WO2017169953A1 - Mounting device and mounting method - Google Patents

Mounting device and mounting method Download PDF

Info

Publication number
WO2017169953A1
WO2017169953A1 PCT/JP2017/011110 JP2017011110W WO2017169953A1 WO 2017169953 A1 WO2017169953 A1 WO 2017169953A1 JP 2017011110 W JP2017011110 W JP 2017011110W WO 2017169953 A1 WO2017169953 A1 WO 2017169953A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
layer
data
reference mark
alignment
Prior art date
Application number
PCT/JP2017/011110
Other languages
French (fr)
Japanese (ja)
Inventor
寺田 勝美
祐樹 真下
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to KR1020187027599A priority Critical patent/KR102319865B1/en
Priority to CN201780032768.9A priority patent/CN109314065B/en
Publication of WO2017169953A1 publication Critical patent/WO2017169953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0413Pick-and-place heads or apparatus, e.g. with jaws with orientation of the component while holding it; Drive mechanisms for gripping tools, e.g. lifting, lowering or turning of gripping tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0815Controlling of component placement on the substrate during or after manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75753Means for optical alignment, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7598Apparatus for connecting with bump connectors or layer connectors specially adapted for batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8113Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/81132Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed outside the semiconductor or solid-state body, i.e. "off-chip"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81908Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • the present invention relates to a mounting apparatus and a mounting method in three-dimensional mounting in which workpieces such as semiconductor elements are sequentially stacked and bonded in the vertical direction.
  • a COC method Chip on Chip
  • a COW method in which chips are sequentially stacked on a wafer.
  • Chip on Wafer a semiconductor chip component
  • WOW method Wafer on Wafer in which wafers are sequentially stacked on the wafer.
  • the upper layer bonded objects are sequentially bonded in a state where the position of the electrode of the upper layer bonded object is aligned with the position of the electrode (including the bump) of the lower layer bonded object.
  • the position of the lower object for example, the position of the electrode or the position of the alignment mark
  • the position of the upper layer object to be stacked on the lower layer object to be recognized is aligned with the position of the lower object to be recognized by the camera), and the position of the upper layer object to be stacked is recognized from above by the recognition means.
  • a two-view camera composed of an integrated housing having recognition means in two upper and lower views is used for recognizing bump position information.
  • the two-field camera is inserted between the objects to be joined.
  • the upper-field recognition camera uses the upper-field object recognition mark, and the lower-field recognition camera aligns the lower object-to-be-joined. Each mark is image-recognized.
  • the position of the lower layer electrode is memorized using the recognition camera for the lower field of view of the two-field camera, and the position of the upper layer electrode is measured after the upper layer object is joined.
  • the position information of the lower layer electrode and the position information of the upper layer electrode are compared and the displacement of the electrode is obtained, the housing supporting the two-field camera is accurately affected by the ambient temperature in the apparatus. There is a problem that electrode displacement cannot be measured.
  • the atmosphere temperature in the apparatus is set so that the temperature of the bonding heater is 280 ° C. or higher and the temperature of the substrate holding stage is about 100 ° C. Therefore, the housing of the two-field camera gradually expands due to the heat in the apparatus, and the position of the upper layer electrode is increased by the amount of thermal expansion from the coordinate position when the position of the lower layer electrode is recognized and stored. As a result, an error occurs in the measurement result of the electrode displacement.
  • the alignment mark provided in the lower layer is covered with the objects to be bonded and cannot be recognized after mounting. Is big.
  • an object of the present invention is to provide a mounting device and a mounting device capable of measuring the positional deviation information of the lower layer and the upper layer without being affected by the ambient temperature and correcting the stacking position in the mounting device for stacking the objects to be bonded such as semiconductor elements.
  • a method will be provided.
  • the mounting apparatus includes a control unit having a function of measuring a positional shift of the recognition means for the lower layer and correcting a position where the objects to be bonded are sequentially stacked.
  • the invention according to claim 2 is the invention according to claim 1, This is a mounting device provided with a two-field camera in which the lower layer recognition means and the upper layer recognition means are constituted by an integrated casing.
  • a mounting apparatus comprising the temperature sensor for measuring an ambient temperature inside the two-field camera according to the second aspect of the present invention.
  • the invention according to claim 4 A mounting method in a mounting apparatus used for three-dimensional mounting in which workpieces such as semiconductor elements are sequentially stacked and bonded in the vertical direction, A holding stage for holding a workpiece corresponding to the lowermost layer; A bonding head for holding a workpiece to be sequentially stacked on the bottom layer; Lower layer recognition means for recognizing the alignment mark attached to the lower layer workpiece; An upper layer recognition means for recognizing an alignment mark attached to the upper layer bonded portion;
  • a mounting apparatus comprising: Prior to the work of sequentially stacking the objects to be joined, the step of recognizing the reference mark provided on the holding stage with the lower layer recognition means, and storing the image recognition information of the reference mark as the position information of the reference mark before mounting; The lower layer recognition means recognizes an image of the alignment mark of the workpiece corresponding to the lowermost layer held on the holding stage and the alignment mark provided on the upper layer side of the workpiece to be laminated on the upper layer of the workpiece.
  • the step of storing the reference mark data during mounting the step of storing the upper layer correction alignment data, and the step of bonding the object to be bonded to the upper layer of the object to be bonded are repeated.
  • the invention according to claim 5 is the invention according to claim 4,
  • the reference mark provided on the holding stage is image-recognized by the lower-layer recognition means from the data of the temperature sensor provided in the two-field camera in which the lower-layer recognition means and the upper-layer recognition means are constituted by an integrated housing. And measuring the horizontal extension of the recognition means for the lower layer using the previous mounting reference mark data and storing it as misalignment data without performing the step of storing as mounting reference mark data. Implementation method.
  • the lower layer recognizing means measures the alignment accuracy after mounting of the objects to be joined sequentially stacked on the lowermost layer, and the reference mark provided on the holding stage is an image. It has a control unit that recognizes and measures the positional deviation of the recognition means for the lower layer from the image recognition result of the reference mark and corrects the position where the objects to be joined are sequentially stacked. Information can be measured without being affected by the ambient temperature, and the stacking position can be corrected.
  • the measurement can be performed efficiently.
  • the temperature sensor for measuring the ambient temperature since the temperature sensor for measuring the ambient temperature is provided inside the two-view camera, the horizontal extension of the two-view camera with respect to the ambient temperature can be measured. Since the timing for measuring the reference mark can be estimated in advance from the relationship between the measured temperature and elongation, the reference mark can be measured efficiently and the production efficiency can be increased.
  • the reference mark provided on the holding stage is image-recognized, the pre-mounting reference mark data and the mounting reference mark data are stored, and the horizontal extension of the lower layer recognition means is measured to determine the position. It is stored as deviation data. Then, the alignment mark of the object to be laminated next is image-recognized by the upper-layer recognition means, and the position-recognition data is corrected and stored as upper-layer correction alignment data. It is possible to measure the positional deviation information between the lower layer and the upper layer without being affected by the ambient temperature and correct the stacking position.
  • the lower-layer recognition means and the upper-layer recognition means are provided on the holding stage from the data of the temperature sensor provided in the two-field camera configured by an integral housing. Recognize the image of the reference mark with the lower layer recognition means and measure the horizontal elongation of the lower layer recognition means using the previous mounting reference mark data without performing the process of storing the reference mark data as mounting reference mark data. And the step of storing as misregistration data, the reference mark can be measured efficiently and the production efficiency can be increased.
  • the mounting apparatus 1 includes a bonding head 10 that presses and heats a semiconductor chip component 4 (hereinafter referred to as a chip component) as a bonded object to a wafer 2 as a bonded object, and a holding stage 20 that holds the wafer 2 by suction.
  • the holding stage 20 is provided with a reference mark 60 as shown in FIG.
  • the reference mark 60 may be provided at any position as long as it moves integrally with the holding stage 20, but is preferably provided at a position adjacent to the wafer 2 held by suction.
  • the holding stage 20 is movable in the XY directions and is driven by a driving means (not shown).
  • the wafer 2 is provided with a plurality of mounting locations (indicated by reference numerals 2a, 2b, 2c,... In FIG. 3). Alignment marks (indicated by reference numerals 3a, 3b, 3c,... In FIG. 3) are attached to the individual mounting locations.
  • Alignment marks 5a and 5b are respectively attached to the back surface (the surface bonded to the wafer 2) and the front surface (the surface held by the bonding head 10) of the chip component 4 as shown in FIG.
  • the alignment mark 5a is attached to the back surface (the surface bonded to the wafer 2)
  • the alignment mark 5b is attached to the front surface (the surface held by the bonding head 10).
  • the alignment mark 5b is indicated by a dotted line.
  • the two-field camera 30 includes an upper field of view 31 for recognizing the alignment mark 5 a attached to the chip component 4 held by the bonding head 10, and the alignment marks 3 a, 3 b of the wafer 2 held by the holding stage 20.
  • the two-field recognition means 30 is supported by a housing 33, and a temperature sensor 35 for measuring the ambient temperature is attached inside the housing 33.
  • the upper visual field 31 corresponds to the upper layer recognition means of the present invention, and the lower visual field 32 corresponds to the lower layer recognition means.
  • the two-field camera 30 is movable in the XY direction and the Z direction and is driven by a driving means (not shown) and is provided with position detection means such as a linear encoder.
  • the bonding head 10 is movable in the Z direction (vertical direction) and the ⁇ direction (horizontal rotation direction), and is configured to suck and hold the chip component 4 and press it against the wafer 2 with a predetermined pressure.
