WO2017169822A1 - Solid-state image capturing element, image capturing device, endoscope device, and electronic instrument - Google Patents

Solid-state image capturing element, image capturing device, endoscope device, and electronic instrument Download PDF

Info

Publication number
WO2017169822A1
WO2017169822A1 PCT/JP2017/010578 JP2017010578W WO2017169822A1 WO 2017169822 A1 WO2017169822 A1 WO 2017169822A1 JP 2017010578 W JP2017010578 W JP 2017010578W WO 2017169822 A1 WO2017169822 A1 WO 2017169822A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
solid
state
light
Prior art date
Application number
PCT/JP2017/010578
Other languages
French (fr)
Japanese (ja)
Inventor
清輝 黒木
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017169822A1 publication Critical patent/WO2017169822A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present disclosure relates to a solid-state imaging device, an imaging apparatus, an endoscope apparatus, and an electronic device, and in particular, a solid-state imaging element, an imaging apparatus, an endoscope apparatus, and a small-sized, high-definition binocular image that can be captured. It relates to electronic equipment.
  • Non-Patent Document 1 When combining two image sensors that respectively capture two images that generate parallax in order to measure distance or to form a three-dimensional image, a structure in which two image sensor modules are conventionally arranged in parallel and bonded together was common (see Non-Patent Document 1).
  • Non-Patent Document 1 since the binocular solid-state imaging device as in the technique described in Non-Patent Document 1 is packaged with each imaging device, the structure is realized with a small-diameter tube such as an endoscope. Therefore, there is a risk that the resolution of the image sensor is sacrificed in order to reduce the size.
  • the present disclosure has been made in view of such a situation, and in particular, a two-lens solid that is high-resolution and small by bonding an imaging element on the back surface and bonding a prism before packaging.
  • An imaging device is realized.
  • two imaging devices that capture an image are bonded to the back side of each effective imaging surface, and imaging is performed on each of the effective imaging surfaces of the two imaging devices. It is a solid-state image sensor to which a mirror for entering light in a direction is bonded.
  • the two imaging elements are independently incident with light from the imaging direction and collected with two lenses, and the two imaging elements condensed with the lenses are supplied with independent light. It is possible to further include a light color mixing prevention plate that is incident from the imaging direction.
  • the short side of the effective imaging surface can be arranged on the light incident side.
  • the mirror can be a prism mirror.
  • the two image sensors can be bonded together with an adhesive.
  • the two image sensors can be bonded together by plasma bonding.
  • the mirror may be a prism mirror, and the two image sensors may be formed on both surfaces of a single wafer, and the prisms of the prism mirror may be bonded to both surfaces of the wafer. .
  • Both of the two image sensors can have the same spectral sensitivity.
  • the two image sensors can have different spectral sensitivities.
  • the reading order of the two image sensors can be point-symmetric with each other.
  • the reading order of the two image sensors is the same as each other, the output signals of the two image sensors are temporarily stored, and the image of either one of the output signals is processed, and the other image sensor is processed.
  • a conversion unit that converts the image in the same image direction as the image of the output signal can be further included.
  • the two imaging elements can each include the conversion unit.
  • the conversion unit may be provided in a logic chip sandwiched between the two image sensors.
  • two imaging elements that capture an image are bonded to each other on the back side of each effective imaging surface, and each of the effective imaging surfaces of the two imaging elements is It is an endoscope apparatus in which a mirror for entering light in an imaging direction is bonded.
  • two imaging elements that capture an image are bonded to each other on the back side of each effective imaging surface, and the imaging direction is set on each of the effective imaging surfaces of the two imaging elements.
  • This is an electronic device to which a mirror for making the light incident is bonded.
  • two imaging elements that capture an image are bonded to each other on the back side of each effective imaging surface, and an imaging direction is applied to each of the effective imaging surfaces of the two imaging elements.
  • This is an image pickup apparatus to which a mirror that makes the light incident is bonded.
  • two image sensors that capture an image are bonded to each other on the back side of each effective image pickup surface, and light in the image pickup direction is applied to each of the effective image pickup surfaces of the two image sensors.
  • a mirror for making the light incident is attached.
  • FIG. 5 is a diagram illustrating a configuration example of a memory logic circuit for performing signal processing on the image signal of FIG. 4.
  • FIG. 5 is a diagram illustrating a configuration example of a memory logic circuit for performing signal processing on the image signal of FIG. 4.
  • FIG. 5 is a diagram for explaining another example of the configuration of a memory logic circuit for signal processing the image signal of FIG. 4. It is a figure explaining the other example of an image sensor module. It is a figure explaining the further another example of an image sensor module. It is a block diagram showing an example of composition of an imaging device as electronic equipment to which this art is applied. It is a figure explaining the usage example of the solid-state imaging device to which the technique of this indication is applied. It is a block diagram which shows an example of a schematic structure of an in-vivo information acquisition system. It is a figure which shows an example of a schematic structure of an endoscopic surgery system. It is a block diagram which shows an example of a function structure of a camera head and CCU. It is a block diagram which shows an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
  • a conventional endoscope apparatus 1 using a binocular solid-state image sensor 2 is a binocular solid-state image sensor configured by adhering general single-lens image sensor modules 2a-1 and 2a-2 side by side. 2 was inserted into the endoscope tube 5.
  • the image pickup device modules 2a-1 and 2a-2 are provided with image pickup devices 3-1 and 3-2 and flexible wirings 4-1 and 4-2, each of which is composed of CMOS (Complementary Metal Oxide ⁇ Semiconductor) or the like.
  • CMOS Complementary Metal Oxide ⁇ Semiconductor
  • binocular solid-state imaging device 2 in FIG. 1 is packaged with the respective imaging device modules 2a-1 and 2a-2, in order to realize the structure with a small diameter tube such as an endoscope.
  • a small diameter tube such as an endoscope.
  • the binocular solid-state imaging device of the present disclosure is configured to be able to capture a high-resolution image even with a small-diameter tube such as an endoscope.
  • the binocular solid-state imaging device of the present disclosure can be applied to, for example, the imaging device module 22 of the endoscope apparatus 11 as shown in FIG.
  • FIG. 2 shows an example in which the lower left portion faces the imaging direction of the endoscope apparatus 11 of the present disclosure and the two-lens imaging areas Z11 and Z12 are arranged in the vertical direction in the figure.
  • 2 is a front view of the endoscope apparatus 11.
  • the lower right part of FIG. 2 is a side sectional view of the endoscope apparatus 11 when the two-lens imaging regions Z11 and Z12 are arranged in the vertical direction.
  • the upper right part of FIG. 2 is a side sectional view of the endoscope apparatus 11 when the two-lens imaging regions Z11 and Z12 are arranged in the horizontal direction.
  • FIG 2 shows an example in which the binocular solid-state imaging device of the present disclosure is used as the imaging device module 22 provided in the endoscope tube 21 of the endoscope apparatus 11, but other than the endoscope tube 21. It may be provided.
  • the endoscope apparatus 11 includes a color mixture prevention plate 31, lenses 32-1 and 32-2, prism mirrors 33-1 and 33-2, imaging elements 34-1 and 34-2, a flexible wiring reinforcing resin 35, and a flexible wiring. 36-1 and 36-2.
  • the color mixing prevention plate 31, the prism mirrors 33-1 and 33-2, and the image pickup devices 34-1 and 34-2 constitute the image pickup device module 22.
  • the imaging element module 22 may further include all or either of the lenses 32-1 and 32-2, the flexible wiring reinforcing resin 35, and the flexible wirings 36-1 and 36-2. Good.
  • the imaging elements 34-1 and 34-2 are obtained by bonding the substrates constituting each of the imaging elements 34-1 and 34-2 in a state where the substrates are aligned with high accuracy by using an adhesive, and lenses 33-1 and 33, respectively.
  • -2 captures an image based on the incident light collected by -2, converts the captured image into an image signal, and outputs the image signal to a subsequent apparatus via the flexible wirings 36-1 and 36-2.
  • the image pickup devices 34-1 and 34-2 may be plasma bonded without using an adhesive in the state of a wafer to be manufactured.
  • plasma welding since there is no adhesive that is a different material between the image pickup devices 34-1 and 34-2, a difference in linear expansion coefficient does not occur, and distortion due to thermal effects does not occur.
  • the image sensor module 22 as a binocular solid-state image sensor suitable for a range of applications can be configured.
  • the color mixing prevention plate 31 is a light shielding plate that partitions an endoscope tube provided at an intermediate position where the imaging elements 34-1 and 34-2 are bonded to each other and to the lenses 32-1 and 32-2. . That is, the color mixing prevention plate 31 is configured so that light incident through the optical path L1 enters the imaging region Z11 of the imaging device 34-1 and light incident through the optical path L2 enters the imaging region Z12 of the imaging device 34-2. Yes. In other words, in the color mixing prevention plate 31, the light incident through the optical path L1 enters the imaging region Z12 of the imaging device 34-2, or the light incident through the optical path L2 captures the image of the imaging device 34-1. The incident to the region Z11 is prevented, thereby suppressing the occurrence of color mixing.
  • the prism mirrors 33-1 and 33-2 reflect and project the optical paths L1 and L2 incident from the imaging direction on the imaging regions Z11 and Z12 of the imaging devices 34-1 and 34-2, respectively.
  • the prism mirrors 33-1 and 33-2 are configured with a minimum size that can cover the imaging regions Z11 and Z12. For example, when the imaging elements 34-1 and 34-2 are rectangles having an aspect ratio of 16: 9 or 4: 3, the prism mirrors 33-1 and 33-2 are respectively connected to the imaging elements 34-1 and 34-2. If the size of the short side of the image sensor is large enough to cover, a smaller image sensor module 22 can be configured.
  • the optical paths L1 and L2 of the incident light are reflected by the prism mirrors 33-1 and 33-2 and are incident on the respective image pickup devices 34-1 and 34-2.
  • the optical paths L1 and L2 of the incident light are guided to the image pickup devices 34-1 and 34-2, other configurations may be used.
  • a mirror may be simply provided.
  • connection portions between the terminals of the image pickup devices 34-1 and 34-2 and the flexible wirings 36-1 and 36-2 are fixed by the flexible wiring reinforcing resin 35, and the connection strength is reinforced. .
  • flexible wirings 36-1 and 36-2 are connected to the output terminal portion of the image sensor module 22, and image signals output from the image sensors 34-1 and 34-2. An example in which is output is shown.
  • the method of outputting image signals from the image sensors 34-1 and 34-2 is not limited to the flexible wirings 36-1 and 36-2, and the lead wires are joined to the image sensors 34-1 and 34-2. It may be a structured.
  • flexible wiring and lead wires can be pulled out along the endoscope tube 21 without being bent in the endoscope tube 21.
  • the flexible wirings 36-1 and 36-2 are not bent, so that the assemblability is good, and since the bending is not possible, the stress applied to the connection portion can be reduced, and the connection reliability can be improved. It has become.
  • the flexible wiring reinforcing resin 35 not only improves the connection reliability of the connecting portions between the flexible wirings 36-1 and 36-2 and the terminal portions of the imaging devices 34-1 and 34-2, but also includes the imaging devices 34-1 and 34-1. It is also possible to protect the end face of 34-2 and the end faces of the prism mirrors 33-1 and 33-2.
  • the image pickup devices 34-1 and 34-2 are made of silicon chips and are covered with the prism mirrors 33-1 and 33-2, the chips of the image pickup devices 34-1 and 34-2 are missing. Or the generation
  • the upper left part of the drawing is a front view seen from the imaging direction when the imaging element module 22, which is a two-lens solid-state imaging element of the present disclosure, is inserted into the endoscope tube 21.
  • the upper right part in the figure is a side cross-sectional view when the imaging element module 22 is inserted into the endoscope tube 21.
  • the upper part of FIG. 3 explains the size of the diameter of the endoscope tube 21 when viewed from the front when viewed from the imaging direction when the imaging element module 22 is inserted into the endoscope tube 21. Therefore, the lenses 32-1 and 32-2 are omitted.
  • the lower left upper part in the figure is a front view seen from the imaging direction when the conventional binocular solid-state imaging device 2 is inserted into the endoscope tube 5, and the lower right part in the figure is the conventional lower part. It is side surface sectional drawing when the 2 eyes solid-state image sensor 2 is inserted in the endoscope tube 5.
  • FIG. 3 is a front view seen from the imaging direction when the conventional binocular solid-state imaging device 2 is inserted into the endoscope tube 5
  • the lower right part in the figure is the conventional lower part. It is side surface sectional drawing when the 2 eyes solid-state image sensor 2 is inserted in the endoscope tube 5.
  • the image sensor modules 2a-1 and 2a-2 in the conventional two-lens solid-state image sensor 2 have imaging regions Z21 and Z22 in the image sensors 3-1 and 3-2, respectively. Also, packages 2b-1 and 2b-2 are provided so as to surround a wide range.
  • the diameter D2 of the endoscope tube 5 is set according to the outer size of the packages 2b-1 and 2b-2 viewed from the imaging direction. Therefore, the diameter D2 of the endoscope tube 5 cannot be made smaller than the packages 2b-1 and 2b-2.
  • the imaging elements 34-1 and 34-2 have a structure in which the back portions are bonded to each other, and the package 2b-1, No structure corresponding to 2b-2 exists, and only prism mirrors 33-1 and 33-2 corresponding to the sizes of the imaging regions Z11 and Z12 in the imaging devices 34-1 and 34-2 are provided. It is. Therefore, the diameter D1 of the endoscope tube 21 can be set to the minimum size that can accommodate the imaging regions Z11 and Z12 of the imaging elements 34-1 and 34-2.
  • the imaging regions Z21 and Z22 of the imaging devices 3-1 and 3-2 and the imaging devices 34-1 and 34- are the same size, at least the diameter D1 of the endoscope tube 21 using the imaging device module 22 is the endoscope tube 5 using the binocular solid-state imaging device 2. It is possible to make the structure sufficiently smaller than the diameter D2.
  • the imaging regions Z11 and Z12 which are effective imaging surfaces of the imaging devices 34-1 and 34-2 are squares that are not square, by arranging the short side on the light incident side, The diameter of 33-2 can be further reduced. For this reason, the diameter D1 of the endoscope tube 21 into which the imaging element module 22 is inserted can be further reduced, and the size can be further reduced.
  • the imaging element module 22 that is a two-lens solid-state imaging element of the present disclosure
  • the imaging element module 22 when imaging an image P ⁇ b> 1 indicated as “7”, it is perpendicular to the image P ⁇ b> 1 from above.
  • the lenses 32-1 and 32-2 are arranged in the direction, and the connection terminals 34a-1 and 34a-2 are arranged rearward with respect to the incident direction with respect to the imaging devices 34-1 and 34-2.
  • the image P1 incident through the optical paths L1 and L2 is captured as follows.
  • the image P1 incident through the optical path L1 is shifted from the image P1 shown in the upper right portion of the drawing on the image pickup device 34-1 through the prism 32-1 through the lens 32-1. Captured as an inverted image P11.
  • the image P1 incident through the optical path L2 passes through the lens 32-2 and the prism mirror 33-2, and on the image sensor 34-2, as shown in the lower right part of the figure.
  • the image P1 is imaged as an upside down image P12.
  • the image P11 picked up by the image pickup device 34-1 and the image P12 picked up by the image pickup device 34-2 are picked up as inverted images.
  • a memory logic circuit 51 for processing the image signals of the images P11 and P12 is provided at the subsequent stage of the image pickup devices 34-1 and 34-2. Processed and output.
  • the image sensor 34-1 sequentially reads out pixel signals in the left direction from the upper right pixel indicated by the star in the image P11 in the figure. Each time reading is completed, the process of sequentially reading the pixel signals in the left direction from the pixel in the rightmost column below one row is repeated.
  • the image sensor 34-2 sequentially reads out pixel signals from the upper right pixel indicated by the star in the image P12 in the figure in the left direction, and reads out one row. Each time is completed, the process of sequentially reading out the pixel signals in the left direction from the pixel in the rightmost column below one row is repeated.
  • the image sensor 11-1 outputs an image P 11 in which the left and right of “7” of the image P 1 are inverted as an image signal S 1, and the image sensor 3-4 inverts the “7” of image P 1.
  • the image P12 is output as the image signal S2.
  • the memory logic circuit 51 detects the pixel signal S1 corresponding to the image P11 in which the left and right of “7” of the image P1 are inverted, and the pixel corresponding to the image P12 in which the upper and lower of “7” of the image P1 is inverted.
  • the signal S2 is stored as the image signals M1 and M2 as they are.
  • the memory logic circuit 51 stores one of the stored image signals M1, M2 as, for example, the image signal M3 by inverting the image signal M2 upside down.
  • the image signal M3 is an image signal obtained by inverting the left and right of “7” of the image P1.
  • the memory logic circuit 51 combines the image signals M1 and M3, generates the parallax information D, and outputs it.
  • parallax information is output as a signal processing result from the images P11 and P12 imaged by the image sensor module 22.
  • an example in which parallax information is output as a signal processing result has been described.
  • other signal processing may be used as long as signal processing using a parallax image is performed, for example, a three-dimensional image signal is generated. You may make it output.
  • the example in which the image signal M3 is generated by inverting the image signal M2 in the second processing has been described.
  • the image signal M4 is inverted upside down.
  • the image signals M2 and M4 may be combined to generate the parallax information D.
  • the two image pickup devices 34-1 and 34-2 have the same spectral sensitivity, and both process image signals obtained by receiving light of the same wavelength band made of visible light.
  • the wavelength distribution of light received by any one of the imaging elements 34 may be other than the visible light region with different spectral sensitivities.
