wall, the partition wall may be provided apart from the air flow so as not to affect the air flow caused by the air ejected from the main nozzles. Further, a plurality of filaments are arranged along the machine width direction, and the main nozzle has a slit shape that is long along the machine width direction.
これにより、主ノズルから噴出されるエアは、拡散空間内で機械方向に沿って徐々に拡がりながら捕集媒体へ流れる気流(噴流)となる。エアと共に主ノズルから噴出される複数のフィラメントは、拡散空間内に形成される気流によりフィラメントが機械方向に拡散されて捕集媒体に捕集される。 As a result, the air ejected from the main nozzle becomes an air flow (jet flow) that flows toward the collection medium while gradually expanding in the diffusion space along the machine direction. The plurality of filaments ejected from the main nozzle together with air are diffused in the machine direction by the air flow formed in the diffusion space and collected in the collection medium.
ここで、拡散部には、気流生成手段が設けられ、気流生成手段により主ノズルから噴出されたエアによる気流の周囲において該気流に近接して沿う気流が生成され、主ノズルの気流に近接して沿う気流により拡散空間内の空気(エア)が複数のフィラメントと共に主ノズルから噴出されたエアによる気流内に入り込むのが抑制される。主ノズルから噴出されたエアの気流は、内部に流速変動が生じるが、拡散空間内の空気が入り込むことで流速変動が周囲よりも大きくなる領域が生じる。これに対して、主ノズルから噴出されるエアによる気流の周囲において該気流に近接して沿う気流を生じさせることで、主ノズルから噴出されるエアによる気流内に拡散空間の空気が入り込むのが抑制され、流速変動が周囲よりも大きくなる領域が狭められる、或いは流速変動が周囲よりも大きくなる領域における流速変動の大きさが抑制される。 Here, the diffusing section is provided with an air flow generation unit, and the air flow generation unit generates an air flow in the vicinity of the air flow due to the air ejected from the main nozzle and is close to the air flow of the main nozzle. The air flow along the horizontal direction suppresses the air (air) in the diffusion space from entering the air flow due to the air ejected from the main nozzle together with the plurality of filaments. The airflow of the air ejected from the main nozzle has a flow velocity fluctuation inside, but when the air in the diffusion space enters, there is a region where the flow velocity fluctuation becomes larger than the surroundings. On the other hand, the air in the diffusion space is allowed to enter into the air flow caused by the air ejected from the main nozzle by generating an air flow in the vicinity of the air flow caused by the air ejected from the main nozzle. The region where the flow velocity fluctuation is suppressed and is larger than the surrounding region is narrowed, or the magnitude of the flow velocity fluctuation in the region where the flow velocity fluctuation is larger than the surrounding region is suppressed.
それぞれのフィラメントは、流速変動が周囲よりも大きくなる領域が生じることで、当該領域における流速変動が大きければ大きい程フィラメント同士の絡みが多くなり、フィラメントの束が発生して均一性が低下するが、流速変動の大きさが抑制されることでフィラメントの束の発生が抑えられて均一性の向上が図られる。 In each filament, a region where the flow velocity fluctuation is larger than the surroundings is generated, and the greater the flow velocity fluctuation in the region is, the more the filaments are entangled with each other, and the filament bundle is generated, which deteriorates the uniformity. By suppressing the magnitude of the flow velocity fluctuation, the occurrence of filament bundles is suppressed and the uniformity is improved.
また、気流生成手段は、エアを拡散空間へ噴出する副ノズルを含むことが好ましい。また、前記気流生成手段は、前記主ノズルの開口部と並んで開口部が配置されエアを前記拡散空間へ噴出する副ノズルを含んでもよい。 Further, it is preferable that the air flow generation unit includes a sub nozzle that ejects air into the diffusion space. Further, the airflow generating means may include a sub nozzle having an opening arranged side by side with the opening of the main nozzle and ejecting air into the diffusion space.
気流生成手段は、主ノズルの開口部と並んで開口部が配置された副ノズルを備え、副ノズルから噴出するエアにより、主ノズルから噴出するエアによる気流の周囲において該気流に近接して沿う気流を生じさせる。 The airflow generating means includes a sub nozzle having an opening arranged side by side with the opening of the main nozzle, and the air ejected from the sub nozzle causes the air ejected from the main nozzle to be adjacent to the air flow around the air flow. Create an air flow.
これにより、拡散空間内の空気が主ノズルから噴出されるエアによる気流内に入り込むのが抑制されるので、容易にスパンボンド不織布の均一性の向上が図られる。 As a result, the air in the diffusion space is prevented from entering the air flow due to the air ejected from the main nozzles, so that the uniformity of the spunbonded nonwoven fabric can be easily improved.
また、前記副ノズルは前記主ノズルの機械方向側及び機械方向とは反対側に設けられてもよい。 Further, the sub nozzle may be provided on the machine direction side of the main nozzle and on the side opposite to the machine direction.
副ノズルは、主ノズルに対して機械方向側及び機械方向とは反対側の各々に設けともよい。これにより、拡散空間内の空気が、主ノズルから噴出されたエアの気流に対して、機械方向側及び機械方向とは反対側の各々から入り込むのが抑制されるので、主ノズルから噴出されたエアの流速変動が大きくなるのが効果的に抑制される。 The sub nozzle may be provided on each of the machine direction side and the machine direction side with respect to the main nozzle. As a result, the air in the diffusion space is suppressed from entering the air flow of the air ejected from the main nozzle from the machine direction side and the machine direction opposite side, respectively, and thus is ejected from the main nozzle. It is possible to effectively prevent the fluctuation of the flow velocity of the air from increasing.
これにより、強度低下が抑制されながら均一性の向上が図られたスパンボンド不織布として、機械方向と垂直な方向に5%伸長時の強度に対する機械方向に5%伸長時の強度の比が2.0以下、かつ目付バラツキが3.0%以下であるスパンボンド不織布を得るのに好適となる。
また、機械方向に伸長時の最大強度が35.0(N/25mm)以上であるスパンボンド不織布の製造に好適である。また、得られるスパンボンド不織布は、製造される不織布の機械方向に伸長時の最大強度は、37.5(N/25mm)以上であることがより好ましく、さらに好ましくは40.0(N/25mm)であり、最も好ましくは42.5(N/25mm)である。
さらに、目付バラツキ(%)が、好ましくは3.0%以下であり、より好ましくは2.5%以下であるスパンボンド不織布の製造に好適である。
As a result, as a spunbonded non-woven fabric in which the reduction in strength is suppressed and the uniformity is improved, the ratio of the strength at 5% elongation in the machine direction to the strength at 5% elongation in the direction perpendicular to the machine direction is 2. It is suitable for obtaining a spunbonded non-woven fabric having a density of 0 or less and a density variation of 3.0% or less.
Further, it is suitable for producing a spunbonded nonwoven fabric having a maximum strength of 35.0 (N / 25 mm) or more when stretched in the machine direction. Further, in the obtained spunbond nonwoven fabric, the maximum strength of the produced nonwoven fabric when stretched in the machine direction is more preferably 37.5 (N / 25 mm) or more, and further preferably 40.0 (N / 25 mm). ), And most preferably 42.5 (N / 25 mm).
Further, it is suitable for producing a spunbonded nonwoven fabric having a unit weight variation (%) of preferably 3.0% or less, more preferably 2.5% or less.
本明細書の実施の形態によれば、強度低下が抑制されながら均一性の向上が図られたスパンボンド不織布が得られる、という効果がある。 According to the embodiments of the present specification, there is an effect that a spunbonded non-woven fabric having improved uniformity while suppressing a decrease in strength can be obtained.