  • the conveying means 25 includes a chip slider 26 that horizontally moves between the lower side of the bonding head 10 and a supply part of the chip component 4 (not shown).
  • the control unit 50 determines the position of the holding stage 20 based on the position information obtained from the driving means of the two-field camera 30 and the position information of the alignment marks of the wafer 2 and the chip component 4 that recognize the image of the two-field camera 30. Control is performed to press the bonding head 10 against the wafer 2 with a predetermined pressure.
  • the two-field camera 30 recognizes an image of the reference mark 60 provided on the holding stage 20 and stores initial position information P0 before mounting work, and measures the positional accuracy of the wafer 2 and the chip component 4 after mounting. Before performing the above, the image of the reference mark 60 is periodically recognized to acquire the position information P1.
  • the control unit 50 stores the relationship between the temperature and the extension of the casing from the data of the temperature sensor 35 provided in the casing 33 and the data of the thermal expansion amount of the casing 33.
  • the wafer 2 is sucked and held on the holding stage 20 (step ST01).
  • the transport means 25 horizontally transports the chip component 4 from the chip supply unit using the chip slider 26, lowers the bonding head 10 to a predetermined height, and delivers the chip component 4 from the chip slider 26 to the bonding head 10.
  • the bonding head 10 rises to the height of the standby position, and the chip slider 26 moves to the chip supply unit (step ST02).
  • the two-field camera 30 is inserted between the bonding head 10 and the holding stage 20.
  • the holding stage 20 is moved horizontally so that the reference mark 60 enters the lower visual field 32 of the two-field camera 30.
  • Data obtained by image recognition with the lower visual field 32 is stored in the control unit 50 as initial position information P0 of the position information of the pre-mounting reference mark (step ST03).
  • the holding stage 10 is moved horizontally so that the mounting portion 2a of the wafer 2 comes below the bonding head 10.
  • the wafer 2 is provided with a plurality of mounting positions.
  • the chip component 4 is mounted from the mounting location 2a (step ST04).
  • the alignment mark 5a of the chip component 4 held by suction on the bonding head 10 is image-recognized by the upper visual field 31, and the alignment mark 3a of the mounting portion 2a of the wafer 2 is image-recognized by the lower visual field 32.
  • the alignment mark 3a of the wafer 2 is stored in the control unit 50 as the lowermost layer alignment data 72a, and the alignment mark 5a of the chip component 4 is stored in the control unit 50 as the upper layer alignment data 73a (step ST05). .
  • the two-field camera 30 is moved to the standby position, and the holding stage 20 is aligned in the XY direction and the bonding head 10 is aligned in the ⁇ direction from the lowermost layer alignment data 72a and the upper layer alignment data 73a (step ST06).
  • step ST07 the bonding head 10 is lowered, and the chip component 4 is pressed and heated at the target mounting location of the wafer 2 (step ST07).
  • the bonding head 10 is raised to the standby position.
  • the holding stage 20 is moved in the XY directions so that the mounting location 2b to be mounted next comes below the bonding head 10 (step ST08).
  • the chip slider 26 of the transport means 25 horizontally transports the chip component 4 from the chip supply unit to the bonding head 10, the bonding head 10 is lowered to a predetermined height, and the chip component 4 to be mounted next is transferred from the chip slider 26. It is delivered to the bonding head 10. When the delivery is completed, the bonding head 10 rises to the height of the standby position, and the chip slider 26 moves to the chip supply unit (step ST09).
  • the two-field camera 30 is inserted between the bonding head 10 and the holding stage 20 (step ST10).
  • step ST05 to step ST10 are repeated, and the chip components 4 are mounted on all mounting portions of the wafer 2.
  • the mounting location is moved to 2b, 2c,...
  • the alignment mark is moved to 3b, 3c,...
  • the lowermost alignment data is also transferred to the control unit 50 as 72a, 72b, 72c,.
  • the upper layer alignment data is also stored in the controller 50 as 73a, 73b, 73c,.
  • step ST03 Since the housing 33 of the two-field camera 30 is thermally expanded due to an increase in the ambient temperature due to the mounting operation, the position of the reference mark 60 that is image-recognized in the lower field of view 32 is shifted from the position recognized in step ST03. Recognized.
  • the control unit 50 stores the position of the reference mark 60 as reference position information P1 after thermal expansion, calculates the difference from the position information P0 of the initial pre-mounting reference mark stored in step ST03, and outputs the difference data P2. Store (step ST12).
  • the holding stage 10 is moved horizontally so that the mounting location 2a of the wafer 2 is located below the bonding head 10. Since the chip part 4 is mounted on the mounting location 2a, the image of the alignment mark 3a cannot be recognized. Therefore, the measurement of the mounting position accuracy of the chip component 4 mounted on the mounting location 2a is performed by measuring the surface position of the chip component 4 (chip component 4 mounted in step ST07) already mounted in the lower field of view 32 of the two-field camera 30. Using the position information obtained by image recognition of the alignment mark 5b and the lowermost layer alignment data 72a stored in step ST05, the control unit 50 uses the chip component 4 already mounted (chip component 4 mounted in step ST07). ) Is calculated.
  • the mounting position data P2 obtained in step ST12 is used. Correct the deviation.
  • the corrected mounting position deviation data is stored in the control unit 50 as upper layer corrected alignment data P3 (step ST13).
  • the image of the alignment mark 5a of the chip component 4 attracted and held by the bonding head 10 is recognized by the upper visual field 31, and the alignment mark 5b on the surface of the chip component 4 mounted on the mounting portion 2a of the wafer 2 is moved downward.
  • An image is recognized in the field of view 32.
  • the position information of the alignment mark 5a of the chip component 4 is stored in the control unit 50 as the upper layer alignment data 73a (step ST14).
  • the two-field camera 30 is moved to the standby position, and the holding stage 20 is moved in the XY direction and the bonding head 10 is moved in the ⁇ direction from the lowermost layer alignment data 72a, the upper layer alignment data 73a, and the upper layer correction alignment data P3. Alignment is performed (step ST15).
  • step ST16 the bonding head 10 is lowered, and the chip component 4 is pressed and heated on the mounting location 2a to be stacked and mounted.
  • the bonding head 10 is raised to the standby position.
  • the holding stage 20 is moved in the XY directions so that the mounting location 2b to be mounted next comes below the bonding head 10 (step ST17).
  • the chip slider 26 of the transport means 25 horizontally transports the chip component 4 from the chip supply unit to the bonding head 10, the bonding head 10 is lowered to a predetermined height, and the chip component 4 to be mounted next is transferred from the chip slider 26. It is delivered to the bonding head 10. When the delivery is completed, the bonding head 10 rises to the height of the standby position, and the chip slider 26 moves to the chip supply unit (step ST18).
  • the two-field camera 30 is inserted between the bonding head 10 and the holding stage 20 (step ST19).
  • step ST13 to step ST19 are repeated, and the chip components 4 are stacked and mounted at the mounting locations.
  • the mounting location moves to 2b, 2c, and the alignment mark also moves to 3b, 3c, and so on.
  • the process moves to the next step (step ST20).
  • step ST21 the stacked mounting of the chip component 4 on the wafer 2 is finished.
  • the reference mark 60 is image-recognized by the lower visual field 32 of the two-field camera 30, and the reference mark data position information before mounting. Since the positional deviation data P2 is created by comparing P0 and the reference position information P1 after thermal expansion, the stack mounting is performed by correcting the expansion due to the thermal expansion of the housing 33 of the two-field camera 30 due to the change in the ambient temperature. Can do.
  • the image recognition of the fiducial mark may not be performed every time the stacked mounting is performed after the ambient temperature has been saturated.
  • the timing of image recognition can be omitted as appropriate from the data of the temperature sensor 35 provided in the housing 33 of the two-view camera 30 and the data of the elongation due to the thermal expansion of the housing.
  • step ST15 When the upper layer correction alignment data P3 measured in step ST13 is added in step ST15, it is added to the mounting location after n times using the average value of data acquired n times successively in the order of the mounting location. May be. By doing so, it is possible to minimize the influence of abnormal data due to measurement variations and sudden deviations.
  • FIG. 6 is a schematic side view of the mounting apparatus 100.
  • the reference numerals used in the mounting apparatus 1 are used in the mounting apparatus 100.
  • the reference mark 60 is provided on the holding stage 20, but in the mounting apparatus 100, the reference mark 61 is provided at the tip of the bracket 11 attached to the bonding head 10.
  • the fiducial mark 60 is image-recognized by the lower visual field 32 of the two-field camera 30, but in the second embodiment, the fiducial mark 61 is image-recognized by the upper visual field 31. Accordingly, steps ST03 and ST12 of the first embodiment are changed as shown below. Other steps are the same as those in the first embodiment.
  • Step ST03 is “insert the two-field camera 30 between the bonding head 10 and the holding stage 20.
  • the two-field camera 30 is moved so that the reference mark 61 enters the upper field 31 of the two-field camera 30.
  • the position information of the pre-mounting reference mark obtained by image recognition in the field of view 31 is stored in the control unit 50 as the initial position information P0 (step ST03a) ”.
  • step ST12 “the two-field camera 30 is moved to the same location as step ST03.
  • the housing 33 of the two-field camera 30 is thermally expanded due to the increase in the ambient temperature due to the mounting operation.
  • the position of the reference mark 61 is recognized at a position shifted from the position recognized in step ST03a, and the control unit 50 stores the position of the reference mark 61 as reference position information P1 after thermal expansion, and in step ST03a.
  • the difference from the stored initial pre-mounting reference mark position information P0 is calculated and stored as positional deviation data P2 (step ST12a).
  • the second embodiment can achieve the same effect as the first embodiment.
  • the two-view camera 30 is configured by an integrated housing having a recognition unit for two views, but the lower view 32 for recognizing the wafer 2 side and the upper view 31 for recognizing the chip component 4 side. Even in the case of the configuration in which each is separated, the post-mounting accuracy can be measured with the lower visual field 32. Therefore, even when the casing for fixing the lower visual field 32 is deformed due to thermal expansion, the reference mark 60 on the holding stage 20 side is provided. By recognizing, the amount of change in the optical axis due to thermal expansion can be obtained, and the same effect can be achieved.
  • the alignment marks 3a of the wafer 2 and the chip component 4 are respectively provided. Since 5a and 5b can be recognized synchronously, high-speed and high-precision mounting is possible.
  • the top of the penetrating electrode at the same arrangement position may be used above and below the chip component 4 to be laminated other than the alignment marks 3a, 5a and 5b. By doing so, it is possible to measure the alignment accuracy between the electrodes that transmit the electric signal with high accuracy, so that higher quality bonding can be performed.