  • the temperature distribution is set so that infrared light can be received. You may make it image-capture and perform a signal processing using a visible light image and an infrared light image.
  • the pixel signals are sequentially read in the left direction from the pixels in the upper right part indicated by the asterisks in FIG. 5 of the images P11 and P12, respectively.
  • the example in which the vertically inverted image P12 is supplied as the image signals S1 and S2 has been described, but the above-described inversion processing is omitted by matching the readout start position and readout order of the readout pixels with the orientation of the image. It may be.
  • the image sensor 34-1 sequentially reads the image P11 from the upper right pixel of the image indicated by the star in the left direction, and 1 each time reading of one row is completed. The process of sequentially reading out pixel signals from the pixels in the rightmost column below the row in the left direction is repeated.
  • the image sensor 34-2 sequentially reads the image P12 from the lower left portion of the image indicated by the star in the right direction, and from the leftmost column on the first row to the right every time one row is read. The process of sequentially reading out pixel signals is repeated.
  • the pixel readout order is a process of reading out pixel signals at positions that are point-symmetric with each other in each of the imaging devices 34-1 and 34-2, so that an image captured by the imaging device 34-2 is obtained. Since P12 is read out in a state where the pixel position is inverted upside down, the image P12 read out from the image sensor 34-2 at the time when the reading is completed is on the read out pixel signal S2. As a result, the image P1 similar to the image P11 can be handled as a horizontally inverted image signal.
  • the memory logic circuit 51 can generate the parallax information as it is.
  • the memory logic circuit 51 converts the image signals output from the image sensors 34-1 and 34-2 to terminals 34a-1 and 34a-2 and flexible wirings 36-1,
  • the signal processing result obtained via 36-2 and subjected to the signal processing described with reference to FIG. 5 may be output to the subsequent stage.
  • the memory logic circuit 51 is provided on the substrate (chip) on which the imaging elements 34-1 and 34-2 are bonded, and is provided between the imaging region and the terminal 34a. You may be made to do. That is, in the example of FIG. 8, the memory logic circuit 51 is laid out on the signal processing chip on the image sensor 34-1. In this case, a through electrode is provided on the substrate to which the image pickup devices 34-1 and 34-2 are bonded, and the memory logic circuit 51 is provided on either surface, and the memory logic circuit 51 is connected to the image pickup device 34-. The image signals picked up by 1 and 34-2 are signal-processed and output through the flexible wiring 36. As a result, since the area for laying out the memory logic circuit 51 can be reduced, the image sensor module 22 can be further downsized.
  • ⁇ Other configuration position 2 of the memory logic circuit> As shown by the image sensor module 22 in FIG. 9, the back surfaces of the image sensors 34-1 and 34-2 are bonded to both surfaces of the memory logic circuit 51, and the image sensors 34-1 and 34-2 are respectively connected by through electrodes. Alternatively, the flexible wiring 71 may be connected only to the terminal 34a-1 of the image sensor 34-1.
  • the imaging elements 34-1 and 34-2 may be formed on the silicon wafer 101 by double-side patterning.
  • the image sensor module 22 including a binocular solid-state image sensor that has a small number of parts and is easy to assemble.
  • the present invention is not limited to the endoscope device, and may be incorporated into, for example, a WEB camera of a personal computer, a smartphone camera, or a car safety device.
  • a WEB camera of a personal computer a WEB camera of a personal computer
  • smartphone camera a smartphone camera
  • car safety device By applying to such a configuration, it becomes possible to make a three-dimensional image using a personal computer and measure the distance to the object.
  • it when installing as a safety device for automobiles, for example, it can be installed in a very small space such as the back side of a room mirror. It is possible to prevent such a situation.
  • the two-lens image pickup device with the back surface bonded thereto is small enough to allow light to enter the image pickup regions Z11 and Z12 of the image pickup device with the color mixing prevention plate interposed therebetween.
  • the prism mirror By providing the prism mirror, it is possible to realize a small and high-definition binocular solid-state imaging device.
  • a two-lens solid-state imaging device can be realized.
  • the back surface of the image sensor that becomes a two-lens image is bonded by plasma bonding, or a two-eye image sensor is formed on both surfaces of a single wafer by patterning, so that the linear expansion difference between the two-lens image sensors is increased.
  • the influence of the thermal expansion difference of the two-lens image sensor due to the temperature effect in the manufacturing process and the drive heat generation of the image sensor can be reduced, so that two images captured by each of the two-lens image sensor It is possible to improve the synthesis accuracy of the images.
  • the distance to the subject is measured and the image is three-dimensionalized from the parallax information between the two-lens imaging elements. This can be realized and an image having a depth can be taken.
  • the light receiving sensitivity of one image sensor 34 may be a short wavelength spectral sensitivity
  • the light receiving sensitivity of the other image sensor 34 may be a long wavelength spectral sensitivity.
  • the surface layer image and the deep part image of the imaged subject can be acquired, and a highly functional image to be synthesized can be obtained.
  • the above-described imaging element module 22 can be applied to various electronic devices such as an imaging device such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. it can.
  • FIG. 11 is a block diagram illustrating a configuration example of an imaging apparatus as an electronic apparatus to which the present technology is applied.
  • An imaging apparatus 201 illustrated in FIG. 11 includes an optical system 202, a shutter device 203, a solid-state imaging device 204, a drive circuit 205, a signal processing circuit 206, a monitor 207, and a memory 208, and displays still images and moving images. Imaging is possible.
  • the optical system 202 includes one or more lenses, guides light (incident light) from a subject to the solid-state image sensor 204, and forms an image on the light receiving surface of the solid-state image sensor 204.
  • the shutter device 203 is disposed between the optical system 202 and the solid-state imaging device 204, and controls the light irradiation period and the light-shielding period to the solid-state imaging device 204 according to the control of the drive circuit 1005.
  • the solid-state image sensor 204 is configured by a package including the above-described solid-state image sensor.
  • the solid-state imaging device 204 accumulates signal charges for a certain period in accordance with light imaged on the light receiving surface via the optical system 202 and the shutter device 203.
  • the signal charge accumulated in the solid-state image sensor 204 is transferred according to a drive signal (timing signal) supplied from the drive circuit 205.
  • the drive circuit 205 outputs a drive signal for controlling the transfer operation of the solid-state image sensor 204 and the shutter operation of the shutter device 203 to drive the solid-state image sensor 204 and the shutter device 203.
  • the signal processing circuit 206 performs various types of signal processing on the signal charges output from the solid-state imaging device 204.
  • An image (image data) obtained by the signal processing by the signal processing circuit 206 is supplied to the monitor 207 and displayed, or supplied to the memory 208 and stored (recorded).
  • FIG. 12 is a diagram illustrating a usage example in which the above-described solid-state imaging device 21 is used.
  • the imaging device described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ⁇ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc.
  • Equipment used for medical and health care ⁇ Security equipment such as security surveillance cameras and personal authentication cameras ⁇ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 13 is a block diagram illustrating an example of a schematic configuration of a patient in-vivo information acquisition system using a capsule endoscope to which the technique according to the present disclosure (present technique) can be applied.
  • the in-vivo information acquisition system 10001 includes a capsule endoscope 10100 and an external control device 10200.
  • the capsule endoscope 10100 is swallowed by the patient at the time of examination.
  • the capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and the intestine by peristaltic motion or the like until it is spontaneously discharged from the patient.
  • Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information about the in-vivo images is sequentially wirelessly transmitted to the external control device 10200 outside the body.
  • the external control device 10200 comprehensively controls the operation of the in-vivo information acquisition system 10001. Further, the external control device 10200 receives information about the in-vivo image transmitted from the capsule endoscope 10100 and, based on the received information about the in-vivo image, displays the in-vivo image on the display device (not shown). The image data for displaying is generated.
  • an in-vivo image obtained by imaging the inside of the patient's body can be obtained at any time in this manner until the capsule endoscope 10100 is swallowed and discharged.
  • the capsule endoscope 10100 includes a capsule-type casing 10101.
  • a light source unit 10111 In the casing 10101, a light source unit 10111, an imaging unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power supply unit 10115, and a power supply unit 10116 and the control unit 10117 are stored.
  • the light source unit 10111 is composed of a light source such as an LED (Light Emitting Diode), for example, and irradiates the imaging field of the imaging unit 10112 with light.
  • a light source such as an LED (Light Emitting Diode), for example, and irradiates the imaging field of the imaging unit 10112 with light.
  • the image capturing unit 10112 includes an image sensor and an optical system including a plurality of lenses provided in front of the image sensor. Reflected light (hereinafter referred to as observation light) of light irradiated on the body tissue to be observed is collected by the optical system and enters the image sensor. In the imaging unit 10112, in the imaging element, the observation light incident thereon is photoelectrically converted, and an image signal corresponding to the observation light is generated. The image signal generated by the imaging unit 10112 is provided to the image processing unit 10113.
  • the image processing unit 10113 is configured by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and performs various signal processing on the image signal generated by the imaging unit 10112.
  • the image processing unit 10113 provides the radio communication unit 10114 with the image signal subjected to signal processing as RAW data.
  • the wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been subjected to signal processing by the image processing unit 10113, and transmits the image signal to the external control apparatus 10200 via the antenna 10114A.
  • the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A.
  • the wireless communication unit 10114 provides a control signal received from the external control device 10200 to the control unit 10117.
  • the power feeding unit 10115 includes a power receiving antenna coil, a power regeneration circuit that regenerates power from a current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using a so-called non-contact charging principle.
  • the power supply unit 10116 is composed of a secondary battery, and stores the electric power generated by the power supply unit 10115.
  • FIG. 13 in order to avoid complication of the drawing, illustration of an arrow or the like indicating a power supply destination from the power supply unit 10116 is omitted, but the power stored in the power supply unit 10116 is stored in the light source unit 10111.
  • the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117 can be used for driving them.
  • the control unit 10117 includes a processor such as a CPU, and a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power feeding unit 10115. Control accordingly.
  • a processor such as a CPU
  • the external control device 10200 is configured by a processor such as a CPU or GPU, or a microcomputer or a control board in which a processor and a storage element such as a memory are mounted.
  • the external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A.
  • the capsule endoscope 10100 for example, the light irradiation condition for the observation target in the light source unit 10111 can be changed by a control signal from the external control device 10200.
  • an imaging condition for example, a frame rate or an exposure value in the imaging unit 10112
  • a control signal from the external control device 10200 can be changed by a control signal from the external control device 10200.
  • the contents of processing in the image processing unit 10113 and the conditions (for example, the transmission interval, the number of transmission images, etc.) by which the wireless communication unit 10114 transmits an image signal may be changed by a control signal from the external control device 10200. .
  • the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured in-vivo image on the display device.
  • image processing for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing can be performed.
  • the external control device 10200 controls driving of the display device to display an in-vivo image captured based on the generated image data.
  • the external control device 10200 may cause the generated image data to be recorded on a recording device (not shown) or may be printed out on a printing device (not shown).
  • the technology according to the present disclosure can be applied to the imaging unit 10112 among the configurations described above.
  • the imaging element module 22 in FIG. 3 can be applied to the imaging unit 10112.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 14 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
  • FIG. 14 illustrates a state in which an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using an endoscopic operation system 11000.
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
  • An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111.
  • the recorder 11207 is an apparatus capable of recording various types of information related to surgery.
  • the printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
  • the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation.
  • a so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 15 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 includes an imaging element.
  • One (so-called single plate type) image sensor may be included in the imaging unit 11402, or a plurality (so-called multi-plate type) may be used.
  • image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site.
  • 3D 3D
  • the imaging unit 11402 is not necessarily provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Auto White Balance
  • the camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques.
  • the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
  • the transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 11400.
  • communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to the imaging unit 11402 of the camera head 11102 among the configurations described above.
  • the imaging element module 22 in FIG. 3 can be applied to the imaging unit 10402.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 16 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image.
  • the vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light.
  • the imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
  • the vehicle interior information detection unit 12040 detects vehicle interior information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 realizes an ADAS (Advanced Driver Assistance System) function including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 17 is a diagram illustrating an example of an installation position of the imaging unit 12031.
  • the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the forward images acquired by the imaging units 12101 and 12105 are mainly used for detection of a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 17 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
  • the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining.
  • the audio image output unit 12052 When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to be superimposed and displayed.
  • voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the imaging element module 22 in FIG. 3 can be applied to the imaging unit 12031.
  • this indication can also take the following structures.
  • Two image pickup devices for picking up images are pasted on the back side of each effective image pickup surface, A solid-state image pickup device in which a mirror that makes light in an image pickup direction enter each of the effective image pickup surfaces of the two image pickup devices.
  • ⁇ 3> The solid-state imaging device according to ⁇ 1> or ⁇ 2>, wherein a short side of the effective imaging surface is disposed on a light incident side.
  • ⁇ 4> The solid-state imaging device according to any one of ⁇ 1> to ⁇ 3>, wherein the mirror is a prism mirror.
  • ⁇ 5> wiring for inputting and outputting signals to the image sensor;
  • ⁇ 6> The solid-state imaging device according to any one of ⁇ 1> to ⁇ 5>, wherein the two imaging devices are bonded together with an adhesive.
  • ⁇ 7> The solid-state imaging device according to any one of ⁇ 1> to ⁇ 6>, wherein the two imaging devices are bonded together by plasma bonding.
  • the mirror is a prism mirror
  • the two image sensors are formed on both sides of one wafer
  • ⁇ 9> The solid-state imaging device according to any one of ⁇ 1> to ⁇ 8>, wherein both of the two imaging devices have the same spectral sensitivity.
  • ⁇ 10> The solid-state imaging device according to any one of ⁇ 1> to ⁇ 9>, wherein the two imaging devices have different spectral sensitivities.
  • the solid-state imaging device according to any one of ⁇ 1> to ⁇ 10>, wherein the reading order of the two imaging devices is point-symmetric with each other.
  • the reading order of the two image sensors is the same,
  • the image processing apparatus further includes a conversion unit that temporarily stores output signals of the two image pickup devices and performs signal processing on an image of one of the output signals and converts the image in the same image direction as the image of the other output signal.
  • the solid-state image sensor in any one of ⁇ 11>.
  • ⁇ 13> The solid-state imaging device according to ⁇ 12>, wherein each of the two imaging devices includes the conversion unit.
  • ⁇ 14> The solid-state imaging device according to ⁇ 12>, wherein the conversion unit is provided in a logic chip sandwiched between the two imaging devices.
  • Two image pickup devices for picking up images are bonded to the back side of each effective image pickup surface, An endoscope apparatus in which a mirror that allows light in an imaging direction to enter is bonded to each of the effective imaging surfaces of the two imaging elements.
  • Two image pickup devices for picking up images are bonded on the back side of each effective image pickup surface, An electronic apparatus in which a mirror that allows light in an imaging direction to enter is bonded to each of the effective imaging surfaces of the two imaging elements.
  • Two image pickup devices for picking up images are bonded on the back side of each effective image pickup surface, An imaging apparatus in which a mirror that allows light in an imaging direction to enter is bonded to each of the effective imaging surfaces of the two imaging elements.