以下、図面を参照して本発明の一実施の形態を詳細に説明する。図1には、本実施の形態に係る不織布の製造装置10の要部を示している。本実施の形態に係る製造装置10は、スパンボンド不織布の製造に用いられる。なお、以下の説明において、MD(machine direction)方向は、機械方向(機械の流れ方向)を示し、UP方向は、上下方向の上方を示している。また、以下の説明において、MD方向及びUP方向の各々と直交する方向(機械方向と垂直な方向)をCD(cross machine direction)方向(機械幅方向。図示省略)と表記する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a main part of a nonwoven fabric manufacturing apparatus 10 according to the present embodiment. The manufacturing apparatus 10 according to the present embodiment is used for manufacturing a spunbond nonwoven fabric. In the following description, the MD (machine direction) direction indicates the machine direction (machine flow direction), and the UP direction indicates the upper side in the vertical direction. In the following description, a direction (direction perpendicular to the machine direction) orthogonal to each of the MD direction and the UP direction will be referred to as a CD (cross machine direction) direction (machine width direction, not shown).
製造装置10は、スパンボンド不織布に用いる熱可塑性樹脂が溶融された溶融樹脂を紡糸してフィラメントを生成する紡出部12、紡糸したフィラメントに対して冷却処理を行う冷却部14、及びフィラメントに対して延伸処理を行う延伸部16を備える。また、製造装置10は、冷却処理及び延伸処理されたフィラメントを捕集して、不織布となるウェブを得る捕集部18、及び捕集部18へ向けて複数のフィラメントを拡散するように噴出する拡散部20を備える。 The manufacturing apparatus 10 includes a spinning unit 12 that spins a molten resin in which a thermoplastic resin used for a spunbonded nonwoven fabric is melted to generate filaments, a cooling unit 14 that cools the spun filaments, and a filament. A stretching unit 16 that performs stretching processing is provided. Further, the manufacturing apparatus 10 collects the cooled and drawn filaments, and collects the filaments to obtain a web to be a non-woven fabric, and ejects the plurality of filaments toward the collector 18 so as to diffuse the filaments. The diffusion unit 20 is provided.
紡出部12は、複数の紡糸ノズルが配列された紡糸口金22を備え、紡糸口金22に溶融樹脂導入管24が接続されている。紡出部12は、溶融樹脂導入管24を介して紡糸口金22に導入される溶融樹脂を紡糸ノズルにより紡糸してフィラメントを生成する。また、紡出部12は、紡糸口金22が複数の紡糸ノズルを備えることで、CD方向に配列された複数のフィラメントを導出する。冷却部14は、紡糸された複数のフィラメントが導入される冷却室26を備え、冷却室26に冷却風供給ダクト28が接続されている。冷却部14は、冷却風供給ダクト28から供給されるエアを冷却風とし、冷却室26に導入された複数のフィラメントを冷却風により冷却する。 The spinning unit 12 includes a spinneret 22 in which a plurality of spinning nozzles are arranged, and a molten resin introducing pipe 24 is connected to the spinneret 22. The spinning unit 12 spins the molten resin introduced into the spinneret 22 through the molten resin introducing pipe 24 with a spinning nozzle to produce filaments. In addition, the spinning unit 12 draws out a plurality of filaments arranged in the CD direction by the spinneret 22 including a plurality of spinning nozzles. The cooling unit 14 includes a cooling chamber 26 into which a plurality of spun filaments are introduced, and a cooling air supply duct 28 is connected to the cooling chamber 26. The cooling unit 14 uses the air supplied from the cooling air supply duct 28 as cooling air and cools the plurality of filaments introduced into the cooling chamber 26 with the cooling air.
延伸部16は、開口断面がCD方向(図1では、紙面表裏方向)に長くMD方向に短い挟幅とされて上下方向に延びる延伸シャフト30を備える。延伸部16は、延伸シャフト30が冷却室26に接続され、冷却室26から延伸シャフト30に複数のフィラメントが導入される。延伸部16は、複数のフィラメントと共に導入される冷却風或いは冷却風とは別に延伸シャフト30内に供給されるエアを延伸風とし、延伸風により冷却部14から導入されたフィラメントを延伸しながら導出する。 The stretching portion 16 includes a stretching shaft 30 having an opening cross section that is long in the CD direction (front and back direction of the paper surface in FIG. 1) and short in the MD direction and extends in the vertical direction. In the drawing section 16, the drawing shaft 30 is connected to the cooling chamber 26, and a plurality of filaments are introduced from the cooling chamber 26 to the drawing shaft 30. The drawing part 16 draws out the cooling air introduced together with the plurality of filaments or the air supplied into the drawing shaft 30 separately from the cooling air as the drawing air while drawing the filaments introduced from the cooling part 14 by the drawing air. To do.
捕集部18は、メッシュ或いはパンチングメタルなどにより形成された捕集媒体としての移動帯32、及び移動帯32の下方に設けられた図示しない吸引手段を備える。また、拡散部20は、延伸シャフト30から導入される延伸風或いは延伸風とは別に導入されるエアを捕集部18の移動帯32へ向けて噴出する。捕集部18は、噴出された複数のフィラメントを、吸引手段により吸引しながら移動帯32の捕集面32A上に捕集し、不織布となるウェブを生成する。なお、製造装置10の紡出部12、冷却部14、延伸部16、及び捕集部18は、溶融樹脂を紡糸することによる複数のフィラメントの生成、生成した複数のフィラメントの冷却延伸処理、及び複数のフィラメントの捕集を行う公知の構成を適用し得る。 The collecting unit 18 includes a moving zone 32 as a collecting medium formed of mesh or punching metal, and a suction unit (not shown) provided below the moving zone 32. Further, the diffusion unit 20 ejects the drawing wind introduced from the drawing shaft 30 or the air introduced separately from the drawing wind toward the moving zone 32 of the collecting unit 18. The collecting unit 18 collects the ejected filaments on the collecting surface 32A of the moving zone 32 while sucking the filaments with a suction unit to generate a web that becomes a nonwoven fabric. The spinning unit 12, the cooling unit 14, the drawing unit 16, and the collecting unit 18 of the manufacturing apparatus 10 generate a plurality of filaments by spinning a molten resin, perform a cooling and drawing process on the generated filaments, and A known configuration for collecting a plurality of filaments can be applied.
図2には、本実施の形態に係る拡散部20の概略構成を示している。拡散部20は、主ノズルとしての噴出ノズル34を備える。噴出ノズル34は、噴出口となる開口部としての先端の開口34AがCD方向に長いスリット状に形成され捕集部18の移動帯32上に向けられている。また、噴出ノズル34は、延伸部16の延伸シャフト30に連続され、冷却延伸処理された複数のフィラメントが導入される。また、拡散部20は、噴出ノズル34に延伸風によるエア或いは延伸風のエアとは別にエアが導入される。 FIG. 2 shows a schematic configuration of the diffusion unit 20 according to this embodiment. The diffusion unit 20 includes a jet nozzle 34 as a main nozzle. The ejection nozzle 34 has an opening 34 </ b> A at the tip as an opening serving as an ejection port formed in a slit shape elongated in the CD direction, and is directed onto the moving zone 32 of the collection unit 18. In addition, the jet nozzle 34 is connected to the drawing shaft 30 of the drawing unit 16 and a plurality of filaments subjected to the cooling drawing process are introduced. In addition, in the diffusion unit 20, air is introduced into the ejection nozzle 34 separately from the air by the drawing wind or the air of the drawing wind.
拡散部20は、噴出ノズル34に導入されるエア及び複数のフィラメントを、開口34Aから捕集部18の移動帯32上へ向けて噴出する。拡散部20は、噴出ノズル34から噴出されるエアの気流により、噴出ノズル34から噴出される複数のフィラメントを捕集部18へ向けて送る。以下、噴出ノズル34から複数のフィラメントと共に噴出されるエアにより生じる気流を搬送流という。 The diffusion unit 20 ejects the air and the plurality of filaments introduced into the ejection nozzle 34 toward the moving zone 32 of the collection unit 18 from the opening 34A. The diffusion unit 20 sends the plurality of filaments ejected from the ejection nozzle 34 toward the collection unit 18 by the air flow of the air ejected from the ejection nozzle 34. Hereinafter, the air flow generated by the air ejected together with the plurality of filaments from the ejection nozzle 34 is referred to as a carrier flow.