Abstract

Provided are a mounting device and a mounting method whereby, in a mounting device which stacks items to be bonded, such as semiconductor elements, a stacking position can be corrected by measuring position error information about a lower layer and an upper layer, without being influenced by the ambient temperature. Specifically, the mounting device is provided with: a hold stage which holds an item to be bonded corresponding to the lowermost layer; a bonding head which holds items to be bonded that are to be successively stacked on the lowermost layer; a lower layer recognition means which recognizes a positioning mark attached to a lower-layer item to be bonded; and an upper layer recognition means which recognizes a positioning mark attached to an upper-layer item to be bonded. The mounting device is provided with a control unit that has the function of the lower layer recognition means measuring the positioning accuracy after mounting of the items to be bonded, which are successively stacked on the lowermost layer, and the function of recognizing an image of the reference mark provided to the hold stage, measuring a position error of the lower layer recognition means from the result of reference mark image recognition, and correcting the position for successive stacking of the items to be bonded.

Description

実装装置および実装方法Mounting apparatus and mounting method
 本発明は、半導体素子などの被接合物を上下方向に順次積層して接合していく3次元実装における、実装装置および実装方法に関する。 The present invention relates to a mounting apparatus and a mounting method in three-dimensional mounting in which workpieces such as semiconductor elements are sequentially stacked and bonded in the vertical direction.
 半導体素子の3次元実装方法として、半導体チップ部品(以下、チップと呼ぶ)の上にチップを順次積層していくCOC工法(Chip on Chip)、ウエハの上にチップを順次積層していくCOW工法(Chip on Wafer)、ウエハの上にウエハを順次積層していくWOW工法(Wafer on Wafer)などがある。いずれの3次元実装方法においても、下層の被接合物の電極(バンプを含む)の位置に対して上層の被接合物の電極の位置を合わせた状態で上層被接合物を順次、接合していく必要がある(例えば特許文献1)。 As a three-dimensional mounting method of a semiconductor element, a COC method (Chip on Chip) in which chips are sequentially stacked on a semiconductor chip component (hereinafter referred to as a chip), and a COW method in which chips are sequentially stacked on a wafer. (Chip on Wafer), and WOW method (Wafer on Wafer) in which wafers are sequentially stacked on the wafer. In any of the three-dimensional mounting methods, the upper layer bonded objects are sequentially bonded in a state where the position of the electrode of the upper layer bonded object is aligned with the position of the electrode (including the bump) of the lower layer bonded object. (For example, patent document 1).
 このような3次元実装においては、従来、上層被接合物を順次積層するに際し、下層の被接合物の位置(例えば、その電極の位置やアライメントマークの位置)を上方から認識手段(例えば、CCDカメラ)で認識し、認識した下層の被接合物の位置を基準にその上に積層される上層被接合物の位置を合わせ、積層した上層被接合物の位置を上方から認識手段で認識し、認識した被接合物の位置を基準にその上に積層される上層被接合物の位置を合わせ、これらの動作を必要回数順次繰り返すことで、順次積層されていく上層被接合物の位置合わせを行っていた。 In such a three-dimensional mounting, conventionally, when the upper layer objects are sequentially stacked, the position of the lower object (for example, the position of the electrode or the position of the alignment mark) is recognized from above (for example, a CCD). The position of the upper layer object to be stacked on the lower layer object to be recognized is aligned with the position of the lower object to be recognized by the camera), and the position of the upper layer object to be stacked is recognized from above by the recognition means. By aligning the position of the upper layer object to be laminated on the recognized position of the object to be joined and repeating these operations as many times as necessary, the position of the upper layer object to be sequentially laminated is adjusted. It was.
 このような積層方法に対して、下層の被接合物の電極に対して、上層被接合物を精度良く積層するために、下層の電極の位置を記憶して、上層被接合物を接合したあとの上層被接合物の上方からの電極の位置情報と前記の下層の電極の位置情報を比較して、そのずれ量をオフセット値として次に積層される上層被接合物の積層位置を修正する方法が知られている(例えば、特許文献2)。 For such a stacking method, in order to accurately stack the upper layer bonded object to the electrode of the lower layer bonded object, after memorizing the position of the lower layer electrode and bonding the upper layer bonded object A method of comparing the position information of the electrode from above the upper layer object to be bonded and the position information of the lower layer electrode, and correcting the stacking position of the upper layer object to be stacked next with the deviation amount as an offset value Is known (for example, Patent Document 2).
特開2009-110995号公報JP 2009-110995 A 特開2014-17471号公報JP 2014-17471 A
 上記のような方法で上層被接合物を積層する場合、バンプの位置情報の認識には、上下2視野に認識手段を備えた一体型の筐体で構成された2視野カメラが用いられている。2視野カメラは、被接合物同士の間に挿入され、上側の視野の認識カメラで上側の被接合物の位置合わせマークを、下側の視野の認識カメラで下側の被接合物の位置合わせマークをそれぞれ画像認識している。 When the upper-layer object is stacked by the above-described method, a two-view camera composed of an integrated housing having recognition means in two upper and lower views is used for recognizing bump position information. . The two-field camera is inserted between the objects to be joined. The upper-field recognition camera uses the upper-field object recognition mark, and the lower-field recognition camera aligns the lower object-to-be-joined. Each mark is image-recognized.
 特許文献2に開示されているように、2視野カメラの下側の視野の認識カメラを用いて、下層の電極の位置を記憶し、上層被接合物を接合したあと上層の電極の位置を測定し、下層の電極の位置情報と上層の電極の位置情報を比較し、電極のずれを求める場合、2視野カメラを支持する筺体が、装置内の雰囲気温度の影響を受け正確に下層と上層の電極のずれを測定できない問題がある。 As disclosed in Patent Document 2, the position of the lower layer electrode is memorized using the recognition camera for the lower field of view of the two-field camera, and the position of the upper layer electrode is measured after the upper layer object is joined. When the position information of the lower layer electrode and the position information of the upper layer electrode are compared and the displacement of the electrode is obtained, the housing supporting the two-field camera is accurately affected by the ambient temperature in the apparatus. There is a problem that electrode displacement cannot be measured.
 装置内の雰囲気温度は、例えば、TCB工法の場合、ボンディングヒータの温度は280℃以上、基盤保持ステージの温度は100℃程度の温度設定となっている。そのため、2視野カメラの筺体が装置内の熱の影響により徐々に熱膨張し、上層の電極の位置は下層の電極の位置を認識し記憶した時の座標位置から熱膨張の分だけ伸び分が加算されることになり、電極のずれの測定結果に誤差を生じさせることになる。 For example, in the case of the TCB method, the atmosphere temperature in the apparatus is set so that the temperature of the bonding heater is 280 ° C. or higher and the temperature of the substrate holding stage is about 100 ° C. Therefore, the housing of the two-field camera gradually expands due to the heat in the apparatus, and the position of the upper layer electrode is increased by the amount of thermal expansion from the coordinate position when the position of the lower layer electrode is recognized and stored. As a result, an error occurs in the measurement result of the electrode displacement.
 このような誤差を含んだ状態で、ずれ量をオフセット値として次に積層される上層被接合物の積層位置を修正すると、その誤差分の実装ずれを生じてしまい実装精度が悪化してしまう問題がある。 If the stacking position of the upper-layer object to be stacked next is corrected using the shift amount as an offset value in a state including such an error, a mounting shift corresponding to the error occurs and the mounting accuracy deteriorates. There is.
 また2視野カメラの筐体の熱膨張分をキャンセルされるまで、この誤差分の実装ズレをある許容値に収束するまで繰り返し行おうとすると、時間がかかり、また被接合物を無駄にしてしまう問題もある。 Also, until the thermal expansion of the housing of the two-field camera is cancelled, it takes time and wastes the object to be joined if it is repeated until the mounting deviation of this error converges to a certain allowable value. There is also.
 特に、被接合物を積層する3次元実装においては、下層に設けられた位置合わせマークが被接合物に覆われて実装後に認識できないため、2視野カメラの熱膨張による伸びは実装精度に与える影響が大きい。 In particular, in the three-dimensional mounting in which the objects to be bonded are stacked, the alignment mark provided in the lower layer is covered with the objects to be bonded and cannot be recognized after mounting. Is big.
 そこで、本発明の課題は、半導体素子などの被接合物を積層する実装装置において、下層と上層の位置ずれ情報を雰囲気温度の影響を受けることなく測定し積層位置を修正できる、実装装置および実装方法を提供することとする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a mounting device and a mounting device capable of measuring the positional deviation information of the lower layer and the upper layer without being affected by the ambient temperature and correcting the stacking position in the mounting device for stacking the objects to be bonded such as semiconductor elements. A method will be provided.
 本発明の課題を解決するために、請求項1に記載の発明は、
半導体素子などの被接合物を上下方向に順次積層して接合していく3次元実装に用いられる実装装置であって、
最下層に対応する被接合物を保持する保持ステージと、
最下層に順次積層していく被接合物を保持するボンディングヘッドと、
下層の被接合物に付された位置合わせマークを認識する下層用認識手段と、
上層の被接合部に付された位置合わせマークを認識する上層用認識手段と、を備え、
前記下層用認識手段が最下層に順次積層された被接合物の実装後の位置合わせ精度を測定する機能と、前記保持ステージに設けられた基準マークを画像認識し、基準マークの画像認識結果から下層用認識手段の位置ずれを測定し、被接合物を順次積層する位置を補正する機能とを有する制御部を備えた実装装置である。
In order to solve the problems of the present invention, the invention described in claim 1
A mounting device used for three-dimensional mounting in which workpieces such as semiconductor elements are sequentially stacked and joined in the vertical direction,
A holding stage for holding a workpiece corresponding to the lowermost layer;
A bonding head for holding a workpiece to be sequentially stacked on the bottom layer;
Lower layer recognition means for recognizing the alignment mark attached to the lower layer workpiece;
An upper layer recognizing means for recognizing an alignment mark attached to the bonded portion of the upper layer,
The lower layer recognizing means measures the alignment accuracy after mounting the object to be joined that is sequentially stacked on the lowermost layer, and recognizes the reference mark provided on the holding stage, and from the image recognition result of the reference mark The mounting apparatus includes a control unit having a function of measuring a positional shift of the recognition means for the lower layer and correcting a position where the objects to be bonded are sequentially stacked.
 請求項2に記載の発明は、請求項1に記載の発明において、
下層用認識手段と上層用認識手段を一体型の筐体で構成した2視野カメラを備えた実装装置である。
The invention according to claim 2 is the invention according to claim 1,
This is a mounting device provided with a two-field camera in which the lower layer recognition means and the upper layer recognition means are constituted by an integrated casing.
 請求項3に記載の発明は、請求項2に記載の発明において
前記2視野カメラの内部に周囲温度を測定する温度センサーを備えた実装装置である。
According to a third aspect of the present invention, there is provided a mounting apparatus comprising the temperature sensor for measuring an ambient temperature inside the two-field camera according to the second aspect of the present invention.
 請求項4に記載の発明は、
半導体素子などの被接合物を上下方向に順次積層して接合していく3次元実装に用いられる実装装置における実装方法であって、
最下層に対応する被接合物を保持する保持ステージと、
最下層に順次積層していく被接合物を保持するボンディングヘッドと、
下層の被接合物に付された位置合わせマークを認識する下層用認識手段と、
上層の被接合部に付された位置合わせマークを認識する上層用認識手段と、
を備えた実装装置において、
被接合物を順次積層する作業に先立ち、保持ステージに設けられた基準マークを下層用認識手段で画像認識し、基準マークの画像認識情報を実装前基準マークの位置情報として記憶する工程と、
保持ステージに保持された最下層に対応する被接合物の位置合わせマークおよび被接合物の上層に積層される被接合物の上層側に施された位置合わせマークを下層用認識手段で画像認識し下層の位置合わせデータとして記憶する工程と、
ボンディングヘッドに保持された被接合物の位置合わせマークを、上層用認識手段で画像認識し上層位置合わせデータとして記憶する工程と、
下層の位置合わせデータと上層の位置合わせデータにもとづいて、保持ステージもしくはボンディングヘッドを位置合わせした後、被接合物同士を接合する工程と、
積層実装後に、前記下層の位置合わせデータと積層実装された被接合物の上層部の位置合わせマークとから実装後の位置ずれを測定する工程と、
保持ステージに設けられた基準マークを下層用認識手段で画像認識し、実装中基準マークデータとして記憶する工程と、
実装前基準マークデータと実装中基準マークデータとから下層用認識手段の伸びを測定し位置ずれデータとして記憶する工程と、
ボンディングヘッドに保持された、次に積層される被接合物の位置合わせマークを上層用認識手段で画像認識し、画像認識されたデータに前記位置ずれデータの補正を加えて上層補正位置合わせデータとして記憶する工程を含み、