Abstract

The present disclosure relates to a solid-state image capturing element, an image capturing device, an endoscope device and an electronic instrument which make it possible to achieve a binocular solid-state image capturing element that has high resolution and is compact. In this solid-state image capturing element, rear surfaces of two image capturing elements are bonded to one another, and prism mirrors which guide incident light from an image capturing direction onto effective image capturing regions of each image capturing element are provided. The present disclosure can be applied to binocular solid-state image capturing elements.

Description

固体撮像素子、撮像装置、内視鏡装置、および電子機器Solid-state imaging device, imaging device, endoscope device, and electronic apparatus
 本開示は、固体撮像素子、撮像装置、内視鏡装置、および電子機器に関し、特に、小型で高精細な2眼画像を撮像できるようにした固体撮像素子、撮像装置、内視鏡装置、および電子機器に関する。 The present disclosure relates to a solid-state imaging device, an imaging apparatus, an endoscope apparatus, and an electronic device, and in particular, a solid-state imaging element, an imaging apparatus, an endoscope apparatus, and a small-sized, high-definition binocular image that can be captured. It relates to electronic equipment.
 距離を測定する、または、3次元画像化するために、視差を生じさせる2枚の画像をそれぞれ撮像する2個の撮像素子を組み合わせる場合、従来は2つの撮像素子モジュールを並列に並べて接着する構造が一般的であった(非特許文献1参照)。 When combining two image sensors that respectively capture two images that generate parallax in order to measure distance or to form a three-dimensional image, a structure in which two image sensor modules are conventionally arranged in parallel and bonded together Was common (see Non-Patent Document 1).
 しかしながら、上述した非特許文献1に記載の技術のような2眼式の固体撮像素子はそれぞれの撮像素子がパッケージ化されているため、内視鏡のような小径管で、その構造を実現するためには、小型化するために撮像素子の解像度が犠牲にされる恐れがある。 However, since the binocular solid-state imaging device as in the technique described in Non-Patent Document 1 is packaged with each imaging device, the structure is realized with a small-diameter tube such as an endoscope. Therefore, there is a risk that the resolution of the image sensor is sacrificed in order to reduce the size.
 本開示は、このような状況に鑑みてなされたものであり、特に、パッケージングする前に撮像素子を裏面で貼り合わせて、プリズムを貼り合わせることにより、高解像度かつ小型である2眼の固体撮像素子を実現するものである。 The present disclosure has been made in view of such a situation, and in particular, a two-lens solid that is high-resolution and small by bonding an imaging element on the back surface and bonding a prism before packaging. An imaging device is realized.
 本開示の一側面の固体撮像素子は、画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた固体撮像素子である。 In the solid-state imaging device according to one aspect of the present disclosure, two imaging devices that capture an image are bonded to the back side of each effective imaging surface, and imaging is performed on each of the effective imaging surfaces of the two imaging devices. It is a solid-state image sensor to which a mirror for entering light in a direction is bonded.
 前記2個の撮像素子をそれぞれ独立して撮像方向からの光を入射して集光する2個のレンズと、前記レンズにより集光された前記2個の撮像素子のそれぞれに独立した光を前記撮像方向から入射させる光混色防止板とをさらに含ませるようにすることができる。 The two imaging elements are independently incident with light from the imaging direction and collected with two lenses, and the two imaging elements condensed with the lenses are supplied with independent light. It is possible to further include a light color mixing prevention plate that is incident from the imaging direction.
 前記有効撮像面の短辺側が光入射側に配置されるようにすることができる。 The short side of the effective imaging surface can be arranged on the light incident side.
 前記ミラーは、プリズムミラーとすることができる。 The mirror can be a prism mirror.
 前記撮像素子に信号を入出力する配線と、前記配線と前記撮像素子との接続部を保護する補強樹脂とをさらに含ませるようにすることができる。 It is possible to further include a wiring for inputting / outputting a signal to / from the image sensor and a reinforcing resin for protecting a connection portion between the wiring and the image sensor.
 前記2個の撮像素子は、接着材により貼り合わされるようにすることができる。 The two image sensors can be bonded together with an adhesive.
 前記2個の撮像素子は、プラズマ接合により貼り合わされるようにすることができる。 The two image sensors can be bonded together by plasma bonding.
 前記ミラーは、プリズムミラーとすることができ、前記2個の撮像素子は1枚のウェハの両面に形成され、前記プリズムミラーのプリズムが、前記ウェハの両面に貼り合わされるようにすることができる。 The mirror may be a prism mirror, and the two image sensors may be formed on both surfaces of a single wafer, and the prisms of the prism mirror may be bonded to both surfaces of the wafer. .
 前記2個の撮像素子は、いずれも同一の分光感度とすることができる。 Both of the two image sensors can have the same spectral sensitivity.
 前記2個の撮像素子は、それぞれ異なる分光感度とすることができる。 The two image sensors can have different spectral sensitivities.
 前記2個の撮像素子の読み出し順序が、相互に点対称であるようにすることができる。 The reading order of the two image sensors can be point-symmetric with each other.
 前記2個の撮像素子の読み出し順序が、相互に同一であり、前記2個の撮像素子の出力信号を一時的に記憶すると共に、いずれか一方の出力信号における画像を信号処理して、他方の出力信号の画像と同一の画像方向に変換させる変換部をさらに含ませるようにすることができる。 The reading order of the two image sensors is the same as each other, the output signals of the two image sensors are temporarily stored, and the image of either one of the output signals is processed, and the other image sensor is processed. A conversion unit that converts the image in the same image direction as the image of the output signal can be further included.
 前記2個の撮像素子には、それぞれ前記変換部を含ませるようにすることができる。 The two imaging elements can each include the conversion unit.
 前記変換部は、前記2個の撮像素子の間に挟み込まれたロジックチップに設けられるようにすることができる。 The conversion unit may be provided in a logic chip sandwiched between the two image sensors.
 本開示の一側面の内視鏡装置は、画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた内視鏡装置である。 In the endoscope apparatus according to one aspect of the present disclosure, two imaging elements that capture an image are bonded to each other on the back side of each effective imaging surface, and each of the effective imaging surfaces of the two imaging elements is It is an endoscope apparatus in which a mirror for entering light in an imaging direction is bonded.
 本開示の一側面の電子機器は、画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた電子機器である。 In the electronic device according to one aspect of the present disclosure, two imaging elements that capture an image are bonded to each other on the back side of each effective imaging surface, and the imaging direction is set on each of the effective imaging surfaces of the two imaging elements. This is an electronic device to which a mirror for making the light incident is bonded.
 本開示の一側面の撮像装置は、画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた撮像装置である。 In the imaging device according to one aspect of the present disclosure, two imaging elements that capture an image are bonded to each other on the back side of each effective imaging surface, and an imaging direction is applied to each of the effective imaging surfaces of the two imaging elements. This is an image pickup apparatus to which a mirror that makes the light incident is bonded.
 本開示の一側面においては、画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされる。 In one aspect of the present disclosure, two image sensors that capture an image are bonded to each other on the back side of each effective image pickup surface, and light in the image pickup direction is applied to each of the effective image pickup surfaces of the two image sensors. A mirror for making the light incident is attached.
 本開示の一側面によれば、高解像度かつ小型である2眼の固体撮像装置を実現することが可能となる。 According to one aspect of the present disclosure, it is possible to realize a high-resolution and compact two-lens solid-state imaging device.
従来の2眼の固体撮像素子を用いた内視鏡装置の構成例を説明する図である。It is a figure explaining the structural example of the endoscope apparatus using the conventional solid imaging element of 2 eyes. 本開示の2眼の固体撮像素子を用いた内視鏡装置の構成例を説明する図である。It is a figure explaining the structural example of the endoscope apparatus using the solid-state image sensor of 2 eyes of this indication. 図2の本開示の2眼の固体撮像素子と、従来の2眼の固体撮像素子との大きさの差を説明する図である。It is a figure explaining the difference of the magnitude | size of the 2 eyes solid-state image sensor of this indication of FIG. 2, and the conventional 2 eyes solid-state image sensor. 図2の2眼の固体撮像素子における2個の撮像素子により撮像される画像を説明する図である。It is a figure explaining the image imaged with two image sensors in the solid-state image sensor of 2 eyes of FIG. 図4の画像を信号処理する例を説明する図である。It is a figure explaining the example which performs signal processing of the image of FIG. 図4の画像信号処理するその他の例を説明する図である。It is a figure explaining the other example which processes the image signal of FIG. 図4の画像信号を信号処理するためのメモリロジック回路の構成例を説明する図である。FIG. 5 is a diagram illustrating a configuration example of a memory logic circuit for performing signal processing on the image signal of FIG. 4. 図4の画像信号を信号処理するためのメモリロジック回路の構成のその他の例を説明する図である。FIG. 5 is a diagram for explaining another example of the configuration of a memory logic circuit for signal processing the image signal of FIG. 4. 撮像素子モジュールのその他の例を説明する図である。It is a figure explaining the other example of an image sensor module. 撮像素子モジュールのさらにその他の例を説明する図である。It is a figure explaining the further another example of an image sensor module. 本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。It is a block diagram showing an example of composition of an imaging device as electronic equipment to which this art is applied. 本開示の技術を適用した固体撮像装置の使用例を説明する図である。It is a figure explaining the usage example of the solid-state imaging device to which the technique of this indication is applied. 体内情報取得システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of an in-vivo information acquisition system. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of a schematic structure of an endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of a function structure of a camera head and CCU. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 <従来の2眼固体撮像素子>
 本開示の技術を適用した2眼の固体撮像素子を用いた内視鏡装置の構成について説明するにあたって、まず、従来の2眼固体撮像素子を用いた内視鏡装置について説明する。
<Conventional Binocular Solid-State Image Sensor>
In describing the configuration of an endoscope apparatus using a binocular solid-state imaging element to which the technology of the present disclosure is applied, first, a conventional endoscope apparatus using a binocular solid-state imaging element will be described.
 従来の2眼固体撮像素子2を用いた内視鏡装置1は、一般的な1眼式の撮像素子モジュール2a-1,2a-2を左右に並べて接着して構成される2眼固体撮像素子2を内視鏡管5に内挿したものであった。この撮像素子モジュール2a-1,2a-2には、それぞれCMOS(Complementary Metal Oxide Semiconductor)等からなる撮像素子3-1,3-2、および、フレキシブル配線4-1,4-2が設けられており、撮像素子3-1,3-2のそれぞれにより撮像された画像が、フレキシブル配線4-1,4-2を介して出力される。 A conventional endoscope apparatus 1 using a binocular solid-state image sensor 2 is a binocular solid-state image sensor configured by adhering general single-lens image sensor modules 2a-1 and 2a-2 side by side. 2 was inserted into the endoscope tube 5. The image pickup device modules 2a-1 and 2a-2 are provided with image pickup devices 3-1 and 3-2 and flexible wirings 4-1 and 4-2, each of which is composed of CMOS (Complementary Metal Oxide 等 Semiconductor) or the like. Thus, the images picked up by the image pickup devices 3-1 and 3-2 are output via the flexible wirings 4-1 and 4-2.
 しかしながら、上述した図1の2眼固体撮像素子2はそれぞれの撮像素子モジュール2a-1,2a-2がパッケージ化されているため、内視鏡のような小径管でその構造を実現するためには、小型化するために撮像素子の解像度が犠牲にされる恐れがあった。 However, since the above-described binocular solid-state imaging device 2 in FIG. 1 is packaged with the respective imaging device modules 2a-1 and 2a-2, in order to realize the structure with a small diameter tube such as an endoscope. However, there is a risk that the resolution of the image sensor is sacrificed in order to reduce the size.
 <本開示の2眼固体撮像素子の構成例>
 そこで、本開示の2眼固体撮像素子は、内視鏡のような小径管においても、高解像度の画像を撮像できる構成とされている。
<Configuration Example of the Binocular Solid-State Image Sensor of the Present Disclosure>
Therefore, the binocular solid-state imaging device of the present disclosure is configured to be able to capture a high-resolution image even with a small-diameter tube such as an endoscope.
 より具体的には、本開示の2眼固体撮像素子は、例えば、図2で示されるような内視鏡装置11の撮像素子モジュール22に適用することができる。 More specifically, the binocular solid-state imaging device of the present disclosure can be applied to, for example, the imaging device module 22 of the endoscope apparatus 11 as shown in FIG.
 尚、図2は、左下部が、本開示の内視鏡装置11による撮像方向に対向し、かつ、2眼の撮像領域Z11,Z12が、図中の垂直方向に配置されている場合の内視鏡装置11の正面図である。また、図2の右下部が、2眼の撮像領域Z11,Z12が、垂直方向に配置されている場合の内視鏡装置11の側面断面図である。さらに、図2の右上部が、2眼の撮像領域Z11,Z12が、水平方向に配置されている場合の内視鏡装置11の側面断面図である。 Note that FIG. 2 shows an example in which the lower left portion faces the imaging direction of the endoscope apparatus 11 of the present disclosure and the two-lens imaging areas Z11 and Z12 are arranged in the vertical direction in the figure. 2 is a front view of the endoscope apparatus 11. FIG. Moreover, the lower right part of FIG. 2 is a side sectional view of the endoscope apparatus 11 when the two-lens imaging regions Z11 and Z12 are arranged in the vertical direction. Furthermore, the upper right part of FIG. 2 is a side sectional view of the endoscope apparatus 11 when the two-lens imaging regions Z11 and Z12 are arranged in the horizontal direction.
 図2における本開示の2眼固体撮像素子は、内視鏡装置11の内視鏡管21内に設けられる撮像素子モジュール22として用いられる例が示されているが、内視鏡管21以外に設けられるようにしてもよいものである。 2 shows an example in which the binocular solid-state imaging device of the present disclosure is used as the imaging device module 22 provided in the endoscope tube 21 of the endoscope apparatus 11, but other than the endoscope tube 21. It may be provided.
 内視鏡装置11は、混色防止板31、レンズ32-1,32-2、プリズムミラー33-1,33-2、撮像素子34-1,34-2、フレキシブル配線補強樹脂35、およびフレキシブル配線36-1,36-2を備えている。このうち、特に、混色防止板31、プリズムミラー33-1,33-2、および撮像素子34-1,34-2が、撮像素子モジュール22を構成する。 The endoscope apparatus 11 includes a color mixture prevention plate 31, lenses 32-1 and 32-2, prism mirrors 33-1 and 33-2, imaging elements 34-1 and 34-2, a flexible wiring reinforcing resin 35, and a flexible wiring. 36-1 and 36-2. Among these, in particular, the color mixing prevention plate 31, the prism mirrors 33-1 and 33-2, and the image pickup devices 34-1 and 34-2 constitute the image pickup device module 22.
 尚、撮像素子モジュール22は、さらに、レンズ32-1,32-2、フレキシブル配線補強樹脂35、およびフレキシブル配線36-1,36-2の全て、または、それらのいずれかを含めたものとしてもよい。 The imaging element module 22 may further include all or either of the lenses 32-1 and 32-2, the flexible wiring reinforcing resin 35, and the flexible wirings 36-1 and 36-2. Good.
 撮像素子34-1,34-2は、それぞれを構成する基板が、アライメントマークを利用して接着剤により高精度に位置合わせされた状態で貼り合わされたものであり、それぞれレンズ33-1,33-2により集光された入射光に基づいて画像を撮像し、撮像した画像を画像信号に変換してフレキシブル配線36-1,36-2を介して後段の装置に出力する。 The imaging elements 34-1 and 34-2 are obtained by bonding the substrates constituting each of the imaging elements 34-1 and 34-2 in a state where the substrates are aligned with high accuracy by using an adhesive, and lenses 33-1 and 33, respectively. -2 captures an image based on the incident light collected by -2, converts the captured image into an image signal, and outputs the image signal to a subsequent apparatus via the flexible wirings 36-1 and 36-2.
 また、撮像素子34-1,34-2は、製造するウェハの状態で接着剤を使わずにプラズマ接合をさせるようにしてもよい。プラズマ溶接されると、撮像素子34-1,34-2の間に異種材料となる接着剤が無いので、線膨張係数の差が生じず、熱影響による歪が生じることがなくなるので、広い温度範囲の用途に適した2眼固体撮像素子としての撮像素子モジュール22を構成することができる。 Further, the image pickup devices 34-1 and 34-2 may be plasma bonded without using an adhesive in the state of a wafer to be manufactured. When plasma welding is performed, since there is no adhesive that is a different material between the image pickup devices 34-1 and 34-2, a difference in linear expansion coefficient does not occur, and distortion due to thermal effects does not occur. The image sensor module 22 as a binocular solid-state image sensor suitable for a range of applications can be configured.
 混色防止板31は、撮像素子34-1,34-2が貼り合わされた中間位置であって、レンズ32-1,32-2までの範囲に設けられた内視鏡管内を仕切る遮光板である。すなわち、混色防止板31は、光路L1により入射する光が、撮像素子34-1の撮像領域Z11に、光路L2により入射する光が、撮像素子34-2の撮像領域Z12に入射するようにしている。換言すれば、混色防止板31は、それぞれ光路L1により入射する光が、撮像素子34-2の撮像領域Z12に入射してしまったり、光路L2により入射する光が、撮像素子34-1の撮像領域Z11に入射してしまったりすることを防止し、これにより混色の発生を抑制している。 The color mixing prevention plate 31 is a light shielding plate that partitions an endoscope tube provided at an intermediate position where the imaging elements 34-1 and 34-2 are bonded to each other and to the lenses 32-1 and 32-2. . That is, the color mixing prevention plate 31 is configured so that light incident through the optical path L1 enters the imaging region Z11 of the imaging device 34-1 and light incident through the optical path L2 enters the imaging region Z12 of the imaging device 34-2. Yes. In other words, in the color mixing prevention plate 31, the light incident through the optical path L1 enters the imaging region Z12 of the imaging device 34-2, or the light incident through the optical path L2 captures the image of the imaging device 34-1. The incident to the region Z11 is prevented, thereby suppressing the occurrence of color mixing.
 プリズムミラー33-1,33-2は、それぞれ撮像方向より入射される光路L1,L2を撮像素子34-1,34-2の、それぞれの撮像領域Z11,Z12に反射して投影する。このプリズムミラー33-1,33-2は、撮像領域Z11,Z12をカバーできる最小のサイズで構成されている。撮像素子34-1,34-2が、例えば、アスペクト比が16:9や4:3といった長方形の場合、プリズムミラー33-1,33-2は、撮像素子34-1,34-2のそれぞれの短辺方向をカバーできるだけのサイズにするとより小型の撮像素子モジュール22を構成することが可能となる。 The prism mirrors 33-1 and 33-2 reflect and project the optical paths L1 and L2 incident from the imaging direction on the imaging regions Z11 and Z12 of the imaging devices 34-1 and 34-2, respectively. The prism mirrors 33-1 and 33-2 are configured with a minimum size that can cover the imaging regions Z11 and Z12. For example, when the imaging elements 34-1 and 34-2 are rectangles having an aspect ratio of 16: 9 or 4: 3, the prism mirrors 33-1 and 33-2 are respectively connected to the imaging elements 34-1 and 34-2. If the size of the short side of the image sensor is large enough to cover, a smaller image sensor module 22 can be configured.
 尚、この例においては、プリズムミラー33-1,33-2により入射光の光路L1,L2が反射されて、それぞれの撮像素子34-1,34-2に入射される構造とされているが、入射光の光路L1,L2が撮像素子34-1,34-2のそれぞれに誘導される構造であれば、その他の構成であってもよく、例えば、単にミラーが設けられるだけでもよい。 In this example, the optical paths L1 and L2 of the incident light are reflected by the prism mirrors 33-1 and 33-2 and are incident on the respective image pickup devices 34-1 and 34-2. As long as the optical paths L1 and L2 of the incident light are guided to the image pickup devices 34-1 and 34-2, other configurations may be used. For example, a mirror may be simply provided.