拡散部20には、噴出ノズル34と捕集部18の移動帯32の捕集面32Aとの間に、拡散空間36が設けられており、搬送流が拡散空間36内を移動帯32へ向けて流れる。拡散空間36は、噴出ノズル34から噴出されるエアによる搬送流の流れを規制する壁面等が設けられていない空間とされている。即ち、拡散空間36は、噴出ノズル34から噴出される搬送流が捕集部18以外の壁面などの構造物による影響を受けない空間となっている。この拡散空間は、隔壁が気流の流れに干渉しないように設けられていれば、隔壁により区画されていても良い。 In the diffusion unit 20, a diffusion space 36 is provided between the ejection nozzle 34 and the collection surface 32A of the moving zone 32 of the collection unit 18, and the carrier flow directs the inside of the diffusion space 36 to the movement zone 32. Flowing. The diffusion space 36 is a space that is not provided with a wall surface or the like that restricts the flow of the carrier flow due to the air jetted from the jet nozzle 34. That is, the diffusion space 36 is a space in which the carrier flow ejected from the ejection nozzle 34 is not affected by structures such as the wall surface other than the collecting portion 18. The diffusion space may be partitioned by the partition wall as long as the partition wall is provided so as not to interfere with the flow of the air flow.
これにより、拡散部20では、拡散空間36において、噴出ノズル34から噴出されるエアによる搬送流がMD方向及びMD方向とは反対方向へ徐々に(自然に)拡がりながら流れる。また、搬送流は、移動帯32へ近づくにしたがって流速が徐々に低下する。噴出ノズル34から噴出された複数のフィラメントは、拡散空間36内で搬送流が拡がることで、フィラメントがMD方向及びMD方向とは反対方向へ拡散される。これにより、製造装置10は、フィラメントが移動帯32の捕集面32A上の予め定められている捕集領域に拡散されて捕集される。 As a result, in the diffusion section 20, the carrier flow of the air ejected from the ejection nozzle 34 flows in the diffusion space 36 while gradually (naturally) expanding in the MD direction and the direction opposite to the MD direction. Further, the flow velocity of the carrier flow gradually decreases as it approaches the moving zone 32. The plurality of filaments ejected from the ejection nozzle 34 are diffused in the MD direction and the direction opposite to the MD direction by spreading the carrier flow in the diffusion space 36. As a result, in the manufacturing apparatus 10, the filaments are diffused and collected in the predetermined collecting area on the collecting surface 32A of the moving zone 32.
製造装置10は、生成する不織布、不織布の製造速度、フィラメントが捕集部18で捕集されて生成されるウェブのCD方向の幅などに応じて、噴出ノズル34の開口幅、開口長さ、移動帯32の移動速度、及び噴出ノズル34と移動帯32の捕集面32Aとの間隔等が定められている。拡散部20では、噴出ノズル34の先端と捕集部18の移動帯32の表面との間の間隔(高さH)が、0.1m以上、1m未満の間で定められており、間隔Hが拡散空間36の高さとなっている。 The manufacturing apparatus 10 determines the opening width and opening length of the ejection nozzle 34 according to the nonwoven fabric to be produced, the production speed of the nonwoven fabric, the width in the CD direction of the web produced by the filaments being collected by the collecting unit 18, and the like. The moving speed of the moving zone 32, the distance between the ejection nozzle 34 and the collecting surface 32A of the moving zone 32, and the like are defined. In the diffusion unit 20, the interval (height H) between the tip of the ejection nozzle 34 and the surface of the moving zone 32 of the collection unit 18 is set to be 0.1 m or more and less than 1 m. Is the height of the diffusion space 36.
また、製造装置10は、噴出ノズル34から噴出するエアの流速或いは噴出するエアの単位時間当たりの風量が定められており、以下では、噴出ノズル34の開口におけるエアの流速を搬送流の流速Vmと表記する。拡散部20では、流速Vmに応じて拡散空間36内での搬送流の拡がりが変化し、流速Vmが高い場合は、低い場合より搬送流の拡がりが小さくなる。 Further, in the manufacturing apparatus 10, the flow velocity of the air ejected from the ejection nozzle 34 or the air volume of the ejected air per unit time is set. In the following, the flow velocity of the air at the opening of the ejection nozzle 34 is defined as the flow velocity Vm of the carrier flow. It is written as. In the diffusion unit 20, the spread of the carrier flow in the diffusion space 36 changes according to the flow velocity Vm, and when the flow velocity Vm is high, the spread of the carrier flow is smaller than when the flow velocity Vm is low.
拡散部20は、拡散空間36が設けられることで噴出ノズル34から噴出される搬送流が、主にMD方向に沿って徐々に拡がりながら移動帯32上に達する。以下の説明では、拡散空間36内における搬送流の領域を搬送流域38という。図2では、搬送流域38を仮想的に示している。 Since the diffusion space 36 is provided in the diffusion unit 20, the carrier flow ejected from the ejection nozzle 34 reaches the moving zone 32 while gradually expanding mainly in the MD direction. In the following description, the region of the carrier flow in the diffusion space 36 is referred to as the carrier flow region 38. In FIG. 2, the transport basin 38 is virtually shown.
図1及び図2に示すように、拡散部20には、気流生成手段としての副ノズル40が設けられている。副ノズル40は、開口部としてCD方向に長いスリット状の開口40Aが設けられている。拡散部20は、噴出ノズル34のMD方向側及びMD方向とは反対側の各々に副ノズル40が配置され、副ノズル40の開口40Aが噴出ノズル34の開口34Aと並べられている。 As shown in FIGS. 1 and 2, the diffusion section 20 is provided with a sub-nozzle 40 as an air flow generating means. The sub-nozzle 40 is provided with a slit-shaped opening 40A that is long in the CD direction as an opening. In the diffusion unit 20, the sub nozzles 40 are arranged on the MD direction side of the ejection nozzle 34 and on the side opposite to the MD direction, and the opening 40A of the sub nozzle 40 is aligned with the opening 34A of the ejection nozzle 34.
副ノズル40には、空気供給管42が接続されており、空気供給管42を介して供給されるエアを開口40Aから噴出する。拡散部20は、副ノズル40から噴出されるエアによる気流が噴出ノズル34から噴出される搬送流の流速Vmに応じて定められた流速Vsとなるように空気供給管42を介して副ノズル40に供給するエアが制御されている。拡散部20では、エアの噴出方向が噴出ノズル34からエアの噴出方向と略平行となるように副ノズル40が設けられている。ここで、流速Vsは、流速Vm以下であることが好ましく(Vs≦Vm)、流速Vmの1/10以上であることがより好ましい(Vs≧(Vm/10)。ここから、拡散部20は、流速Vsを流速Vmの1/2(Vs=Vm/2)となるように副ノズル40へのエアの供給が制御されている。 An air supply pipe 42 is connected to the sub nozzle 40, and the air supplied through the air supply pipe 42 is ejected from the opening 40A. The diffusing section 20 is provided with the sub nozzle 40 via the air supply pipe 42 so that the air flow of the air ejected from the sub nozzle 40 has a flow velocity Vs determined according to the flow velocity Vm of the carrier flow ejected from the ejection nozzle 34. The air supplied to the is controlled. In the diffusion unit 20, the sub nozzle 40 is provided so that the air ejection direction is substantially parallel to the air ejection direction from the ejection nozzle 34. Here, the flow velocity Vs is preferably equal to or lower than the flow velocity Vm (Vs ≦ Vm), and more preferably equal to or higher than 1/10 of the flow velocity Vm (Vs ≧ (Vm / 10). The supply of air to the sub nozzle 40 is controlled so that the flow velocity Vs becomes 1/2 of the flow velocity Vm (Vs = Vm / 2).
なお、本実施の形態では、噴出ノズル34の開口34Aと副ノズル40の開口40Aとを並べて配置しているが、これに限らず、噴出ノズル34の開口34A及び副ノズル40の開口40Aの一方が他方より移動帯32の捕集面32Aから離れるように段差を持って配置されても良い。 In the present embodiment, the opening 34A of the jet nozzle 34 and the opening 40A of the sub nozzle 40 are arranged side by side, but the present invention is not limited to this, and one of the opening 34A of the jet nozzle 34 and the opening 40A of the sub nozzle 40 is provided. May be arranged with a step so as to be farther from the collection surface 32A of the moving zone 32 than the other.
これにより、図2に示すように、拡散部20では、副ノズル40から噴出するエアにより拡散空間36内の搬送流(搬送流域38)の周囲に搬送流に近接して沿う気流が生じるようにしている。なお、図2では、副ノズル40から噴出するエアによって生じる気流を気流層44として仮想的に示している。 As a result, as shown in FIG. 2, in the diffusion unit 20, the air jetted from the sub-nozzle 40 is caused to generate an air flow around the carrier flow (the carrier flow region 38) in the diffusion space 36 in the vicinity of the carrier flow. ing. In FIG. 2, the airflow generated by the air ejected from the sub nozzle 40 is virtually shown as an airflow layer 44.
このように構成されている製造装置10は、溶融樹脂から紡糸され冷却処理及び延伸処理された複数のフィラメントが拡散部20の噴出ノズル34に導入される。また、噴出ノズル34には、搬送流を生成するためのエア(延伸風のエア或いは延伸風とは別に供給されるエア)が導入される。 In the manufacturing apparatus 10 configured as described above, the plurality of filaments spun from the molten resin, cooled, and stretched are introduced into the ejection nozzle 34 of the diffusion unit 20. Further, air (air of drawing air or air supplied separately from the drawing air) for generating a carrier flow is introduced into the jet nozzle 34.
拡散部20には、噴出ノズル34と捕集部18の移動帯32との間に拡散空間36が設けられており、噴出ノズル34に導入されたエア及び複数のフィラメントが、噴出ノズル34の開口34Aから拡散空間36へ向けて噴出される。これにより、複数のフィラメントは、噴出ノズル34から噴出されるエアによる搬送流により拡散されながら捕集部18の移動帯32上へ吹き付けられて捕集面32Aに捕集される。 A diffusion space 36 is provided in the diffusion unit 20 between the ejection nozzle 34 and the moving zone 32 of the collection unit 18, and the air and the plurality of filaments introduced into the ejection nozzle 34 are opened by the opening of the ejection nozzle 34. It is jetted from 34A toward the diffusion space 36. As a result, the plurality of filaments are blown onto the moving zone 32 of the collecting unit 18 and are collected on the collecting surface 32A while being diffused by the carrier flow of the air ejected from the ejection nozzle 34.
ところで、拡散部20には、噴出ノズル34と共に副ノズル40が設けられており、副ノズル40が空気供給管42を介して供給されるエアを拡散空間36へ噴出する。これにより、拡散空間36内には、搬送流の周囲に搬送流に近接して沿う気流が生じ、拡散空間36内の空気が搬送流内(搬送流域38内)に入り込むのが抑制される。 By the way, the sub-nozzle 40 is provided in the diffusion part 20 together with the ejection nozzle 34, and the sub-nozzle 40 ejects the air supplied through the air supply pipe 42 to the diffusion space 36. As a result, in the diffusion space 36, an air flow is generated around the transport flow in the vicinity of the transport flow, and the air in the diffusion space 36 is suppressed from entering the transport flow (the transport flow region 38).
搬送流によって拡散空間36内を搬送される複数のフィラメントは、搬送流の内部で流速の変動が生じるが、流速変動が周囲より大きい領域においては、流速変動が大きければ大きいのどフィラメントの絡まりが多くなる。これにより、フィラメントが捕集されて生成されたウェブから得られる不織布は、引張強度が高くなる。しかし、捕集されたウェブにおいて、フィラメントの絡まりが多くなると、不織布の均一性が低下する。 For the plurality of filaments transported in the diffusion space 36 by the transport flow, the flow velocity fluctuates inside the transport flow. In a region where the flow velocity fluctuation is larger than the surroundings, the larger the flow velocity fluctuation, the greater the throat filament entanglement. Become. As a result, the nonwoven fabric obtained from the web produced by collecting the filaments has high tensile strength. However, when the number of filaments entangled in the collected web is reduced, the uniformity of the nonwoven fabric is deteriorated.
これに対して、副ノズル40が設けられた拡散部20は、副ノズル40から噴出するエアにより搬送流の周囲に該搬送流に近接して沿う空気流が形成され、搬送流の内部で生じる流速変動の大きな領域において、流速変動の大きさが抑えられる。これにより、捕集部18において捕集されたウェブでは、フィラメントの絡まりが多くなるのが抑制され、均一性の向上が図られた不織布が得られる。 On the other hand, in the diffusion unit 20 provided with the sub nozzle 40, the air jetted from the sub nozzle 40 forms an air flow around the carrier flow in the vicinity of the carrier flow, and occurs inside the carrier flow. The magnitude of the flow velocity fluctuation can be suppressed in the region where the flow velocity fluctuation is large. As a result, in the web collected in the collection unit 18, the filament is prevented from being entangled more, and a nonwoven fabric with improved uniformity is obtained.
ここで、図3A及び図3Bには、拡散空間36内における気流の流速変動(速度変動)のシミュレーション結果を流速変動の分布によって示している。図3Aは、噴出ノズル34及び副ノズル40を設けた本実施の形態(下記、実施例1)の拡散部20に対応し、図3Bは、対比例(下記、比較例1)とする副ノズル40を設けずに噴出ノズル34のみとした拡散部20Aを示す。 Here, FIGS. 3A and 3B show simulation results of flow velocity fluctuations (velocity fluctuations) of the air flow in the diffusion space 36 by distribution of the flow velocity fluctuations. FIG. 3A corresponds to the diffusing section 20 of the present embodiment (hereinafter, Example 1) provided with the ejection nozzle 34 and the sub nozzle 40, and FIG. 3B is a sub nozzle which is to be in proportional (the following, Comparative Example 1). The diffusion unit 20A is shown in which only the ejection nozzle 34 is provided without providing 40.
流速変動のシミュレーションにおいて、拡散部20、20Aは、噴出ノズル34から噴出するエアの流速を同一の流速Vmとし、また、拡散部20は、副ノズル40から噴出するエアの流速Vsを流速Vmの1/2(Vs=Vm/2)とし、噴出ノズル34からのエアの噴出方向と平行にエアを噴出するように設定している。また、流速変動は、予め設定したサンプリング時間ごとの流速からサンプリング時間毎の流速の速度差を求め、求めた速度差の二乗平均平方根(root mean square:RMS)を用いている。 In the simulation of the flow velocity fluctuation, the diffusion units 20 and 20A set the flow velocity of the air jetted from the jet nozzle 34 to the same flow velocity Vm, and the diffusion unit 20 set the flow velocity Vs of the air jetted from the sub nozzle 40 to the flow velocity Vm. It is set to 1/2 (Vs = Vm / 2), and is set so as to eject the air in parallel with the ejection direction of the air from the ejection nozzle 34. Further, the flow velocity fluctuation uses a root mean square (RMS) of the obtained velocity difference by obtaining the velocity difference of the flow velocity at each sampling time from the preset flow velocity at each sampling time.
図3Bに示す対比例の拡散部20Aでは、噴出ノズル34から噴出される気流の内部に流速変動が周囲に比べて極めて大きい領域が生じている。このような流速変動が極めて大きい領域が生じることで、不織布は、引張強度が向上されるが、フィラメントにより形成されるメッシュ目の均一性が低くなる。 In the proportional diffusion portion 20A shown in FIG. 3B, an area in which the flow velocity fluctuation is extremely larger than that in the surrounding area is generated inside the air flow ejected from the ejection nozzle 34. By producing such a region where the flow velocity fluctuation is extremely large, the nonwoven fabric has improved tensile strength, but the uniformity of the meshes formed by the filaments becomes low.
これに対し、図3Aに示す実施例1の拡散部20では、拡散部20Aと比較して噴出ノズル34から噴出される気流の内部の流速変動の大きい領域において流速変動の大きさが抑えられている。これにより、拡散部20は、捕集部18に捕集されるウェブにおけるフィラメントの絡まりが拡散部20Aより抑えられる。 On the other hand, in the diffusion unit 20 of the first embodiment shown in FIG. 3A, the magnitude of the flow velocity fluctuation is suppressed in a region where the flow velocity fluctuation inside the air flow ejected from the ejection nozzle 34 is large as compared with the diffusion unit 20A. There is. As a result, in the diffusion unit 20, the entanglement of filaments in the web collected by the collection unit 18 is suppressed more than in the diffusion unit 20A.
従って、拡散部20の副ノズル40が設けられた製造装置10は、副ノズル40が設けられていいない場合よりも均一性が向上された不織布が得られる。また、本実施例の拡散部20では、搬送流内に周囲より流速変動の大きい領域が残っていることで、不織布の引張強度の低下が抑制されている。 Therefore, the manufacturing apparatus 10 in which the sub nozzle 40 of the diffusion unit 20 is provided can obtain a nonwoven fabric with improved uniformity as compared with the case where the sub nozzle 40 is not provided. In addition, in the diffusion unit 20 of the present embodiment, a decrease in the tensile strength of the nonwoven fabric is suppressed because the region where the flow velocity fluctuation is larger than the surroundings remains in the transport flow.
なお、以上説明した本実施の形態では、噴出ノズル34の流速Vmに対して、副ノズル40の流速Vsを1/2としたが、これに限るものではない。副ノズル40の流速Vsは、噴出ノズル34の流速Vm以下であれば良く、これにより、拡散空間36内での搬送流の拡がりを抑制することなく、搬送流内の流速変動を抑制することができる。 In the embodiment described above, the flow velocity Vs of the sub nozzle 40 is ½ of the flow velocity Vm of the ejection nozzle 34, but the present invention is not limited to this. The flow velocity Vs of the sub-nozzle 40 may be equal to or less than the flow velocity Vm of the jet nozzle 34, and thus the flow velocity fluctuation in the carrier flow can be suppressed without suppressing the spread of the carrier flow in the diffusion space 36. it can.
また、副ノズル40の流速Vsは、噴出ノズル34の流速Vmより大きくても良い(Vs>Vm)。この場合、副ノズル40からのエアの噴出方向を、噴出ノズル34からのエアの噴出方向と略平行となるようにすると、副ノズル40から噴出するエアが、拡散空間36内における搬送流の拡がりを規制してしまう可能性がある。ここから、副ノズル40の流速Vsを噴出ノズル34の流速Vmより大きくする場合(Vs>Vm)、副ノズル40は、開口40Aの向き又はエアの噴出方向が、噴出ノズル34から噴出されるエアによる搬送流の周囲において搬送流に沿う方向、即ち、搬送流の流れに接して流れる方向となるようにすれば良い。 The flow velocity Vs of the sub nozzle 40 may be higher than the flow velocity Vm of the ejection nozzle 34 (Vs> Vm). In this case, when the air jet direction from the sub nozzle 40 is set to be substantially parallel to the air jet direction from the jet nozzle 34, the air jetted from the sub nozzle 40 spreads the carrier flow in the diffusion space 36. May be regulated. From here, when the flow velocity Vs of the sub nozzle 40 is set to be higher than the flow velocity Vm of the ejection nozzle 34 (Vs> Vm), the sub nozzle 40 has the direction of the opening 40A or the ejection direction of the air that is ejected from the ejection nozzle 34. It is only necessary to set the direction along the carrier flow, that is, the direction in which the carrier flows in contact with the carrier flow around the carrier flow.
また、本実施の形態では、噴出ノズル34に対して副ノズル40をMD方向側及びMD方向とは反対方向側に設けたが、副ノズル40は、噴出ノズル34に対して副ノズル40をMD方向側又はMD方向とは反対方向側に設けても良い。即ち、副ノズル40は、噴出ノズル34に対して副ノズル40をMD方向側及びMD方向とは反対方向側の少なくとも一方に設けたものであれば良い。 Further, in the present embodiment, the sub nozzle 40 is provided in the MD direction side and the side opposite to the MD direction with respect to the ejection nozzle 34, but the sub nozzle 40 does not eject the sub nozzle 40 in the MD direction with respect to the ejection nozzle 34. It may be provided on the direction side or on the side opposite to the MD direction. That is, the sub-nozzle 40 may be one in which the sub-nozzle 40 is provided on at least one of the MD direction side and the direction opposite to the MD direction with respect to the ejection nozzle 34.
さらに、本実施の形態では、気流生成手段として副ノズル40を設けたが、気流生成手段は、副ノズル40に限らず、搬送流の周囲において搬送流に近接して沿う気流の流れを生じさせるものであれば良い。 Further, in the present embodiment, the sub nozzle 40 is provided as the air flow generation means, but the air flow generation means is not limited to the sub nozzle 40, and causes a flow of the air flow along the transport flow in the vicinity of the transport flow. Anything is fine.
以下、実施例により本発明を更に具体的に説明する。本発明は、これらの実施例に限定されるものではない。
本実施の形態(以下、実施例1という)及び本実施の形態に対する対比例(以下、比較例1という)における物性は、以下の方法により測定した。
Hereinafter, the present invention will be described in more detail with reference to examples. The invention is not limited to these examples.
Physical properties in the present embodiment (hereinafter, referred to as Example 1) and in contrast to the present embodiment (hereinafter, referred to as Comparative Example 1) were measured by the following methods.
(1.目付〔g/m2〕)
不織布から100mm(MD)×100mm(CD)の試験片を5点採取した。なお、試験片の採取場所(採取位置)は任意の5箇所としている。
次いで、採取した各試験片に対して上皿電子天秤(研精工業社製)を用いて、各試験片の質量を測定し、各試験片の質量の平均値を求めた。求めた平均値から1m2当たりの質量〔g〕に換算し、小数点以下第2位(小数第2位)を四捨五入して各試験片サンプルの目付〔g/m2〕とした。
(1. Unit weight [g / m 2 ])
Five 100 mm (MD) x 100 mm (CD) test pieces were collected from the nonwoven fabric. In addition, the collection place (collection position) of the test piece is set to arbitrary 5 places.
Next, the mass of each test piece was measured using a plate electronic balance (manufactured by Kensei Kogyo Co., Ltd.) for each of the collected test pieces, and the average value of the mass of each test piece was obtained. The obtained average value was converted to mass per 1 m 2 [g], and the second decimal place (second decimal place) was rounded off to obtain a basis weight [g / m 2 ] of each test piece sample.