前記実装中基準マークデータを記憶する工程と、前記上層補正位置合わせデータを記憶する工程と、前記被接合物の上層に被接合物を接合する工程を繰り返す実装方法である。
The invention according to claim 4
A mounting method in a mounting apparatus used for three-dimensional mounting in which workpieces such as semiconductor elements are sequentially stacked and bonded in the vertical direction,
A holding stage for holding a workpiece corresponding to the lowermost layer;
A bonding head for holding a workpiece to be sequentially stacked on the bottom layer;
Lower layer recognition means for recognizing the alignment mark attached to the lower layer workpiece;
An upper layer recognition means for recognizing an alignment mark attached to the upper layer bonded portion;
In a mounting apparatus comprising:
Prior to the work of sequentially stacking the objects to be joined, the step of recognizing the reference mark provided on the holding stage with the lower layer recognition means, and storing the image recognition information of the reference mark as the position information of the reference mark before mounting;
The lower layer recognition means recognizes an image of the alignment mark of the workpiece corresponding to the lowermost layer held on the holding stage and the alignment mark provided on the upper layer side of the workpiece to be laminated on the upper layer of the workpiece. Storing as lower layer alignment data;
A step of recognizing an alignment mark of an object held by the bonding head by an upper layer recognition means and storing it as upper layer alignment data;
After aligning the holding stage or the bonding head based on the alignment data of the lower layer and the alignment data of the upper layer, joining the objects to be joined,
After the stacked mounting, measuring the positional deviation after mounting from the alignment data of the lower layer and the alignment mark of the upper layer part of the stacked mounting object,
The step of recognizing the image of the reference mark provided on the holding stage by the recognition means for the lower layer and storing it as reference mark data during mounting;
Measuring the extension of the recognition means for the lower layer from the reference mark data before mounting and the reference mark data during mounting, and storing it as misalignment data;
The upper layer recognizing means recognizes an image of the alignment mark of the object to be bonded next, which is held by the bonding head, and corrects the positional deviation data to the image recognized data to obtain upper layer corrected alignment data. Including a step of storing,
In this mounting method, the step of storing the reference mark data during mounting, the step of storing the upper layer correction alignment data, and the step of bonding the object to be bonded to the upper layer of the object to be bonded are repeated.
 請求項5に記載の発明は、請求項4に記載の発明において、
下層用認識手段と上層用認識手段を一体型の筐体で構成した2視野カメラの内部に設けられた温度センサのデータから、保持ステージに設けられた基準マークを下層用認識手段で画像認識し、実装中基準マークデータとして記憶する工程を実施せずに、前回の実装中基準マークデータを用いて、下層用認識手段の水平方向の伸びを測定し位置ずれデータとして記憶する工程と、を有する実装方法である。
The invention according to claim 5 is the invention according to claim 4,
The reference mark provided on the holding stage is image-recognized by the lower-layer recognition means from the data of the temperature sensor provided in the two-field camera in which the lower-layer recognition means and the upper-layer recognition means are constituted by an integrated housing. And measuring the horizontal extension of the recognition means for the lower layer using the previous mounting reference mark data and storing it as misalignment data without performing the step of storing as mounting reference mark data. Implementation method.
 請求項1に記載の発明によれば、下層用認識手段が最下層に順次積層された被接合物の実装後の位置合わせ精度を測定する機能と、前記保持ステージに設けられた基準マークを画像認識し、基準マークの画像認識結果から下層用認識手段の位置ずれを測定し、被接合物を順次積層する位置を補正する機能とを有する制御部を備えているので、下層と上層の位置ずれ情報を雰囲気温度の影響を受けることなく測定し積層位置を修正できる。 According to the first aspect of the present invention, the lower layer recognizing means measures the alignment accuracy after mounting of the objects to be joined sequentially stacked on the lowermost layer, and the reference mark provided on the holding stage is an image. It has a control unit that recognizes and measures the positional deviation of the recognition means for the lower layer from the image recognition result of the reference mark and corrects the position where the objects to be joined are sequentially stacked. Information can be measured without being affected by the ambient temperature, and the stacking position can be corrected.
 請求項2に記載の発明によれば、下層用認識手段と上層用認識手段を一体型の筐体で構成した2視野カメラを備えているので、効率よく測定を行うことができる。 According to the invention described in claim 2, since the two-field camera in which the lower layer recognizing means and the upper layer recognizing means are constituted by an integrated casing is provided, the measurement can be performed efficiently.
 請求項3に記載の発明によれば、2視野カメラの内部に周囲温度を測定する温度センサーを備えているので、雰囲気温度に対する2視野カメラの水平方向の伸びを測定することができる。測定された温度と伸びの関係から、予め、基準マークを測定するタイミングを推定できるので、効率よく基準マークの測定を行うことができ生産効率をあげることができる。 According to the third aspect of the invention, since the temperature sensor for measuring the ambient temperature is provided inside the two-view camera, the horizontal extension of the two-view camera with respect to the ambient temperature can be measured. Since the timing for measuring the reference mark can be estimated in advance from the relationship between the measured temperature and elongation, the reference mark can be measured efficiently and the production efficiency can be increased.
 請求項4に記載の発明によれば、保持ステージ設けられた基準マークを画像認識し、実装前基準マークデータと実装中基準マークデータを記憶し下層用認識手段の水平方向の伸びを測定し位置ずれデータとして記憶している。そして、次に積層される被接合物の位置合わせマークを上層用認識手段で画像認識し、画像認識されたデータに前記位置ずれデータの補正を加えて上層補正位置合わせデータとして記憶しているので、下層と上層の位置ずれ情報を雰囲気温度の影響を受けることなく測定し積層位置を修正できる。 According to the fourth aspect of the present invention, the reference mark provided on the holding stage is image-recognized, the pre-mounting reference mark data and the mounting reference mark data are stored, and the horizontal extension of the lower layer recognition means is measured to determine the position. It is stored as deviation data. Then, the alignment mark of the object to be laminated next is image-recognized by the upper-layer recognition means, and the position-recognition data is corrected and stored as upper-layer correction alignment data. It is possible to measure the positional deviation information between the lower layer and the upper layer without being affected by the ambient temperature and correct the stacking position.
 請求項5に記載の発明によれば、下層用認識手段と上層用認識手段を一体型の筐体で構成した2視野カメラの内部に設けられた温度センサのデータから、保持ステージに設けられた基準マークを下層用認識手段で画像認識し、実装中基準マークデータとして記憶する工程を実施せずに、前回の実装中基準マークデータを用いて、下層用認識手段の水平方向の伸びを測定し位置ずれデータとして記憶する工程と、を有しているので、効率よく基準マークの測定を行うことができ生産効率をあげることができる。 According to the fifth aspect of the present invention, the lower-layer recognition means and the upper-layer recognition means are provided on the holding stage from the data of the temperature sensor provided in the two-field camera configured by an integral housing. Recognize the image of the reference mark with the lower layer recognition means and measure the horizontal elongation of the lower layer recognition means using the previous mounting reference mark data without performing the process of storing the reference mark data as mounting reference mark data. And the step of storing as misregistration data, the reference mark can be measured efficiently and the production efficiency can be increased.
本発明の第1の実施形態の実装装置の概略側面図である。It is a schematic side view of the mounting apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の実装装置の保持ステージの平面図である。It is a top view of the holding | maintenance stage of the mounting apparatus of the 1st Embodiment of this invention. ウエハの概略平面図である。It is a schematic plan view of a wafer. チップ部品の概略平面図である。It is a schematic plan view of a chip component. 本発明の第1の実施形態の実装装置の動作を説明するフローチャート(その1)である。It is a flowchart (the 1) explaining operation | movement of the mounting apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の実装装置の動作を説明するフローチャート(その2)である。It is a flowchart (the 2) explaining operation | movement of the mounting apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の実装装置の概略側面図である。It is a schematic side view of the mounting apparatus of the 2nd Embodiment of this invention.
 以下に、本発明の第1の実施形態の実装装置1について図面を参照しながら説明する。図1において、実装装置1に向かって左右方向をX軸、手前方向をY軸、X軸とY軸とで構成されるXY平面に直交する軸をZ軸、Z軸を中心として回転する方向をθ方向とする。実装装置1は、被接合物としてのウエハ2に被接合物としての半導体チップ部品4(以後、チップ部品と呼ぶ)を押圧および加熱するボンディングヘッド10と、ウエハ2を吸着保持する保持ステージ20と、チップ部品4をボンディングヘッド10に水平搬送する搬送手段25と、チップ部品4とウエハ2に付された位置合わせマークを画像認識する2視野カメラ30と、実装装置1の全体を制御する制御部50とから構成されている。 Hereinafter, the mounting apparatus 1 according to the first embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the left-right direction toward the mounting apparatus 1 is the X-axis, the front direction is the Y-axis, the axis orthogonal to the XY plane composed of the X-axis and the Y-axis is the Z-axis, and the direction rotates about the Z-axis. Is the θ direction. The mounting apparatus 1 includes a bonding head 10 that presses and heats a semiconductor chip component 4 (hereinafter referred to as a chip component) as a bonded object to a wafer 2 as a bonded object, and a holding stage 20 that holds the wafer 2 by suction. , A conveying means 25 for horizontally conveying the chip component 4 to the bonding head 10, a two-view camera 30 for recognizing an image of an alignment mark attached to the chip component 4 and the wafer 2, and a control unit for controlling the entire mounting apparatus 1. 50.
 保持ステージ20には図2に示すように基準マーク60が設けられている。基準マーク60は、保持ステージ20と一体で移動する場所であればどの位置に設けても良いが、吸着保持されたウエハ2に隣接する位置に設けられているのが好ましい。保持ステージ20はXY方向に移動可能で図示しない駆動手段によって駆動されている。 The holding stage 20 is provided with a reference mark 60 as shown in FIG. The reference mark 60 may be provided at any position as long as it moves integrally with the holding stage 20, but is preferably provided at a position adjacent to the wafer 2 held by suction. The holding stage 20 is movable in the XY directions and is driven by a driving means (not shown).
 ウエハ2には、図3に示すように複数の実装箇所(図3では符合2a,2b,2c・・と示す)が設けられている。個々の実装箇所には位置合わせマーク(図3では符号3a,3b,3c・・と示す)が付されている。 As shown in FIG. 3, the wafer 2 is provided with a plurality of mounting locations (indicated by reference numerals 2a, 2b, 2c,... In FIG. 3). Alignment marks (indicated by reference numerals 3a, 3b, 3c,... In FIG. 3) are attached to the individual mounting locations.
 チップ部品4の裏面(ウエハ2と接合される面)および表面(ボンディングヘッド10に保持される面)には、図4に示すようにそれぞれ位置合わせマーク5a、5bが付されている。位置合わせマーク5aは裏面(ウエハ2と接合される面)に付され、位置合わせマーク5bは表面(ボンディングヘッド10に保持される面)に付されている。図4では位置合わせマーク5bは点線で表記した。 Alignment marks 5a and 5b are respectively attached to the back surface (the surface bonded to the wafer 2) and the front surface (the surface held by the bonding head 10) of the chip component 4 as shown in FIG. The alignment mark 5a is attached to the back surface (the surface bonded to the wafer 2), and the alignment mark 5b is attached to the front surface (the surface held by the bonding head 10). In FIG. 4, the alignment mark 5b is indicated by a dotted line.