 撮像素子34-1,34-2の図中左方向端部には、それぞれの撮像面Z11,Z12と同一の面上に撮像素子34-1,34-2への電力供給、および撮像された画像信号の出力を目的とした金属製の端子が設けられており、この端子に配線36aからなるフレキシブル配線36-1,36-2が接続されている。 At the left end of the image pickup devices 34-1 and 34-2 in the drawing, power is supplied to the image pickup devices 34-1 and 34-2 on the same plane as the image pickup surfaces Z11 and Z12, and images are taken. Metal terminals for the purpose of outputting image signals are provided, and flexible wirings 36-1 and 36-2 including wirings 36a are connected to the terminals.
 撮像素子34-1,34-2における端子と、フレキシブル配線36-1,36-2との接続部位は、フレキシブル配線補強樹脂35により固定された状態となっており、接続強度が補強されている。 Connection portions between the terminals of the image pickup devices 34-1 and 34-2 and the flexible wirings 36-1 and 36-2 are fixed by the flexible wiring reinforcing resin 35, and the connection strength is reinforced. .
 尚、図2の内視鏡装置11においては、撮像素子モジュール22の出力端子部にフレキシブル配線36-1,36-2を接続させ、撮像素子34-1,34-2より出力される画像信号を出力させた例が示されている。 In the endoscope apparatus 11 of FIG. 2, flexible wirings 36-1 and 36-2 are connected to the output terminal portion of the image sensor module 22, and image signals output from the image sensors 34-1 and 34-2. An example in which is output is shown.
 しかしながら、撮像素子34-1,34-2からの画像信号の出力方法はフレキシブル配線36-1,36-2に限定されるものではなく、リード線を撮像素子34-1,34-2に接合させた構造でもよい。 However, the method of outputting image signals from the image sensors 34-1 and 34-2 is not limited to the flexible wirings 36-1 and 36-2, and the lead wires are joined to the image sensors 34-1 and 34-2. It may be a structured.
 また、撮像素子モジュール22では、フレキシブル配線やリード線を内視鏡管21の中で折り曲げることなく、内視鏡管21に沿って引き出すことができる。このような構成により、フレキシブル配線36-1,36-2が折り曲げられないので、組み立て性がよく、折り曲げられないので接続部にかかる応力を小さくすることができ、接続信頼性を高めることが可能となっている。 Further, in the imaging element module 22, flexible wiring and lead wires can be pulled out along the endoscope tube 21 without being bent in the endoscope tube 21. With such a configuration, the flexible wirings 36-1 and 36-2 are not bent, so that the assemblability is good, and since the bending is not possible, the stress applied to the connection portion can be reduced, and the connection reliability can be improved. It has become.
 フレキシブル配線補強樹脂35は、フレキシブル配線36-1,36-2と撮像素子34-1,34-2の端子部との接続部の接続信頼性を向上させだけでなく、撮像素子34-1,34-2の端面やプリズムミラー33-1,33-2の端面を保護することも可能となる。 The flexible wiring reinforcing resin 35 not only improves the connection reliability of the connecting portions between the flexible wirings 36-1 and 36-2 and the terminal portions of the imaging devices 34-1 and 34-2, but also includes the imaging devices 34-1 and 34-1. It is also possible to protect the end face of 34-2 and the end faces of the prism mirrors 33-1 and 33-2.
 撮像素子34-1,34-2は、シリコンチップ製であり、プリズムミラー33-1,33-2で覆われる構造になっているため、撮像素子34-1,34-2のチップが欠ける、またはクラックが入るといった現象の発生が抑制されており、信頼性の高い構造とされている。 Since the image pickup devices 34-1 and 34-2 are made of silicon chips and are covered with the prism mirrors 33-1 and 33-2, the chips of the image pickup devices 34-1 and 34-2 are missing. Or the generation | occurrence | production of the phenomenon that a crack enters is suppressed and it is set as the highly reliable structure.
 <本開示の2眼固体撮像素子である撮像素子モジュールと従来の2眼固体撮像素子との比較>
 次に、図3を参照して、本開示の2眼固体撮像素子である撮像素子モジュール22と従来の2眼固体撮像素子2との比較について説明する。
<Comparison of Image Sensor Module as Binocular Solid Image Sensor of Present Disclosure with Conventional Binocular Solid Image Sensor>
Next, with reference to FIG. 3, a comparison between the image sensor module 22 that is the two-eye solid-state image sensor of the present disclosure and the conventional two-eye solid-state image sensor 2 will be described.
 尚、図3においては、図中の左上部が本開示の2眼固体撮像素子である撮像素子モジュール22を内視鏡管21に内挿したときの撮像方向から見た正面図であり、図中の右上部が撮像素子モジュール22を内視鏡管21に内挿したときの側面断面図である。ただし、図3の上部は、撮像素子モジュール22を内視鏡管21に内挿したときの撮像方向から見た正面から見たときの内視鏡管21の径のサイズを説明するものであるので、レンズ32-1,32-2が省略されている。 In FIG. 3, the upper left part of the drawing is a front view seen from the imaging direction when the imaging element module 22, which is a two-lens solid-state imaging element of the present disclosure, is inserted into the endoscope tube 21. The upper right part in the figure is a side cross-sectional view when the imaging element module 22 is inserted into the endoscope tube 21. However, the upper part of FIG. 3 explains the size of the diameter of the endoscope tube 21 when viewed from the front when viewed from the imaging direction when the imaging element module 22 is inserted into the endoscope tube 21. Therefore, the lenses 32-1 and 32-2 are omitted.
 また、図3においては、図中の左下上部が従来の2眼固体撮像素子2を内視鏡管5に内挿したときの撮像方向から見た正面図であり、図中の右下部が従来の2眼固体撮像素子2を内視鏡管5に内挿したときの側面断面図である。 Further, in FIG. 3, the lower left upper part in the figure is a front view seen from the imaging direction when the conventional binocular solid-state imaging device 2 is inserted into the endoscope tube 5, and the lower right part in the figure is the conventional lower part. It is side surface sectional drawing when the 2 eyes solid-state image sensor 2 is inserted in the endoscope tube 5. FIG.
 図3の下部で示されるように、従来の2眼固体撮像素子2における、撮像素子モジュール2a-1,2a-2には、それぞれ撮像素子3-1,3-2における撮像領域Z21,Z22よりも広い範囲を取り囲むようにパッケージ2b-1,2b-2が設けられている。内視鏡管5の径D2は、このパッケージ2b-1,2b-2の撮像方向から見た外形サイズに応じて設定される。したがって、内視鏡管5の径D2は、このパッケージ2b-1,2b-2よりも小さくすることはできない。 As shown in the lower part of FIG. 3, the image sensor modules 2a-1 and 2a-2 in the conventional two-lens solid-state image sensor 2 have imaging regions Z21 and Z22 in the image sensors 3-1 and 3-2, respectively. Also, packages 2b-1 and 2b-2 are provided so as to surround a wide range. The diameter D2 of the endoscope tube 5 is set according to the outer size of the packages 2b-1 and 2b-2 viewed from the imaging direction. Therefore, the diameter D2 of the endoscope tube 5 cannot be made smaller than the packages 2b-1 and 2b-2.
 これに対して、本開示の2眼固体撮像素子である撮像素子モジュール22においては、撮像素子34-1,34-2は、背面部が貼り合わされた構造となっており、パッケージ2b-1,2b-2に対応する構造は存在せず、さらに、撮像素子34-1,34-2における撮像領域Z11,Z12の大きさに対応したプリズムミラー33-1,33-2が設けられているのみである。このため、内視鏡管21の径D1は、撮像素子34-1,34-2の撮像領域Z11,Z12を収めることができる最小サイズに設定することができる。 On the other hand, in the imaging element module 22 that is the two-lens solid-state imaging element of the present disclosure, the imaging elements 34-1 and 34-2 have a structure in which the back portions are bonded to each other, and the package 2b-1, No structure corresponding to 2b-2 exists, and only prism mirrors 33-1 and 33-2 corresponding to the sizes of the imaging regions Z11 and Z12 in the imaging devices 34-1 and 34-2 are provided. It is. Therefore, the diameter D1 of the endoscope tube 21 can be set to the minimum size that can accommodate the imaging regions Z11 and Z12 of the imaging elements 34-1 and 34-2.
 結果として、従来の2眼固体撮像素子2と本開示の撮像素子モジュール22との比較においては、撮像素子3-1,3-2の撮像領域Z21,Z22と、撮像素子34-1,34-2の撮像領域Z11,Z12が同一のサイズであったと仮定すれば、少なくとも撮像素子モジュール22を用いた内視鏡管21の径D1は、2眼固体撮像素子2を用いた内視鏡管5の径D2よりも十分に小さい構成することが可能である。 As a result, in the comparison between the conventional binocular solid-state imaging device 2 and the imaging device module 22 of the present disclosure, the imaging regions Z21 and Z22 of the imaging devices 3-1 and 3-2 and the imaging devices 34-1 and 34- Assuming that the two imaging regions Z11 and Z12 have the same size, at least the diameter D1 of the endoscope tube 21 using the imaging device module 22 is the endoscope tube 5 using the binocular solid-state imaging device 2. It is possible to make the structure sufficiently smaller than the diameter D2.
 また、撮像素子34-1,34-2の有効撮像面である撮像領域Z11,Z12が正方形ではない方形である場合、短辺側を光入射側に配置することにより、プリズムミラー33-1,33-2の径をより小さくすることが可能となる。このため、撮像素子モジュール22を内挿する内視鏡管21の径D1は、さらに小さくすることが可能となり、より小型化することが可能となる。 Further, when the imaging regions Z11 and Z12 which are effective imaging surfaces of the imaging devices 34-1 and 34-2 are squares that are not square, by arranging the short side on the light incident side, The diameter of 33-2 can be further reduced. For this reason, the diameter D1 of the endoscope tube 21 into which the imaging element module 22 is inserted can be further reduced, and the size can be further reduced.
 <本開示の撮像素子モジュールにおける画像信号の信号処理について>
 次に、図4を参照して、本開示の撮像素子モジュール22における画像信号の信号処理について説明する。
<Signal Processing of Image Signal in Image Sensor Module of Present Disclosure>
Next, with reference to FIG. 4, signal processing of an image signal in the image sensor module 22 of the present disclosure will be described.
 本開示の2眼固体撮像素子である撮像素子モジュール22について、図4の左部で示されるように、「7」と示された画像P1を撮像する場合、画像P1に対して、上から垂直方向にレンズ32-1,32-2が並ぶように設けられ、撮像素子34-1,34-2に対して、接続端子34a-1,34a-2が入射方向に対して後方に配置されるとき、光路L1,L2を介して入射される画像P1は、以下のように撮像される。 As shown in the left part of FIG. 4, for the imaging element module 22 that is a two-lens solid-state imaging element of the present disclosure, when imaging an image P <b> 1 indicated as “7”, it is perpendicular to the image P <b> 1 from above. The lenses 32-1 and 32-2 are arranged in the direction, and the connection terminals 34a-1 and 34a-2 are arranged rearward with respect to the incident direction with respect to the imaging devices 34-1 and 34-2. At this time, the image P1 incident through the optical paths L1 and L2 is captured as follows.
 すなわち、光路L1を介して入射される画像P1は、レンズ32-1を介してプリズムミラー33-1を介して、撮像素子34-1上において、図中の右上部で示される画像P1が左右反転した画像P11として撮像される。 In other words, the image P1 incident through the optical path L1 is shifted from the image P1 shown in the upper right portion of the drawing on the image pickup device 34-1 through the prism 32-1 through the lens 32-1. Captured as an inverted image P11.
 同様に、光路L2を介して入射される画像P1は、レンズ32-2を介してプリズムミラー33-2を介して、撮像素子34-2上において、図中の右下部で示されるように、画像P1が上下反転した画像P12として撮像される。 Similarly, the image P1 incident through the optical path L2 passes through the lens 32-2 and the prism mirror 33-2, and on the image sensor 34-2, as shown in the lower right part of the figure. The image P1 is imaged as an upside down image P12.
 このように、撮像素子34-1で撮像される画像P11と、撮像素子34-2で撮像される画像P12とは、上下左右が反転した画像として撮像される。 As described above, the image P11 picked up by the image pickup device 34-1 and the image P12 picked up by the image pickup device 34-2 are picked up as inverted images.
 このため、撮像素子34-1,34-2のそれぞれより出力される画像を用いて、視差画像を生成するような場合、そのままの画像を用いて、例えば、視差画像を直接生成するようなことができない。 For this reason, when a parallax image is generated using images output from the imaging devices 34-1 and 34-2, for example, a parallax image is directly generated using the image as it is. I can't.
 そこで、撮像素子34-1,34-2の後段には、画像P11,P12の画像信号を信号処理するためのメモリロジック回路51が設けられており、このように上下左右が反転した画像が信号処理されて出力される。 Therefore, a memory logic circuit 51 for processing the image signals of the images P11 and P12 is provided at the subsequent stage of the image pickup devices 34-1 and 34-2. Processed and output.
 <メモリロジック回路による信号処理について>
 ここで、メモリロジック回路51による具体的な信号処理について、図5を参照して説明する。ここでは、メモリロジック回路51が、この画像P11,P12より、視差情報を生成する信号処理について説明する。
<Signal processing by memory logic circuit>
Here, specific signal processing by the memory logic circuit 51 will be described with reference to FIG. Here, signal processing in which the memory logic circuit 51 generates parallax information from the images P11 and P12 will be described.
 第一の処理として、撮像素子34-1が、図5の上部で示されるように、図中の画像P11の星印で示される右上部の画素から左方向に順次画素信号を読み出し、1行の読み出しが完了する毎に1行下の最右列の画素から左方向に順次画素信号を読み出す処理を繰り返す。また、同時に、撮像素子34-2が、図5の上部で示されるように、図中の画像P12の星印で示される右上部の画素から左方向に順次画素信号を読み出し、1行の読み出しが完了する毎に1行下の最右列の画素から左方向に順次画素信号を読み出す処理を繰り返す。 As the first processing, as shown in the upper part of FIG. 5, the image sensor 34-1 sequentially reads out pixel signals in the left direction from the upper right pixel indicated by the star in the image P11 in the figure. Each time reading is completed, the process of sequentially reading the pixel signals in the left direction from the pixel in the rightmost column below one row is repeated. At the same time, as shown in the upper part of FIG. 5, the image sensor 34-2 sequentially reads out pixel signals from the upper right pixel indicated by the star in the image P12 in the figure in the left direction, and reads out one row. Each time is completed, the process of sequentially reading out the pixel signals in the left direction from the pixel in the rightmost column below one row is repeated.
 この処理により、撮像素子34-1より、画像P1の「7」の左右が反転した画像P11が画像信号S1として出力され、撮像素子34-2より、画像P1の「7」の上下が反転した画像P12が画像信号S2として出力される。 As a result of this processing, the image sensor 11-1 outputs an image P 11 in which the left and right of “7” of the image P 1 are inverted as an image signal S 1, and the image sensor 3-4 inverts the “7” of image P 1. The image P12 is output as the image signal S2.
 第二の処理として、メモリロジック回路51は、画像P1の「7」の左右が反転した画像P11に対応する画素信号S1と、画像P1の「7」の上下が反転した画像P12に対応する画素信号S2とを、そのままの画像信号M1,M2として記憶する。 As the second processing, the memory logic circuit 51 detects the pixel signal S1 corresponding to the image P11 in which the left and right of “7” of the image P1 are inverted, and the pixel corresponding to the image P12 in which the upper and lower of “7” of the image P1 is inverted. The signal S2 is stored as the image signals M1 and M2 as they are.
 第三の処理として、メモリロジック回路51は、記憶した画像信号M1,M2のうちのいずれか、例えば、画像信号M2の上下を反転させて画像信号M3として記憶する。このとき、画像信号M3は、画像信号M1と同様に、画像P1の「7」の左右が反転した画像信号となる。 As a third process, the memory logic circuit 51 stores one of the stored image signals M1, M2 as, for example, the image signal M3 by inverting the image signal M2 upside down. At this time, similarly to the image signal M1, the image signal M3 is an image signal obtained by inverting the left and right of “7” of the image P1.
 第四の処理として、メモリロジック回路51は、画像信号M1,M3とを合成し、視差情報Dを生成して、出力する。 As the fourth process, the memory logic circuit 51 combines the image signals M1 and M3, generates the parallax information D, and outputs it.
 以上の処理により、撮像素子モジュール22により撮像された画像P11,P12より視差情報が信号処理結果として出力される。尚、以上においては、視差情報が信号処理結果として出力される例について説明したが、視差画像を用いた信号処理であれば、その他の信号処理でもよく、例えば、3次元画像信号を生成して出力するようにしてもよい。 Through the above processing, parallax information is output as a signal processing result from the images P11 and P12 imaged by the image sensor module 22. In the above description, an example in which parallax information is output as a signal processing result has been described. However, other signal processing may be used as long as signal processing using a parallax image is performed, for example, a three-dimensional image signal is generated. You may make it output.
 尚、この例においては、第二の処理において、画像信号M2を反転した画像信号M3を生成する例について説明したが、画像信号M2に代えて、画像信号M1の上下を反転させて画像信号M4を生成し、画像信号M2,M4を合成するようにして、視差情報Dを生成するようにしてもよい。 In this example, the example in which the image signal M3 is generated by inverting the image signal M2 in the second processing has been described. However, instead of the image signal M2, the image signal M4 is inverted upside down. And the image signals M2 and M4 may be combined to generate the parallax information D.
 また、以上においては、2枚の撮像素子34-1,34-2が、同一分光感度であり、いずれも可視光からなる同一波長帯の光を受光することで得られる画像信号が処理される例について説明してきたが、異なる分光感度にし、いずれか一方の撮像素子34の受光する光の波長を可視光領域以外にしてもよく、例えば、赤外光を受光できるようにして、温度分布を撮像するようにして、可視光画像と赤外光画像とを用いた信号処理をするようにしてもよい。 In the above, the two image pickup devices 34-1 and 34-2 have the same spectral sensitivity, and both process image signals obtained by receiving light of the same wavelength band made of visible light. Although the example has been described, the wavelength distribution of light received by any one of the imaging elements 34 may be other than the visible light region with different spectral sensitivities. For example, the temperature distribution is set so that infrared light can be received. You may make it image-capture and perform a signal processing using a visible light image and an infrared light image.
 <メモリロジック回路による信号処理のその他の例>
 以上においては、画像P11,P12のそれぞれの図5における星印で示される右上部の画素から左方向に順次画素信号が読み出され、それぞれは、「7」の左右が反転した画像P11と、上下が反転した画像P12とが画像信号S1,S2として供給されてくる例について説明してきたが、読み出し画素の読み出し開始位置と読み出し順序を画像の向きに合わせることで、上述した反転処理を省くようにしてもよい。
<Other examples of signal processing by memory logic circuit>
In the above, the pixel signals are sequentially read in the left direction from the pixels in the upper right part indicated by the asterisks in FIG. 5 of the images P11 and P12, respectively. The example in which the vertically inverted image P12 is supplied as the image signals S1 and S2 has been described, but the above-described inversion processing is omitted by matching the readout start position and readout order of the readout pixels with the orientation of the image. It may be.
 すなわち、図6で示されるように、例えば、撮像素子34-1が、画像P11について、星印で示される画像の右上の画素から順次左方向に読み出し、1行の読み出しが完了する毎に1行下の最右列の画素から左方向に順次画素信号を読み出す処理を繰り返す。同様に、撮像素子34-2が、画像P12について星印で示される画像の左下部から順次右方向に読み出し、1行の読み出しが完了する毎に1行上の最左列の画素から右方向に順次画素信号を読み出す処理を繰り返す。 That is, as shown in FIG. 6, for example, the image sensor 34-1 sequentially reads the image P11 from the upper right pixel of the image indicated by the star in the left direction, and 1 each time reading of one row is completed. The process of sequentially reading out pixel signals from the pixels in the rightmost column below the row in the left direction is repeated. Similarly, the image sensor 34-2 sequentially reads the image P12 from the lower left portion of the image indicated by the star in the right direction, and from the leftmost column on the first row to the right every time one row is read. The process of sequentially reading out pixel signals is repeated.
 このように、画素の読み出し順序を撮像素子34-1,34-2のそれぞれで相互に点対称な関係の位置の画素信号を読み出す処理とすることにより、撮像素子34-2により撮像された画像P12については、画素位置が上下反転された状態で読み出されることになるため、読み出しが完了した時点で、撮像素子34-2から読み出された画像P12は、読み出された画素信号S2上の像の上下が反転されることになり、結果として、画像P11と同様の画像P1が左右反転した画像信号として扱えるようになる。 As described above, the pixel readout order is a process of reading out pixel signals at positions that are point-symmetric with each other in each of the imaging devices 34-1 and 34-2, so that an image captured by the imaging device 34-2 is obtained. Since P12 is read out in a state where the pixel position is inverted upside down, the image P12 read out from the image sensor 34-2 at the time when the reading is completed is on the read out pixel signal S2. As a result, the image P1 similar to the image P11 can be handled as a horizontally inverted image signal.