(2.目付バラツキ〔%〕)
不織布から50mm(MD)×50mm(CD)の試験片を100点採取した。なお、採取場所は、不織布の幅方向(CD)に10箇所を、流れ方向(MD)に10回とした。
次いで、採取した各試験片に対して上皿電子天秤(研精工業社製)を用いて、それぞれの質量〔g〕を測定し、各試験片の質量の平均値及び標準偏差を求めた。標準偏差を平均値で除した値を各不織布サンプルの目付バラツキ〔%〕とした。
(2. Variation in areal weight [%])
100 pieces of 50 mm (MD) x 50 mm (CD) test pieces were sampled from the nonwoven fabric. The sampling locations were 10 in the width direction (CD) of the nonwoven fabric and 10 times in the flow direction (MD).
Then, the mass [g] of each of the collected test pieces was measured using a precision electronic balance (manufactured by Kensei Kogyo Co., Ltd.), and the average value and standard deviation of the mass of each test piece were obtained. The value obtained by dividing the standard deviation by the average value was taken as the unit weight variation [%] of each nonwoven fabric sample.
(3.繊維径〔μm〕)
不織布から10mm(MD)×10mm(CD)の試験片を5点採取した。なお、採取場所は、任意の1箇所とした。
次いで、試験片を光学顕微鏡を用いて、倍率200倍で撮影し、撮影画像を画像寸法計測ソフトウェア(イノテック社製:Pixs2000 Version2.0)により解析した。各試験片について10本の繊維径を測定し、各試験片の繊維径ン平均値を求め、小数点以下第2位を四捨五入して各不織布サンプルの繊維径〔μm〕とした。
(3. Fiber diameter [μm])
Five 10 mm (MD) x 10 mm (CD) test pieces were collected from the nonwoven fabric. In addition, the collection place was one arbitrary place.
Next, the test piece was photographed at a magnification of 200 times using an optical microscope, and the photographed image was analyzed by image size measurement software (Pixs2000 Version 2.0 manufactured by Innotek Co., Ltd.). The fiber diameter of 10 fibers was measured for each test piece, the average value of the fiber diameter of each test piece was determined, and the second decimal place was rounded off to obtain the fiber diameter [μm] of each nonwoven fabric sample.
(4.不織布の糸束〔点〕)
不織布から250mm(MD)×200mm(CD)の試験片を1点採取した。なお、採取場所は、任意の1箇所とした。
次いで、不織布を目視確認し、2本以上の繊維が束状に絡まっている箇所(糸束)の数をカウントし、下記基準で評価した。
A:糸束が0箇所
B:糸束が1箇所以上20箇所未満
C:糸束が20箇所以上
(4. Non-woven yarn bundle [dot])
One 250 mm (MD) x 200 mm (CD) test piece was sampled from the nonwoven fabric. In addition, the collection place was one arbitrary place.
Next, the non-woven fabric was visually checked, and the number of places (yarn bundles) where two or more fibers were entangled in a bundle was counted and evaluated according to the following criteria.
A: 0 yarn bundles B: 1 or more yarn bundles and less than 20 C: 20 yarn bundles or more
(5.MD5%強度及びMD強度〔N/25mm〕)
不織布から25mm(CD)×200(MD)のMD試験片を各5点採取した。なお、採取場所は、任意の5箇所とした。
次いで、採取した各試験片を、万能引張試験機(インテスコ社製、IM−201型)を用いて、チャック間100mm、引張速度100mm/minの条件にて引っ張って伸長し、チャック間が105mmとなった時点での荷重〔N〕、及び最大荷重〔N〕を測定した。各試験片のそれぞれの平均値を求め、小数点以下第2位を四捨五入して各不織布サンプルのMD5%強度〔N/25mm〕及びMD強度〔N/25mm〕とした。MD5%強度は、機械方向に5%伸長時の強度に対応し、MD強度は、機械方向に伸長時の最大強度に対応する。
(5. MD 5% strength and MD strength [N / 25 mm])
Five 25 mm (CD) × 200 (MD) MD test pieces were collected from the nonwoven fabric. In addition, the collection place was arbitrary 5 places.
Then, each of the collected test pieces was stretched by using a universal tensile tester (IM-201, manufactured by Intesco) at a chuck distance of 100 mm and a tensile speed of 100 mm / min, and the chuck distance was 105 mm. The load [N] and the maximum load [N] at that time were measured. The average value of each test piece was obtained, and the second decimal place was rounded off to obtain the MD5% strength [N / 25 mm] and MD strength [N / 25 mm] of each nonwoven fabric sample. The MD5% strength corresponds to the strength when stretched by 5% in the machine direction, and the MD strength corresponds to the maximum strength when stretched in the machine direction.
(6.CD5%強度及びCD強度〔N/25mm〕)
不織布から25mm(MD)×200mm(CD)のCD試験片を各5点採取した。なお、採取場所は、任意の5箇所とした。
次いで、採取した各試験片を、万能引張試験機(インテスコ社製、IM−201型)を用いて、チャック間100mm、引張速度100mm/minの条件にて引っ張って伸長し、チャック間が105mmとなった時点での荷重〔N〕、及び最大荷重〔N〕を測定した。各試験片のそれぞれの平均値を求め、小数点以下第2位を四捨五入して各不織布サンプルのCD5%強度〔N/25mm〕及びCD強度〔N/25mm〕とした。CD5%強度は、機械方向と垂直な方向に5%伸長時の強度に対応し、CD強度は、機械方向と垂直な方向に伸長時の最大強度に対応する。
(6. CD5% strength and CD strength [N / 25 mm])
Five 25 mm (MD) x 200 mm (CD) CD test pieces were collected from the nonwoven fabric. In addition, the collection place was arbitrary 5 places.
Then, each of the collected test pieces was stretched by using a universal tensile tester (IM-201, manufactured by Intesco) at a chuck distance of 100 mm and a tensile speed of 100 mm / min, and the chuck distance was 105 mm. The load [N] and the maximum load [N] at that time were measured. The average value of each test piece was determined, and the second decimal place was rounded off to obtain the CD5% strength [N / 25 mm] and CD strength [N / 25 mm] of each nonwoven fabric sample. The CD5% strength corresponds to the strength at 5% elongation in the direction perpendicular to the machine direction, and the CD strength corresponds to the maximum strength when elongated in the direction perpendicular to the machine direction.
(実施例1)
第1のプロピレン重合体としては、融点162°C、MFR(ASTM D1238に準拠し、温度230°C、荷重2.16kgで測定、以下同様)60g/10分のプロピレン単独重合体を用いた。第2のプロピレン系重合体としては、融点142°C、MFR60g/10分、エチレン単位成分含量4.0モル%のプロピレン・エチレンランダム共重合体を用いた。第1のプロピレン重合体と第2のプロピレン系重合体とを用いて、スパンボンド法により複合溶融紡糸を行い、芯部がプロピレン単独重合体であり、鞘部がプロピレン・エチレンランダム共重合体(芯部/鞘部=20/80(重量比))である偏芯の芯鞘型複合長繊維を繊維(フィラメント)として得た。
(Example 1)
As the first propylene polymer, a propylene homopolymer having a melting point of 162 ° C. and an MFR (measured at a temperature of 230 ° C. and a load of 2.16 kg according to ASTM D1238, the same applies hereinafter) 60 g / 10 min was used. As the second propylene-based polymer, a propylene / ethylene random copolymer having a melting point of 142 ° C., an MFR of 60 g / 10 minutes and an ethylene unit component content of 4.0 mol% was used. Using the first propylene polymer and the second propylene-based polymer, composite melt spinning was performed by a spunbond method, the core was a propylene homopolymer, and the sheath was a propylene / ethylene random copolymer ( Eccentric core-sheath type composite continuous fibers having a core / sheath = 20/80 (weight ratio) were obtained as fibers.