 2視野カメラ30は、ボンディングヘッド10に保持されたチップ部品4に付された位置合わせマーク5aを画像認識する上視野31と、保持ステージ20に保持されたウエハ2の位置合わせマーク3a,3b,3c・・を画像認識する下視野32を備えている。2視野の認識手段30は筺体33に支持されており、筺体33の内部には周囲温度を測定する温度センサ35が取り付けられている。上視野31は本発明の上層用認識手段に対応し、下視野32は下層用認識手段に対応する。 The two-field camera 30 includes an upper field of view 31 for recognizing the alignment mark 5 a attached to the chip component 4 held by the bonding head 10, and the alignment marks 3 a, 3 b of the wafer 2 held by the holding stage 20. A lower visual field 32 for recognizing 3c. The two-field recognition means 30 is supported by a housing 33, and a temperature sensor 35 for measuring the ambient temperature is attached inside the housing 33. The upper visual field 31 corresponds to the upper layer recognition means of the present invention, and the lower visual field 32 corresponds to the lower layer recognition means.
 2視野カメラ30はXY方向およびZ方向に移動可能で図示しない駆動手段によって駆動されリニアエンコーダーなどの位置検出手段が備えられている。 The two-field camera 30 is movable in the XY direction and the Z direction and is driven by a driving means (not shown) and is provided with position detection means such as a linear encoder.
 ボンディングヘッド10は、Z方向(上下方向)およびθ方向(水平回転方向)に移動可能で、チップ部品4を吸着保持して所定加圧力でウエハ2に押圧するように構成されている。 The bonding head 10 is movable in the Z direction (vertical direction) and the θ direction (horizontal rotation direction), and is configured to suck and hold the chip component 4 and press it against the wafer 2 with a predetermined pressure.
 搬送手段25は、ボンディングヘッド10の下側と図示していないチップ部品4の供給部との間を水平移動するチップスライダ26を備えている。 The conveying means 25 includes a chip slider 26 that horizontally moves between the lower side of the bonding head 10 and a supply part of the chip component 4 (not shown).
 制御部50は、前記2視野カメラ30の駆動手段から得られる位置情報と2視野カメラ30の画像認識するウエハ2とチップ部品4の位置合わせマークの位置情報とに基づいて、保持ステージ20の位置合わせを行い、所定の加圧力でボンディングヘッド10をウエハ2に押圧する制御を行っている。2視野カメラ30は、実装作業の前に、保持ステージ20に設けられた基準マーク60を画像認識して初期の位置情報P0を記憶し、実装後のウェハ2とチップ部品4の位置精度の測定を行う前に、定期的に基準マーク60を画像認識して位置情報P1を取得する。これにより、雰囲気温度の変化による筺体33の熱膨張量をP1-P0として検出し、実装精度測定時に画像認識したデータに位置ずれデータの補正を行うことができるようになっている。実装精度測定作業中の基準マーク60の画像認識は、筺体33の熱膨張がサチレーションした後は参照頻度を減らすようにしている。制御部50は、筺体33に設けられた温度センサ35のデータと、筺体33の熱膨張量のデータとから温度と筺体の伸びの関係を記憶している。 The control unit 50 determines the position of the holding stage 20 based on the position information obtained from the driving means of the two-field camera 30 and the position information of the alignment marks of the wafer 2 and the chip component 4 that recognize the image of the two-field camera 30. Control is performed to press the bonding head 10 against the wafer 2 with a predetermined pressure. The two-field camera 30 recognizes an image of the reference mark 60 provided on the holding stage 20 and stores initial position information P0 before mounting work, and measures the positional accuracy of the wafer 2 and the chip component 4 after mounting. Before performing the above, the image of the reference mark 60 is periodically recognized to acquire the position information P1. As a result, the amount of thermal expansion of the housing 33 due to the change in the ambient temperature is detected as P1-P0, and the positional deviation data can be corrected for the data recognized during the mounting accuracy measurement. In the image recognition of the reference mark 60 during the mounting accuracy measurement operation, the reference frequency is reduced after the thermal expansion of the housing 33 is saturated. The control unit 50 stores the relationship between the temperature and the extension of the casing from the data of the temperature sensor 35 provided in the casing 33 and the data of the thermal expansion amount of the casing 33.
 このような実装装置1を用いて、ウエハ2にチップ部品4を積層実装する実装方法を図5、6のフローチャートを用いて説明する。 A mounting method in which the chip component 4 is stacked and mounted on the wafer 2 using such a mounting apparatus 1 will be described with reference to the flowcharts of FIGS.
 まず、保持ステージ20にウエハ2を吸着保持する(ステップST01)。 First, the wafer 2 is sucked and held on the holding stage 20 (step ST01).
 次に、搬送手段25がチップ供給部からチップ部品4をチップスライダ26を用いて水平搬送し、ボンディングヘッド10を所定高さまで下降させ、チップスライダ26からボンディングヘッド10にチップ部品4を受け渡す。受け渡しが完了すると、ボンディングヘッド10は待機位置の高さに上昇し、チップスライダ26はチップ供給部に移動する(ステップST02)。 Next, the transport means 25 horizontally transports the chip component 4 from the chip supply unit using the chip slider 26, lowers the bonding head 10 to a predetermined height, and delivers the chip component 4 from the chip slider 26 to the bonding head 10. When the delivery is completed, the bonding head 10 rises to the height of the standby position, and the chip slider 26 moves to the chip supply unit (step ST02).
 前記動作と同時に、2視野カメラ30を、ボンディングヘッド10と保持ステージ20の間に挿入する。2視野カメラ30の下視野32に基準マーク60が入るように、保持ステージ20を水平移動させる。下視野32で画像認識して得られたデータを実装前基準マークの位置情報の初期の位置情報P0として制御部50に記憶する(ステップST03)。 Simultaneously with the above operation, the two-field camera 30 is inserted between the bonding head 10 and the holding stage 20. The holding stage 20 is moved horizontally so that the reference mark 60 enters the lower visual field 32 of the two-field camera 30. Data obtained by image recognition with the lower visual field 32 is stored in the control unit 50 as initial position information P0 of the position information of the pre-mounting reference mark (step ST03).
 次に、ボンディングヘッド10の下側に、ウエハ2の実装箇所2aが来るように、保持ステージ10を水平移動させる。ウエハ2には、複数の実装位置が設けられている。本実施の形態では実装箇所2aからチップ部品4の実装を行うこととする(ステップST04)。 Next, the holding stage 10 is moved horizontally so that the mounting portion 2a of the wafer 2 comes below the bonding head 10. The wafer 2 is provided with a plurality of mounting positions. In the present embodiment, the chip component 4 is mounted from the mounting location 2a (step ST04).
 次に、ボンディングヘッド10に吸着保持されたチップ部品4の位置合わせマーク5aを上視野31で画像認識し、ウエハ2の実装箇所2aの位置合わせマーク3aを下視野32で画像認識する。ウエハ2の位置合わせマーク3aは、最下層位置合わせデータ72aとして制御部50に記憶され、チップ部品4の位置合わせマーク5aは、上層位置合わせデータ73aとして制御部50に記憶される(ステップST05)。 Next, the alignment mark 5a of the chip component 4 held by suction on the bonding head 10 is image-recognized by the upper visual field 31, and the alignment mark 3a of the mounting portion 2a of the wafer 2 is image-recognized by the lower visual field 32. The alignment mark 3a of the wafer 2 is stored in the control unit 50 as the lowermost layer alignment data 72a, and the alignment mark 5a of the chip component 4 is stored in the control unit 50 as the upper layer alignment data 73a (step ST05). .
 次に、2視野カメラ30を待機位置に移動させ、最下層位置合わせデータ72aと上層位置合わせデータ73aから、保持ステージ20をXY方向、ボンディングヘッド10をθ方向に位置合わせする(ステップST06)。 Next, the two-field camera 30 is moved to the standby position, and the holding stage 20 is aligned in the XY direction and the bonding head 10 is aligned in the θ direction from the lowermost layer alignment data 72a and the upper layer alignment data 73a (step ST06).
 次に、ボンディングヘッド10を下降させ、ウエハ2の対象実装箇所にチップ部品4を押圧および加熱し実装する(ステップST07)。 Next, the bonding head 10 is lowered, and the chip component 4 is pressed and heated at the target mounting location of the wafer 2 (step ST07).
 次に、所定時間の押圧と加熱が完了したらボンディングヘッド10を待機位置まで上昇させる。ボンディングヘッド10の上昇が行われると、保持ステージ20をXY方向に移動させて、ボンディングヘッド10の下側に次に実装する実装箇所2bが来るようにする(ステップST08)。 Next, when pressing and heating for a predetermined time are completed, the bonding head 10 is raised to the standby position. When the bonding head 10 is raised, the holding stage 20 is moved in the XY directions so that the mounting location 2b to be mounted next comes below the bonding head 10 (step ST08).
 次に、搬送手段25のチップスライダ26がチップ部品4をチップ供給部からボンディングヘッド10に水平搬送し、ボンディングヘッド10が所定高さまで下降し、次に実装されるチップ部品4がチップスライダ26からボンディングヘッド10に受け渡される。受け渡しが完了すると、ボンディングヘッド10は待機位置の高さに上昇し、チップスライダ26はチップ供給部に移動する(ステップST09)。 Next, the chip slider 26 of the transport means 25 horizontally transports the chip component 4 from the chip supply unit to the bonding head 10, the bonding head 10 is lowered to a predetermined height, and the chip component 4 to be mounted next is transferred from the chip slider 26. It is delivered to the bonding head 10. When the delivery is completed, the bonding head 10 rises to the height of the standby position, and the chip slider 26 moves to the chip supply unit (step ST09).
 次に、2視野カメラ30をボンディングヘッド10と保持ステージ20の間に挿入する(ステップST10)。 Next, the two-field camera 30 is inserted between the bonding head 10 and the holding stage 20 (step ST10).
 次に、ステップST05からステップST10を繰り返し、ウエハ2のすべての実装箇所にチップ部品4を実装する。なお、ステップST05では実装箇所が2b、2c・・と移動し、位置合わせマークも3b、3c・・と移動していき最下層の位置合わせデータも72a、72b、72c・・と制御部50に記憶していき、上層位置合わせデータも73a、73b、73c・・と制御部50に記憶していく。すべての実装箇所にチップ部品4が実装完了すると次のステップに移動する(ステップST11)。 Next, step ST05 to step ST10 are repeated, and the chip components 4 are mounted on all mounting portions of the wafer 2. In step ST05, the mounting location is moved to 2b, 2c,... And the alignment mark is moved to 3b, 3c,..., And the lowermost alignment data is also transferred to the control unit 50 as 72a, 72b, 72c,. The upper layer alignment data is also stored in the controller 50 as 73a, 73b, 73c,. When the chip components 4 are completely mounted at all mounting locations, the process moves to the next step (step ST11).
 次に、2視野カメラ30および保持ステージ20をステップST03と同じ場所に移動する。2視野カメラ30の筺体33は実装作業により雰囲気温度が上昇したことで熱膨張しているため、下視野32で画像認識される基準マーク60の位置は、ステップST03で認識した位置からずれた位置で認識される。制御部50は、基準マーク60の位置を熱膨張後の基準位置情報P1として記憶し、ステップST03で記憶した初期の実装前基準マークの位置情報P0との差を計算し、位置ずれデータP2として記憶する(ステップST12)。 Next, the two-field camera 30 and the holding stage 20 are moved to the same place as step ST03. Since the housing 33 of the two-field camera 30 is thermally expanded due to an increase in the ambient temperature due to the mounting operation, the position of the reference mark 60 that is image-recognized in the lower field of view 32 is shifted from the position recognized in step ST03. Recognized. The control unit 50 stores the position of the reference mark 60 as reference position information P1 after thermal expansion, calculates the difference from the position information P0 of the initial pre-mounting reference mark stored in step ST03, and outputs the difference data P2. Store (step ST12).
 次に、ボンディングヘッド10の下側に、ウエハ2の実装箇所2aが来るように、保持ステージ10を水平移動させる。実装箇所2aにはチップ部品4が実装されているため位置合わせマーク3aを画像認識することができない。そのため、実装箇所2aへ実装されたチップ部品4の実装位置精度の測定は、2視野カメラ30の下視野32で既に実装されたチップ部品4(ステップST07で実装したチップ部品4)の表面の位置合わせマーク5bを画像認識して得られた位置情報と、ステップST05で記憶した最下層位置合わせデータ72aを用いて、制御部50は既に実装されたチップ部品4(ステップST07で実装したチップ部品4)の実装位置ずれ量の計算を行う。この実装位置ずれ量の計算で用いる画像認識された位置合わせマーク5bのデータは、2視野カメラ30の熱膨張による伸びを含んでいるので、ステップST12で求めた位置ずれデータP2を用いて実装位置ずれ量の補正を行う。補正された実装位置ずれデータを上層補正位置合わせデータP3として制御部50に記憶する
(ステップST13)。
Next, the holding stage 10 is moved horizontally so that the mounting location 2a of the wafer 2 is located below the bonding head 10. Since the chip part 4 is mounted on the mounting location 2a, the image of the alignment mark 3a cannot be recognized. Therefore, the measurement of the mounting position accuracy of the chip component 4 mounted on the mounting location 2a is performed by measuring the surface position of the chip component 4 (chip component 4 mounted in step ST07) already mounted in the lower field of view 32 of the two-field camera 30. Using the position information obtained by image recognition of the alignment mark 5b and the lowermost layer alignment data 72a stored in step ST05, the control unit 50 uses the chip component 4 already mounted (chip component 4 mounted in step ST07). ) Is calculated. Since the image-recognized alignment mark 5b data used in the calculation of the mounting displacement amount includes the expansion due to thermal expansion of the two-field camera 30, the mounting position data P2 obtained in step ST12 is used. Correct the deviation. The corrected mounting position deviation data is stored in the control unit 50 as upper layer corrected alignment data P3 (step ST13).
