WO2017169366A1 - Base station, terminals and communication method - Google Patents

Base station, terminals and communication method Download PDF

Info

Publication number
WO2017169366A1
WO2017169366A1 PCT/JP2017/006872 JP2017006872W WO2017169366A1 WO 2017169366 A1 WO2017169366 A1 WO 2017169366A1 JP 2017006872 W JP2017006872 W JP 2017006872W WO 2017169366 A1 WO2017169366 A1 WO 2017169366A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
information
base station
setting information
setting
Prior art date
Application number
PCT/JP2017/006872
Other languages
French (fr)
Japanese (ja)
Inventor
良太 山田
宏道 留場
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017169366A1 publication Critical patent/WO2017169366A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a base station device, a terminal device, and a communication method.
  • a base station device (base station, transmitting station, transmission point, downlink transmitting device, uplink) Expand the communication area by adopting a cellular configuration in which multiple areas covered by a receiving station, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) or transmitting station according to the base station apparatus are arranged in a cell shape. can do.
  • frequency utilization efficiency can be improved by using the same frequency between adjacent cells or sectors.
  • next generation mobile communication systems have been studied.
  • technologies called Massive MIMO Multiple Input Multiple Multiple Output
  • FD MIMO Full Dimension MIMO
  • Massive MIMO and FD MIMO large capacity transmission and improved throughput can be expected by beamforming.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station device, a terminal device, and a communication method capable of suppressing the overhead of the reference signal and improving the throughput when a large number of antennas are used. Is to provide.
  • configurations of a base station apparatus, a terminal apparatus, and a communication method according to an aspect of the present invention are as follows.
  • a base station apparatus is a base station apparatus that communicates with a terminal apparatus, and transmits a channel state information reference signal (CSI-RS) and setting information of the CSI-RS to the terminal apparatus. And a receiving unit that receives channel state information (CSI) related to the CSI-RS from the terminal device, and the CSI-RS is transmitted periodically or periodically.
  • the CSI-RS configuration information includes a CSI report type that is information indicating a type related to the CSI report, a CSI-RS configuration information ID that is an ID of CSI-RS configuration information, and a period.
  • the transmission period of the periodic CSI-RS differs depending on the number N of antenna ports of the CSI-RS to be transmitted.
  • the CSI-RS setting information includes a plurality of resource settings, and each of the resource settings includes a number of antenna ports smaller than the number of antenna ports of the CSI-RS. This indicates information where CSI-RS is arranged, and transmits CSI-RS of the number of antenna ports indicated by one or all of the resource settings among the plurality of resource settings.
  • a CSI-RS is transmitted with one resource setting among the plurality of resource settings and with all resource settings of the plurality of resource settings.
  • the transmission period of CSI-RS differs depending on the case.
  • the transmission unit includes a CSI-RS having an antenna port number M (M is a natural number) smaller than an antenna port number N (N is a natural number) of the CSI-RS and
  • M is a natural number
  • N is a natural number
  • the CSI-RS setting information is transmitted, and the CSI-RS setting ID included in the CSI-RS setting information for the antenna port number N and the CSI-RS included in the CSI-RS setting information for the antenna port number M are transmitted.
  • the setting ID is associated.
  • the CSI-RS with N antenna ports and the CSI-RS with M antenna ports are transmitted in different subframes.
  • the aperiodic CSI-RS when the aperiodic CSI-RS is transmitted at the timing of transmitting the periodic CSI-RS, the aperiodic CSI-RS is preferentially transmitted. .
  • a terminal apparatus is a terminal apparatus that communicates with a base station apparatus, and receives a channel state information reference signal (CSI-RS) and setting information of the CSI-RS from the base station apparatus. And a transmission unit that transmits channel state information (CSI) related to the CSI-RS to the base station apparatus, and the CSI-RS is transmitted periodically or periodically.
  • the CSI-RS configuration information is a non-periodic CSI-RS to be transmitted, and the CSI-RS configuration information is a CSI report type that is information indicating a type related to the CSI report and an ID of CSI-RS configuration information It includes ID, periodic CSI-RS information or aperiodic CSI-RS information.
  • the transmission cycle of the periodic CSI-RS differs depending on the number N of antenna ports of the CSI-RS received.
  • the CSI-RS setting information includes a plurality of resource settings, and each of the resource settings includes CSI of an antenna port that is smaller than the number of antenna ports of the CSI-RS.
  • the terminal device when receiving CSI-RS with one resource setting among the plurality of resource settings and receiving CSI-RS with all resource settings of the plurality of resource settings
  • the transmission period of CSI-RS differs depending on the case.
  • the receiving unit receives a CSI-RS having an antenna port number M smaller than the antenna port number N of the CSI-RS and setting information of the CSI-RS,
  • the CSI-RS setting ID included in the CSI-RS setting information for the antenna port number N and the CSI-RS setting ID included in the CSI-RS setting information for the antenna port number M are associated with each other.
  • the CSI-RS with N antenna ports and the CSI-RS with M antenna ports are transmitted in different subframes.
  • the terminal device when the aperiodic CSI-RS is received at the timing of receiving the periodic CSI-RS, the CSI related to the aperiodic CSI-RS is reported.
  • the communication method is a communication method in a base station device that communicates with a terminal device, and includes a channel state information reference signal (CSI-RS) and setting information of the CSI-RS as the terminal device. And a reception step of receiving channel state information (CSI) related to the CSI-RS from the terminal device, wherein the CSI-RS is transmitted periodically or periodically.
  • the CSI-RS setting information is a CSI report type which is information indicating a type related to the CSI report and a CSI-RS setting which is an ID of the CSI-RS setting information.
  • Information ID, information on periodic CSI-RS, or information on aperiodic CSI-RS are included.
  • the communication method of the present invention is a communication method in a terminal apparatus that communicates with a base station apparatus, and receives a channel state information reference signal (CSI-RS) and setting information of the CSI-RS from the base station apparatus.
  • the CSI-RS setting information includes a CSI report type that is information indicating a type related to the CSI report and a CSI-RS setting information ID that is an ID of the CSI-RS setting information. , Information on periodic CSI-RS or information on aperiodic CSI-RS.
  • the overhead of the reference signal can be suppressed and the throughput can be improved.
  • the communication system in this embodiment includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) and terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving terminal).
  • a base station device transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB
  • terminal device terminal, mobile terminal, receiving point, receiving terminal, receiving terminal.
  • Device receiving antenna group, receiving antenna port group, UE.
  • a base station apparatus connected to a terminal apparatus (establishing a radio link) is called a serving cell.
  • the base station apparatus and the terminal apparatus in the present embodiment are a frequency band called a licensed band (licensed band) obtained from a country or region where a wireless provider provides a service (license), and / or Communication is possible in a so-called unlicensed band that does not require a license from the country or region.
  • a licensed band obtained from a country or region where a wireless provider provides a service (license)
  • / or Communication is possible in a so-called unlicensed band that does not require a license from the country or region.
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment.
  • the communication system according to the present embodiment includes a base station device 1A and terminal devices 2A and 2B.
  • the coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device.
  • the terminal devices 2A and 2B are also collectively referred to as the terminal device 2.
  • the following uplink physical channels are used in uplink radio communication from the terminal apparatus 2A to the base station apparatus 1A.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • -PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • the PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI).
  • UCI Uplink Control Information
  • the uplink control information includes ACK (a positive acknowledgement) or NACK (a negative acknowledgement) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH).
  • ACK / NACK for downlink data is also referred to as HARQ-ACK and HARQ feedback.
  • the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. Further, the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of an uplink shared channel (Uplink-Shared Channel: UL-SCH).
  • the channel state information includes a rank index RI (Rank Indicator) designating a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) designating a suitable precoder, and a channel quality index CQI designating a suitable transmission rate. (Channel Quality Indicator), CSI-RS (Reference Signal) indicating a suitable CSI-RS resource, resource index CRI (CSI-RS ⁇ ⁇ Resource Indication), and the like.
  • the channel quality index CQI (hereinafter referred to as CQI value) is a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and coding rate in a predetermined band (details will be described later). It can.
  • the CQI value can be an index (CQI Index) determined by the change method and coding rate.
  • the CQI value may be determined in advance by the system.
  • the rank index and the precoding quality index can be determined in advance by the system.
  • the rank index and the precoding matrix index can be indexes determined by the spatial multiplexing number and precoding matrix information.
  • the values of the rank index, the precoding matrix index, and the channel quality index CQI are collectively referred to as CSI values.
  • the PUSCH is used for transmitting uplink data (uplink transport block, UL-SCH). Moreover, PUSCH may be used to transmit ACK / NACK and / or channel state information together with uplink data. Moreover, PUSCH may be used in order to transmit only uplink control information.
  • PUSCH is used to transmit an RRC message.
  • the RRC message is information / signal processed in a radio resource control (Radio-Resource-Control: -RRC) layer.
  • the PUSCH is used to transmit a MAC CE (Control Element).
  • the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
  • the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the power headroom level.
  • PRACH is used to transmit a random access preamble.
  • an uplink reference signal (Uplink Reference Signal: UL SRS) is used as an uplink physical signal.
  • the uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
  • DMRS is related to transmission of PUSCH or PUCCH.
  • base station apparatus 1A uses DMRS to perform propagation channel correction for PUSCH or PUCCH.
  • SRS is not related to PUSCH or PUCCH transmission.
  • the base station apparatus 1A uses SRS to measure the uplink channel state.
  • the following downlink physical channels are used in downlink radio communication from the base station apparatus 1A to the terminal apparatus 2A.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel: HARQ instruction channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices.
  • MIB Master Information Block
  • BCH Broadcast Channel
  • PCFICH is used for transmitting information indicating a region (for example, the number of OFDM symbols) used for transmission of PDCCH.
  • PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by the base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK.
  • the terminal device 2A notifies the received ACK / NACK to the upper layer.
  • ACK / NACK is ACK indicating that the data has been correctly received, NACK indicating that the data has not been correctly received, and DTX indicating that there is no corresponding data. Further, when there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of ACK.
  • DCI Downlink Control Information
  • a plurality of DCI formats are defined for transmission of downlink control information. That is, fields for downlink control information are defined in the DCI format and mapped to information bits.
  • a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined as a DCI format for the downlink.
  • the DCI format for the downlink includes information on PDSCH resource allocation, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as a TPC command for PUCCH.
  • the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
  • DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
  • the DCI format for uplink includes information on PUSCH resource allocation, information on MCS for PUSCH, and uplink control information such as TPC command for PUSCH.
  • the DCI format for the uplink is also referred to as uplink grant (or uplink assignment).
  • the DCI format for uplink can be used to request downlink channel state information (CSI: “Channel State Information”, also referred to as reception quality information).
  • CSI Downlink Channel State Information
  • the DCI format for the uplink can be used for setting indicating an uplink resource for mapping a channel state information report (CSI feedback report) that the terminal apparatus feeds back to the base station apparatus.
  • the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
  • the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information irregularly.
  • the base station apparatus can set either the periodic channel state information report or the irregular channel state information report. Further, the base station apparatus can set both the periodic channel state information report and the irregular channel state information report.
  • the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal apparatus feeds back to the base station apparatus.
  • Types of channel state information reports include wideband CSI (for example, Wideband CQI) and narrowband CSI (for example, Subband CQI).
  • the terminal apparatus When the PDSCH resource is scheduled using the downlink assignment, the terminal apparatus receives the downlink data on the scheduled PDSCH. In addition, when PUSCH resources are scheduled using an uplink grant, the terminal apparatus transmits uplink data and / or uplink control information using the scheduled PUSCH.
  • the PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • the PDSCH is used to transmit a system information block type 1 message.
  • the system information block type 1 message is cell specific (cell specific) information.
  • PDSCH is used to transmit a system information message.
  • the system information message includes a system information block X other than the system information block type 1.
  • the system information message is cell specific (cell specific) information.
  • PDSCH is used to transmit an RRC message.
  • the RRC message transmitted from the base station apparatus may be common to a plurality of terminal apparatuses in the cell.
  • the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • the PDSCH is used to transmit the MAC CE.
  • the RRC message and / or MAC CE is also referred to as higher layer signaling.
  • PDSCH can be used to request downlink channel state information.
  • the PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • CSI feedback report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
  • the types of downlink channel state information reports include wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI).
  • the broadband CSI calculates one channel state information for the system band of the cell.
  • the narrowband CSI the system band is divided into predetermined units, and one channel state information is calculated for the division.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals.
  • the downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
  • the synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain.
  • the downlink reference signal is used by the terminal device for channel correction of the downlink physical channel.
  • the downlink reference signal is used by the terminal device to calculate downlink channel state information.
  • the downlink reference signal includes CRS (Cell-specific Reference Signal: Cell-specific reference signal), URS related to PDSCH (UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal), EPDCCH Related DMRS (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Chanel State Information Information Reference Signal), and ZP CSI-RS (Zero Power Channel Information State Information Reference Signal) are included.
  • CRS Cell-specific Reference Signal: Cell-specific reference signal
  • URS related to PDSCH UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal
  • EPDCCH Related DMRS Demodulation Reference Signal
  • NZP CSI-RS Non-Zero Power Chanel State Information Information Reference Signal
  • ZP CSI-RS Zero Power Channel Information State Information Reference Signal
  • CRS is transmitted in the entire band of the subframe, and is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH.
  • the URS associated with the PDSCH is transmitted in subframes and bands used for transmission of the PDSCH associated with the URS, and is used to demodulate the PDSCH associated with the URS.
  • DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS.
  • DMRS is used to demodulate the EPDCCH with which DMRS is associated.
  • NZP CSI-RS resources are set by the base station apparatus 1A.
  • the terminal device 2A performs signal measurement (channel measurement) using NZP CSI-RS.
  • the resource of ZP CSI-RS is set by the base station apparatus 1A.
  • the base station apparatus 1A transmits ZP CSI-RS with zero output.
  • the terminal device 2A measures interference in a resource supported by NZP CSI-RS.
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • the MBSFN RS is used for PMCH demodulation.
  • PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in the MAC layer is referred to as a transport channel.
  • the unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit).
  • the transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
  • a base station device can communicate with a terminal device that supports carrier aggregation (CA: CarriergAggregation) by integrating multiple component carriers (CC: Component Carrier) for wider band transmission.
  • CA CarriergAggregation
  • CC Component Carrier
  • carrier aggregation one primary cell (PCell: Primary Cell) and one or more secondary cells (SCell: Secondary Cell) are set as a set of serving cells.
  • a master cell group MCG: Master Cell Group
  • SCG Secondary Cell Group
  • the MCG is composed of a PCell and optionally one or more SCells.
  • the SCG is composed of a primary SCell (PSCell) and optionally one or more SCells.
  • the base station apparatus can transmit CSI-RS setting information to the terminal apparatus.
  • the CSI-RS setting information includes part or all of the number of antenna ports, resource settings, and subframe settings.
  • the resource setting is information regarding the resource where the CSI-RS is arranged.
  • the subframe setting is information related to a subframe in which CSI-RS is arranged and a cycle in which CSI-RS is transmitted (a cycle in which CSI-RS resources are set).
  • non-precoded also referred to as CLASS A
  • / or beamformed also referred to as CLASS B
  • eMIMO type CSI report type
  • a CSI-RS in which non-precoded (CLASS A) is set is also called non-precoded CSI-RS (NP CSI-RS, first CSI-RS)
  • CSI-RS in which beamformed (CLASS B) is set RS is also referred to as (BFSICSI-RS, second CSI-RS).
  • the base station apparatus can transmit information indicating whether it is NP CSI-RS or BF CSI-RS to the terminal apparatus.
  • the terminal device receives information indicating whether it is NP CSI-RS or BF CSI-RS from the base station device, and can know whether the set CSI-RS is NP CSI-RS or BF CSI-RS.
  • NP-CSI-RS and / or BF CSI-RS are used for CSI measurement, RRM (Radio Resource Manager) measurement, RLM (Radio Link Monitoring) measurement, and the like.
  • the base station apparatus associates at least CSI-RS for channel measurement with CSI-IM (Interference Measurement) for interference measurement to upper layer signaling, and performs settings related to a procedure for calculating channel state information (CSI Process).
  • the CSI process includes the CSI process ID, CSI-RS setting information, CSI-RS setting ID, NP CSI-RS or BF CSI-RS information (eMIMO type, CSI report type), NP CSI-RS Part or all of the setting information and BF CSI-RS setting information can be included.
  • the base station apparatus can set one or more CSI processes.
  • the base station apparatus can generate CSI feedback independently for each CSI process.
  • the base station apparatus can set the CSI-RS resource and the CSI-IM differently for each CSI process.
  • one or more CSI processes are set, and CSI reporting is performed independently for each set CSI process.
  • the CSI process is set in a predetermined transmission mode.
  • one CSI-RS resource is set.
  • one CSI-RS resource can be composed of a plurality of CSI-RS resource settings. The number of antenna ports in each of the plurality of CSI-RS resources may be the same or different.
  • a 12-port CSI-RS resource is composed of three 4-port CSI-RS resources.
  • a 16-port CSI-RS resource is configured by two 8-port CSI-RS resources.
  • a 20-port CSI-RS resource includes a 12-port CSI-RS resource configuration and an 8-port CSI-RS resource.
  • a 24-port CSI-RS resource includes three 8-port CSI-RS resources and two 12-port CSI-RS resources.
  • the 28-port CSI-RS resource is configured by a 12-port CSI-RS resource, a 16-port CSI-RS resource, and seven 4-port CSI-RS resources.
  • the 32-port CSI-RS resource includes two 16-port CSI-RS resources and four 8-port CSI-RSs.
  • the configuration of the CSI-RS resource for each number of antenna ports is an example, and the present invention is not limited to this.
  • the base station apparatus can transmit the NP CSI-RS by spreading it with a plurality of spreading factors (spreading code lengths). Further, the base station apparatus can transmit information indicating which spreading factor (spreading code length) is used to the terminal apparatus. That is, the terminal device can know the spreading factor (spreading code length) used for the NP CSI-RS from information indicating which spreading factor (spreading code length) received from the base station device is used.