得られた繊維を図1に示す主ノズル(噴出ノズル34)から分散させ、捕集媒体(移動帯32)上に体積した。なお、このとき、噴出ノズル34(主ノズル)から噴出するエアの速度は、107.3m/secであり、噴出ノズル34の噴出口(開口34A)から水平方向に38mm離した位置に設けた副ノズル40(噴出幅12mm)から噴出するエアを、噴出ノズル34から噴出するエアの速度に対して1/4(26.8m/sec)とした。 The obtained fiber was dispersed from the main nozzle (jet nozzle 34) shown in FIG. 1 and was volumed on the collection medium (moving zone 32). At this time, the velocity of the air jetted from the jet nozzle 34 (main nozzle) is 107.3 m / sec, and the sub nozzle provided at a position 38 mm apart in the horizontal direction from the jet outlet (opening 34A) of the jet nozzle 34. The air ejected from the nozzle 40 (ejection width 12 mm) was set to 1/4 (26.8 m / sec) with respect to the velocity of the air ejected from the ejection nozzle 34.
その後、捕集媒体から剥離させ、エンボスパターンが面積率6.7%、エンボス面積0.19m2であり、加熱温度130°C、線圧60kg/cmの条件の加熱エンボスにて熱接着し、スパンボンド不織布を得た。得られたスパンボンド不織布の目付は20.0g/m2であった。得られたスパンボンド不織布を上記記載の方法で評価した。評価結果を図4に示す。 Then, it is peeled from the collection medium, and the embossed pattern has an area ratio of 6.7%, an embossed area of 0.19 m 2 , and is heat-bonded by heating embossing under the conditions of a heating temperature of 130 ° C. and a linear pressure of 60 kg / cm. A spunbond nonwoven fabric was obtained. The unit weight of the obtained spunbonded nonwoven fabric was 20.0 g / m 2 . The obtained spunbonded nonwoven fabric was evaluated by the method described above. The evaluation result is shown in FIG.
(比較例1)
副ノズル40から噴出するエアを0(速度0m/sec)とした以外は、実施例1と同様の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の目付は20.2g/m2であった。得られたスパンボンド不織布を上記記載の方法で評価した。評価結果を図4に示す。
(Comparative Example 1)
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the air ejected from the sub nozzle 40 was set to 0 (velocity 0 m / sec). The basis weight of the obtained spunbonded nonwoven fabric was 20.2 g / m 2 . The obtained spunbonded nonwoven fabric was evaluated by the method described above. The evaluation result is shown in FIG.
ここで、目付バラツキは、比較例1が3.5〔%〕であったのに対し、実施例1が2.0〔%〕であった。また、不織布中の糸束〔点〕の評価は、実施例1が評価Bであったのに対し、比較例1が評価Cとなっていた。このとき、MD5%強度は、実施例1が4.3〔N/25mm〕、比較例1が5.2〔N/25mm〕であり、CD5%強度は、実施例1が2.7〔N/25mm〕、比較例1が1.2〔N/25mm〕であった。また、MD5%強度/CD5%強度は、実施例1が1.6であったのに対し、比較例1が4.3であった。ここから、比較例1と比較して実施例1は、強度低下が抑制されかつ均一性が向上されていることがわかる。 Here, the variation in the areal weight was 3.5% in Comparative Example 1 and 2.0% in Example 1. Further, the evaluation of the yarn bundle [point] in the nonwoven fabric was evaluated B in Example 1 and evaluated C in Comparative Example 1. At this time, the MD5% strength was 4.3 [N / 25 mm] in Example 1 and 5.2 [N / 25 mm] in Comparative Example 1, and the CD5% strength was 2.7 [N] in Example 1. / 25 mm] and Comparative Example 1 was 1.2 [N / 25 mm]. In addition, the MD5% strength / CD5% strength was 1.6 in Example 1 and 4.3 in Comparative Example 1. From this, it can be seen that in comparison with Comparative Example 1, Example 1 has suppressed strength reduction and improved uniformity.
従って、本実施の形態に係る不織布の製造装置及び製造方法は、強度低下が抑制されかつ均一性が向上された不織布を製造するのに好適である。また、本実施の形態に係る不織布の製造装置及び製造方法は、機械方向と垂直な方向(CD方向)に5%伸長時の強度(CD5%強度)に対する機械方向(MD方向)に5%伸長時の強度(MD5%強度)の比(MD5%強度/CD5%強度)が2.0以下である不織布の製造に好適である。 Therefore, the non-woven fabric manufacturing apparatus and method according to the present embodiment are suitable for producing non-woven fabric in which strength reduction is suppressed and uniformity is improved. In addition, the nonwoven fabric manufacturing apparatus and method according to the present embodiment are 5% stretchable in the machine direction (MD direction) with respect to the strength (CD5% strength) at 5% stretch in the direction perpendicular to the machine direction (CD direction). It is suitable for the production of a nonwoven fabric having a strength (MD5% strength) ratio (MD5% strength / CD5% strength) of 2.0 or less.
さらに、本実施の形態における不織布の製造装置及び製造方法は、目付バラツキが好ましくは3.0〔%〕以下、より好ましくは2.5〔%〕以下の不織布の製造に好適である。
また、本実施の形態における不織布の製造装置及び製造方法は、機械方向に伸長時の最大強度(MD強度)が37.5〔N/25mm〕以上、より好ましく、さらに好ましくは40.0〔N/25mm〕、最も好ましくは42.5〔N/25mm〕である不織布の製造に好適である。
Furthermore, the nonwoven fabric manufacturing apparatus and method according to the present embodiment are suitable for manufacturing a nonwoven fabric having a unit weight variation of preferably 3.0% or less, more preferably 2.5% or less.
Further, in the nonwoven fabric manufacturing apparatus and manufacturing method according to the present embodiment, the maximum strength (MD strength) when stretched in the machine direction is 37.5 [N / 25 mm] or more, more preferably 40.0 [N. / 25 mm], most preferably 42.5 [N / 25 mm].
日本国特許出願2016−020144号の開示はその全体が参照により本明細書に取り込まれる。
本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2016-020144 is incorporated herein by reference in its entirety.
All publications, patent applications, and technical standards mentioned herein are to the same extent as if each individual publication, patent application, and technical standard were specifically and individually noted to be incorporated by reference, Incorporated herein by reference.
10 製造装置
12 紡出部
14 冷却部
16 延伸部
18 捕集部
20 拡散部
32 移動帯
32A 捕集面
34 噴出ノズル
36 拡散空間
38 搬送流
40 副ノズル
44 気流層
10 Manufacturing Equipment 12 Spinning Section 14 Cooling Section 16 Stretching Section 18 Collection Section 20 Diffusion Section 32 Moving Zone 32A Collection Surface 34 Jet Nozzle 36 Diffusion Space 38 Transport Stream 40 Sub-Nozzle 44 Airflow Layer
Claims (2)
The spunbonded nonwoven fabric according to claim 1, which has a maximum strength of 35.0 (N / 25 mm) or more when stretched in the machine direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021181335A JP2022010113A (en) | 2016-03-30 | 2021-11-05 | Spun-bonded non-woven fabric |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016068804 | 2016-03-30 | ||
JP2016068804 | 2016-03-30 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018509251A Division JPWO2017170241A1 (en) | 2016-03-30 | 2017-03-24 | Nonwoven fabric manufacturing apparatus, nonwoven fabric manufacturing method, and nonwoven fabric |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021181335A Division JP2022010113A (en) | 2016-03-30 | 2021-11-05 | Spun-bonded non-woven fabric |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020073749A true JP2020073749A (en) | 2020-05-14 |
Family
ID=59965631
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018509251A Pending JPWO2017170241A1 (en) | 2016-03-30 | 2017-03-24 | Nonwoven fabric manufacturing apparatus, nonwoven fabric manufacturing method, and nonwoven fabric |
JP2020017313A Pending JP2020073749A (en) | 2016-03-30 | 2020-02-04 | Spun-bonded non-woven fabric |
JP2021181335A Pending JP2022010113A (en) | 2016-03-30 | 2021-11-05 | Spun-bonded non-woven fabric |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018509251A Pending JPWO2017170241A1 (en) | 2016-03-30 | 2017-03-24 | Nonwoven fabric manufacturing apparatus, nonwoven fabric manufacturing method, and nonwoven fabric |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021181335A Pending JP2022010113A (en) | 2016-03-30 | 2021-11-05 | Spun-bonded non-woven fabric |
Country Status (8)
Country | Link |
---|---|
US (1) | US20190106821A1 (en) |
EP (1) | EP3438339B1 (en) |
JP (3) | JPWO2017170241A1 (en) |
KR (1) | KR20180117183A (en) |
CN (1) | CN108884618B (en) |
DK (1) | DK3438339T3 (en) |
MY (1) | MY194230A (en) |
WO (1) | WO2017170241A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111254587A (en) * | 2020-04-21 | 2020-06-09 | 大连天马可溶制品有限公司 | Triangular box type net laying device |
CN114075718A (en) * | 2021-11-15 | 2022-02-22 | 大连瑞源非织造布有限公司 | Water-absorbing composite non-woven fabric and manufacturing method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60155764A (en) * | 1984-01-25 | 1985-08-15 | 旭化成株式会社 | Production of non-woven web |
JPH09324356A (en) * | 1996-06-07 | 1997-12-16 | Teijin Ltd | Production of filament web |
JP2003119625A (en) * | 2001-08-09 | 2003-04-23 | Ube Nitto Kasei Co Ltd | Fiber for nonwoven fabric and the resultant nonwoven fabric and method for producing them |
WO2009017086A1 (en) * | 2007-07-31 | 2009-02-05 | Toray Industries, Inc. | Support for separation membrane, and method for production thereof |
WO2011122277A1 (en) * | 2010-03-30 | 2011-10-06 | 三井化学株式会社 | Nonwoven fabric |
WO2011129211A1 (en) * | 2010-04-16 | 2011-10-20 | 三井化学株式会社 | Composite crimp fiber, and non-woven fabric comprising the fiber |
JP2011241510A (en) * | 2010-05-19 | 2011-12-01 | Toyota Boshoku Corp | Melt-spinning method and melt-spinning apparatus |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4332345C2 (en) * | 1993-09-23 | 1995-09-14 | Reifenhaeuser Masch | Process and fleece blowing system for the production of a spunbonded web with high filament speed |
DE19504953C2 (en) * | 1995-02-15 | 1999-05-20 | Reifenhaeuser Masch | Plant for the production of a spunbonded nonwoven web from thermoplastic continuous filaments |
JPH08246319A (en) * | 1995-03-07 | 1996-09-24 | New Oji Paper Co Ltd | Production unit for spunbonded nonwoven fabric |
FR2792656B1 (en) * | 1999-04-23 | 2001-06-01 | Icbt Perfojet Sa | DEVICE FOR PROVIDING THE OPENING AND DISTRIBUTION OF A FILM HARNESS DURING THE PRODUCTION OF A NONWOVEN TEXTILE TABLECLOTH |
JP4191364B2 (en) * | 1999-04-26 | 2008-12-03 | ユニチカ株式会社 | Method for producing non-woven fabric for hook-and-loop fastener female material |
JP3335949B2 (en) * | 1999-05-27 | 2002-10-21 | 有限会社末富エンジニアリング | Melt blown nonwoven spinning die |
DE502004004519D1 (en) * | 2004-09-17 | 2007-09-13 | Reifenhaeuser Gmbh & Co Kg | Device for producing filaments of thermoplastic material |
US7807591B2 (en) * | 2006-07-31 | 2010-10-05 | 3M Innovative Properties Company | Fibrous web comprising microfibers dispersed among bonded meltspun fibers |
EP2584076B1 (en) * | 2011-10-22 | 2017-01-11 | Oerlikon Textile GmbH & Co. KG | Device and method for guiding and depositing synthetic filaments onto a non-woven fabric |
JP6238806B2 (en) * | 2014-03-24 | 2017-11-29 | 日本バイリーン株式会社 | Ultrafine fiber nonwoven fabric and nonwoven fabric manufacturing equipment |
-
2017
- 2017-03-24 KR KR1020187028246A patent/KR20180117183A/en not_active Application Discontinuation
- 2017-03-24 WO PCT/JP2017/012062 patent/WO2017170241A1/en active Application Filing
- 2017-03-24 JP JP2018509251A patent/JPWO2017170241A1/en active Pending
- 2017-03-24 EP EP17774778.9A patent/EP3438339B1/en active Active
- 2017-03-24 US US16/089,266 patent/US20190106821A1/en not_active Abandoned
- 2017-03-24 DK DK17774778.9T patent/DK3438339T3/en active
- 2017-03-24 MY MYPI2018703555A patent/MY194230A/en unknown
- 2017-03-24 CN CN201780021229.5A patent/CN108884618B/en active Active
-
2020
- 2020-02-04 JP JP2020017313A patent/JP2020073749A/en active Pending
-
2021
- 2021-11-05 JP JP2021181335A patent/JP2022010113A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60155764A (en) * | 1984-01-25 | 1985-08-15 | 旭化成株式会社 | Production of non-woven web |
JPH09324356A (en) * | 1996-06-07 | 1997-12-16 | Teijin Ltd | Production of filament web |
JP2003119625A (en) * | 2001-08-09 | 2003-04-23 | Ube Nitto Kasei Co Ltd | Fiber for nonwoven fabric and the resultant nonwoven fabric and method for producing them |
WO2009017086A1 (en) * | 2007-07-31 | 2009-02-05 | Toray Industries, Inc. | Support for separation membrane, and method for production thereof |
WO2011122277A1 (en) * | 2010-03-30 | 2011-10-06 | 三井化学株式会社 | Nonwoven fabric |
WO2011129211A1 (en) * | 2010-04-16 | 2011-10-20 | 三井化学株式会社 | Composite crimp fiber, and non-woven fabric comprising the fiber |
JP2011241510A (en) * | 2010-05-19 | 2011-12-01 | Toyota Boshoku Corp | Melt-spinning method and melt-spinning apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017170241A1 (en) | 2018-10-04 |
EP3438339A4 (en) | 2019-08-21 |
DK3438339T3 (en) | 2021-04-26 |
MY194230A (en) | 2022-11-23 |
EP3438339B1 (en) | 2021-03-24 |
WO2017170241A1 (en) | 2017-10-05 |
KR20180117183A (en) | 2018-10-26 |
CN108884618B (en) | 2021-10-26 |
CN108884618A (en) | 2018-11-23 |
US20190106821A1 (en) | 2019-04-11 |
EP3438339A1 (en) | 2019-02-06 |
JP2022010113A (en) | 2022-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9303334B2 (en) | Apparatus for forming a non-woven web | |
US8246898B2 (en) | Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit | |
JP2020122256A (en) | Nonwoven web | |
US9309612B2 (en) | Process for forming a non-woven web | |
JP2022010113A (en) | Spun-bonded non-woven fabric | |
US11598026B2 (en) | Spun-blown non-woven web | |
US20150322602A1 (en) | Non-woven web | |
JP6842577B2 (en) | Non-woven fabric manufacturing equipment and non-woven fabric manufacturing method | |
JP2002371428A (en) | Yarn-drawing apparatus | |
WO2019018254A1 (en) | A spun-blown non-woven web | |
JPH10183455A (en) | Production of nonwoven web comprising continuous filaments | |
JPS63282350A (en) | Production of bulky long fiber nonwoven fabric | |
JP2001303420A (en) | Method for producing highly uniform nonwoven fabric and device therefor | |
JPH08246319A (en) | Production unit for spunbonded nonwoven fabric | |
JPH07324270A (en) | Production of nonwoven web comprising continuous filament |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210518 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210810 |