 次に、ボンディングヘッド10に吸着保持されたチップ部品4の位置合わせマーク5aを上視野31で画像認識し、ウエハ2の実装箇所2aに実装されたチップ部品4の表面の位置合わせマーク5bを下視野32で画像認識する。チップ部品4の位置合わせマーク5aの位置情報は、上層位置合わせデータ73aとして制御部50に記憶される(ステップST14)。 Next, the image of the alignment mark 5a of the chip component 4 attracted and held by the bonding head 10 is recognized by the upper visual field 31, and the alignment mark 5b on the surface of the chip component 4 mounted on the mounting portion 2a of the wafer 2 is moved downward. An image is recognized in the field of view 32. The position information of the alignment mark 5a of the chip component 4 is stored in the control unit 50 as the upper layer alignment data 73a (step ST14).
 次に、2視野カメラ30を待機位置に移動させ、最下層位置合わせデータ72aと上層位置合わせデータ73aと前記上層補正位置合わせデータP3から、保持ステージ20をXY方向、ボンディングヘッド10をθ方向に位置合わせする(ステップST15)。 Next, the two-field camera 30 is moved to the standby position, and the holding stage 20 is moved in the XY direction and the bonding head 10 is moved in the θ direction from the lowermost layer alignment data 72a, the upper layer alignment data 73a, and the upper layer correction alignment data P3. Alignment is performed (step ST15).
 次に、ボンディングヘッド10を下降させ、実装箇所2aにチップ部品4を押圧および加熱し積層実装する(ステップST16)。 Next, the bonding head 10 is lowered, and the chip component 4 is pressed and heated on the mounting location 2a to be stacked and mounted (step ST16).
 次に、所定時間の押圧と加熱が完了したらボンディングヘッド10を待機位置まで上昇させる。ボンディングヘッド10の上昇が行われると、保持ステージ20をXY方向に移動させて、ボンディングヘッド10の下側に次に実装する実装箇所2bが来るようにする(ステップST17)。 Next, when pressing and heating for a predetermined time are completed, the bonding head 10 is raised to the standby position. When the bonding head 10 is raised, the holding stage 20 is moved in the XY directions so that the mounting location 2b to be mounted next comes below the bonding head 10 (step ST17).
 次に、搬送手段25のチップスライダ26がチップ部品4をチップ供給部からボンディングヘッド10に水平搬送し、ボンディングヘッド10が所定高さまで下降し、次に実装されるチップ部品4がチップスライダ26からボンディングヘッド10に受け渡される。受け渡しが完了すると、ボンディングヘッド10は待機位置の高さに上昇し、チップスライダ26はチップ供給部に移動する(ステップST18)。 Next, the chip slider 26 of the transport means 25 horizontally transports the chip component 4 from the chip supply unit to the bonding head 10, the bonding head 10 is lowered to a predetermined height, and the chip component 4 to be mounted next is transferred from the chip slider 26. It is delivered to the bonding head 10. When the delivery is completed, the bonding head 10 rises to the height of the standby position, and the chip slider 26 moves to the chip supply unit (step ST18).
 次に、2視野カメラ30をボンディングヘッド10と保持ステージ20の間に挿入する(ステップST19)。 Next, the two-field camera 30 is inserted between the bonding head 10 and the holding stage 20 (step ST19).
 次に、ステップST13からステップST19を繰り返し、実装箇所にチップ部品4を積層実装する。なお、ステップST13では実装箇所が2b、2c・・と移動し、位置合わせマークも3b、3c・・と移動していく。すべての実装箇所にチップ部品4が積層実装完了すると次のステップに移動する(ステップST20)。 Next, step ST13 to step ST19 are repeated, and the chip components 4 are stacked and mounted at the mounting locations. In step ST13, the mounting location moves to 2b, 2c, and the alignment mark also moves to 3b, 3c, and so on. When the chip components 4 are completely stacked and mounted at all mounting locations, the process moves to the next step (step ST20).
 次に、積層数が所定値に達したか確認する。達していない場合は、ステップST12に戻り、積層実装を続行する(ステップST21)。達した場合は、ウエハ2へのチップ部品4の積層実装を終了する。 Next, check whether the number of stacked layers has reached a predetermined value. If not, the process returns to step ST12 to continue the stacked mounting (step ST21). If it has reached, the stacked mounting of the chip component 4 on the wafer 2 is finished.
 このように、複数の実装箇所を有するウエハ2にチップ部品4を一層ごとに実装していく際に、基準マーク60を2視野カメラ30の下視野32で画像認識し実装前基準マークデータ位置情報P0と熱膨張後の基準位置情報P1とを比較し位置ずれデータP2を作成しているので雰囲気温度の変化による2視野カメラ30の筺体33の熱膨張による伸びを補正して積層実装を行うことができる。 As described above, when the chip components 4 are mounted on each wafer 2 having a plurality of mounting locations, the reference mark 60 is image-recognized by the lower visual field 32 of the two-field camera 30, and the reference mark data position information before mounting. Since the positional deviation data P2 is created by comparing P0 and the reference position information P1 after thermal expansion, the stack mounting is performed by correcting the expansion due to the thermal expansion of the housing 33 of the two-field camera 30 due to the change in the ambient temperature. Can do.
 基準マークの画像認識は、雰囲気温度がサチレーションした後は、積層実装の都度、行わなくてもよい。2視野カメラ30の筺体33に設けられた温度センサ35のデータと筺体の熱膨張による伸びのデータとから、適宜、画像認識のタイミングを省略できる。 The image recognition of the fiducial mark may not be performed every time the stacked mounting is performed after the ambient temperature has been saturated. The timing of image recognition can be omitted as appropriate from the data of the temperature sensor 35 provided in the housing 33 of the two-view camera 30 and the data of the elongation due to the thermal expansion of the housing.
 ステップST13で測定した上層補正位置合わせデータP3をステップST15で加算する場合に、実装箇所の順に連続してn回の取得したデータの平均値を用いてn回後の実装箇所に加算するようにしても良い。こうすることで、測定バラツキや突発ずれによる異常データの影響を最小限にすることが出来る。 When the upper layer correction alignment data P3 measured in step ST13 is added in step ST15, it is added to the mounting location after n times using the average value of data acquired n times successively in the order of the mounting location. May be. By doing so, it is possible to minimize the influence of abnormal data due to measurement variations and sudden deviations.
 次に、本発明の第2の実施形態の実装装置100について説明する。図6は実装装置100の概略側面図である。実装装置1で用いた符号は、実装装置100で流用する。実装装置1は、基準マーク60を保持ステージ20に設けていたが、実装装置100では、基準マーク61をボンディングヘッド10に取り付けられたブラケット11の先端に設けている。 Next, the mounting apparatus 100 according to the second embodiment of the present invention will be described. FIG. 6 is a schematic side view of the mounting apparatus 100. The reference numerals used in the mounting apparatus 1 are used in the mounting apparatus 100. In the mounting apparatus 1, the reference mark 60 is provided on the holding stage 20, but in the mounting apparatus 100, the reference mark 61 is provided at the tip of the bracket 11 attached to the bonding head 10.
 このような実装装置100を用いて、ウエハ2にチップ部品4を積層実装する実装方法について説明する。第1の実施形態では、2視野カメラ30の下視野32で、基準マーク60を画像認識していたが、第2の実施形態では上視野31で基準マーク61を画像認識する。これに伴い、第1の実施形態のステップST03、ST12が、次に示すように変更となる。他のステップは第1の実施形態と同様となる。 A mounting method in which the chip component 4 is stacked and mounted on the wafer 2 using such a mounting apparatus 100 will be described. In the first embodiment, the fiducial mark 60 is image-recognized by the lower visual field 32 of the two-field camera 30, but in the second embodiment, the fiducial mark 61 is image-recognized by the upper visual field 31. Accordingly, steps ST03 and ST12 of the first embodiment are changed as shown below. Other steps are the same as those in the first embodiment.
 ステップST03は、「2視野カメラ30を、ボンディングヘッド10と保持ステージ20の間に挿入する。2視野カメラ30の上視野31に基準マーク61が入るように、2視野カメラ30を移動させる。上視野31で画像認識して得られた実装前基準マークの位置情報を初期の位置情報P0として制御部50に記憶する(ステップST03a)」と変更する。 Step ST03 is “insert the two-field camera 30 between the bonding head 10 and the holding stage 20. The two-field camera 30 is moved so that the reference mark 61 enters the upper field 31 of the two-field camera 30. The position information of the pre-mounting reference mark obtained by image recognition in the field of view 31 is stored in the control unit 50 as the initial position information P0 (step ST03a) ”.
 ステップST12は、「2視野カメラ30をステップST03と同じ場所に移動する。2視野カメラ30の筺体33は実装作業により雰囲気温度が上昇したことで熱膨張しているため、上視野31で画像認識される基準マーク61の位置は、ステップST03aで認識した位置からずれた位置で認識される。制御部50は、基準マーク61の位置を熱膨張後の基準位置情報P1として記憶し、ステップST03aで記憶した初期の実装前基準マークの位置情報P0との差を計算し、位置ずれデータP2として記憶する(ステップST12a)」と変更する。 In step ST12, “the two-field camera 30 is moved to the same location as step ST03. The housing 33 of the two-field camera 30 is thermally expanded due to the increase in the ambient temperature due to the mounting operation. The position of the reference mark 61 is recognized at a position shifted from the position recognized in step ST03a, and the control unit 50 stores the position of the reference mark 61 as reference position information P1 after thermal expansion, and in step ST03a. The difference from the stored initial pre-mounting reference mark position information P0 is calculated and stored as positional deviation data P2 (step ST12a).
 このような変更により、第2の実施形態は第1の実施形態と同様の効果を奏することができる。 By such a change, the second embodiment can achieve the same effect as the first embodiment.
 本実施形態では、2視野に認識手段を備えた一体型の筐体で構成された2視野カメラ30としているが、ウエハ2側を認識する下視野32とチップ部品4側を認識する上視野31をそれぞれ分離させた構成の場合でも、下視野32で実装後精度を測定することが出来るので、下視野32を固定する筐体が熱膨張により変形した場合でも保持ステージ20側の基準マーク60を認識することによって、熱膨張による光軸の変化量を求めることが出来るので、同様の効果を奏することが出来る。 In the present embodiment, the two-view camera 30 is configured by an integrated housing having a recognition unit for two views, but the lower view 32 for recognizing the wafer 2 side and the upper view 31 for recognizing the chip component 4 side. Even in the case of the configuration in which each is separated, the post-mounting accuracy can be measured with the lower visual field 32. Therefore, even when the casing for fixing the lower visual field 32 is deformed due to thermal expansion, the reference mark 60 on the holding stage 20 side is provided. By recognizing, the amount of change in the optical axis due to thermal expansion can be obtained, and the same effect can be achieved.
 ウエハ2側を認識する下視野32とチップ部品4側を認識する上視野31を一体型の筐体で構成した2視野カメラ30であれば、ウエハ2とチップ部品4のそれぞれの位置合わせマーク3a、5a、5bを同期して認識することが出来るので、高速で高精度な実装が可能となる。 In the case of the two-field camera 30 in which the lower field of view 32 for recognizing the wafer 2 side and the upper field of view 31 for recognizing the chip component 4 side are constituted by an integrated housing, the alignment marks 3a of the wafer 2 and the chip component 4 are respectively provided. Since 5a and 5b can be recognized synchronously, high-speed and high-precision mounting is possible.
 また実装後の精度を測定するための基準マーク60は、位置合わせマーク3a,5a,5b以外に積層されるチップ部品4の上下で同じは配列箇所の貫通電極の頭頂部を用いても良い。こうすれば、電気信号を伝える電極同士の位置合わせ精度を高精度に測定することが出来るのでより高品質の接合が行える。 Further, as the reference mark 60 for measuring the accuracy after mounting, the top of the penetrating electrode at the same arrangement position may be used above and below the chip component 4 to be laminated other than the alignment marks 3a, 5a and 5b. By doing so, it is possible to measure the alignment accuracy between the electrodes that transmit the electric signal with high accuracy, so that higher quality bonding can be performed.
 1  実装装置
 2  ウエハ
 2a  実装箇所
 2b  実装箇所
 2c  実装箇所
 3a  位置合わせマーク
 3b  位置合わせマーク
 3c  位置合わせマーク
 4  チップ部品(半導体チップ)
 5a  位置合わせマーク
 5b  位置合わせマーク
 10  ボンディングヘッド
 11  ブラケット
 20  保持ステージ
 25  搬送手段
 26  チップスライダ
 30  2視野カメラ
 31  上視野
 32  下視野
 33  筺体
 35  温度センサ
 50  制御部
 60  基準マーク
 61  基準マーク
 72a  最下層位置合わせデータ
 72b  最下層位置合わせデータ
 72c  最下層位置合わせデータ
 73a  上層位置合わせデータ
 73b  上層位置合わせデータ
 73c  上層位置合わせデータ
DESCRIPTION OF SYMBOLS 1 Mounting apparatus 2 Wafer 2a Mounting location 2b Mounting location 2c Mounting location 3a Position alignment mark 3b Position alignment mark 3c Position alignment mark 4 Chip components (semiconductor chip)
5a Alignment mark 5b Alignment mark 10 Bonding head 11 Bracket 20 Holding stage 25 Transfer means 26 Chip slider 30 Two-field camera 31 Upper field 32 Lower field 33 Housing 35 Temperature sensor 50 Control unit 60 Reference mark 61 Reference mark 72a Bottom layer position Alignment data 72b Bottom layer alignment data 72c Bottom layer alignment data 73a Upper layer alignment data 73b Upper layer alignment data 73c Upper layer alignment data

Claims (5)

  1. 半導体素子などの被接合物を上下方向に順次積層して接合していく3次元実装に用いられる実装装置であって、
    最下層に対応する被接合物を保持する保持ステージと、
    最下層に順次積層していく被接合物を保持するボンディングヘッドと、
    下層の被接合物に付された位置合わせマークを認識する下層用認識手段と、
    上層の被接合部に付された位置合わせマークを認識する上層用認識手段と、を備え、
    前記下層用認識手段が最下層に順次積層された被接合物の実装後の位置合わせ精度を測定する機能と、前記保持ステージに設けられた基準マークを画像認識し、基準マークの画像認識結果から下層用認識手段の位置ずれを測定し、被接合物を順次積層する位置を補正する機能とを有する制御部を備えた実装装置。
    A mounting device used for three-dimensional mounting in which workpieces such as semiconductor elements are sequentially stacked and joined in the vertical direction,
    A holding stage for holding a workpiece corresponding to the lowermost layer;
    A bonding head for holding a workpiece to be sequentially stacked on the bottom layer;
    Lower layer recognition means for recognizing the alignment mark attached to the lower layer workpiece;
    An upper layer recognizing means for recognizing an alignment mark attached to the bonded portion of the upper layer,
    The lower layer recognizing means measures the alignment accuracy after mounting the object to be joined that is sequentially stacked on the lowermost layer, and recognizes the reference mark provided on the holding stage, and from the image recognition result of the reference mark A mounting apparatus comprising a control unit having a function of measuring a positional shift of a recognition means for a lower layer and correcting a position where the objects to be bonded are sequentially stacked.
  2. 請求項1に記載の発明において、
    下層用認識手段と上層用認識手段を一体型の筐体で構成した2視野カメラを備えた実装装置。
    In the invention of claim 1,
    A mounting apparatus including a two-field camera in which a lower layer recognition unit and an upper layer recognition unit are configured as an integrated casing.
  3. 請求項2に記載の発明において
    前記2視野カメラの内部に周囲温度を測定する温度センサーを備えた実装装置。
    3. The mounting apparatus according to claim 2, further comprising a temperature sensor for measuring an ambient temperature inside the two-view camera.
  4. 半導体素子などの被接合物を上下方向に順次積層して接合していく3次元実装に用いられる実装装置における実装方法であって、
    最下層に対応する被接合物を保持する保持ステージと、
    最下層に順次積層していく被接合物を保持するボンディングヘッドと、
    下層の被接合物に付された位置合わせマークを認識する下層用認識手段と、
    上層の被接合部に付された位置合わせマークを認識する上層用認識手段と、
    を備えた実装装置において、
    被接合物を順次積層する作業に先立ち、保持ステージに設けられた基準マークを下層用認識手段で画像認識し、基準マークの画像認識情報を実装前基準マークの位置情報として記憶する工程と、
    保持ステージに保持された最下層に対応する被接合物の位置合わせマークおよび被接合物の上層に積層される被接合物の上層側に施された位置合わせマークを下層用認識手段で画像認識し下層の位置合わせデータとして記憶する工程と、
    ボンディングヘッドに保持された被接合物の位置合わせマークを、上層用認識手段で画像認識し上層位置合わせデータとして記憶する工程と、
    下層の位置合わせデータと上層の位置合わせデータにもとづいて、保持ステージもしくは
    ボンディングヘッドを位置合わせした後、被接合物同士を接合する工程と、
    積層実装後に、前記下層の位置合わせデータと積層実装された被接合物の上層部の位置合わせマークとから実装後の位置ずれを測定する工程と、
    保持ステージに設けられた基準マークを下層用認識手段で画像認識し、実装中基準マークデータとして記憶する工程と、
    実装前基準マークデータと実装中基準マークデータとから下層用認識手段の伸びを測定し位置ずれデータとして記憶する工程と、
    ボンディングヘッドに保持された、次に積層される被接合物の位置合わせマークを上層用認識手段で画像認識し、画像認識されたデータに前記位置ずれデータの補正を加えて上層補正位置合わせデータとして記憶する工程を含み、
    前記実装中基準マークデータを記憶する工程と、前記上層補正位置合わせデータを記憶する工程と、前記被接合物の上層に被接合物を接合する工程を繰り返す実装方法。
    A mounting method in a mounting apparatus used for three-dimensional mounting in which workpieces such as semiconductor elements are sequentially stacked and bonded in the vertical direction,
    A holding stage for holding a workpiece corresponding to the lowermost layer;
    A bonding head for holding a workpiece to be sequentially stacked on the bottom layer;
    Lower layer recognition means for recognizing the alignment mark attached to the lower layer workpiece;
    An upper layer recognition means for recognizing an alignment mark attached to the upper layer bonded portion;
    In a mounting apparatus comprising:
    Prior to the work of sequentially stacking the objects to be joined, the step of recognizing the reference mark provided on the holding stage with the lower layer recognition means, and storing the image recognition information of the reference mark as the position information of the reference mark before mounting;
    The lower layer recognition means recognizes an image of the alignment mark of the workpiece corresponding to the lowermost layer held on the holding stage and the alignment mark provided on the upper layer side of the workpiece to be laminated on the upper layer of the workpiece. Storing as lower layer alignment data;
    A step of recognizing an alignment mark of an object held by the bonding head by an upper layer recognition means and storing it as upper layer alignment data;
    After aligning the holding stage or the bonding head based on the alignment data of the lower layer and the alignment data of the upper layer, joining the objects to be joined,
    After the stacked mounting, measuring the positional deviation after mounting from the alignment data of the lower layer and the alignment mark of the upper layer part of the stacked mounting object,
    The step of recognizing the image of the reference mark provided on the holding stage by the recognition means for the lower layer and storing it as reference mark data during mounting;
    Measuring the extension of the recognition means for the lower layer from the reference mark data before mounting and the reference mark data during mounting, and storing it as misalignment data;
    The upper layer recognizing means recognizes an image of the alignment mark of the object to be bonded next, which is held by the bonding head, and corrects the positional deviation data to the image recognized data to obtain upper layer corrected alignment data. Including a step of storing,
    A mounting method that repeats the step of storing reference mark data during mounting, the step of storing upper layer correction alignment data, and the step of bonding an object to be bonded to an upper layer of the object to be bonded.
  5. 請求項4に記載の発明において、
    下層用認識手段と上層用認識手段を一体型の筐体で構成した2視野カメラの内部に設けられた温度センサのデータから、保持ステージに設けられた基準マークを下層用認識手段で画像認識し、実装中基準マークデータとして記憶する工程を実施せずに、前回の実装中基準マークデータを用いて、下層用認識手段の水平方向の伸びを測定し位置ずれデータとして記憶する工程と、を有する実装方法。
    In the invention of claim 4,
    The reference mark provided on the holding stage is image-recognized by the lower-layer recognition means from the data of the temperature sensor provided in the two-field camera in which the lower-layer recognition means and the upper-layer recognition means are constituted by an integrated housing. And measuring the horizontal extension of the recognition means for the lower layer using the previous mounting reference mark data and storing it as misalignment data without performing the step of storing as mounting reference mark data. Implementation method.
PCT/JP2017/011110 2016-03-31 2017-03-21 Mounting device and mounting method WO2017169953A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187027599A KR102319865B1 (en) 2016-03-31 2017-03-21 Mounting device and mounting method
CN201780032768.9A CN109314065B (en) 2016-03-31 2017-03-21 Mounting device and mounting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-071875 2016-03-31
JP2016071875A JP6478939B2 (en) 2016-03-31 2016-03-31 Mounting apparatus and mounting method

Publications (1)

Publication Number Publication Date
WO2017169953A1 true WO2017169953A1 (en) 2017-10-05

Family

ID=59964382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011110 WO2017169953A1 (en) 2016-03-31 2017-03-21 Mounting device and mounting method

Country Status (4)

Country Link
JP (1) JP6478939B2 (en)
KR (1) KR102319865B1 (en)
CN (1) CN109314065B (en)
WO (1) WO2017169953A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771267A (en) * 2018-07-23 2020-10-13 爱立发株式会社 Mounting device and mounting method
TWI759709B (en) * 2019-03-27 2022-04-01 新加坡商Pyxis Cf有限公司 Alignment carrier, alignment system and method for semiconductor device bonding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220008514A (en) 2020-07-14 2022-01-21 삼성전자주식회사 Wafer to wafer bonding apparatus and wafer to wafer bonding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284887A (en) * 1997-04-07 1998-10-23 Matsushita Electric Ind Co Ltd Method for detecting substrate mark
WO2012133760A1 (en) * 2011-03-30 2012-10-04 ボンドテック株式会社 Electronic component mounting method, electronic component mounting system, and substrate
WO2012144282A1 (en) * 2011-04-19 2012-10-26 富士機械製造株式会社 Electrical part mounting machine and electrical circuit manufacturing method
JP2013197412A (en) * 2012-03-21 2013-09-30 Toshiba Corp Inspection device of semiconductor device and inspection method of semiconductor device
JP2014017471A (en) * 2012-06-11 2014-01-30 Shinkawa Ltd Bonding apparatus and bonding method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3295529B2 (en) * 1994-05-06 2002-06-24 松下電器産業株式会社 IC component mounting method and device
JP3838561B2 (en) * 2002-06-19 2006-10-25 東レエンジニアリング株式会社 Mounting apparatus and mounting method
JP2008192861A (en) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Semiconductor inspection apparatus and method
JP2009110995A (en) 2007-10-26 2009-05-21 Toray Eng Co Ltd Three-dimensional packaging method and apparatus
JP5059686B2 (en) * 2008-05-22 2012-10-24 Juki株式会社 Surface mount equipment
JP2015111613A (en) * 2013-12-06 2015-06-18 株式会社リコー Article transfer device, electronic component mounting device, article transfer method, electronic component mounting method, and electronic component mounting body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284887A (en) * 1997-04-07 1998-10-23 Matsushita Electric Ind Co Ltd Method for detecting substrate mark
WO2012133760A1 (en) * 2011-03-30 2012-10-04 ボンドテック株式会社 Electronic component mounting method, electronic component mounting system, and substrate
WO2012144282A1 (en) * 2011-04-19 2012-10-26 富士機械製造株式会社 Electrical part mounting machine and electrical circuit manufacturing method
JP2013197412A (en) * 2012-03-21 2013-09-30 Toshiba Corp Inspection device of semiconductor device and inspection method of semiconductor device
JP2014017471A (en) * 2012-06-11 2014-01-30 Shinkawa Ltd Bonding apparatus and bonding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771267A (en) * 2018-07-23 2020-10-13 爱立发株式会社 Mounting device and mounting method
TWI759709B (en) * 2019-03-27 2022-04-01 新加坡商Pyxis Cf有限公司 Alignment carrier, alignment system and method for semiconductor device bonding
US11456259B2 (en) 2019-03-27 2022-09-27 Pyxis Cf Pte. Ltd. Panel level packaging for devices

Also Published As

Publication number Publication date
JP2017183628A (en) 2017-10-05
KR102319865B1 (en) 2021-10-29
CN109314065B (en) 2022-07-08
KR20180126487A (en) 2018-11-27
JP6478939B2 (en) 2019-03-06
CN109314065A (en) 2019-02-05

Similar Documents

Publication Publication Date Title
US8339445B2 (en) Component placing apparatus
JP6518709B2 (en) Mounting device
TWI442491B (en) Grain bonding machine and semiconductor manufacturing method
WO2017169953A1 (en) Mounting device and mounting method
JP5344145B2 (en) Method for aligning electronic component and substrate in bonding apparatus
JP4840862B2 (en) Chip supply method for mounting apparatus and mounting apparatus therefor
KR20160032594A (en) Bonding apparatus of semiconductor chip
WO2017135257A1 (en) Electronic component mounting device and mounting method, and method for manufacturing package component
TWI588917B (en) Method and apparatus for mounting electronic or optical components on a substrate
KR101667488B1 (en) Apparatus and Method for Transferring Semiconductor Device
JP4482598B2 (en) BONDING DEVICE, BONDING DEVICE CORRECTION AMOUNT CALCULATION METHOD, AND BONDING METHOD
JP5986741B2 (en) Component mounting method, apparatus, and program
JP4824641B2 (en) Parts transfer device
JP6477620B2 (en) Sheet conveying apparatus, sheet laminating apparatus, and method for manufacturing laminated electronic component
JP5391007B2 (en) Electronic component mounting apparatus and mounting method
JP5236223B2 (en) Die bonder and die bonding method
JP4681241B2 (en) Alignment method, joining method and joining apparatus using this method
JP5508575B2 (en) Chip mounting method and chip mounting apparatus
JP5973753B2 (en) Chip delivery jig and chip delivery method
US20220045029A1 (en) Bonding apparatus and bonding method
JP5168074B2 (en) Semiconductor module manufacturing apparatus, manufacturing apparatus system, manufacturing direction, and manufacturing processing program
JP4859705B2 (en) Implementation method
JP5576219B2 (en) Die bonder and die bonding method
KR100718973B1 (en) A inspecting apparatus and a inspecting method for a semi-conductor chip bonder
JP5181383B2 (en) Bonding equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187027599

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774494

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774494

Country of ref document: EP

Kind code of ref document: A1