  • the base station apparatus may set different OFDM symbols and subcarrier intervals for spreading one NP CSI-RS based on the number of CSI-RS ports. it can. For example, when the number of CSI-RS ports is equal to or less than a predetermined value (for example, 16), the base station apparatus may include a plurality of OFDM symbols that spread one NP CSI-RS in one slot. When the number of CSI-RS ports exceeds a predetermined value, multiple OFDM symbols that spread one NP CSI-RS shall be set to be included in 2 slots (or subframes) Can do.
  • a predetermined value for example, 16
  • the base station apparatus can set the CSI-RS resource setting over a plurality of subframes. For example, when the base station apparatus sets m as a natural number and sets a 20-port CSI-RS resource, the base station apparatus sets a 12-port CSI-RS resource for the m-th subframe, and sets it to the (m + 1) -th subframe. An 8-port CSI-RS resource can be set.
  • the above is an example and is not limited to continuous subframes. That is, the base station apparatus according to this embodiment can set a plurality of subframes as subframes for setting a CSI-RS port when setting a plurality of CSI-RS ports for a terminal apparatus. .
  • the setting period (CSI-RS resource transmission period, CSI-RS resource setting period) is set for each subframe. It can be different or the same.
  • the base station apparatus transmits signals other than CSI-RS to at least one CSI-RS resource (or resource setting) among a plurality of CSI-RS resources (or resource settings) set for the terminal apparatus. Can be arranged.
  • the base station apparatus can set, in the terminal apparatus, setting information (CSI-RS subset restriction information, CSI-RS Subset Restriction) indicating CSI-RS resources in which signals other than CSI-RS are arranged.
  • the cycle in which the base station device sets the CSI-RS subset restriction information in the terminal device can be the same as the cycle in which the base station device sets the CSI-RS resource in the terminal device, or can be a different cycle. .
  • the number of CSI-RS antenna ports set by the base station device to the terminal device can be limited according to the contents of the DCI, DCI format, or DCI format that the base station device notifies the terminal device. .
  • the base station apparatus sets the transmission mode of the uplink transmission of the terminal apparatus by DCI
  • the base station apparatus sets the CSI to be set for the terminal apparatus.
  • the number of RS ports can be limited to a predetermined number (for example, 16 or less). As the number of CSI-RS ports increases, the amount of CSI feedback information included in the signal transmitted by the terminal device in uplink transmission increases. Therefore, the base station device can support (can transmit) the amount of CSI feedback information.
  • a CSI-RS resource having more than 16 ports can be set for a terminal device that can set the mode.
  • the base station apparatus can transmit to a terminal apparatus capable of supporting (transmitting) the amount of CSI feedback information with a predetermined number or more (for example, more than 16 ports) of antenna ports.
  • the base station apparatus can transmit NP CSI-RS setting information to the terminal apparatus.
  • the NP CSI-RS setting information includes the number of antenna ports, information on codebook subset restriction (CBSR: Codebook ⁇ Subset Restriction), information on codebooks, and interference that specifies whether to limit resources when measuring interference. Includes measurement limitations, one or more resource settings, and some or all of spreading code length.
  • CBSR Codebook ⁇ Subset Restriction
  • the base station apparatus can set the number of antenna ports and resource settings in association with each other. For example, when the NP CSI-RS setting information includes a plurality of antenna port numbers and a plurality of one or more resource settings, each of the antenna port numbers is associated with each of the one or more resource settings.
  • the CSI-RS transmission overhead can be reduced by lengthening the CSI-RS transmission period (interval) or the CSI-RS resource setting period related to the vertical beam. For example, in the case of 8 antenna ports in the horizontal direction and 4 antenna ports in the vertical direction, the total is 32 antenna ports. At this time, as shown in FIG.
  • the base station apparatus can transmit the 8-port CSI-RS in the horizontal direction at the cycle TH and the 32-port CSI-RS at the cycle TV.
  • TH ⁇ TV.
  • the 8-port CSI-RS setting information may be included in the 32-port CSI-RS setting information, or the 8-port CSI-RS setting information and the 32-port CSI-RS setting information may be set as different settings. good. If the 8-port CSI-RS setting information and the 32-port CSI-RS setting information are different settings, the two setting information must be linked.
  • the CSI-RS setting ID included in the 8-port CSI-RS setting information and the CSI-RS setting ID included in the 32-port CSI-RS setting information may be the same.
  • the terminal device can calculate and report CSI in consideration of CSI related to the same CSI-RS setting ID.
  • the reference destination ID can be included in the 8-port or 32-port CSI-RS setting information.
  • the terminal device can calculate and report the CSI in consideration of the CSI related to the reference destination ID.
  • the base station device transmits 8-port CSI-RS or 32-port CSI-RS, and therefore continues to transmit 32-port CSI-RS.
  • the base station apparatus can include the CSI-RS transmission period in the NP CSI-RS setting information.
  • the terminal device when the 32-port CSI-RS is set, the terminal device has transmitted 8-port CSI-RS from the CSI-RS and / or NP CSI-RS setting information received from the base station device. , It is possible to determine (specify) whether 32-port CSI-RS has been transmitted. Further, when the 32-port CSI-RS is set and the 8-port CSI-RS is received, the terminal apparatus calculates the CQI / PMI / RI from the 8-port CSI-RS and reports it to the base station apparatus. Alternatively, the 8-port CQI / PMI / RI can be calculated and reported to the base station apparatus using the 32-port CQI / PMI / RI calculated in the previous report.
  • the base station apparatus can also set a long CSI-RS transmission period in the case of a large number of antenna ports. That is, the CSI-RS transmission cycle that can be set can be changed depending on the number of antenna ports. For example, a longer period is set when the number of antenna ports is more than 16 than when the number of antenna ports is 16 or less. For example, when the number of CSI-RS antenna ports is greater than 16, the base station apparatus can include the CSI-RS transmission period in the CSI-RS setting information or the NP CSI-RS setting information.
  • BF CSI-RS one or more CSI-RS resources are set.
  • the number of CSI-RS resources is K (K is a natural number).
  • At least one of the plurality of CSI-RSs is beam-formed so as to have different beam directions.
  • the maximum number of antenna ports for BF CSI-RS is smaller than the maximum number of antenna ports for NP CSI-RS.
  • the CSI-RS ID is set, one or more CSI-RS IDs are set in the BF CSI-RS.
  • the terminal apparatus selects a suitable CSI-RS resource from a plurality of CSI-RS resources, and reports CQI / PMI / RI / CRI as CSI to the base station apparatus.
  • BF CSI-RS configuration information includes one or more CSI-RS configuration IDs, interference measurement restrictions, information on codebook subset restrictions (CBSR: Codebook Subset Restriction), and other information on 4 ports for each CSI-RS configuration ID. It includes a part or a plurality of channel measurement restrictions that are settings of whether or not to restrict the resource (subframe) at the time of channel measurement, information on the codebook instruction, information on the BF CSI-RS codebook.
  • CBSR Codebook Subset Restriction
  • the base station device can obtain the channel information of the terminal device by the CSI report from the terminal device.
  • the terminal apparatus can report CQI / PMI / RI to the base station apparatus when NP CSI-RS (CLASSRIA) is set.
  • NP CSI-RS CLASSRIA
  • BF CSI-RS CLASS B
  • CQI / PMI / RI / CRI can be reported to the base station apparatus.
  • NP CSI-RS and BF CSI-RS also called CLASS C
  • the terminal device reports CSI related to NP CSI-RS and CSI related to BF CSI-RS.
  • the base station apparatus can change the transmission cycle of NP CSI-RS and the transmission cycle of BF CSI-RS. For example, the base station apparatus can set the transmission cycle of NP CSI-RS to be longer than the transmission cycle of BF CSI-RS.
  • the terminal apparatus reports CQI / PMI / RI / CRI for each of the set BF CSI-RSs to the base station apparatus.
  • the terminal device selects a suitable BF CSI-RS resource from all the set BF CSI-RS resources, and reports the CQI / PMI / RI / CRI of the BF CSI-RS to the base station device.
  • Periodic CSI-RS is Periodic CSI-RS (P-CSI-RS, Periodic CSI-RS), Aperiodic CSI-RS is Periodic CSI-RS (A-CSI-RS, Aperiodic CSI-RS) ).
  • A-CSI-RS is transmitted at a timing indicated by the base station apparatus.
  • the terminal apparatus receives the A-CSI-RS at a timing instructed from the base station apparatus by control information or the like.
  • P-CSI-RS configuration information and / or A-CSI-RS configuration information is transmitted by higher layer signaling or physical layer signaling such as downlink control information.
  • the setting information of A-CSI-RS includes part or all of the number of antenna ports, CSI-RS setting ID, resource setting, CSI report type, and subframe (resource) for reporting CSI. Also, the P-CSI-RS setting information and / or the A-CSI-RS setting information can be included in the CSI-RS setting information.
  • the base station apparatus transmits CSI-RS in the same subframe (slot) as the downlink control information.
  • the terminal apparatus receives the A-CSI-RS in the same subframe (slot) as the downlink control information. To do. As described above, since the A-CSI-RS is transmitted at a certain timing, the CSI-RS is not transmitted unnecessarily, so that the overhead of the CSI-RS can be reduced.
  • the terminal device gives priority to A-CSI-RS and reports CSI and the like.
  • NP CSI-RS is set as P-CSI-RS and BF CSI-RS is received as A-CSI-RS
  • the terminal device reports CSI related to BF CSI-RS.
  • NP CSI-RS is set as P-CSI-RS and NP CSI-RS is received as A-CSI-RS
  • the terminal device reports CSI related to NP CSI-RS.
  • the initial value for generating the P-CSI-RS sequence and the initial value for generating the A-CSI-RS sequence can be changed.
  • the initial value of the P-CSI-RS sequence can be a physical cell ID
  • A-CSI-RS can be a user-specific ID.
  • the terminal device can determine whether the received CSI-RS is P-CSI-RS or A-CSI-RS by knowing the initial value of the CSI-RS sequence.
  • FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 1A in the present embodiment.
  • the base station apparatus 1 ⁇ / b> A performs transmission / reception with an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmission unit (transmission step) 103, and a reception unit (reception step) 104.
  • An antenna 105 is included.
  • the upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012.
  • the transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, a radio A transmission unit (wireless transmission step) 1035 is included.
  • the reception unit 104 includes a wireless reception unit (wireless reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
  • the upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Resource (Control: RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC radio resource control
  • upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
  • the upper layer processing unit 101 receives information related to the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal apparatus transmits its own function to the base station apparatus using an upper layer signal.
  • information on a terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has introduced a predetermined function and has completed a test.
  • whether or not to support a predetermined function includes whether or not installation and testing for the predetermined function have been completed.
  • the terminal device transmits information (parameters) indicating whether the predetermined function is supported.
  • the terminal device does not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
  • the radio resource control unit 1011 generates or acquires downlink data (transport block), system information, RRC message, MAC CE, and the like arranged on the downlink PDSCH from the upper node.
  • the radio resource control unit 1011 outputs downlink data to the transmission unit 103 and outputs other information to the control unit 102.
  • the radio resource control unit 1011 manages various setting information of the terminal device.
  • the scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are allocated, the coding rate and modulation scheme (or MCS) of the physical channels (PDSCH and PUSCH), transmission power, and the like.
  • the scheduling unit 1012 outputs the determined information to the control unit 102.
  • the scheduling unit 1012 generates information used for physical channel (PDSCH and PUSCH) scheduling based on the scheduling result.
  • the scheduling unit 1012 outputs the generated information to the control unit 102.
  • the control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the higher layer processing unit 101.
  • the control unit 102 generates downlink control information based on the information input from the higher layer processing unit 101 and outputs the downlink control information to the transmission unit 103.
  • the transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Then, PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the terminal apparatus 2 via the transmission / reception antenna 105.
  • the encoding unit 1031 uses a predetermined encoding method such as block encoding, convolutional encoding, and turbo encoding for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Encoding is performed using the encoding method determined by the radio resource control unit 1011.
  • the modulation unit 1032 converts the encoded bits input from the encoding unit 1031 into BPSK (Binary Phase Shift Shift Keying), QPSK (quadrature Phase Shift Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, and the like. Or it modulates with the modulation system which the radio
  • the downlink reference signal generation unit 1033 refers to a sequence known by the terminal apparatus 2A, which is obtained by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station apparatus 1A. Generate as a signal.
  • PCI physical cell identifier
  • the multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element.
  • the radio transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed modulation symbol and the like, and adds a cyclic prefix (cyclic prefix: CP) to the OFDM symbol.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmission / reception antenna 105 in accordance with the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. .
  • the radio reception unit 1041 converts an uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained.
  • the level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal that has been demodulated is converted into a digital signal.
  • the wireless reception unit 1041 removes a portion corresponding to the CP from the converted digital signal.
  • Radio receiving section 1041 performs fast Fourier transform (FFT) on the signal from which CP has been removed, extracts a signal in the frequency domain, and outputs the signal to demultiplexing section 1042.
  • FFT fast Fourier transform
  • the demultiplexing unit 1042 demultiplexes the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 1011 by the base station apparatus 1A and notified to each terminal apparatus 2.
  • the demultiplexing unit 1042 compensates for the propagation paths of the PUCCH and PUSCH. Further, the demultiplexing unit 1042 demultiplexes the uplink reference signal.
  • the demodulator 1043 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH to obtain modulation symbols, and for each of the PUCCH and PUSCH modulation symbols, BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc.
  • IDFT inverse discrete Fourier transform
  • the received signal is demodulated by using a modulation method determined or notified in advance by the own device to each of the terminal devices 2 using an uplink grant.
  • the decoding unit 1044 uses the coding rate of the demodulated PUCCH and PUSCH in a predetermined encoding method, the predetermined coding method, or the coding rate notified by the own device to the terminal device 2 using the uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing section 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the demodulated coded bits.
  • FIG. 4 is a schematic block diagram showing the configuration of the terminal device 2 in the present embodiment.
  • the terminal device 2A includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a channel state.
  • An information generation unit (channel state information generation step) 205 and a transmission / reception antenna 206 are included.
  • the upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012.
  • the transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio A transmission unit (wireless transmission step) 2035 is included.
  • the reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, and a signal detection unit (signal detection step) 2043.
  • the upper layer processing unit 201 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 203. Further, the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. Process the (Radio Resource Control: RRC) layer.
  • Medium Access Control Medium Access Control: MAC
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
  • the radio resource control unit 2011 manages various setting information of the own terminal device. Also, the radio resource control unit 2011 generates information arranged in each uplink channel and outputs the information to the transmission unit 203.
  • the radio resource control unit 2011 acquires setting information regarding CSI feedback transmitted from the base station apparatus, and outputs the setting information to the control unit 202.
  • the scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines scheduling information.
  • the scheduling information interpretation unit 2012 generates control information for controlling the reception unit 204 and the transmission unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
  • the control unit 202 generates a control signal for controlling the receiving unit 204, the channel state information generating unit 205, and the transmitting unit 203 based on the information input from the higher layer processing unit 201.
  • the control unit 202 controls the reception unit 204 and the transmission unit 203 by outputting the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203.
  • the control unit 202 controls the transmission unit 203 to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus.
  • the receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 1A via the transmission / reception antenna 206 according to the control signal input from the control unit 202, and sends the decoded information to the upper layer processing unit 201. Output.
  • the radio reception unit 2041 converts a downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases the amplification level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
  • the wireless reception unit 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
  • the demultiplexing unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal. Further, the demultiplexing unit 2042 performs channel compensation of PHICH, PDCCH, and EPDCCH based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and Output. In addition, control unit 202 outputs PDSCH and the channel estimation value of the desired signal to signal detection unit 2043.
  • the signal detection unit 2043 detects a signal using the PDSCH and the channel estimation value, and outputs the signal to the higher layer processing unit 201.
  • the transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 201, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 1A via the transmission / reception antenna 206.
  • the encoding unit 2031 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 201. Also, the coding unit 2031 performs turbo coding based on information used for PUSCH scheduling.
  • the modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
  • the uplink reference signal generation unit 2033 has a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station apparatus 1A, a bandwidth for arranging an uplink reference signal, and an uplink grant.
  • a sequence determined by a predetermined rule is generated on the basis of the cyclic shift and the parameter value for generating the DMRS sequence notified in (1).
  • the multiplexing unit 2034 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 202, and then performs a discrete Fourier transform (DFT). Also, the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
  • DFT discrete Fourier transform
  • the wireless transmission unit 2035 performs inverse fast Fourier transform (Inverse Fast Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, generates SC-FDMA symbols, and generates the generated SC-FDMA symbols.
  • IFFT inverse fast Fourier transform
  • CP is added to baseband digital signal, baseband digital signal is converted to analog signal, excess frequency component is removed, converted to carrier frequency by up-conversion, power amplification, transmission / reception antenna It outputs to 206 and transmits.
  • the program that operates in the apparatus related to the present invention may be a program that controls the central processing unit (CPU) or the like to function the computer so as to realize the functions of the above-described embodiments related to the present invention.
  • the program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • volatile memory such as Random Access Memory (RAM) during processing
  • non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium.
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • Computer-readable recording medium means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. .
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured with a digital circuit or an analog circuit.
  • an integrated circuit based on the technology can be used.
  • the present invention is not limited to the above-described embodiment.
  • an example of the apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in a base station device, a terminal device, and a communication method.
  • Base station apparatus 2A, 2B Terminal apparatus 101 Upper layer processing section 102 Control section 103 Transmission section 104 Reception section 105 Transmission / reception antenna 1011 Radio resource control section 1012 Scheduling section 1031 Encoding section 1032 Modulation section 1033 Downlink reference signal generation section 1034 Multiplexing Unit 1035 radio transmission unit 1041 radio reception unit 1042 demultiplexing unit 1043 demodulation unit 1044 decoding unit 201 upper layer processing unit 202 control unit 203 transmission unit 204 reception unit 205 channel state information generation unit 206 transmission / reception antenna 2011 radio resource control unit 2012 scheduling information Interpreter 2031 Encoder 2032 Modulator 2033 Uplink reference signal generator 2034 Multiplexer 2035 Radio transmitter 2041 Radio receiver 2042 Demultiplexer 2043 Signal detector

Abstract

Provided are a base station, a terminal, and a communication method with which reference signal overhead is suppressed and throughput can be improved when using many antennas. The base station is provided with a transmitting unit for transmitting a channel state information reference signal (CSI-RS) and setting information for the CSI-RS to the terminal, and a receiving unit for receiving the channel state information (CSI) pertaining to the CSI-RS from the terminal, wherein the CSI-RS is periodic CSI-RS that is periodically transmitted or aperiodic CSI-RS that is aperiodically transmitted, and the setting information for the CSI-RS includes CSI report type, which is information representing the report type of the CSI, CSI-RS setting information ID, which is the ID of the CSI-RS setting information, and periodic CSI-RS information or aperiodic CSI-RS information.

Description

基地局装置、端末装置および通信方法Base station apparatus, terminal apparatus and communication method
 本発明は、基地局装置、端末装置および通信方法に関する。 The present invention relates to a base station device, a terminal device, and a communication method.
 3GPP(Third Generation Partnership Project)によるLTE(Long Term Evolution)、LTE-A(LTE-Advanced)のような通信システムでは、基地局装置(基地局、送信局、送信点、下りリンク送信装置、上りリンク受信装置、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)あるいは基地局装置に準じる送信局がカバーするエリアをセル(Cell)状に複数配置するセルラ構成とすることにより、通信エリアを拡大することができる。このセルラ構成において、隣接するセルまたはセクタ間で同一周波数を利用することで、周波数利用効率を向上させることができる。 In a communication system such as LTE (Long Termination Evolution) or LTE-A (LTE-Advanced) by 3GPP (Third Generation Partnership Project), a base station device (base station, transmitting station, transmission point, downlink transmitting device, uplink) Expand the communication area by adopting a cellular configuration in which multiple areas covered by a receiving station, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) or transmitting station according to the base station apparatus are arranged in a cell shape. can do. In this cellular configuration, frequency utilization efficiency can be improved by using the same frequency between adjacent cells or sectors.
 近年では、次世代移動通信システムが検討されている。次世代移動通信システムでは、非特許文献1に記載されているように、多数のアンテナを備えるMassive MIMO(Multiple Input Multiple Output)やFull Dimension (FD) MIMOと呼ばれる技術が検討されている。Massive MIMOやFD MIMOでは、ビームフォーミングにより大容量伝送やスループットの向上が期待できる。 In recent years, next generation mobile communication systems have been studied. In the next-generation mobile communication system, as described in Non-Patent Document 1, technologies called Massive MIMO (Multiple Input Multiple Multiple Output) including multiple antennas and Full Dimension (FD) MIMO are being studied. With Massive MIMO and FD MIMO, large capacity transmission and improved throughput can be expected by beamforming.
 しかしながら、非特許文献1に記載のMassive MIMOやFD MIMOでは、アンテナ数が非常に多くなるため、ビームパターンの探索やデータ復調のために、多数の参照信号を送信しなければならず、参照信号のオーバーヘッドによるスループット劣化が問題となる。 However, in Massive MIMO and FD MIMO described in Non-Patent Document 1, since the number of antennas is very large, a large number of reference signals must be transmitted for beam pattern search and data demodulation. Degradation of throughput due to the overhead is a problem.
 本発明はこのような事情を鑑みてなされたものであり、その目的は、多数のアンテナを用いる場合に参照信号のオーバーヘッドを抑え、スループットを改善することができる基地局装置、端末装置および通信方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station device, a terminal device, and a communication method capable of suppressing the overhead of the reference signal and improving the throughput when a large number of antennas are used. Is to provide.
 上述した課題を解決するために本発明の一態様に係る基地局装置、端末装置および通信方法の構成は、次の通りである。 In order to solve the above-described problem, configurations of a base station apparatus, a terminal apparatus, and a communication method according to an aspect of the present invention are as follows.
 本発明の一態様に係る基地局装置は、端末装置と通信する基地局装置であって、チャネル状態情報参照信号(CSI-RS)および前記CSI-RSの設定情報を前記端末装置に送信する送信部と、前記端末装置から前記CSI-RSに関するチャネル状態情報(CSI)を受信する受信部を備え、前記CSI-RSは、周期的に送信される周期的CSI-RSまたは非周期に送信される非周期的CSI-RSであり、前記CSI-RSの設定情報は、前記CSIの報告に関するタイプを示す情報であるCSI報告タイプおよびCSI-RS設定情報のIDであるCSI-RS設定情報ID、周期的CSI-RSの情報または非周期的CSI-RSの情報を含む。 A base station apparatus according to an aspect of the present invention is a base station apparatus that communicates with a terminal apparatus, and transmits a channel state information reference signal (CSI-RS) and setting information of the CSI-RS to the terminal apparatus. And a receiving unit that receives channel state information (CSI) related to the CSI-RS from the terminal device, and the CSI-RS is transmitted periodically or periodically. The CSI-RS configuration information includes a CSI report type that is information indicating a type related to the CSI report, a CSI-RS configuration information ID that is an ID of CSI-RS configuration information, and a period. CSI-RS information or aperiodic CSI-RS information.
 また、本発明の一態様に係る基地局装置において、前記CSI報告タイプがCLASS Aを示す場合、送信する前記CSI-RSのアンテナポート数Nによって前記周期的CSI-RSの送信周期は異なる。 Also, in the base station apparatus according to an aspect of the present invention, when the CSI report type indicates CLASS A, the transmission period of the periodic CSI-RS differs depending on the number N of antenna ports of the CSI-RS to be transmitted.
 また、本発明の一態様に係る基地局装置において、前記CSI-RSの設定情報は複数のリソース設定を含み、前記リソース設定の各々は、前記CSI-RSのアンテナポート数よりも少ないアンテナポートのCSI-RSの配置される情報を示し、前記複数のリソース設定のうち、1または全部のリソース設定で示されるアンテナポート数のCSI-RSを送信する。 Further, in the base station apparatus according to an aspect of the present invention, the CSI-RS setting information includes a plurality of resource settings, and each of the resource settings includes a number of antenna ports smaller than the number of antenna ports of the CSI-RS. This indicates information where CSI-RS is arranged, and transmits CSI-RS of the number of antenna ports indicated by one or all of the resource settings among the plurality of resource settings.
 また、本発明の一態様に係る基地局装置において、前記複数のリソース設定のうち1つのリソース設定でCSI-RSを送信する場合と前記複数のリソース設定の全部のリソース設定でCSI-RSを送信する場合とで、CSI-RSの送信周期は異なる。 Further, in the base station apparatus according to an aspect of the present invention, a CSI-RS is transmitted with one resource setting among the plurality of resource settings and with all resource settings of the plurality of resource settings. The transmission period of CSI-RS differs depending on the case.
 また、本発明の一態様に係る基地局装置において、前記送信部は、前記CSI-RSのアンテナポート数N(Nは自然数)よりも少ないアンテナポート数M(Mは自然数)のCSI-RSおよび該CSI-RSの設定情報を送信し、前記アンテナポート数NのCSI-RSの設定情報に含まれるCSI-RS設定IDと前記アンテナポート数MのCSI-RSの設定情報に含まれるCSI-RS設定IDは関連付けられている。 Further, in the base station apparatus according to one aspect of the present invention, the transmission unit includes a CSI-RS having an antenna port number M (M is a natural number) smaller than an antenna port number N (N is a natural number) of the CSI-RS and The CSI-RS setting information is transmitted, and the CSI-RS setting ID included in the CSI-RS setting information for the antenna port number N and the CSI-RS included in the CSI-RS setting information for the antenna port number M are transmitted. The setting ID is associated.
 また、本発明の一態様に係る基地局装置において、前記アンテナポート数NのCSI-RSとアンテナポート数MのCSI-RSは、異なるサブフレームで送信される。 Also, in the base station apparatus according to an aspect of the present invention, the CSI-RS with N antenna ports and the CSI-RS with M antenna ports are transmitted in different subframes.
 また、本発明の一態様に係る基地局装置において、前記周期的CSI-RSを送信するタイミングで前記非周期的CSI-RSを送信する場合、前記非周期的CSI-RSを優先して送信する。 Further, in the base station apparatus according to one aspect of the present invention, when the aperiodic CSI-RS is transmitted at the timing of transmitting the periodic CSI-RS, the aperiodic CSI-RS is preferentially transmitted. .
 また、本発明の一態様に係る端末装置は、基地局装置と通信する端末装置であって、チャネル状態情報参照信号(CSI-RS)および前記CSI-RSの設定情報を前記基地局装置から受信する受信部と、前記CSI-RSに関するチャネル状態情報(CSI)を前記基地局装置に送信する送信部を備え、前記CSI-RSは、周期的に送信される周期的CSI-RSまたは非周期に送信される非周期的CSI-RSであり、前記CSI-RSの設定情報は、前記CSIの報告に関するタイプを示す情報であるCSI報告タイプおよびCSI-RS設定情報のIDであるCSI-RS設定情報ID、周期的CSI-RSの情報または非周期的CSI-RSの情報を含む。 A terminal apparatus according to an aspect of the present invention is a terminal apparatus that communicates with a base station apparatus, and receives a channel state information reference signal (CSI-RS) and setting information of the CSI-RS from the base station apparatus. And a transmission unit that transmits channel state information (CSI) related to the CSI-RS to the base station apparatus, and the CSI-RS is transmitted periodically or periodically. The CSI-RS configuration information is a non-periodic CSI-RS to be transmitted, and the CSI-RS configuration information is a CSI report type that is information indicating a type related to the CSI report and an ID of CSI-RS configuration information It includes ID, periodic CSI-RS information or aperiodic CSI-RS information.
 また、本発明の一態様に係る端末装置において、前記CSI報告タイプがCLASS Aを示す場合、受信する前記CSI-RSのアンテナポート数Nによって前記周期的CSI-RSの送信周期は異なる。 In addition, in the terminal device according to an aspect of the present invention, when the CSI report type indicates CLASS A, the transmission cycle of the periodic CSI-RS differs depending on the number N of antenna ports of the CSI-RS received.
 また、本発明の一態様に係る端末装置において、前記CSI-RSの設定情報は複数のリソース設定を含み、前記リソース設定の各々は、前記CSI-RSのアンテナポート数よりも少ないアンテナポートのCSI-RSの配置される情報を示し、前記複数のリソース設定のうち、1または全部のリソース設定で示されるアンテナポート数のCSI-RSを受信する。 In the terminal device according to an aspect of the present invention, the CSI-RS setting information includes a plurality of resource settings, and each of the resource settings includes CSI of an antenna port that is smaller than the number of antenna ports of the CSI-RS. -Shows information where RSs are arranged, and receives CSI-RS of the number of antenna ports indicated by one or all resource settings among the plurality of resource settings.
 また、本発明の一態様に係る端末装置において、前記複数のリソース設定のうち1つのリソース設定でCSI-RSを受信する場合と前記複数のリソース設定の全部のリソース設定でCSI-RSを受信する場合とで、CSI-RSの送信周期は異なる。 Further, in the terminal device according to an aspect of the present invention, when receiving CSI-RS with one resource setting among the plurality of resource settings and receiving CSI-RS with all resource settings of the plurality of resource settings The transmission period of CSI-RS differs depending on the case.
 また、本発明の一態様に係る端末装置において、前記受信部は、前記CSI-RSのアンテナポート数Nよりも少ないアンテナポート数MのCSI-RSおよび該CSI-RSの設定情報を受信し、前記アンテナポート数NのCSI-RSの設定情報に含まれるCSI-RS設定IDと前記アンテナポート数MのCSI-RSの設定情報に含まれるCSI-RS設定IDは関連付けられている。 Further, in the terminal device according to an aspect of the present invention, the receiving unit receives a CSI-RS having an antenna port number M smaller than the antenna port number N of the CSI-RS and setting information of the CSI-RS, The CSI-RS setting ID included in the CSI-RS setting information for the antenna port number N and the CSI-RS setting ID included in the CSI-RS setting information for the antenna port number M are associated with each other.
 また、本発明の一態様に係る端末装置において、前記アンテナポート数NのCSI-RSとアンテナポート数MのCSI-RSは、異なるサブフレームで送信される。 In the terminal device according to an aspect of the present invention, the CSI-RS with N antenna ports and the CSI-RS with M antenna ports are transmitted in different subframes.
 また、本発明の一態様に係る端末装置において、前記周期的CSI-RSを受信するタイミングで前記非周期的CSI-RSを受信する場合、前記非周期的CSI-RSに関するCSIを報告する。 Further, in the terminal device according to an aspect of the present invention, when the aperiodic CSI-RS is received at the timing of receiving the periodic CSI-RS, the CSI related to the aperiodic CSI-RS is reported.
 また、本発明の一態様に係る通信方法は、端末装置と通信する基地局装置における通信方法であって、チャネル状態情報参照信号(CSI-RS)および前記CSI-RSの設定情報を前記端末装置に送信する送信ステップと、前記端末装置から前記CSI-RSに関するチャネル状態情報(CSI)を受信する受信ステップを備え、前記CSI-RSは、周期的に送信される周期的CSI-RSまたは非周期に送信される非周期的CSI-RSであり、前記CSI-RSの設定情報は、前記CSIの報告に関するタイプを示す情報であるCSI報告タイプおよびCSI-RS設定情報のIDであるCSI-RS設定情報ID、周期的CSI-RSの情報または非周期的CSI-RSの情報を含む。 The communication method according to one aspect of the present invention is a communication method in a base station device that communicates with a terminal device, and includes a channel state information reference signal (CSI-RS) and setting information of the CSI-RS as the terminal device. And a reception step of receiving channel state information (CSI) related to the CSI-RS from the terminal device, wherein the CSI-RS is transmitted periodically or periodically. The CSI-RS setting information is a CSI report type which is information indicating a type related to the CSI report and a CSI-RS setting which is an ID of the CSI-RS setting information. Information ID, information on periodic CSI-RS, or information on aperiodic CSI-RS are included.
 また、本発明の通信方法は、基地局装置と通信する端末装置における通信方法であって、チャネル状態情報参照信号(CSI-RS)および前記CSI-RSの設定情報を前記基地局装置から受信する受信ステップと、前記CSI-RSに関するチャネル状態情報(CSI)を前記基地局装置に送信する送信ステップを備え、前記CSI-RSは、周期的に送信される周期的CSI-RSまたは非周期に送信される非周期的CSI-RSであり、前記CSI-RSの設定情報は、前記CSIの報告に関するタイプを示す情報であるCSI報告タイプおよびCSI-RS設定情報のIDであるCSI-RS設定情報ID、周期的CSI-RSの情報または非周期的CSI-RSの情報を含む。 The communication method of the present invention is a communication method in a terminal apparatus that communicates with a base station apparatus, and receives a channel state information reference signal (CSI-RS) and setting information of the CSI-RS from the base station apparatus. A reception step and a transmission step of transmitting channel state information (CSI) related to the CSI-RS to the base station apparatus, wherein the CSI-RS is transmitted periodically or periodically. The CSI-RS setting information includes a CSI report type that is information indicating a type related to the CSI report and a CSI-RS setting information ID that is an ID of the CSI-RS setting information. , Information on periodic CSI-RS or information on aperiodic CSI-RS.
 本発明の一態様によれば、参照信号のオーバーヘッドを抑え、スループットを向上させることができる。 According to one embodiment of the present invention, the overhead of the reference signal can be suppressed and the throughput can be improved.
本実施形態に係る通信システムの例を示す図である。It is a figure which shows the example of the communication system which concerns on this embodiment. 本実施形態に係るCSI-RS送信周期の例を示す図である。It is a figure which shows the example of the CSI-RS transmission period which concerns on this embodiment. 本実施形態に係る基地局装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the base station apparatus which concerns on this embodiment. 本実施形態に係る端末装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the terminal device which concerns on this embodiment.
 本実施形態における通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE)を備える。また、端末装置と接続している(無線リンクを確立している)基地局装置をサービングセルと呼ぶ。 The communication system in this embodiment includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) and terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving terminal). Device, receiving antenna group, receiving antenna port group, UE). A base station apparatus connected to a terminal apparatus (establishing a radio link) is called a serving cell.
 本実施形態における基地局装置および端末装置は、無線事業者がサービスを提供する国や地域から使用許可(免許)が得られた、いわゆるライセンスバンド(licensed band)と呼ばれる周波数バンド、および/または、国や地域からの使用許可(免許)を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンドで通信することができる。 The base station apparatus and the terminal apparatus in the present embodiment are a frequency band called a licensed band (licensed band) obtained from a country or region where a wireless provider provides a service (license), and / or Communication is possible in a so-called unlicensed band that does not require a license from the country or region.
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。 In this embodiment, “X / Y” includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
 図1は、本実施形態に係る通信システムの例を示す図である。図1に示すように、本実施形態における通信システムは、基地局装置1A、端末装置2A、2Bを備える。また、カバレッジ1-1は、基地局装置1Aが端末装置と接続可能な範囲(通信エリア)である。また、端末装置2A、2Bを総称して端末装置2とも称する。 FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment. As shown in FIG. 1, the communication system according to the present embodiment includes a base station device 1A and terminal devices 2A and 2B. The coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device. The terminal devices 2A and 2B are also collectively referred to as the terminal device 2.
 図1において、端末装置2Aから基地局装置1Aへの上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
In FIG. 1, the following uplink physical channels are used in uplink radio communication from the terminal apparatus 2A to the base station apparatus 1A. The uplink physical channel is used for transmitting information output from an upper layer.
-PUCCH (Physical Uplink Control Channel)
・ PUSCH (Physical Uplink Shared Channel)
・ PRACH (Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、Downlink-Shared Channel: DL-SCH)に対するACK(a positive acknowledgement)またはNACK(a negative acknowledgement)(ACK/NACK)を含む。下りリンクデータに対するACK/NACKを、HARQ-ACK、HARQフィードバックとも称する。 The PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI). Here, the uplink control information includes ACK (a positive acknowledgement) or NACK (a negative acknowledgement) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH). ACK / NACK for downlink data is also referred to as HARQ-ACK and HARQ feedback.
 また、上りリンク制御情報は、下りリンクに対するチャネル状態情報(Channel State Information: CSI)を含む。また、上りリンク制御情報は、上りリンク共用チャネル(Uplink-Shared Channel: UL-SCH)のリソースを要求するために用いられるスケジューリング要求(Scheduling Request: SR)を含む。前記チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)、好適なCSI-RSリソースを示すCSI-RS(Reference Signal、参照信号)リソース指標CRI(CSI-RS Resource Indication)などが該当する。 Also, the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. Further, the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of an uplink shared channel (Uplink-Shared Channel: UL-SCH). The channel state information includes a rank index RI (Rank Indicator) designating a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) designating a suitable precoder, and a channel quality index CQI designating a suitable transmission rate. (Channel Quality Indicator), CSI-RS (Reference Signal) indicating a suitable CSI-RS resource, resource index CRI (CSI-RS 示 す Resource Indication), and the like.
 前記チャネル品質指標CQIは(以下、CQI値)、所定の帯域(詳細は後述)における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMなど)、符号化率(coding rate)とすることができる。CQI値は、前記変更方式や符号化率により定められたインデックス(CQI Index)とすることができる。前記CQI値は、予め当該システムで定めたものとすることができる。 The channel quality index CQI (hereinafter referred to as CQI value) is a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and coding rate in a predetermined band (details will be described later). it can. The CQI value can be an index (CQI Index) determined by the change method and coding rate. The CQI value may be determined in advance by the system.
 なお、前記ランク指標、前記プレコーディング品質指標は、予めシステムで定めたものとすることができる。前記ランク指標や前記プレコーディング行列指標は、空間多重数やプレコーディング行列情報により定められたインデックスとすることができる。なお、前記ランク指標、前記プレコーディング行列指標、前記チャネル品質指標CQIの値をCSI値と総称する。 Note that the rank index and the precoding quality index can be determined in advance by the system. The rank index and the precoding matrix index can be indexes determined by the spatial multiplexing number and precoding matrix information. Note that the values of the rank index, the precoding matrix index, and the channel quality index CQI are collectively referred to as CSI values.
 PUSCHは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共に、ACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。また、PUSCHは、上りリンク制御情報のみを送信するために用いられても良い。 The PUSCH is used for transmitting uplink data (uplink transport block, UL-SCH). Moreover, PUSCH may be used to transmit ACK / NACK and / or channel state information together with uplink data. Moreover, PUSCH may be used in order to transmit only uplink control information.
 また、PUSCHは、RRCメッセージを送信するために用いられる。RRCメッセージは、無線リソース制御(Radio Resource Control: RRC)層において処理される情報/信号である。また、PUSCHは、MAC CE(Control Element)を送信するために用いられる。ここで、MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。 Also, PUSCH is used to transmit an RRC message. The RRC message is information / signal processed in a radio resource control (Radio-Resource-Control: -RRC) layer. The PUSCH is used to transmit a MAC CE (Control Element). Here, the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
 例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられても良い。 For example, the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the power headroom level.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。 PRACH is used to transmit a random access preamble.
 また、上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。ここで、上りリンク参照信号には、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)が含まれる。 In uplink wireless communication, an uplink reference signal (Uplink Reference Signal: UL SRS) is used as an uplink physical signal. The uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer. Here, the uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
 DMRSは、PUSCHまたはPUCCHの送信に関連する。例えば、基地局装置1Aは、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。SRSは、PUSCHまたはPUCCHの送信に関連しない。例えば、基地局装置1Aは、上りリンクのチャネル状態を測定するためにSRSを使用する。 DMRS is related to transmission of PUSCH or PUCCH. For example, base station apparatus 1A uses DMRS to perform propagation channel correction for PUSCH or PUCCH. SRS is not related to PUSCH or PUCCH transmission. For example, the base station apparatus 1A uses SRS to measure the uplink channel state.
 図1において、基地局装置1Aから端末装置2Aへの下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast Channel: 報知チャネル)
・PCFICH(Physical Control Format Indicator Channel: 制御フォーマット指示チャネル)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel: HARQ指示チャネル)
・PDCCH(Physical Downlink Control Channel: 下りリンク制御チャネル)
・EPDCCH(Enhanced Physical Downlink Control Channel: 拡張下りリンク制御チャネル)
・PDSCH(Physical Downlink Shared Channel: 下りリンク共有チャネル)
In FIG. 1, the following downlink physical channels are used in downlink radio communication from the base station apparatus 1A to the terminal apparatus 2A. The downlink physical channel is used for transmitting information output from an upper layer.
・ PBCH (Physical Broadcast Channel)
・ PCFICH (Physical Control Format Indicator Channel)
・ PHICH (Physical Hybrid automatic repeat request Indicator Channel: HARQ instruction channel)
・ PDCCH (Physical Downlink Control Channel)
・ EPDCCH (Enhanced Physical Downlink Control Channel)
・ PDSCH (Physical Downlink Shared Channel)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。PCFICHは、PDCCHの送信に用いられる領域(例えば、OFDMシンボルの数)を指示する情報を送信するために用いられる。 The PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices. PCFICH is used for transmitting information indicating a region (for example, the number of OFDM symbols) used for transmission of PDCCH.
 PHICHは、基地局装置1Aが受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACKを送信するために用いられる。すなわち、PHICHは、上りリンクデータに対するACK/NACKを示すHARQインディケータ(HARQフィードバック)を送信するために用いられる。また、ACK/NACKは、HARQ-ACKとも呼称する。端末装置2Aは、受信したACK/NACKを上位レイヤに通知する。ACK/NACKは、正しく受信されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXである。また、上りリンクデータに対するPHICHが存在しない場合、端末装置2AはACKを上位レイヤに通知する。 PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by the base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK. The terminal device 2A notifies the received ACK / NACK to the upper layer. ACK / NACK is ACK indicating that the data has been correctly received, NACK indicating that the data has not been correctly received, and DTX indicating that there is no corresponding data. Further, when there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of ACK.
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、複数のDCIフォーマットが定義される。すなわち、下りリンク制御情報に対するフィールドがDCIフォーマットに定義され、情報ビットへマップされる。 PDCCH and EPDCCH are used to transmit downlink control information (Downlink Control Information: DCI). Here, a plurality of DCI formats are defined for transmission of downlink control information. That is, fields for downlink control information are defined in the DCI format and mapped to information bits.
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット1Aが定義される。 For example, a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined as a DCI format for the downlink.
 例えば、下りリンクに対するDCIフォーマットには、PDSCHのリソース割り当てに関する情報、PDSCHに対するMCS(Modulation and Coding Scheme)に関する情報、PUCCHに対するTPCコマンドなどの下りリンク制御情報が含まれる。ここで、下りリンクに対するDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。 For example, the DCI format for the downlink includes information on PDSCH resource allocation, information on MCS (Modulation and Coding Scheme) for PDSCH, and downlink control information such as a TPC command for PUCCH. Here, the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
 また、例えば、上りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット0が定義される。 Also, for example, as a DCI format for uplink, DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
 例えば、上りリンクに対するDCIフォーマットには、PUSCHのリソース割り当てに関する情報、PUSCHに対するMCSに関する情報、PUSCHに対するTPCコマンドなど上りリンク制御情報が含まれる。上りリンクに対するDCIフォーマットを、上りリンクグラント(または、上りリンクアサインメント)とも称する。 For example, the DCI format for uplink includes information on PUSCH resource allocation, information on MCS for PUSCH, and uplink control information such as TPC command for PUSCH. The DCI format for the uplink is also referred to as uplink grant (or uplink assignment).
 また、上りリンクに対するDCIフォーマットは、下りリンクのチャネル状態情報(CSI: Channel State Information。受信品質情報とも称する。)を要求(CSI request)するために用いることができる。 Also, the DCI format for uplink can be used to request downlink channel state information (CSI: “Channel State Information”, also referred to as reception quality information).
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを示す設定のために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 Also, the DCI format for the uplink can be used for setting indicating an uplink resource for mapping a channel state information report (CSI feedback report) that the terminal apparatus feeds back to the base station apparatus. For example, the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI). The channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
 例えば、チャネル状態情報報告は、不定期なチャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。基地局装置は、前記定期的なチャネル状態情報報告または前記不定期的なチャネル状態情報報告のいずれかを設定することができる。また、基地局装置は、前記定期的なチャネル状態情報報告および前記不定期的なチャネル状態情報報告の両方を設定することもできる。 For example, the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI). The channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information irregularly. The base station apparatus can set either the periodic channel state information report or the irregular channel state information report. Further, the base station apparatus can set both the periodic channel state information report and the irregular channel state information report.
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告の種類を示す設定のために用いることができる。チャネル状態情報報告の種類は、広帯域CSI(例えば、Wideband CQI)と狭帯域CSI(例えば、Subband CQI)などがある。 Also, the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal apparatus feeds back to the base station apparatus. Types of channel state information reports include wideband CSI (for example, Wideband CQI) and narrowband CSI (for example, Subband CQI).
 端末装置は、下りリンクアサインメントを用いてPDSCHのリソースがスケジュールされた場合、スケジュールされたPDSCHで下りリンクデータを受信する。また、端末装置は、上りリンクグラントを用いてPUSCHのリソースがスケジュールされた場合、スケジュールされたPUSCHで上りリンクデータおよび/または上りリンク制御情報を送信する。 When the PDSCH resource is scheduled using the downlink assignment, the terminal apparatus receives the downlink data on the scheduled PDSCH. In addition, when PUSCH resources are scheduled using an uplink grant, the terminal apparatus transmits uplink data and / or uplink control information using the scheduled PUSCH.
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。また、PDSCHは、システムインフォメーションブロックタイプ1メッセージを送信するために用いられる。システムインフォメーションブロックタイプ1メッセージは、セルスペシフィック(セル固有)な情報である。 PDSCH is used to transmit downlink data (downlink transport block, DL-SCH). The PDSCH is used to transmit a system information block type 1 message. The system information block type 1 message is cell specific (cell specific) information.
 また、PDSCHは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、システムインフォメーションブロックタイプ1以外のシステムインフォメーションブロックXを含む。システムインフォメーションメッセージは、セルスペシフィック(セル固有)な情報である。 Also, PDSCH is used to transmit a system information message. The system information message includes a system information block X other than the system information block type 1. The system information message is cell specific (cell specific) information.
 また、PDSCHは、RRCメッセージを送信するために用いられる。ここで、基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通であっても良い。また、基地局装置1Aから送信されるRRCメッセージは、ある端末装置2に対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。また、PDSCHは、MAC CEを送信するために用いられる。 Also, PDSCH is used to transmit an RRC message. Here, the RRC message transmitted from the base station apparatus may be common to a plurality of terminal apparatuses in the cell. Further, the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message. The PDSCH is used to transmit the MAC CE.
 ここで、RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。 Here, the RRC message and / or MAC CE is also referred to as higher layer signaling.
 また、PDSCHは、下りリンクのチャネル状態情報を要求するために用いることができる。また、PDSCHは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを送信するために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 Also, PDSCH can be used to request downlink channel state information. The PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device. For example, the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI). The channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
 下りリンクのチャネル状態情報報告の種類は広帯域CSI(例えば、Wideband CSI)と狭帯域CSI(例えば、Subband CSI)がある。広帯域CSIは、セルのシステム帯域に対して1つのチャネル状態情報を算出する。狭帯域CSIは、システム帯域を所定の単位に区分し、その区分に対して1つのチャネル状態情報を算出する。 The types of downlink channel state information reports include wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI). The broadband CSI calculates one channel state information for the system band of the cell. In the narrowband CSI, the system band is divided into predetermined units, and one channel state information is calculated for the division.
 また、下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。 In downlink radio communication, a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals. The downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。また、下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出するために用いられる。 The synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain. Also, the downlink reference signal is used by the terminal device for channel correction of the downlink physical channel. For example, the downlink reference signal is used by the terminal device to calculate downlink channel state information.
 ここで、下りリンク参照信号には、CRS(Cell-specific Reference Signal: セル固有参照信号)、PDSCHに関連するURS(UE-specific Reference Signal: 端末固有参照信号、端末装置固有参照信号)、EPDCCHに関連するDMRS(Demodulation Reference Signal)、NZP CSI-RS(Non-Zero Power Chanel State Information - Reference Signal)、ZP CSI-RS(Zero Power Chanel State Information - Reference Signal)が含まれる。 Here, the downlink reference signal includes CRS (Cell-specific Reference Signal: Cell-specific reference signal), URS related to PDSCH (UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal), EPDCCH Related DMRS (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Chanel State Information Information Reference Signal), and ZP CSI-RS (Zero Power Channel Information State Information Reference Signal) are included.
 CRSは、サブフレームの全帯域で送信され、PBCH/PDCCH/PHICH/PCFICH/PDSCHの復調を行なうために用いられる。PDSCHに関連するURSは、URSが関連するPDSCHの送信に用いられるサブフレームおよび帯域で送信され、URSが関連するPDSCHの復調を行なうために用いられる。 CRS is transmitted in the entire band of the subframe, and is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH. The URS associated with the PDSCH is transmitted in subframes and bands used for transmission of the PDSCH associated with the URS, and is used to demodulate the PDSCH associated with the URS.
 EPDCCHに関連するDMRSは、DMRSが関連するEPDCCHの送信に用いられるサブフレームおよび帯域で送信される。DMRSは、DMRSが関連するEPDCCHの復調を行なうために用いられる。 DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS. DMRS is used to demodulate the EPDCCH with which DMRS is associated.
 NZP CSI-RSのリソースは、基地局装置1Aによって設定される。例えば、端末装置2Aは、NZP CSI-RSを用いて信号の測定(チャネルの測定)を行なう。ZP CSI-RSのリソースは、基地局装置1Aによって設定される。基地局装置1Aは、ZP CSI-RSをゼロ出力で送信する。例えば、端末装置2Aは、NZP CSI-RSが対応するリソースにおいて干渉の測定を行なう。 NZP CSI-RS resources are set by the base station apparatus 1A. For example, the terminal device 2A performs signal measurement (channel measurement) using NZP CSI-RS. The resource of ZP CSI-RS is set by the base station apparatus 1A. The base station apparatus 1A transmits ZP CSI-RS with zero output. For example, the terminal device 2A measures interference in a resource supported by NZP CSI-RS.
 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信に用いられるアンテナポートで送信される。 MBSFN (Multimedia Broadcast Multicast Service Single Frequency Network) RS is transmitted in the entire bandwidth of the subframe used for PMCH transmission. The MBSFN RS is used for PMCH demodulation. PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
 ここで、下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。 Here, the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal. Also, the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal. Also, the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel. Also, the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
 また、BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。また、MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(Transport Block: TB)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。 Also, BCH, UL-SCH and DL-SCH are transport channels. A channel used in the MAC layer is referred to as a transport channel. The unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit). The transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
 また、キャリアアグリゲーション(CA: Carrier Aggregation)をサポートしている端末装置に対して、基地局装置は、より広帯域伝送のため複数のコンポーネントキャリア(CC: Component Carrier)を統合して通信することができる。キャリアアグリゲーションでは、1つのプライマリセル(PCell: Primary Cell)および1または複数のセカンダリセル(SCell: Secondary Cell)がサービングセルの集合として設定される。 In addition, a base station device can communicate with a terminal device that supports carrier aggregation (CA: CarriergAggregation) by integrating multiple component carriers (CC: Component Carrier) for wider band transmission. . In carrier aggregation, one primary cell (PCell: Primary Cell) and one or more secondary cells (SCell: Secondary Cell) are set as a set of serving cells.
 また、デュアルコネクティビティ(DC: Dual Connectivity)では、サービングセルのグループとして、マスターセルグループ(MCG: Master Cell Group)とセカンダリセルグループ(SCG: Secondary Cell Group)が設定される。MCGはPCellとオプションで1または複数のSCellから構成される。またSCGはプライマリSCell(PSCell)とオプションで1または複数のSCellから構成される。 Also, in dual connectivity (DC: Dual Dual Connectivity), a master cell group (MCG: Master Cell Group) and a secondary cell group (SCG: Secondary Cell Group) are set as serving cell groups. The MCG is composed of a PCell and optionally one or more SCells. The SCG is composed of a primary SCell (PSCell) and optionally one or more SCells.
 基地局装置はCSI-RS設定情報を端末装置に送信することができる。CSI-RS設定情報は、アンテナポート数、リソース設定、サブフレーム設定の一部または全部を含む。またリソース設定はCSI-RSが配置されるリソースに関する情報である。サブフレーム設定は、CSI-RSが配置されるサブフレームやCSI-RSが送信される周期(CSI-RSリソースが設定される周期)に関する情報である。 The base station apparatus can transmit CSI-RS setting information to the terminal apparatus. The CSI-RS setting information includes part or all of the number of antenna ports, resource settings, and subframe settings. The resource setting is information regarding the resource where the CSI-RS is arranged. The subframe setting is information related to a subframe in which CSI-RS is arranged and a cycle in which CSI-RS is transmitted (a cycle in which CSI-RS resources are set).
 またCSI-RSは、CSI報告(フィードバック)に関するeMIMOタイプ(CSI報告タイプ)としてnon-precoded(CLASS Aとも呼ぶ)および/またはbeamformed(CLASS Bとも呼ぶ)が設定される。なお、non-precoded(CLASS A)が設定されたCSI-RSをnon-precoded CSI-RS(NP CSI-RS、第1のCSI-RS)とも呼び、beamformed(CLASS B)が設定されたCSI-RSを(BF CSI-RS、第2のCSI-RS)とも呼ぶ。また、基地局装置は、NP CSI-RSかBF CSI-RSかを示す情報を端末装置に送信することができる。つまり、端末装置は、基地局装置からNP CSI-RSかBF CSI-RSかを示す情報を受信し、設定されたCSI-RSがNP CSI-RSかBF CSI-RSかを知ることができる。また、NP-CSI-RSおよび/またはBF CSI-RSは、CSI測定、RRM(Radio Resource Manager)測定、RLM(Radio Link Monitoring)測定などに用いられる。 In CSI-RS, non-precoded (also referred to as CLASS A) and / or beamformed (also referred to as CLASS B) is set as an eMIMO type (CSI report type) related to CSI reporting (feedback). A CSI-RS in which non-precoded (CLASS A) is set is also called non-precoded CSI-RS (NP CSI-RS, first CSI-RS), and CSI-RS in which beamformed (CLASS B) is set RS is also referred to as (BFSICSI-RS, second CSI-RS). Also, the base station apparatus can transmit information indicating whether it is NP CSI-RS or BF CSI-RS to the terminal apparatus. That is, the terminal device receives information indicating whether it is NP CSI-RS or BF CSI-RS from the base station device, and can know whether the set CSI-RS is NP CSI-RS or BF CSI-RS. NP-CSI-RS and / or BF CSI-RS are used for CSI measurement, RRM (Radio Resource Manager) measurement, RLM (Radio Link Monitoring) measurement, and the like.
 また、基地局装置は、上位レイヤのシグナリングに、少なくともチャネル測定のためのCSI-RSと干渉測定のためのCSI-IM(Interference Measurement)を関連付けて、チャネル状態情報を算出する手順に関する設定(CSIプロセス)を含めることができる。CSIプロセスには、そのCSIプロセスID、CSI-RSの設定情報、CSI-RS設定ID、NP CSI-RSかBF CSI-RSかを示す情報(eMIMOタイプ、CSI報告タイプ)、NP CSI-RSの設定情報、BF CSI-RSの設定情報の一部または全部を含めることができる。基地局装置は、1つ以上のCSIプロセスを設定することができる。基地局装置は、CSIのフィードバックを前記CSIプロセス毎に独立して生成することができる。基地局装置は、CSIプロセス毎にCSI-RSリソースとCSI-IMを異なる設定にすることができる。端末装置は、1つ以上のCSIプロセスが設定され、設定されたCSIプロセス毎に独立にCSI報告を行なう。また、CSIプロセスは、所定の送信モードにおいて設定される。 In addition, the base station apparatus associates at least CSI-RS for channel measurement with CSI-IM (Interference Measurement) for interference measurement to upper layer signaling, and performs settings related to a procedure for calculating channel state information (CSI Process). The CSI process includes the CSI process ID, CSI-RS setting information, CSI-RS setting ID, NP CSI-RS or BF CSI-RS information (eMIMO type, CSI report type), NP CSI-RS Part or all of the setting information and BF CSI-RS setting information can be included. The base station apparatus can set one or more CSI processes. The base station apparatus can generate CSI feedback independently for each CSI process. The base station apparatus can set the CSI-RS resource and the CSI-IM differently for each CSI process. In the terminal device, one or more CSI processes are set, and CSI reporting is performed independently for each set CSI process. The CSI process is set in a predetermined transmission mode.
 NP CSI-RSでは、1つのCSI-RSリソースが設定される。また、1つのCSI-RSリソースは、複数のCSI-RSリソース設定から構成され得る。複数のCSI-RSリソースの各々のアンテナポート数は、同じであっても異なっても良い。例えば、12ポートのCSI-RSリソースは、3つの4ポートCSI-RSリソースによって構成される。また、例えば、16ポートのCSI-RSリソースは、2つの8ポートCSI-RSリソースによって構成される。また、例えば、20ポートのCSI-RSリソースは、12ポートのCSI-RSリソースの構成および8ポートのCSI-RSリソースから構成される。また、例えば、24ポートのCSI-RSリソースは、3つの8ポートCSI-RSリソースや2つの12ポートCSI-RSリソースによって構成される。また、例えば、28ポートのCSI-RSリソースは、12ポートCSI-RSリソースおよび16ポートCSI-RSリソースや7つの4ポートCSI-RSリソースから構成される。また、例えば、32ポートCSI-RSリソースは、2つの16ポートCSI-RSリソースや4つの8ポートCSI-RSから構成される。なお、各アンテナポート数のCSI-RSリソースの構成は一例であり、これに限るものではない。 In NP CSI-RS, one CSI-RS resource is set. Also, one CSI-RS resource can be composed of a plurality of CSI-RS resource settings. The number of antenna ports in each of the plurality of CSI-RS resources may be the same or different. For example, a 12-port CSI-RS resource is composed of three 4-port CSI-RS resources. Further, for example, a 16-port CSI-RS resource is configured by two 8-port CSI-RS resources. Further, for example, a 20-port CSI-RS resource includes a 12-port CSI-RS resource configuration and an 8-port CSI-RS resource. Further, for example, a 24-port CSI-RS resource includes three 8-port CSI-RS resources and two 12-port CSI-RS resources. Further, for example, the 28-port CSI-RS resource is configured by a 12-port CSI-RS resource, a 16-port CSI-RS resource, and seven 4-port CSI-RS resources. Further, for example, the 32-port CSI-RS resource includes two 16-port CSI-RS resources and four 8-port CSI-RSs. The configuration of the CSI-RS resource for each number of antenna ports is an example, and the present invention is not limited to this.
 また、CSI-RS設定IDが設定される場合、NP CSI-RSでは、1つのCSI-RS設定IDが設定される。また、基地局装置はNP CSI-RSを複数の拡散率(拡散コード長)で拡散して送信することができる。また、基地局装置は、どの拡散率(拡散コード長)を用いたかを示す情報を端末装置に送信することができる。つまり端末装置は、基地局装置から受信したどの拡散率(拡散コード長)を用いたかを示す情報によって、NP CSI-RSに用いられた拡散率(拡散コード長)を知ることができる。 Also, when CSI-RS setting ID is set, one CSI-RS setting ID is set in NP CSI-RS. Further, the base station apparatus can transmit the NP CSI-RS by spreading it with a plurality of spreading factors (spreading code lengths). Further, the base station apparatus can transmit information indicating which spreading factor (spreading code length) is used to the terminal apparatus. That is, the terminal device can know the spreading factor (spreading code length) used for the NP CSI-RS from information indicating which spreading factor (spreading code length) received from the base station device is used.
 また、基地局装置は、NP CSI-RSを拡散する際に、CSI-RSのポート数に基づいて、1つのNP CSI-RSを拡散するOFDMシンボルおよびサブキャリア間隔を異なる値に設定することができる。例えば、基地局装置は、CSI-RSのポート数が所定の値(例えば、16)以下であった場合、1つのNP CSI―RSを拡散する複数のOFDMシンボルは、1スロット内に含まれるように設定し、CSI-RSのポート数が所定の値を上回る場合、1つのNP CSI―RSを拡散する複数のOFDMシンボルは、2スロット内(またはサブフレーム内)に含まれるように設定することができる。 Further, when spreading the NP CSI-RS, the base station apparatus may set different OFDM symbols and subcarrier intervals for spreading one NP CSI-RS based on the number of CSI-RS ports. it can. For example, when the number of CSI-RS ports is equal to or less than a predetermined value (for example, 16), the base station apparatus may include a plurality of OFDM symbols that spread one NP CSI-RS in one slot. When the number of CSI-RS ports exceeds a predetermined value, multiple OFDM symbols that spread one NP CSI-RS shall be set to be included in 2 slots (or subframes) Can do.
 また、基地局装置は、CSI-RSリソースの設定を、複数のサブフレームに渡って設定することができる。例えば、基地局装置は、mを自然数とし、20ポートのCSI-RSリソースを設定する際に、第mサブフレームに対して12ポートのCSI-RSリソースを設定し、第(m+1)サブフレームに8ポートのCSI-RSリソースを設定することができる。ただし、上記は一例であり連続するサブフレームには限らない。すなわち、本実施形態に係る基地局装置は、端末装置に対して複数のCSI-RSポートを設定する際に、複数のサブフレームを、CSI-RSポートを設定するサブフレームとして設定することができる。基地局装置は、CSI-RSリソースの設定を複数のサブフレームに渡って設定する際に、その設定周期(CSI-RSリソースの送信周期、CSI-RSリソースの設定周期)は、サブフレーム毎に異なることもできるし、同じとすることもできる。 In addition, the base station apparatus can set the CSI-RS resource setting over a plurality of subframes. For example, when the base station apparatus sets m as a natural number and sets a 20-port CSI-RS resource, the base station apparatus sets a 12-port CSI-RS resource for the m-th subframe, and sets it to the (m + 1) -th subframe. An 8-port CSI-RS resource can be set. However, the above is an example and is not limited to continuous subframes. That is, the base station apparatus according to this embodiment can set a plurality of subframes as subframes for setting a CSI-RS port when setting a plurality of CSI-RS ports for a terminal apparatus. . When the base station apparatus sets the CSI-RS resource setting over a plurality of subframes, the setting period (CSI-RS resource transmission period, CSI-RS resource setting period) is set for each subframe. It can be different or the same.
 また、基地局装置は、端末装置に対して設定した複数のCSI-RSリソース(またはリソース設定)のうち、少なくとも1つのCSI-RSリソース(またはリソース設定)に対して、CSI-RS以外の信号を配置することができる。基地局装置は、CSI-RS以外の信号を配置するCSI-RSリソースを示す設定情報(CSI-RSサブセット制限情報、CSI-RS Subset Restriction)を端末装置に設定することができる。基地局装置がCSI-RSサブセット制限情報を端末装置に設定する周期は、基地局装置がCSI-RSリソースを端末装置に設定する周期と同じとすることもできるし、異なる周期とすることもできる。 Further, the base station apparatus transmits signals other than CSI-RS to at least one CSI-RS resource (or resource setting) among a plurality of CSI-RS resources (or resource settings) set for the terminal apparatus. Can be arranged. The base station apparatus can set, in the terminal apparatus, setting information (CSI-RS subset restriction information, CSI-RS Subset Restriction) indicating CSI-RS resources in which signals other than CSI-RS are arranged. The cycle in which the base station device sets the CSI-RS subset restriction information in the terminal device can be the same as the cycle in which the base station device sets the CSI-RS resource in the terminal device, or can be a different cycle. .
 また、基地局装置が端末装置に設定するCSI-RSのアンテナポート数は、基地局装置が端 末装置に通知するDCI、DCIフォーマット、もしくはDCIフォーマットの記載内容に応じて制限されることができる。例えば、基地局装置は、端末装置の上りリンク伝送の送信モードをDCIで設定する際に、該送信モードが所定の送信モードに含まれていない場合、基地局装置は該端末装置に設定するCSI-RSのポート数を所定数(例えば、16以下)に制限することができる。CSI-RSのポート数の増加に従い、端末装置が上りリンク伝送で送信する信号に含まれるCSIフィードバック情報量が増加するため、基地局装置は該CSIフィードバック情報量をサポート可能(送信可能)な送信モードを設定できる端末装置に対して、16を上回るポート数のCSI-RSリソースを設定することができる。逆に言えば、基地局装置は、CSIフィードバック情報量をサポート可能(送信可能)な端末装置に対して、所定数以上(例えば、16ポートより多い)のアンテナポート数で送信することができる。 In addition, the number of CSI-RS antenna ports set by the base station device to the terminal device can be limited according to the contents of the DCI, DCI format, or DCI format that the base station device notifies the terminal device. . For example, when the base station apparatus sets the transmission mode of the uplink transmission of the terminal apparatus by DCI, if the transmission mode is not included in the predetermined transmission mode, the base station apparatus sets the CSI to be set for the terminal apparatus. -The number of RS ports can be limited to a predetermined number (for example, 16 or less). As the number of CSI-RS ports increases, the amount of CSI feedback information included in the signal transmitted by the terminal device in uplink transmission increases. Therefore, the base station device can support (can transmit) the amount of CSI feedback information. A CSI-RS resource having more than 16 ports can be set for a terminal device that can set the mode. In other words, the base station apparatus can transmit to a terminal apparatus capable of supporting (transmitting) the amount of CSI feedback information with a predetermined number or more (for example, more than 16 ports) of antenna ports.
 NP CSI-RSが設定された場合、基地局装置はNP CSI-RSの設定情報を端末装置に送信することができる。NP CSI-RSの設定情報は、アンテナポート数、コードブックサブセット制限(CBSR: Codebook Subset Restriction)に関する情報、コードブックに関する情報、干渉を測定する際のリソース制限をするか否かの設定である干渉測定制限、1または複数のリソース設定、拡散コード長の一部または全部を含む。なお、基地局装置はアンテナポート数とリソース設定は関連付けて設定することができる。例えば、NP CSI-RSの設定情報が複数のアンテナポート数、複数の1または複数のリソース設定を含む場合、アンテナポート数の各々と1または複数のリソース設定の各々が関連付けられる。 When NP CSI-RS is set, the base station apparatus can transmit NP CSI-RS setting information to the terminal apparatus. The NP CSI-RS setting information includes the number of antenna ports, information on codebook subset restriction (CBSR: Codebook 、 Subset Restriction), information on codebooks, and interference that specifies whether to limit resources when measuring interference. Includes measurement limitations, one or more resource settings, and some or all of spreading code length. Note that the base station apparatus can set the number of antenna ports and resource settings in association with each other. For example, when the NP CSI-RS setting information includes a plurality of antenna port numbers and a plurality of one or more resource settings, each of the antenna port numbers is associated with each of the one or more resource settings.
 多数のアンテナポートでCSI-RSを送信する場合、CSI-RSを送信するためのリソースが増えてしまう。このため、CSI-RS送信のオーバーヘッドを減らすことによって、スループットが向上する。CSI-RS送信のオーバーヘッドを減らすために、CSI-RSの送信周期を長くすることが考えられる。例えば、水平方向のビームフォーミングと垂直方向のビームフォーミングを考えると、一般に好適な垂直ビームの変化は好適な水平ビームの変化よりも緩やかである。従って、垂直ビームに関連するCSI-RSの送信周期(間隔)またはCSI-RSリソースの設定周期を長くすることで、CSI-RS送信のオーバーヘッドを低減できる。例えば、水平方向に8アンテナポート、垂直方向に4アンテナポートの場合、合計で32アンテナポートになる。このとき、図2に示すように、基地局装置は、周期THで水平方向の8ポートCSI-RSを送信し、周期TVで32ポートCSI-RSを送信することができる。なお、TH<TVである。また、8ポートのCSI-RS設定情報は、32ポートCSI-RS設定情報に含まれても良いし、8ポートのCSI-RS設定情報と32ポートCSI-RS設定情報は、別の設定としても良い。8ポートのCSI-RS設定情報と32ポートCSI-RS設定情報が別の設定の場合、2つの設定情報はリンクさせる必要がある。例えば、8ポートのCSI-RS設定情報に含まれるCSI-RS設定IDと32ポートCSI-RS設定情報に含まれるCSI-RS設定IDは同じとすることができる。この場合、端末装置は、同じCSI-RS設定IDに関するCSIを考慮してCSIを算出および報告することができる。また、8ポートまたは32ポートCSI-RS設定情報に参照先のIDを含めることができる。このとき端末装置は、参照先のIDに関するCSIを考慮してCSIを算出および報告することができる。このように、32ポートCSI-RSが設定された場合であっても、基地局装置は8ポートのCSI-RSまたは32ポートのCSI-RSを送信するため、32ポートCSI-RSを送信し続ける場合と比べて、CSI-RSのオーバーヘッドを低減できる。また、基地局装置はCSI-RSの送信周期をNP CSI-RSの設定情報に含めることができる。また、例えば、端末装置は、32ポートCSI-RSが設定されている場合に、基地局装置から受信したCSI-RSおよび/またはNP CSI-RSの設定情報から8ポートCSI-RSが送信されたか、32ポートCSI-RSが送信されたかを判断(特定)することができる。また、端末装置は、32ポートCSI-RSが設定されている場合に8ポートCSI-RSを受信したとき、8ポートCSI-RSからCQI/PMI/RIを算出して基地局装置に報告することもできるし、以前の報告時に算出した32ポートのCQI/PMI/RIを用いて8ポートのCQI/PMI/RIを算出して基地局装置に報告することができる。 When transmitting CSI-RS with many antenna ports, resources for transmitting CSI-RS increase. For this reason, throughput is improved by reducing the overhead of CSI-RS transmission. In order to reduce the overhead of CSI-RS transmission, it is conceivable to lengthen the CSI-RS transmission cycle. For example, considering horizontal beamforming and vertical beamforming, the preferred vertical beam change is generally more gradual than the preferred horizontal beam change. Therefore, the CSI-RS transmission overhead can be reduced by lengthening the CSI-RS transmission period (interval) or the CSI-RS resource setting period related to the vertical beam. For example, in the case of 8 antenna ports in the horizontal direction and 4 antenna ports in the vertical direction, the total is 32 antenna ports. At this time, as shown in FIG. 2, the base station apparatus can transmit the 8-port CSI-RS in the horizontal direction at the cycle TH and the 32-port CSI-RS at the cycle TV. Note that TH <TV. Also, the 8-port CSI-RS setting information may be included in the 32-port CSI-RS setting information, or the 8-port CSI-RS setting information and the 32-port CSI-RS setting information may be set as different settings. good. If the 8-port CSI-RS setting information and the 32-port CSI-RS setting information are different settings, the two setting information must be linked. For example, the CSI-RS setting ID included in the 8-port CSI-RS setting information and the CSI-RS setting ID included in the 32-port CSI-RS setting information may be the same. In this case, the terminal device can calculate and report CSI in consideration of CSI related to the same CSI-RS setting ID. Further, the reference destination ID can be included in the 8-port or 32-port CSI-RS setting information. At this time, the terminal device can calculate and report the CSI in consideration of the CSI related to the reference destination ID. Thus, even when 32-port CSI-RS is set, the base station device transmits 8-port CSI-RS or 32-port CSI-RS, and therefore continues to transmit 32-port CSI-RS. Compared to the case, the overhead of CSI-RS can be reduced. Also, the base station apparatus can include the CSI-RS transmission period in the NP CSI-RS setting information. Also, for example, when the 32-port CSI-RS is set, the terminal device has transmitted 8-port CSI-RS from the CSI-RS and / or NP CSI-RS setting information received from the base station device. , It is possible to determine (specify) whether 32-port CSI-RS has been transmitted. Further, when the 32-port CSI-RS is set and the 8-port CSI-RS is received, the terminal apparatus calculates the CQI / PMI / RI from the 8-port CSI-RS and reports it to the base station apparatus. Alternatively, the 8-port CQI / PMI / RI can be calculated and reported to the base station apparatus using the 32-port CQI / PMI / RI calculated in the previous report.
 また、基地局装置は、多数のアンテナポートの場合に、CSI-RSの送信周期を長く設定することもできる。つまり、アンテナポート数によって、設定できるCSI-RSの送信周期を変えることができる。例えば、アンテナポート数が16以下の場合よりも、アンテナポート数が16より多い場合の方が、長い周期を設定する。また、例えば、CSI-RSのアンテナポート数が16より多い場合、基地局装置は、CSI-RSの送信周期をCSI-RSの設定情報またはNP CSI-RSの設定情報に含めることができる。 In addition, the base station apparatus can also set a long CSI-RS transmission period in the case of a large number of antenna ports. That is, the CSI-RS transmission cycle that can be set can be changed depending on the number of antenna ports. For example, a longer period is set when the number of antenna ports is more than 16 than when the number of antenna ports is 16 or less. For example, when the number of CSI-RS antenna ports is greater than 16, the base station apparatus can include the CSI-RS transmission period in the CSI-RS setting information or the NP CSI-RS setting information.
 BF CSI-RSでは、1または複数のCSI-RSリソースが設定される。ここではCSI-RSリソース数をK(Kは自然数)とする。複数のCSI-RSのうち、少なくとも1つは異なるビーム方向となるようにビームフォーミングされる。また、BF CSI-RSの最大アンテナポート数は、NP CSI-RSの最大アンテナポート数よりも少ない。また、CSI-RS IDが設定される場合、BF CSI-RSでは、1または複数のCSI-RS IDが設定される。また、BF CSI-RSが設定された場合、端末装置は、複数のCSI-RSリソースから好適なCSI-RSリソースを選択し、CSIとしてCQI/PMI/RI/CRIを基地局装置に報告する。 In BF CSI-RS, one or more CSI-RS resources are set. Here, the number of CSI-RS resources is K (K is a natural number). At least one of the plurality of CSI-RSs is beam-formed so as to have different beam directions. Also, the maximum number of antenna ports for BF CSI-RS is smaller than the maximum number of antenna ports for NP CSI-RS. In addition, when the CSI-RS ID is set, one or more CSI-RS IDs are set in the BF CSI-RS. When BF CSI-RS is set, the terminal apparatus selects a suitable CSI-RS resource from a plurality of CSI-RS resources, and reports CQI / PMI / RI / CRI as CSI to the base station apparatus.
 BF CSI-RSが設定された場合、基地局装置は、BF CSI-RSの設定情報を端末装置に送信することができる。BF CSI-RSの設定情報は、1または複数のCSI-RS設定ID、干渉測定制限、コードブックサブセット制限(CBSR: Codebook Subset Restriction)に関する情報、各CSI-RS設定ID毎の4ポートにおける別のコードブックの指示、BF CSI-RSのコードブックに関する情報、チャネル測定時のリソース(サブフレーム)を制限するか否かの設定であるチャネル測定制限の一部または複数を含む。 When the BF CSI-RS is set, the base station apparatus can transmit the BF CSI-RS setting information to the terminal apparatus. BF CSI-RS configuration information includes one or more CSI-RS configuration IDs, interference measurement restrictions, information on codebook subset restrictions (CBSR: Codebook Subset Restriction), and other information on 4 ports for each CSI-RS configuration ID. It includes a part or a plurality of channel measurement restrictions that are settings of whether or not to restrict the resource (subframe) at the time of channel measurement, information on the codebook instruction, information on the BF CSI-RS codebook.
 基地局装置は、端末装置からのCSI報告によって、端末装置のチャネル情報を得ることができる。端末装置は、NP CSI-RS(CLASS A)が設定された場合、基地局装置にCQI/PMI/RIを報告することができる。BF CSI-RS(CLASS B)が設定された場合、基地局装置にCQI/PMI/RI/CRIを報告することができる。また、NP CSI-RSとBF CSI-RSの両方(CLASS Cとも呼ぶ)が設定された場合、端末装置は、NP CSI-RSに関するCSIとBF CSI-RSに関するCSIを報告する。 The base station device can obtain the channel information of the terminal device by the CSI report from the terminal device. The terminal apparatus can report CQI / PMI / RI to the base station apparatus when NP CSI-RS (CLASSRIA) is set. When BF CSI-RS (CLASS B) is set, CQI / PMI / RI / CRI can be reported to the base station apparatus. If both NP CSI-RS and BF CSI-RS (also called CLASS C) are set, the terminal device reports CSI related to NP CSI-RS and CSI related to BF CSI-RS.
 また、NP CSI-RSとBF CSI-RSの両方が設定される場合、基地局装置は、NP CSI-RSの送信周期とBF CSI-RSの送信周期を変えることができる。例えば、基地局装置は、NP CSI-RSの送信周期はBF CSI-RSの送信周期よりも長く設定することができる。 Also, when both NP CSI-RS and BF CSI-RS are set, the base station apparatus can change the transmission cycle of NP CSI-RS and the transmission cycle of BF CSI-RS. For example, the base station apparatus can set the transmission cycle of NP CSI-RS to be longer than the transmission cycle of BF CSI-RS.
 また、基地局装置はKの値が異なるBF CSI-RSを複数設定することができる。また、基地局装置は、Kの値に従ってCSI-RSの送信周期を変えることができる。Kの値が大きくなるとCSI-RSのオーバーヘッドが大きくなるため、Kの値が大きくなるに従ってCSI-RS送信周期を大きくすることによってCSI-RSのオーバーヘッドを低減できる。例えば、K=1とK>1のBF CSI-RSが設定されている場合、K=1のBF CSI-RSの送信周期は、K>1のBF CSI-RSよりも短く設定することができる。 Also, the base station device can set multiple BF CSI-RSs with different values of K. Also, the base station apparatus can change the CSI-RS transmission period according to the value of K. Since the overhead of CSI-RS increases as the value of K increases, the overhead of CSI-RS can be reduced by increasing the CSI-RS transmission period as the value of K increases. For example, when BF CSI-RS with K = 1 and K> 1 is set, the transmission cycle of BF CSI-RS with K = 1 can be set shorter than BF CSI-RS with K> 1. .
 また、Kの値が異なるBF CSI-RSを複数設定された場合、端末装置は設定されたBF CSI-RSの各々に対するCQI/PMI/RI/CRIを基地局装置に報告する。もしくは、端末装置は設定された全てのBF CSI-RSリソースから好適なBF CSI-RSリソースを選択し、そのBF CSI-RSのCQI/PMI/RI/CRIを基地局装置に報告する。 In addition, when a plurality of BF CSI-RSs having different K values are set, the terminal apparatus reports CQI / PMI / RI / CRI for each of the set BF CSI-RSs to the base station apparatus. Alternatively, the terminal device selects a suitable BF CSI-RS resource from all the set BF CSI-RS resources, and reports the CQI / PMI / RI / CRI of the BF CSI-RS to the base station device.
 また、CSI-RSは周期的に送信することに加え、非周期的に送信することができる。周期的なCSI-RSをPeriodic CSI-RS(P-CSI-RS、周期的CSI-RS)、非周期的なCSI-RSをAperiodic CSI-RS(A-CSI-RS、非周期的CSI-RS)とも呼ぶ。例えば、A-CSI-RSは基地局装置が指示するタイミングで送信される。この場合、端末装置は、基地局装置から制御情報等で指示されたタイミングでA-CSI-RSを受信する。P-CSI-RSの設定情報および/またはA-CSI-RSの設定情報は上位層のシグナリングまたは下りリンク制御情報などの物理層のシグナリングで送信される。A-CSI-RSの設定情報は、アンテナポート数、CSI-RS設定ID、リソース設定、CSI報告タイプ、CSIを報告するサブフレーム(リソース)の一部または全部を含む。また、P-CSI-RSの設定情報および/またはA-CSI-RSの設定情報は上記CSI-RSの設定情報に含めることができる。基地局装置は、A-CSI-RSに関する情報を下りリンク制御情報に含めて送信する場合、この下りリンク制御情報と同じサブフレーム(スロット)でCSI-RSを送信する。逆に言えば、端末装置は、受信した下りリンク制御情報にA-CSI-RSに関する情報が含まれている場合、この下りリンク制御情報と同じサブフレーム(スロット)でA-CSI-RSを受信する。このようにA-CSI-RSはあるタイミングで送信されるため、不必要にCSI-RSを送信しなくなるため、CSI-RSのオーバーヘッドを低減することができる。 In addition to transmitting CSI-RS periodically, it can be transmitted aperiodically. Periodic CSI-RS is Periodic CSI-RS (P-CSI-RS, Periodic CSI-RS), Aperiodic CSI-RS is Periodic CSI-RS (A-CSI-RS, Aperiodic CSI-RS) ). For example, A-CSI-RS is transmitted at a timing indicated by the base station apparatus. In this case, the terminal apparatus receives the A-CSI-RS at a timing instructed from the base station apparatus by control information or the like. P-CSI-RS configuration information and / or A-CSI-RS configuration information is transmitted by higher layer signaling or physical layer signaling such as downlink control information. The setting information of A-CSI-RS includes part or all of the number of antenna ports, CSI-RS setting ID, resource setting, CSI report type, and subframe (resource) for reporting CSI. Also, the P-CSI-RS setting information and / or the A-CSI-RS setting information can be included in the CSI-RS setting information. When transmitting information related to A-CSI-RS included in downlink control information, the base station apparatus transmits CSI-RS in the same subframe (slot) as the downlink control information. In other words, when the received downlink control information includes information related to A-CSI-RS, the terminal apparatus receives the A-CSI-RS in the same subframe (slot) as the downlink control information. To do. As described above, since the A-CSI-RS is transmitted at a certain timing, the CSI-RS is not transmitted unnecessarily, so that the overhead of the CSI-RS can be reduced.
 また、P-CSI-RSとA-CSI-RSが衝突した場合、端末装置はA-CSI-RSを優先してCSI等を報告する。P-CSI-RSとしてNP CSI-RSが設定されている場合に、A-CSI-RSとしてBF CSI-RSを受信した場合、端末装置は、BF CSI-RSに関するCSIを報告する。逆に、P-CSI-RSとしてBF CSI-RSが設定されている場合に、A-CSI-RSとしてNP CSI-RSを受信した場合、端末装置は、NP CSI-RSに関するCSIを報告する。 Also, when P-CSI-RS and A-CSI-RS collide, the terminal device gives priority to A-CSI-RS and reports CSI and the like. When NP CSI-RS is set as P-CSI-RS and BF CSI-RS is received as A-CSI-RS, the terminal device reports CSI related to BF CSI-RS. Conversely, when BF CSI-RS is set as P-CSI-RS and NP CSI-RS is received as A-CSI-RS, the terminal device reports CSI related to NP CSI-RS.
 また、P-CSI-RS系列を生成するための初期値とA-CSI-RS系列を生成するための初期値は変えることができる。例えば、P-CSI-RS系列の初期値は物理セルIDで、A-CSI-RSはユーザ固有のIDとすることができる。この場合、端末装置は、CSI-RS系列の初期値を知ることで、受信したCSI-RSがP-CSI-RSかA-CSI-RSかを判断することができる。 Also, the initial value for generating the P-CSI-RS sequence and the initial value for generating the A-CSI-RS sequence can be changed. For example, the initial value of the P-CSI-RS sequence can be a physical cell ID, and A-CSI-RS can be a user-specific ID. In this case, the terminal device can determine whether the received CSI-RS is P-CSI-RS or A-CSI-RS by knowing the initial value of the CSI-RS sequence.
 図3は、本実施形態における基地局装置1Aの構成を示す概略ブロック図である。図3に示すように、基地局装置1Aは、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送信部(送信ステップ)103、受信部(受信ステップ)104と送受信アンテナ105を含んで構成される。また、上位層処理部101は、無線リソース制御部(無線リソース制御ステップ)1011、スケジューリング部(スケジューリングステップ)1012を含んで構成される。また、送信部103は、符号化部(符号化ステップ)1031、変調部(変調ステップ)1032、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1033、多重部(多重ステップ)1034、無線送信部(無線送信ステップ)1035を含んで構成される。また、受信部104は、無線受信部(無線受信ステップ)1041、多重分離部(多重分離ステップ)1042、復調部(復調ステップ)1043、復号部(復号ステップ)1044を含んで構成される。 FIG. 3 is a schematic block diagram showing the configuration of the base station apparatus 1A in the present embodiment. As illustrated in FIG. 3, the base station apparatus 1 </ b> A performs transmission / reception with an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmission unit (transmission step) 103, and a reception unit (reception step) 104. An antenna 105 is included. The upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012. The transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, a radio A transmission unit (wireless transmission step) 1035 is included. The reception unit 104 includes a wireless reception unit (wireless reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
 上位層処理部101は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。 The upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Resource (Control: RRC) layer processing. In addition, upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置から受信する。言い換えると、端末装置は、自身の機能を基地局装置に上位層の信号で送信する。 The upper layer processing unit 101 receives information related to the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal apparatus transmits its own function to the base station apparatus using an upper layer signal.
 なお、以下の説明において、端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。なお、以下の説明において、所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。 In the following description, information on a terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has introduced a predetermined function and has completed a test. In the following description, whether or not to support a predetermined function includes whether or not installation and testing for the predetermined function have been completed.
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しない。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知しても良い。 For example, when a terminal device supports a predetermined function, the terminal device transmits information (parameters) indicating whether the predetermined function is supported. When the terminal device does not support the predetermined function, the terminal device does not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
 無線リソース制御部1011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CEなどを生成、または上位ノードから取得する。無線リソース制御部1011は、下りリンクデータを送信部103に出力し、他の情報を制御部102に出力する。また、無線リソース制御部1011は、端末装置の各種設定情報の管理をする。 The radio resource control unit 1011 generates or acquires downlink data (transport block), system information, RRC message, MAC CE, and the like arranged on the downlink PDSCH from the upper node. The radio resource control unit 1011 outputs downlink data to the transmission unit 103 and outputs other information to the control unit 102. The radio resource control unit 1011 manages various setting information of the terminal device.
 スケジューリング部1012は、物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式(あるいはMCS)および送信電力などを決定する。スケジューリング部1012は、決定した情報を制御部102に出力する。 The scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are allocated, the coding rate and modulation scheme (or MCS) of the physical channels (PDSCH and PUSCH), transmission power, and the like. The scheduling unit 1012 outputs the determined information to the control unit 102.
 スケジューリング部1012は、スケジューリング結果に基づき、物理チャネル(PDSCHおよびPUSCH)のスケジューリングに用いられる情報を生成する。スケジューリング部1012は、生成した情報を制御部102に出力する。 The scheduling unit 1012 generates information used for physical channel (PDSCH and PUSCH) scheduling based on the scheduling result. The scheduling unit 1012 outputs the generated information to the control unit 102.
 制御部102は、上位層処理部101から入力された情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報を生成し、送信部103に出力する。 The control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the higher layer processing unit 101. The control unit 102 generates downlink control information based on the information input from the higher layer processing unit 101 and outputs the downlink control information to the transmission unit 103.
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および、下りリンクデータを、符号化および変調し、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ105を介して端末装置2に信号を送信する。 The transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Then, PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the terminal apparatus 2 via the transmission / reception antenna 105.
 符号化部1031は、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部1011が決定した符号化方式を用いて符号化を行なう。変調部1032は、符号化部1031から入力された符号化ビットをBPSK(Binary Phase Shift Keying)、QPSK(quadrature Phase Shift Keying)、16QAM(quadrature amplitude modulation)、64QAM、256QAM等の予め定められた、または無線リソース制御部1011が決定した変調方式で変調する。 The encoding unit 1031 uses a predetermined encoding method such as block encoding, convolutional encoding, and turbo encoding for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Encoding is performed using the encoding method determined by the radio resource control unit 1011. The modulation unit 1032 converts the encoded bits input from the encoding unit 1031 into BPSK (Binary Phase Shift Shift Keying), QPSK (quadrature Phase Shift Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, and the like. Or it modulates with the modulation system which the radio | wireless resource control part 1011 determined.
 下りリンク参照信号生成部1033は、基地局装置1Aを識別するための物理セル識別子(PCI、セルID)などを基に予め定められた規則で求まる、端末装置2Aが既知の系列を下りリンク参照信号として生成する。 The downlink reference signal generation unit 1033 refers to a sequence known by the terminal apparatus 2A, which is obtained by a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station apparatus 1A. Generate as a signal.
 多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とを多重する。つまり、多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とをリソースエレメントに配置する。 The multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element.
 無線送信部1035は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成し、OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送受信アンテナ105に出力して送信する。 The radio transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed modulation symbol and the like, and adds a cyclic prefix (cyclic prefix: CP) to the OFDM symbol. A band digital signal is generated, the baseband digital signal is converted into an analog signal, an extra frequency component is removed by filtering, the signal is up-converted to a carrier frequency, power amplified, and output to the transmission / reception antenna 105 for transmission. .
 受信部104は、制御部102から入力された制御信号に従って、送受信アンテナ105を介して端末装置2Aから受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101に出力する。 The receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmission / reception antenna 105 in accordance with the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. .
 無線受信部1041は、送受信アンテナ105を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The radio reception unit 1041 converts an uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained. The level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal that has been demodulated is converted into a digital signal.
 無線受信部1041は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出し多重分離部1042に出力する。 The wireless reception unit 1041 removes a portion corresponding to the CP from the converted digital signal. Radio receiving section 1041 performs fast Fourier transform (FFT) on the signal from which CP has been removed, extracts a signal in the frequency domain, and outputs the signal to demultiplexing section 1042.
 多重分離部1042は、無線受信部1041から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。なお、この分離は、予め基地局装置1Aが無線リソース制御部1011で決定し、各端末装置2に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。 The demultiplexing unit 1042 demultiplexes the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 1011 by the base station apparatus 1A and notified to each terminal apparatus 2.
 また、多重分離部1042は、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部1042は、上りリンク参照信号を分離する。 Also, the demultiplexing unit 1042 compensates for the propagation paths of the PUCCH and PUSCH. Further, the demultiplexing unit 1042 demultiplexes the uplink reference signal.
 復調部1043は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた、または自装置が端末装置2各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。 The demodulator 1043 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH to obtain modulation symbols, and for each of the PUCCH and PUSCH modulation symbols, BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc. The received signal is demodulated by using a modulation method determined or notified in advance by the own device to each of the terminal devices 2 using an uplink grant.
 復号部1044は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、または自装置が端末装置2に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号部1044は、上位層処理部101から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。 The decoding unit 1044 uses the coding rate of the demodulated PUCCH and PUSCH in a predetermined encoding method, the predetermined coding method, or the coding rate notified by the own device to the terminal device 2 using the uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing section 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the demodulated coded bits.
 図4は、本実施形態における端末装置2の構成を示す概略ブロック図である。図4に示すように、端末装置2Aは、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送信部(送信ステップ)203、受信部(受信ステップ)204、チャネル状態情報生成部(チャネル状態情報生成ステップ)205と送受信アンテナ206を含んで構成される。また、上位層処理部201は、無線リソース制御部(無線リソース制御ステップ)2011、スケジューリング情報解釈部(スケジューリング情報解釈ステップ)2012を含んで構成される。また、送信部203は、符号化部(符号化ステップ)2031、変調部(変調ステップ)2032、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2033、多重部(多重ステップ)2034、無線送信部(無線送信ステップ)2035を含んで構成される。また、受信部204は、無線受信部(無線受信ステップ)2041、多重分離部(多重分離ステップ)2042、信号検出部(信号検出ステップ)2043を含んで構成される。 FIG. 4 is a schematic block diagram showing the configuration of the terminal device 2 in the present embodiment. As shown in FIG. 4, the terminal device 2A includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a channel state. An information generation unit (channel state information generation step) 205 and a transmission / reception antenna 206 are included. The upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012. The transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio A transmission unit (wireless transmission step) 2035 is included. The reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, and a signal detection unit (signal detection step) 2043.
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータ(トランスポートブロック)を、送信部203に出力する。また、上位層処理部201は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。 The upper layer processing unit 201 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 203. Further, the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. Process the (Radio Resource Control: RRC) layer.
 上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報を、送信部203に出力する。 The upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
 無線リソース制御部2011は、自端末装置の各種設定情報の管理をする。また、無線リソース制御部2011は、上りリンクの各チャネルに配置される情報を生成し、送信部203に出力する。 The radio resource control unit 2011 manages various setting information of the own terminal device. Also, the radio resource control unit 2011 generates information arranged in each uplink channel and outputs the information to the transmission unit 203.
 無線リソース制御部2011は、基地局装置から送信されたCSIフィードバックに関する設定情報を取得し、制御部202に出力する。 The radio resource control unit 2011 acquires setting information regarding CSI feedback transmitted from the base station apparatus, and outputs the setting information to the control unit 202.
 スケジューリング情報解釈部2012は、受信部204を介して受信した下りリンク制御情報を解釈し、スケジューリング情報を判定する。また、スケジューリング情報解釈部2012は、スケジューリング情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。 The scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines scheduling information. The scheduling information interpretation unit 2012 generates control information for controlling the reception unit 204 and the transmission unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
 制御部202は、上位層処理部201から入力された情報に基づいて、受信部204、チャネル状態情報生成部205および送信部203の制御を行なう制御信号を生成する。制御部202は、生成した制御信号を受信部204、チャネル状態情報生成部205および送信部203に出力して受信部204、および送信部203の制御を行なう。 The control unit 202 generates a control signal for controlling the receiving unit 204, the channel state information generating unit 205, and the transmitting unit 203 based on the information input from the higher layer processing unit 201. The control unit 202 controls the reception unit 204 and the transmission unit 203 by outputting the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203.
 制御部202は、チャネル状態情報生成部205が生成したCSIを基地局装置に送信するように送信部203を制御する。 The control unit 202 controls the transmission unit 203 to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus.
 受信部204は、制御部202から入力された制御信号に従って、送受信アンテナ206を介して基地局装置1Aから受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。 The receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 1A via the transmission / reception antenna 206 according to the control signal input from the control unit 202, and sends the decoded information to the upper layer processing unit 201. Output.
 無線受信部2041は、送受信アンテナ206を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The radio reception unit 2041 converts a downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases the amplification level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
 また、無線受信部2041は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行ない、周波数領域の信号を抽出する。 Further, the wireless reception unit 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
 多重分離部2042は、抽出した信号をPHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部2042は、チャネル測定から得られた所望信号のチャネルの推定値に基づいて、PHICH、PDCCH、およびEPDCCHのチャネルの補償を行ない、下りリンク制御情報を検出し、制御部202に出力する。また、制御部202は、PDSCHおよび所望信号のチャネル推定値を信号検出部2043に出力する。 The demultiplexing unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal. Further, the demultiplexing unit 2042 performs channel compensation of PHICH, PDCCH, and EPDCCH based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and Output. In addition, control unit 202 outputs PDSCH and the channel estimation value of the desired signal to signal detection unit 2043.
 信号検出部2043は、PDSCH、チャネル推定値を用いて、信号検出し、上位層処理部201に出力する。 The signal detection unit 2043 detects a signal using the PDSCH and the channel estimation value, and outputs the signal to the higher layer processing unit 201.
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ206を介して基地局装置1Aに送信する。 The transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 201, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 1A via the transmission / reception antenna 206.
 符号化部2031は、上位層処理部201から入力された上りリンク制御情報を畳み込み符号化、ブロック符号化等の符号化を行なう。また、符号化部2031は、PUSCHのスケジューリングに用いられる情報に基づきターボ符号化を行なう。 The encoding unit 2031 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 201. Also, the coding unit 2031 performs turbo coding based on information used for PUSCH scheduling.
 変調部2032は、符号化部2031から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。 The modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
 上りリンク参照信号生成部2033は、基地局装置1Aを識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。 The uplink reference signal generation unit 2033 has a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station apparatus 1A, a bandwidth for arranging an uplink reference signal, and an uplink grant. A sequence determined by a predetermined rule (formula) is generated on the basis of the cyclic shift and the parameter value for generating the DMRS sequence notified in (1).
 多重部2034は、制御部202から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)する。また、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。 The multiplexing unit 2034 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 202, and then performs a discrete Fourier transform (DFT). Also, the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
 無線送信部2035は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMA方式の変調を行ない、SC-FDMAシンボルを生成し、生成されたSC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送受信アンテナ206に出力して送信する。 The wireless transmission unit 2035 performs inverse fast Fourier transform (Inverse Fast Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, generates SC-FDMA symbols, and generates the generated SC-FDMA symbols. CP is added to baseband digital signal, baseband digital signal is converted to analog signal, excess frequency component is removed, converted to carrier frequency by up-conversion, power amplification, transmission / reception antenna It outputs to 206 and transmits.
 本発明に関わる装置で動作するプログラムは、本発明に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The program that operates in the apparatus related to the present invention may be a program that controls the central processing unit (CPU) or the like to function the computer so as to realize the functions of the above-described embodiments related to the present invention. The program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD). In response, the CPU reads and corrects / writes.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。 In addition, you may make it implement | achieve a part of apparatus in embodiment mentioned above with a computer. In that case, a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium. You may implement | achieve by making a computer system read the program recorded on this recording medium, and executing it. The “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices. The “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 “Computer-readable recording medium” means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time. Further, the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system. .
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、ディジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んで良い。汎用用途プロセッサは、マイクロプロセッサであっても良いし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていても良いし、アナログ回路で構成されていても良い。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Also, each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits. Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof. A general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine. The electric circuit described above may be configured with a digital circuit or an analog circuit. In addition, when an integrated circuit technology appears to replace the current integrated circuit due to the advancement of semiconductor technology, an integrated circuit based on the technology can be used.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 Note that the present invention is not limited to the above-described embodiment. In the embodiment, an example of the apparatus has been described. However, the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention. The present invention can be modified in various ways within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. It is. Moreover, it is the element described in each said embodiment, and the structure which substituted the element which has the same effect is also contained.
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。 The present invention is suitable for use in a base station device, a terminal device, and a communication method.
 なお、本国際出願は、2016年3月29日に出願した日本国特許出願第2016-065271号に基づく優先権を主張するものであり、日本国特許出願第2016-065271号の全内容を本国際出願に援用する。 Note that this international application claims priority based on Japanese Patent Application No. 2016-0665271 filed on March 29, 2016. The entire contents of Japanese Patent Application No. 2016-0665271 are hereby incorporated by reference. Included in international applications.
1A 基地局装置
2A、2B 端末装置
101 上位層処理部
102 制御部
103 送信部
104 受信部
105 送受信アンテナ
1011 無線リソース制御部
1012 スケジューリング部
1031 符号化部
1032 変調部
1033 下りリンク参照信号生成部
1034 多重部
1035 無線送信部
1041 無線受信部
1042 多重分離部
1043 復調部
1044 復号部
201 上位層処理部
202 制御部
203 送信部
204 受信部
205 チャネル状態情報生成部
206 送受信アンテナ
2011 無線リソース制御部
2012 スケジューリング情報解釈部
2031 符号化部
2032 変調部
2033 上りリンク参照信号生成部
2034 多重部
2035 無線送信部
2041 無線受信部
2042 多重分離部
2043 信号検出部
1A Base station apparatus 2A, 2B Terminal apparatus 101 Upper layer processing section 102 Control section 103 Transmission section 104 Reception section 105 Transmission / reception antenna 1011 Radio resource control section 1012 Scheduling section 1031 Encoding section 1032 Modulation section 1033 Downlink reference signal generation section 1034 Multiplexing Unit 1035 radio transmission unit 1041 radio reception unit 1042 demultiplexing unit 1043 demodulation unit 1044 decoding unit 201 upper layer processing unit 202 control unit 203 transmission unit 204 reception unit 205 channel state information generation unit 206 transmission / reception antenna 2011 radio resource control unit 2012 scheduling information Interpreter 2031 Encoder 2032 Modulator 2033 Uplink reference signal generator 2034 Multiplexer 2035 Radio transmitter 2041 Radio receiver 2042 Demultiplexer 2043 Signal detector

Claims (16)

  1.  端末装置と通信する基地局装置であって、
     チャネル状態情報参照信号(CSI-RS)および前記CSI-RSの設定情報を前記端末装置に送信する送信部と、
     前記端末装置から前記CSI-RSに関するチャネル状態情報(CSI)を受信する受信部を備え、
     前記CSI-RSは、周期的に送信される周期的CSI-RSまたは非周期に送信される非周期的CSI-RSであり、
     前記CSI-RSの設定情報は、前記CSIの報告に関するタイプを示す情報であるCSI報告タイプおよびCSI-RS設定情報のIDであるCSI-RS設定情報ID、周期的CSI-RSの情報または非周期的CSI-RSの情報を含む基地局装置。
    A base station device that communicates with a terminal device,
    A transmission unit that transmits channel state information reference signal (CSI-RS) and setting information of the CSI-RS to the terminal device;
    A receiving unit for receiving channel state information (CSI) related to the CSI-RS from the terminal device;
    The CSI-RS is a periodic CSI-RS transmitted periodically or an aperiodic CSI-RS transmitted aperiodically;
    The CSI-RS setting information includes a CSI report type that is information indicating a type related to the CSI report and a CSI-RS setting information ID that is an ID of CSI-RS setting information, information on periodic CSI-RS, or aperiodic information. Base station apparatus including information on static CSI-RS.
  2.  前記CSI報告タイプがCLASS Aを示す場合、
     送信する前記CSI-RSのアンテナポート数Nによって前記周期的CSI-RSの送信周期は異なる請求項1に記載の基地局装置。
    If the CSI report type indicates CLASS A,
    The base station apparatus according to claim 1, wherein a transmission period of the periodic CSI-RS differs depending on a number N of antenna ports of the CSI-RS to be transmitted.
  3.  前記CSI-RSの設定情報は複数のリソース設定を含み、
     前記リソース設定の各々は、前記CSI-RSのアンテナポート数よりも少ないアンテナポートのCSI-RSの配置される情報を示し、
     前記複数のリソース設定のうち、1または全部のリソース設定で示されるアンテナポート数のCSI-RSを送信する請求項2に記載の基地局装置。
    The CSI-RS setting information includes a plurality of resource settings,
    Each of the resource settings indicates information in which CSI-RSs of antenna ports that are fewer than the number of antenna ports of the CSI-RS are arranged,
    The base station apparatus according to claim 2, wherein CSI-RSs having the number of antenna ports indicated by one or all resource settings among the plurality of resource settings are transmitted.
  4.  前記複数のリソース設定のうち1つのリソース設定でCSI-RSを送信する場合と前記複数のリソース設定の全部のリソース設定でCSI-RSを送信する場合とで、CSI-RSの送信周期は異なる請求項3に記載の基地局装置。 The CSI-RS transmission cycle differs between when the CSI-RS is transmitted with one resource setting of the plurality of resource settings and when the CSI-RS is transmitted with all resource settings of the plurality of resource settings. Item 4. The base station apparatus according to Item 3.
  5.  前記送信部は、前記CSI-RSのアンテナポート数N(Nは自然数)よりも少ないアンテナポート数M(Mは自然数)のCSI-RSおよび該CSI-RSの設定情報を送信し、
     前記アンテナポート数NのCSI-RSの設定情報に含まれるCSI-RS設定IDと前記アンテナポート数MのCSI-RSの設定情報に含まれるCSI-RS設定IDは関連付けられている請求項2に記載の基地局装置。
    The transmitting unit transmits a CSI-RS having a smaller number of antenna ports M (M is a natural number) than the number N of antenna ports (N is a natural number) of the CSI-RS and setting information of the CSI-RS,
    The CSI-RS setting ID included in the CSI-RS setting information for the antenna port number N and the CSI-RS setting ID included in the CSI-RS setting information for the antenna port number M are associated with each other in claim 2. The base station apparatus as described.
  6.  前記アンテナポート数NのCSI-RSとアンテナポート数MのCSI-RSは、異なるサブフレームで送信される請求項5に記載の基地局装置。 The base station apparatus according to claim 5, wherein the CSI-RS with N antenna ports and the CSI-RS with M antenna ports are transmitted in different subframes.
  7.  前記周期的CSI-RSを送信するタイミングで前記非周期的CSI-RSを送信する場合、前記非周期的CSI-RSを優先して送信する請求項1に記載の基地局装置。 The base station apparatus according to claim 1, wherein when transmitting the non-periodic CSI-RS at a timing at which the periodic CSI-RS is transmitted, the non-periodic CSI-RS is preferentially transmitted.
  8.  基地局装置と通信する端末装置であって、
     チャネル状態情報参照信号(CSI-RS)および前記CSI-RSの設定情報を前記基地局装置から受信する受信部と、
     前記CSI-RSに関するチャネル状態情報(CSI)を前記基地局装置に送信する送信部を備え、
     前記CSI-RSは、周期的に送信される周期的CSI-RSまたは非周期に送信される非周期的CSI-RSであり、
     前記CSI-RSの設定情報は、前記CSIの報告に関するタイプを示す情報であるCSI報告タイプおよびCSI-RS設定情報のIDであるCSI-RS設定情報ID、周期的CSI-RSの情報または非周期的CSI-RSの情報を含む端末装置。
    A terminal device that communicates with a base station device,
    A receiving unit that receives a channel state information reference signal (CSI-RS) and setting information of the CSI-RS from the base station device;
    A transmission unit for transmitting channel state information (CSI) related to the CSI-RS to the base station apparatus;
    The CSI-RS is a periodic CSI-RS transmitted periodically or an aperiodic CSI-RS transmitted aperiodically;
    The CSI-RS setting information includes a CSI report type that is information indicating a type related to the CSI report and a CSI-RS setting information ID that is an ID of CSI-RS setting information, information on periodic CSI-RS, or aperiodic information. Terminal device including information on a general CSI-RS.
  9.  前記CSI報告タイプがCLASS Aを示す場合、
     受信する前記CSI-RSのアンテナポート数Nによって前記周期的CSI-RSの送信周期は異なる請求項8に記載の端末装置。
    If the CSI report type indicates CLASS A,
    The terminal apparatus according to claim 8, wherein a transmission period of the periodic CSI-RS differs depending on a number N of antenna ports of the CSI-RS to be received.
  10.  前記CSI-RSの設定情報は複数のリソース設定を含み、
     前記リソース設定の各々は、前記CSI-RSのアンテナポート数よりも少ないアンテナポートのCSI-RSの配置される情報を示し、
     前記複数のリソース設定のうち、1または全部のリソース設定で示されるアンテナポート数のCSI-RSを受信する請求項8に記載の端末装置。
    The CSI-RS setting information includes a plurality of resource settings,
    Each of the resource settings indicates information in which CSI-RSs of antenna ports that are fewer than the number of antenna ports of the CSI-RS are arranged,
    The terminal apparatus according to claim 8, wherein CSI-RSs having the number of antenna ports indicated by one or all resource settings among the plurality of resource settings are received.
  11.  前記複数のリソース設定のうち1つのリソース設定でCSI-RSを受信する場合と前記複数のリソース設定の全部のリソース設定でCSI-RSを受信する場合とで、CSI-RSの送信周期は異なる請求項9に記載の端末装置。 The transmission period of CSI-RS differs between when receiving CSI-RS with one resource setting of the plurality of resource settings and when receiving CSI-RS with all resource settings of the plurality of resource settings. Item 10. The terminal device according to Item 9.
  12.  前記受信部は、前記CSI-RSのアンテナポート数Nよりも少ないアンテナポート数MのCSI-RSおよび該CSI-RSの設定情報を受信し、
     前記アンテナポート数NのCSI-RSの設定情報に含まれるCSI-RS設定IDと前記アンテナポート数MのCSI-RSの設定情報に含まれるCSI-RS設定IDは関連付けられている請求項8に記載の端末装置。
    The receiving unit receives a CSI-RS having an antenna port number M smaller than the antenna port number N of the CSI-RS and setting information of the CSI-RS,
    9. The CSI-RS setting ID included in the CSI-RS setting information for the antenna port number N and the CSI-RS setting ID included in the CSI-RS setting information for the antenna port number M are associated with each other. The terminal device described.
  13.  前記アンテナポート数NのCSI-RSとアンテナポート数MのCSI-RSは、異なるサブフレームで送信される請求項12に記載の端末装置。 The terminal apparatus according to claim 12, wherein the CSI-RS having N antenna ports and the CSI-RS having M antenna ports are transmitted in different subframes.
  14.  前記周期的CSI-RSを受信するタイミングで前記非周期的CSI-RSを受信する場合、前記非周期的CSI-RSに関するCSIを報告する請求項8に記載の端末装置。 The terminal device according to claim 8, wherein when receiving the aperiodic CSI-RS at a timing of receiving the periodic CSI-RS, the terminal apparatus reports CSI related to the aperiodic CSI-RS.
  15.  端末装置と通信する基地局装置における通信方法であって、
     チャネル状態情報参照信号(CSI-RS)および前記CSI-RSの設定情報を前記端末装置に送信する送信ステップと、
     前記端末装置から前記CSI-RSに関するチャネル状態情報(CSI)を受信する受信ステップを備え、
     前記CSI-RSは、周期的に送信される周期的CSI-RSまたは非周期に送信される非周期的CSI-RSであり、
     前記CSI-RSの設定情報は、前記CSIの報告に関するタイプを示す情報であるCSI報告タイプおよびCSI-RS設定情報のIDであるCSI-RS設定情報ID、周期的CSI-RSの情報または非周期的CSI-RSの情報を含む通信方法。
    A communication method in a base station device that communicates with a terminal device,
    A transmission step of transmitting a channel state information reference signal (CSI-RS) and setting information of the CSI-RS to the terminal device;
    Receiving a channel state information (CSI) related to the CSI-RS from the terminal device;
    The CSI-RS is a periodic CSI-RS transmitted periodically or an aperiodic CSI-RS transmitted aperiodically;
    The CSI-RS setting information includes a CSI report type that is information indicating a type related to the CSI report and a CSI-RS setting information ID that is an ID of CSI-RS setting information, information on periodic CSI-RS, or aperiodic information. Communication method including information on static CSI-RS.
  16.  基地局装置と通信する端末装置における通信方法であって、
     チャネル状態情報参照信号(CSI-RS)および前記CSI-RSの設定情報を前記基地局装置から受信する受信ステップと、
     前記CSI-RSに関するチャネル状態情報(CSI)を前記基地局装置に送信する送信ステップを備え、
     前記CSI-RSは、周期的に送信される周期的CSI-RSまたは非周期に送信される非周期的CSI-RSであり、
     前記CSI-RSの設定情報は、前記CSIの報告に関するタイプを示す情報であるCSI報告タイプおよびCSI-RS設定情報のIDであるCSI-RS設定情報ID、周期的CSI-RSの情報または非周期的CSI-RSの情報を含む通信方法。
    A communication method in a terminal device that communicates with a base station device,
    Receiving a channel state information reference signal (CSI-RS) and setting information of the CSI-RS from the base station apparatus;
    A transmission step of transmitting channel state information (CSI) related to the CSI-RS to the base station apparatus;
    The CSI-RS is a periodic CSI-RS transmitted periodically or an aperiodic CSI-RS transmitted aperiodically;
    The CSI-RS setting information includes a CSI report type that is information indicating a type related to the CSI report and a CSI-RS setting information ID that is an ID of CSI-RS setting information, information on periodic CSI-RS, or aperiodic information. Communication method including information on static CSI-RS.
PCT/JP2017/006872 2016-03-29 2017-02-23 Base station, terminals and communication method WO2017169366A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-065271 2016-03-29
JP2016065271A JP2019091956A (en) 2016-03-29 2016-03-29 Base station device, terminal device, and communication method

Publications (1)

Publication Number Publication Date
WO2017169366A1 true WO2017169366A1 (en) 2017-10-05

Family

ID=59964205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006872 WO2017169366A1 (en) 2016-03-29 2017-02-23 Base station, terminals and communication method

Country Status (2)

Country Link
JP (1) JP2019091956A (en)
WO (1) WO2017169366A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111602423A (en) * 2017-11-10 2020-08-28 株式会社Ntt都科摩 User terminal and wireless communication method
CN112292893A (en) * 2018-06-29 2021-01-29 株式会社Ntt都科摩 Communication device
CN112335282A (en) * 2018-06-28 2021-02-05 株式会社Ntt都科摩 User terminal and radio base station

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11146371B2 (en) 2016-03-31 2021-10-12 Ntt Docomo, Inc. Method of transmission of CSI-RS and base station
CN115136687A (en) * 2020-02-13 2022-09-30 株式会社Ntt都科摩 Terminal, wireless communication method, and base station

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523814A (en) * 2012-07-12 2015-08-13 エルジー エレクトロニクス インコーポレイティド Reference signal transmission method for antenna port in wireless connection system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523814A (en) * 2012-07-12 2015-08-13 エルジー エレクトロニクス インコーポレイティド Reference signal transmission method for antenna port in wireless connection system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E- UTRA); Physical layer procedures (Release 13)", 3GPP TS 36.213, 27 January 2016 (2016-01-27), pages 78 - 84 , 95 to 125, XP055428641 *
HUAWEI ET AL.: "Beamformed CSI-RS Design", 3GPP TSG-RAN WG1#82 RL-154349, 15 August 2015 (2015-08-15), XP050993383 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111602423A (en) * 2017-11-10 2020-08-28 株式会社Ntt都科摩 User terminal and wireless communication method
CN112335282A (en) * 2018-06-28 2021-02-05 株式会社Ntt都科摩 User terminal and radio base station
CN112292893A (en) * 2018-06-29 2021-01-29 株式会社Ntt都科摩 Communication device
CN112292893B (en) * 2018-06-29 2024-03-08 株式会社Ntt都科摩 Communication device

Also Published As

Publication number Publication date
JP2019091956A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2017130967A2 (en) Base station device, terminal device, and communication method
JP6555827B2 (en) Communication device and communication method
JP2020010072A (en) Base station device, terminal and communication method
WO2016147994A1 (en) Terminal device and communication method
RU2741320C2 (en) Terminal device, a base station device, a communication method and an integrated circuit
WO2017169467A1 (en) Base station, terminals and communication method
WO2017094320A1 (en) Base station device, terminal device, and communication method
WO2018008459A1 (en) Base station device, terminal device, and communication method
US10985822B2 (en) Base station apparatus, terminal apparatus, and communication method
EP3641391B1 (en) Cqi index reporting using a 64qam mode cqi table, a 256qam mode cqi table and a 1024qam mode cqi table
WO2019139140A1 (en) Base station device, terminal device, communication method, and integrated circuit
WO2017169366A1 (en) Base station, terminals and communication method
WO2019130847A1 (en) Base station device, terminal device and communication method
CN111316729B (en) Terminal device and base station device
WO2016021713A1 (en) Base station device, terminal device, and method
WO2016043019A1 (en) Terminal device, base station device and communication method
JP6548334B2 (en) Terminal device, base station device, and communication method
WO2016182039A1 (en) Terminal, base station, and communication method
WO2018061571A1 (en) Base station device, terminal device and communication method
WO2018008403A2 (en) Base station device, terminal device, and communication method
WO2017130969A2 (en) Base station device, terminal device, and communication method
JP2018101819A (en) Terminal device, base station device, and communication method
WO2017130966A1 (en) Base station device, terminal device, and communication method
WO2019167785A1 (en) Communication device and communication method
WO2016182040A1 (en) Terminal apparatus, base station apparatus, and communication method

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773911

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP