WO2018135261A1 - Solid-state imaging element, electronic device, and method for manufacturing solid-state imaging element - Google Patents

Solid-state imaging element, electronic device, and method for manufacturing solid-state imaging element Download PDF

Info

Publication number
WO2018135261A1
WO2018135261A1 PCT/JP2017/046872 JP2017046872W WO2018135261A1 WO 2018135261 A1 WO2018135261 A1 WO 2018135261A1 JP 2017046872 W JP2017046872 W JP 2017046872W WO 2018135261 A1 WO2018135261 A1 WO 2018135261A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor chip
double
image sensor
optical system
sided image
Prior art date
Application number
PCT/JP2017/046872
Other languages
French (fr)
Japanese (ja)
Inventor
照美 神戸
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2018135261A1 publication Critical patent/WO2018135261A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Definitions

  • the present technology relates to a solid-state image sensor, an electronic device, and a method for manufacturing the solid-state image sensor. More specifically, the present invention relates to a solid-state imaging device in which two sensors are joined, an electronic device, and a method for manufacturing the solid-state imaging device.
  • an image sensor is used to capture image data in an imaging device such as a camera or a smartphone.
  • an element in which a front side irradiation type image sensor and a back side irradiation type image sensor are joined by soldering has been proposed (for example, see Patent Document 1).
  • the back side illumination type image sensor is an image sensor in which a wired surface is a front surface and a photoelectric conversion element is formed on the back surface with respect to the front surface.
  • the surface irradiation type image sensor is an image sensor in which wirings and photoelectric conversion elements are formed on the surface. Since it is not necessary to arrange the photoelectric conversion elements while avoiding the wiring, the back-illuminated image sensor is generally more sensitive than the front-illuminated image sensor.
  • the present technology has been created in view of such a situation, and an object thereof is to facilitate the imaging of image data having the same brightness in an element obtained by joining two image sensors.
  • the present technology has been made to solve the above-described problems.
  • the first side surface of the present technology has a wiring formed on the first surface, and the first photoelectric conversion element is formed on the first back surface with respect to the first surface.
  • imaging is performed by the solid-state imaging device in which the first sensor chip having the first photoelectric conversion element formed on the first back surface and the second sensor chip having the second photoelectric conversion element formed on the second back surface are joined. This brings about the effect.
  • a protective layer for protecting the first microlens may be further formed on the first back surface, and a second microlens may be further formed on the second back surface. Thereby, the first microlens is protected.
  • the first sensor chip includes a substrate on which the first photoelectric conversion element is formed and a first wiring layer
  • the second sensor chip includes the second photoelectric conversion element.
  • the formed substrate and the second wiring layer may be included.
  • the second sensor chip may further include a predetermined support substrate. This brings about the effect that the bending strength is increased by the support substrate.
  • one of the first wiring layer and the second wiring layer may include a predetermined logic circuit. This brings about the effect that signal processing is executed in the logic circuit.
  • one of the first sensor chip and the second sensor chip further includes a logic substrate on which a predetermined logic circuit is formed.
  • the logic substrate includes the first wiring layer and the first sensor layer. You may arrange
  • the first side surface may further include a through via formed in the logic substrate.
  • the signal is transmitted in the logic board through the through via.
  • a through via penetrating from the logic substrate to the inside of the second wiring layer may be further provided.
  • an image signal is transmitted between the logic board and the second wiring layer through the through via.
  • another protective layer may be further formed on the second back surface. This brings about the effect that the second microlens is protected.
  • the wiring may be a copper wiring, and the copper wiring on each of the first surface and the second surface may be joined by Cu—Cu connection. Thereby, the first surface and the second surface are brought into close contact with each other.
  • the first surface and the second surface may contain silicon monoxide, and the first surface and the second surface may be joined by a SiO—SiO connection. Thereby, the first surface and the second surface are brought into close contact with each other.
  • first surface and the second surface may be joined by an adhesive. Thereby, the first surface and the second surface are brought into close contact with each other.
  • a first sensor chip in which a wiring is formed on a first surface and a first photoelectric conversion element is formed on a first back surface with respect to the first surface, and the first surface is bonded to the first sensor chip.
  • the first optical chip is obtained by joining the first sensor chip in which the first photoelectric conversion element is formed on the first back surface and the second sensor chip in which the second photoelectric conversion element is formed on the second back surface. The light from the system and the second optical system is photoelectrically converted.
  • each of the first optical system and the second optical system may include an object side lens and a lens group that guides light from the object side lens.
  • each of the first optical system and the second optical system may include an object side lens and a mirror that bends light from the object side lens.
  • action that the light bent by the mirror is photoelectrically converted is brought about.
  • each of the first optical system and the second optical system may further include a lens group that guides the bent light.
  • a lens group that guides the bent light.
  • an interposer in which wiring is formed may be further provided, and the first sensor chip and the second sensor chip may be mounted on the interposer. This brings about the effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the interposer.
  • the first sensor chip and the second sensor chip may be mounted on the interposer by wire bonding. This brings about the effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the interposer by wire bonding.
  • the first sensor chip and the second sensor chip may be mounted on the interposer by welding. This brings about the effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the interposer by welding.
  • the interposer may further include a logic circuit. Accordingly, there is an effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the interposer in which the logic circuit is formed.
  • the electronic device may further include a first optical system and a second optical system, and the electronic device may be an endoscope. This brings about the effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the endoscope.
  • the first optical system is provided on a side surface of the endoscope, and the second optical system includes a first lens whose optical axis is parallel to the axial direction of the endoscope.
  • the first optical system may include a second lens and a mirror that bends light from the second lens. This brings about the effect that light is guided by the first optical system on the side surface and the second optical system that bends the light.
  • the first optical system and the second optical system may be provided on a side surface of the endoscope. This brings about the effect
  • each of the first optical system and the second optical system may include a lens and a mirror that bends light from the lens. This brings about the effect that the light is guided by the first optical system and the second optical system that bend the light.
  • each of the first optical system and the second optical system may include a lens having an optical axis parallel to the axial direction of the endoscope. Accordingly, there is an effect that light is guided by the first optical system and the second optical system including a lens whose optical axis is parallel to the axial direction of the endoscope.
  • FIG. 1 is an example of an external view of an electronic device according to a first embodiment of the present technology.
  • 1 is an example of a cross-sectional view of an electronic device according to a first embodiment of the present technology. It is a figure for demonstrating the structure of the double-sided image sensor chip in 1st Embodiment of this technique.
  • 1 is an example of a cross-sectional view of a double-sided image sensor chip according to a first embodiment of the present technology.
  • FIG. 3 is an example of a cross-sectional view of a right-side backside illuminated sensor and a logic board before bonding in the first embodiment of the present technology.
  • FIG. 3 is an example of a cross-sectional view of a right-side backside illuminated sensor and a logic substrate after bonding in the first embodiment of the present technology. It is an example of sectional drawing of the left back irradiation type sensor before joining in a 1st embodiment of this art, a logic board, and a right side back irradiation type sensor.
  • FIG. 3 is an example of a cross-sectional view of a left back-side illuminated sensor, a logic substrate, and a right back-side illuminated sensor after bonding according to the first embodiment of the present technology. It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 1st embodiment of this art were formed.
  • 1 is an example of a cross-sectional view of a double-sided image sensor chip after formation of a high heat resistant material in a first embodiment of the present technology. It is an example of sectional drawing of the double-sided image sensor chip after glass formation in a 1st embodiment of this art. It is an example of sectional drawing of the double-sided image sensor in which the micro lens etc. in a 1st embodiment of this art were formed. It is an example of the top view and sectional view of the double-sided image sensor chip before soldering in the first embodiment of the present technology. 1 is an example of a plan view and a cross-sectional view of a double-sided image sensor chip and a flexible printed circuit board after soldering according to a first embodiment of the present technology.
  • FIG. 3 is a flowchart illustrating an example of a method for manufacturing a double-sided image sensor chip according to the first embodiment of the present technology. It is an example of sectional drawing of the double-sided image sensor chip in the modification of a 1st embodiment of this art. It is an example of sectional drawing of the double-sided image sensor chip in a 2nd embodiment of this art. It is an example of sectional drawing of the left back irradiation type sensor and right side back irradiation type sensor before joining in a 2nd embodiment of this art.
  • sectional drawing of the left back irradiation type sensor and right side back irradiation type sensor after joining in a 2nd embodiment of this art It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 2nd embodiment of this art were formed. It is an example of sectional drawing of the double-sided image sensor chip after high heat-resistant material formation in a 2nd embodiment of this art. It is an example of sectional drawing of the double-sided image sensor chip after glass formation in a 2nd embodiment of this art. It is an example of sectional drawing of the double-sided image sensor in which the micro lens etc. in a 2nd embodiment of this art were formed.
  • sectional drawing of the double-sided image sensor chip in the modification of the 2nd embodiment of this art. It is an example of sectional drawing of the double-sided image sensor chip in a 3rd embodiment of this art. It is an example of sectional drawing of the left back irradiation type sensor after a joining in the 3rd embodiment of this art, a support substrate, and a right side back irradiation type sensor. It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 3rd embodiment of this art were formed. It is an example of sectional drawing of the double-sided image sensor chip after high heat-resistant material formation in a 3rd embodiment of this art.
  • sectional drawing of the double-sided image sensor chip after glass formation in a 3rd embodiment of this art It is an example of sectional drawing of the double-sided image sensor in which the micro lens etc. in a 3rd embodiment of this art were formed. It is an example of sectional drawing of the double-sided image sensor chip in the modification of the 3rd embodiment of this art. It is a figure for demonstrating the structure of the double-sided image sensor chip in 4th Embodiment of this technique. It is an example of the top view of the right side sensor chip in 4th Embodiment of this technique. It is an example of the top view of the left sensor chip in 4th Embodiment of this technique.
  • sectional drawing of the left sensor chip and right sensor chip before joining in a 4th embodiment of this art It is an example of sectional drawing of the left sensor chip and right sensor chip after joining in a 4th embodiment of this art. It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 4th embodiment of this art were formed. It is an example of sectional drawing of the double-sided image sensor chip after high heat-resistant material formation in the 4th embodiment of this art. It is an example of sectional drawing of the double-sided image sensor chip after glass formation in a 4th embodiment of this art. It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 4th embodiment of this art were formed.
  • sectional drawing of the double-sided image sensor chip after formation of a penetration via in a 4th embodiment of this art. It is an example of sectional drawing of the double-sided image sensor chip in the modification of the 4th embodiment of this art. It is an example of sectional drawing of the double-sided image sensor chip in a 5th embodiment of this art. It is an example of sectional drawing of a right back irradiation type sensor and a logic board before joining in a 5th embodiment of this art. It is an example of sectional drawing of the right back irradiation type sensor and logic board after joining in a 5th embodiment of this art.
  • sectional drawing of the left back irradiation type sensor before joining in a 5th embodiment of this art, a logic board, and a right side back irradiation type sensor It is an example of sectional drawing of the left sensor chip and right sensor chip after joining in a 5th embodiment of this art. It is an example of sectional drawing of the double-sided image sensor in which the micro lens etc. in a 5th embodiment of this art were formed. It is an example of sectional drawing of the double-sided image sensor chip after high heat-resistant material formation in a 5th embodiment of this art. It is an example of sectional drawing of the double-sided image sensor chip after glass formation in a 5th embodiment of this art.
  • sectional drawing of the electronic device which mounted the double-sided image sensor chip in a 9th embodiment of this art. It is an example of sectional drawing of an electronic device which mounts the double-sided image sensor chip in a 10th embodiment of this art. It is an example of sectional drawing of the electronic device which mounted the double-sided image sensor chip in an 8th embodiment of this art. It is an example of sectional drawing of the electronic device which mounted the double-sided image sensor chip in a 9th embodiment of this art. It is an example of sectional drawing of an electronic device which mounts the double-sided image sensor chip in a 10th embodiment of this art. It is an example of the top view of the interposer which mounted the double-sided image sensor chip in 14th Embodiment of this technique.
  • FIG. 14 It is an example of sectional drawing of an interposer which mounted a double-sided image sensor chip in a 14th embodiment of this art. It is an example of the top view of the interposer which mounted the double-sided image sensor chip in 15th Embodiment of this technique. It is an example of a sectional view of an interposer on which a double-sided image sensor chip according to a fifteenth embodiment of the present technology is mounted. It is an example of the top view of the interposer which mounted the double-sided image sensor chip in a 16th embodiment of this art. It is an example of a sectional view of an interposer on which a double-sided image sensor chip according to a sixteenth embodiment of the present technology is mounted.
  • FIG. 14 It is an example of the top view of the interposer which mounted the double-sided image sensor chip in 15th Embodiment of this technique. It is an example of a sectional view of an interposer on which a double-sided image sensor chip according to a fifteenth embodiment of the present technology is
  • FIG. 28 is an example of a plan view and a cross-sectional view of an interposer before mounting a double-sided image sensor chip in a sixteenth embodiment of the present technology. It is an example of the top view and sectional drawing of the interposer which mounted the double-sided image sensor chip in 16th Embodiment of this technique. It is an example of the top view and sectional view of the interposer which formed the welding alloy in the 16th embodiment of this art. It is an example of the top view and sectional drawing of the interposer which joined the logic circuit in 16th Embodiment of this technique. It is an example of the top view and sectional view of a double-sided image sensor chip and an interposer sealed with glass in the sixteenth embodiment of the present technology.
  • First embodiment (example in which chips are brought into close contact with each other) 2.
  • Second embodiment (example in which chips are brought into close contact with each other without using a logic substrate) 3.
  • Third embodiment (example in which chips are brought into close contact with each other via a support substrate) 4).
  • Fourth Embodiment (Example in which chips are brought into close contact with each other without stacking logic substrates) 5).
  • Fifth embodiment (example in which the length of the through via is changed and the chips are bonded to each other) 6).
  • Sixth embodiment (example in which rear lenses are arranged and chips are brought into close contact with each other) 7).
  • Seventh embodiment (example in which chips are brought into close contact with each other in a twin-lens camera) 8).
  • Eighth embodiment (an example in which a double-sided image sensor chip in which chips are bonded together and mounted on an endoscope) 9.
  • Ninth Embodiment (An example in which a double-sided image sensor chip in which chips are brought into close contact with each other and two mirrors are mounted on an endoscope) 10.
  • Tenth Embodiment (An example in which a double-sided image sensor chip in which chips are brought into close contact with each other and one mirror are mounted on an endoscope) 11.
  • FIG. 1 is an example of an external view of an electronic device 100 according to the first embodiment of the present technology.
  • the shape of the electronic device 100 is, for example, a rectangular parallelepiped. Further, front lenses 110 and 120 and a display unit 130 are formed on a surface of the electronic device 100.
  • a smartphone is assumed.
  • the electronic device 100 is not limited to a smartphone as long as it has an imaging function, and may be a digital camera or a personal computer, for example.
  • front the surface on which the display unit 130 is formed in the electronic device 100
  • back the surface opposite to the front
  • side surfaces two of the larger areas are referred to as “side surfaces”.
  • upper surface the one closer to the front lenses 110 and 120
  • lower surface the surface opposite to the upper surface
  • the front lenses 110 and 120 collect light and guide it into the electronic device 100.
  • the display unit 130 displays various data such as image data.
  • the front lenses 110 and 120 are examples of the object-side lens described in the claims.
  • FIG. 2 is an example of a cross-sectional view of the electronic device 100 as viewed from above in the first embodiment of the present technology.
  • mirrors 141 and 151, lens groups 142 and 152, a double-sided image sensor chip 200, a flexible printed circuit board 160, and a cover glass 170 are disposed inside the electronic device 100.
  • the side closer to 120 is the right side surface, and the mirror 151, lens group 152, cover glass 170, flexible printed circuit board 160, double-sided image sensor chip 200, lens group 142, and mirror 141 are arranged in this order from the right side. Is done.
  • the optical system including the front lens 110, the mirror 141, and the lens group 142 is an example of a first optical system described in the claims.
  • the optical system including the front lens 120, the mirror 151, and the lens group 152 is an example of a second optical system described in the claims.
  • the mirror 141 bends the light from the front lens 110 toward the lens group 142.
  • the lens group 142 collects the light from the mirror 141 and guides it to the double-sided image sensor chip 200.
  • the mirror 151 bends the light from the front lens 120 toward the lens group 152.
  • the lens group 152 collects the light from the mirror 151 and guides it to the double-sided image sensor chip 200. By bending the light with the mirrors 141 and 151, the distance from the front surface to the back surface of the electronic device 100 can be shortened as compared with the case where the light is not bent.
  • the double-sided image sensor chip 200 captures image data by photoelectrically converting light. One side of the double-sided image sensor chip 200 is irradiated with light from the lens group 142 and the other side is irradiated with light from the lens group 152.
  • the double-sided image sensor chip 200 is an example of a solid-state imaging device described in the claims.
  • the flexible printed circuit board 160 is a flexible printed circuit board connected to the double-sided image sensor chip 200.
  • the flexible printed circuit board 160 supplies image data captured by the double-sided image sensor chip 200 to the display unit 130, a memory (not shown), and the like. Further, the central portion (dotted line portion) of the flexible printed circuit board 160 is opened, and light from the opening portion is irradiated to the double-sided image sensor chip 200.
  • the cover glass 170 is a member that protects the double-sided image sensor chip 200.
  • the cover glass 170 is adhered to the surface of the flexible printed circuit board 160 to which the double-sided image sensor chip 200 is not connected.
  • FIG. 3 is a diagram for describing the configuration of the double-sided image sensor chip 200 according to the first embodiment of the present technology.
  • the double-sided image sensor chip 200 includes a left sensor chip 201 and a right sensor chip 202 located on the right side of the left sensor chip 201.
  • the left sensor chip 201 includes a left backside illumination type sensor 240.
  • the right sensor chip 202 includes a right backside illumination sensor 210 and a logic board 230.
  • the left sensor chip 201 is an example of a first sensor chip described in the claims.
  • the right sensor chip 202 is an example of a second sensor chip described in the claims.
  • the right side rear surface irradiation type sensor 210 is a sensor in which a surface on which a circuit is disposed is a front surface and a photodiode is disposed on the back surface with respect to the front surface.
  • the right backside illumination sensor 210 captures image data and supplies it to the logic board 230. Further, the front surface of the right backside illumination sensor 210 is bonded to the right surface of the logic substrate 230.
  • the left side rear surface irradiation type sensor 240 is a sensor in which a surface on which a circuit is disposed is a front surface and a photodiode is disposed on the back surface with respect to the front surface.
  • the left backside illumination sensor 240 captures image data and supplies it to the logic board 230. Further, the surface of the left backside illumination type sensor 240 is bonded to the left side surface of the logic board 230.
  • the logic board 230 is a board on which a predetermined logic circuit is formed.
  • various signal processing such as camera control processing such as AF (After-Focus) and AE (Auto-Exposure) and gamma processing is executed on the image data from the two sensors. Further, depth map generation, stereo matching processing, and the like are performed as necessary.
  • the logic board 230 processes image data from both the right backside illumination sensor 210 and the left backside illumination sensor 240, the timing of signal processing for the image data of those sensors can be easily matched. Note that a part of the above-described processing executed on the logic board 230 can be executed by a subsequent circuit instead of the logic board 230.
  • FIG. 4 is an example of a cross-sectional view of the double-sided image sensor chip 200 according to the first embodiment of the present technology.
  • the left side back-illuminated sensor 240 is shown on the lower side of the figure.
  • the description will be given with the left backside illumination type sensor 240 as the lower side and the right backside illumination type sensor 210 as the upper side.
  • a wiring layer 247 is provided on the upper surface of the left backside illumination sensor 240.
  • a circuit is formed in the wiring layer 247 by Cu (copper) wiring 248. Further, the wiring layer 247 is in close contact with the logic substrate 230 and bonded by, for example, Cu—Cu bonding.
  • the Cu—Cu connection is a bonding method in which the Cu wirings of the substrates are directly connected to each other by applying pressure to each of the substrates while heating the two substrates to be bonded.
  • the member to be directly connected is not limited to Cu, and may be silicon monoxide (SiO) or the like. When silicon monoxide is directly connected, it is called SiO—SiO connection.
  • the manufacturing apparatus can be bonded using a method other than Cu—Cu connection as long as the substrates can be bonded to each other.
  • a substrate 245 is provided below the wiring layer 247, and a photodiode 246 is formed in the substrate 245.
  • the wiring layer 247 is an example of a first wiring layer described in the claims
  • the photodiode 246 is an example of a first photoelectric conversion element described in the claims.
  • a color filter 244 is formed on the lower surface of the substrate 245, and a microlens 243 is formed on the lower side thereof.
  • the microlens 243 is an example of a first microlens described in the claims.
  • the high heat resistant material 242 is formed below the microlens 243, and the glass 241 is formed below the high heat resistant material 242.
  • a transparent member polyethylene, polystyrene, acrylic resin, vinyl chloride, etc. whose shape is reversibly changed by heat is used.
  • the microlens 243 is protected by the high heat resistant material 242 and the glass 241.
  • the layer made of the high heat-resistant material 242 and the glass 241 is an example of a protective layer described in the claims.
  • the left back-side illuminated sensor 240 has the light irradiated on the back surface. Can be photoelectrically converted.
  • the sensitivity can be improved as compared with the front-illuminated type.
  • An oxide film 234 such as silicon monoxide (SiO) is formed on the lower surface of the logic substrate 230.
  • a substrate 233 is formed on the upper side of the oxide film 234.
  • a wiring layer 231 is formed on the upper side of the substrate 233.
  • a circuit is formed in the wiring layer 231 by the Cu wiring 232.
  • a through via 235 that penetrates from the oxide film 234 to the wiring layer 231 is formed in the logic substrate 230.
  • a material of the through via 235 for example, an Al—Cu alloy is used.
  • a pixel signal is transmitted through the through via 235.
  • the through via 235 is lengthened until it penetrates the surface of the logic substrate 230, it is necessary to secure a space for the through via 235 on the surface.
  • the through via 235 is formed inside the logic substrate 230, there is no need to provide a space for the through via 235 on the surface of the logic substrate 230, and the surface area is increased accordingly. Can be small.
  • the wiring layer 231 of the logic substrate 230 is in close contact with the front surface of the right side rear surface irradiation type sensor 210 and is bonded by, for example, Cu—Cu bonding. That is, the surface of the right backside illumination sensor 210 is bonded to the surface of the left backside illumination sensor 240 via the logic substrate 230.
  • a wiring layer 215 is formed on the lower surface of the right side rear surface irradiation type sensor 210.
  • a circuit is formed by the Cu wiring 216 and the Al—Cu-based wiring 217.
  • the wiring layer 215 is an example of a second wiring layer described in the claims.
  • a substrate 214 is formed above the wiring layer 215, and a photodiode 213 is formed in the substrate 214.
  • the photodiode 213 is an example of a second photoelectric conversion element described in the claims.
  • the color filter 212 is formed on the upper surface of the substrate 214, and the microlens 211 is formed on the upper side.
  • the microlens 211 is an example of a second microlens described in the claims.
  • a through via 221 penetrating from the back surface to the wiring layer 215 is formed in the right back surface irradiation type sensor 210.
  • an Al—Cu alloy is used as the material of the through via 221.
  • the right-side backside illumination sensor 210 emits light irradiated on the back surface. Can be photoelectrically converted.
  • both sensors are back-illuminated, their sensitivity can be made the same value.
  • the double-sided image sensor chip 200 can simultaneously capture two pieces of image data having the same brightness.
  • the characteristics such as sensitivity of both the sensors are the same, a configuration in which the characteristics of these sensors are different may be used.
  • the manufacturing apparatus makes the thickness of the solder ball smaller than that in the case where the logic substrate 230 and the surface of the left side rear surface irradiation type sensor 240 are bonded by Cu—Cu connection and bonded by soldering. can do.
  • FIG. 5 is an example of a cross-sectional view of the right-side backside illuminated sensor 210 and the logic substrate 230 before bonding in the first embodiment of the present technology.
  • a is an example of a cross-sectional view of the right backside illumination sensor 210 before bonding
  • b in the drawing is an example of a cross-sectional view of the logic substrate 230 before bonding.
  • the manufacturing apparatus When manufacturing the double-sided image sensor chip 200, the manufacturing apparatus first manufactures the right-side backside illuminated sensor 210 with the surface facing up, as illustrated in a in FIG. In addition, the manufacturing apparatus manufactures the logic substrate 230 with the wiring layer 231 facing upward as illustrated in FIG.
  • the manufacturing apparatus inverts the right-side backside illumination type sensor 210 so that the surface is directed downward, and is bonded to the logic substrate 230 by Cu—Cu connection.
  • FIG. 6 is an example of a cross-sectional view of the right-side backside illuminated sensor 210 and the logic substrate 230 after bonding in the first embodiment of the present technology.
  • a is an example of a cross-sectional view of the right backside illumination sensor 210 and the logic substrate 230 before inversion
  • b in the figure is a cross section of the right backside illumination sensor 210 and the logic substrate 230 after inversion. It is an example of a figure.
  • the manufacturing apparatus inverts the right side back-illuminated sensor 210 and the logic substrate 230 exemplified in a in FIG. 6 and polishes the substrate 233 according to the length of the through via 235. Thereby, the thickness of the board
  • substrate 233 is adjusted so that it may illustrate in b in the figure.
  • FIG. 7 is an example of a cross-sectional view of the left back-side illuminated sensor 240, the logic substrate 230, and the right back-side illuminated sensor 210 before bonding in the first embodiment of the present technology.
  • a is an example of a cross-sectional view of the left backside illumination sensor 240 before joining
  • b in the figure is an example of a cross-sectional view of the logic board 230 and the right side backside illumination sensor 210 before joining. .
  • the manufacturing apparatus manufactures the left-side backside illuminated sensor 240 with the front side facing up, as illustrated in FIG. Further, the manufacturing apparatus forms an oxide film 234 on the substrate 233 as illustrated in FIG. Then, the manufacturing apparatus penetrates the through via 235 in the logic substrate 230 and contacts one end of the through via 235 to the Cu wiring 232 in the wiring layer 231. Subsequently, the manufacturing apparatus inverts the left back-side illuminated sensor 240 and joins it to the logic substrate 230 by Cu—Cu connection.
  • FIG. 8 is an example of a cross-sectional view of the left backside illumination sensor 240, the logic substrate 230, and the right backside illumination sensor 210 after bonding according to the first embodiment of the present technology.
  • the manufacturing apparatus polishes the left backside illumination type sensor 240 and forms the color filter 244 and the microlens 243 thereon.
  • FIG. 9 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 243 and the like according to the first embodiment of the present technology are formed.
  • the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
  • FIG. 10 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat-resistant material 242 is formed in the first embodiment of the present technology.
  • the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
  • the microlens 243 is protected by the high heat resistant material 242, it can be protected by a BGR seal instead of the high heat resistant material 242. In addition, it can be protected by a wafer support system using UV (Ultra Violet) curable liquid adhesive. At that time, the glass 241 can be peeled after the microlenses 211 are formed.
  • the manufacturing apparatus can also make the glass 241 to have a thickness of about 50 micrometers ( ⁇ m) by grinding or polishing using lapping or polishing.
  • FIG. 11 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the first embodiment of the present technology.
  • the manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure so that the glass 241 faces downward, and the color filter 212 and the microlens 211 are formed on the right-side backside illumination sensor 210.
  • FIG. 12 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 211 and the like according to the first embodiment of the present technology are formed.
  • the manufacturing apparatus passes the through via 221 through the right side back-illuminated sensor 210 and makes one end of the through via 221 contact the Al—Cu wiring 217 in the wiring layer 215. Thereby, the double-sided image sensor chip 200 illustrated in FIG. 4 is obtained.
  • the manufacturing apparatus joins the left sensor chip 201 and the right sensor chip 202 by Cu—Cu connection. Normally, in soldering, a gap is generated between the chips due to the solder balls. However, according to the Cu—Cu connection, the manufacturing apparatus can bond the chips together. For this reason, the thickness of the double-sided image sensor chip 200 can be reduced as compared with the case where soldering is performed.
  • the manufacturing apparatus forms the microlens 243 on the left backside illumination sensor 240 after joining by Cu—Cu connection as illustrated in FIG. Thereby, it can suppress that the microlens 243 is damaged at the time of joining.
  • a heat-sensitive material such as an organic material
  • the manufacturing apparatus reverses after protecting the microlens 243 with the high heat resistant material 242 and the glass 241. Thereby, since the glass 241 is on the lower side, damage to the microlens 243 can be suppressed.
  • FIG. 13 is an example of a plan view and a cross-sectional view of the double-sided image sensor chip 200 before soldering in the first embodiment of the present technology.
  • a in the same figure is an example of the top view which looked at the double-sided image sensor chip 200 before soldering from the right side.
  • B in the figure is an example of a cross-sectional view of the double-sided image sensor chip 200 before soldering as seen from above.
  • the double-sided image sensor chip 200 As illustrated in a in FIG. 13, in the double-sided image sensor chip 200, a plurality of rectangular pads for forming solder balls are formed around the rectangular light receiving surface 205.
  • the size of one side of the double-sided image sensor chip 200 when viewed from the right side is, for example, 1 millimeter mail (mm).
  • the manufacturing apparatus forms solder balls 206 on the pad portions as illustrated in FIG.
  • the diameter of the solder ball 206 is, for example, 30 micrometers.
  • the depth of the pad is, for example, 6 micrometers ( ⁇ m), and the length of one side of the pad is, for example, 50 micrometers ( ⁇ m).
  • the thickness of the double-sided image sensor chip 200 is, for example, 320 micrometers ( ⁇ m). Then, the manufacturing apparatus connects the double-sided image sensor chip 200 to the flexible printed circuit board 160 by soldering.
  • the flexible printed board 160 may be connected only to that side. Further, the pads need only be arranged on one side of the double-sided image sensor chip 200. Thereby, process cost can be reduced compared with the structure which arrange
  • FIG. 14 is an example of a plan view and a cross-sectional view of the double-sided image sensor chip and the flexible printed circuit board 160 after soldering according to the first embodiment of the present technology.
  • a in the same figure is an example of the top view which looked at the double-sided image sensor chip 200 after soldering and the flexible printed circuit board 160 from the side surface.
  • B in the figure is an example of a cross-sectional view of the double-sided image sensor chip 200 and the flexible printed circuit board 160 as viewed from above after soldering.
  • the flexible printed circuit board 160 has an opening 161 having substantially the same size as the light receiving surface 205.
  • the manufacturing apparatus aligns the position of the light receiving surface 205 with the position of the opening 161 and solders the flexible printed circuit board 160 to form an element illustrated as b in FIG. Then, the manufacturing apparatus attaches the cover glass 170 to the right side of the flexible printed circuit board 160 with an adhesive or the like.
  • FIG. 15 is an example of a plan view and a cross-sectional view of the double-sided image sensor chip 200 and the flexible printed circuit board 160 after the cover glass 170 is attached in the first embodiment of the technology.
  • a in the same figure is an example of the top view which looked at the double-sided image sensor chip 200 and the flexible printed circuit board 160 after attachment from the right side.
  • B in the same figure is an example of a cross-sectional view of the double-sided image sensor chip 200 and the flexible printed circuit board 160 as viewed from above.
  • FIG. 16 is a flowchart illustrating an example of a method for manufacturing the double-sided image sensor chip 200 according to the first embodiment of the present technology. The operation of this flowchart is started, for example, when a substrate for manufacturing the double-sided image sensor chip 200 is placed on a manufacturing apparatus.
  • the manufacturing apparatus first manufactures the right backside illumination sensor 210 and the logic substrate 230 (step S901).
  • the manufacturing apparatus inverts the right-side backside illumination type sensor 210 and bonds it to the logic board 230 (step S902).
  • the manufacturing apparatus polishes the logic substrate 230 (step S903), and forms the through via 235 in the logic substrate 230 (step S904).
  • the manufacturing apparatus manufactures the left backside illumination type sensor 240 and joins the sensor to the logic substrate 230 by Cu—Cu connection (step S905).
  • the manufacturing apparatus polishes the left side back-illuminated sensor 240 to form the color filter 244 and the microlens 243 (step S906). Then, the manufacturing apparatus forms the high heat resistant material 242 and the glass 241 to protect the microlens 243 (step S907). The manufacturing apparatus inverts the double-sided image sensor chip 200 and forms the color filter 212 and the microlens 211 on the right backside illumination sensor 210 (step S908). Then, the manufacturing apparatus passes the through via 221 through the right-side backside illumination sensor 210 (step S909), and the manufacturing of the double-sided image sensor chip 200 is finished.
  • the right backside illumination sensor 210 and the left backside illumination sensor 240 by joining the right backside illumination sensor 210 and the left backside illumination sensor 240, it is possible to easily capture two pieces of image data having the same brightness. can do. Further, by bonding the left sensor chip 201 and the right sensor chip 202 in close contact with each other by Cu—Cu connection, the element can be formed thinner than in the case of soldering.
  • the microlens 211 of the right-side backside illumination sensor 210 is exposed.
  • dust or the like may adhere to the microlens 211.
  • the double-sided image sensor chip 200 according to the modification of the first embodiment is different from the first embodiment in that the microlens 211 is also protected.
  • FIG. 17 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the first embodiment of the present technology.
  • the double-sided image sensor chip 200 according to the modification of the first embodiment is different from the first embodiment in that a high heat-resistant material 218 is formed on the upper side of the microlens 211.
  • the microlens 211 is protected by the high heat-resistant material 218, thereby preventing the adhesion of dust.
  • Second Embodiment> In the first embodiment described above, the size of the double-sided image sensor chip 200 as viewed from the light receiving surface (back surface) is reduced as compared with the case where the logic substrate 230 is stacked on the sensor and those are not stacked. . Instead, the thickness of the double-sided image sensor chip 200 is increased by the logic board 230. For this reason, when it is required to further reduce the thickness of the double-sided image sensor chip 200, it is difficult to meet the request.
  • the double-sided image sensor chip 200 of the second embodiment is different from the first embodiment in that the double-sided image sensor chip 200 is formed thinner.
  • FIG. 18 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to the second embodiment of the present technology.
  • the double-sided image sensor chip 200 of the second embodiment is different from the first embodiment in that the logic substrate 230 is not provided.
  • the right-side backside illumination sensor 210 and the left-side backside illumination sensor 240 are joined without going through the logic board 230. Further, the wiring layer 247 of the left backside illumination type sensor 240 is further provided with an Al—Cu-based wiring 249. A through via 222 is further provided.
  • the through via 222 passes through the right side backside illumination type sensor 210 and contacts the Al—Cu wiring 249 in the wiring layer 247.
  • the logic board 230 is provided outside the double-sided image sensor chip 200 and connected to the flexible printed board 160, for example. Alternatively, the logic board 230 is not provided in the electronic device 100, and the same circuit as that on the board is provided on the flexible printed board 160.
  • FIG. 19 is an example of a cross-sectional view of the left backside illumination sensor 240 and the right backside illumination sensor 210 before joining in the second embodiment of the present technology.
  • a is an example of a cross-sectional view of the left backside illumination sensor 240 before joining
  • b in the figure is an example of a cross-sectional view of the right side backside illumination sensor 210 before joining.
  • the manufacturing apparatus first manufactures the left-side backside illuminated sensor 240 with the surface facing up, as illustrated in a in FIG. Moreover, the manufacturing apparatus manufactures the right-side backside illuminated sensor 210 with the front side facing up, as illustrated in FIG.
  • the manufacturing apparatus inverts the left-side backside illumination sensor 240 so that the surface faces down, and joins the logic substrate 230 to the right-side backside illumination sensor 210 by Cu—Cu connection.
  • FIG. 20 is an example of a cross-sectional view of the left-side backside illumination sensor 240 and the right-side backside illumination sensor 210 after bonding according to the second embodiment of the present technology.
  • the manufacturing apparatus forms a color filter 244 and a microlens 243 on the back surface of the left back-side illumination type sensor 240.
  • FIG. 21 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 243 and the like according to the second embodiment of the present technology are formed.
  • the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
  • FIG. 22 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat resistant material 242 is formed according to the second embodiment of the present technology.
  • the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
  • FIG. 23 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the second embodiment of the present technology.
  • the manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure to form the color filter 212 and the microlens 211 on the right side backside illumination sensor 210.
  • FIG. 24 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 211 and the like according to the second embodiment of the present technology are formed.
  • the manufacturing apparatus penetrates through vias 221 and 222. Thereby, the double-sided image sensor chip 200 illustrated in FIG. 18 is obtained.
  • the double-sided image sensor chip 200 is formed thinner by bonding the sensors without stacking the logic substrates 230 than when the logic substrates 230 are stacked. can do.
  • the microlens 211 of the right-side backside illumination sensor 210 is exposed. However, in consideration of the influence of dust, it is desirable to protect the microlens 211 with a protective layer as in the case of the microlens 243.
  • the double-sided image sensor chip 200 according to the modification of the second embodiment is different from the second embodiment in that the microlens 211 is also protected.
  • FIG. 25 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the second embodiment of the present technology.
  • the double-sided image sensor chip 200 according to the modification of the second embodiment is different from the second embodiment in that a high heat resistant material 218 is formed on the upper side of the microlens 211.
  • the microlens 211 is protected by the high heat-resistant material 218, whereby adhesion of dust can be prevented.
  • the manufacturing apparatus is formed thin by bonding the left backside illumination sensor 240 and the right backside illumination sensor 210 without using the logic substrate 230.
  • the bending strength may be insufficient.
  • the double-sided image sensor chip 200 of the third embodiment is different from the second embodiment in that the bending strength is increased.
  • FIG. 26 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to the third embodiment of the present technology.
  • the double-sided image sensor chip 200 according to the third embodiment is different from the second embodiment in that the right-side sensor chip 202 further includes a support substrate 260.
  • the support substrate 260 is a member having a certain strength such as glass. One of both surfaces of the support substrate 260 is in close contact with the right backside illumination sensor 210 and the other is in close contact with the left backside illumination sensor 240. That is, the surface of the right backside illumination sensor 210 is joined to the surface of the left backside illumination sensor 240 via the support substrate 260. Further, for example, SiO—SiO connection is used for connection between the support substrate 260 and each sensor. Note that the manufacturing apparatus can also bond the support substrate 260 with an adhesive instead of the SiO—SiO connection.
  • the manufacturing apparatus manufactures the left backside illumination sensor 240 and the right backside illumination sensor 210 and joins them to the support substrate 260.
  • FIG. 27 is an example of a cross-sectional view of the left backside illumination sensor 240, the support substrate 260, and the right backside illumination sensor 210 after bonding in the third embodiment of the present technology.
  • the manufacturing apparatus forms a color filter 244 and a microlens 243 on the back surface of the left back-side illumination type sensor 240.
  • FIG. 28 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 243 and the like according to the third embodiment of the present technology are formed.
  • the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
  • FIG. 29 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat resistant material 242 is formed in the third embodiment of the present technology.
  • the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
  • FIG. 30 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the third embodiment of the present technology.
  • the manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure to form the color filter 212 and the microlens 211 on the right side backside illumination sensor 210.
  • FIG. 31 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 211 and the like according to the second embodiment of the present technology are formed.
  • the manufacturing apparatus penetrates through vias 221 and 222. Thereby, the double-sided image sensor chip 200 illustrated in FIG. 26 is obtained.
  • the support substrate 260 is provided between the left-side backside illumination sensor 240 and the right-side backside illumination sensor 210, compared to the case where the support substrate 260 is not provided.
  • the bending strength can be increased.
  • the microlens 211 of the right side rear surface irradiation type sensor 210 is exposed.
  • the double-sided image sensor chip 200 according to the modification of the third embodiment is different from the third embodiment in that the microlens 211 is also protected.
  • FIG. 32 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the third embodiment of the present technology.
  • the double-sided image sensor chip 200 according to the modification of the third embodiment is different from the third embodiment in that a high heat-resistant material 218 is formed on the upper side of the microlens 211.
  • the microlens 211 is protected by the high heat-resistant material 218, whereby adhesion of dust can be prevented.
  • the logic substrate 230 is stacked on the sensor to reduce the area of the double-sided image sensor chip 200 as viewed from the light receiving surface (back surface).
  • the thickness of the sensor chip 200 increases. For this reason, when it is required to form the double-sided image sensor chip 200 thinner when the electronic device 100 is downsized, it is difficult to meet the demand.
  • the double-sided image sensor chip 200 of the fourth embodiment is different from the first embodiment in that the double-sided image sensor chip 200 is formed thinner.
  • FIG. 33 is a diagram for describing a configuration of a double-sided image sensor chip 200 according to the fourth embodiment of the present technology.
  • a right backside illumination sensor 210 and a driver 270 are provided on the same substrate.
  • the left backside illumination sensor 240 and the logic circuit 280 are provided on the same substrate.
  • the driver 270 drives the right side rear surface irradiation type sensor 210 and the left side rear surface irradiation type sensor 240 in synchronization with a vertical synchronization signal or the like. As described above, when one driver 270 drives both the right backside illumination sensor 210 and the left backside illumination sensor 240, the drive timings of these sensors can be easily matched.
  • the logic circuit 280 is a circuit similar to the circuit mounted on the logic board 230 in the first embodiment.
  • the double-sided image sensor chip 200 is formed thinner than in the case of stacking. can do.
  • FIG. 34 is an example of a plan view of the right sensor chip 202 viewed from the right side in the fourth embodiment of the present technology. As illustrated in the figure, pads for forming solder balls are disposed around the right backside illumination sensor 210 and the driver 270, respectively.
  • FIG. 35 is an example of a plan view of the left sensor chip 201 viewed from the left side surface in the fourth embodiment of the present technology. As illustrated in the figure, pads for forming solder balls are arranged around the left back-side illuminated sensor 240 and the logic circuit 280, respectively.
  • FIG. 36 is an example of a cross-sectional view of the left sensor chip 201 and the right sensor chip 202 before joining in the fourth embodiment of the present technology.
  • a in the same figure is an example of a cross-sectional view of the left sensor chip 201 before joining.
  • B in the figure is an example of a cross-sectional view of the right sensor chip 202 before joining.
  • the manufacturing apparatus forms a wiring layer 247 on the substrate 245, and forms a pixel circuit or the like above the photodiode 246 in the wiring layer 247. Thereby, the left side back irradiation type sensor 240 is manufactured. In addition, the manufacturing apparatus forms the logic circuit 280 at a position different from the left side rear surface irradiation type sensor 240 in the wiring layer 247.
  • the manufacturing apparatus forms a wiring layer 215 on the substrate 214, and forms a pixel circuit or the like above the photodiode 213 in the wiring layer 215. Thereby, the right side backside illumination type sensor 210 is manufactured. Further, the manufacturing apparatus forms the driver 270 at a position different from the right-side backside illumination sensor 210 in the wiring layer 215. Then, the manufacturing apparatus reverses the left sensor chip 201 and joins it to the right sensor chip 202 by Cu—Cu connection.
  • FIG. 37 is an example of a cross-sectional view of the left sensor chip 201 and the right sensor chip 202 after bonding in the fourth embodiment of the present technology.
  • the manufacturing apparatus forms a color filter 244 and a microlens 243 on the back surface of the left back-side illumination type sensor 240.
  • FIG. 38 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 243 and the like according to the fourth embodiment of the present technology are formed.
  • the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
  • FIG. 39 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat resistant material 242 is formed in the fourth embodiment of the present technology.
  • the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
  • FIG. 40 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the fourth embodiment of the present technology.
  • the manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure to form the color filter 212 and the microlens 211 on the right side backside illumination sensor 210.
  • FIG. 41 is an example of a cross-sectional view of a double-sided image sensor chip 200 in which the microlenses 211 and the like according to the fourth embodiment of the present technology are formed.
  • the manufacturing apparatus penetrates through vias 221 and 222.
  • FIG. 42 is an example of a cross-sectional view of the double-sided image sensor chip after the through vias 221 and 222 are formed in the fourth embodiment of the present technology.
  • the through via 221 penetrates to the inside of the driver 270, and the through via 222 penetrates to the wiring layer 215 in the right side rear surface irradiation type sensor 210.
  • the logic substrate 230 provided with the logic circuit is not stacked, and the logic circuit is arranged on the same substrate as compared with the case where the logic substrate 230 is stacked.
  • the double-sided image sensor chip 200 can be formed thin.
  • the microlens 211 of the right-side backside illumination sensor 210 is exposed. However, considering the influence of dust, it is desirable to protect the microlens 211 with a protective layer in the same manner as the microlens 243.
  • the double-sided image sensor chip 200 according to the modification of the fourth embodiment is different from the fourth embodiment in that the microlens 211 is also protected.
  • FIG. 43 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the fourth embodiment of the present technology.
  • the double-sided image sensor chip 200 according to the modification of the fourth embodiment is different from the fourth embodiment in that a high heat-resistant material 218 is formed on the upper side of the microlens 211.
  • the microlens 211 is protected by the high heat resistant material 218, whereby adhesion of dust can be prevented.
  • the through via 235 is disposed in the logic substrate. However, the length of the through via is further increased so that the Al—Cu wiring 217 in the right-side backside illuminated sensor 210 is formed. Can also be contacted.
  • the double-sided image sensor chip 200 of the fifth embodiment is different from the first embodiment in that the length of the through via is different.
  • FIG. 44 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to the fifth embodiment of the present technology.
  • the double-sided image sensor chip 200 of the fifth embodiment is different from the first embodiment in that a through via 236 is provided instead of the through via 235.
  • the through via 236 is formed of an Al—Cu based alloy and penetrates from the oxide film 234 to the wiring layer 215 to contact the Al—Cu based wiring 217.
  • FIG. 45 is an example of a cross-sectional view of the right-side backside illuminated sensor 210 and the logic substrate 230 before bonding in the fifth embodiment of the present technology.
  • a is an example of a cross-sectional view of the right backside illumination sensor 210 before bonding
  • b in the drawing is an example of a cross-sectional view of the logic substrate 230 before bonding.
  • the manufacturing apparatus manufactures the right-side backside illuminated sensor 210 with the front side facing up, as illustrated in a in FIG.
  • the manufacturing apparatus manufactures the logic substrate 230 with the wiring layer 231 facing upward as illustrated in FIG.
  • the manufacturing apparatus inverts the right-side backside illumination type sensor 210 so that the front surface is directed downward, and is bonded to the logic substrate 230 by Cu—Cu connection.
  • FIG. 46 is an example of a cross-sectional view of the right back-side illuminated sensor 210 and the logic substrate 230 after bonding in the fifth embodiment of the present technology.
  • a is an example of a cross-sectional view of the right backside illumination sensor 210 and the logic substrate 230 before inversion
  • b in the figure is a cross section of the right backside illumination sensor 210 and the logic substrate 230 after inversion. It is an example of a figure.
  • the manufacturing apparatus inverts the right sensor chip 202 illustrated in a in FIG. 46 and polishes the substrate 233 according to the length of the through via 236. Thereby, the thickness of the board
  • substrate 233 is adjusted so that it may illustrate in b in the figure.
  • FIG. 47 is an example of a cross-sectional view of the left back-side illuminated sensor 240, the logic substrate 230, and the right back-side illuminated sensor 210 before bonding in the first embodiment of the present technology.
  • a is an example of a cross-sectional view of the left backside illumination sensor 240 before joining
  • b in the figure is an example of a cross-sectional view of the logic board 230 and the right side backside illumination sensor 210 before joining. .
  • the manufacturing apparatus manufactures the left-side backside illuminated sensor 240 with the surface facing up, as illustrated in a in FIG. Further, the manufacturing apparatus forms an oxide film 234 on the substrate 233 as illustrated in FIG. Then, the manufacturing apparatus penetrates the through via 236 in the logic substrate 230 and contacts one end of the through via 236 to the Al—Cu-based wiring 217 in the wiring layer 215. Subsequently, the manufacturing apparatus inverts the left back-side illuminated sensor 240 and joins it to the logic substrate 230 by Cu—Cu connection.
  • FIG. 48 is an example of a cross-sectional view of the left backside illumination sensor 240, the logic substrate 230, and the right backside illumination sensor 210 after bonding in the fifth embodiment of the present technology.
  • the manufacturing apparatus polishes the left back-side illuminated sensor 240 and forms the color filter 244 and the microlens 243 thereon.
  • FIG. 49 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlens 243 is formed according to the first embodiment of the present technology.
  • the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
  • FIG. 50 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat resistant material 242 is formed in the fifth embodiment of the present technology.
  • the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
  • FIG. 51 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the fifth embodiment of the present technology.
  • the manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure so that the glass 241 faces downward, and the color filter 212 and the microlens 211 are formed on the right-side backside illumination sensor 210.
  • FIG. 52 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 211 and the like according to the fifth embodiment of the present technology are formed.
  • the manufacturing apparatus passes the through via 221 through the right side back-illuminated sensor 210 and makes one end of the through via 221 contact the Al—Cu wiring 217 in the wiring layer 215. Thereby, the double-sided image sensor chip 200 illustrated in FIG. 44 is obtained.
  • the through via 236 is lengthened, and the logic substrate 230 is connected to the right-side backside illuminated sensor 210 through the through via 236, whereby the through via 236 is interposed.
  • signals can be transmitted between the sensors and the substrate.
  • the microlens 211 of the right side rear surface irradiation type sensor 210 is exposed. However, considering the influence of dust, it is desirable to protect the microlens 211 with a protective layer as in the case of the microlens 243.
  • the double-sided image sensor chip 200 according to the modification of the fifth embodiment is different from the fifth embodiment in that the microlens 211 is also protected.
  • FIG. 53 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the fifth embodiment of the present technology.
  • the double-sided image sensor chip 200 according to the modification of the fifth embodiment is different from the fourth embodiment in that a high heat-resistant material 218 is formed on the upper side of the microlens 211.
  • the microlens 211 is protected by the high heat-resistant material 218, whereby adhesion of dust can be prevented.
  • the two lenses are both arranged in the front.
  • a 360-degree panoramic image is captured. Is difficult.
  • lenses may be arranged on both the front and the back.
  • the electronic device 100 according to the sixth embodiment is different from the first embodiment in that lenses are arranged on the front surface and the back surface.
  • FIG. 54 is an example of a cross-sectional view of the electronic device 100 according to the sixth embodiment of the present technology as viewed from above.
  • the electronic device 100 according to the sixth embodiment includes a rear lens 121 instead of the front lens 120.
  • the rear lens 121 is disposed on the back surface.
  • the mirror 151 bends the light from the rear lens 121 toward the lens group 152.
  • the double-sided image sensor chip 200 captures a front image and a back image at the same time, combines the image data, and generates a 360-degree panoramic image.
  • the front lens 110 is disposed on the front surface and the rear lens 121 is disposed on the rear surface, whereby a front image and a rear image can be simultaneously captured.
  • the light is bent by the mirrors 141 and 152, but the lower the reflectance of these mirrors, the smaller the amount of light and the darker the image.
  • the electronic device 100 according to the modification of the sixth embodiment is different from the sixth embodiment in that no mirror is provided.
  • FIG. 55 is an example of a cross-sectional view of the electronic device 100 according to a modification of the sixth embodiment of the present technology.
  • light from the front lens 110 is guided to the lens group 142 without passing through a mirror.
  • the light from the rear lens 121 is also guided to the lens group 152 without passing through a mirror.
  • the light from the front lens 110 and the rear lens 121 is reflected by the mirror by being guided to the lens groups 142 and 152 without being reflected by the mirror.
  • the amount of light can be increased.
  • the double-sided image sensor chip 200 is arranged on the smartphone.
  • the double-sided image sensor chip 200 can be provided on a device other than the smartphone, for example, a twin-lens camera.
  • the double-sided image sensor chip 200 according to the seventh embodiment is different from the first embodiment in that it is disposed in a twin-lens camera.
  • FIG. 56 is an example of a cross-sectional view of the twin-lens camera 101 according to the seventh embodiment of the present technology.
  • the binocular camera 101 mirrors 141 and 151 and a double-sided image sensor chip 200 are arranged.
  • the front lenses 110 and 120 are arranged in front. Of the two side surfaces, the side closer to the front lens 120 is the right side surface, and the mirror 151, the double-sided image sensor chip 200, and the mirror 141 are arranged in this order from the right side.
  • the mirror 141 bends the light from the front lens 110 toward the double-sided image sensor chip 200.
  • the mirror 151 bends the light from the front lens 120 toward the double-sided image sensor chip 200.
  • One side of the double-sided image sensor chip 200 is irradiated with light from the mirror 141, and the other side is irradiated with light from the mirror 151.
  • the binocular camera 101 can be easily downsized by disposing the thin double-sided image sensor chip 200 in the binocular camera 101.
  • the double-sided image sensor chip 200 is mounted on the electronic device 100 such as a smartphone. However, it can be mounted on an endoscope.
  • the eighth embodiment is different from the first embodiment in that the double-sided image sensor chip 200 is mounted on an endoscope.
  • FIG. 57 is an example of a cross-sectional view of the electronic device 102 on which the double-sided image sensor chip 200 according to the eighth embodiment of the present technology is mounted.
  • the electronic device 102 is a rigid endoscope and includes lenses 310 and 311 and a double-sided image sensor chip 200.
  • the electronic device 102 (rigid endoscope) has a cylindrical shape, and a direction perpendicular to the upper surface (in other words, an axial direction) is defined as a Z direction, and a predetermined direction perpendicular to the Z direction is defined as an X direction. A direction perpendicular to the X direction and the Z direction is taken as a Y direction.
  • 57a is a cross-sectional view as viewed from the Y direction
  • b in FIG. 57 is a cross-sectional view as viewed from the Z direction.
  • the lenses 310 and 311 are arranged on the side surface of the electronic device 102 so that their optical axis directions coincide.
  • the double-sided image sensor chip 200 is disposed between the lenses 310 and 311 so that the axes perpendicular to both sides coincide with the optical axes of the lenses 310 and 311.
  • the lens 310 guides light to one of both surfaces of the double-sided image sensor chip 200, and the lens 311 guides light to the other of the both surfaces.
  • the electronic device 102 includes a chemical solution discharge unit 312 for discharging a chemical solution, a candy outlet 313 for inserting a candy, and a light source such as a light emitting diode (LED). 314 are provided.
  • a chemical solution discharge unit 312 for discharging a chemical solution
  • a candy outlet 313 for inserting a candy
  • a light source such as a light emitting diode (LED). 314 are provided.
  • LED light emitting diode
  • the double-sided image sensor chip 200 is mounted on the electronic device 102 (rigid endoscope), two image data can be easily captured by the rigid endoscope. can do.
  • the double-sided image sensor chip 200 is arranged in the electronic device 102 (rigid endoscope) without bending light, but in this structure, the diameter of the rigid endoscope is reduced. Difficult to do.
  • the electronic device 102 according to the ninth embodiment is different from the eighth embodiment in that light is bent.
  • FIG. 58 is an example of a cross-sectional view of the electronic device 102 on which the double-sided image sensor chip 200 according to the ninth embodiment of the present technology is mounted.
  • This electronic device 102 is different from the eighth embodiment in that mirrors 315 and 316 are further provided.
  • the optical axis of the lens 310 and the optical axis of the lens 311 are parallel to the X direction, but are not on the same axis. Further, both surfaces of the double-sided image sensor chip 200 are parallel to the upper surface and the lower surface of the electronic device 102.
  • the mirror 315 bends the light from the lens 310 and guides it to one of both surfaces of the double-sided image sensor chip 200, and the mirror 316 bends the light from the lens 311 and guides it to the other of the both surfaces.
  • the diameter of the endoscope can be reduced as compared with the case where the light is not bent. .
  • FIG. 59 is an example of a cross-sectional view of the electronic device 102 on which the double-sided image sensor chip 200 according to the tenth embodiment of the present technology is mounted.
  • the electronic device 102 of the tenth embodiment is different from the ninth embodiment in that the mirror 316 is not provided.
  • the lens 310 is disposed on the side surface, and the lens 311 is disposed on the lower surface.
  • the optical axis of the lens 310 is parallel to the X direction, and the optical axis of the lens 311 is parallel to the Z direction (axial direction).
  • the mirror 315 bends the light from the lens 310 and guides it to one of both surfaces of the double-sided image sensor chip 200, and the lens 311 guides the light to the other of the both surfaces.
  • the diameter of the endoscope is further increased as compared with the case where these lenses are arranged on the side surface. Can be reduced.
  • the double-sided image sensor chip 200 is mounted on a rigid endoscope, but it can also be mounted on a capsule endoscope.
  • the eleventh embodiment differs from the tenth embodiment in that the double-sided image sensor chip 200 is mounted on a capsule endoscope.
  • FIG. 60 is an example of a cross-sectional view of the electronic device 103 on which the double-sided image sensor chip 200 according to the eleventh embodiment of the present technology is mounted.
  • the electronic device 103 is a capsule endoscope, and includes an antenna 361, a receiving unit 362, a transmitting unit 363, a storage unit 364, and a sample space 365.
  • the electronic device 103 includes a mirror 366, lenses 367 and 370, a double-sided image sensor chip 200, and light sources 368 and 369 such as LEDs.
  • the receiving unit 362 receives a control signal and the like via the antenna 361.
  • the transmission unit 363 transmits image data captured by the double-sided image sensor chip 200 to the outside via the antenna 361.
  • the accumulation unit 364 accumulates captured image data.
  • the electronic device 103 (capsule endoscope) is an oval rotating body such as a rounded rectangle or an ellipse, and the major axis direction of the oval is a Z direction, and a predetermined direction perpendicular to the Z direction (in other words, The minor axis direction) is taken as the X direction.
  • a direction perpendicular to the X direction and the Z direction is taken as a Y direction.
  • 60 is a cross-sectional view seen from the Y direction, and b in the same figure is a cross-sectional view seen from the Z direction.
  • the lens 367 is disposed on the side surface of the electronic device 103 (capsule endoscope), and the lens 370 is disposed at a position where the optical axis is parallel to the Z direction (long axis direction). Further, the Z direction is perpendicular to both surfaces of the double-sided image sensor chip 200.
  • the mirror 366 bends the light from the lens 367 and guides it to one of both surfaces of the double-sided image sensor chip 200, and the lens 370 guides the light to the other of the both surfaces.
  • the light source 368 can move along a direction perpendicular to the Z direction, and the light source 369 can move along the Z direction.
  • the double-sided image sensor chip 200 is mounted on the electronic device 103 (capsule endoscope), two pieces of image data can be easily obtained in the capsule endoscope. Can be imaged.
  • the light is bent, but it may be configured not to be bent.
  • the electronic device 103 according to the twelfth embodiment differs from the eleventh embodiment in that light is not bent.
  • FIG. 61 is an example of a cross-sectional view of the electronic device 103 on which the double-sided image sensor chip 200 according to the twelfth embodiment of the present technology is mounted.
  • the electronic device 103 according to the twelfth embodiment is different from the eleventh embodiment in that the mirror 366 is not provided.
  • the lenses 367 and 370 are arranged on the side surface of the electronic device 103 so that the optical axis directions thereof coincide with each other.
  • the double-sided image sensor chip 200 is disposed between the lenses 367 and 370 so that the axes perpendicular to both sides thereof coincide with the optical axes of the lenses 367 and 370.
  • the lens 367 guides light to one of both surfaces of the double-sided image sensor chip 200, and the lens 370 guides light to the other of the both surfaces.
  • the light sources 368 and 369 can move along a direction perpendicular to the Z direction.
  • the lenses 367 and 370 guide the light to the double-sided image sensor chip 200 without bending, so that no mirror is required, and the length of the capsule endoscope is long.
  • the axial dimension can be reduced.
  • the lenses 367 and 370 are disposed on the side surfaces, but they can also be disposed at positions where their optical axes are parallel to the Z direction.
  • the electronic apparatus 103 according to the thirteenth embodiment differs from the twelfth embodiment in that the optical axes of the lenses 367 and 370 are parallel to the Z direction.
  • FIG. 62 is an example of a cross-sectional view of the electronic device 103 on which the double-sided image sensor chip 200 according to the thirteenth embodiment of the present technology is mounted.
  • the optical axes of the lenses 367 and 370 and the axis perpendicular to both surfaces of the double-sided image sensor chip 200 are parallel to the Z direction.
  • the light sources 368 and 369 can move along the Z direction.
  • the antenna 361, the reception unit 362, the transmission unit 363, the storage unit 364, and the sample space 365 are arranged on the side surface of the electronic device 103.
  • the lenses 367 and 370 are arranged at positions where the optical axes thereof are parallel to the Z direction.
  • the dimension of the long axis direction of the endoscope can be reduced.
  • the double-sided image sensor chip 200 is mounted on the flexible printed circuit board 160, but it can also be mounted on an interposer.
  • the interposer is a substrate that includes wiring and terminals and on which a chip such as the double-sided image sensor chip 200 is mounted.
  • the electronic device 100 according to the fourteenth embodiment is different from the first embodiment in that the double-sided image sensor chip 200 is mounted on the interposer by wire bonding.
  • FIG. 63 is an example of a plan view of an interposer on which the double-sided image sensor chip 200 according to the fourteenth embodiment of the present technology is mounted.
  • the double-sided image sensor chip 200 is mounted on the interposer 400.
  • the interposer 400 is provided with a plurality of terminals 410, and a terminal 290 is provided for each terminal 410 on the double-sided image sensor chip 200 side. Terminal 410 and terminal 290 corresponding to terminal 410 are connected by wire bonding.
  • FIG. 64 is an example of a cross-sectional view of the interposer 400 on which the double-sided image sensor chip 200 according to the fourteenth embodiment of the present technology is mounted.
  • This figure is a cross-sectional view taken along the line AA ′ of FIG.
  • a wiring 420 is formed in the interposer 400, and one end of the wiring 420 is connected to the terminal 410.
  • a ball 510 is formed on the terminal 410 on the interposer 400 side, and a ball 520 is formed on the terminal 290 on the double-sided image sensor chip 200 side. These balls are electrically connected via a wire 500.
  • wire bonding is known to be relatively low cost and highly reliable.
  • the upper part of the interposer 400 is sealed with glass 180 with the light receiving surface side as the upper side.
  • the diameter of the ball 520 is, for example, 30 micrometers.
  • the height of the step formed with the terminal 290 is, for example, 6 micrometers ( ⁇ m), and the length of one side of the terminal 290, for example, 50 micrometers ( ⁇ m).
  • the double-sided image sensor chip 200 is mounted on the interposer 400 by wire bonding, it is possible to realize cost reduction and reliability improvement.
  • the double-sided image sensor chip 200 is mounted on the interposer 400 by wire bonding, but can also be mounted by welding without using a wire.
  • the electronic device 100 of the ninth embodiment differs from the fourteenth embodiment in that the double-sided image sensor chip 200 is mounted on the interposer 400 by welding.
  • FIG. 65 is an example of a plan view of the interposer 400 on which the double-sided image sensor chip 200 according to the fifteenth embodiment of the present technology is mounted.
  • the interposer 400 according to the ninth embodiment is different from the eighth embodiment in that wiring is connected by welding instead of wire bonding.
  • FIG. 66 is an example of a cross-sectional view of the interposer 400 on which the double-sided image sensor chip 200 according to the fifteenth embodiment of the present technology is mounted. This figure is a cross-sectional view taken along the line AA ′ of FIG.
  • the wiring 420 of the interposer 400 is electrically connected by welding using a welding alloy 530.
  • the welding alloy 530 solder, gold (Au), NiAu, or the like is used.
  • the double-sided image sensor chip 200 since the double-sided image sensor chip 200 is connected to the interposer 400 by welding, the double-sided image sensor chip 200 can be mounted without using a wire.
  • FIG. 67 is an example of a plan view of the interposer 400 on which the double-sided image sensor chip 200 according to the sixteenth embodiment of the present technology is mounted.
  • the interposer 400 of the sixteenth embodiment differs from the fifteenth embodiment in that a logic circuit 430 is further mounted.
  • a driver or a memory is assumed.
  • FIG. 68 is an example of a cross-sectional view of the interposer 400 on which the double-sided image sensor chip 200 according to the sixteenth embodiment of the present technology is mounted. This figure is a cross-sectional view taken along the line AA ′ in FIG.
  • a logic circuit 430 is further mounted, and a glass 180 is provided thereon.
  • FIG. 69 is an example of a plan view and a cross-sectional view of the interposer 400 before mounting the double-sided image sensor chip 200 in the tenth embodiment of the present technology.
  • a is an example of a plan view of the interposer 400 before the double-sided image sensor chip 200 is mounted
  • b in the figure is an example of a cross-sectional view thereof.
  • the interposer 400 is formed with a recess for mounting the double-sided image sensor chip 200.
  • FIG. 70 is an example of a plan view and a cross-sectional view of an interposer 400 on which the double-sided image sensor chip 200 according to the sixteenth embodiment of the present technology is placed.
  • a in the same figure is an example of the top view of the interposer 400 which mounted the double-sided image sensor chip 200
  • b in the same figure is an example of the sectional view. As illustrated in the figure, the double-sided image sensor chip 200 is placed in the recess of the interposer 400.
  • 71 is an example of a plan view and a cross-sectional view of an interposer 400 on which a welding alloy 530 according to a sixteenth embodiment of the present technology is formed.
  • a in the same figure is an example of the top view of the interposer 400 which formed the welding alloy 530
  • b in the same figure is an example of the sectional drawing.
  • a welding alloy 530 such as solder is formed at the joint.
  • FIG 72 is an example of a plan view and a cross-sectional view of the interposer 400 joined with the logic circuit 430 according to the sixteenth embodiment of the present technology.
  • a in the figure is an example of a plan view of the interposer 400 to which the logic circuit 430 is joined, and b in the figure is an example of a sectional view thereof.
  • a logic circuit 430 such as a driver or a memory is further mounted.
  • FIG. 73 is an example of a plan view and a cross-sectional view of the double-sided image sensor chip 200 and the interposer 400 sealed with the glass 180 in the sixteenth embodiment of the present technology.
  • a is an example of a plan view of the double-sided image sensor chip 200 and the interposer 400 sealed with glass 180
  • b in the figure is an example of a sectional view thereof. As illustrated in the figure, the glass 180 is sealed, and mounting on the interposer 400 is completed.
  • logic circuit 430 is provided in the interposer 400 mounted by welding, the logic circuit 430 may be provided in the interposer 400 mounted by wire bonding as in the eighth embodiment.
  • the logic circuit 430 is further mounted on the interposer 400, the cost is reduced as compared with the case where the logic circuit 430 is separately mounted outside the interposer 400. can do.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 74 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp.
  • the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted.
  • the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image.
  • the vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light.
  • the imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
  • the vehicle interior information detection unit 12040 detects vehicle interior information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
  • the microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up traveling based on inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, or vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
  • the sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 74 is a diagram illustrating an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100.
  • the imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100.
  • the imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the imaging unit 12105 provided on the upper part of the windshield in the passenger compartment is mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 75 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100).
  • a predetermined speed for example, 0 km / h or more
  • the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
  • the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, and power poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles.
  • the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see.
  • the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining.
  • the audio image output unit 12052 When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to be superimposed and displayed.
  • voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the double-sided image sensor chip 200 in FIG. 1 can be applied to the imaging unit 12031.
  • the size of the imaging unit 12031 can be reduced.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 76 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
  • FIG. 76 shows a state where an operator (doctor) 11131 is performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000.
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101.
  • an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
  • An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • a user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111.
  • the recorder 11207 is an apparatus capable of recording various types of information related to surgery.
  • the printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
  • the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
  • the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation.
  • a so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light.
  • the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 77 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the imaging unit 11402 includes an imaging element.
  • One (so-called single plate type) image sensor may be included in the imaging unit 11402, or a plurality (so-called multi-plate type) may be used.
  • image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them.
  • the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site.
  • 3D 3D
  • the imaging unit 11402 is not necessarily provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Auto White Balance
  • the camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques.
  • the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
  • the transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • communication is performed by wire using the transmission cable 11400.
  • communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to the endoscope 11100 and the imaging unit 11402 among the configurations described above.
  • the double-sided image sensor chip 200 can be applied to the imaging unit 11402
  • the electronic device 102 can be applied to the endoscope 11100.
  • the size of the endoscope 11100 and the imaging unit 11402 can be reduced.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 78 is a block diagram illustrating an example of a schematic configuration of a patient in-vivo information acquisition system using a capsule endoscope to which the technology (present technology) according to the present disclosure can be applied.
  • the in-vivo information acquisition system 10001 includes a capsule endoscope 10100 and an external control device 10200.
  • the capsule endoscope 10100 is swallowed by the patient at the time of examination.
  • the capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and the intestine by peristaltic motion or the like until it is spontaneously discharged from the patient.
  • Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information about the in-vivo images is sequentially wirelessly transmitted to the external control device 10200 outside the body.
  • the external control device 10200 comprehensively controls the operation of the in-vivo information acquisition system 10001. Further, the external control device 10200 receives information about the in-vivo image transmitted from the capsule endoscope 10100 and, based on the received information about the in-vivo image, displays the in-vivo image on the display device (not shown). The image data for displaying is generated.
  • an in-vivo image obtained by imaging the inside of the patient's body can be obtained at any time in this manner until the capsule endoscope 10100 is swallowed and discharged.
  • the capsule endoscope 10100 includes a capsule-type casing 10101.
  • a light source unit 10111 In the casing 10101, a light source unit 10111, an imaging unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power supply unit 10115, and a power supply unit 10116 and the control unit 10117 are stored.
  • the light source unit 10111 is composed of a light source such as an LED (Light Emitting Diode), for example, and irradiates the imaging field of the imaging unit 10112 with light.
  • a light source such as an LED (Light Emitting Diode), for example, and irradiates the imaging field of the imaging unit 10112 with light.
  • the image capturing unit 10112 includes an image sensor and an optical system including a plurality of lenses provided in front of the image sensor. Reflected light (hereinafter referred to as observation light) of light irradiated on the body tissue to be observed is collected by the optical system and enters the image sensor. In the imaging unit 10112, in the imaging element, the observation light incident thereon is photoelectrically converted, and an image signal corresponding to the observation light is generated. The image signal generated by the imaging unit 10112 is provided to the image processing unit 10113.
  • the image processing unit 10113 is configured by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and performs various signal processing on the image signal generated by the imaging unit 10112.
  • the image processing unit 10113 provides the radio communication unit 10114 with the image signal subjected to signal processing as RAW data.
  • the wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been subjected to signal processing by the image processing unit 10113, and transmits the image signal to the external control apparatus 10200 via the antenna 10114A.
  • the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A.
  • the wireless communication unit 10114 provides a control signal received from the external control device 10200 to the control unit 10117.
  • the power feeding unit 10115 includes a power receiving antenna coil, a power regeneration circuit that regenerates power from a current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using a so-called non-contact charging principle.
  • the power supply unit 10116 is composed of a secondary battery, and stores the electric power generated by the power supply unit 10115.
  • FIG. 1001 illustration of an arrow indicating a power supply destination from the power supply unit 10116 is omitted to avoid the drawing from being complicated, but the power stored in the power supply unit 10116 is not stored in the light source unit 10111.
  • the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117 can be used for driving them.
  • the control unit 10117 includes a processor such as a CPU, and a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power feeding unit 10115. Control accordingly.
  • a processor such as a CPU
  • the external control device 10200 is configured by a processor such as a CPU or GPU, or a microcomputer or a control board in which a processor and a storage element such as a memory are mounted.
  • the external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A.
  • the capsule endoscope 10100 for example, the light irradiation condition for the observation target in the light source unit 10111 can be changed by a control signal from the external control device 10200.
  • an imaging condition for example, a frame rate or an exposure value in the imaging unit 10112
  • a control signal from the external control device 10200 can be changed by a control signal from the external control device 10200.
  • the contents of processing in the image processing unit 10113 and the conditions (for example, the transmission interval, the number of transmission images, etc.) by which the wireless communication unit 10114 transmits an image signal may be changed by a control signal from the external control device 10200. .
  • the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured in-vivo image on the display device.
  • image processing for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing can be performed.
  • the external control device 10200 controls driving of the display device to display an in-vivo image captured based on the generated image data.
  • the external control device 10200 may cause the generated image data to be recorded on a recording device (not shown) or may be printed out on a printing device (not shown).
  • the technology according to the present disclosure can be applied to the capsule endoscope 10100 among the configurations described above.
  • the electronic apparatus 103 can be applied to a capsule endoscope 10100.
  • the size can be reduced.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • this technique can also take the following structures.
  • a first sensor chip in which wiring is formed on a first surface and a first photoelectric conversion element is formed on a first back surface with respect to the first surface;
  • a solid-state imaging device comprising: a second sensor chip in which wiring is formed on a second surface bonded to the first surface, and a second photoelectric conversion element is formed on a second back surface with respect to the first surface.
  • a protective layer for protecting the first microlens is further formed on the first back surface;
  • the first sensor chip includes a substrate on which the first photoelectric conversion element is formed and a first wiring layer
  • the second sensor chip further includes a predetermined support substrate.
  • One of the first sensor chip and the second sensor chip further includes a logic substrate on which a predetermined logic circuit is formed, The solid-state imaging device according to (3), wherein the logic substrate is disposed between the first wiring layer and the second wiring layer.
  • the solid-state imaging device according to (6) further including a through via formed in the logic substrate.
  • the solid-state imaging device according to (6) further including a through via penetrating from the logic substrate to the inside of the second wiring layer.
  • the wiring is a copper wiring, The solid-state imaging device according to (1), wherein the copper wirings on the first surface and the second surface are joined by Cu—Cu connection.
  • the first surface and the second surface include silicon monoxide, The solid-state imaging device according to (1), wherein the first surface and the second surface are joined by SiO—SiO connection.
  • Each of the first optical system and the second optical system includes: An object side lens; The electronic device according to (13), further including a mirror that bends light from the object side lens. (16) The electronic device according to (15), wherein each of the first optical system and the second optical system further includes a lens group that guides the bent light. (17) further comprising an interposer in which wiring is formed; The electronic device according to (13), wherein the first sensor chip and the second sensor chip are mounted on the interposer. (18) The electronic device according to (17), wherein the first sensor chip and the second sensor chip are mounted on the interposer by wire bonding. (19) The electronic device according to (17), wherein the first sensor chip and the second sensor chip are mounted on the interposer by welding.
  • (21) further comprising a first optical system and a second optical system;
  • the first optical system is provided on a side surface of the endoscope,
  • the second optical system includes a first lens whose optical axis is parallel to the axial direction of the endoscope,
  • the first optical system includes: A second lens;
  • (23) The electronic device according to (21), wherein the first optical system and the second optical system are provided on a side surface of the endoscope.
  • Each of the first optical system and the second optical system includes: A lens, The electronic device according to (23), further comprising a mirror that bends light from the lens. (25) The electronic device according to (23), wherein each of the first optical system and the second optical system includes a lens having an optical axis parallel to an axial direction of the endoscope. (26) A second sensor in which a second photoelectric conversion element is formed on the first back surface of the first sensor chip on which the first photoelectric conversion element is formed on the first back surface with respect to the first surface and on the second back surface with respect to the second surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