 この場合、画像P11,P12が読み出された状態で、対応する画像となっているため、メモリロジック回路51は、そのまま視差情報を生成することが可能となる。 In this case, since the images P11 and P12 are read out and become corresponding images, the memory logic circuit 51 can generate the parallax information as it is.
 <メモリロジック回路の構成位置>
 メモリロジック回路51は、例えば、図7で示されるように、撮像素子34-1,34-2より出力される画像信号を、それぞれ端子34a-1,34a-2、およびフレキシブル配線36-1,36-2を介して取得し、図5を参照して説明した信号処理を施して、後段に信号処理結果を出力するようにしてもよい。
<Configuration position of memory logic circuit>
For example, as shown in FIG. 7, the memory logic circuit 51 converts the image signals output from the image sensors 34-1 and 34-2 to terminals 34a-1 and 34a-2 and flexible wirings 36-1, The signal processing result obtained via 36-2 and subjected to the signal processing described with reference to FIG. 5 may be output to the subsequent stage.
 <メモリロジック回路のその他の構成位置1>
 また、メモリロジック回路51は、例えば、図8で示されるように、撮像素子34-1,34-2が貼り合わされた基板(チップ)上であって、撮像領域と端子34aとの間に設けられるようにしてもよい。すなわち、図8の例においては、撮像素子34-1上の信号処理チップにメモリロジック回路51がレイアウトされている。この場合、撮像素子34-1,34-2が貼り合わされた基板に貫通電極を設けるようにして、いずれかの面にメモリロジック回路51が設けられるようにし、メモリロジック回路51が撮像素子34-1,34-2により撮像された画像信号を信号処理し、フレキシブル配線36を介して出力する。この結果、メモリロジック回路51をレイアウトする面積を削減できるので、撮像素子モジュール22をより小型化することが可能となる。
<Other configuration positions 1 of the memory logic circuit>
Further, for example, as shown in FIG. 8, the memory logic circuit 51 is provided on the substrate (chip) on which the imaging elements 34-1 and 34-2 are bonded, and is provided between the imaging region and the terminal 34a. You may be made to do. That is, in the example of FIG. 8, the memory logic circuit 51 is laid out on the signal processing chip on the image sensor 34-1. In this case, a through electrode is provided on the substrate to which the image pickup devices 34-1 and 34-2 are bonded, and the memory logic circuit 51 is provided on either surface, and the memory logic circuit 51 is connected to the image pickup device 34-. The image signals picked up by 1 and 34-2 are signal-processed and output through the flexible wiring 36. As a result, since the area for laying out the memory logic circuit 51 can be reduced, the image sensor module 22 can be further downsized.
 <フレキシブル配線のバリエーション>
 図8で示されるように、メモリロジック回路51が、撮像素子34-1,34-2のいずれか一方の面に設けられるような場合、信号処理結果が、撮像素子モジュール22から直接出力されることになるので、フレキシブル配線36-1,36-2のうち、いずれか一方とするような構造とすることができる。
<Flexible wiring variations>
As shown in FIG. 8, when the memory logic circuit 51 is provided on one surface of the image pickup devices 34-1 and 34-2, the signal processing result is directly output from the image pickup device module 22. Therefore, a structure in which one of the flexible wirings 36-1 and 36-2 is used can be obtained.
 <メモリロジック回路のその他の構成位置2>
 図9の撮像素子モジュール22で示されるように、メモリロジック回路51の両面に撮像素子34-1,34-2の背面を貼り合わせ、撮像素子34-1,34-2とをそれぞれ貫通電極で接続し、撮像素子34-1の端子34a-1にのみフレキシブル配線71が接続されるようにしてもよい。
<Other configuration position 2 of the memory logic circuit>
As shown by the image sensor module 22 in FIG. 9, the back surfaces of the image sensors 34-1 and 34-2 are bonded to both surfaces of the memory logic circuit 51, and the image sensors 34-1 and 34-2 are respectively connected by through electrodes. Alternatively, the flexible wiring 71 may be connected only to the terminal 34a-1 of the image sensor 34-1.
 このような構成により、2本のフレキシブル配線36-1,36-2に代えて、1本のフレキシブル配線71を設けるようにするだけでよくなり、フレキシブル配線36の数を削減することが可能となり、内視鏡管21内における配線スペースを低減させることが可能となる。 With such a configuration, it is only necessary to provide one flexible wiring 71 instead of the two flexible wirings 36-1 and 36-2, and the number of flexible wirings 36 can be reduced. The wiring space in the endoscope tube 21 can be reduced.
 <撮像素子の配置位置のバリエーション>
 以上においては個別のシリコンウェハ上に生成された撮像素子34-1,34-2をメモリロジック回路51の両面に貼り合わせる例について説明してきたが、例えば、図10で示されるように、1枚のシリコンウェハ101に両面パターニングにより撮像素子34-1,34-2が形成されるようにしてもよい。
<Variation of image sensor placement position>
In the above description, an example in which the image pickup devices 34-1 and 34-2 generated on individual silicon wafers are bonded to both surfaces of the memory logic circuit 51 has been described. For example, as shown in FIG. The imaging elements 34-1 and 34-2 may be formed on the silicon wafer 101 by double-side patterning.
 このような構成により、部品点数が少ない、組み立ての容易な2眼固体撮像素子からなる撮像素子モジュール22を実現することが可能となる。 With such a configuration, it is possible to realize the image sensor module 22 including a binocular solid-state image sensor that has a small number of parts and is easy to assemble.
 尚、以上の例においては、内視鏡装置における内視鏡管に内挿して使用する2眼の固体撮像素子からなる撮像素子モジュール22の例について説明してきたが、2眼の固体撮像素子が利用可能なものであれば、内視鏡装置に限ったものではなく、例えば、パーソナルコンピュータのWEBカメラ、スマートフォンのカメラ、または自動車の安全装置等に組み込むようにしてもよい。このような構成に応用することで、パーソナルコンピュータを用いた画像の3次元化や対象物との距離測定が可能になる。また、自動車の安全装置として組み込むような場合、例えば、ルームミラーの裏側などの極小さなスペースに設置することが可能となるため、撮像装置を組み込むことによる美観の低下や、目視範囲を小さくしてしまうといったことを防止することが可能となる。 In the above example, the example of the image sensor module 22 including the two-lens solid-state image sensor used by being inserted into the endoscope tube in the endoscope apparatus has been described. As long as it can be used, the present invention is not limited to the endoscope device, and may be incorporated into, for example, a WEB camera of a personal computer, a smartphone camera, or a car safety device. By applying to such a configuration, it becomes possible to make a three-dimensional image using a personal computer and measure the distance to the object. In addition, when installing as a safety device for automobiles, for example, it can be installed in a very small space such as the back side of a room mirror. It is possible to prevent such a situation.
 以上のような構成により、背面部が貼り合わされた2眼の撮像素子に対して、混色防止板を挟んで、撮像素子の撮像領域Z11,Z12の範囲に対して光を入射させるためだけの小型のプリズムミラーを設けた構成とすることで、小型で高精細な2眼固体撮像装置を実現することが可能となる。 With the above-described configuration, the two-lens image pickup device with the back surface bonded thereto is small enough to allow light to enter the image pickup regions Z11 and Z12 of the image pickup device with the color mixing prevention plate interposed therebetween. By providing the prism mirror, it is possible to realize a small and high-definition binocular solid-state imaging device.
 また、撮像素子の背面が貼り合わされる構造とされることにより、2眼となる撮像素子の相互を補強することができるので、撮像素子が割れる、または、欠けるといったことを防止した堅牢な構造の2眼の固体撮像装置を実現することが可能となる。 In addition, since the back surface of the image sensor is bonded, it is possible to reinforce the mutual image sensor of the two eyes, and thus a robust structure that prevents the image sensor from being broken or chipped. A two-lens solid-state imaging device can be realized.
 さらに、2眼となる撮像素子の背面をプラズマ接合にて貼り合せる、または、1枚のウェハの両面にパターニングにより2眼の撮像素子を形成することにより、2眼の撮像素子間で線膨張差を低減させ、製造プロセスでの温度影響や撮像素子の駆動発熱による、2眼の撮像素子の熱膨張差の影響を小さくすることができるので、2眼の撮像素子のそれぞれで撮像された2枚の画像の合成精度を向上させることが可能となる。 Furthermore, the back surface of the image sensor that becomes a two-lens image is bonded by plasma bonding, or a two-eye image sensor is formed on both surfaces of a single wafer by patterning, so that the linear expansion difference between the two-lens image sensors is increased. And the influence of the thermal expansion difference of the two-lens image sensor due to the temperature effect in the manufacturing process and the drive heat generation of the image sensor can be reduced, so that two images captured by each of the two-lens image sensor It is possible to improve the synthesis accuracy of the images.
 また、2眼の撮像素子がいずれも同じ分光感度を有する撮像素子である2眼固体撮像装置では、2眼の撮像素子間の視差情報から、被写体までの距離の測定や画像の3次元化を実現することができ、奥行きのある画像を撮像することが可能になる。 In addition, in a two-lens solid-state imaging device in which both of the two-lens imaging elements have the same spectral sensitivity, the distance to the subject is measured and the image is three-dimensionalized from the parallax information between the two-lens imaging elements. This can be realized and an image having a depth can be taken.
 さらに、2眼の撮像素子がそれぞれ異なる分光感度を有する撮像素子からなる2眼の固体撮像装置では、それぞれの撮像素子で撮像される2枚の画像を合成することにより高機能な画像解析を実現することが可能となり、例えば、一方の撮像素子34の受光感度を短波長分光感度とし、他方の撮像素子34の受光感度を長波長分光感度とするようにしてもよい。この場合、撮像された被写体の表層画像と深部画像を取得でき、合成する高機能な像を得ることが可能となる。 Furthermore, in a two-lens solid-state imaging device in which the two-lens imaging elements have different spectral sensitivities, high-performance image analysis is realized by synthesizing two images captured by the respective imaging elements. For example, the light receiving sensitivity of one image sensor 34 may be a short wavelength spectral sensitivity, and the light receiving sensitivity of the other image sensor 34 may be a long wavelength spectral sensitivity. In this case, the surface layer image and the deep part image of the imaged subject can be acquired, and a highly functional image to be synthesized can be obtained.
 <電子機器への適用例>
 上述した撮像素子モジュール22は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
<Application examples to electronic devices>
The above-described imaging element module 22 can be applied to various electronic devices such as an imaging device such as a digital still camera and a digital video camera, a mobile phone having an imaging function, or other devices having an imaging function. it can.
 図11は、本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。 FIG. 11 is a block diagram illustrating a configuration example of an imaging apparatus as an electronic apparatus to which the present technology is applied.
 図11に示される撮像装置201は、光学系202、シャッタ装置203、固体撮像素子204、駆動回路205、信号処理回路206、モニタ207、およびメモリ208を備えて構成され、静止画像および動画像を撮像可能である。 An imaging apparatus 201 illustrated in FIG. 11 includes an optical system 202, a shutter device 203, a solid-state imaging device 204, a drive circuit 205, a signal processing circuit 206, a monitor 207, and a memory 208, and displays still images and moving images. Imaging is possible.
 光学系202は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を固体撮像素子204に導き、固体撮像素子204の受光面に結像させる。 The optical system 202 includes one or more lenses, guides light (incident light) from a subject to the solid-state image sensor 204, and forms an image on the light receiving surface of the solid-state image sensor 204.
 シャッタ装置203は、光学系202および固体撮像素子204の間に配置され、駆動回路1005の制御に従って、固体撮像素子204への光照射期間および遮光期間を制御する。 The shutter device 203 is disposed between the optical system 202 and the solid-state imaging device 204, and controls the light irradiation period and the light-shielding period to the solid-state imaging device 204 according to the control of the drive circuit 1005.
 固体撮像素子204は、上述した固体撮像素子を含むパッケージにより構成される。固体撮像素子204は、光学系202およびシャッタ装置203を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。固体撮像素子204に蓄積された信号電荷は、駆動回路205から供給される駆動信号(タイミング信号)に従って転送される。 The solid-state image sensor 204 is configured by a package including the above-described solid-state image sensor. The solid-state imaging device 204 accumulates signal charges for a certain period in accordance with light imaged on the light receiving surface via the optical system 202 and the shutter device 203. The signal charge accumulated in the solid-state image sensor 204 is transferred according to a drive signal (timing signal) supplied from the drive circuit 205.
 駆動回路205は、固体撮像素子204の転送動作、および、シャッタ装置203のシャッタ動作を制御する駆動信号を出力して、固体撮像素子204およびシャッタ装置203を駆動する。 The drive circuit 205 outputs a drive signal for controlling the transfer operation of the solid-state image sensor 204 and the shutter operation of the shutter device 203 to drive the solid-state image sensor 204 and the shutter device 203.
 信号処理回路206は、固体撮像素子204から出力された信号電荷に対して各種の信号処理を施す。信号処理回路206が信号処理を施すことにより得られた画像(画像データ)は、モニタ207に供給されて表示されたり、メモリ208に供給されて記憶(記録)されたりする。 The signal processing circuit 206 performs various types of signal processing on the signal charges output from the solid-state imaging device 204. An image (image data) obtained by the signal processing by the signal processing circuit 206 is supplied to the monitor 207 and displayed, or supplied to the memory 208 and stored (recorded).
 このように構成されている撮像装置201においても、上述した固体撮像素子204に代えて、撮像素子モジュール22を適用することにより、2眼の固体撮像素子における高解像度の撮像を可能にすると共に、装置の小型化を実現することが可能となる。
 <固体撮像素子の使用例>
Also in the imaging apparatus 201 configured in this manner, by applying the imaging element module 22 instead of the solid-state imaging element 204 described above, high-resolution imaging can be performed with a two-lens solid-state imaging element. It becomes possible to reduce the size of the apparatus.
<Usage example of solid-state image sensor>
 図12は、上述の固体撮像素子21を使用する使用例を示す図である。 FIG. 12 is a diagram illustrating a usage example in which the above-described solid-state imaging device 21 is used.
 上述した撮像素子は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。 The imaging device described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as follows.
 ・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
・ Devices for taking images for viewing, such as digital cameras and mobile devices with camera functions ・ For safe driving such as automatic stop and recognition of the driver's condition, Devices used for traffic, such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc. Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures ・ Endoscopes, equipment that performs blood vessel photography by receiving infrared light, etc. Equipment used for medical and health care ・ Security equipment such as security surveillance cameras and personal authentication cameras ・ Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports-Equipment used for sports such as action cameras and wearable cameras for sports applications-Used for agriculture such as cameras for monitoring the condition of fields and crops apparatus
 <体内情報取得システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<Application example to in-vivo information acquisition system>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図13は、本開示に係る技術(本技術)が適用され得る、カプセル型内視鏡を用いた患者の体内情報取得システムの概略的な構成の一例を示すブロック図である。 FIG. 13 is a block diagram illustrating an example of a schematic configuration of a patient in-vivo information acquisition system using a capsule endoscope to which the technique according to the present disclosure (present technique) can be applied.
 体内情報取得システム10001は、カプセル型内視鏡10100と、外部制御装置10200とから構成される。 The in-vivo information acquisition system 10001 includes a capsule endoscope 10100 and an external control device 10200.
 カプセル型内視鏡10100は、検査時に、患者によって飲み込まれる。カプセル型内視鏡10100は、撮像機能及び無線通信機能を有し、患者から自然排出されるまでの間、胃や腸等の臓器の内部を蠕動運動等によって移動しつつ、当該臓器の内部の画像(以下、体内画像ともいう)を所定の間隔で順次撮像し、その体内画像についての情報を体外の外部制御装置10200に順次無線送信する。 The capsule endoscope 10100 is swallowed by the patient at the time of examination. The capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and the intestine by peristaltic motion or the like until it is spontaneously discharged from the patient. Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information about the in-vivo images is sequentially wirelessly transmitted to the external control device 10200 outside the body.
 外部制御装置10200は、体内情報取得システム10001の動作を統括的に制御する。また、外部制御装置10200は、カプセル型内視鏡10100から送信されてくる体内画像についての情報を受信し、受信した体内画像についての情報に基づいて、表示装置(図示せず)に当該体内画像を表示するための画像データを生成する。 The external control device 10200 comprehensively controls the operation of the in-vivo information acquisition system 10001. Further, the external control device 10200 receives information about the in-vivo image transmitted from the capsule endoscope 10100 and, based on the received information about the in-vivo image, displays the in-vivo image on the display device (not shown). The image data for displaying is generated.
 体内情報取得システム10001では、このようにして、カプセル型内視鏡10100が飲み込まれてから排出されるまでの間、患者の体内の様子を撮像した体内画像を随時得ることができる。 In the in-vivo information acquisition system 10001, an in-vivo image obtained by imaging the inside of the patient's body can be obtained at any time in this manner until the capsule endoscope 10100 is swallowed and discharged.
 カプセル型内視鏡10100と外部制御装置10200の構成及び機能についてより詳細に説明する。 The configurations and functions of the capsule endoscope 10100 and the external control device 10200 will be described in more detail.
 カプセル型内視鏡10100は、カプセル型の筐体10101を有し、その筐体10101内には、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、給電部10115、電源部10116、及び制御部10117が収納されている。 The capsule endoscope 10100 includes a capsule-type casing 10101. In the casing 10101, a light source unit 10111, an imaging unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power supply unit 10115, and a power supply unit 10116 and the control unit 10117 are stored.
 光源部10111は、例えばLED(Light Emitting Diode)等の光源から構成され、撮像部10112の撮像視野に対して光を照射する。 The light source unit 10111 is composed of a light source such as an LED (Light Emitting Diode), for example, and irradiates the imaging field of the imaging unit 10112 with light.
 撮像部10112は、撮像素子、及び当該撮像素子の前段に設けられる複数のレンズからなる光学系から構成される。観察対象である体組織に照射された光の反射光(以下、観察光という)は、当該光学系によって集光され、当該撮像素子に入射する。撮像部10112では、撮像素子において、そこに入射した観察光が光電変換され、その観察光に対応する画像信号が生成される。撮像部10112によって生成された画像信号は、画像処理部10113に提供される。 The image capturing unit 10112 includes an image sensor and an optical system including a plurality of lenses provided in front of the image sensor. Reflected light (hereinafter referred to as observation light) of light irradiated on the body tissue to be observed is collected by the optical system and enters the image sensor. In the imaging unit 10112, in the imaging element, the observation light incident thereon is photoelectrically converted, and an image signal corresponding to the observation light is generated. The image signal generated by the imaging unit 10112 is provided to the image processing unit 10113.
 画像処理部10113は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって構成され、撮像部10112によって生成された画像信号に対して各種の信号処理を行う。画像処理部10113は、信号処理を施した画像信号を、RAWデータとして無線通信部10114に提供する。 The image processing unit 10113 is configured by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and performs various signal processing on the image signal generated by the imaging unit 10112. The image processing unit 10113 provides the radio communication unit 10114 with the image signal subjected to signal processing as RAW data.
 無線通信部10114は、画像処理部10113によって信号処理が施された画像信号に対して変調処理等の所定の処理を行い、その画像信号を、アンテナ10114Aを介して外部制御装置10200に送信する。また、無線通信部10114は、外部制御装置10200から、カプセル型内視鏡10100の駆動制御に関する制御信号を、アンテナ10114Aを介して受信する。無線通信部10114は、外部制御装置10200から受信した制御信号を制御部10117に提供する。 The wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been subjected to signal processing by the image processing unit 10113, and transmits the image signal to the external control apparatus 10200 via the antenna 10114A. In addition, the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A. The wireless communication unit 10114 provides a control signal received from the external control device 10200 to the control unit 10117.
 給電部10115は、受電用のアンテナコイル、当該アンテナコイルに発生した電流から電力を再生する電力再生回路、及び昇圧回路等から構成される。給電部10115では、いわゆる非接触充電の原理を用いて電力が生成される。 The power feeding unit 10115 includes a power receiving antenna coil, a power regeneration circuit that regenerates power from a current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using a so-called non-contact charging principle.
 電源部10116は、二次電池によって構成され、給電部10115によって生成された電力を蓄電する。図13では、図面が煩雑になることを避けるために、電源部10116からの電力の供給先を示す矢印等の図示を省略しているが、電源部10116に蓄電された電力は、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び制御部10117に供給され、これらの駆動に用いられ得る。 The power supply unit 10116 is composed of a secondary battery, and stores the electric power generated by the power supply unit 10115. In FIG. 13, in order to avoid complication of the drawing, illustration of an arrow or the like indicating a power supply destination from the power supply unit 10116 is omitted, but the power stored in the power supply unit 10116 is stored in the light source unit 10111. The imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117 can be used for driving them.
 制御部10117は、CPU等のプロセッサによって構成され、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び、給電部10115の駆動を、外部制御装置10200から送信される制御信号に従って適宜制御する。 The control unit 10117 includes a processor such as a CPU, and a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power feeding unit 10115. Control accordingly.
 外部制御装置10200は、CPU,GPU等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイクロコンピュータ若しくは制御基板等で構成される。外部制御装置10200は、カプセル型内視鏡10100の制御部10117に対して制御信号を、アンテナ10200Aを介して送信することにより、カプセル型内視鏡10100の動作を制御する。カプセル型内視鏡10100では、例えば、外部制御装置10200からの制御信号により、光源部10111における観察対象に対する光の照射条件が変更され得る。また、外部制御装置10200からの制御信号により、撮像条件(例えば、撮像部10112におけるフレームレート、露出値等)が変更され得る。また、外部制御装置10200からの制御信号により、画像処理部10113における処理の内容や、無線通信部10114が画像信号を送信する条件(例えば、送信間隔、送信画像数等)が変更されてもよい。 The external control device 10200 is configured by a processor such as a CPU or GPU, or a microcomputer or a control board in which a processor and a storage element such as a memory are mounted. The external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A. In the capsule endoscope 10100, for example, the light irradiation condition for the observation target in the light source unit 10111 can be changed by a control signal from the external control device 10200. In addition, an imaging condition (for example, a frame rate or an exposure value in the imaging unit 10112) can be changed by a control signal from the external control device 10200. Further, the contents of processing in the image processing unit 10113 and the conditions (for example, the transmission interval, the number of transmission images, etc.) by which the wireless communication unit 10114 transmits an image signal may be changed by a control signal from the external control device 10200. .
 また、外部制御装置10200は、カプセル型内視鏡10100から送信される画像信号に対して、各種の画像処理を施し、撮像された体内画像を表示装置に表示するための画像データを生成する。当該画像処理としては、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/若しくは手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の信号処理を行うことができる。外部制御装置10200は、表示装置の駆動を制御して、生成した画像データに基づいて撮像された体内画像を表示させる。あるいは、外部制御装置10200は、生成した画像データを記録装置(図示せず)に記録させたり、印刷装置(図示せず)に印刷出力させてもよい。 Further, the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured in-vivo image on the display device. As the image processing, for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing can be performed. The external control device 10200 controls driving of the display device to display an in-vivo image captured based on the generated image data. Alternatively, the external control device 10200 may cause the generated image data to be recorded on a recording device (not shown) or may be printed out on a printing device (not shown).
 以上、本開示に係る技術が適用され得る体内情報取得システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部10112に適用され得る。具体的には、図3の撮像素子モジュール22は、撮像部10112に適用することができる。撮像部10112に本開示に係る技術を適用することにより、2眼の固体撮像素子における高解像度の撮像を可能にすると共に、装置の小型化を実現することが可能となる。 Heretofore, an example of the in-vivo information acquisition system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 10112 among the configurations described above. Specifically, the imaging element module 22 in FIG. 3 can be applied to the imaging unit 10112. By applying the technology according to the present disclosure to the imaging unit 10112, it is possible to perform high-resolution imaging with a two-lens solid-state imaging device and to reduce the size of the apparatus.
 <内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<Application example to endoscopic surgery system>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図14は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 14 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
 図14では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 14 illustrates a state in which an operator (doctor) 11131 is performing an operation on a patient 11132 on a patient bed 11133 using an endoscopic operation system 11000. As shown in the figure, an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101. In the illustrated example, an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens. Note that the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. A user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like. In order to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the operator's work space, the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111. Send in. The recorder 11207 is an apparatus capable of recording various types of information related to surgery. The printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 In addition, the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out. In this case, laser light from each of the RGB laser light sources is irradiated on the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby corresponding to each RGB. It is also possible to take the images that have been taken in time division. According to this method, a color image can be obtained without providing a color filter in the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation. A so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
 図15は、図14に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 15 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging unit 11402 includes an imaging element. One (so-called single plate type) image sensor may be included in the imaging unit 11402, or a plurality (so-called multi-plate type) may be used. In the case where the imaging unit 11402 is configured as a multi-plate type, for example, image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them. Alternatively, the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site. Note that in the case where the imaging unit 11402 is configured as a multi-plate type, a plurality of lens units 11401 can be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Further, the imaging unit 11402 is not necessarily provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Further, the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 Note that the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Further, the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102. The image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 Further, the control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, communication is performed by wire using the transmission cable 11400. However, communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、カメラヘッド11102の撮像部11402に適用され得る。具体的には、図3の撮像素子モジュール22は、撮像部10402に適用することができる。撮像部10402に本開示に係る技術を適用することにより、2眼の固体撮像素子における高解像度の撮像を可能にすると共に、装置の小型化を実現することが可能となる。 In the foregoing, an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 11402 of the camera head 11102 among the configurations described above. Specifically, the imaging element module 22 in FIG. 3 can be applied to the imaging unit 10402. By applying the technology according to the present disclosure to the imaging unit 10402, it is possible to perform high-resolution imaging with a two-lens solid-state imaging device and to reduce the size of the apparatus.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Note that although an endoscopic surgery system has been described here as an example, the technology according to the present disclosure may be applied to, for example, a microscope surgery system and the like.
 <移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<Application examples to mobile objects>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
 図16は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 16 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図16に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example illustrated in FIG. 16, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050. As a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp. In this case, the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted. For example, the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image. The vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light. The imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The vehicle interior information detection unit 12040 detects vehicle interior information. For example, a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010. For example, the microcomputer 12051 realizes an ADAS (Advanced Driver Assistance System) function including vehicle collision avoidance or impact mitigation, following traveling based on inter-vehicle distance, vehicle speed maintaining traveling, vehicle collision warning, or vehicle lane departure warning, etc. It is possible to perform cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図16の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle. In the example of FIG. 16, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図17は、撮像部12031の設置位置の例を示す図である。 FIG. 17 is a diagram illustrating an example of an installation position of the imaging unit 12031.
 図17では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 17, the vehicle 12100 includes imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100. The imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100. The imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100. The forward images acquired by the imaging units 12101 and 12105 are mainly used for detection of a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図17には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 FIG. 17 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051, based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100). In particular, it is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in the same direction as the vehicle 12100, particularly the closest three-dimensional object on the traveling path of the vehicle 12100. it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. Thus, cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as a two-wheeled vehicle, a normal vehicle, a large vehicle, a pedestrian, and a utility pole based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in the captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining. When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to be superimposed and displayed. Moreover, the audio | voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、図3の撮像素子モジュール22は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、2眼の固体撮像素子における高解像度の撮像を可能にすると共に、装置の小型化を実現することが可能となる。 Heretofore, an example of a vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, the imaging element module 22 in FIG. 3 can be applied to the imaging unit 12031. By applying the technique according to the present disclosure to the imaging unit 12031, it is possible to perform high-resolution imaging with a two-lens solid-state imaging device and to reduce the size of the apparatus.
 尚、本開示は、以下のような構成も取ることができる。
<1> 画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、
 前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた
 固体撮像素子。
<2> 前記2個の撮像素子をそれぞれ独立して撮像方向からの光を入射して集光する2個のレンズと、
 前記レンズにより集光された前記2個の撮像素子のそれぞれに独立した光を前記撮像方向から入射させる光混色防止板とをさらに含む
 <1>に記載の固体撮像素子。
<3> 前記有効撮像面の短辺側が光入射側に配置される
 <1>または<2>に記載の固体撮像素子。
<4> 前記ミラーは、プリズムミラーである
 <1>乃至<3>のいずれかに記載の固体撮像素子。
<5> 前記撮像素子に信号を入出力する配線と、
 前記配線と前記撮像素子との接続部を保護する補強樹脂とをさらに含む
 <1>乃至<4>のいずれかに記載の固体撮像素子。
<6> 前記2個の撮像素子は、接着材により貼り合わされる
 <1>乃至<5>のいずれかに記載の固体撮像素子。
<7> 前記2個の撮像素子は、プラズマ接合により貼り合わされる
 <1>乃至<6>のいずれかに記載の固体撮像素子。
<8> 前記ミラーは、プリズムミラーであり、
 前記2個の撮像素子は1枚のウェハの両面に形成され、
 前記プリズムミラーのプリズムが、前記ウェハの両面に貼り合わされる
 <1>乃至<7>のいずれかに記載の固体撮像素子。
<9> 前記2個の撮像素子は、いずれも同一の分光感度である
 <1>乃至<8>に記載の固体撮像素子。
<10> 前記2個の撮像素子は、それぞれ異なる分光感度である
 <1>乃至<9>のいずれかに記載の固体撮像素子。
<11> 前記2個の撮像素子の読み出し順序が、相互に点対称である
 <1>乃至<10>のいずれかに記載の固体撮像素子。
<12> 前記2個の撮像素子の読み出し順序が、相互に同一であり、
 前記2個の撮像素子の出力信号を一時的に記憶すると共に、いずれか一方の出力信号における画像を信号処理して、他方の出力信号の画像と同一の画像方向に変換させる変換部をさらに含む
 <1>乃至<11>のいずれかに記載の固体撮像素子。
<13> 前記2個の撮像素子は、それぞれ前記変換部を含む
 <12>に記載の固体撮像素子。
<14> 前記変換部は、前記2個の撮像素子の間に挟み込まれたロジックチップに設けられる
 <12>に記載の固体撮像素子。
<15> 画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、
 前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた
 内視鏡装置。
<16> 画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、
 前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた
 電子機器。
<17> 画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、
 前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた
 撮像装置。
In addition, this indication can also take the following structures.
<1> Two image pickup devices for picking up images are pasted on the back side of each effective image pickup surface,
A solid-state image pickup device in which a mirror that makes light in an image pickup direction enter each of the effective image pickup surfaces of the two image pickup devices.
<2> Two lenses that individually collect and collect light from the imaging direction for the two image sensors;
The solid-state image pickup device according to <1>, further including a light color mixture prevention plate for allowing light independent from each of the two image pickup devices collected by the lens to enter from the image pickup direction.
<3> The solid-state imaging device according to <1> or <2>, wherein a short side of the effective imaging surface is disposed on a light incident side.
<4> The solid-state imaging device according to any one of <1> to <3>, wherein the mirror is a prism mirror.
<5> wiring for inputting and outputting signals to the image sensor;
The solid-state imaging device according to any one of <1> to <4>, further including a reinforcing resin that protects a connection portion between the wiring and the imaging device.
<6> The solid-state imaging device according to any one of <1> to <5>, wherein the two imaging devices are bonded together with an adhesive.
<7> The solid-state imaging device according to any one of <1> to <6>, wherein the two imaging devices are bonded together by plasma bonding.
<8> The mirror is a prism mirror,
The two image sensors are formed on both sides of one wafer,
The solid-state imaging device according to any one of <1> to <7>, wherein prisms of the prism mirror are bonded to both surfaces of the wafer.
<9> The solid-state imaging device according to any one of <1> to <8>, wherein both of the two imaging devices have the same spectral sensitivity.
<10> The solid-state imaging device according to any one of <1> to <9>, wherein the two imaging devices have different spectral sensitivities.
<11> The solid-state imaging device according to any one of <1> to <10>, wherein the reading order of the two imaging devices is point-symmetric with each other.
<12> The reading order of the two image sensors is the same,
The image processing apparatus further includes a conversion unit that temporarily stores output signals of the two image pickup devices and performs signal processing on an image of one of the output signals and converts the image in the same image direction as the image of the other output signal. <1> The solid-state image sensor in any one of <11>.
<13> The solid-state imaging device according to <12>, wherein each of the two imaging devices includes the conversion unit.
<14> The solid-state imaging device according to <12>, wherein the conversion unit is provided in a logic chip sandwiched between the two imaging devices.
<15> Two image pickup devices for picking up images are bonded to the back side of each effective image pickup surface,
An endoscope apparatus in which a mirror that allows light in an imaging direction to enter is bonded to each of the effective imaging surfaces of the two imaging elements.
<16> Two image pickup devices for picking up images are bonded on the back side of each effective image pickup surface,
An electronic apparatus in which a mirror that allows light in an imaging direction to enter is bonded to each of the effective imaging surfaces of the two imaging elements.
<17> Two image pickup devices for picking up images are bonded on the back side of each effective image pickup surface,
An imaging apparatus in which a mirror that allows light in an imaging direction to enter is bonded to each of the effective imaging surfaces of the two imaging elements.
 11 内視鏡装置, 21 内視鏡管, 22 撮像素子モジュール, 31 混色防止板, 32,32-1,32-2 レンズ, 33,33-1,33-2 プリズムミラー, 34,34-1,34-2 撮像素子, 35 フレキシブル配線補強樹脂, 36,36-1,36-2 フレキシブル配線, 36a 配線 11 Endoscope device, 21 Endoscope tube, 22 Image sensor module, 31 Color mixing prevention plate, 32, 32-1, 32-2 lens, 33, 33-1, 33-2 Prism mirror, 34, 34-1 , 34-2 Image sensor, 35 Flexible wiring reinforcement resin, 36, 36-1, 36-2 Flexible wiring, 36a wiring