The purpose of the present invention is to facilitate the capturing of image data having identical brightness in an element comprising two image sensors bonded together. This solid-state imaging element is provided with a first sensor chip and a second sensor chip. In the first sensor chip, wiring is formed on a first front surface, and a first photoelectric conversion element is formed on a first back surface opposing the first front surface. In the second sensor chip, wiring is formed on a second front surface bonded to the first front surface, and a second photoelectric conversion element is formed on a second back surface opposing the first front surface.

Description

固体撮像素子、電子装置、および、固体撮像素子の製造方法Solid-state image sensor, electronic device, and method for manufacturing solid-state image sensor
 本技術は、固体撮像素子、電子装置、および、固体撮像素子の製造方法に関する。詳しくは、2つのセンサを接合した固体撮像素子、電子装置、および、固体撮像素子の製造方法に関する。 The present technology relates to a solid-state image sensor, an electronic device, and a method for manufacturing the solid-state image sensor. More specifically, the present invention relates to a solid-state imaging device in which two sensors are joined, an electronic device, and a method for manufacturing the solid-state imaging device.
 従来より、カメラやスマートフォンなどの撮像装置において、画像データを撮像するためにイメージセンサが用いられている。例えば、表面照射型イメージセンサと裏面照射型イメージセンサとが半田付けによって接合された素子が提案されている(例えば、特許文献1参照。)。ここで、裏面照射型イメージセンサは、配線された面を表面として、表面に対する裏面に光電変換素子が形成されたイメージセンサである。これに対して、表面照射型イメージセンサは、表面に配線および光電変換素子が形成されたイメージセンサである。配線を避けて光電変換素子を配置する必要がないため、一般に裏面照射型イメージセンサの方が、表面照射型イメージセンサよりも感度が高い。 Conventionally, an image sensor is used to capture image data in an imaging device such as a camera or a smartphone. For example, an element in which a front side irradiation type image sensor and a back side irradiation type image sensor are joined by soldering has been proposed (for example, see Patent Document 1). Here, the back side illumination type image sensor is an image sensor in which a wired surface is a front surface and a photoelectric conversion element is formed on the back surface with respect to the front surface. On the other hand, the surface irradiation type image sensor is an image sensor in which wirings and photoelectric conversion elements are formed on the surface. Since it is not necessary to arrange the photoelectric conversion elements while avoiding the wiring, the back-illuminated image sensor is generally more sensitive than the front-illuminated image sensor.
米国特許出願公開第2013/0285183号明細書US Patent Application Publication No. 2013/0285183
 上述の従来技術では、感度の異なる表面照射型イメージセンサおよび裏面照射型イメージセンサにより、明るさの異なる2枚の画像データを同時に撮像することができる。そして、これらの画像データの合成により、ダイナミックレンジを拡大した合成画像を生成することができる。このような合成処理は、ハイダイナミックレンジ合成と呼ばれる。しかしながら、アプリケーションの種類によっては、撮像された2枚の画像データに対し、ハイダイナミックレンジ合成以外の画像処理が実行されることがある。例えば、2枚の画像データを用いて、デプスマップを生成する処理やステレオマッチングを行う処理が実行される。これらの画像処理では、処理対象の2枚の画像データのそれぞれの明るさは同一であることが望ましい。上述の従来技術では、それぞれのイメージセンサの感度が異なるため、同じ明るさの画像データを撮像するには、それぞれの露光量を異なる値に制御しなければならず、撮像条件が限定されて撮像が困難になるという問題がある。 In the above-described conventional technology, it is possible to simultaneously capture two pieces of image data with different brightness by using a front side illumination type image sensor and a back side illumination type image sensor having different sensitivities. A composite image with an expanded dynamic range can be generated by combining these image data. Such a synthesis process is called high dynamic range synthesis. However, depending on the type of application, image processing other than high dynamic range composition may be performed on two pieces of captured image data. For example, a process for generating a depth map and a process for performing stereo matching are executed using two pieces of image data. In these image processes, it is desirable that the brightness of the two image data to be processed is the same. In the above-described prior art, since the sensitivity of each image sensor is different, in order to capture image data with the same brightness, each exposure amount must be controlled to a different value, and imaging is performed with limited imaging conditions. There is a problem that becomes difficult.
 本技術はこのような状況に鑑みて生み出されたものであり、2つのイメージセンサを接合した素子において、同一の明るさの画像データの撮像を容易にすることを目的とする。 The present technology has been created in view of such a situation, and an object thereof is to facilitate the imaging of image data having the same brightness in an element obtained by joining two image sensors.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、第1表面に配線が形成され、前記第1表面に対する第1裏面に第1光電変換素子が形成された第1センサチップと、前記第1表面に接合された第2表面に配線が形成され、前記第1表面に対する第2裏面に第2光電変換素子が形成された第2センサチップと固体撮像素子、および、その製造方法である。これにより、第1裏面に第1光電変換素子が形成された第1センサチップと第2裏面に第2光電変換素子が形成された第2センサチップとを接合した固体撮像素子により撮像が行われるという作用をもたらす。 The present technology has been made to solve the above-described problems. The first side surface of the present technology has a wiring formed on the first surface, and the first photoelectric conversion element is formed on the first back surface with respect to the first surface. A first sensor chip formed, a second sensor chip in which wiring is formed on a second surface joined to the first surface, and a second photoelectric conversion element is formed on a second back surface with respect to the first surface, and a solid An imaging element and a manufacturing method thereof. Thereby, imaging is performed by the solid-state imaging device in which the first sensor chip having the first photoelectric conversion element formed on the first back surface and the second sensor chip having the second photoelectric conversion element formed on the second back surface are joined. This brings about the effect.
 また、この第1の側面において、前記第1裏面に第1マイクロレンズを保護する保護層とがさらに形成され、前記第2裏面に第2マイクロレンズがさらに形成されてもよい。これにより、第1マイクロレンズが保護されるという作用をもたらす。 Further, in the first side surface, a protective layer for protecting the first microlens may be further formed on the first back surface, and a second microlens may be further formed on the second back surface. Thereby, the first microlens is protected.
 また、この第1の側面において、上記第1センサチップは、上記第1光電変換素子が形成された基板と第1配線層とを含み、上記第2センサチップは、上記第2光電変換素子が形成された基板と第2配線層とを含んでもよい。これにより、基板に形成された第1光電変換素子および第2光電変換素子により光電変換が行われるという作用をもたらす。 In the first aspect, the first sensor chip includes a substrate on which the first photoelectric conversion element is formed and a first wiring layer, and the second sensor chip includes the second photoelectric conversion element. The formed substrate and the second wiring layer may be included. Thereby, the effect | action that a photoelectric conversion is performed by the 1st photoelectric conversion element and 2nd photoelectric conversion element which were formed in the board | substrate is brought about.
 また、この第1の側面において、上記第2センサチップは、所定の支持基板をさらに含んでもよい。これにより、支持基板によって曲げ強度が高くなるという作用をもたらす。 Further, in the first aspect, the second sensor chip may further include a predetermined support substrate. This brings about the effect that the bending strength is increased by the support substrate.
 また、この第1の側面において、上記第1配線層および第2配線層の一方は、所定の論理回路を含んでもよい。これにより、論理回路において信号処理が実行されるという作用をもたらす。 In the first aspect, one of the first wiring layer and the second wiring layer may include a predetermined logic circuit. This brings about the effect that signal processing is executed in the logic circuit.
 また、この第1の側面において、上記第1センサチップおよび第2センサチップの一方は、所定の論理回路が形成されたロジック基板をさらに含み、上記ロジック基板は、上記第1配線層と上記第2配線層との間に配置されてもよい。これにより、ロジック基板において信号処理が実行されるという作用をもたらす。 In the first aspect, one of the first sensor chip and the second sensor chip further includes a logic substrate on which a predetermined logic circuit is formed. The logic substrate includes the first wiring layer and the first sensor layer. You may arrange | position between 2 wiring layers. As a result, the signal processing is performed on the logic board.
 また、この第1の側面において、上記ロジック基板内に形成された貫通ビアをさらに具備してもよい。これにより、貫通ビアを介してロジック基板内で信号が伝送されるという作用をもたらす。 In addition, the first side surface may further include a through via formed in the logic substrate. As a result, the signal is transmitted in the logic board through the through via.
 また、この第1の側面において、上記ロジック基板から上記第2配線層の内部までを貫通する貫通ビアをさらに具備してもよい。これにより、貫通ビアを介してロジック基板と第2配線層との間で画像信号が伝送されるという作用をもたらす。 Further, in the first aspect, a through via penetrating from the logic substrate to the inside of the second wiring layer may be further provided. As a result, an image signal is transmitted between the logic board and the second wiring layer through the through via.
 また、この第1の側面において、上記第2裏面には他の保護層がさらに形成されてもよい。これにより、第2マイクロレンズが保護されるという作用をもたらす。 In the first side surface, another protective layer may be further formed on the second back surface. This brings about the effect that the second microlens is protected.
 また、この第1の側面において、上記配線は銅配線であり、上記第1表面および上記第2表面のそれぞれの上記銅配線がCu-Cu接続により接合されていてもよい。これにより、第1表面および第2表面が密着するという作用をもたらす。 In the first aspect, the wiring may be a copper wiring, and the copper wiring on each of the first surface and the second surface may be joined by Cu—Cu connection. Thereby, the first surface and the second surface are brought into close contact with each other.
 また、この第1の側面において、上記第1表面および上記第2表面は一酸化ケイ素を含み、上記第1表面と上記第2表面とがSiO-SiO接続により接合されていてもよい。これにより、第1表面および第2表面が密着するという作用をもたらす。 In the first aspect, the first surface and the second surface may contain silicon monoxide, and the first surface and the second surface may be joined by a SiO—SiO connection. Thereby, the first surface and the second surface are brought into close contact with each other.
 また、この第1の側面において、上記第1表面と上記第2表面とが接着剤により接合されていてもよい。これにより、第1表面および第2表面が密着するという作用をもたらす。 Further, in the first side surface, the first surface and the second surface may be joined by an adhesive. Thereby, the first surface and the second surface are brought into close contact with each other.
 また、本技術の第2の側面は、第1表面に配線が形成され、前記第1表面に対する第1裏面に第1光電変換素子が形成された第1センサチップと、前記第1表面に接合された第2表面に配線が形成され、前記第1表面に対する第2裏面に第2光電変換素子が形成された第2センサチップと、上記第1裏面に光を導く第1光学系と、上記第2裏面に光を導く第2光学系とを具備する電子装置である。これにより、第1裏面に第1光電変換素子が形成された第1センサチップと第2裏面に第2光電変換素子が形成された第2センサチップとを接合した固体撮像素子によって、第1光学系および第2光学系からの光が光電変換されるという作用をもたらす。 In addition, according to a second aspect of the present technology, a first sensor chip in which a wiring is formed on a first surface and a first photoelectric conversion element is formed on a first back surface with respect to the first surface, and the first surface is bonded to the first sensor chip. A second sensor chip in which a wiring is formed on the second surface and a second photoelectric conversion element is formed on a second back surface with respect to the first surface; a first optical system that guides light to the first back surface; And an electronic device including a second optical system for guiding light to the second back surface. Accordingly, the first optical chip is obtained by joining the first sensor chip in which the first photoelectric conversion element is formed on the first back surface and the second sensor chip in which the second photoelectric conversion element is formed on the second back surface. The light from the system and the second optical system is photoelectrically converted.
 また、この第2の側面において、上記第1光学系および第2光学系のそれぞれは、物体側レンズと、上記物体側レンズからの光を導くレンズ群とを備えてもよい。これにより、物体側レンズおよびレンズ群からの光が光電変換されるという作用をもたらす。 In the second aspect, each of the first optical system and the second optical system may include an object side lens and a lens group that guides light from the object side lens. Thereby, the effect | action that the light from an object side lens and a lens group is photoelectrically converted is brought about.
 また、この第2の側面において、上記第1光学系および第2光学系のそれぞれは、物体側レンズと、上記物体側レンズからの光を屈曲させるミラーとを備えてもよい。これにより、ミラーにより屈曲した光が光電変換されるという作用をもたらす。 Further, in the second aspect, each of the first optical system and the second optical system may include an object side lens and a mirror that bends light from the object side lens. Thereby, the effect | action that the light bent by the mirror is photoelectrically converted is brought about.
 また、この第2の側面において、上記第1光学系および第2光学系のそれぞれは、上記屈曲した光を導くレンズ群をさらに備えてもよい。これにより、レンズ群からの光が光電変換されるという作用をもたらす。 Further, in the second aspect, each of the first optical system and the second optical system may further include a lens group that guides the bent light. Thereby, the effect | action that the light from a lens group is photoelectrically converted is brought about.
 また、この第2の側面において、配線が形成されたインターポーザをさらに具備し、上記第1センサチップおよび第2センサチップは、上記インターポーザに実装されてもよい。これにより、インターポーザに実装された第1センサチップおよび第2センサチップにより撮像が行われるという作用をもたらす。 Further, in the second aspect, an interposer in which wiring is formed may be further provided, and the first sensor chip and the second sensor chip may be mounted on the interposer. This brings about the effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the interposer.
 また、この第2の側面において、上記第1センサチップおよび第2センサチップは、上記インターポーザにワイヤボンディングにより実装されてもよい。これにより、ワイヤボンディングによりインターポーザに実装された第1センサチップおよび第2センサチップにより撮像が行われるという作用をもたらす。 In the second aspect, the first sensor chip and the second sensor chip may be mounted on the interposer by wire bonding. This brings about the effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the interposer by wire bonding.
 また、この第2の側面において、上記第1センサチップおよび第2センサチップは、上記インターポーザに溶着により実装されてもよい。これにより、溶着によりインターポーザに実装された第1センサチップおよび第2センサチップにより撮像が行われるという作用をもたらす。 In the second aspect, the first sensor chip and the second sensor chip may be mounted on the interposer by welding. This brings about the effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the interposer by welding.
 また、この第2の側面において、上記インターポーザには、論理回路がさらに形成されてもよい。これにより、論理回路が形成されたインターポーザに実装された第1センサチップおよび第2センサチップにより撮像が行われるという作用をもたらす。 In this second aspect, the interposer may further include a logic circuit. Accordingly, there is an effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the interposer in which the logic circuit is formed.
 また、この第2の側面において、第1光学系および第2光学系をさらに具備し、前記電子装置は、内視鏡であってもよい。これにより、内視鏡に実装された第1センサチップおよび第2センサチップにより撮像が行われるという作用をもたらす。 In the second aspect, the electronic device may further include a first optical system and a second optical system, and the electronic device may be an endoscope. This brings about the effect that imaging is performed by the first sensor chip and the second sensor chip mounted on the endoscope.
 また、この第2の側面において、前記第1光学系は、前記内視鏡の側面に設けられ、前記第2光学系は、光軸が前記内視鏡の軸方向に平行な第1のレンズを備え、前記第1光学系は、第2のレンズと、前記第2のレンズからの光を屈曲させるミラーとを備えてもよい。これにより、側面の第1光学系と、光を屈曲させる第2光学系とにより光が導かれるという作用をもたらす。 In the second aspect, the first optical system is provided on a side surface of the endoscope, and the second optical system includes a first lens whose optical axis is parallel to the axial direction of the endoscope. The first optical system may include a second lens and a mirror that bends light from the second lens. This brings about the effect that light is guided by the first optical system on the side surface and the second optical system that bends the light.
 また、この第2の側面において、前記第1光学系および前記第2光学系は、前記内視鏡の側面に設けられてもよい。これにより、側面に配置された第1光学系および第2光学系により光が導かれるという作用をもたらす。 Further, in the second aspect, the first optical system and the second optical system may be provided on a side surface of the endoscope. This brings about the effect | action that light is guide | induced by the 1st optical system and 2nd optical system which are arrange | positioned at the side surface.
 また、この第2の側面において、前記第1光学系および前記第2光学系のそれぞれは、レンズと、前記レンズからの光を屈曲させるミラーとを備えてもよい。これにより、光を屈曲させる第1光学系および第2光学系により光が導かれるという作用をもたらす。 In the second aspect, each of the first optical system and the second optical system may include a lens and a mirror that bends light from the lens. This brings about the effect that the light is guided by the first optical system and the second optical system that bend the light.
 また、この第2の側面において、前記第1光学系および前記第2光学系のそれぞれは、光軸が前記内視鏡の軸方向に平行なレンズを備えてもよい。これにより、光軸が前記内視鏡の軸方向に平行なレンズを備える第1光学系および第2光学系により光が導かれるという作用をもたらす。 In the second aspect, each of the first optical system and the second optical system may include a lens having an optical axis parallel to the axial direction of the endoscope. Accordingly, there is an effect that light is guided by the first optical system and the second optical system including a lens whose optical axis is parallel to the axial direction of the endoscope.
 本技術によれば、2つのイメージセンサを接合した素子において、同一の明るさの画像データの撮像を容易にすることができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to the present technology, it is possible to obtain an excellent effect that it is possible to easily capture image data with the same brightness in an element in which two image sensors are joined. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術の第1の実施の形態における電子装置の外観図の一例である。1 is an example of an external view of an electronic device according to a first embodiment of the present technology. 本技術の第1の実施の形態における電子装置の断面図の一例である。1 is an example of a cross-sectional view of an electronic device according to a first embodiment of the present technology. 本技術の第1の実施の形態における両面イメージセンサチップの構成を説明するための図である。It is a figure for demonstrating the structure of the double-sided image sensor chip in 1st Embodiment of this technique. 本技術の第1の実施の形態における両面イメージセンサチップの断面図の一例である。1 is an example of a cross-sectional view of a double-sided image sensor chip according to a first embodiment of the present technology. 本技術の第1の実施の形態における接合前の右側裏面照射型センサとロジック基板との断面図の一例である。FIG. 3 is an example of a cross-sectional view of a right-side backside illuminated sensor and a logic board before bonding in the first embodiment of the present technology. 本技術の第1の実施の形態における接合後の右側裏面照射型センサとロジック基板との断面図の一例である。FIG. 3 is an example of a cross-sectional view of a right-side backside illuminated sensor and a logic substrate after bonding in the first embodiment of the present technology. 本技術の第1の実施の形態における接合前の左側裏面照射型センサとロジック基板と右側裏面照射型センサとの断面図の一例である。It is an example of sectional drawing of the left back irradiation type sensor before joining in a 1st embodiment of this art, a logic board, and a right side back irradiation type sensor. 本技術の第1の実施の形態における接合後の左側裏面照射型センサとロジック基板と右側裏面照射型センサとの断面図の一例である。FIG. 3 is an example of a cross-sectional view of a left back-side illuminated sensor, a logic substrate, and a right back-side illuminated sensor after bonding according to the first embodiment of the present technology. 本技術の第1の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 1st embodiment of this art were formed. 本技術の第1の実施の形態における高耐熱材料形成後の両面イメージセンサチップの断面図の一例である。1 is an example of a cross-sectional view of a double-sided image sensor chip after formation of a high heat resistant material in a first embodiment of the present technology. 本技術の第1の実施の形態におけるガラス形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after glass formation in a 1st embodiment of this art. 本技術の第1の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor in which the micro lens etc. in a 1st embodiment of this art were formed. 本技術の第1の実施の形態における半田付け前の両面イメージセンサチップの平面図および断面図の一例である。It is an example of the top view and sectional view of the double-sided image sensor chip before soldering in the first embodiment of the present technology. 本技術の第1の実施の形態における半田付け後の両面イメージセンサチップおよびフレキシブルプリント基板の平面図および断面図の一例である。1 is an example of a plan view and a cross-sectional view of a double-sided image sensor chip and a flexible printed circuit board after soldering according to a first embodiment of the present technology. 本技術の第1の実施の形態におけるカバーガラス取り付け後の両面イメージセンサチップおよびフレキシブルプリント基板の平面図および断面図の一例である。It is an example of the top view and sectional view of a double-sided image sensor chip and a flexible printed circuit board after cover glass attachment in a 1st embodiment of this art. 本技術の第1の実施の形態における両面イメージセンサチップの製造方法の一例を示すフローチャートである。3 is a flowchart illustrating an example of a method for manufacturing a double-sided image sensor chip according to the first embodiment of the present technology. 本技術の第1の実施の形態の変形例における両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in the modification of a 1st embodiment of this art. 本技術の第2の実施の形態における両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in a 2nd embodiment of this art. 本技術の第2の実施の形態における接合前の左側裏面照射型センサと右側裏面照射型センサとの断面図の一例である。It is an example of sectional drawing of the left back irradiation type sensor and right side back irradiation type sensor before joining in a 2nd embodiment of this art. 本技術の第2の実施の形態における接合後の左側裏面照射型センサと右側裏面照射型センサとの断面図の一例である。It is an example of sectional drawing of the left back irradiation type sensor and right side back irradiation type sensor after joining in a 2nd embodiment of this art. 本技術の第2の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 2nd embodiment of this art were formed. 本技術の第2の実施の形態における高耐熱材料形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after high heat-resistant material formation in a 2nd embodiment of this art. 本技術の第2の実施の形態におけるガラス形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after glass formation in a 2nd embodiment of this art. 本技術の第2の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor in which the micro lens etc. in a 2nd embodiment of this art were formed. 本技術の第2の実施の形態の変形例における両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in the modification of the 2nd embodiment of this art. 本技術の第3の実施の形態における両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in a 3rd embodiment of this art. 本技術の第3の実施の形態における接合後の左側裏面照射型センサと支持基板と右側裏面照射型センサとの断面図の一例である。It is an example of sectional drawing of the left back irradiation type sensor after a joining in the 3rd embodiment of this art, a support substrate, and a right side back irradiation type sensor. 本技術の第3の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 3rd embodiment of this art were formed. 本技術の第3の実施の形態における高耐熱材料形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after high heat-resistant material formation in a 3rd embodiment of this art. 本技術の第3の実施の形態におけるガラス形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after glass formation in a 3rd embodiment of this art. 本技術の第3の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor in which the micro lens etc. in a 3rd embodiment of this art were formed. 本技術の第3の実施の形態の変形例における両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in the modification of the 3rd embodiment of this art. 本技術の第4の実施の形態における両面イメージセンサチップの構成を説明するための図である。It is a figure for demonstrating the structure of the double-sided image sensor chip in 4th Embodiment of this technique. 本技術の第4の実施の形態における右側センサチップの平面図の一例である。It is an example of the top view of the right side sensor chip in 4th Embodiment of this technique. 本技術の第4の実施の形態における左側センサチップの平面図の一例である。It is an example of the top view of the left sensor chip in 4th Embodiment of this technique. 本技術の第4の実施の形態における接合前の左側センサチップと右側センサチップとの断面図の一例である。It is an example of sectional drawing of the left sensor chip and right sensor chip before joining in a 4th embodiment of this art. 本技術の第4の実施の形態における接合後の左側センサチップと右側センサチップとの断面図の一例である。It is an example of sectional drawing of the left sensor chip and right sensor chip after joining in a 4th embodiment of this art. 本技術の第4の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 4th embodiment of this art were formed. 本技術の第4の実施の形態における高耐熱材料形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after high heat-resistant material formation in the 4th embodiment of this art. 本技術の第4の実施の形態におけるガラス形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after glass formation in a 4th embodiment of this art. 本技術の第4の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 4th embodiment of this art were formed. 本技術の第4の実施の形態における貫通ビア形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after formation of a penetration via in a 4th embodiment of this art. 本技術の第4の実施の形態の変形例における両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in the modification of the 4th embodiment of this art. 本技術の第5の実施の形態における両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in a 5th embodiment of this art. 本技術の第5の実施の形態における接合前の右側裏面照射型センサとロジック基板との断面図の一例である。It is an example of sectional drawing of a right back irradiation type sensor and a logic board before joining in a 5th embodiment of this art. 本技術の第5の実施の形態における接合後の右側裏面照射型センサとロジック基板との断面図の一例である。It is an example of sectional drawing of the right back irradiation type sensor and logic board after joining in a 5th embodiment of this art. 本技術の第5の実施の形態における接合前の左側裏面照射型センサとロジック基板と右側裏面照射型センサとの断面図の一例である。It is an example of sectional drawing of the left back irradiation type sensor before joining in a 5th embodiment of this art, a logic board, and a right side back irradiation type sensor. 本技術の第5の実施の形態における接合後の左側センサチップと右側センサチップとの断面図の一例である。It is an example of sectional drawing of the left sensor chip and right sensor chip after joining in a 5th embodiment of this art. 本技術の第5の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor in which the micro lens etc. in a 5th embodiment of this art were formed. 本技術の第5の実施の形態における高耐熱材料形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after high heat-resistant material formation in a 5th embodiment of this art. 本技術の第5の実施の形態におけるガラス形成後の両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip after glass formation in a 5th embodiment of this art. 本技術の第5の実施の形態におけるマイクロレンズ等を形成した両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in which the micro lens etc. in a 5th embodiment of this art were formed. 本技術の第5の実施の形態の変形例における両面イメージセンサチップの断面図の一例である。It is an example of sectional drawing of the double-sided image sensor chip in the modification of the 5th embodiment of this art. 本技術の第6の実施の形態における電子装置の断面図の一例である。It is an example of sectional drawing of the electronic device in a 6th embodiment of this art. 本技術の第6の実施の形態の変形例における電子装置の断面図の一例である。It is an example of sectional drawing of the electronic device in the modification of 6th Embodiment of this technique. 本技術の第7の実施の形態における電子装置の断面図の一例である。It is an example of sectional drawing of the electronic device in a 7th embodiment of this art. 本技術の第8の実施の形態における両面イメージセンサチップを実装した電子装置の断面図の一例である。It is an example of sectional drawing of the electronic device which mounted the double-sided image sensor chip in an 8th embodiment of this art. 本技術の第9の実施の形態における両面イメージセンサチップを実装した電子装置の断面図の一例である。It is an example of sectional drawing of the electronic device which mounted the double-sided image sensor chip in a 9th embodiment of this art. 本技術の第10の実施の形態における両面イメージセンサチップを実装し電子装置の断面図の一例である。It is an example of sectional drawing of an electronic device which mounts the double-sided image sensor chip in a 10th embodiment of this art. 本技術の第8の実施の形態における両面イメージセンサチップを実装した電子装置の断面図の一例である。It is an example of sectional drawing of the electronic device which mounted the double-sided image sensor chip in an 8th embodiment of this art. 本技術の第9の実施の形態における両面イメージセンサチップを実装した電子装置の断面図の一例である。It is an example of sectional drawing of the electronic device which mounted the double-sided image sensor chip in a 9th embodiment of this art. 本技術の第10の実施の形態における両面イメージセンサチップを実装し電子装置の断面図の一例である。It is an example of sectional drawing of an electronic device which mounts the double-sided image sensor chip in a 10th embodiment of this art. 本技術の第14の実施の形態における両面イメージセンサチップを実装したインターポーザの平面図の一例である。It is an example of the top view of the interposer which mounted the double-sided image sensor chip in 14th Embodiment of this technique. 本技術の第14の実施の形態における両面イメージセンサチップを実装したインターポーザの断面図の一例である。It is an example of sectional drawing of an interposer which mounted a double-sided image sensor chip in a 14th embodiment of this art. 本技術の第15の実施の形態における両面イメージセンサチップを実装したインターポーザの平面図の一例である。It is an example of the top view of the interposer which mounted the double-sided image sensor chip in 15th Embodiment of this technique. 本技術の第15の実施の形態における両面イメージセンサチップを実装したインターポーザの断面図の一例である。It is an example of a sectional view of an interposer on which a double-sided image sensor chip according to a fifteenth embodiment of the present technology is mounted. 本技術の第16の実施の形態における両面イメージセンサチップを実装したインターポーザの平面図の一例である。It is an example of the top view of the interposer which mounted the double-sided image sensor chip in a 16th embodiment of this art. 本技術の第16の実施の形態における両面イメージセンサチップを実装したインターポーザの断面図の一例である。It is an example of a sectional view of an interposer on which a double-sided image sensor chip according to a sixteenth embodiment of the present technology is mounted. 本技術の第16の実施の形態における両面イメージセンサチップの実装前のインターポーザの平面図および断面図の一例である。FIG. 28 is an example of a plan view and a cross-sectional view of an interposer before mounting a double-sided image sensor chip in a sixteenth embodiment of the present technology. 本技術の第16の実施の形態における両面イメージセンサチップを載置したインターポーザの平面図および断面図の一例である。It is an example of the top view and sectional drawing of the interposer which mounted the double-sided image sensor chip in 16th Embodiment of this technique. 本技術の第16の実施の形態における溶着合金を形成したインターポーザの平面図および断面図の一例である。It is an example of the top view and sectional view of the interposer which formed the welding alloy in the 16th embodiment of this art. 本技術の第16の実施の形態における論理回路を接合したインターポーザの平面図および断面図の一例である。It is an example of the top view and sectional drawing of the interposer which joined the logic circuit in 16th Embodiment of this technique. 本技術の第16の実施の形態におけるガラスで封止した両面イメージセンサチップおよびインターポーザの平面図および断面図の一例である。It is an example of the top view and sectional view of a double-sided image sensor chip and an interposer sealed with glass in the sixteenth embodiment of the present technology. 車両制御システムの概略的な構成例を示すブロック図である。It is a block diagram which shows the schematic structural example of a vehicle control system. 撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of an imaging part. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of a schematic structure of an endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of a function structure of a camera head and CCU. 体内情報取得システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of an in-vivo information acquisition system.
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(チップ同士を密着させて接合した例)
 2.第2の実施の形態(ロジック基板を介さずにチップ同士を密着させて接合した例)
 3.第3の実施の形態(支持基板を介してチップ同士を密着させて接合した例)
 4.第4の実施の形態(ロジック基板を積層せずにチップ同士を密着させて接合した例)
 5.第5の実施の形態(貫通ビアの長さを変更し、チップ同士を密着させて接合した例)
 6.第6の実施の形態(リアレンズを配置し、チップ同士を密着させて接合した例)
 7.第7の実施の形態(2眼カメラにおいてチップ同士を密着させて接合した例)
 8.第8の実施の形態(チップ同士を密着させて接合した両面イメージセンサチップを内視鏡に実装した例)
 9.第9の実施の形態(チップ同士を密着させて接合した両面イメージセンサチップと2枚のミラーとを内視鏡に実装した例)
 10.第10の実施の形態(チップ同士を密着させて接合した両面イメージセンサチップと1枚のミラーとを内視鏡に実装した例)
 11.第11の実施の形態(チップ同士を密着させて接合した両面イメージセンサチップおよびミラーをカプセル型内視鏡に実装した例)
 12.第12の実施の形態(チップ同士を密着させて接合した両面イメージセンサチップをカプセル型内視鏡に実装した例)
 13.第13の実施の形態(チップ同士を密着させて接合した両面イメージセンサチップを、部材の配置を変えてカプセル型内視鏡に実装した例)
 14.第14の実施の形態(チップ同士を密着させて接合した両面イメージセンサチップをワイヤボンディングによりインターポーザに実装した例)
 15.第15の実施の形態(チップ同士を密着させて接合した両面イメージセンサチップをボンディング剤によりインターポーザに実装した例)
 16.第16の実施の形態(チップ同士を密着させて接合した両面イメージセンサチップおよび論理回路をインターポーザに実装した例)
Hereinafter, modes for carrying out the present technology (hereinafter referred to as embodiments) will be described. The description will be made in the following order.
1. First embodiment (example in which chips are brought into close contact with each other)
2. Second embodiment (example in which chips are brought into close contact with each other without using a logic substrate)
3. Third embodiment (example in which chips are brought into close contact with each other via a support substrate)
4). Fourth Embodiment (Example in which chips are brought into close contact with each other without stacking logic substrates)
5). Fifth embodiment (example in which the length of the through via is changed and the chips are bonded to each other)
6). Sixth embodiment (example in which rear lenses are arranged and chips are brought into close contact with each other)
7). Seventh embodiment (example in which chips are brought into close contact with each other in a twin-lens camera)
8). Eighth embodiment (an example in which a double-sided image sensor chip in which chips are bonded together and mounted on an endoscope)
9. Ninth Embodiment (An example in which a double-sided image sensor chip in which chips are brought into close contact with each other and two mirrors are mounted on an endoscope)
10. Tenth Embodiment (An example in which a double-sided image sensor chip in which chips are brought into close contact with each other and one mirror are mounted on an endoscope)
11. Eleventh Embodiment (Example in which a double-sided image sensor chip and a mirror in which chips are brought into close contact with each other and mounted on a capsule endoscope)
12 Twelfth embodiment (example in which a double-sided image sensor chip in which chips are brought into close contact with each other and mounted on a capsule endoscope)
13. Thirteenth Embodiment (Example in which a double-sided image sensor chip in which chips are brought into close contact with each other and mounted on a capsule endoscope by changing the arrangement of members)
14 Fourteenth embodiment (an example in which a double-sided image sensor chip in which chips are brought into close contact with each other and mounted on an interposer by wire bonding)
15. Fifteenth embodiment (example in which a double-sided image sensor chip in which chips are closely bonded to each other is mounted on an interposer with a bonding agent)
16. Sixteenth Embodiment (Example in which a double-sided image sensor chip and a logic circuit in which chips are closely bonded are mounted on an interposer)
 <1.第1の実施の形態>
 [電子装置の構成例]
 図1は、本技術の第1の実施の形態における電子装置100の外観図の一例である。この電子装置100の形状は、例えば、直方体である。また、電子装置100のある面には、フロントレンズ110および120と表示部130とが形成されている。電子装置100としては、例えば、スマートフォンが想定される。なお、電子装置100は、撮像機能を持つ装置であればスマートフォンに限定されず、例えば、デジタルカメラやパーソナルコンピュータなどであってもよい。
<1. First Embodiment>
[Configuration example of electronic device]
FIG. 1 is an example of an external view of an electronic device 100 according to the first embodiment of the present technology. The shape of the electronic device 100 is, for example, a rectangular parallelepiped. Further, front lenses 110 and 120 and a display unit 130 are formed on a surface of the electronic device 100. As the electronic device 100, for example, a smartphone is assumed. The electronic device 100 is not limited to a smartphone as long as it has an imaging function, and may be a digital camera or a personal computer, for example.
 以下、電子装置100において表示部130が形成された面を「正面」と称し、正面の反対側の面を「背面」と称する。また、正面に垂直な4つの平面のうち、面積の大きな方の2つを「側面」と称する。正面および側面以外の2つの平面のうち、フロントレンズ110および120に近い方を「上面」と称し、上面の反対側の面を「下面」と称する。 Hereinafter, the surface on which the display unit 130 is formed in the electronic device 100 is referred to as “front”, and the surface opposite to the front is referred to as “back”. Of the four planes perpendicular to the front, two of the larger areas are referred to as “side surfaces”. Of the two planes other than the front and side surfaces, the one closer to the front lenses 110 and 120 is referred to as the “upper surface”, and the surface opposite to the upper surface is referred to as the “lower surface”.
 フロントレンズ110および120は、光を集光して、電子装置100内部に導くものである。表示部130は、画像データなどの様々なデータを表示するものである。なお、フロントレンズ110および120は、特許請求の範囲に記載の物体側レンズの一例である。 The front lenses 110 and 120 collect light and guide it into the electronic device 100. The display unit 130 displays various data such as image data. The front lenses 110 and 120 are examples of the object-side lens described in the claims.
 図2は、本技術の第1の実施の形態における、上面から見た電子装置100の断面図の一例である。電子装置100の内部には、ミラー141および151と、レンズ群142および152と、両面イメージセンサチップ200と、フレキシブルプリント基板160と、カバーガラス170とが配置される。2つの側面のうち120に近い方を右側面として、右側から順に、ミラー151、レンズ群152、カバーガラス170、フレキシブルプリント基板160、両面イメージセンサチップ200、レンズ群142、ミラー141の順で配置される。 FIG. 2 is an example of a cross-sectional view of the electronic device 100 as viewed from above in the first embodiment of the present technology. Inside the electronic device 100, mirrors 141 and 151, lens groups 142 and 152, a double-sided image sensor chip 200, a flexible printed circuit board 160, and a cover glass 170 are disposed. Of the two side surfaces, the side closer to 120 is the right side surface, and the mirror 151, lens group 152, cover glass 170, flexible printed circuit board 160, double-sided image sensor chip 200, lens group 142, and mirror 141 are arranged in this order from the right side. Is done.
 なお、フロントレンズ110、ミラー141およびレンズ群142からなる光学系は、特許請求の範囲に記載の第1光学系の一例である。また、フロントレンズ120、ミラー151およびレンズ群152からなる光学系は、特許請求の範囲に記載の第2光学系の一例である。 The optical system including the front lens 110, the mirror 141, and the lens group 142 is an example of a first optical system described in the claims. The optical system including the front lens 120, the mirror 151, and the lens group 152 is an example of a second optical system described in the claims.
 ミラー141は、フロントレンズ110からの光をレンズ群142の方に屈曲させるものである。レンズ群142は、ミラー141からの光を集光して両面イメージセンサチップ200に導くものである。 The mirror 141 bends the light from the front lens 110 toward the lens group 142. The lens group 142 collects the light from the mirror 141 and guides it to the double-sided image sensor chip 200.
 ミラー151は、フロントレンズ120からの光をレンズ群152の方に屈曲させるものである。レンズ群152は、ミラー151からの光を集光して両面イメージセンサチップ200に導くものである。ミラー141および151で光を屈曲させることにより、屈曲させない場合と比較して、電子装置100の正面から背面までの距離を短くすることができる。 The mirror 151 bends the light from the front lens 120 toward the lens group 152. The lens group 152 collects the light from the mirror 151 and guides it to the double-sided image sensor chip 200. By bending the light with the mirrors 141 and 151, the distance from the front surface to the back surface of the electronic device 100 can be shortened as compared with the case where the light is not bent.
 両面イメージセンサチップ200は、光を光電変換して画像データを撮像するものである。この両面イメージセンサチップ200の両面の一方には、レンズ群142からの光が照射され、他方にはレンズ群152からの光が照射される。なお、両面イメージセンサチップ200は、特許請求の範囲に記載の固体撮像素子の一例である。 The double-sided image sensor chip 200 captures image data by photoelectrically converting light. One side of the double-sided image sensor chip 200 is irradiated with light from the lens group 142 and the other side is irradiated with light from the lens group 152. The double-sided image sensor chip 200 is an example of a solid-state imaging device described in the claims.
 フレキシブルプリント基板160は、両面イメージセンサチップ200に接続された、柔軟性のあるプリント基板である。このフレキシブルプリント基板160は、両面イメージセンサチップ200により撮像された画像データを、表示部130やメモリ(不図示)などに供給する。また、フレキシブルプリント基板160の中央部(点線の部分)は開口されており、その開口部からの光が両面イメージセンサチップ200に照射される。 The flexible printed circuit board 160 is a flexible printed circuit board connected to the double-sided image sensor chip 200. The flexible printed circuit board 160 supplies image data captured by the double-sided image sensor chip 200 to the display unit 130, a memory (not shown), and the like. Further, the central portion (dotted line portion) of the flexible printed circuit board 160 is opened, and light from the opening portion is irradiated to the double-sided image sensor chip 200.
 カバーガラス170は、両面イメージセンサチップ200を保護する部材である。このカバーガラス170は、フレキシブルプリント基板160の両面のうち、両面イメージセンサチップ200が接続されていない方の面に接着される。 The cover glass 170 is a member that protects the double-sided image sensor chip 200. The cover glass 170 is adhered to the surface of the flexible printed circuit board 160 to which the double-sided image sensor chip 200 is not connected.
 [両面イメージセンサチップの構成例]
 図3は、本技術の第1の実施の形態における両面イメージセンサチップ200の構成を説明するための図である。この両面イメージセンサチップ200は、左側センサチップ201と、左側センサチップ201の右側に位置する右側センサチップ202とから構成される。
[Configuration example of double-sided image sensor chip]
FIG. 3 is a diagram for describing the configuration of the double-sided image sensor chip 200 according to the first embodiment of the present technology. The double-sided image sensor chip 200 includes a left sensor chip 201 and a right sensor chip 202 located on the right side of the left sensor chip 201.
 左側センサチップ201は、左側裏面照射型センサ240を備える。右側センサチップ202は、右側裏面照射型センサ210およびロジック基板230を備える。なお、左側センサチップ201は、特許請求の範囲に記載の第1センサチップの一例である。また、右側センサチップ202は、特許請求の範囲に記載の第2センサチップの一例である。 The left sensor chip 201 includes a left backside illumination type sensor 240. The right sensor chip 202 includes a right backside illumination sensor 210 and a logic board 230. The left sensor chip 201 is an example of a first sensor chip described in the claims. The right sensor chip 202 is an example of a second sensor chip described in the claims.
 右側裏面照射型センサ210は、回路を配置した面を表面として、表面に対する裏面にフォトダイオードが配置されたセンサである。この右側裏面照射型センサ210は、画像データを撮像してロジック基板230に供給する。また、右側裏面照射型センサ210の表面は、ロジック基板230の右側の面と接合される。 The right side rear surface irradiation type sensor 210 is a sensor in which a surface on which a circuit is disposed is a front surface and a photodiode is disposed on the back surface with respect to the front surface. The right backside illumination sensor 210 captures image data and supplies it to the logic board 230. Further, the front surface of the right backside illumination sensor 210 is bonded to the right surface of the logic substrate 230.
 左側裏面照射型センサ240は、回路を配置した面を表面として、表面に対する裏面にフォトダイオードが配置されたセンサである。この左側裏面照射型センサ240は、画像データを撮像してロジック基板230に供給する。また、左側裏面照射型センサ240の表面は、ロジック基板230の左側の面と接合される。 The left side rear surface irradiation type sensor 240 is a sensor in which a surface on which a circuit is disposed is a front surface and a photodiode is disposed on the back surface with respect to the front surface. The left backside illumination sensor 240 captures image data and supplies it to the logic board 230. Further, the surface of the left backside illumination type sensor 240 is bonded to the left side surface of the logic board 230.
 ロジック基板230は、所定の論理回路が形成された基板である。この論理回路により、例えば、AF(After Focus)およびAE(Auto Exposure)などのカメラ制御処理やガンマ処理などの様々な信号処理が2つのセンサからの画像データに対して実行される。また、必要に応じて、デプスマップの生成やステレオマッチング処理などが行われる。右側裏面照射型センサ210および左側裏面照射型センサ240の両方からの画像データをロジック基板230が処理することにより、それらのセンサの画像データに対する信号処理のタイミングを容易に一致させることができる。なお、ロジック基板230で実行される上述の処理の一部は、ロジック基板230の代わりに、その後段の回路が実行することもできる。 The logic board 230 is a board on which a predetermined logic circuit is formed. By this logic circuit, for example, various signal processing such as camera control processing such as AF (After-Focus) and AE (Auto-Exposure) and gamma processing is executed on the image data from the two sensors. Further, depth map generation, stereo matching processing, and the like are performed as necessary. When the logic board 230 processes image data from both the right backside illumination sensor 210 and the left backside illumination sensor 240, the timing of signal processing for the image data of those sensors can be easily matched. Note that a part of the above-described processing executed on the logic board 230 can be executed by a subsequent circuit instead of the logic board 230.
 図4は、本技術の第1の実施の形態における両面イメージセンサチップ200の断面図の一例である。同図においては、左側裏面照射型センサ240が、同図の下側になるように記載されている。このため、同図においては、左側裏面照射型センサ240の方を下方、右側裏面照射型センサ210の方を上方として説明する。左側裏面照射型センサ240の上側の面には、配線層247が設けられる。配線層247には、Cu(銅)配線248により回路が形成される。また、配線層247は、ロジック基板230と密着して、例えば、Cu-Cu接合により接合される。ここで、Cu-Cu接続は、接合対象の2枚の基板を加熱しながら、それらの基板のそれぞれに圧力を加えて、基板のCu配線同士を直接接続させる接合方法である。なお、直接接続させる部材は、Cuに限定されず、一酸化ケイ素(SiO)などであってもよい。一酸化ケイ素同士を直接接続する際は、SiO-SiO接続と呼ばれる。また、製造装置は、基板同士を密着させて接合することができるのであれば、Cu-Cu接続以外の方法を用いて接合することができる。 FIG. 4 is an example of a cross-sectional view of the double-sided image sensor chip 200 according to the first embodiment of the present technology. In the figure, the left side back-illuminated sensor 240 is shown on the lower side of the figure. For this reason, in the figure, the description will be given with the left backside illumination type sensor 240 as the lower side and the right backside illumination type sensor 210 as the upper side. A wiring layer 247 is provided on the upper surface of the left backside illumination sensor 240. A circuit is formed in the wiring layer 247 by Cu (copper) wiring 248. Further, the wiring layer 247 is in close contact with the logic substrate 230 and bonded by, for example, Cu—Cu bonding. Here, the Cu—Cu connection is a bonding method in which the Cu wirings of the substrates are directly connected to each other by applying pressure to each of the substrates while heating the two substrates to be bonded. The member to be directly connected is not limited to Cu, and may be silicon monoxide (SiO) or the like. When silicon monoxide is directly connected, it is called SiO—SiO connection. Further, the manufacturing apparatus can be bonded using a method other than Cu—Cu connection as long as the substrates can be bonded to each other.
 配線層247の下側には基板245が設けられ、基板245内にフォトダイオード246が形成される。なお、配線層247は、特許請求の範囲に記載の第1配線層の一例であり、フォトダイオード246は、特許請求の範囲に記載の第1光電変換素子の一例である。 A substrate 245 is provided below the wiring layer 247, and a photodiode 246 is formed in the substrate 245. The wiring layer 247 is an example of a first wiring layer described in the claims, and the photodiode 246 is an example of a first photoelectric conversion element described in the claims.
 また、基板245の下側の面には、カラーフィルタ244が形成され、その下側にマイクロレンズ243が形成される。なお、マイクロレンズ243は、特許請求の範囲に記載の第1マイクロレンズの一例である。 Further, a color filter 244 is formed on the lower surface of the substrate 245, and a microlens 243 is formed on the lower side thereof. The microlens 243 is an example of a first microlens described in the claims.
 そして、マイクロレンズ243の下側には高耐熱材料242が形成され、その高耐熱材料242の下側にはガラス241が形成される。高耐熱材料242として、熱により可逆的に形状が変化する透明部材(ポリエチレン、ポリスチレン、アクリル樹脂、塩化ビニルなど)が用いられる。 The high heat resistant material 242 is formed below the microlens 243, and the glass 241 is formed below the high heat resistant material 242. As the high heat-resistant material 242, a transparent member (polyethylene, polystyrene, acrylic resin, vinyl chloride, etc.) whose shape is reversibly changed by heat is used.
 これらの高耐熱材料242およびガラス241により、マイクロレンズ243が保護される。なお、高耐熱材料242およびガラス241からなる層は、特許請求の範囲に記載の保護層の一例である。 The microlens 243 is protected by the high heat resistant material 242 and the glass 241. Note that the layer made of the high heat-resistant material 242 and the glass 241 is an example of a protective layer described in the claims.
 上述のように、回路が配置された面(ロジック基板230側の面)を表面として、表面に対する裏面にフォトダイオード246を配置することにより、左側裏面照射型センサ240は、裏面に照射された光を光電変換することができる。このような裏面照射型のイメージセンサでは、照射面である裏面に配線がないため、表面照射型と比較して感度を向上させることができる。 As described above, by arranging the photodiode 246 on the back surface with respect to the surface where the circuit is disposed (the surface on the logic board 230 side), the left back-side illuminated sensor 240 has the light irradiated on the back surface. Can be photoelectrically converted. In such a back-illuminated image sensor, since there is no wiring on the back surface that is the irradiation surface, the sensitivity can be improved as compared with the front-illuminated type.
 ロジック基板230の下側の面には、一酸化ケイ素(SiO)などの酸化膜234が形成される。また、酸化膜234の上側には、基板233が形成される。基板233の上側には、配線層231が形成される。配線層231には、Cu配線232により回路が形成される。 An oxide film 234 such as silicon monoxide (SiO) is formed on the lower surface of the logic substrate 230. A substrate 233 is formed on the upper side of the oxide film 234. A wiring layer 231 is formed on the upper side of the substrate 233. A circuit is formed in the wiring layer 231 by the Cu wiring 232.
 また、ロジック基板230内には、酸化膜234から配線層231までを貫通する貫通ビア235が形成される。貫通ビア235の材料として、例えば、Al-Cu系合金が用いられる。この貫通ビア235を介して、例えば、画素信号が伝送される。 Further, a through via 235 that penetrates from the oxide film 234 to the wiring layer 231 is formed in the logic substrate 230. As a material of the through via 235, for example, an Al—Cu alloy is used. For example, a pixel signal is transmitted through the through via 235.
 ここで、仮に、ロジック基板230の表面を突き抜けるまで貫通ビア235を長くすると、その表面に貫通ビア235のためのスペースを確保する必要がある。しかし、両面イメージセンサチップ200では、ロジック基板230の内部に貫通ビア235を形成しているため、ロジック基板230の表面に、貫通ビア235のためのスペースを設ける必要がなく、その分、表面積を小さくすることができる。 Here, if the through via 235 is lengthened until it penetrates the surface of the logic substrate 230, it is necessary to secure a space for the through via 235 on the surface. However, in the double-sided image sensor chip 200, since the through via 235 is formed inside the logic substrate 230, there is no need to provide a space for the through via 235 on the surface of the logic substrate 230, and the surface area is increased accordingly. Can be small.
 また、ロジック基板230の配線層231は、右側裏面照射型センサ210の表面と密着して、例えば、Cu-Cu接合により接合される。すなわち、右側裏面照射型センサ210の表面は、ロジック基板230を介して左側裏面照射型センサ240の表面と接合されている。 In addition, the wiring layer 231 of the logic substrate 230 is in close contact with the front surface of the right side rear surface irradiation type sensor 210 and is bonded by, for example, Cu—Cu bonding. That is, the surface of the right backside illumination sensor 210 is bonded to the surface of the left backside illumination sensor 240 via the logic substrate 230.
 右側裏面照射型センサ210の下側の面には、配線層215が形成される。配線層215には、Cu配線216とAl-Cu系配線217とにより回路が形成される。なお、配線層215は、特許請求の範囲に記載の第2配線層の一例である。 A wiring layer 215 is formed on the lower surface of the right side rear surface irradiation type sensor 210. In the wiring layer 215, a circuit is formed by the Cu wiring 216 and the Al—Cu-based wiring 217. The wiring layer 215 is an example of a second wiring layer described in the claims.
 また、配線層215の上側には、基板214が形成され、基板214内にフォトダイオード213が形成される。なお、フォトダイオード213は、特許請求の範囲に記載の第2光電変換素子の一例である。 Further, a substrate 214 is formed above the wiring layer 215, and a photodiode 213 is formed in the substrate 214. The photodiode 213 is an example of a second photoelectric conversion element described in the claims.
 また、基板214の上側の面には、カラーフィルタ212が形成され、その上側にマイクロレンズ211が形成される。なお、マイクロレンズ211は、特許請求の範囲に記載の第2マイクロレンズの一例である。 Further, the color filter 212 is formed on the upper surface of the substrate 214, and the microlens 211 is formed on the upper side. The microlens 211 is an example of a second microlens described in the claims.
 また、右側裏面照射型センサ210内には、裏面から配線層215までを貫通する貫通ビア221が形成される。貫通ビア221の材料として、例えば、Al-Cu系合金が用いられる。 Further, a through via 221 penetrating from the back surface to the wiring layer 215 is formed in the right back surface irradiation type sensor 210. For example, an Al—Cu alloy is used as the material of the through via 221.
 上述のように、回路が配置された面(ロジック基板230側の面)を表面として、表面に対する裏面にフォトダイオード213を配置することにより、右側裏面照射型センサ210は、裏面に照射された光を光電変換することができる。 As described above, by placing the photodiode 213 on the back surface with respect to the surface where the circuit is disposed (the surface on the logic board 230 side), the right-side backside illumination sensor 210 emits light irradiated on the back surface. Can be photoelectrically converted.
 また、両側のセンサをいずれも裏面照射型としたため、それらの感度を同じ値に揃えることができる。これにより、両面イメージセンサチップ200は、同じ明るさの2枚の画像データを同時に撮像することができる。なお、両方のセンサの感度等の特性は、同一であることが望ましいが、それらのセンサの特性が異なる構成であってもよい。 Also, since both sensors are back-illuminated, their sensitivity can be made the same value. Thereby, the double-sided image sensor chip 200 can simultaneously capture two pieces of image data having the same brightness. Although it is desirable that the characteristics such as sensitivity of both the sensors are the same, a configuration in which the characteristics of these sensors are different may be used.
 また、製造装置が、ロジック基板230と左側裏面照射型センサ240の表面とをCu-Cu接続により密着させて接合することにより、半田付けで接合する場合よりも、半田ボールの分、厚みを小さくすることができる。 In addition, the manufacturing apparatus makes the thickness of the solder ball smaller than that in the case where the logic substrate 230 and the surface of the left side rear surface irradiation type sensor 240 are bonded by Cu—Cu connection and bonded by soldering. can do.
 次に、両面イメージセンサチップ200の製造方法について説明する。 Next, a method for manufacturing the double-sided image sensor chip 200 will be described.
 図5は、本技術の第1の実施の形態における接合前の右側裏面照射型センサ210とロジック基板230との断面図の一例である。同図におけるaは、接合前の右側裏面照射型センサ210の断面図の一例であり、同図におけるbは、接合前のロジック基板230の断面図の一例である。 FIG. 5 is an example of a cross-sectional view of the right-side backside illuminated sensor 210 and the logic substrate 230 before bonding in the first embodiment of the present technology. In the drawing, a is an example of a cross-sectional view of the right backside illumination sensor 210 before bonding, and b in the drawing is an example of a cross-sectional view of the logic substrate 230 before bonding.
 両面イメージセンサチップ200を製造する際に、製造装置は、まず、図5におけるaに例示するように、表面を上にして右側裏面照射型センサ210を製造する。また、製造装置は、同図におけるbに例示するように、配線層231を上にしてロジック基板230を製造する。 When manufacturing the double-sided image sensor chip 200, the manufacturing apparatus first manufactures the right-side backside illuminated sensor 210 with the surface facing up, as illustrated in a in FIG. In addition, the manufacturing apparatus manufactures the logic substrate 230 with the wiring layer 231 facing upward as illustrated in FIG.
 そして、製造装置は、右側裏面照射型センサ210を反転して表面を下側にし、Cu-Cu接続によりロジック基板230と接合する。 Then, the manufacturing apparatus inverts the right-side backside illumination type sensor 210 so that the surface is directed downward, and is bonded to the logic substrate 230 by Cu—Cu connection.
 図6は、本技術の第1の実施の形態における接合後の右側裏面照射型センサ210とロジック基板230との断面図の一例である。同図におけるaは、反転前の右側裏面照射型センサ210とロジック基板230との断面図の一例であり、同図におけるbは、反転後の右側裏面照射型センサ210とロジック基板230との断面図の一例である。 FIG. 6 is an example of a cross-sectional view of the right-side backside illuminated sensor 210 and the logic substrate 230 after bonding in the first embodiment of the present technology. In the figure, a is an example of a cross-sectional view of the right backside illumination sensor 210 and the logic substrate 230 before inversion, and b in the figure is a cross section of the right backside illumination sensor 210 and the logic substrate 230 after inversion. It is an example of a figure.
 製造装置は、図6におけるaに例示する右側裏面照射型センサ210およびロジック基板230を反転して、貫通ビア235の長さに合わせて、基板233を研磨する。これにより、同図におけるbに例示するように、基板233の厚さが調整される。 The manufacturing apparatus inverts the right side back-illuminated sensor 210 and the logic substrate 230 exemplified in a in FIG. 6 and polishes the substrate 233 according to the length of the through via 235. Thereby, the thickness of the board | substrate 233 is adjusted so that it may illustrate in b in the figure.
 図7は、本技術の第1の実施の形態における接合前の左側裏面照射型センサ240とロジック基板230と右側裏面照射型センサ210との断面図の一例である。同図におけるaは、接合前の左側裏面照射型センサ240の断面図の一例であり、同図におけるbは、接合前のロジック基板230と右側裏面照射型センサ210との断面図の一例である。 FIG. 7 is an example of a cross-sectional view of the left back-side illuminated sensor 240, the logic substrate 230, and the right back-side illuminated sensor 210 before bonding in the first embodiment of the present technology. In the figure, a is an example of a cross-sectional view of the left backside illumination sensor 240 before joining, and b in the figure is an example of a cross-sectional view of the logic board 230 and the right side backside illumination sensor 210 before joining. .
 製造装置は、図7におけるaに例示するように、表面を上にして左側裏面照射型センサ240を製造する。また、製造装置は、同図におけるbに例示するように基板233上に、酸化膜234を成膜する。そして、製造装置は、ロジック基板230において貫通ビア235を貫通させ、その貫通ビア235の一端を配線層231内のCu配線232にコンタクトさせる。続いて製造装置は、左側裏面照射型センサ240を反転させて、ロジック基板230にCu-Cu接続により接合する。 The manufacturing apparatus manufactures the left-side backside illuminated sensor 240 with the front side facing up, as illustrated in FIG. Further, the manufacturing apparatus forms an oxide film 234 on the substrate 233 as illustrated in FIG. Then, the manufacturing apparatus penetrates the through via 235 in the logic substrate 230 and contacts one end of the through via 235 to the Cu wiring 232 in the wiring layer 231. Subsequently, the manufacturing apparatus inverts the left back-side illuminated sensor 240 and joins it to the logic substrate 230 by Cu—Cu connection.
 図8は、本技術の第1の実施の形態における接合後の左側裏面照射型センサ240とロジック基板230と右側裏面照射型センサ210との断面図の一例である。同図の両面イメージセンサチップ200において、製造装置は、左側裏面照射型センサ240を研磨し、その上に、カラーフィルタ244およびマイクロレンズ243を形成する。 FIG. 8 is an example of a cross-sectional view of the left backside illumination sensor 240, the logic substrate 230, and the right backside illumination sensor 210 after bonding according to the first embodiment of the present technology. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus polishes the left backside illumination type sensor 240 and forms the color filter 244 and the microlens 243 thereon.
 図9は、本技術の第1の実施の形態におけるマイクロレンズ243等を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、マイクロレンズ243上に、高耐熱材料242を形成する。 FIG. 9 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 243 and the like according to the first embodiment of the present technology are formed. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
 図10は、本技術の第1の実施の形態における高耐熱材料242形成後の両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、高耐熱材料242上に、マイクロレンズ243を保護するためのガラス241を形成する。 FIG. 10 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat-resistant material 242 is formed in the first embodiment of the present technology. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
 なお、高耐熱材料242によりマイクロレンズ243を保護しているが、高耐熱材料242の代わりにBGRシールにより保護することもできる。この他、UV(Ultra Violet)硬化型液体接着剤を使用したウェハーサポートシステムにより保護することもできる。また、その際、マイクロレンズ211形成後にガラス241を剥離することもできる。 Although the microlens 243 is protected by the high heat resistant material 242, it can be protected by a BGR seal instead of the high heat resistant material 242. In addition, it can be protected by a wafer support system using UV (Ultra Violet) curable liquid adhesive. At that time, the glass 241 can be peeled after the microlenses 211 are formed.
 また、製造装置は、研削加工、あるいは、ラップやポリッシュを用いた研磨により、ガラス241を50マイクロメートル(μm)程度の厚さにすることもできる。 Further, the manufacturing apparatus can also make the glass 241 to have a thickness of about 50 micrometers (μm) by grinding or polishing using lapping or polishing.
 図11は、本技術の第1の実施の形態におけるガラス241形成後の両面イメージセンサチップ200の断面図の一例である。製造装置は、同図の両面イメージセンサチップ200を反転させてガラス241を下側にし、右側裏面照射型センサ210にカラーフィルタ212およびマイクロレンズ211を形成する。 FIG. 11 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the first embodiment of the present technology. The manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure so that the glass 241 faces downward, and the color filter 212 and the microlens 211 are formed on the right-side backside illumination sensor 210.
 図12は、本技術の第1の実施の形態におけるマイクロレンズ211等を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は右側裏面照射型センサ210に貫通ビア221を貫通させ、その貫通ビア221の一端を配線層215内のAl-Cu系配線217にコンタクトさせる。これにより、図4に例示した両面イメージセンサチップ200が得られる。 FIG. 12 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 211 and the like according to the first embodiment of the present technology are formed. In the double-sided image sensor chip 200 of FIG. 6, the manufacturing apparatus passes the through via 221 through the right side back-illuminated sensor 210 and makes one end of the through via 221 contact the Al—Cu wiring 217 in the wiring layer 215. Thereby, the double-sided image sensor chip 200 illustrated in FIG. 4 is obtained.
 上述したように製造装置は、左側センサチップ201および右側センサチップ202をCu-Cu接続により接合する。通常、半田付けでは、半田ボールによりチップ間に隙間が生じてしまうが、Cu-Cu接続によれば、製造装置は、チップ同士を密着させて接合することができる。このため、半田付けを行う場合と比較して両面イメージセンサチップ200の厚みを小さくすることができる。 As described above, the manufacturing apparatus joins the left sensor chip 201 and the right sensor chip 202 by Cu—Cu connection. Normally, in soldering, a gap is generated between the chips due to the solder balls. However, according to the Cu—Cu connection, the manufacturing apparatus can bond the chips together. For this reason, the thickness of the double-sided image sensor chip 200 can be reduced as compared with the case where soldering is performed.
 ただし、Cu-Cu接続では、チップを加熱および加圧する必要があるため、仮に接合前にマイクロレンズを形成していた場合には、そのマイクロレンズが変形または損傷するおそれがある。そこで、製造装置は、図9に例示したようにCu-Cu接続により接合した後に、左側裏面照射型センサ240にマイクロレンズ243を形成する。これにより、接合時にマイクロレンズ243が損傷することを抑止することができる。 However, since the chip needs to be heated and pressurized in the Cu-Cu connection, if the microlens is formed before bonding, the microlens may be deformed or damaged. Therefore, the manufacturing apparatus forms the microlens 243 on the left backside illumination sensor 240 after joining by Cu—Cu connection as illustrated in FIG. Thereby, it can suppress that the microlens 243 is damaged at the time of joining.
 また、製造装置は、加熱を伴う接合の後にカラーフィルタ212および244を形成するため、熱に弱い材料(有機材料など)をカラーフィルタに利用することができる。 In addition, since the manufacturing apparatus forms the color filters 212 and 244 after joining with heating, a heat-sensitive material (such as an organic material) can be used for the color filter.
 次に、製造装置は、両面イメージセンサチップ200を反転して右側裏面照射型センサ210にマイクロレンズ211を形成する必要がある。ここで、仮に、マイクロレンズ243が露出したままで反転すると、むき出しのマイクロレンズ243が下側になって、そのレンズが損傷するおそれがある。そこで、製造装置は、図10および11に例示したように、高耐熱材料242およびガラス241により、マイクロレンズ243を保護してから反転する。これにより、ガラス241が下側になるため、マイクロレンズ243の損傷を抑止することができる。 Next, it is necessary for the manufacturing apparatus to invert the double-sided image sensor chip 200 and form the microlens 211 on the right side backside illumination type sensor 210. Here, if the microlens 243 is reversed with the microlens 243 exposed, the exposed microlens 243 may be on the lower side and the lens may be damaged. Therefore, as illustrated in FIGS. 10 and 11, the manufacturing apparatus reverses after protecting the microlens 243 with the high heat resistant material 242 and the glass 241. Thereby, since the glass 241 is on the lower side, damage to the microlens 243 can be suppressed.
 図13は、本技術の第1の実施の形態における半田付け前の両面イメージセンサチップ200の平面図および断面図の一例である。同図におけるaは、半田付け前の両面イメージセンサチップ200を右側面から見た平面図の一例である。同図におけるbは、半田付け前の両面イメージセンサチップ200を上面から見た断面図の一例である。 FIG. 13 is an example of a plan view and a cross-sectional view of the double-sided image sensor chip 200 before soldering in the first embodiment of the present technology. A in the same figure is an example of the top view which looked at the double-sided image sensor chip 200 before soldering from the right side. B in the figure is an example of a cross-sectional view of the double-sided image sensor chip 200 before soldering as seen from above.
 図13におけるaに例示するように、両面イメージセンサチップ200において、矩形の受光面205の周囲に、半田ボールを形成するための複数の矩形のパッドが形成される。右側面から見た場合の両面イメージセンサチップ200の一辺のサイズは、例えば、1ミリメール(mm)である。 As illustrated in a in FIG. 13, in the double-sided image sensor chip 200, a plurality of rectangular pads for forming solder balls are formed around the rectangular light receiving surface 205. The size of one side of the double-sided image sensor chip 200 when viewed from the right side is, for example, 1 millimeter mail (mm).
 製造装置は、図13におけるbに例示するように、パッドの部分に半田ボール206を形成する。半田ボール206の直径は、例えば、30マイクロメートルである。また、パッドの深さは、例えば、6マイクロメートル(μm)であり、パッドの一辺の長さは、例えば、50マイクロメートル(μm)である。また、両面イメージセンサチップ200の厚さは、例えば、320マイクロメートル(μm)である。そして、製造装置は、半田付けにより、両面イメージセンサチップ200をフレキシブルプリント基板160に接続する。 The manufacturing apparatus forms solder balls 206 on the pad portions as illustrated in FIG. The diameter of the solder ball 206 is, for example, 30 micrometers. The depth of the pad is, for example, 6 micrometers (μm), and the length of one side of the pad is, for example, 50 micrometers (μm). Further, the thickness of the double-sided image sensor chip 200 is, for example, 320 micrometers (μm). Then, the manufacturing apparatus connects the double-sided image sensor chip 200 to the flexible printed circuit board 160 by soldering.
 前述したように両面イメージセンサチップ200において、その片面のみに貫通ビアの一端を配置したため、フレキシブルプリント基板160はその面のみに接続すればよい。また、パッドの配置は、両面イメージセンサチップ200の片面のみでよい。これにより、両面イメージセンサチップ200にパッドを配置し、接続する構成と比較して、プロセスコストを低減することができる。 As described above, in the double-sided image sensor chip 200, since one end of the through via is arranged only on one side thereof, the flexible printed board 160 may be connected only to that side. Further, the pads need only be arranged on one side of the double-sided image sensor chip 200. Thereby, process cost can be reduced compared with the structure which arrange | positions a pad in the double-sided image sensor chip 200, and connects.
 図14は、本技術の第1の実施の形態における半田付け後の両面イメージセンサチップおよびフレキシブルプリント基板160の平面図および断面図の一例である。同図におけるaは、半田付け後の両面イメージセンサチップ200およびフレキシブルプリント基板160を側面から見た平面図の一例である。同図におけるbは、半田付け後の両面イメージセンサチップ200およびフレキシブルプリント基板160を上面から見た断面図の一例である。 FIG. 14 is an example of a plan view and a cross-sectional view of the double-sided image sensor chip and the flexible printed circuit board 160 after soldering according to the first embodiment of the present technology. A in the same figure is an example of the top view which looked at the double-sided image sensor chip 200 after soldering and the flexible printed circuit board 160 from the side surface. B in the figure is an example of a cross-sectional view of the double-sided image sensor chip 200 and the flexible printed circuit board 160 as viewed from above after soldering.
 図14におけるaに例示するように、フレキシブルプリント基板160には、受光面205と略同一のサイズの開口部161が形成されている。製造装置は、その開口部161の位置に受光面205の位置を合わせてフレキシブルプリント基板160を半田付けし、同図におけるbに例示する素子を形成する。そして、製造装置は、カバーガラス170を、接着剤などによりフレキシブルプリント基板160の右側に取り付ける。 As illustrated in a in FIG. 14, the flexible printed circuit board 160 has an opening 161 having substantially the same size as the light receiving surface 205. The manufacturing apparatus aligns the position of the light receiving surface 205 with the position of the opening 161 and solders the flexible printed circuit board 160 to form an element illustrated as b in FIG. Then, the manufacturing apparatus attaches the cover glass 170 to the right side of the flexible printed circuit board 160 with an adhesive or the like.
 図15は、技術の第1の実施の形態におけるカバーガラス170取り付け後の両面イメージセンサチップ200およびフレキシブルプリント基板160の平面図および断面図の一例である。同図におけるaは、取付け後の両面イメージセンサチップ200およびフレキシブルプリント基板160を右側面から見た平面図の一例である。同図におけるbは、取付け後の両面イメージセンサチップ200およびフレキシブルプリント基板160を上面から見た断面図の一例である。 FIG. 15 is an example of a plan view and a cross-sectional view of the double-sided image sensor chip 200 and the flexible printed circuit board 160 after the cover glass 170 is attached in the first embodiment of the technology. A in the same figure is an example of the top view which looked at the double-sided image sensor chip 200 and the flexible printed circuit board 160 after attachment from the right side. B in the same figure is an example of a cross-sectional view of the double-sided image sensor chip 200 and the flexible printed circuit board 160 as viewed from above.
 図16は、本技術の第1の実施の形態における両面イメージセンサチップ200の製造方法の一例を示すフローチャートである。このフローチャートの動作は、例えば、両面イメージセンサチップ200を製造するための基板が製造装置に載置されたときに開始される。 FIG. 16 is a flowchart illustrating an example of a method for manufacturing the double-sided image sensor chip 200 according to the first embodiment of the present technology. The operation of this flowchart is started, for example, when a substrate for manufacturing the double-sided image sensor chip 200 is placed on a manufacturing apparatus.
 製造装置は、まず、右側裏面照射型センサ210とロジック基板230とを製造する(ステップS901)。製造装置は、その右側裏面照射型センサ210を反転してロジック基板230に接合する(ステップS902)。そして、製造装置は、ロジック基板230を研磨し(ステップS903)、ロジック基板230に貫通ビア235を形成する(ステップS904)。続いて製造装置は、左側裏面照射型センサ240を製造し、そのセンサをCu-Cu接続によりロジック基板230と接合する(ステップS905)。 The manufacturing apparatus first manufactures the right backside illumination sensor 210 and the logic substrate 230 (step S901). The manufacturing apparatus inverts the right-side backside illumination type sensor 210 and bonds it to the logic board 230 (step S902). Then, the manufacturing apparatus polishes the logic substrate 230 (step S903), and forms the through via 235 in the logic substrate 230 (step S904). Subsequently, the manufacturing apparatus manufactures the left backside illumination type sensor 240 and joins the sensor to the logic substrate 230 by Cu—Cu connection (step S905).
 製造装置は、左側裏面照射型センサ240を研磨し、カラーフィルタ244およびマイクロレンズ243を形成する(ステップS906)。そして、製造装置は、高耐熱材料242およびガラス241を形成してマイクロレンズ243を保護する(ステップS907)。製造装置は、両面イメージセンサチップ200を反転して、右側裏面照射型センサ210にカラーフィルタ212およびマイクロレンズ211を形成する(ステップS908)。そして、製造装置は、右側裏面照射型センサ210に貫通ビア221を貫通させ(ステップS909)、両面イメージセンサチップ200の製造を終了する。 The manufacturing apparatus polishes the left side back-illuminated sensor 240 to form the color filter 244 and the microlens 243 (step S906). Then, the manufacturing apparatus forms the high heat resistant material 242 and the glass 241 to protect the microlens 243 (step S907). The manufacturing apparatus inverts the double-sided image sensor chip 200 and forms the color filter 212 and the microlens 211 on the right backside illumination sensor 210 (step S908). Then, the manufacturing apparatus passes the through via 221 through the right-side backside illumination sensor 210 (step S909), and the manufacturing of the double-sided image sensor chip 200 is finished.
 このように、本技術の第1の実施の形態によれば、右側裏面照射型センサ210と左側裏面照射型センサ240とを接合したことにより、同じ明るさの2枚の画像データを容易に撮像することができる。また、Cu-Cu接続により左側センサチップ201と右側センサチップ202とを密着させて接合することにより、半田付けする場合と比較して、素子を薄く形成することができる。 As described above, according to the first embodiment of the present technology, by joining the right backside illumination sensor 210 and the left backside illumination sensor 240, it is possible to easily capture two pieces of image data having the same brightness. can do. Further, by bonding the left sensor chip 201 and the right sensor chip 202 in close contact with each other by Cu—Cu connection, the element can be formed thinner than in the case of soldering.
 [変形例]
 上述の第1の実施の形態では、右側裏面照射型センサ210のマイクロレンズ211を露出させていたが、この構成では、マイクロレンズ211に埃などが付着するおそれがある。このため、マイクロレンズ211も、マイクロレンズ243と同様に高耐熱材料などの保護層により保護することが望ましい。この第1の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211も保護する点により第1の実施の形態と異なる。
[Modification]
In the first embodiment described above, the microlens 211 of the right-side backside illumination sensor 210 is exposed. However, in this configuration, dust or the like may adhere to the microlens 211. For this reason, it is desirable that the microlens 211 is also protected by a protective layer such as a high heat-resistant material, like the microlens 243. The double-sided image sensor chip 200 according to the modification of the first embodiment is different from the first embodiment in that the microlens 211 is also protected.
 図17は、本技術の第1の実施の形態の変形例における両面イメージセンサチップ200の断面図の一例である。この第1の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211の上側に高耐熱材料218が形成されている点において第1の実施の形態と異なる。 FIG. 17 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the first embodiment of the present technology. The double-sided image sensor chip 200 according to the modification of the first embodiment is different from the first embodiment in that a high heat-resistant material 218 is formed on the upper side of the microlens 211.
 このように、本技術の第1の実施の形態の変形例によれば、マイクロレンズ211を高耐熱材料218によって保護することにより、埃の付着を防止することができる。 As described above, according to the modification of the first embodiment of the present technology, the microlens 211 is protected by the high heat-resistant material 218, thereby preventing the adhesion of dust.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、ロジック基板230をセンサに積層して、それらを積層しない場合と比較して、受光面(裏面)から見た両面イメージセンサチップ200のサイズを小型化していた。その代わりに、ロジック基板230の分、両面イメージセンサチップ200の厚さが増大してしまう。このため、両面イメージセンサチップ200の厚さをさらに小さくすることが求められた際に、その要求に応じることが困難である。この第2の実施の形態の両面イメージセンサチップ200は、両面イメージセンサチップ200をさらに薄く形成した点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the size of the double-sided image sensor chip 200 as viewed from the light receiving surface (back surface) is reduced as compared with the case where the logic substrate 230 is stacked on the sensor and those are not stacked. . Instead, the thickness of the double-sided image sensor chip 200 is increased by the logic board 230. For this reason, when it is required to further reduce the thickness of the double-sided image sensor chip 200, it is difficult to meet the request. The double-sided image sensor chip 200 of the second embodiment is different from the first embodiment in that the double-sided image sensor chip 200 is formed thinner.
 図18は、本技術の第2の実施の形態における両面イメージセンサチップ200の断面図の一例である。この第2の実施の形態の両面イメージセンサチップ200は、ロジック基板230を備えない点において第1の実施の形態と異なる。 FIG. 18 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to the second embodiment of the present technology. The double-sided image sensor chip 200 of the second embodiment is different from the first embodiment in that the logic substrate 230 is not provided.
 第2の実施の形態において右側裏面照射型センサ210と左側裏面照射型センサ240とは、ロジック基板230を介さずに接合される。また、左側裏面照射型センサ240の配線層247には、Al-Cu系配線249がさらに設けられる。また、貫通ビア222がさらに設けられる。 In the second embodiment, the right-side backside illumination sensor 210 and the left-side backside illumination sensor 240 are joined without going through the logic board 230. Further, the wiring layer 247 of the left backside illumination type sensor 240 is further provided with an Al—Cu-based wiring 249. A through via 222 is further provided.
 貫通ビア222は、右側裏面照射型センサ210を貫通して、配線層247内のAl-Cu系配線249にコンタクトする。 The through via 222 passes through the right side backside illumination type sensor 210 and contacts the Al—Cu wiring 249 in the wiring layer 247.
 ロジック基板230は、両面イメージセンサチップ200の外部に設けられ、例えば、フレキシブルプリント基板160に接続される。あるいは、ロジック基板230は電子装置100内に設けられず、その基板上の回路と同じ回路がフレキシブルプリント基板160に設けられる。 The logic board 230 is provided outside the double-sided image sensor chip 200 and connected to the flexible printed board 160, for example. Alternatively, the logic board 230 is not provided in the electronic device 100, and the same circuit as that on the board is provided on the flexible printed board 160.
 次に、両面イメージセンサチップ200の製造方法について説明する。 Next, a method for manufacturing the double-sided image sensor chip 200 will be described.
 図19は、本技術の第2の実施の形態における接合前の左側裏面照射型センサ240と右側裏面照射型センサ210との断面図の一例である。同図におけるaは、接合前の左側裏面照射型センサ240の断面図の一例であり、同図におけるbは、接合前の右側裏面照射型センサ210の断面図の一例である。 FIG. 19 is an example of a cross-sectional view of the left backside illumination sensor 240 and the right backside illumination sensor 210 before joining in the second embodiment of the present technology. In the figure, a is an example of a cross-sectional view of the left backside illumination sensor 240 before joining, and b in the figure is an example of a cross-sectional view of the right side backside illumination sensor 210 before joining.
 製造装置は、まず、図19におけるaに例示するように、表面を上にして左側裏面照射型センサ240を製造する。また、製造装置は、同図におけるbに例示するように、表面を上にして右側裏面照射型センサ210を製造する。 The manufacturing apparatus first manufactures the left-side backside illuminated sensor 240 with the surface facing up, as illustrated in a in FIG. Moreover, the manufacturing apparatus manufactures the right-side backside illuminated sensor 210 with the front side facing up, as illustrated in FIG.
 そして、製造装置は、左側裏面照射型センサ240を反転して表面を下側にし、右側裏面照射型センサ210にロジック基板230をCu-Cu接続により接合する。 Then, the manufacturing apparatus inverts the left-side backside illumination sensor 240 so that the surface faces down, and joins the logic substrate 230 to the right-side backside illumination sensor 210 by Cu—Cu connection.
 図20は、本技術の第2の実施の形態における接合後の左側裏面照射型センサ240と右側裏面照射型センサ210との断面図の一例である。同図における両面イメージセンサチップ200において製造装置は、左側裏面照射型センサ240の裏面にカラーフィルタ244およびマイクロレンズ243を形成する。 FIG. 20 is an example of a cross-sectional view of the left-side backside illumination sensor 240 and the right-side backside illumination sensor 210 after bonding according to the second embodiment of the present technology. In the double-sided image sensor chip 200 in the figure, the manufacturing apparatus forms a color filter 244 and a microlens 243 on the back surface of the left back-side illumination type sensor 240.
 図21は、本技術の第2の実施の形態におけるマイクロレンズ243等を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、マイクロレンズ243上に、高耐熱材料242を形成する。 FIG. 21 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 243 and the like according to the second embodiment of the present technology are formed. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
 図22は、本技術の第2の実施の形態における高耐熱材料242形成後の両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、高耐熱材料242上に、マイクロレンズ243を保護するためのガラス241を形成する。 FIG. 22 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat resistant material 242 is formed according to the second embodiment of the present technology. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
 図23は、本技術の第2の実施の形態におけるガラス241形成後の両面イメージセンサチップ200の断面図の一例である。製造装置は、同図の両面イメージセンサチップ200を反転させて、右側裏面照射型センサ210にカラーフィルタ212およびマイクロレンズ211を形成する。 FIG. 23 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the second embodiment of the present technology. The manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure to form the color filter 212 and the microlens 211 on the right side backside illumination sensor 210.
 図24は、本技術の第2の実施の形態におけるマイクロレンズ211等を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は貫通ビア221および222を貫通させる。これにより、図18に例示した両面イメージセンサチップ200が得られる。 FIG. 24 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 211 and the like according to the second embodiment of the present technology are formed. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus penetrates through vias 221 and 222. Thereby, the double-sided image sensor chip 200 illustrated in FIG. 18 is obtained.
 このように、本技術の第2の実施の形態では、ロジック基板230を積層せずにセンサ同士を接合することにより、ロジック基板230を積層する場合と比較して両面イメージセンサチップ200を薄く形成することができる。 As described above, in the second embodiment of the present technology, the double-sided image sensor chip 200 is formed thinner by bonding the sensors without stacking the logic substrates 230 than when the logic substrates 230 are stacked. can do.
 [変形例]
 上述の第2の実施の形態では、右側裏面照射型センサ210のマイクロレンズ211を露出させていたが、埃の影響を考慮すると、マイクロレンズ243と同様に保護層により保護することが望ましい。この第2の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211も保護する点により第2の実施の形態と異なる。
[Modification]
In the second embodiment described above, the microlens 211 of the right-side backside illumination sensor 210 is exposed. However, in consideration of the influence of dust, it is desirable to protect the microlens 211 with a protective layer as in the case of the microlens 243. The double-sided image sensor chip 200 according to the modification of the second embodiment is different from the second embodiment in that the microlens 211 is also protected.
 図25は、本技術の第2の実施の形態の変形例における両面イメージセンサチップ200の断面図の一例である。この第2の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211の上側に高耐熱材料218が形成されている点において第2の実施の形態と異なる。 FIG. 25 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the second embodiment of the present technology. The double-sided image sensor chip 200 according to the modification of the second embodiment is different from the second embodiment in that a high heat resistant material 218 is formed on the upper side of the microlens 211.
 このように、本技術の第2の実施の形態の変形例では、マイクロレンズ211を高耐熱材料218によって保護することにより、埃の付着を防止することができる。 As described above, in the modification of the second embodiment of the present technology, the microlens 211 is protected by the high heat-resistant material 218, whereby adhesion of dust can be prevented.
 <3.第3の実施の形態>
 上述の第2の実施の形態では、製造装置がロジック基板230を介さずに左側裏面照射型センサ240と右側裏面照射型センサ210とを接合することにより薄く形成していたが、薄く形成した分、曲げ強度が不足するおそれがある。この第3の実施の形態の両面イメージセンサチップ200は、曲げ強度を高くした点において第2の実施の形態と異なる。
<3. Third Embodiment>
In the second embodiment described above, the manufacturing apparatus is formed thin by bonding the left backside illumination sensor 240 and the right backside illumination sensor 210 without using the logic substrate 230. The bending strength may be insufficient. The double-sided image sensor chip 200 of the third embodiment is different from the second embodiment in that the bending strength is increased.
 図26は、本技術の第3の実施の形態における両面イメージセンサチップ200の断面図の一例である。この第3の実施の形態の両面イメージセンサチップ200は、右側センサチップ202内に支持基板260をさらに備える点において第2の実施の形態と異なる。 FIG. 26 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to the third embodiment of the present technology. The double-sided image sensor chip 200 according to the third embodiment is different from the second embodiment in that the right-side sensor chip 202 further includes a support substrate 260.
 支持基板260は、ガラスなどの一定の強度を持つ部材である。この支持基板260の両面の一方は、右側裏面照射型センサ210と密着して接続され、他方は左側裏面照射型センサ240と密着して接合される。すなわち、右側裏面照射型センサ210の表面は、支持基板260を介して左側裏面照射型センサ240の表面と接合される。また、支持基板260と、それぞれのセンサとの接続には、例えば、SiO-SiO接続が用いられる。なお、製造装置は、SiO-SiO接続の代わりに、接着剤により、支持基板260を接合することもできる。 The support substrate 260 is a member having a certain strength such as glass. One of both surfaces of the support substrate 260 is in close contact with the right backside illumination sensor 210 and the other is in close contact with the left backside illumination sensor 240. That is, the surface of the right backside illumination sensor 210 is joined to the surface of the left backside illumination sensor 240 via the support substrate 260. Further, for example, SiO—SiO connection is used for connection between the support substrate 260 and each sensor. Note that the manufacturing apparatus can also bond the support substrate 260 with an adhesive instead of the SiO—SiO connection.
 次に、両面イメージセンサチップ200の製造方法について説明する。製造装置は、左側裏面照射型センサ240と右側裏面照射型センサ210とを製造し、それらと支持基板260とを接合する。 Next, a method for manufacturing the double-sided image sensor chip 200 will be described. The manufacturing apparatus manufactures the left backside illumination sensor 240 and the right backside illumination sensor 210 and joins them to the support substrate 260.
 図27は、本技術の第3の実施の形態における接合後の左側裏面照射型センサ240と支持基板260と右側裏面照射型センサ210との断面図の一例である。同図における両面イメージセンサチップ200において製造装置は、左側裏面照射型センサ240の裏面にカラーフィルタ244およびマイクロレンズ243を形成する。 FIG. 27 is an example of a cross-sectional view of the left backside illumination sensor 240, the support substrate 260, and the right backside illumination sensor 210 after bonding in the third embodiment of the present technology. In the double-sided image sensor chip 200 in the figure, the manufacturing apparatus forms a color filter 244 and a microlens 243 on the back surface of the left back-side illumination type sensor 240.
 図28は、本技術の第3の実施の形態におけるマイクロレンズ243等を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、マイクロレンズ243上に、高耐熱材料242を形成する。 FIG. 28 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 243 and the like according to the third embodiment of the present technology are formed. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
 図29は、本技術の第3の実施の形態における高耐熱材料242形成後の両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、高耐熱材料242上に、マイクロレンズ243を保護するためのガラス241を形成する。 FIG. 29 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat resistant material 242 is formed in the third embodiment of the present technology. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
 図30は、本技術の第3の実施の形態におけるガラス241形成後の両面イメージセンサチップ200の断面図の一例である。製造装置は、同図の両面イメージセンサチップ200を反転させて、右側裏面照射型センサ210にカラーフィルタ212およびマイクロレンズ211を形成する。 FIG. 30 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the third embodiment of the present technology. The manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure to form the color filter 212 and the microlens 211 on the right side backside illumination sensor 210.
 図31は、本技術の第2の実施の形態におけるマイクロレンズ211等を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は貫通ビア221および222を貫通させる。これにより、図26に例示した両面イメージセンサチップ200が得られる。 FIG. 31 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 211 and the like according to the second embodiment of the present technology are formed. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus penetrates through vias 221 and 222. Thereby, the double-sided image sensor chip 200 illustrated in FIG. 26 is obtained.
 このように、本技術の第3の実施の形態では、左側裏面照射型センサ240と右側裏面照射型センサ210との間に支持基板260を設けたため、支持基板260を設けない場合と比較して曲げ強度を高くすることができる。 As described above, in the third embodiment of the present technology, since the support substrate 260 is provided between the left-side backside illumination sensor 240 and the right-side backside illumination sensor 210, compared to the case where the support substrate 260 is not provided. The bending strength can be increased.
 [変形例]
 上述の第3の実施の形態では、右側裏面照射型センサ210のマイクロレンズ211を露出させていたが、埃の影響を考慮すると、マイクロレンズ243と同様に保護層により保護することが望ましい。この第3の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211も保護する点により第3の実施の形態と異なる。
[Modification]
In the third embodiment described above, the microlens 211 of the right side rear surface irradiation type sensor 210 is exposed. However, in consideration of the influence of dust, it is desirable to protect the microlens 211 with a protective layer as in the case of the microlens 243. The double-sided image sensor chip 200 according to the modification of the third embodiment is different from the third embodiment in that the microlens 211 is also protected.
 図32は、本技術の第3の実施の形態の変形例における両面イメージセンサチップ200の断面図の一例である。この第3の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211の上側に高耐熱材料218が形成されている点において第3の実施の形態と異なる。 FIG. 32 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the third embodiment of the present technology. The double-sided image sensor chip 200 according to the modification of the third embodiment is different from the third embodiment in that a high heat-resistant material 218 is formed on the upper side of the microlens 211.
 このように、本技術の第3の実施の形態の変形例では、マイクロレンズ211を高耐熱材料218によって保護することにより、埃の付着を防止することができる。 As described above, in the modification of the third embodiment of the present technology, the microlens 211 is protected by the high heat-resistant material 218, whereby adhesion of dust can be prevented.
 <4.第4の実施の形態>
 上述の第1の実施の形態では、ロジック基板230をセンサに積層して、受光面(裏面)から見た両面イメージセンサチップ200の面積を小さくしていたが、ロジック基板230の分、両面イメージセンサチップ200の厚さが増大してしまう。このため、電子装置100の小型化の際に両面イメージセンサチップ200をさらに薄く形成することが求められると、その要求に応じることが困難である。この第4の実施の形態の両面イメージセンサチップ200は、両面イメージセンサチップ200をさらに薄く形成した点において第1の実施の形態と異なる。
<4. Fourth Embodiment>
In the first embodiment described above, the logic substrate 230 is stacked on the sensor to reduce the area of the double-sided image sensor chip 200 as viewed from the light receiving surface (back surface). The thickness of the sensor chip 200 increases. For this reason, when it is required to form the double-sided image sensor chip 200 thinner when the electronic device 100 is downsized, it is difficult to meet the demand. The double-sided image sensor chip 200 of the fourth embodiment is different from the first embodiment in that the double-sided image sensor chip 200 is formed thinner.
 図33は、本技術の第4の実施の形態における両面イメージセンサチップ200の構成を説明するための図である。右側センサチップ202において、同一の基板上に右側裏面照射型センサ210およびドライバ270が設けられる。また、左側センサチップ201において、同一の基板上に左側裏面照射型センサ240および論理回路280が設けられる。 FIG. 33 is a diagram for describing a configuration of a double-sided image sensor chip 200 according to the fourth embodiment of the present technology. In the right sensor chip 202, a right backside illumination sensor 210 and a driver 270 are provided on the same substrate. In the left sensor chip 201, the left backside illumination sensor 240 and the logic circuit 280 are provided on the same substrate.
 ドライバ270は、垂直同期信号などに同期して、右側裏面照射型センサ210および左側裏面照射型センサ240を駆動するものである。このように、1つのドライバ270が右側裏面照射型センサ210および左側裏面照射型センサ240の両方を駆動することにより、それらのセンサの駆動タイミングを容易に一致させることができる。 The driver 270 drives the right side rear surface irradiation type sensor 210 and the left side rear surface irradiation type sensor 240 in synchronization with a vertical synchronization signal or the like. As described above, when one driver 270 drives both the right backside illumination sensor 210 and the left backside illumination sensor 240, the drive timings of these sensors can be easily matched.
 論理回路280は、第1の実施の形態におけるロジック基板230に搭載されていた回路と同様の回路である。このように、第4の実施の形態では、ロジック基板230を積層せずに、その基板上の回路を同一平面上に配置するため、積層する場合と比較して両面イメージセンサチップ200を薄く形成することができる。 The logic circuit 280 is a circuit similar to the circuit mounted on the logic board 230 in the first embodiment. Thus, in the fourth embodiment, since the logic substrate 230 is not stacked and the circuits on the substrate are arranged on the same plane, the double-sided image sensor chip 200 is formed thinner than in the case of stacking. can do.
 図34は、本技術の第4の実施の形態における右側面から見た右側センサチップ202の平面図の一例である。同図に例示するように、右側裏面照射型センサ210およびドライバ270のそれぞれの周囲に半田ボールを形成するためのパッドが配置される。 FIG. 34 is an example of a plan view of the right sensor chip 202 viewed from the right side in the fourth embodiment of the present technology. As illustrated in the figure, pads for forming solder balls are disposed around the right backside illumination sensor 210 and the driver 270, respectively.
 図35は、本技術の第4の実施の形態における左側面から見た左側センサチップ201の平面図の一例である。同図に例示するように、左側裏面照射型センサ240および論理回路280のそれぞれの周囲に半田ボールを形成するためのパッドが配置される。 FIG. 35 is an example of a plan view of the left sensor chip 201 viewed from the left side surface in the fourth embodiment of the present technology. As illustrated in the figure, pads for forming solder balls are arranged around the left back-side illuminated sensor 240 and the logic circuit 280, respectively.
 次に、両面イメージセンサチップ200の製造方法について説明する。 Next, a method for manufacturing the double-sided image sensor chip 200 will be described.
 図36は、本技術の第4の実施の形態における接合前の左側センサチップ201と右側センサチップ202との断面図の一例である。同図におけるaは、接合前の左側センサチップ201の断面図の一例である。同図におけるbは、接合前の右側センサチップ202の断面図の一例である。 FIG. 36 is an example of a cross-sectional view of the left sensor chip 201 and the right sensor chip 202 before joining in the fourth embodiment of the present technology. A in the same figure is an example of a cross-sectional view of the left sensor chip 201 before joining. B in the figure is an example of a cross-sectional view of the right sensor chip 202 before joining.
 図36におけるaに例示するように製造装置は、基板245上に配線層247を形成し、その配線層247においてフォトダイオード246の上部に、画素回路などを形成する。これにより、左側裏面照射型センサ240が製造される。また、製造装置は、配線層247において、左側裏面照射型センサ240とは異なる位置に、論理回路280を形成する。 36, the manufacturing apparatus forms a wiring layer 247 on the substrate 245, and forms a pixel circuit or the like above the photodiode 246 in the wiring layer 247. Thereby, the left side back irradiation type sensor 240 is manufactured. In addition, the manufacturing apparatus forms the logic circuit 280 at a position different from the left side rear surface irradiation type sensor 240 in the wiring layer 247.
 また、図36におけるbに例示するように製造装置は、基板214上に配線層215を形成し、その配線層215においてフォトダイオード213の上部に、画素回路などを形成する。これにより、右側裏面照射型センサ210が製造される。また、製造装置は、配線層215において、右側裏面照射型センサ210とは異なる位置に、ドライバ270を形成する。そして、製造装置は、左側センサチップ201を反転して右側センサチップ202にCu-Cu接続により接合する。 36, the manufacturing apparatus forms a wiring layer 215 on the substrate 214, and forms a pixel circuit or the like above the photodiode 213 in the wiring layer 215. Thereby, the right side backside illumination type sensor 210 is manufactured. Further, the manufacturing apparatus forms the driver 270 at a position different from the right-side backside illumination sensor 210 in the wiring layer 215. Then, the manufacturing apparatus reverses the left sensor chip 201 and joins it to the right sensor chip 202 by Cu—Cu connection.
 図37は、本技術の第4の実施の形態における接合後の左側センサチップ201と右側センサチップ202との断面図の一例である。同図における両面イメージセンサチップ200において製造装置は、左側裏面照射型センサ240の裏面にカラーフィルタ244およびマイクロレンズ243を形成する。 FIG. 37 is an example of a cross-sectional view of the left sensor chip 201 and the right sensor chip 202 after bonding in the fourth embodiment of the present technology. In the double-sided image sensor chip 200 in the figure, the manufacturing apparatus forms a color filter 244 and a microlens 243 on the back surface of the left back-side illumination type sensor 240.
 図38は、本技術の第4の実施の形態におけるマイクロレンズ243等を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、マイクロレンズ243上に、高耐熱材料242を形成する。 FIG. 38 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 243 and the like according to the fourth embodiment of the present technology are formed. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
 図39は、本技術の第4の実施の形態における高耐熱材料242形成後の両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、高耐熱材料242上に、マイクロレンズ243を保護するためのガラス241を形成する。 FIG. 39 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat resistant material 242 is formed in the fourth embodiment of the present technology. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
 図40は、本技術の第4の実施の形態におけるガラス241形成後の両面イメージセンサチップ200の断面図の一例である。製造装置は、同図の両面イメージセンサチップ200を反転させて、右側裏面照射型センサ210にカラーフィルタ212およびマイクロレンズ211を形成する。 FIG. 40 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the fourth embodiment of the present technology. The manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure to form the color filter 212 and the microlens 211 on the right side backside illumination sensor 210.
 図41は、本技術の第4の実施の形態におけるマイクロレンズ211等を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は貫通ビア221および222を貫通させる。 FIG. 41 is an example of a cross-sectional view of a double-sided image sensor chip 200 in which the microlenses 211 and the like according to the fourth embodiment of the present technology are formed. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus penetrates through vias 221 and 222.
 図42は、本技術の第4の実施の形態における貫通ビア221および222の形成後の両面イメージセンサチップの断面図の一例である。貫通ビア221は、ドライバ270内まで貫通し、貫通ビア222は、右側裏面照射型センサ210内の配線層215まで貫通する。 FIG. 42 is an example of a cross-sectional view of the double-sided image sensor chip after the through vias 221 and 222 are formed in the fourth embodiment of the present technology. The through via 221 penetrates to the inside of the driver 270, and the through via 222 penetrates to the wiring layer 215 in the right side rear surface irradiation type sensor 210.
 このように、本技術の第4の実施の形態では、論理回路を設けたロジック基板230を積層せずに、その論理回路を同一基板上に配置することによりロジック基板230を積層する場合と比較して両面イメージセンサチップ200を薄く形成することができる。 As described above, in the fourth embodiment of the present technology, the logic substrate 230 provided with the logic circuit is not stacked, and the logic circuit is arranged on the same substrate as compared with the case where the logic substrate 230 is stacked. Thus, the double-sided image sensor chip 200 can be formed thin.
 [変形例]
 上述の第4の実施の形態では、右側裏面照射型センサ210のマイクロレンズ211を露出させていたが、埃の影響を考慮すると、マイクロレンズ243と同様に保護層により保護することが望ましい。この第4の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211も保護する点により第4の実施の形態と異なる。
[Modification]
In the fourth embodiment described above, the microlens 211 of the right-side backside illumination sensor 210 is exposed. However, considering the influence of dust, it is desirable to protect the microlens 211 with a protective layer in the same manner as the microlens 243. The double-sided image sensor chip 200 according to the modification of the fourth embodiment is different from the fourth embodiment in that the microlens 211 is also protected.
 図43は、本技術の第4の実施の形態の変形例における両面イメージセンサチップ200の断面図の一例である。この第4の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211の上側に高耐熱材料218が形成されている点において第4の実施の形態と異なる。 FIG. 43 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the fourth embodiment of the present technology. The double-sided image sensor chip 200 according to the modification of the fourth embodiment is different from the fourth embodiment in that a high heat-resistant material 218 is formed on the upper side of the microlens 211.
 このように、本技術の第4の実施の形態の変形例では、マイクロレンズ211を高耐熱材料218によって保護することにより、埃の付着を防止することができる。 As described above, in the modified example of the fourth embodiment of the present technology, the microlens 211 is protected by the high heat resistant material 218, whereby adhesion of dust can be prevented.
 <5.第5の実施の形態>
 上述の第1の実施の形態では、ロジック基板内に貫通ビア235を配置していたが、この貫通ビアの長さをさらに長くして、右側裏面照射型センサ210内のAl-Cu系配線217とコンタクトさせることもできる。この第5の実施の形態の両面イメージセンサチップ200は、貫通ビアの長さが異なる点において第1の実施の形態と異なる。
<5. Fifth embodiment>
In the first embodiment described above, the through via 235 is disposed in the logic substrate. However, the length of the through via is further increased so that the Al—Cu wiring 217 in the right-side backside illuminated sensor 210 is formed. Can also be contacted. The double-sided image sensor chip 200 of the fifth embodiment is different from the first embodiment in that the length of the through via is different.
 図44は、本技術の第5の実施の形態における両面イメージセンサチップ200の断面図の一例である。この第5の実施の形態の両面イメージセンサチップ200は、貫通ビア235の代わりに貫通ビア236を備える点において第1の実施の形態と異なる。 FIG. 44 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to the fifth embodiment of the present technology. The double-sided image sensor chip 200 of the fifth embodiment is different from the first embodiment in that a through via 236 is provided instead of the through via 235.
 貫通ビア236は、Al-Cu系合金により形成され、酸化膜234から配線層215まで貫通して、Al-Cu系配線217にコンタクトする。 The through via 236 is formed of an Al—Cu based alloy and penetrates from the oxide film 234 to the wiring layer 215 to contact the Al—Cu based wiring 217.
 次に、両面イメージセンサチップ200の製造方法について説明する。 Next, a method for manufacturing the double-sided image sensor chip 200 will be described.
 図45は、本技術の第5の実施の形態における接合前の右側裏面照射型センサ210とロジック基板230との断面図の一例である。同図におけるaは、接合前の右側裏面照射型センサ210の断面図の一例であり、同図におけるbは、接合前のロジック基板230の断面図の一例である。 FIG. 45 is an example of a cross-sectional view of the right-side backside illuminated sensor 210 and the logic substrate 230 before bonding in the fifth embodiment of the present technology. In the drawing, a is an example of a cross-sectional view of the right backside illumination sensor 210 before bonding, and b in the drawing is an example of a cross-sectional view of the logic substrate 230 before bonding.
 製造装置は、まず、図45におけるaに例示するように、表面を上にして右側裏面照射型センサ210を製造する。また、製造装置は、同図におけるbに例示するように、配線層231を上にしてロジック基板230を製造する。 First, the manufacturing apparatus manufactures the right-side backside illuminated sensor 210 with the front side facing up, as illustrated in a in FIG. In addition, the manufacturing apparatus manufactures the logic substrate 230 with the wiring layer 231 facing upward as illustrated in FIG.
 そして、製造装置は、右側裏面照射型センサ210を反転して表面を下側にし、ロジック基板230にCu-Cu接続により接合する。 Then, the manufacturing apparatus inverts the right-side backside illumination type sensor 210 so that the front surface is directed downward, and is bonded to the logic substrate 230 by Cu—Cu connection.
 図46は、本技術の第5の実施の形態における接合後の右側裏面照射型センサ210とロジック基板230との断面図の一例である。同図におけるaは、反転前の右側裏面照射型センサ210とロジック基板230との断面図の一例であり、同図におけるbは、反転後の右側裏面照射型センサ210とロジック基板230との断面図の一例である。 FIG. 46 is an example of a cross-sectional view of the right back-side illuminated sensor 210 and the logic substrate 230 after bonding in the fifth embodiment of the present technology. In the figure, a is an example of a cross-sectional view of the right backside illumination sensor 210 and the logic substrate 230 before inversion, and b in the figure is a cross section of the right backside illumination sensor 210 and the logic substrate 230 after inversion. It is an example of a figure.
 製造装置は、図46におけるaに例示する右側センサチップ202を反転して、貫通ビア236の長さに合わせて、基板233を研磨する。これにより、同図におけるbに例示するように、基板233の厚さが調整される。 The manufacturing apparatus inverts the right sensor chip 202 illustrated in a in FIG. 46 and polishes the substrate 233 according to the length of the through via 236. Thereby, the thickness of the board | substrate 233 is adjusted so that it may illustrate in b in the figure.
 図47は、本技術の第1の実施の形態における接合前の左側裏面照射型センサ240とロジック基板230と右側裏面照射型センサ210との断面図の一例である。同図におけるaは、接合前の左側裏面照射型センサ240の断面図の一例であり、同図におけるbは、接合前のロジック基板230と右側裏面照射型センサ210との断面図の一例である。 FIG. 47 is an example of a cross-sectional view of the left back-side illuminated sensor 240, the logic substrate 230, and the right back-side illuminated sensor 210 before bonding in the first embodiment of the present technology. In the figure, a is an example of a cross-sectional view of the left backside illumination sensor 240 before joining, and b in the figure is an example of a cross-sectional view of the logic board 230 and the right side backside illumination sensor 210 before joining. .
 製造装置は、図47におけるaに例示するように、表面を上にして左側裏面照射型センサ240を製造する。また、製造装置は、同図におけるbに例示するように基板233上に、酸化膜234を成膜する。そして、製造装置は、ロジック基板230において貫通ビア236を貫通させ、その貫通ビア236の一端を配線層215内のAl-Cu系配線217にコンタクトさせる。続いて製造装置は、左側裏面照射型センサ240を反転させて、Cu-Cu接続によりロジック基板230と接合する。 The manufacturing apparatus manufactures the left-side backside illuminated sensor 240 with the surface facing up, as illustrated in a in FIG. Further, the manufacturing apparatus forms an oxide film 234 on the substrate 233 as illustrated in FIG. Then, the manufacturing apparatus penetrates the through via 236 in the logic substrate 230 and contacts one end of the through via 236 to the Al—Cu-based wiring 217 in the wiring layer 215. Subsequently, the manufacturing apparatus inverts the left back-side illuminated sensor 240 and joins it to the logic substrate 230 by Cu—Cu connection.
 図48は、本技術の第5の実施の形態における接合後の左側裏面照射型センサ240とロジック基板230と右側裏面照射型センサ210との断面図の一例である。同図の左側センサチップ201および右側センサチップ202において、製造装置は、左側裏面照射型センサ240を研磨し、その上に、カラーフィルタ244およびマイクロレンズ243を形成する。 FIG. 48 is an example of a cross-sectional view of the left backside illumination sensor 240, the logic substrate 230, and the right backside illumination sensor 210 after bonding in the fifth embodiment of the present technology. In the left sensor chip 201 and the right sensor chip 202 in the figure, the manufacturing apparatus polishes the left back-side illuminated sensor 240 and forms the color filter 244 and the microlens 243 thereon.
 図49は、本技術の第1の実施の形態におけるマイクロレンズ243を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、マイクロレンズ243上に、高耐熱材料242を形成する。 FIG. 49 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlens 243 is formed according to the first embodiment of the present technology. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a high heat resistant material 242 on the microlens 243.
 図50は、本技術の第5の実施の形態における高耐熱材料242形成後の両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は、高耐熱材料242上に、マイクロレンズ243を保護するためのガラス241を形成する。 FIG. 50 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the high heat resistant material 242 is formed in the fifth embodiment of the present technology. In the double-sided image sensor chip 200 shown in the figure, the manufacturing apparatus forms a glass 241 for protecting the microlens 243 on the high heat resistant material 242.
 図51は、本技術の第5の実施の形態におけるガラス241形成後の両面イメージセンサチップ200の断面図の一例である。製造装置は、同図の両面イメージセンサチップ200を反転させてガラス241を下側にし、右側裏面照射型センサ210にカラーフィルタ212およびマイクロレンズ211を形成する。 FIG. 51 is an example of a cross-sectional view of the double-sided image sensor chip 200 after the glass 241 is formed in the fifth embodiment of the present technology. The manufacturing apparatus inverts the double-sided image sensor chip 200 shown in the figure so that the glass 241 faces downward, and the color filter 212 and the microlens 211 are formed on the right-side backside illumination sensor 210.
 図52は、本技術の第5の実施の形態におけるマイクロレンズ211等を形成した両面イメージセンサチップ200の断面図の一例である。同図の両面イメージセンサチップ200において製造装置は右側裏面照射型センサ210に貫通ビア221を貫通させ、その貫通ビア221の一端を配線層215内のAl-Cu系配線217にコンタクトさせる。これにより、図44に例示した両面イメージセンサチップ200が得られる。 FIG. 52 is an example of a cross-sectional view of the double-sided image sensor chip 200 in which the microlenses 211 and the like according to the fifth embodiment of the present technology are formed. In the double-sided image sensor chip 200 of FIG. 6, the manufacturing apparatus passes the through via 221 through the right side back-illuminated sensor 210 and makes one end of the through via 221 contact the Al—Cu wiring 217 in the wiring layer 215. Thereby, the double-sided image sensor chip 200 illustrated in FIG. 44 is obtained.
 このように、本技術の第5の実施の形態によれば、貫通ビア236を長くして、その貫通ビア236により右側裏面照射型センサ210にロジック基板230を接続することにより貫通ビア236を介して、それらのセンサ、基板間で信号を伝送することができる。 As described above, according to the fifth embodiment of the present technology, the through via 236 is lengthened, and the logic substrate 230 is connected to the right-side backside illuminated sensor 210 through the through via 236, whereby the through via 236 is interposed. Thus, signals can be transmitted between the sensors and the substrate.
 [変形例]
 上述の第5の実施の形態では、右側裏面照射型センサ210のマイクロレンズ211を露出させていたが、埃の影響を考慮すると、マイクロレンズ243と同様に保護層により保護することが望ましい。この第5の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211も保護する点により第5の実施の形態と異なる。
[Modification]
In the fifth embodiment described above, the microlens 211 of the right side rear surface irradiation type sensor 210 is exposed. However, considering the influence of dust, it is desirable to protect the microlens 211 with a protective layer as in the case of the microlens 243. The double-sided image sensor chip 200 according to the modification of the fifth embodiment is different from the fifth embodiment in that the microlens 211 is also protected.
 図53は、本技術の第5の実施の形態の変形例における両面イメージセンサチップ200の断面図の一例である。この第5の実施の形態の変形例の両面イメージセンサチップ200は、マイクロレンズ211の上側に高耐熱材料218が形成されている点において第4の実施の形態と異なる。 FIG. 53 is an example of a cross-sectional view of a double-sided image sensor chip 200 according to a modification of the fifth embodiment of the present technology. The double-sided image sensor chip 200 according to the modification of the fifth embodiment is different from the fourth embodiment in that a high heat-resistant material 218 is formed on the upper side of the microlens 211.
 このように、本技術の第5の実施の形態の変形例では、マイクロレンズ211を高耐熱材料218によって保護することにより、埃の付着を防止することができる。 As described above, in the modification of the fifth embodiment of the present technology, the microlens 211 is protected by the high heat-resistant material 218, whereby adhesion of dust can be prevented.
 <6.第6の実施の形態>
 上述の第1の実施の形態では、2つのレンズ(フロントレンズ110および120)を両方とも正面に配置していたが、正面のみにレンズを配置した構成では、360度のパノラマ画像を撮像することが困難である。このようなパノラマ画像を撮像するには、例えば、正面と背面との両方にレンズを配置すればよい。この第6の実施の形態の電子装置100は、レンズを正面と背面とに配置した点において第1の実施の形態と異なる。
<6. Sixth Embodiment>
In the first embodiment described above, the two lenses (front lenses 110 and 120) are both arranged in the front. However, in the configuration in which the lenses are arranged only in the front, a 360-degree panoramic image is captured. Is difficult. In order to capture such a panoramic image, for example, lenses may be arranged on both the front and the back. The electronic device 100 according to the sixth embodiment is different from the first embodiment in that lenses are arranged on the front surface and the back surface.
 図54は、本技術の第6の実施の形態における電子装置100の、上面から見た断面図の一例である。この第6の実施の形態の電子装置100は、フロントレンズ120の代わりにリアレンズ121を備える。このリアレンズ121は背面に配置される。ミラー151は、リアレンズ121からの光をレンズ群152の方に屈曲させる。両面イメージセンサチップ200は、例えば、正面の画像と背面の画像とを同時に撮像して、それらの画像データを合成し、360度のパノラマ画像を生成する。 FIG. 54 is an example of a cross-sectional view of the electronic device 100 according to the sixth embodiment of the present technology as viewed from above. The electronic device 100 according to the sixth embodiment includes a rear lens 121 instead of the front lens 120. The rear lens 121 is disposed on the back surface. The mirror 151 bends the light from the rear lens 121 toward the lens group 152. For example, the double-sided image sensor chip 200 captures a front image and a back image at the same time, combines the image data, and generates a 360-degree panoramic image.
 このように、本技術の第6の実施の形態では、フロントレンズ110を正面に配置し、リアレンズ121を背面に配置することにより、正面の画像と背面の画像とを同時に撮像することができる。 Thus, in the sixth embodiment of the present technology, the front lens 110 is disposed on the front surface and the rear lens 121 is disposed on the rear surface, whereby a front image and a rear image can be simultaneously captured.
 [変形例]
 上述の第6の実施の形態では、ミラー141および152により光を屈曲させていたが、それらのミラーの反射率が低いほど、光量が少なくなり、画像が暗くなるおそれがある。この第6の実施の形態の変形例の電子装置100は、ミラーを設けない点において第6の実施の形態と異なる。
[Modification]
In the sixth embodiment described above, the light is bent by the mirrors 141 and 152, but the lower the reflectance of these mirrors, the smaller the amount of light and the darker the image. The electronic device 100 according to the modification of the sixth embodiment is different from the sixth embodiment in that no mirror is provided.
 図55は、本技術の第6の実施の形態の変形例における電子装置100の断面図の一例である。第6の実施の形態の変形例の電子装置100において、フロントレンズ110からの光は、ミラーを介さずにレンズ群142に導かれる。また、リアレンズ121からの光もミラーを介さずにレンズ群152に導かれる。 FIG. 55 is an example of a cross-sectional view of the electronic device 100 according to a modification of the sixth embodiment of the present technology. In the electronic device 100 according to the modified example of the sixth embodiment, light from the front lens 110 is guided to the lens group 142 without passing through a mirror. Further, the light from the rear lens 121 is also guided to the lens group 152 without passing through a mirror.
 このように、本技術の第6の実施の形態の変形例では、フロントレンズ110およびリアレンズ121からの光をミラーで反射せずにレンズ群142および152に導くことにより、ミラーで反射する場合と比較して光量を増大させることができる。 As described above, in the modified example of the sixth embodiment of the present technology, the light from the front lens 110 and the rear lens 121 is reflected by the mirror by being guided to the lens groups 142 and 152 without being reflected by the mirror. In comparison, the amount of light can be increased.
 <7.第7の実施の形態>
 上述の第1の実施の形態では、スマートフォンに両面イメージセンサチップ200を配置していたが、スマートフォン以外の装置、例えば、2眼カメラに両面イメージセンサチップ200を設けることもできる。この第7の実施の形態の両面イメージセンサチップ200は、2眼カメラ内に配置した点において第1の実施の形態と異なる。
<7. Seventh Embodiment>
In the above-described first embodiment, the double-sided image sensor chip 200 is arranged on the smartphone. However, the double-sided image sensor chip 200 can be provided on a device other than the smartphone, for example, a twin-lens camera. The double-sided image sensor chip 200 according to the seventh embodiment is different from the first embodiment in that it is disposed in a twin-lens camera.
 図56は、本技術の第7の実施の形態における2眼カメラ101の断面図の一例である。2眼カメラ101内には、ミラー141および151と、両面イメージセンサチップ200とが配置される。フロントレンズ110および120は、正面に配置される。2つの側面のうちフロントレンズ120に近い方を右側面として、右側から順に、ミラー151、両面イメージセンサチップ200、ミラー141の順で配置される。 FIG. 56 is an example of a cross-sectional view of the twin-lens camera 101 according to the seventh embodiment of the present technology. In the binocular camera 101, mirrors 141 and 151 and a double-sided image sensor chip 200 are arranged. The front lenses 110 and 120 are arranged in front. Of the two side surfaces, the side closer to the front lens 120 is the right side surface, and the mirror 151, the double-sided image sensor chip 200, and the mirror 141 are arranged in this order from the right side.
 ミラー141は、フロントレンズ110からの光を両面イメージセンサチップ200の方に屈曲させる。ミラー151は、フロントレンズ120からの光を両面イメージセンサチップ200の方に屈曲させる。両面イメージセンサチップ200の両面の一方には、ミラー141からの光が照射され、他方にはミラー151からの光が照射される。 The mirror 141 bends the light from the front lens 110 toward the double-sided image sensor chip 200. The mirror 151 bends the light from the front lens 120 toward the double-sided image sensor chip 200. One side of the double-sided image sensor chip 200 is irradiated with light from the mirror 141, and the other side is irradiated with light from the mirror 151.
 このように、本技術の第7の実施の形態では、2眼カメラ101に、厚みの薄い両面イメージセンサチップ200を配置することにより、2眼カメラ101を容易に小型化することができる。 As described above, in the seventh embodiment of the present technology, the binocular camera 101 can be easily downsized by disposing the thin double-sided image sensor chip 200 in the binocular camera 101.
 <8.第8の実施の形態>
 上述の第1の実施の形態では、両面イメージセンサチップ200をスマートフォン等の電子装置100に実装していたが、内視鏡に実装することもできる。この第8の実施の形態は、両面イメージセンサチップ200を内視鏡に実装した点において第1の実施の形態と異なる。
<8. Eighth Embodiment>
In the above-described first embodiment, the double-sided image sensor chip 200 is mounted on the electronic device 100 such as a smartphone. However, it can be mounted on an endoscope. The eighth embodiment is different from the first embodiment in that the double-sided image sensor chip 200 is mounted on an endoscope.
 図57は、本技術の第8の実施の形態における両面イメージセンサチップ200を実装した電子装置102の断面図の一例である。この電子装置102は、硬性内視鏡であり、レンズ310および311と、両面イメージセンサチップ200とを備える。 FIG. 57 is an example of a cross-sectional view of the electronic device 102 on which the double-sided image sensor chip 200 according to the eighth embodiment of the present technology is mounted. The electronic device 102 is a rigid endoscope and includes lenses 310 and 311 and a double-sided image sensor chip 200.
 ここで、電子装置102(硬性内視鏡)は、円筒形状であり、その上面に垂直な方向(言い換えれば、軸方向)をZ方向とし、Z方向に垂直な所定方向をX方向とする。また、X方向およびZ方向に垂直な方向をY方向とする。図57におけるaは、Y方向から見た断面図であり、同図におけるbは、Z方向から見た断面図である。 Here, the electronic device 102 (rigid endoscope) has a cylindrical shape, and a direction perpendicular to the upper surface (in other words, an axial direction) is defined as a Z direction, and a predetermined direction perpendicular to the Z direction is defined as an X direction. A direction perpendicular to the X direction and the Z direction is taken as a Y direction. 57a is a cross-sectional view as viewed from the Y direction, and b in FIG. 57 is a cross-sectional view as viewed from the Z direction.
 レンズ310および311は、それぞれの光軸方向が一致するように電子装置102の側面に配置される。そして、両面イメージセンサチップ200は、その両面に垂直な軸が、レンズ310および311の光軸に一致するように、レンズ310および311の間に配置される。レンズ310は、両面イメージセンサチップ200の両面の一方に光を導き、レンズ311は、その両面の他方に光を導く。 The lenses 310 and 311 are arranged on the side surface of the electronic device 102 so that their optical axis directions coincide. The double-sided image sensor chip 200 is disposed between the lenses 310 and 311 so that the axes perpendicular to both sides coincide with the optical axes of the lenses 310 and 311. The lens 310 guides light to one of both surfaces of the double-sided image sensor chip 200, and the lens 311 guides light to the other of the both surfaces.
 また、図57のbに例示するように、電子装置102には、薬液を吐出するための薬液吐出部312と、カンシを挿入するためのカンシ出口313と、LED(Light Emitting Diode)等の光源314とが設けられる。 As illustrated in FIG. 57b, the electronic device 102 includes a chemical solution discharge unit 312 for discharging a chemical solution, a candy outlet 313 for inserting a candy, and a light source such as a light emitting diode (LED). 314 are provided.
 このように、本技術の第8の実施の形態によれば、両面イメージセンサチップ200を電子装置102(硬性内視鏡)に実装したため、硬性内視鏡において2枚の画像データを容易に撮像することができる。 As described above, according to the eighth embodiment of the present technology, since the double-sided image sensor chip 200 is mounted on the electronic device 102 (rigid endoscope), two image data can be easily captured by the rigid endoscope. can do.
 <9.第9の実施の形態>
 上述の第1の実施の形態では、光を屈曲させずに両面イメージセンサチップ200を電子装置102(硬性内視鏡)に配置していたが、この構造では、硬性内視鏡の直径を小さくすることが困難である。この第9の実施の形態の電子装置102は、光を屈曲させた点において第8の実施の形態と異なる。
<9. Ninth Embodiment>
In the first embodiment described above, the double-sided image sensor chip 200 is arranged in the electronic device 102 (rigid endoscope) without bending light, but in this structure, the diameter of the rigid endoscope is reduced. Difficult to do. The electronic device 102 according to the ninth embodiment is different from the eighth embodiment in that light is bent.
 図58は、本技術の第9の実施の形態における両面イメージセンサチップ200を実装した電子装置102の断面図の一例である。この電子装置102は、ミラー315および316をさらに備える点において第8の実施の形態と異なる。 FIG. 58 is an example of a cross-sectional view of the electronic device 102 on which the double-sided image sensor chip 200 according to the ninth embodiment of the present technology is mounted. This electronic device 102 is different from the eighth embodiment in that mirrors 315 and 316 are further provided.
 また、第9の実施の形態において、レンズ310の光軸と、レンズ311の光軸とは、X方向に平行ではあるが、同一の軸線上にない。また、両面イメージセンサチップ200の両面は、電子装置102の上面および下面に平行である。 In the ninth embodiment, the optical axis of the lens 310 and the optical axis of the lens 311 are parallel to the X direction, but are not on the same axis. Further, both surfaces of the double-sided image sensor chip 200 are parallel to the upper surface and the lower surface of the electronic device 102.
 ミラー315は、レンズ310からの光を屈曲させて両面イメージセンサチップ200の両面の一方に導き、ミラー316は、レンズ311からの光を屈曲させて、その両面の他方に導く。 The mirror 315 bends the light from the lens 310 and guides it to one of both surfaces of the double-sided image sensor chip 200, and the mirror 316 bends the light from the lens 311 and guides it to the other of the both surfaces.
 このように、本技術の第9の実施の形態によれば、光を屈曲させるミラー315および316をさらに配置したため、光を屈曲させない場合と比較して内視鏡の直径を小さくすることができる。 As described above, according to the ninth embodiment of the present technology, since the mirrors 315 and 316 for bending light are further arranged, the diameter of the endoscope can be reduced as compared with the case where the light is not bent. .
 <10.第10の実施の形態>
 上述の第9の実施の形態では、ミラー315および316の2枚を配置していたが、ミラーを1枚にすることもできる。この第10の実施の形態の電子装置102は、1枚のミラーを配置した点において第9の実施の形態と異なる。
<10. Tenth Embodiment>
In the ninth embodiment described above, the two mirrors 315 and 316 are arranged, but the number of mirrors may be one. The electronic device 102 according to the tenth embodiment is different from the ninth embodiment in that one mirror is disposed.
 図59は、本技術の第10の実施の形態における両面イメージセンサチップ200を実装した電子装置102の断面図の一例である。この第10の実施の形態の電子装置102は、ミラー316を備えない点において第9の実施の形態と異なる。 FIG. 59 is an example of a cross-sectional view of the electronic device 102 on which the double-sided image sensor chip 200 according to the tenth embodiment of the present technology is mounted. The electronic device 102 of the tenth embodiment is different from the ninth embodiment in that the mirror 316 is not provided.
 また、第10の実施の形態において、レンズ310は側面に配置され、レンズ311は、下面に配置される。レンズ310の光軸は、X方向に平行であり、レンズ311の光軸は、Z方向(軸方向)に平行である。 In the tenth embodiment, the lens 310 is disposed on the side surface, and the lens 311 is disposed on the lower surface. The optical axis of the lens 310 is parallel to the X direction, and the optical axis of the lens 311 is parallel to the Z direction (axial direction).
 ミラー315は、レンズ310からの光を屈曲させて両面イメージセンサチップ200の両面の一方に導き、レンズ311は、その両面の他方に光を導く。 The mirror 315 bends the light from the lens 310 and guides it to one of both surfaces of the double-sided image sensor chip 200, and the lens 311 guides the light to the other of the both surfaces.
 このように、本技術の第10の実施の形態によれば、レンズ310および311を側面と下面とに配置したため、それらのレンズを側面に配置する場合と比較して内視鏡の直径をさらに縮小することができる。 As described above, according to the tenth embodiment of the present technology, since the lenses 310 and 311 are arranged on the side surface and the bottom surface, the diameter of the endoscope is further increased as compared with the case where these lenses are arranged on the side surface. Can be reduced.
 <11.第11の実施の形態>
 上述の第10の実施の形態では、両面イメージセンサチップ200を硬性内視鏡に実装していたが、カプセル型内視鏡に実装することもできる。この第11の実施の形態は、両面イメージセンサチップ200をカプセル型内視鏡に実装した点において第10の実施の形態と異なる。
<11. Eleventh embodiment>
In the tenth embodiment described above, the double-sided image sensor chip 200 is mounted on a rigid endoscope, but it can also be mounted on a capsule endoscope. The eleventh embodiment differs from the tenth embodiment in that the double-sided image sensor chip 200 is mounted on a capsule endoscope.
 図60は、本技術の第11の実施の形態における両面イメージセンサチップ200を実装した電子装置103の断面図の一例である。この電子装置103は、カプセル型内視鏡であり、アンテナ361、受信部362、送信部363、蓄積部364および試料用空間365を備える。また、電子装置103は、ミラー366と、レンズ367および370と、両面イメージセンサチップ200と、LED等の光源368および369とを備える。 FIG. 60 is an example of a cross-sectional view of the electronic device 103 on which the double-sided image sensor chip 200 according to the eleventh embodiment of the present technology is mounted. The electronic device 103 is a capsule endoscope, and includes an antenna 361, a receiving unit 362, a transmitting unit 363, a storage unit 364, and a sample space 365. The electronic device 103 includes a mirror 366, lenses 367 and 370, a double-sided image sensor chip 200, and light sources 368 and 369 such as LEDs.
 受信部362は、アンテナ361を介して制御信号などを受信するものである。送信部363は、アンテナ361を介して、両面イメージセンサチップ200により撮像された画像データなどを外部へ送信するものである。蓄積部364は、撮像された画像データを蓄積するものである。 The receiving unit 362 receives a control signal and the like via the antenna 361. The transmission unit 363 transmits image data captured by the double-sided image sensor chip 200 to the outside via the antenna 361. The accumulation unit 364 accumulates captured image data.
 ここで、電子装置103(カプセル型内視鏡)は、角丸長方形や楕円などのオーバルの回転体であり、オーバルの長軸方向をZ方向とし、Z方向に垂直な所定方向(言い換えれば、短軸方向)をX方向とする。また、X方向およびZ方向に垂直な方向をY方向とする。図60におけるaは、Y方向から見た断面図であり、同図におけるbは、Z方向から見た断面図である。 Here, the electronic device 103 (capsule endoscope) is an oval rotating body such as a rounded rectangle or an ellipse, and the major axis direction of the oval is a Z direction, and a predetermined direction perpendicular to the Z direction (in other words, The minor axis direction) is taken as the X direction. A direction perpendicular to the X direction and the Z direction is taken as a Y direction. 60 is a cross-sectional view seen from the Y direction, and b in the same figure is a cross-sectional view seen from the Z direction.
 レンズ367は、電子装置103(カプセル型内視鏡)の側面に配置され、レンズ370は、光軸がZ方向(長軸方向)に平行となる位置に配置される。また、Z方向は、両面イメージセンサチップ200の両面に垂直である。ミラー366は、レンズ367からの光を屈曲させて両面イメージセンサチップ200の両面の一方に導き、レンズ370は、その両面の他方に光を導く。また、光源368は、Z方向に垂直な方向に沿って移動することができ、光源369は、Z方向に沿って移動することができる。 The lens 367 is disposed on the side surface of the electronic device 103 (capsule endoscope), and the lens 370 is disposed at a position where the optical axis is parallel to the Z direction (long axis direction). Further, the Z direction is perpendicular to both surfaces of the double-sided image sensor chip 200. The mirror 366 bends the light from the lens 367 and guides it to one of both surfaces of the double-sided image sensor chip 200, and the lens 370 guides the light to the other of the both surfaces. The light source 368 can move along a direction perpendicular to the Z direction, and the light source 369 can move along the Z direction.
 このように、本技術の第11の実施の形態によれば、両面イメージセンサチップ200を電子装置103(カプセル型内視鏡)に実装したため、カプセル型内視鏡において2枚の画像データを容易に撮像することができる。 Thus, according to the eleventh embodiment of the present technology, since the double-sided image sensor chip 200 is mounted on the electronic device 103 (capsule endoscope), two pieces of image data can be easily obtained in the capsule endoscope. Can be imaged.
 <12.第12の実施の形態>
 上述の第11の実施の形態では、光を屈曲させていたが、屈曲させない構成とすることもできる。この第12の実施の形態の電子装置103は、光を屈曲させないにおいて第11の実施の形態と異なる。
<12. Twelfth Embodiment>
In the eleventh embodiment described above, the light is bent, but it may be configured not to be bent. The electronic device 103 according to the twelfth embodiment differs from the eleventh embodiment in that light is not bent.
 図61は、本技術の第12の実施の形態における両面イメージセンサチップ200を実装した電子装置103の断面図の一例である。この第12の実施の形態の電子装置103は、ミラー366を備えない点において第11の実施の形態と異なる。 FIG. 61 is an example of a cross-sectional view of the electronic device 103 on which the double-sided image sensor chip 200 according to the twelfth embodiment of the present technology is mounted. The electronic device 103 according to the twelfth embodiment is different from the eleventh embodiment in that the mirror 366 is not provided.
 また、第12の実施の形態において、レンズ367および370は、それぞれの光軸方向が一致するように電子装置103の側面に配置される。そして、両面イメージセンサチップ200は、その両面に垂直な軸が、レンズ367および370の光軸に一致するように、レンズ367および370の間に配置される。レンズ367は、両面イメージセンサチップ200の両面の一方に光を導き、レンズ370は、その両面の他方に光を導く。また、光源368および369は、Z方向に垂直な方向に沿って移動することができる。 In the twelfth embodiment, the lenses 367 and 370 are arranged on the side surface of the electronic device 103 so that the optical axis directions thereof coincide with each other. The double-sided image sensor chip 200 is disposed between the lenses 367 and 370 so that the axes perpendicular to both sides thereof coincide with the optical axes of the lenses 367 and 370. The lens 367 guides light to one of both surfaces of the double-sided image sensor chip 200, and the lens 370 guides light to the other of the both surfaces. In addition, the light sources 368 and 369 can move along a direction perpendicular to the Z direction.
 このように、本技術の第12の実施の形態によれば、レンズ367および370は、光を屈曲させずに両面イメージセンサチップ200に導くため、ミラーが不要となり、カプセル型内視鏡の長軸方向の寸法を縮小することができる。 As described above, according to the twelfth embodiment of the present technology, the lenses 367 and 370 guide the light to the double-sided image sensor chip 200 without bending, so that no mirror is required, and the length of the capsule endoscope is long. The axial dimension can be reduced.
 <13.第13の実施の形態>
 上述の第12の実施の形態では、レンズ367および370を側面に配置していたが、これらの光軸がZ方向に平行になる位置に配置することもできる。この第13の実施の形態の電子装置103は、レンズ367および370の光軸がZ方向に平行である点において第12の実施の形態と異なる。
<13. Thirteenth Embodiment>
In the twelfth embodiment described above, the lenses 367 and 370 are disposed on the side surfaces, but they can also be disposed at positions where their optical axes are parallel to the Z direction. The electronic apparatus 103 according to the thirteenth embodiment differs from the twelfth embodiment in that the optical axes of the lenses 367 and 370 are parallel to the Z direction.
 図62は、本技術の第13の実施の形態における両面イメージセンサチップ200を実装した電子装置103の断面図の一例である。この第12の実施の形態において、レンズ367および370の光軸と、両面イメージセンサチップ200の両面に垂直な軸とは、Z方向に平行である。また、光源368および369は、Z方向に沿って移動することができる。アンテナ361、受信部362、送信部363、蓄積部364および試料用空間365は、電子装置103の側面に配置される。 FIG. 62 is an example of a cross-sectional view of the electronic device 103 on which the double-sided image sensor chip 200 according to the thirteenth embodiment of the present technology is mounted. In the twelfth embodiment, the optical axes of the lenses 367 and 370 and the axis perpendicular to both surfaces of the double-sided image sensor chip 200 are parallel to the Z direction. In addition, the light sources 368 and 369 can move along the Z direction. The antenna 361, the reception unit 362, the transmission unit 363, the storage unit 364, and the sample space 365 are arranged on the side surface of the electronic device 103.
 このように、本技術の第13の実施の形態によれば、レンズ367および370を、その光軸がZ方向に平行になる位置に配置したため、アンテナ361等を側面に配置してカプセル型内視鏡の長軸方向の寸法を縮小することができる。 As described above, according to the thirteenth embodiment of the present technology, the lenses 367 and 370 are arranged at positions where the optical axes thereof are parallel to the Z direction. The dimension of the long axis direction of the endoscope can be reduced.
 <14.第14の実施の形態>
 上述の第1の実施の形態では、両面イメージセンサチップ200をフレキシブルプリント基板160に実装していたが、インターポーザに実装することもできる。ここで、インターポーザは、配線および端子を備え、両面イメージセンサチップ200などのチップが実装される基板である。第14の実施の形態の電子装置100は、ワイヤボンディングにより両面イメージセンサチップ200をインターポーザに実装した点において第1の実施の形態と異なる。
<14. Fourteenth Embodiment>
In the first embodiment described above, the double-sided image sensor chip 200 is mounted on the flexible printed circuit board 160, but it can also be mounted on an interposer. Here, the interposer is a substrate that includes wiring and terminals and on which a chip such as the double-sided image sensor chip 200 is mounted. The electronic device 100 according to the fourteenth embodiment is different from the first embodiment in that the double-sided image sensor chip 200 is mounted on the interposer by wire bonding.
 図63は、本技術の第14の実施の形態における両面イメージセンサチップ200を実装したインターポーザの平面図の一例である。両面イメージセンサチップ200は、インターポーザ400に実装される。インターポーザ400には複数の端子410が設けられ、両面イメージセンサチップ200側においても、端子410ごとに端子290が設けられる。端子410と、その端子410に対応する端子290とはワイヤボンディングにより接続されている。 FIG. 63 is an example of a plan view of an interposer on which the double-sided image sensor chip 200 according to the fourteenth embodiment of the present technology is mounted. The double-sided image sensor chip 200 is mounted on the interposer 400. The interposer 400 is provided with a plurality of terminals 410, and a terminal 290 is provided for each terminal 410 on the double-sided image sensor chip 200 side. Terminal 410 and terminal 290 corresponding to terminal 410 are connected by wire bonding.
 図64は、本技術の第14の実施の形態における両面イメージセンサチップ200を実装したインターポーザ400の断面図の一例である。同図は、図63のA-A'に沿って切断した際の断面図である。インターポーザ400内には配線420が形成され、その配線420の一端は端子410に接続される。また、インターポーザ400側の端子410には、ボール510が形成され、両面イメージセンサチップ200側の端子290にもボール520が形成される。これらのボールは、ワイヤ500を介して電気的に接続される。このようなワイヤボンディングは、比較的低コストで信頼性が高いことが知られている。 FIG. 64 is an example of a cross-sectional view of the interposer 400 on which the double-sided image sensor chip 200 according to the fourteenth embodiment of the present technology is mounted. This figure is a cross-sectional view taken along the line AA ′ of FIG. A wiring 420 is formed in the interposer 400, and one end of the wiring 420 is connected to the terminal 410. A ball 510 is formed on the terminal 410 on the interposer 400 side, and a ball 520 is formed on the terminal 290 on the double-sided image sensor chip 200 side. These balls are electrically connected via a wire 500. Such wire bonding is known to be relatively low cost and highly reliable.
 また、受光面側を上側として、インターポーザ400の上部は、ガラス180により封止される。また、ボール520の直径は、例えば、30マイクロメートルである。端子290が形成された段差の高さは、例えば、6マイクロメートル(μm)であり、端子290の一辺の長さ、例えば、50マイクロメートル(μm)である。 Also, the upper part of the interposer 400 is sealed with glass 180 with the light receiving surface side as the upper side. The diameter of the ball 520 is, for example, 30 micrometers. The height of the step formed with the terminal 290 is, for example, 6 micrometers (μm), and the length of one side of the terminal 290, for example, 50 micrometers (μm).
 このように、本技術の第14の実施の形態によれば、ワイヤボンディングにより両面イメージセンサチップ200をインターポーザ400に実装したため、コストの低減や、信頼性の向上を実現することができる。 As described above, according to the fourteenth embodiment of the present technology, since the double-sided image sensor chip 200 is mounted on the interposer 400 by wire bonding, it is possible to realize cost reduction and reliability improvement.
 <15.第15の実施の形態>
 上述の第14の実施の形態では、両面イメージセンサチップ200をワイヤボンディングによりインターポーザ400に実装していたが、ワイヤを用いずに溶着により実装することもできる。第9の実施の形態の電子装置100は、溶着により両面イメージセンサチップ200をインターポーザ400に実装した点において第14の実施の形態と異なる。
<15. Fifteenth embodiment>
In the fourteenth embodiment described above, the double-sided image sensor chip 200 is mounted on the interposer 400 by wire bonding, but can also be mounted by welding without using a wire. The electronic device 100 of the ninth embodiment differs from the fourteenth embodiment in that the double-sided image sensor chip 200 is mounted on the interposer 400 by welding.
 図65は、本技術の第15の実施の形態における両面イメージセンサチップ200を実装したインターポーザ400の平面図の一例である。この第9の実施の形態のインターポーザ400は、ワイヤボンディングの代わりに溶着により配線が接続される点において第8の実施の形態と異なる。 FIG. 65 is an example of a plan view of the interposer 400 on which the double-sided image sensor chip 200 according to the fifteenth embodiment of the present technology is mounted. The interposer 400 according to the ninth embodiment is different from the eighth embodiment in that wiring is connected by welding instead of wire bonding.
 図66は、本技術の第15の実施の形態における両面イメージセンサチップ200を実装したインターポーザ400の断面図の一例である。同図は、図65のA-A'に沿って切断した際の断面図である。インターポーザ400の配線420は、溶着合金530を用いた溶着により電気的に接続される。溶着合金530として、半田、金(Au)、NiAuなどが用いられる。 FIG. 66 is an example of a cross-sectional view of the interposer 400 on which the double-sided image sensor chip 200 according to the fifteenth embodiment of the present technology is mounted. This figure is a cross-sectional view taken along the line AA ′ of FIG. The wiring 420 of the interposer 400 is electrically connected by welding using a welding alloy 530. As the welding alloy 530, solder, gold (Au), NiAu, or the like is used.
 このように、本技術の第15の実施の形態によれば、溶着により両面イメージセンサチップ200をインターポーザ400に接続したため、ワイヤを用いずに両面イメージセンサチップ200を実装することができる。 Thus, according to the fifteenth embodiment of the present technology, since the double-sided image sensor chip 200 is connected to the interposer 400 by welding, the double-sided image sensor chip 200 can be mounted without using a wire.
 <16.第16の実施の形態>
 上述の第15の実施の形態では、インターポーザ400に配線420のみを形成していたが、ドライバやメモリなどの論理回路をさらに設けることもできる。第16の実施の形態の電子装置100は、インターポーザ400に論理回路をさらに設けた点において第1の実施の形態と異なる。
<16. Sixteenth Embodiment>
In the fifteenth embodiment described above, only the wiring 420 is formed in the interposer 400, but a logic circuit such as a driver or a memory can be further provided. The electronic device 100 according to the sixteenth embodiment differs from the first embodiment in that a logic circuit is further provided in the interposer 400.
 図67は、本技術の第16の実施の形態における両面イメージセンサチップ200を実装したインターポーザ400の平面図の一例である。この第16の実施の形態のインターポーザ400は、論理回路430がさらに実装されている点において第15の実施の形態と異なる。論理回路430としては、ドライバやメモリなどが想定される。 FIG. 67 is an example of a plan view of the interposer 400 on which the double-sided image sensor chip 200 according to the sixteenth embodiment of the present technology is mounted. The interposer 400 of the sixteenth embodiment differs from the fifteenth embodiment in that a logic circuit 430 is further mounted. As the logic circuit 430, a driver or a memory is assumed.
 図68は、本技術の第16の実施の形態における両面イメージセンサチップ200を実装したインターポーザ400の断面図の一例である。同図は、図67のA-A'に沿って切断した際の断面図である。この第16の実施の形態におけるインターポーザ400には、論理回路430がさらに実装され、その上部にガラス180が設けられる。 FIG. 68 is an example of a cross-sectional view of the interposer 400 on which the double-sided image sensor chip 200 according to the sixteenth embodiment of the present technology is mounted. This figure is a cross-sectional view taken along the line AA ′ in FIG. In the interposer 400 in the sixteenth embodiment, a logic circuit 430 is further mounted, and a glass 180 is provided thereon.
 図69は、本技術の第10の実施の形態における両面イメージセンサチップ200の実装前のインターポーザ400の平面図および断面図の一例である。同図におけるaは、両面イメージセンサチップ200の実装前のインターポーザ400の平面図の一例であり、同図におけるbは、その断面図の一例である。同図に例示するように、インターポーザ400には、両面イメージセンサチップ200を載置するための窪みが形成されている。 FIG. 69 is an example of a plan view and a cross-sectional view of the interposer 400 before mounting the double-sided image sensor chip 200 in the tenth embodiment of the present technology. In the figure, a is an example of a plan view of the interposer 400 before the double-sided image sensor chip 200 is mounted, and b in the figure is an example of a cross-sectional view thereof. As illustrated in the figure, the interposer 400 is formed with a recess for mounting the double-sided image sensor chip 200.
 図70は、本技術の第16の実施の形態における両面イメージセンサチップ200を載置したインターポーザ400の平面図および断面図の一例である。同図におけるaは、両面イメージセンサチップ200を載置したインターポーザ400の平面図の一例であり、同図におけるbは、その断面図の一例である。同図に例示するように、インターポーザ400の窪みに両面イメージセンサチップ200が載置される。 FIG. 70 is an example of a plan view and a cross-sectional view of an interposer 400 on which the double-sided image sensor chip 200 according to the sixteenth embodiment of the present technology is placed. A in the same figure is an example of the top view of the interposer 400 which mounted the double-sided image sensor chip 200, and b in the same figure is an example of the sectional view. As illustrated in the figure, the double-sided image sensor chip 200 is placed in the recess of the interposer 400.
 図71は、本技術の第16の実施の形態における溶着合金530を形成したインターポーザ400の平面図および断面図の一例である。同図におけるaは、溶着合金530を形成したインターポーザ400の平面図の一例であり、同図におけるbは、その断面図の一例である。同図に例示するように、接合箇所に、半田などの溶着合金530が形成される。 71 is an example of a plan view and a cross-sectional view of an interposer 400 on which a welding alloy 530 according to a sixteenth embodiment of the present technology is formed. A in the same figure is an example of the top view of the interposer 400 which formed the welding alloy 530, and b in the same figure is an example of the sectional drawing. As illustrated in the figure, a welding alloy 530 such as solder is formed at the joint.
 図72は、本技術の第16の実施の形態における論理回路430を接合したインターポーザ400の平面図および断面図の一例である。同図におけるaは、論理回路430を接合したインターポーザ400の平面図の一例であり、同図におけるbは、その断面図の一例である。同図に例示するように、ドライバやメモリなどの論理回路430がさらに実装される。 72 is an example of a plan view and a cross-sectional view of the interposer 400 joined with the logic circuit 430 according to the sixteenth embodiment of the present technology. A in the figure is an example of a plan view of the interposer 400 to which the logic circuit 430 is joined, and b in the figure is an example of a sectional view thereof. As illustrated in the figure, a logic circuit 430 such as a driver or a memory is further mounted.
 図73は、本技術の第16の実施の形態におけるガラス180で封止した両面イメージセンサチップ200およびインターポーザ400の平面図および断面図の一例である。同図におけるaは、ガラス180で封止した両面イメージセンサチップ200およびインターポーザ400の平面図の一例であり、同図におけるbは、その断面図の一例である。同図に例示するように、ガラス180により封止され、インターポーザ400への実装が完了する。 FIG. 73 is an example of a plan view and a cross-sectional view of the double-sided image sensor chip 200 and the interposer 400 sealed with the glass 180 in the sixteenth embodiment of the present technology. In the figure, a is an example of a plan view of the double-sided image sensor chip 200 and the interposer 400 sealed with glass 180, and b in the figure is an example of a sectional view thereof. As illustrated in the figure, the glass 180 is sealed, and mounting on the interposer 400 is completed.
 なお、溶着により実装されるインターポーザ400に論理回路430を設けているが、第8の実施の形態のように、ワイヤボンディングにより実装されるインターポーザ400に論理回路430を設けてもよい。 Although the logic circuit 430 is provided in the interposer 400 mounted by welding, the logic circuit 430 may be provided in the interposer 400 mounted by wire bonding as in the eighth embodiment.
 このように、本技術の第16の実施の形態によれば、論理回路430をインターポーザ400にさらに実装したため、論理回路430を、インターポーザ400の外部に別途に実装する場合と比較してコストを低減することができる。 Thus, according to the sixteenth embodiment of the present technology, since the logic circuit 430 is further mounted on the interposer 400, the cost is reduced as compared with the case where the logic circuit 430 is separately mounted outside the interposer 400. can do.
 <移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<Application examples to mobile objects>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device that is mounted on any type of mobile body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
 図74は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 74 is a block diagram illustrating a schematic configuration example of a vehicle control system that is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図74に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 74, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. As a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 includes a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism that adjusts and a braking device that generates a braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a headlamp, a back lamp, a brake lamp, a blinker, or a fog lamp. In this case, the body control unit 12020 can be input with radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives input of these radio waves or signals, and controls a door lock device, a power window device, a lamp, and the like of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle on which the vehicle control system 12000 is mounted. For example, the imaging unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image outside the vehicle and receives the captured image. The vehicle outside information detection unit 12030 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or a character on a road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal corresponding to the amount of received light. The imaging unit 12031 can output an electrical signal as an image, or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The vehicle interior information detection unit 12040 detects vehicle interior information. For example, a driver state detection unit 12041 that detects a driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the vehicle interior information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether the driver is asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates a control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside / outside the vehicle acquired by the vehicle outside information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up traveling based on inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, or vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform cooperative control for the purpose of automatic driving that autonomously travels without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on information outside the vehicle acquired by the vehicle outside information detection unit 12030. For example, the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare, such as switching from a high beam to a low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図74の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The sound image output unit 12052 transmits an output signal of at least one of sound and image to an output device capable of visually or audibly notifying information to a vehicle occupant or the outside of the vehicle. In the example of FIG. 74, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図74は、撮像部12031の設置位置の例を示す図である。図75では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。 FIG. 74 is a diagram illustrating an example of the installation position of the imaging unit 12031. In FIG. 75, the imaging unit 12031 includes imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided, for example, at positions such as a front nose, a side mirror, a rear bumper, a back door, and an upper part of a windshield in the vehicle interior of the vehicle 12100. The imaging unit 12101 provided in the front nose and the imaging unit 12105 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirror mainly acquire an image of the side of the vehicle 12100. The imaging unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100. The imaging unit 12105 provided on the upper part of the windshield in the passenger compartment is mainly used for detecting a preceding vehicle or a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図75には、撮像部12101乃至12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112、12113は、それぞれサイドミラーに設けられた撮像部12102、12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101乃至12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 FIG. 75 shows an example of the shooting range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of the imaging part 12104 provided in the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, an overhead image when the vehicle 12100 is viewed from above is obtained.
 撮像部12101乃至12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101乃至12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera including a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101乃至12104から得られた距離情報を基に、撮像範囲12111乃至12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051, based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging ranges 12111 to 12114 and the temporal change in this distance (relative speed with respect to the vehicle 12100). In particular, it is possible to extract, as a preceding vehicle, a three-dimensional object that travels at a predetermined speed (for example, 0 km / h or more) in the same direction as the vehicle 12100, particularly the closest three-dimensional object on the traveling path of the vehicle 12100. it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance before the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. Thus, cooperative control for the purpose of autonomous driving or the like autonomously traveling without depending on the operation of the driver can be performed.
 例えば、マイクロコンピュータ12051は、撮像部12101乃至12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts the three-dimensional object data related to the three-dimensional object to other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, and power poles based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 identifies obstacles around the vehicle 12100 as obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. The microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is connected via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration or avoidance steering via the drive system control unit 12010, driving assistance for collision avoidance can be performed.
 撮像部12101乃至12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101乃至12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101乃至12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101乃至12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether a pedestrian is present in the captured images of the imaging units 12101 to 12104. Such pedestrian recognition is, for example, whether or not the user is a pedestrian by performing a pattern matching process on a sequence of feature points indicating the outline of an object and a procedure for extracting feature points in captured images of the imaging units 12101 to 12104 as infrared cameras. It is carried out by the procedure for determining. When the microcomputer 12051 determines that there is a pedestrian in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 has a rectangular contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to be superimposed and displayed. Moreover, the audio | voice image output part 12052 may control the display part 12062 so that the icon etc. which show a pedestrian may be displayed on a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、図1の両面イメージセンサチップ200は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、撮像部12031のサイズを小さくすることができる。 Heretofore, an example of a vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above. Specifically, the double-sided image sensor chip 200 in FIG. 1 can be applied to the imaging unit 12031. By applying the technology according to the present disclosure to the imaging unit 12031, the size of the imaging unit 12031 can be reduced.
 <4.内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<4. Application example to endoscopic surgery system>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図76は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 76 is a diagram illustrating an example of a schematic configuration of an endoscopic surgery system to which the technology (present technology) according to the present disclosure can be applied.
 図76では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 76 shows a state where an operator (doctor) 11131 is performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000. As shown in the figure, an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as an insufflation tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 that supports the endoscope 11100. And a cart 11200 on which various devices for endoscopic surgery are mounted.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 includes a lens barrel 11101 in which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the proximal end of the lens barrel 11101. In the illustrated example, an endoscope 11100 configured as a so-called rigid mirror having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible lens barrel. Good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening into which the objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. Irradiation is performed toward the observation target in the body cavity of the patient 11132 through the lens. Note that the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image sensor are provided inside the camera head 11102, and reflected light (observation light) from the observation target is condensed on the image sensor by the optical system. Observation light is photoelectrically converted by the imaging element, and an electrical signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU 11201 is configured by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various kinds of image processing for displaying an image based on the image signal, such as development processing (demosaic processing), for example.
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201.
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies irradiation light to the endoscope 11100 when photographing a surgical site or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. A user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 11205 controls the drive of the energy treatment instrument 11112 for tissue ablation, incision, blood vessel sealing, or the like. In order to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the operator's work space, the pneumoperitoneum device 11206 passes gas into the body cavity via the pneumoperitoneum tube 11111. Send in. The recorder 11207 is an apparatus capable of recording various types of information related to surgery. The printer 11208 is a device that can print various types of information related to surgery in various formats such as text, images, or graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 In addition, the light source device 11203 that supplies the irradiation light when the surgical site is imaged to the endoscope 11100 can be configured by, for example, a white light source configured by an LED, a laser light source, or a combination thereof. When a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out. In this case, laser light from each of the RGB laser light sources is irradiated on the observation target in a time-sharing manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing, thereby corresponding to each RGB. It is also possible to take the images that have been taken in time division. According to this method, a color image can be obtained without providing a color filter in the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time. Synchronously with the timing of changing the intensity of the light, the drive of the image sensor of the camera head 11102 is controlled to acquire an image in a time-sharing manner, and the image is synthesized, so that high dynamic without so-called blackout and overexposure A range image can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 11203 may be configured to be able to supply light of a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface of the mucous membrane is irradiated by irradiating light in a narrow band compared to irradiation light (ie, white light) during normal observation. A so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is imaged with high contrast. Alternatively, in special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally administered to the body tissue and applied to the body tissue. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 can be configured to be able to supply narrowband light and / or excitation light corresponding to such special light observation.
 図77は、図76に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 77 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU 11201 shown in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405. The CCU 11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and the CCU 11201 are connected to each other by a transmission cable 11400 so that they can communicate with each other.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. Observation light taken from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The imaging unit 11402 includes an imaging element. One (so-called single plate type) image sensor may be included in the imaging unit 11402, or a plurality (so-called multi-plate type) may be used. In the case where the imaging unit 11402 is configured as a multi-plate type, for example, image signals corresponding to RGB may be generated by each imaging element, and a color image may be obtained by combining them. Alternatively, the imaging unit 11402 may be configured to include a pair of imaging elements for acquiring right-eye and left-eye image signals corresponding to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the surgical site. Note that in the case where the imaging unit 11402 is configured as a multi-plate type, a plurality of lens units 11401 can be provided corresponding to each imaging element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Further, the imaging unit 11402 is not necessarily provided in the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The driving unit 11403 is configured by an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Thereby, the magnification and the focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is configured by a communication device for transmitting and receiving various types of information to and from the CCU 11201. The communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Further, the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information for designating the frame rate of the captured image, information for designating the exposure value at the time of imaging, and / or information for designating the magnification and focus of the captured image. Contains information about the condition.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 Note that the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is configured by a communication device for transmitting and receiving various types of information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Further, the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102. The image signal and the control signal can be transmitted by electrical communication, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various types of image processing on the image signal that is RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various types of control related to imaging of the surgical site by the endoscope 11100 and display of a captured image obtained by imaging of the surgical site. For example, the control unit 11413 generates a control signal for controlling driving of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 Further, the control unit 11413 causes the display device 11202 to display a picked-up image showing the surgical part or the like based on the image signal subjected to the image processing by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects surgical tools such as forceps, specific biological parts, bleeding, mist when using the energy treatment tool 11112, and the like by detecting the shape and color of the edge of the object included in the captured image. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may display various types of surgery support information superimposed on the image of the surgical unit using the recognition result. Surgery support information is displayed in a superimposed manner and presented to the operator 11131, thereby reducing the burden on the operator 11131 and allowing the operator 11131 to proceed with surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 for connecting the camera head 11102 and the CCU 11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, communication is performed by wire using the transmission cable 11400. However, communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100や、撮像部11402に適用され得る。具体的には、両面イメージセンサチップ200は、撮像部11402に適用することができ、電子装置102は、内視鏡11100に適用することができる。内視鏡11100や、撮像部11402本開示に係る技術を適用することにより、それらのサイズを小さくすることができる。 In the foregoing, an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the endoscope 11100 and the imaging unit 11402 among the configurations described above. Specifically, the double-sided image sensor chip 200 can be applied to the imaging unit 11402, and the electronic device 102 can be applied to the endoscope 11100. By applying the technology according to the present disclosure, the size of the endoscope 11100 and the imaging unit 11402 can be reduced.
 <4.体内情報取得システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<4. Application example for in-vivo information acquisition system>
The technology according to the present disclosure (present technology) can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図78は、本開示に係る技術(本技術)が適用され得る、カプセル型内視鏡を用いた患者の体内情報取得システムの概略的な構成の一例を示すブロック図である。 FIG. 78 is a block diagram illustrating an example of a schematic configuration of a patient in-vivo information acquisition system using a capsule endoscope to which the technology (present technology) according to the present disclosure can be applied.
 体内情報取得システム10001は、カプセル型内視鏡10100と、外部制御装置10200とから構成される。 The in-vivo information acquisition system 10001 includes a capsule endoscope 10100 and an external control device 10200.
 カプセル型内視鏡10100は、検査時に、患者によって飲み込まれる。カプセル型内視鏡10100は、撮像機能及び無線通信機能を有し、患者から自然排出されるまでの間、胃や腸等の臓器の内部を蠕動運動等によって移動しつつ、当該臓器の内部の画像(以下、体内画像ともいう)を所定の間隔で順次撮像し、その体内画像についての情報を体外の外部制御装置10200に順次無線送信する。 The capsule endoscope 10100 is swallowed by the patient at the time of examination. The capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside the organ such as the stomach and the intestine by peristaltic motion or the like until it is spontaneously discharged from the patient. Images (hereinafter also referred to as in-vivo images) are sequentially captured at predetermined intervals, and information about the in-vivo images is sequentially wirelessly transmitted to the external control device 10200 outside the body.
 外部制御装置10200は、体内情報取得システム10001の動作を統括的に制御する。また、外部制御装置10200は、カプセル型内視鏡10100から送信されてくる体内画像についての情報を受信し、受信した体内画像についての情報に基づいて、表示装置(図示せず)に当該体内画像を表示するための画像データを生成する。 The external control device 10200 comprehensively controls the operation of the in-vivo information acquisition system 10001. Further, the external control device 10200 receives information about the in-vivo image transmitted from the capsule endoscope 10100 and, based on the received information about the in-vivo image, displays the in-vivo image on the display device (not shown). The image data for displaying is generated.
 体内情報取得システム10001では、このようにして、カプセル型内視鏡10100が飲み込まれてから排出されるまでの間、患者の体内の様子を撮像した体内画像を随時得ることができる。 In the in-vivo information acquisition system 10001, an in-vivo image obtained by imaging the inside of the patient's body can be obtained at any time in this manner until the capsule endoscope 10100 is swallowed and discharged.
 カプセル型内視鏡10100と外部制御装置10200の構成及び機能についてより詳細に説明する。 The configurations and functions of the capsule endoscope 10100 and the external control device 10200 will be described in more detail.
 カプセル型内視鏡10100は、カプセル型の筐体10101を有し、その筐体10101内には、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、給電部10115、電源部10116、及び制御部10117が収納されている。 The capsule endoscope 10100 includes a capsule-type casing 10101. In the casing 10101, a light source unit 10111, an imaging unit 10112, an image processing unit 10113, a wireless communication unit 10114, a power supply unit 10115, and a power supply unit 10116 and the control unit 10117 are stored.
 光源部10111は、例えばLED(Light Emitting Diode)等の光源から構成され、撮像部10112の撮像視野に対して光を照射する。 The light source unit 10111 is composed of a light source such as an LED (Light Emitting Diode), for example, and irradiates the imaging field of the imaging unit 10112 with light.
 撮像部10112は、撮像素子、及び当該撮像素子の前段に設けられる複数のレンズからなる光学系から構成される。観察対象である体組織に照射された光の反射光(以下、観察光という)は、当該光学系によって集光され、当該撮像素子に入射する。撮像部10112では、撮像素子において、そこに入射した観察光が光電変換され、その観察光に対応する画像信号が生成される。撮像部10112によって生成された画像信号は、画像処理部10113に提供される。 The image capturing unit 10112 includes an image sensor and an optical system including a plurality of lenses provided in front of the image sensor. Reflected light (hereinafter referred to as observation light) of light irradiated on the body tissue to be observed is collected by the optical system and enters the image sensor. In the imaging unit 10112, in the imaging element, the observation light incident thereon is photoelectrically converted, and an image signal corresponding to the observation light is generated. The image signal generated by the imaging unit 10112 is provided to the image processing unit 10113.
 画像処理部10113は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって構成され、撮像部10112によって生成された画像信号に対して各種の信号処理を行う。画像処理部10113は、信号処理を施した画像信号を、RAWデータとして無線通信部10114に提供する。 The image processing unit 10113 is configured by a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), and performs various signal processing on the image signal generated by the imaging unit 10112. The image processing unit 10113 provides the radio communication unit 10114 with the image signal subjected to signal processing as RAW data.
 無線通信部10114は、画像処理部10113によって信号処理が施された画像信号に対して変調処理等の所定の処理を行い、その画像信号を、アンテナ10114Aを介して外部制御装置10200に送信する。また、無線通信部10114は、外部制御装置10200から、カプセル型内視鏡10100の駆動制御に関する制御信号を、アンテナ10114Aを介して受信する。無線通信部10114は、外部制御装置10200から受信した制御信号を制御部10117に提供する。 The wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been subjected to signal processing by the image processing unit 10113, and transmits the image signal to the external control apparatus 10200 via the antenna 10114A. In addition, the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A. The wireless communication unit 10114 provides a control signal received from the external control device 10200 to the control unit 10117.
 給電部10115は、受電用のアンテナコイル、当該アンテナコイルに発生した電流から電力を再生する電力再生回路、及び昇圧回路等から構成される。給電部10115では、いわゆる非接触充電の原理を用いて電力が生成される。 The power feeding unit 10115 includes a power receiving antenna coil, a power regeneration circuit that regenerates power from a current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using a so-called non-contact charging principle.
 電源部10116は、二次電池によって構成され、給電部10115によって生成された電力を蓄電する。図1001では、図面が煩雑になることを避けるために、電源部10116からの電力の供給先を示す矢印等の図示を省略しているが、電源部10116に蓄電された電力は、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び制御部10117に供給され、これらの駆動に用いられ得る。 The power supply unit 10116 is composed of a secondary battery, and stores the electric power generated by the power supply unit 10115. In FIG. 1001, illustration of an arrow indicating a power supply destination from the power supply unit 10116 is omitted to avoid the drawing from being complicated, but the power stored in the power supply unit 10116 is not stored in the light source unit 10111. The imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117 can be used for driving them.
 制御部10117は、CPU等のプロセッサによって構成され、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び、給電部10115の駆動を、外部制御装置10200から送信される制御信号に従って適宜制御する。 The control unit 10117 includes a processor such as a CPU, and a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power feeding unit 10115. Control accordingly.
 外部制御装置10200は、CPU,GPU等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイクロコンピュータ若しくは制御基板等で構成される。外部制御装置10200は、カプセル型内視鏡10100の制御部10117に対して制御信号を、アンテナ10200Aを介して送信することにより、カプセル型内視鏡10100の動作を制御する。カプセル型内視鏡10100では、例えば、外部制御装置10200からの制御信号により、光源部10111における観察対象に対する光の照射条件が変更され得る。また、外部制御装置10200からの制御信号により、撮像条件(例えば、撮像部10112におけるフレームレート、露出値等)が変更され得る。また、外部制御装置10200からの制御信号により、画像処理部10113における処理の内容や、無線通信部10114が画像信号を送信する条件(例えば、送信間隔、送信画像数等)が変更されてもよい。 The external control device 10200 is configured by a processor such as a CPU or GPU, or a microcomputer or a control board in which a processor and a storage element such as a memory are mounted. The external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A. In the capsule endoscope 10100, for example, the light irradiation condition for the observation target in the light source unit 10111 can be changed by a control signal from the external control device 10200. In addition, an imaging condition (for example, a frame rate or an exposure value in the imaging unit 10112) can be changed by a control signal from the external control device 10200. Further, the contents of processing in the image processing unit 10113 and the conditions (for example, the transmission interval, the number of transmission images, etc.) by which the wireless communication unit 10114 transmits an image signal may be changed by a control signal from the external control device 10200. .
 また、外部制御装置10200は、カプセル型内視鏡10100から送信される画像信号に対して、各種の画像処理を施し、撮像された体内画像を表示装置に表示するための画像データを生成する。当該画像処理としては、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/若しくは手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の信号処理を行うことができる。外部制御装置10200は、表示装置の駆動を制御して、生成した画像データに基づいて撮像された体内画像を表示させる。あるいは、外部制御装置10200は、生成した画像データを記録装置(図示せず)に記録させたり、印刷装置(図示せず)に印刷出力させてもよい。 Further, the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured in-vivo image on the display device. As the image processing, for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing can be performed. The external control device 10200 controls driving of the display device to display an in-vivo image captured based on the generated image data. Alternatively, the external control device 10200 may cause the generated image data to be recorded on a recording device (not shown) or may be printed out on a printing device (not shown).
 以上、本開示に係る技術が適用され得る体内情報取得システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、カプセル型内視鏡10100に適用され得る。具体的には、電子装置103は、カプセル型内視鏡10100に適用することができる。カプセル型内視鏡10100に本開示に係る技術を適用することにより、そのサイズを小さくすることができる。 Heretofore, an example of the in-vivo information acquisition system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to the capsule endoscope 10100 among the configurations described above. Specifically, the electronic apparatus 103 can be applied to a capsule endoscope 10100. By applying the technique according to the present disclosure to the capsule endoscope 10100, the size can be reduced.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 The above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the invention-specific matters in the claims have a corresponding relationship. Similarly, the invention specific matter in the claims and the matter in the embodiment of the present technology having the same name as this have a corresponding relationship. However, the present technology is not limited to the embodiment, and can be embodied by making various modifications to the embodiment without departing from the gist thereof.
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。 Further, the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it. As this recording medium, for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in this specification are merely examples, and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成もとることができる。
(1)第1表面に配線が形成され、前記第1表面に対する第1裏面に第1光電変換素子が形成された第1センサチップと、
 前記第1表面に接合された第2表面に配線が形成され、前記第1表面に対する第2裏面に第2光電変換素子が形成された第2センサチップと
を具備する固体撮像素子。
(2)前記第1裏面に第1マイクロレンズを保護する保護層とがさらに形成され、
 前記第2裏面に第2マイクロレンズがさらに形成された
請求項1記載の固体撮像素子。
(3)前記第1センサチップは、前記第1光電変換素子が形成された基板と第1配線層とを含み、
 前記第2センサチップは、前記第2光電変換素子が形成された基板と第2配線層とを含む
前記(1)または(2)に記載の固体撮像素子。
(4)前記第2センサチップは、所定の支持基板をさらに含む
前記(3)記載の固体撮像素子。
(5)前記第1配線層および第2配線層の一方は、所定の論理回路を含む
前記(3)記載の固体撮像素子。
(6)前記第1センサチップおよび第2センサチップの一方は、所定の論理回路が形成されたロジック基板をさらに含み、
 前記ロジック基板は、前記第1配線層と前記第2配線層との間に配置される
前記(3)記載の固体撮像素子。
(7)前記ロジック基板内に形成された貫通ビアをさらに具備する
前記(6)記載の固体撮像素子。
(8)前記ロジック基板から前記第2配線層の内部までを貫通する貫通ビアをさらに具備する
前記(6)記載の固体撮像素子。
(9)前記第2裏面には他の保護層がさらに形成される
前記(1)から(8)のいずれかに記載の固体撮像素子。
(10)前記配線は銅配線であり、
 前記第1表面および前記第2表面のそれぞれの前記銅配線がCu-Cu接続により接合されている
前記(1)に記載の固体撮像素子。
(11)前記第1表面および前記第2表面は一酸化ケイ素を含み、
 前記第1表面と前記第2表面とがSiO-SiO接続により接合されている
前記(1)に記載の固体撮像素子。
(12)前記第1表面と前記第2表面とが接着剤により接合されている
前記(1)記載の固体撮像素子。
(13)第1表面に配線が形成され、前記第1表面に対する第1裏面に第1光電変換素子が形成された第1センサチップと、
 前記第1表面に接合された第2表面に配線が形成され、前記第1表面に対する第2裏面に第2光電変換素子が形成された第2センサチップと、
 前記第1裏面に光を導く第1光学系と、
 前記第2裏面に光を導く第2光学系と
を具備する電子装置。
(14)前記第1光学系および第2光学系のそれぞれは、
 物体側レンズと、
 前記物体側レンズからの光を導くレンズ群と
を備える前記(13)記載の電子装置。
(15)前記第1光学系および第2光学系のそれぞれは、
 物体側レンズと、
 前記物体側レンズからの光を屈曲させるミラーと
を備える
前記(13)に記載の電子装置。
(16)前記第1光学系および第2光学系のそれぞれは、前記屈曲した光を導くレンズ群をさらに備える前記(15)記載の電子装置。
(17)配線が形成されたインターポーザをさらに具備し、
 前記第1センサチップおよび第2センサチップは、前記インターポーザに実装される
前記(13)記載の電子装置。
(18)前記第1センサチップおよび第2センサチップは、前記インターポーザにワイヤボンディングにより実装される
前記(17)記載の電子装置。
(19)前記第1センサチップおよび第2センサチップは、前記インターポーザに溶着により実装される
前記(17)記載の電子装置。
(20)前記インターポーザには、論理回路がさらに形成される
前記(17)または(18)に記載の電子装置。
(21)第1光学系および第2光学系をさらに具備し、
 前記電子装置は、内視鏡である
前記(13)に記載の電子装置。
(22)前記第1光学系は、前記内視鏡の側面に設けられ、
 前記第2光学系は、光軸が前記内視鏡の軸方向に平行な第1のレンズを備え、
 前記第1光学系は、
 第2のレンズと、
 前記第2のレンズからの光を屈曲させるミラーと
を備える
前記(21)記載の電子装置。
(23)前記第1光学系および前記第2光学系は、前記内視鏡の側面に設けられる
前記(21)記載の電子装置。
(24)前記第1光学系および前記第2光学系のそれぞれは、
 レンズと、
 前記レンズからの光を屈曲させるミラーと
を備える
前記(23)記載の電子装置。
(25)前記第1光学系および前記第2光学系のそれぞれは、光軸が前記内視鏡の軸方向に平行なレンズを備える
前記(23)記載の電子装置。
(26)第1表面に対する第1裏面に第1光電変換素子が形成された第1センサチップの前記第1表面と第2表面に対する第2裏面に第2光電変換素子が形成された第2センサチップの前記第2表面とを密着させて接合する接合手順と、
 前記第1裏面に第1マイクロレンズを形成する第1マイクロレンズ形成手順と、
 前記第1マイクロレンズが形成された前記第1裏面に保護層を形成する保護層形成手順と、
 前記保護層を下側にして前記第2裏面に第2マイクロレンズを形成する第2マイクロレンズ形成手順と
を具備する固体撮像素子の製造方法。
In addition, this technique can also take the following structures.
(1) a first sensor chip in which wiring is formed on a first surface and a first photoelectric conversion element is formed on a first back surface with respect to the first surface;
A solid-state imaging device comprising: a second sensor chip in which wiring is formed on a second surface bonded to the first surface, and a second photoelectric conversion element is formed on a second back surface with respect to the first surface.
(2) a protective layer for protecting the first microlens is further formed on the first back surface;
The solid-state imaging device according to claim 1, wherein a second microlens is further formed on the second back surface.
(3) The first sensor chip includes a substrate on which the first photoelectric conversion element is formed and a first wiring layer,
The solid-state imaging device according to (1) or (2), wherein the second sensor chip includes a substrate on which the second photoelectric conversion element is formed and a second wiring layer.
(4) The solid-state imaging device according to (3), wherein the second sensor chip further includes a predetermined support substrate.
(5) The solid-state imaging device according to (3), wherein one of the first wiring layer and the second wiring layer includes a predetermined logic circuit.
(6) One of the first sensor chip and the second sensor chip further includes a logic substrate on which a predetermined logic circuit is formed,
The solid-state imaging device according to (3), wherein the logic substrate is disposed between the first wiring layer and the second wiring layer.
(7) The solid-state imaging device according to (6), further including a through via formed in the logic substrate.
(8) The solid-state imaging device according to (6), further including a through via penetrating from the logic substrate to the inside of the second wiring layer.
(9) The solid-state imaging device according to any one of (1) to (8), wherein another protective layer is further formed on the second back surface.
(10) The wiring is a copper wiring,
The solid-state imaging device according to (1), wherein the copper wirings on the first surface and the second surface are joined by Cu—Cu connection.
(11) The first surface and the second surface include silicon monoxide,
The solid-state imaging device according to (1), wherein the first surface and the second surface are joined by SiO—SiO connection.
(12) The solid-state imaging device according to (1), wherein the first surface and the second surface are bonded with an adhesive.
(13) a first sensor chip in which wiring is formed on a first surface and a first photoelectric conversion element is formed on a first back surface with respect to the first surface;
A second sensor chip in which a wiring is formed on a second surface bonded to the first surface, and a second photoelectric conversion element is formed on a second back surface with respect to the first surface;
A first optical system for guiding light to the first back surface;
An electronic apparatus comprising: a second optical system that guides light to the second back surface.
(14) Each of the first optical system and the second optical system includes:
An object side lens;
The electronic device according to (13), further comprising a lens group that guides light from the object side lens.
(15) Each of the first optical system and the second optical system includes:
An object side lens;
The electronic device according to (13), further including a mirror that bends light from the object side lens.
(16) The electronic device according to (15), wherein each of the first optical system and the second optical system further includes a lens group that guides the bent light.
(17) further comprising an interposer in which wiring is formed;
The electronic device according to (13), wherein the first sensor chip and the second sensor chip are mounted on the interposer.
(18) The electronic device according to (17), wherein the first sensor chip and the second sensor chip are mounted on the interposer by wire bonding.
(19) The electronic device according to (17), wherein the first sensor chip and the second sensor chip are mounted on the interposer by welding.
(20) The electronic device according to (17) or (18), wherein a logic circuit is further formed in the interposer.
(21) further comprising a first optical system and a second optical system;
The electronic device according to (13), wherein the electronic device is an endoscope.
(22) The first optical system is provided on a side surface of the endoscope,
The second optical system includes a first lens whose optical axis is parallel to the axial direction of the endoscope,
The first optical system includes:
A second lens;
The electronic device according to (21), further comprising a mirror that bends light from the second lens.
(23) The electronic device according to (21), wherein the first optical system and the second optical system are provided on a side surface of the endoscope.
(24) Each of the first optical system and the second optical system includes:
A lens,
The electronic device according to (23), further comprising a mirror that bends light from the lens.
(25) The electronic device according to (23), wherein each of the first optical system and the second optical system includes a lens having an optical axis parallel to an axial direction of the endoscope.
(26) A second sensor in which a second photoelectric conversion element is formed on the first back surface of the first sensor chip on which the first photoelectric conversion element is formed on the first back surface with respect to the first surface and on the second back surface with respect to the second surface. A bonding procedure for bonding the second surface of the chip in close contact with each other;
A first microlens formation procedure for forming a first microlens on the first back surface;
A protective layer forming procedure for forming a protective layer on the first back surface on which the first microlens is formed;
A method for manufacturing a solid-state imaging device, comprising: a second microlens formation procedure for forming a second microlens on the second back surface with the protective layer facing down.
 100、102、103 電子装置
 101 2眼カメラ
 110、120 フロントレンズ
 121 リアレンズ
 130 表示部
 141、151 ミラー
 142、152 レンズ群
 160 フレキシブルプリント基板
 170 カバーガラス
 180 ガラス
 200 両面イメージセンサチップ
 201 左側センサチップ
 202 右側センサチップ
 210 右側裏面照射型センサ
 211、243 マイクロレンズ
 212、244 カラーフィルタ
 213、246 フォトダイオード
 214、233、245 基板
 215、231、247 配線層
 216、232、248 Cu配線
 217、249 Al-Cu系配線
 218、242 高耐熱材料
 221、222、235、236 貫通ビア
 230 ロジック基板
 234 酸化膜
 240 左側裏面照射型センサ
 241 ガラス
 260 支持基板
 270 ドライバ
 280、430 倫理回路
 290、410 端子
 310、311、367、370 レンズ
 312 薬液吐出口
 313 カンシ出口
 314、368、369 光源
 315、316、366 ミラー
 361 アンテナ
 362 受信部
 363 送信部
 364 蓄積部
 365 試料用空間
 400 インターポーザ
 420 配線
 500 ワイヤ
 510、520 ボール
 530 溶着合金
 10100 カプセル型内視鏡
 11100 内視鏡
 11402、12031 撮像部
100, 102, 103 Electronic device 101 Binocular camera 110, 120 Front lens 121 Rear lens 130 Display unit 141, 151 Mirror 142, 152 Lens group 160 Flexible printed circuit board 170 Cover glass 180 Glass 200 Double-sided image sensor chip 201 Left sensor chip 202 Right Sensor chip 210 Right side back-illuminated sensor 211, 243 Micro lens 212, 244 Color filter 213, 246 Photodiode 214, 233, 245 Substrate 215, 231, 247 Wiring layer 216, 232, 248 Cu wiring 217, 249 Al- Cu system Wiring 218, 242 High heat resistant material 221, 222, 235, 236 Through-via 230 Logic substrate 234 Oxide film 240 Left-side backside illuminated sensor 241 Ga 260 Support substrate 270 Driver 280, 430 Ethics circuit 290, 410 Terminals 310, 311, 367, 370 Lens 312 Chemical solution outlet 313 Outlet 314, 368, 369 Light source 315, 316, 366 Mirror 361 Antenna 362 Receiver 363 Transmitter 364 Storage unit 365 Sample space 400 Interposer 420 Wiring 500 Wire 510, 520 Ball 530 Welding alloy 10100 Capsule endoscope 11100 Endoscope 11402, 12031 Imaging unit

Claims (26)

  1.  第1表面に配線が形成され、前記第1表面に対する第1裏面に第1光電変換素子が形成された第1センサチップと、
     前記第1表面に接合された第2表面に配線が形成され、前記第1表面に対する第2裏面に第2光電変換素子が形成された第2センサチップと
    を具備する固体撮像素子。
    A first sensor chip in which wiring is formed on a first surface and a first photoelectric conversion element is formed on a first back surface with respect to the first surface;
    A solid-state imaging device comprising: a second sensor chip in which wiring is formed on a second surface bonded to the first surface, and a second photoelectric conversion element is formed on a second back surface with respect to the first surface.
  2.  前記第1裏面に第1マイクロレンズを保護する保護層とがさらに形成され、
     前記第2裏面に第2マイクロレンズがさらに形成された
    請求項1記載の固体撮像素子。
    A protective layer for protecting the first microlens is further formed on the first back surface;
    The solid-state imaging device according to claim 1, wherein a second microlens is further formed on the second back surface.
  3.  前記第1センサチップは、前記第1光電変換素子が形成された基板と第1配線層とを含み、
     前記第2センサチップは、前記第2光電変換素子が形成された基板と第2配線層とを含む
    請求項1記載の固体撮像素子。
    The first sensor chip includes a substrate on which the first photoelectric conversion element is formed and a first wiring layer,
    The solid-state imaging device according to claim 1, wherein the second sensor chip includes a substrate on which the second photoelectric conversion element is formed and a second wiring layer.
  4.  前記第2センサチップは、所定の支持基板をさらに含む
    請求項3記載の固体撮像素子。
    The solid-state imaging device according to claim 3, wherein the second sensor chip further includes a predetermined support substrate.
  5.  前記第1配線層および第2配線層の一方は、所定の論理回路を含む
    請求項3記載の固体撮像素子。
    The solid-state imaging device according to claim 3, wherein one of the first wiring layer and the second wiring layer includes a predetermined logic circuit.
  6.  前記第1センサチップおよび第2センサチップの一方は、所定の論理回路が形成されたロジック基板をさらに含み、
     前記ロジック基板は、前記第1配線層と前記第2配線層との間に配置される
    請求項3記載の固体撮像素子。
    One of the first sensor chip and the second sensor chip further includes a logic substrate on which a predetermined logic circuit is formed,
    The solid-state imaging device according to claim 3, wherein the logic substrate is disposed between the first wiring layer and the second wiring layer.
  7.  前記ロジック基板内に形成された貫通ビアをさらに具備する
    請求項6記載の固体撮像素子。
    The solid-state imaging device according to claim 6, further comprising a through via formed in the logic substrate.
  8.  前記ロジック基板から前記第2配線層の内部までを貫通する貫通ビアをさらに具備する
    請求項6記載の固体撮像素子。
    The solid-state imaging device according to claim 6, further comprising a through via penetrating from the logic substrate to the inside of the second wiring layer.
  9.  前記第2裏面には他の保護層がさらに形成される
    請求項1記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein another protective layer is further formed on the second back surface.
  10.  前記配線は銅配線であり、
     前記第1表面および前記第2表面のそれぞれの前記銅配線がCu-Cu接続により接合されている
    請求項1記載の固体撮像素子。
    The wiring is a copper wiring;
    The solid-state imaging device according to claim 1, wherein the copper wirings on the first surface and the second surface are joined by Cu—Cu connection.
  11.  前記第1表面および前記第2表面は一酸化ケイ素を含み、
     前記第1表面と前記第2表面とがSiO-SiO接続により接合されている
    請求項1記載の固体撮像素子。
    The first surface and the second surface comprise silicon monoxide;
    2. The solid-state imaging device according to claim 1, wherein the first surface and the second surface are joined by SiO—SiO connection.
  12.  前記第1表面と前記第2表面とが接着剤により接合されている
    請求項1記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the first surface and the second surface are bonded with an adhesive.
  13.  第1表面に配線が形成され、前記第1表面に対する第1裏面に第1光電変換素子が形成された第1センサチップと、
     前記第1表面に接合された第2表面に配線が形成され、前記第1表面に対する第2裏面に第2光電変換素子が形成された第2センサチップと、
     前記第1裏面に光を導く第1光学系と、
     前記第2裏面に光を導く第2光学系と
    を具備する電子装置。
    A first sensor chip in which wiring is formed on a first surface and a first photoelectric conversion element is formed on a first back surface with respect to the first surface;
    A second sensor chip in which a wiring is formed on a second surface bonded to the first surface, and a second photoelectric conversion element is formed on a second back surface with respect to the first surface;
    A first optical system for guiding light to the first back surface;
    An electronic apparatus comprising: a second optical system that guides light to the second back surface.
  14.  前記第1光学系および第2光学系のそれぞれは、
     物体側レンズと、
     前記物体側レンズからの光を導くレンズ群と
    を備える請求項13記載の電子装置。
    Each of the first optical system and the second optical system is
    An object side lens;
    The electronic device according to claim 13, further comprising a lens group that guides light from the object side lens.
  15.  前記第1光学系および第2光学系のそれぞれは、
     物体側レンズと、
     前記物体側レンズからの光を屈曲させるミラーと
    を備える
    請求項13記載の電子装置。
    Each of the first optical system and the second optical system is
    An object side lens;
    The electronic device of Claim 13 provided with the mirror which bends the light from the said object side lens.
  16.  前記第1光学系および第2光学系のそれぞれは、前記屈曲した光を導くレンズ群をさらに備える請求項15記載の電子装置。 16. The electronic device according to claim 15, wherein each of the first optical system and the second optical system further includes a lens group that guides the bent light.
  17.  配線が形成されたインターポーザをさらに具備し、
     前記第1センサチップおよび第2センサチップは、前記インターポーザに実装される
    請求項13記載の電子装置。
    It further comprises an interposer in which wiring is formed,
    The electronic device according to claim 13, wherein the first sensor chip and the second sensor chip are mounted on the interposer.
  18.  前記第1センサチップおよび第2センサチップは、前記インターポーザにワイヤボンディングにより実装される
    請求項17記載の電子装置。
    The electronic device according to claim 17, wherein the first sensor chip and the second sensor chip are mounted on the interposer by wire bonding.
  19.  前記第1センサチップおよび第2センサチップは、前記インターポーザに溶着により実装される
    請求項17記載の電子装置。
    The electronic device according to claim 17, wherein the first sensor chip and the second sensor chip are mounted on the interposer by welding.
  20.  前記インターポーザには、論理回路がさらに形成される
    請求項17記載の電子装置。
    The electronic device of claim 17, further comprising a logic circuit formed in the interposer.
  21.  第1光学系および第2光学系をさらに具備し、
     前記電子装置は、内視鏡である
    請求項13記載の電子装置。
    A first optical system and a second optical system;
    The electronic device according to claim 13, wherein the electronic device is an endoscope.
  22.  前記第1光学系は、前記内視鏡の側面に設けられ、
     前記第2光学系は、光軸が前記内視鏡の軸方向に平行な第1のレンズを備え、
     前記第1光学系は、
     第2のレンズと、
     前記第2のレンズからの光を屈曲させるミラーと
    を備える
    請求項21記載の電子装置。
    The first optical system is provided on a side surface of the endoscope,
    The second optical system includes a first lens whose optical axis is parallel to the axial direction of the endoscope,
    The first optical system includes:
    A second lens;
    The electronic device according to claim 21, further comprising a mirror that bends light from the second lens.
  23.  前記第1光学系および前記第2光学系は、前記内視鏡の側面に設けられる
    請求項21記載の電子装置。
    The electronic device according to claim 21, wherein the first optical system and the second optical system are provided on a side surface of the endoscope.
  24.  前記第1光学系および前記第2光学系のそれぞれは、
     レンズと、
     前記レンズからの光を屈曲させるミラーと
    を備える
    請求項23記載の電子装置。
    Each of the first optical system and the second optical system includes:
    A lens,
    The electronic device according to claim 23, further comprising a mirror that bends light from the lens.
  25.  前記第1光学系および前記第2光学系のそれぞれは、光軸が前記内視鏡の軸方向に平行なレンズを備える
    請求項23記載の電子装置。
    The electronic device according to claim 23, wherein each of the first optical system and the second optical system includes a lens having an optical axis parallel to an axial direction of the endoscope.
  26.  第1表面に対する第1裏面に第1光電変換素子が形成された第1センサチップの前記第1表面と第2表面に対する第2裏面に第2光電変換素子が形成された第2センサチップの前記第2表面とを密着させて接合する接合手順と、
     前記第1裏面に第1マイクロレンズを形成する第1マイクロレンズ形成手順と、
     前記第1マイクロレンズが形成された前記第1裏面に保護層を形成する保護層形成手順と、
     前記保護層を下側にして前記第2裏面に第2マイクロレンズを形成する第2マイクロレンズ形成手順と
    を具備する固体撮像素子の製造方法。
    The first sensor chip having the first photoelectric conversion element formed on the first back surface with respect to the first surface and the second sensor chip having the second photoelectric conversion element formed on the second back surface with respect to the second surface. A joining procedure for bringing the second surface into close contact with each other;
    A first microlens formation procedure for forming a first microlens on the first back surface;
    A protective layer forming procedure for forming a protective layer on the first back surface on which the first microlens is formed;
    A method for manufacturing a solid-state imaging device, comprising: a second microlens formation procedure for forming a second microlens on the second back surface with the protective layer facing down.
PCT/JP2017/046872 2017-01-18 2017-12-27 Solid-state imaging element, electronic device, and method for manufacturing solid-state imaging element WO2018135261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017006291A JP2018117027A (en) 2017-01-18 2017-01-18 Solid-state imaging element, electronic device, and method for manufacturing solid-state imaging element
JP2017-006291 2017-01-18

Publications (1)

Publication Number Publication Date
WO2018135261A1 true WO2018135261A1 (en) 2018-07-26

Family

ID=62908999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046872 WO2018135261A1 (en) 2017-01-18 2017-12-27 Solid-state imaging element, electronic device, and method for manufacturing solid-state imaging element

Country Status (2)

Country Link
JP (1) JP2018117027A (en)
WO (1) WO2018135261A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170242240A1 (en) * 2016-02-24 2017-08-24 Endochoice, Inc. Circuit Board Assembly for a Multiple Viewing Element Endoscope Using CMOS Sensors
CN111243966A (en) * 2020-01-14 2020-06-05 联合微电子中心有限责任公司 Flexible sensor manufacturing process and flexible sensor
US11563049B2 (en) 2018-03-30 2023-01-24 Sony Semiconductor Solutions Corporation Solid-state imaging apparatus, method for manufacturing solid-state imaging apparatus, and electronic equipment equipped with solid-state imaging apparatus
CN116841032A (en) * 2023-05-31 2023-10-03 极限人工智能有限公司 Endoscope lens, electronic endoscope and image acquisition method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014258A1 (en) 2019-07-19 2021-01-28 株式会社半導体エネルギー研究所 Imaging device and electronic apparatus
KR20220008996A (en) 2020-07-14 2022-01-24 삼성전자주식회사 Image sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10179516A (en) * 1996-12-26 1998-07-07 Matsushita Electric Ind Co Ltd Video scope
JP2004134875A (en) * 2002-10-08 2004-04-30 Seiko Epson Corp Optical module and manufacturing method thereof, circuit board, and electronic apparatus
JP2004355010A (en) * 1996-06-18 2004-12-16 Sony Corp Camera
JP2011082215A (en) * 2009-10-02 2011-04-21 Olympus Corp Image sensor, and imaging unit
US20130285183A1 (en) * 2011-09-16 2013-10-31 Omnivision Technologies, Inc. Dual-facing camera assembly
JP2014165417A (en) * 2013-02-27 2014-09-08 Nikon Corp Semiconductor device
JP2015135938A (en) * 2013-12-19 2015-07-27 ソニー株式会社 Semiconductor device, method of manufacturing semiconductor device, and electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004355010A (en) * 1996-06-18 2004-12-16 Sony Corp Camera
JPH10179516A (en) * 1996-12-26 1998-07-07 Matsushita Electric Ind Co Ltd Video scope
JP2004134875A (en) * 2002-10-08 2004-04-30 Seiko Epson Corp Optical module and manufacturing method thereof, circuit board, and electronic apparatus
JP2011082215A (en) * 2009-10-02 2011-04-21 Olympus Corp Image sensor, and imaging unit
US20130285183A1 (en) * 2011-09-16 2013-10-31 Omnivision Technologies, Inc. Dual-facing camera assembly
JP2014165417A (en) * 2013-02-27 2014-09-08 Nikon Corp Semiconductor device
JP2015135938A (en) * 2013-12-19 2015-07-27 ソニー株式会社 Semiconductor device, method of manufacturing semiconductor device, and electronic apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170242240A1 (en) * 2016-02-24 2017-08-24 Endochoice, Inc. Circuit Board Assembly for a Multiple Viewing Element Endoscope Using CMOS Sensors
US10488648B2 (en) * 2016-02-24 2019-11-26 Endochoice, Inc. Circuit board assembly for a multiple viewing element endoscope using CMOS sensors
US10908407B2 (en) 2016-02-24 2021-02-02 Endochoice, Inc. Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors
US11782259B2 (en) 2016-02-24 2023-10-10 Endochoice, Inc. Circuit board assembly for a multiple viewing elements endoscope using CMOS sensors
US11563049B2 (en) 2018-03-30 2023-01-24 Sony Semiconductor Solutions Corporation Solid-state imaging apparatus, method for manufacturing solid-state imaging apparatus, and electronic equipment equipped with solid-state imaging apparatus
CN111243966A (en) * 2020-01-14 2020-06-05 联合微电子中心有限责任公司 Flexible sensor manufacturing process and flexible sensor
CN116841032A (en) * 2023-05-31 2023-10-03 极限人工智能有限公司 Endoscope lens, electronic endoscope and image acquisition method
CN116841032B (en) * 2023-05-31 2024-06-04 极限人工智能有限公司 Endoscope lens, electronic endoscope and image acquisition method

Also Published As

Publication number Publication date
JP2018117027A (en) 2018-07-26

Similar Documents

Publication Publication Date Title
US10872998B2 (en) Chip size package, method of manufacturing the same, electronic device, and endoscope
WO2018135261A1 (en) Solid-state imaging element, electronic device, and method for manufacturing solid-state imaging element
US11595551B2 (en) Camera module, method of manufacturing camera module, imaging apparatus, and electronic apparatus
WO2018180569A1 (en) Solid-state image capture device and electronic apparatus
WO2017159174A1 (en) Solid state imaging apparatus and manufacturing method of solid state imaging apparatus
WO2018142856A1 (en) Electronic component, camera module
JP2019047237A (en) Imaging apparatus, and electronic equipment, and manufacturing method of imaging apparatus
US12087796B2 (en) Imaging device
JP2019040893A (en) Solid-state imaging device and manufacturing method thereof, and electronic apparatus
US20210265409A1 (en) Solid-state imaging elememt, electronic apparatus, and semiconductor device
WO2020246323A1 (en) Imaging device
WO2018142834A1 (en) Electronic component, camera module, and electronic component production method
WO2020195564A1 (en) Imaging device
WO2020100709A1 (en) Solid state imaging device and electronic instrument
WO2019188131A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2018142727A1 (en) Electronic component and camera module
WO2022118670A1 (en) Imaging device, electronic apparatus, and manufacturing method
WO2017169822A1 (en) Solid-state image capturing element, image capturing device, endoscope device, and electronic instrument
JP7422676B2 (en) Imaging device
JP2019040892A (en) Imaging device, camera module, and electronic device
WO2018180576A1 (en) Semiconductor device, solid-state imaging device, and electronic equipment
WO2021049142A1 (en) Solid-state image-capturing device
WO2020017205A1 (en) Imaging element and electronic device
JP2019220499A (en) Imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892699

Country of ref document: EP

Kind code of ref document: A1