Claims (17)

  1.  画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、
     前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた
     固体撮像素子。
    Two image sensors that capture images are bonded to the back side of each effective imaging surface,
    A solid-state image pickup device in which a mirror that makes light in an image pickup direction enter each of the effective image pickup surfaces of the two image pickup devices.
  2.  前記2個の撮像素子をそれぞれ独立して撮像方向からの光を入射して集光する2個のレンズと、
     前記レンズにより集光された前記2個の撮像素子のそれぞれに独立した光を前記撮像方向から入射させる光混色防止板とをさらに含む
     請求項1に記載の固体撮像素子。
    Two lenses that individually collect and collect light from the imaging direction for the two image sensors;
    The solid-state image pickup device according to claim 1, further comprising a light color mixture prevention plate that allows light independent from each of the two image pickup devices condensed by the lens to enter from the image pickup direction.
  3.  前記有効撮像面の短辺側が光入射側に配置される
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein a short side of the effective imaging surface is disposed on a light incident side.
  4.  前記ミラーは、プリズムミラーである
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the mirror is a prism mirror.
  5.  前記撮像素子に信号を入出力する配線と、
     前記配線と前記撮像素子との接続部を保護する補強樹脂とをさらに含む
     請求項1に記載の固体撮像素子。
    Wiring for inputting and outputting signals to the image sensor;
    The solid-state imaging device according to claim 1, further comprising a reinforcing resin that protects a connection portion between the wiring and the imaging device.
  6.  前記2個の撮像素子は、接着材により貼り合わされる
     請求項1に記載の固体撮像素子。
    The solid-state image sensor according to claim 1, wherein the two image sensors are bonded together by an adhesive.
  7.  前記2個の撮像素子は、プラズマ接合により貼り合わされる
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the two imaging devices are bonded together by plasma bonding.
  8.  前記ミラーは、プリズムミラーであり、
     前記2個の撮像素子は1枚のウェハの両面に形成され、
     前記プリズムミラーのプリズムが、前記ウェハの両面に貼り合わされる
     請求項1に記載の固体撮像素子。
    The mirror is a prism mirror;
    The two image sensors are formed on both sides of one wafer,
    The solid-state imaging device according to claim 1, wherein prisms of the prism mirror are bonded to both surfaces of the wafer.
  9.  前記2個の撮像素子は、いずれも同一の分光感度である
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein both of the two imaging devices have the same spectral sensitivity.
  10.  前記2個の撮像素子は、それぞれ異なる分光感度である
     請求項1に記載の固体撮像素子。
    The solid-state image sensor according to claim 1, wherein the two image sensors have different spectral sensitivities.
  11.  前記2個の撮像素子の読み出し順序が、相互に点対称である
     請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the reading order of the two imaging devices is point-symmetric with respect to each other.
  12.  前記2個の撮像素子の読み出し順序が、相互に同一であり、
     前記2個の撮像素子の出力信号を一時的に記憶すると共に、いずれか一方の出力信号における画像を信号処理して、他方の出力信号の画像と同一の画像方向に変換させる変換部をさらに含む
     請求項1に記載の固体撮像素子。
    The reading order of the two image sensors is the same as each other,
    The image processing apparatus further includes a conversion unit that temporarily stores output signals of the two image pickup devices and performs signal processing on an image of one of the output signals and converts the image in the same image direction as the image of the other output signal. The solid-state imaging device according to claim 1.
  13.  前記2個の撮像素子は、それぞれ前記変換部を含む
     請求項12に記載の固体撮像素子。
    The solid-state imaging device according to claim 12, wherein each of the two imaging devices includes the conversion unit.
  14.  前記変換部は、前記2個の撮像素子の間に挟み込まれたロジックチップに設けられる
     請求項12に記載の固体撮像素子。
    The solid-state imaging device according to claim 12, wherein the conversion unit is provided in a logic chip sandwiched between the two imaging devices.
  15.  画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、
     前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた
     内視鏡装置。
    Two image sensors that capture images are bonded to the back side of each effective imaging surface,
    An endoscope apparatus in which a mirror that allows light in an imaging direction to enter is bonded to each of the effective imaging surfaces of the two imaging elements.
  16.  画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、
     前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた
     電子機器。
    Two image sensors that capture images are bonded to the back side of each effective imaging surface,
    An electronic apparatus in which a mirror that allows light in an imaging direction to enter is bonded to each of the effective imaging surfaces of the two imaging elements.
  17.  画像を撮像する2個の撮像素子が、それぞれの有効撮像面の裏面側で貼り合わされ、
     前記2個の撮像素子の前記有効撮像面のそれぞれに、撮像方向の光を入射させるミラーが貼り合わされた
     撮像装置。
    Two image sensors that capture images are bonded to the back side of each effective imaging surface,
    An imaging apparatus in which a mirror that allows light in an imaging direction to enter is bonded to each of the effective imaging surfaces of the two imaging elements.
PCT/JP2017/010578 2016-03-30 2017-03-16 Solid-state image capturing element, image capturing device, endoscope device, and electronic instrument WO2017169822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-067332 2016-03-30
JP2016067332 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017169822A1 true WO2017169822A1 (en) 2017-10-05

Family

ID=59965365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010578 WO2017169822A1 (en) 2016-03-30 2017-03-16 Solid-state image capturing element, image capturing device, endoscope device, and electronic instrument

Country Status (1)

Country Link
WO (1) WO2017169822A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108888119A (en) * 2018-09-10 2018-11-27 青岛海尔智能技术研发有限公司 A kind of automatic water filling device and water filling control method
CN115379102A (en) * 2022-09-19 2022-11-22 昆山丘钛光电科技有限公司 Camera module and endoscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017389A (en) * 1999-07-07 2001-01-23 Olympus Optical Co Ltd Solid-state imaging device
JP2003250071A (en) * 2002-02-26 2003-09-05 Sony Corp Image sensor and imaging apparatus
JP2010021283A (en) * 2008-07-09 2010-01-28 Panasonic Corp Solid state imaging device and manufacturing method thereof
JP2010245506A (en) * 2009-03-19 2010-10-28 Sony Corp Semiconductor device, manufacturing method of the same, and electronic appliance
JP2011082215A (en) * 2009-10-02 2011-04-21 Olympus Corp Image sensor, and imaging unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017389A (en) * 1999-07-07 2001-01-23 Olympus Optical Co Ltd Solid-state imaging device
JP2003250071A (en) * 2002-02-26 2003-09-05 Sony Corp Image sensor and imaging apparatus
JP2010021283A (en) * 2008-07-09 2010-01-28 Panasonic Corp Solid state imaging device and manufacturing method thereof
JP2010245506A (en) * 2009-03-19 2010-10-28 Sony Corp Semiconductor device, manufacturing method of the same, and electronic appliance
JP2011082215A (en) * 2009-10-02 2011-04-21 Olympus Corp Image sensor, and imaging unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108888119A (en) * 2018-09-10 2018-11-27 青岛海尔智能技术研发有限公司 A kind of automatic water filling device and water filling control method
CN115379102A (en) * 2022-09-19 2022-11-22 昆山丘钛光电科技有限公司 Camera module and endoscope

Similar Documents

Publication Publication Date Title
JP7449317B2 (en) Imaging device
WO2017163927A1 (en) Chip size package, production method, electronic apparatus, and endoscope
WO2017159361A1 (en) Solid-state imaging element and electronic device
WO2018139278A1 (en) Image-capture element, manufacturing method, and electronic device
US10915009B2 (en) Compound-eye camera module and electronic device
JP7167036B2 (en) Sensor chips and electronics
WO2018180569A1 (en) Solid-state image capture device and electronic apparatus
WO2018159344A1 (en) Solid-state imaging element, electronic device, and semiconductor device
JP2019047237A (en) Imaging apparatus, and electronic equipment, and manufacturing method of imaging apparatus
JP7237595B2 (en) IMAGE SENSOR, MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP6869717B2 (en) Imaging equipment, manufacturing methods for imaging equipment, and electronic devices
WO2018135261A1 (en) Solid-state imaging element, electronic device, and method for manufacturing solid-state imaging element
WO2017169889A1 (en) Camera module, camera module production method, imaging device, and electronic device
US11785321B2 (en) Imaging device
JP6976751B2 (en) Image pickup device, manufacturing method of image pickup device, and electronic equipment
WO2018131510A1 (en) Solid-state image capturing element, and electronic device
WO2017169822A1 (en) Solid-state image capturing element, image capturing device, endoscope device, and electronic instrument
WO2019171879A1 (en) Imaging device
WO2017150168A1 (en) Imaging element and electronic device
WO2020084973A1 (en) Image processing device
JP2019040892A (en) Imaging device, camera module, and electronic device
US20220269035A1 (en) Solid-state image sensor, imaging apparatus, and method of controlling solid-state image sensor
US11457201B2 (en) Imaging device and electronic apparatus
US20240145506A1 (en) Semiconductor package and electronic device
WO2019239767A1 (en) Image capturing device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774366

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP