WO2017130969A2 - Base station device, terminal device, and communication method - Google Patents

Base station device, terminal device, and communication method Download PDF

Info

Publication number
WO2017130969A2
WO2017130969A2 PCT/JP2017/002362 JP2017002362W WO2017130969A2 WO 2017130969 A2 WO2017130969 A2 WO 2017130969A2 JP 2017002362 W JP2017002362 W JP 2017002362W WO 2017130969 A2 WO2017130969 A2 WO 2017130969A2
Authority
WO
WIPO (PCT)
Prior art keywords
communication
transmission
information
base station
terminal device
Prior art date
Application number
PCT/JP2017/002362
Other languages
French (fr)
Japanese (ja)
Other versions
WO2017130969A3 (en
Inventor
良太 山田
宏道 留場
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017130969A2 publication Critical patent/WO2017130969A2/en
Publication of WO2017130969A3 publication Critical patent/WO2017130969A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to a base station device, a terminal device, and a communication method.
  • a base station device (base station, transmitting station, transmission point, downlink transmitting device, uplink) Expand the communication area by adopting a cellular configuration in which multiple areas covered by a receiving station, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) or transmitting station according to the base station apparatus are arranged in a cell shape. can do.
  • frequency utilization efficiency can be improved by using the same frequency between adjacent cells or sectors.
  • next generation mobile communication systems have been studied.
  • next-generation mobile communication systems it is natural to improve frequency utilization efficiency, and new demands for communications such as remote control, automatic driving, and collision detection of automobiles are increasing, and high-reliability communication and low-delay communication are required.
  • the next generation mobile communication system is described in Non-Patent Document 1.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station device, a terminal device, and a communication method that enable highly reliable communication and low delay communication.
  • configurations of a base station apparatus, a terminal apparatus, and a communication method according to an aspect of the present invention are as follows.
  • a base station apparatus is a base station apparatus that communicates with a terminal apparatus, and includes a transmission unit that transmits a setting of high-reliability communication to the terminal apparatus.
  • the communication type includes information indicating whether the transmission type is initial transmission or high-reliability transmission, and the high-reliability communication information includes at least one of a modulation scheme, resource allocation information, the number of bits, and a transmission cycle. including.
  • communication with retransmission is performed when the communication type is initial transmission, and communication without retransmission is performed when the communication type is reliable transmission.
  • an ACK / NACK signal indicating whether or not there is an error in transmitted data is received from the terminal apparatus, and a condition for reliable transmission is determined based on the ACK / NACK. Judge whether to meet.
  • a terminal apparatus is a terminal apparatus that communicates with a base station apparatus, and includes a receiving unit that receives a setting of highly reliable communication from the base station apparatus, and the setting of the highly reliable communication is
  • the communication type is information indicating whether the communication type is initial transmission or high-reliability transmission, and the high-reliability communication information includes an encoded modulation scheme, a modulation scheme, resource allocation information, the number of bits, Includes at least one of the transmission periods.
  • an ACK / NACK signal indicating whether or not there is an error in received data is transmitted to the base station device, and the ACK / NACK is transmitted when the communication type is initial transmission.
  • the signal is NACK indicating an error
  • a retransmission signal is received from the base station apparatus.
  • the communication type is reliable transmission
  • the ACK / NACK signal is NACK, the data is discarded.
  • a communication method is a communication method in a base station device that communicates with a terminal device, and includes a transmission step of transmitting a setting of highly reliable communication to the terminal device, and the setting of the highly reliable communication.
  • the high-reliability communication information includes at least a modulation scheme, resource allocation information, the number of bits, and a transmission cycle. Contains one.
  • a communication method is a communication method in a terminal apparatus that communicates with a base station apparatus, and includes a reception step of receiving a setting of highly reliable communication from the base station apparatus, and the highly reliable communication
  • the setting includes a communication type and high-reliability communication information
  • the communication type is information indicating whether the initial transmission or the high-reliability transmission
  • the high-reliability communication information includes an encoded modulation scheme, a modulation scheme, resource allocation information, It includes at least one of the number of bits and the transmission period.
  • the communication system in this embodiment includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) and terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving terminal).
  • a base station device transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB
  • terminal device terminal, mobile terminal, receiving point, receiving terminal, receiving terminal.
  • Device receiving antenna group, receiving antenna port group, UE).
  • the base station apparatus and terminal apparatus in this embodiment can communicate in a frequency band (license band) that requires a license and / or a frequency band (unlicensed band) that does not require a license.
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment.
  • the communication system in this embodiment includes a base station device 1A and a terminal device 2A.
  • the coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device.
  • the terminal device 2A is also referred to as a terminal device 2.
  • the following uplink physical channels are used in uplink radio communication from the terminal apparatus 2A to the base station apparatus 1A.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • -PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • the PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI).
  • UCI Uplink Control Information
  • the uplink control information includes ACK (a positive acknowledgement) or NACK (a negative acknowledgement) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH).
  • ACK / NACK for downlink data is also referred to as HARQ-ACK and HARQ feedback.
  • the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. Further, the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of an uplink shared channel (Uplink-Shared Channel: UL-SCH).
  • the channel state information includes a rank index RI (Rank Indicator) that designates a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) that designates a suitable precoder, and a channel quality indicator CQI that designates a suitable transmission rate.
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI channel quality indicator
  • the channel quality indicator CQI (hereinafter referred to as CQI value) is a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and a coding rate in a predetermined band (details will be described later). It can.
  • the CQI value can be an index (CQI Index) determined by the change method and coding rate.
  • the CQI value can be predetermined by the system.
  • the rank index and the precoding quality index can be determined in advance by the system.
  • the rank index and the precoding matrix index can be indexes determined by the spatial multiplexing number and precoding matrix information.
  • the values of the rank index, the precoding matrix index, and the channel quality index CQI are collectively referred to as CSI values.
  • the PUSCH is used for transmitting uplink data (uplink transport block, UL-SCH). Moreover, PUSCH may be used to transmit ACK / NACK and / or channel state information together with uplink data. Moreover, PUSCH may be used in order to transmit only uplink control information.
  • PUSCH is used to transmit an RRC message.
  • the RRC message is information / signal processed in a radio resource control (Radio-Resource-Control: -RRC) layer.
  • the PUSCH is used to transmit a MAC CE (Control Element).
  • the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
  • the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the power headroom level.
  • PRACH is used to transmit a random access preamble.
  • an uplink reference signal (Uplink Reference Signal: UL SRS) is used as an uplink physical signal.
  • the uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
  • DMRS is related to transmission of PUSCH or PUCCH.
  • base station apparatus 1A uses DMRS to perform propagation channel correction for PUSCH or PUCCH.
  • SRS is not related to PUSCH or PUCCH transmission.
  • the base station apparatus 1A uses SRS to measure the uplink channel state.
  • the following downlink physical channels are used in downlink radio communication from the base station apparatus 1A to the terminal apparatus 2A.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel: HARQ instruction channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices.
  • MIB Master Information Block
  • BCH Broadcast Channel
  • PCFICH is used for transmitting information indicating a region (for example, the number of OFDM symbols) used for transmission of PDCCH.
  • PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by the base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK.
  • the terminal device 2A notifies the received ACK / NACK to the upper layer.
  • ACK / NACK is ACK indicating that the data has been correctly received, NACK indicating that the data has not been correctly received, and DTX indicating that there is no corresponding data. Further, when there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of ACK.
  • DCI Downlink Control Information
  • a plurality of DCI formats are defined for transmission of downlink control information. That is, fields for downlink control information are defined in the DCI format and mapped to information bits.
  • a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined as a DCI format for the downlink.
  • the DCI format for the downlink includes information on PDSCH resource allocation, information on MCS (Modulation & Coding Scheme) for PDSCH, and downlink control information such as a TPC command for PUCCH.
  • the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
  • DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
  • the DCI format for uplink includes information on PUSCH resource allocation, information on MCS for PUSCH, and uplink control information such as TPC command for PUSCH.
  • the DCI format for the uplink is also referred to as uplink grant (or uplink assignment).
  • the DCI format for uplink can be used to request downlink channel state information (CSI: “Channel State Information”, also referred to as reception quality information).
  • CSI Downlink Channel State Information
  • the DCI format for the uplink can be used for setting indicating an uplink resource for mapping a channel state information report (CSI feedback report) that the terminal apparatus feeds back to the base station apparatus.
  • the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
  • the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information irregularly.
  • the base station apparatus can set either the periodic channel state information report or the irregular channel state information report. Further, the base station apparatus can set both the periodic channel state information report and the irregular channel state information report.
  • the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal apparatus feeds back to the base station apparatus.
  • the types of channel state information reports include wideband CSI (for example, Wideband CQI) and narrowband CSI (for example, Subband CQI).
  • the terminal apparatus When the PDSCH resource is scheduled using the downlink assignment, the terminal apparatus receives the downlink data on the scheduled PDSCH. In addition, when PUSCH resources are scheduled using an uplink grant, the terminal apparatus transmits uplink data and / or uplink control information using the scheduled PUSCH.
  • the PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • the PDSCH is used to transmit a system information block type 1 message.
  • the system information block type 1 message is cell specific (cell specific) information.
  • PDSCH is used to transmit a system information message.
  • the system information message includes a system information block X other than the system information block type 1.
  • the system information message is cell specific (cell specific) information.
  • PDSCH is used to transmit an RRC message.
  • the RRC message transmitted from the base station apparatus may be common to a plurality of terminal apparatuses in the cell.
  • the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • the PDSCH is used to transmit the MAC CE.
  • the RRC message and / or MAC CE is also referred to as higher layer signaling.
  • PDSCH can be used to request downlink channel state information.
  • the PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • CSI feedback report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
  • the types of downlink channel state information reports include wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI).
  • the broadband CSI calculates one channel state information for the system band of the cell.
  • the narrowband CSI the system band is divided into predetermined units, and one channel state information is calculated for the division.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals.
  • the downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
  • the synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain.
  • the downlink reference signal is used by the terminal device for channel correction of the downlink physical channel.
  • the downlink reference signal is used by the terminal device to calculate downlink channel state information.
  • the downlink reference signal includes CRS (Cell-specific Reference Signal: Cell-specific reference signal), URS related to PDSCH (UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal), EPDCCH Related DMRS (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Chanel State Information Information Reference Signal), and ZP CSI-RS (Zero Power Channel Information State Information Reference Signal) are included.
  • CRS Cell-specific Reference Signal: Cell-specific reference signal
  • URS related to PDSCH UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal
  • EPDCCH Related DMRS Demodulation Reference Signal
  • NZP CSI-RS Non-Zero Power Chanel State Information Information Reference Signal
  • ZP CSI-RS Zero Power Channel Information State Information Reference Signal
  • CRS is transmitted in the entire band of the subframe, and is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH.
  • the URS associated with the PDSCH is transmitted in subframes and bands used for transmission of the PDSCH associated with the URS, and is used to demodulate the PDSCH associated with the URS.
  • DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS.
  • DMRS is used to demodulate the EPDCCH with which DMRS is associated.
  • NZP CSI-RS resources are set by the base station apparatus 1A.
  • the terminal device 2A performs signal measurement (channel measurement) using NZP CSI-RS.
  • the resource of ZP CSI-RS is set by the base station apparatus 1A.
  • the base station apparatus 1A transmits ZP CSI-RS with zero output.
  • the terminal device 2A measures interference in a resource supported by NZP CSI-RS.
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • the MBSFN RS is used for PMCH demodulation.
  • PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in the MAC layer is referred to as a transport channel.
  • the unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit).
  • the transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
  • a base station device can communicate with a terminal device that supports carrier aggregation (CA: CarriergAggregation) by integrating multiple component carriers (CC: Component Carrier) for wider band transmission.
  • CA CarriergAggregation
  • CC Component Carrier
  • carrier aggregation one primary cell (PCell: Primary Cell) and one or more secondary cells (SCell: Secondary Cell) are set as a set of serving cells.
  • a master cell group MCG: Master Cell Group
  • a secondary cell group SCG: Secondary Cell Group
  • the MCG is composed of a PCell and optionally one or more SCells.
  • the SCG includes a primary SCell (PSCell) and optionally one or a plurality of SCells.
  • the base station device uses URLLC (high-reliability communication, low-delay communication, high-reliability / low-delay communication).
  • URLLC settings include communication type and / or URLLC information.
  • the communication type indicates whether URLLC initial transmission or high-reliability transmission.
  • the URLLC information includes a modulation and coding scheme (MCS: “Modulation” and “coding” scheme), RI, PMI, modulation scheme, time / frequency / space resource allocation, bit number (transport block size), part of transmission interval (period), or Includes everything.
  • Parameters that are not included in the URLLC information are blindly detected by the terminal device, whether default values are set. Further, if MCS / RI / PMI is included in the URLLC information, the terminal device does not necessarily need to feed back the CSI included in the URLLC information. For example, when MCS is included in the URLLC information, the terminal device can report only RI / PMI to the base station device. Further, when the URLLC is set, the base station apparatus may not transmit the PDCCH. In this case, when the URLLC is set, the terminal device does not perform blind decoding of the PDCCH.
  • FIG. 2 is a sequence diagram of the base station apparatus and the terminal apparatus in the initial transmission.
  • the base station apparatus transmits data # 1.
  • the terminal device can correctly demodulate / decode the received data # 1
  • it reports ACK to the base station device, and the communication of data # 1 is completed.
  • the base station apparatus transmits data # 2. If the terminal device cannot correctly demodulate / decode the received data # 2, it transmits a NACK to the base station device.
  • FIG. 3 is a sequence diagram of the base station apparatus and the terminal apparatus in the reliable transmission.
  • the base station apparatus transmits data # 1, data # 2, and data # 3.
  • the terminal apparatus reports ACK / NACK for each of the received data # 1, data # 2, and data # 3.
  • the base station apparatus does not retransmit.
  • the terminal apparatus demodulates / decodes certain data and determines NACK, the terminal apparatus discards the data.
  • the reliable transmission since retransmission is not performed, low-delay communication is possible.
  • FIG. 4 is a flowchart regarding setting of URLLC in the base station apparatus.
  • the base station apparatus sets up highly reliable communication (step S401). Initially, the base station apparatus and the terminal apparatus communicate by initial transmission (step S402). It is determined whether or not the condition is satisfied in the initial transmission (step S403).
  • the conditions are communication quality such as data block error rate, SINR (signal-to-interference and noise power ratio: “Signal” to “Interference” and “Noise” power “Ratio”). For example, when ACK is reported M times in N data transmissions, it can be determined that the condition is satisfied. However, N is an integer greater than or equal to 1, and M is an integer greater than or equal to 1.
  • N M
  • M M is an integer of 0 or more.
  • the terminal device reports SINR, CQI, etc., it can be conditional on exceeding the threshold value M times in N data transmissions.
  • the threshold value may be a default value set in the specification or the like, or may be a value uniquely set by the base station apparatus. If the condition is not satisfied in step S403 (in the case of NO), the highly reliable communication is canceled (step S404) and the process is terminated. If the condition is satisfied in step S403 (in the case of YES), highly reliable transmission is performed (step S405).
  • the base station apparatus determines whether the condition is satisfied when performing highly reliable transmission (step S406). For example, when ACK is reported N times continuously, or when ACK is reported M times during N data transmissions, it is determined that the condition is satisfied. In other words, if NACK is reported N times consecutively, or if NACK is reported M times during N data transmissions, it is determined that the condition is not satisfied. If it is determined in step S406 that the condition is satisfied (in the case of YES), reliable transmission is continued. When it is determined in step S406 that the condition is not satisfied (in the case of NO), the process proceeds to initial transmission in step S402.
  • the terminal device calculates only with the resources set in the URLLC information.
  • the URLLC can be set by PCell, PSCell, and SCell, or can be set by only PCell or only SCell.
  • the base station apparatus 1A may transmit the data for which the NACK is transmitted from the terminal apparatus 2A until the URLLC is stopped, again with the URLLC to be started again, or the URLLC.
  • the data may be transmitted through normal communication, or the data may be discarded.
  • the condition of step S406 includes other than communication quality.
  • the condition of step S406 can be the number of resources occupied (used) by the reliable communication. If the number of resources (number of slots, frequency bandwidth, etc.) used in step S405 exceeds a predetermined threshold value, it is possible to proceed to step S404 although not represented in step S402 or FIG.
  • the terminal device 2A can notify the base station device 1A that URLLC is rejected. For example, taking FIG. 3 as an example, when the terminal device 2A correctly receives the data # 2, if it is determined that the terminal device 2A does not require the URLLC, or that it is difficult to continue the URLLC in the future. In this case, the terminal device 2A can transmit a signal including information indicating that URLLC is rejected together with the ACK signal of data # 2 to the base station device 1A. The base station apparatus 1A that has received a signal including information indicating that the URLLC is rejected can stop the URLLC.
  • the base station device 1A Prior to starting the URLLC, the base station device 1A individually notifies the terminal device 2A of a signal (URLLC trigger frame) including information indicating that the URLLC is started, or may notify the terminal device 2A within the coverage of the base station device 1A. it can.
  • the URLLC trigger frame can include information indicating a resource for which the base station apparatus 1A performs URLLC.
  • the base station apparatus 1A can periodically arrange resources for URLLC in the time direction or the frequency direction.
  • FIG. 5 is a schematic block diagram showing the configuration of the base station device 1A in the present embodiment.
  • the base station apparatus 1 ⁇ / b> A performs transmission / reception with an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmission unit (transmission step) 103, and a reception unit (reception step) 104.
  • An antenna 105 is included.
  • the upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012.
  • the transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, a radio A transmission unit (wireless transmission step) 1035 is included.
  • the reception unit 104 includes a wireless reception unit (wireless reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
  • the upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Resource (Control: RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC radio resource control
  • upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
  • the upper layer processing unit 101 receives information related to the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal apparatus transmits its own function to the base station apparatus using an upper layer signal.
  • information on a terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has introduced a predetermined function and has completed a test.
  • whether or not to support a predetermined function includes whether or not installation and testing for the predetermined function have been completed.
  • the terminal device transmits information (parameters) indicating whether the predetermined function is supported.
  • the terminal device does not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
  • the radio resource control unit 1011 generates or obtains downlink data (transport block), system information, RRC message, MAC CE, and the like arranged on the downlink PDSCH from an upper node.
  • the radio resource control unit 1011 outputs downlink data to the transmission unit 103 and outputs other information to the control unit 102.
  • the radio resource control unit 1011 manages various setting information of the terminal device.
  • the scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are allocated, the coding rate and modulation scheme (or MCS) of the physical channels (PDSCH and PUSCH), transmission power, and the like.
  • the scheduling unit 1012 outputs the determined information to the control unit 102.
  • the scheduling unit 1012 generates information used for physical channel (PDSCH and PUSCH) scheduling based on the scheduling result.
  • the scheduling unit 1012 outputs the generated information to the control unit 102.
  • the control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the higher layer processing unit 101.
  • the control unit 102 generates downlink control information based on the information input from the higher layer processing unit 101 and outputs the downlink control information to the transmission unit 103.
  • the transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Then, PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the terminal apparatus 2 via the transmission / reception antenna 105.
  • the encoding unit 1031 uses a predetermined encoding method such as block encoding, convolutional encoding, and turbo encoding for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Encoding is performed using the encoding method determined by the radio resource control unit 1011.
  • the modulation unit 1032 converts the encoded bits input from the encoding unit 1031 into BPSK (Binary Phase Shift Shift Keying), QPSK (quadrature Phase Shift Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, and the like. Or it modulates with the modulation system which the radio
  • the downlink reference signal generation unit 1033 refers to a sequence known by the terminal apparatus 2A, which is obtained based on a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station apparatus 1A. Generate as a signal.
  • PCI physical cell identifier
  • the multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element.
  • the wireless transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fast Transform: IFFT) on the multiplexed modulation symbol and the like, and adds a cyclic prefix (cyclic prefix: CP) to the OFDM symbol.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmission / reception antenna 105 in accordance with the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. .
  • the radio reception unit 1041 converts an uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained.
  • the level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal that has been demodulated is converted into a digital signal.
  • the wireless reception unit 1041 removes a portion corresponding to the CP from the converted digital signal.
  • Radio receiving section 1041 performs fast Fourier transform (FFT) on the signal from which CP has been removed, extracts a signal in the frequency domain, and outputs the signal to demultiplexing section 1042.
  • FFT fast Fourier transform
  • the demultiplexing unit 1042 demultiplexes the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 1011 by the base station apparatus 1A and notified to each terminal apparatus 2.
  • the demultiplexing unit 1042 compensates for the propagation paths of the PUCCH and PUSCH. Further, the demultiplexing unit 1042 demultiplexes the uplink reference signal.
  • the demodulator 1043 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH to obtain modulation symbols, and for each of the PUCCH and PUSCH modulation symbols, BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc.
  • IDFT inverse discrete Fourier transform
  • the received signal is demodulated by using a modulation method determined or notified in advance by the own device to each of the terminal devices 2 using an uplink grant.
  • the decoding unit 1044 uses the coding rate of the demodulated PUCCH and PUSCH in a predetermined encoding method, the predetermined coding method, or the coding rate notified by the own device to the terminal device 2 using the uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing section 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the demodulated coded bits.
  • FIG. 6 is a schematic block diagram showing the configuration of the terminal device 2 in the present embodiment.
  • the terminal device 2A includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a channel state.
  • An information generation unit (channel state information generation step) 205 and a transmission / reception antenna 206 are included.
  • the upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012.
  • the transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio A transmission unit (wireless transmission step) 2035 is included.
  • the reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, and a signal detection unit (signal detection step) 2043.
  • the upper layer processing unit 201 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 203. Further, the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. Process the (Radio Resource Control: RRC) layer.
  • Medium Access Control Medium Access Control: MAC
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
  • the radio resource control unit 2011 manages various setting information of the own terminal device. Also, the radio resource control unit 2011 generates information arranged in each uplink channel and outputs the information to the transmission unit 203.
  • the radio resource control unit 2011 acquires setting information regarding CSI feedback transmitted from the base station apparatus, and outputs the setting information to the control unit 202.
  • the scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines scheduling information.
  • the scheduling information interpretation unit 2012 generates control information for controlling the reception unit 204 and the transmission unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
  • the control unit 202 generates a control signal for controlling the receiving unit 204, the channel state information generating unit 205, and the transmitting unit 203 based on the information input from the higher layer processing unit 201.
  • the control unit 202 controls the reception unit 204 and the transmission unit 203 by outputting the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203.
  • the control unit 202 controls the transmission unit 203 to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus.
  • the receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 1A via the transmission / reception antenna 206 according to the control signal input from the control unit 202, and sends the decoded information to the upper layer processing unit 201. Output.
  • the radio reception unit 2041 converts a downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases the amplification level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
  • the wireless reception unit 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
  • the demultiplexing unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal. Further, the demultiplexing unit 2042 performs channel compensation of PHICH, PDCCH, and EPDCCH based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and Output. In addition, control unit 202 outputs PDSCH and the channel estimation value of the desired signal to signal detection unit 2043.
  • the signal detection unit 2043 detects a signal using the PDSCH and the channel estimation value, and outputs the signal to the higher layer processing unit 201.
  • the transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 201, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 1A via the transmission / reception antenna 206.
  • the encoding unit 2031 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 201. Also, the coding unit 2031 performs turbo coding based on information used for PUSCH scheduling.
  • the modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
  • the uplink reference signal generation unit 2033 includes a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station apparatus 1A, a bandwidth for arranging the uplink reference signal, and an uplink grant.
  • a sequence determined by a predetermined rule is generated on the basis of the cyclic shift, the parameter value for the generation of the DMRS sequence, and the like notified in (1).
  • the multiplexing unit 2034 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 202, and then performs a discrete Fourier transform (DFT). Also, the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
  • DFT discrete Fourier transform
  • the wireless transmission unit 2035 performs inverse fast Fourier transform (Inverse Fast Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, generates SC-FDMA symbols, and generates the generated SC-FDMA symbols.
  • IFFT inverse fast Fourier transform
  • CP is added to baseband digital signal, baseband digital signal is converted to analog signal, excess frequency component is removed, converted to carrier frequency by up-conversion, power amplification, transmission / reception antenna It outputs to 206 and transmits.
  • the program that operates in the apparatus related to the present invention may be a program that controls the central processing unit (CPU) or the like to function the computer so as to realize the functions of the above-described embodiments related to the present invention.
  • the program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • volatile memory such as Random Access Memory (RAM) during processing
  • non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium.
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • Computer-readable recording medium means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured with a digital circuit or an analog circuit.
  • an integrated circuit based on the technology can be used.
  • the present invention is not limited to the above-described embodiment.
  • an example of the apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in a base station device, a terminal device, and a communication method.
  • Base station apparatus 2A Terminal apparatus 101 Upper layer processing section 102 Control section 103 Transmission section 104 Reception section 105 Transmission / reception antenna 1011 Radio resource control section 1012 Scheduling section 1031 Encoding section 1032 Modulation section 1033 Downlink reference signal generation section 1034 Multiplexing section 1035 Radio transmission unit 1041 Radio reception unit 1042 Demultiplexing unit 1043 Demodulation unit 1044 Decoding unit 201 Upper layer processing unit 202 Control unit 203 Transmission unit 204 Reception unit 205 Channel state information generation unit 206 Transmission / reception antenna 2011 Radio resource control unit 2012 Scheduling information interpretation unit 2031 Encoder 2032 Modulator 2033 Uplink reference signal generator 2034 Multiplexer 2035 Radio transmitter 2041 Radio receiver 2042 Demultiplexer 2043 Signal detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

Provided are a base station device, a terminal device, and a communication method that enable ultra reliability communication and low latency communication. The base station device, which communicates with a terminal device, comprises a transmission unit that transmits a configuration for ultra reliability communication to the terminal device. The configuration for ultra reliability communication includes communication type and ultra reliability communication information. The communication type is information indicating initial transmission or ultra reliability transmission. The ultra reliability communication information includes at least one of a modulation scheme, resource allocation information, a bit number, and a transmission cycle. If the communication type is initial transmission, communication is performed with retransmission, and if the communication type is ultra reliability transmission, communication is performed without retransmission.

Description

基地局装置、端末装置および通信方法Base station apparatus, terminal apparatus and communication method
 本発明は、基地局装置、端末装置および通信方法に関する。 The present invention relates to a base station device, a terminal device, and a communication method.
 3GPP(Third Generation Partnership Project)によるLTE(Long Term Evolution)、LTE-A(LTE-Advanced)のような通信システムでは、基地局装置(基地局、送信局、送信点、下りリンク送信装置、上りリンク受信装置、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)あるいは基地局装置に準じる送信局がカバーするエリアをセル(Cell)状に複数配置するセルラ構成とすることにより、通信エリアを拡大することができる。このセルラ構成において、隣接するセルまたはセクタ間で同一周波数を利用することで、周波数利用効率を向上させることができる。 In a communication system such as LTE (Long Termination Evolution) or LTE-A (LTE-Advanced) by 3GPP (Third Generation Partnership Project), a base station device (base station, transmitting station, transmission point, downlink transmitting device, uplink) Expand the communication area by adopting a cellular configuration in which multiple areas covered by a receiving station, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) or transmitting station according to the base station apparatus are arranged in a cell shape. can do. In this cellular configuration, frequency utilization efficiency can be improved by using the same frequency between adjacent cells or sectors.
 近年では、次世代移動通信システムが検討されている。次世代移動通信システムでは、周波数利用効率の向上は当然のこととして、新たに遠隔操作、自動運転、自動車の衝突検知等の通信の需要が高まり、高信頼通信や低遅延通信が要求されている。次世代移動通信システムについては非特許文献1に記載されている。 In recent years, next generation mobile communication systems have been studied. In next-generation mobile communication systems, it is natural to improve frequency utilization efficiency, and new demands for communications such as remote control, automatic driving, and collision detection of automobiles are increasing, and high-reliability communication and low-delay communication are required. . The next generation mobile communication system is described in Non-Patent Document 1.
 しかしながら、高信頼通信や低遅延通信をどのように実現するかはまだ明らかにはなっていないという問題がある。 However, there is a problem that it is not yet clear how to realize highly reliable communication and low delay communication.
 本発明はこのような事情を鑑みてなされたものであり、その目的は、高信頼通信や低遅延通信を可能とする基地局装置、端末装置および通信方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station device, a terminal device, and a communication method that enable highly reliable communication and low delay communication.
 上述した課題を解決するために本発明の一態様に係る基地局装置、端末装置および通信方法の構成は、次の通りである。 In order to solve the above-described problem, configurations of a base station apparatus, a terminal apparatus, and a communication method according to an aspect of the present invention are as follows.
 また本発明の一態様に係る基地局装置は、端末装置と通信する基地局装置であって、前記端末装置に高信頼通信の設定を送信する送信部を備え、前記高信頼通信の設定は、通信タイプおよび高信頼通信情報を含み、前記通信タイプは初期伝送か高信頼伝送かを示す情報であり、前記高信頼通信情報は、変調方式、リソース割当て情報、ビット数、送信周期の少なくとも1つを含む。 A base station apparatus according to an aspect of the present invention is a base station apparatus that communicates with a terminal apparatus, and includes a transmission unit that transmits a setting of high-reliability communication to the terminal apparatus. The communication type includes information indicating whether the transmission type is initial transmission or high-reliability transmission, and the high-reliability communication information includes at least one of a modulation scheme, resource allocation information, the number of bits, and a transmission cycle. including.
 また本発明の一態様に係る基地局装置において、前記通信タイプが初期伝送の場合、再送を伴う通信を行ない、前記通信タイプが高信頼伝送の場合、再送を行なわない通信を行なう。 Further, in the base station apparatus according to an aspect of the present invention, communication with retransmission is performed when the communication type is initial transmission, and communication without retransmission is performed when the communication type is reliable transmission.
 また本発明の一態様に係る基地局装置において、送信したデータに誤りがあるか否かを示すACK/NACK信号を前記端末装置から受信し、前記ACK/NACKに基づいて高信頼伝送の条件をみたすかどうかを判断する。 Further, in the base station apparatus according to one aspect of the present invention, an ACK / NACK signal indicating whether or not there is an error in transmitted data is received from the terminal apparatus, and a condition for reliable transmission is determined based on the ACK / NACK. Judge whether to meet.
 また本発明の一態様に係る端末装置は、基地局装置と通信する端末装置であって、前記基地局装置から、高信頼通信の設定を受信する受信部を備え、前記高信頼通信の設定は、通信タイプおよび高信頼通信情報を含み、前記通信タイプは初期伝送か高信頼伝送かを示す情報であり、前記高信頼通信情報は、符号化変調方式、変調方式、リソース割当て情報、ビット数、送信周期の少なくとも1つを含む。 A terminal apparatus according to an aspect of the present invention is a terminal apparatus that communicates with a base station apparatus, and includes a receiving unit that receives a setting of highly reliable communication from the base station apparatus, and the setting of the highly reliable communication is The communication type is information indicating whether the communication type is initial transmission or high-reliability transmission, and the high-reliability communication information includes an encoded modulation scheme, a modulation scheme, resource allocation information, the number of bits, Includes at least one of the transmission periods.
 また本発明の一態様に係る端末装置において、受信したデータに誤りがあるか否かを示すACK/NACK信号を前記基地局装置に送信し、前記通信タイプが初期伝送の場合、前記ACK/NACK信号が誤りを示すNACKである場合、前記基地局装置から再送信号を受信し、前記通信タイプが高信頼伝送の場合、前記ACK/NACK信号がNACKである場合、そのデータを破棄する。 In the terminal device according to an aspect of the present invention, an ACK / NACK signal indicating whether or not there is an error in received data is transmitted to the base station device, and the ACK / NACK is transmitted when the communication type is initial transmission. When the signal is NACK indicating an error, a retransmission signal is received from the base station apparatus. When the communication type is reliable transmission, when the ACK / NACK signal is NACK, the data is discarded.
 また本発明の一態様に係る通信方法は、端末装置と通信する基地局装置における通信方法であって、前記端末装置に高信頼通信の設定を送信する送信ステップを備え、前記高信頼通信の設定は、通信タイプおよび高信頼通信情報を含み、前記通信タイプは初期伝送か高信頼伝送かを示す情報であり、前記高信頼通信情報は、変調方式、リソース割当て情報、ビット数、送信周期の少なくとも1つを含む。 A communication method according to an aspect of the present invention is a communication method in a base station device that communicates with a terminal device, and includes a transmission step of transmitting a setting of highly reliable communication to the terminal device, and the setting of the highly reliable communication. Includes communication type and high-reliability communication information, and the communication type is information indicating whether the transmission is initial transmission or high-reliability transmission. The high-reliability communication information includes at least a modulation scheme, resource allocation information, the number of bits, and a transmission cycle. Contains one.
 また本発明の一態様に係る通信方法は、基地局装置と通信する端末装置における通信方法であって、前記基地局装置から、高信頼通信の設定を受信する受信ステップを備え、前記高信頼通信の設定は、通信タイプおよび高信頼通信情報を含み、前記通信タイプは初期伝送か高信頼伝送かを示す情報であり、前記高信頼通信情報は、符号化変調方式、変調方式、リソース割当て情報、ビット数、送信周期の少なくとも1つを含む。 A communication method according to an aspect of the present invention is a communication method in a terminal apparatus that communicates with a base station apparatus, and includes a reception step of receiving a setting of highly reliable communication from the base station apparatus, and the highly reliable communication The setting includes a communication type and high-reliability communication information, and the communication type is information indicating whether the initial transmission or the high-reliability transmission, and the high-reliability communication information includes an encoded modulation scheme, a modulation scheme, resource allocation information, It includes at least one of the number of bits and the transmission period.
 本発明の一態様によれば、高信頼通信や低遅延通信が可能となる。 According to one aspect of the present invention, highly reliable communication and low-latency communication are possible.
本実施形態に係る通信システムの例を示す図である。It is a figure which shows the example of the communication system which concerns on this embodiment. 本実施形態に係る初期伝送におけるシーケンス図である。It is a sequence diagram in the initial transmission according to the present embodiment. 本実施形態に係る高信頼伝送におけるシーケンス図である。It is a sequence diagram in the reliable transmission which concerns on this embodiment. 本実施形態に係る高信頼通信のフローチャートである。It is a flowchart of the reliable communication which concerns on this embodiment. 本実施形態に係る基地局装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the base station apparatus which concerns on this embodiment. 本実施形態に係る端末装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the terminal device which concerns on this embodiment.
 本実施形態における通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE)を備える。 The communication system in this embodiment includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) and terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving terminal). Device, receiving antenna group, receiving antenna port group, UE).
 本実施形態における基地局装置および端末装置は、免許が必要な周波数帯域(ライセンスバンド)および/または免許不要の周波数帯域(アンライセンスバンド)で通信することができる。 The base station apparatus and terminal apparatus in this embodiment can communicate in a frequency band (license band) that requires a license and / or a frequency band (unlicensed band) that does not require a license.
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。 In this embodiment, “X / Y” includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
 図1は、本実施形態に係る通信システムの例を示す図である。図1に示すように、本実施形態における通信システムは、基地局装置1A、端末装置2Aを備える。また、カバレッジ1-1は、基地局装置1Aが端末装置と接続可能な範囲(通信エリア)である。また、端末装置2Aを端末装置2とも称する。 FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment. As shown in FIG. 1, the communication system in this embodiment includes a base station device 1A and a terminal device 2A. The coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device. The terminal device 2A is also referred to as a terminal device 2.
 図1において、端末装置2Aから基地局装置1Aへの上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
In FIG. 1, the following uplink physical channels are used in uplink radio communication from the terminal apparatus 2A to the base station apparatus 1A. The uplink physical channel is used for transmitting information output from an upper layer.
-PUCCH (Physical Uplink Control Channel)
・ PUSCH (Physical Uplink Shared Channel)
・ PRACH (Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、Downlink-Shared Channel: DL-SCH)に対するACK(a positive acknowledgement)またはNACK(a negative acknowledgement)(ACK/NACK)を含む。下りリンクデータに対するACK/NACKを、HARQ-ACK、HARQフィードバックとも称する。 The PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI). Here, the uplink control information includes ACK (a positive acknowledgement) or NACK (a negative acknowledgement) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH). ACK / NACK for downlink data is also referred to as HARQ-ACK and HARQ feedback.
 また、上りリンク制御情報は、下りリンクに対するチャネル状態情報(Channel State Information: CSI)を含む。また、上りリンク制御情報は、上りリンク共用チャネル(Uplink-Shared Channel: UL-SCH)のリソースを要求するために用いられるスケジューリング要求(Scheduling Request: SR)を含む。前記チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)、好適なCSI-RSリソースを示すCSI-RS(Reference Signal、参照信号)リソース指標CRI(CSI-RS Resource Indication)等が該当する。 Also, the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. Further, the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of an uplink shared channel (Uplink-Shared Channel: UL-SCH). The channel state information includes a rank index RI (Rank Indicator) that designates a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) that designates a suitable precoder, and a channel quality indicator CQI that designates a suitable transmission rate. (Channel (Quality Indicator), CSI-RS (Reference Signal, reference signal) resource indicator CRI (CSI-RS Resource Indication) indicating a suitable CSI-RS resource, and the like.
 前記チャネル品質指標CQIは(以下、CQI値)、所定の帯域(詳細は後述)における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAM等)、符号化率(coding rate)とすることができる。CQI値は、前記変更方式や符号化率により定められたインデックス(CQI Index)とすることができる。前記CQI値は、予め当該システムで定めたものをすることができる。 The channel quality indicator CQI (hereinafter referred to as CQI value) is a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and a coding rate in a predetermined band (details will be described later). it can. The CQI value can be an index (CQI Index) determined by the change method and coding rate. The CQI value can be predetermined by the system.
 なお、前記ランク指標、前記プレコーディング品質指標は、予めシステムで定めたものとすることができる。前記ランク指標や前記プレコーディング行列指標は、空間多重数やプレコーディング行列情報により定められたインデックスとすることができる。なお、前記ランク指標、前記プレコーディング行列指標、前記チャネル品質指標CQIの値をCSI値と総称する。 Note that the rank index and the precoding quality index can be determined in advance by the system. The rank index and the precoding matrix index can be indexes determined by the spatial multiplexing number and precoding matrix information. Note that the values of the rank index, the precoding matrix index, and the channel quality index CQI are collectively referred to as CSI values.
 PUSCHは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共に、ACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。また、PUSCHは、上りリンク制御情報のみを送信するために用いられても良い。 The PUSCH is used for transmitting uplink data (uplink transport block, UL-SCH). Moreover, PUSCH may be used to transmit ACK / NACK and / or channel state information together with uplink data. Moreover, PUSCH may be used in order to transmit only uplink control information.
 また、PUSCHは、RRCメッセージを送信するために用いられる。RRCメッセージは、無線リソース制御(Radio Resource Control: RRC)層において処理される情報/信号である。また、PUSCHは、MAC CE(Control Element)を送信するために用いられる。ここで、MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。 Also, PUSCH is used to transmit an RRC message. The RRC message is information / signal processed in a radio resource control (Radio-Resource-Control: -RRC) layer. The PUSCH is used to transmit a MAC CE (Control Element). Here, the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
 例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられても良い。 For example, the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the power headroom level.
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。 PRACH is used to transmit a random access preamble.
 また、上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。ここで、上りリンク参照信号には、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)が含まれる。 In uplink wireless communication, an uplink reference signal (Uplink Reference Signal: UL SRS) is used as an uplink physical signal. The uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer. Here, the uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
 DMRSは、PUSCHまたはPUCCHの送信に関連する。例えば、基地局装置1Aは、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。SRSは、PUSCHまたはPUCCHの送信に関連しない。例えば、基地局装置1Aは、上りリンクのチャネル状態を測定するためにSRSを使用する。 DMRS is related to transmission of PUSCH or PUCCH. For example, base station apparatus 1A uses DMRS to perform propagation channel correction for PUSCH or PUCCH. SRS is not related to PUSCH or PUCCH transmission. For example, the base station apparatus 1A uses SRS to measure the uplink channel state.
 図1において、基地局装置1Aから端末装置2Aへの下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast Channel: 報知チャネル)
・PCFICH(Physical Control Format Indicator Channel: 制御フォーマット指示チャネル)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel: HARQ指示チャネル)
・PDCCH(Physical Downlink Control Channel: 下りリンク制御チャネル)
・EPDCCH(Enhanced Physical Downlink Control Channel: 拡張下りリンク制御チャネル)
・PDSCH(Physical Downlink Shared Channel: 下りリンク共有チャネル)
In FIG. 1, the following downlink physical channels are used in downlink radio communication from the base station apparatus 1A to the terminal apparatus 2A. The downlink physical channel is used for transmitting information output from an upper layer.
・ PBCH (Physical Broadcast Channel)
・ PCFICH (Physical Control Format Indicator Channel)
・ PHICH (Physical Hybrid automatic repeat request Indicator Channel: HARQ instruction channel)
・ PDCCH (Physical Downlink Control Channel)
・ EPDCCH (Enhanced Physical Downlink Control Channel)
・ PDSCH (Physical Downlink Shared Channel)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。PCFICHは、PDCCHの送信に用いられる領域(例えば、OFDMシンボルの数)を指示する情報を送信するために用いられる。 The PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices. PCFICH is used for transmitting information indicating a region (for example, the number of OFDM symbols) used for transmission of PDCCH.
 PHICHは、基地局装置1Aが受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACKを送信するために用いられる。すなわち、PHICHは、上りリンクデータに対するACK/NACKを示すHARQインディケータ(HARQフィードバック)を送信するために用いられる。また、ACK/NACKは、HARQ-ACKとも呼称する。端末装置2Aは、受信したACK/NACKを上位レイヤに通知する。ACK/NACKは、正しく受信されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXである。また、上りリンクデータに対するPHICHが存在しない場合、端末装置2AはACKを上位レイヤに通知する。 PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by the base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK. The terminal device 2A notifies the received ACK / NACK to the upper layer. ACK / NACK is ACK indicating that the data has been correctly received, NACK indicating that the data has not been correctly received, and DTX indicating that there is no corresponding data. Further, when there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of ACK.
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、複数のDCIフォーマットが定義される。すなわち、下りリンク制御情報に対するフィールドがDCIフォーマットに定義され、情報ビットへマップされる。 PDCCH and EPDCCH are used to transmit downlink control information (Downlink Control Information: DCI). Here, a plurality of DCI formats are defined for transmission of downlink control information. That is, fields for downlink control information are defined in the DCI format and mapped to information bits.
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット1Aが定義される。 For example, a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined as a DCI format for the downlink.
 例えば、下りリンクに対するDCIフォーマットには、PDSCHのリソース割り当てに関する情報、PDSCHに対するMCS(Modulation and Coding Scheme)に関する情報、PUCCHに対するTPCコマンド等の下りリンク制御情報が含まれる。ここで、下りリンクに対するDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。 For example, the DCI format for the downlink includes information on PDSCH resource allocation, information on MCS (Modulation & Coding Scheme) for PDSCH, and downlink control information such as a TPC command for PUCCH. Here, the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
 また、例えば、上りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット0が定義される。 Also, for example, as a DCI format for uplink, DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
 例えば、上りリンクに対するDCIフォーマットには、PUSCHのリソース割り当てに関する情報、PUSCHに対するMCSに関する情報、PUSCHに対するTPCコマンド等上りリンク制御情報が含まれる。上りリンクに対するDCIフォーマットを、上りリンクグラント(または、上りリンクアサインメント)とも称する。 For example, the DCI format for uplink includes information on PUSCH resource allocation, information on MCS for PUSCH, and uplink control information such as TPC command for PUSCH. The DCI format for the uplink is also referred to as uplink grant (or uplink assignment).
 また、上りリンクに対するDCIフォーマットは、下りリンクのチャネル状態情報(CSI: Channel State Information。受信品質情報とも称する。)を要求(CSI request)するために用いることができる。 Also, the DCI format for uplink can be used to request downlink channel state information (CSI: “Channel State Information”, also referred to as reception quality information).
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを示す設定のために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 Also, the DCI format for the uplink can be used for setting indicating an uplink resource for mapping a channel state information report (CSI feedback report) that the terminal apparatus feeds back to the base station apparatus. For example, the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI). The channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
 例えば、チャネル状態情報報告は、不定期なチャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。基地局装置は、前記定期的なチャネル状態情報報告または前記不定期的なチャネル状態情報報告のいずれかを設定することができる。また、基地局装置は、前記定期的なチャネル状態情報報告および前記不定期的なチャネル状態情報報告の両方を設定することもできる。 For example, the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI). The channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information irregularly. The base station apparatus can set either the periodic channel state information report or the irregular channel state information report. Further, the base station apparatus can set both the periodic channel state information report and the irregular channel state information report.
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告の種類を示す設定のために用いることができる。チャネル状態情報報告の種類は、広帯域CSI(例えば、Wideband CQI)と狭帯域CSI(例えば、Subband CQI)等がある。 Also, the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal apparatus feeds back to the base station apparatus. The types of channel state information reports include wideband CSI (for example, Wideband CQI) and narrowband CSI (for example, Subband CQI).
 端末装置は、下りリンクアサインメントを用いてPDSCHのリソースがスケジュールされた場合、スケジュールされたPDSCHで下りリンクデータを受信する。また、端末装置は、上りリンクグラントを用いてPUSCHのリソースがスケジュールされた場合、スケジュールされたPUSCHで上りリンクデータおよび/または上りリンク制御情報を送信する。 When the PDSCH resource is scheduled using the downlink assignment, the terminal apparatus receives the downlink data on the scheduled PDSCH. In addition, when PUSCH resources are scheduled using an uplink grant, the terminal apparatus transmits uplink data and / or uplink control information using the scheduled PUSCH.
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。また、PDSCHは、システムインフォメーションブロックタイプ1メッセージを送信するために用いられる。システムインフォメーションブロックタイプ1メッセージは、セルスペシフィック(セル固有)な情報である。 PDSCH is used to transmit downlink data (downlink transport block, DL-SCH). The PDSCH is used to transmit a system information block type 1 message. The system information block type 1 message is cell specific (cell specific) information.
 また、PDSCHは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、システムインフォメーションブロックタイプ1以外のシステムインフォメーションブロックXを含む。システムインフォメーションメッセージは、セルスペシフィック(セル固有)な情報である。 Also, PDSCH is used to transmit a system information message. The system information message includes a system information block X other than the system information block type 1. The system information message is cell specific (cell specific) information.
 また、PDSCHは、RRCメッセージを送信するために用いられる。ここで、基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通であっても良い。また、基地局装置1Aから送信されるRRCメッセージは、ある端末装置2に対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。また、PDSCHは、MAC CEを送信するために用いられる。 Also, PDSCH is used to transmit an RRC message. Here, the RRC message transmitted from the base station apparatus may be common to a plurality of terminal apparatuses in the cell. Further, the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message. The PDSCH is used to transmit the MAC CE.
 ここで、RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。 Here, the RRC message and / or MAC CE is also referred to as higher layer signaling.
 また、PDSCHは、下りリンクのチャネル状態情報を要求するために用いることができる。また、PDSCHは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを送信するために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。 Also, PDSCH can be used to request downlink channel state information. The PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device. For example, the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI). The channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
 下りリンクのチャネル状態情報報告の種類は広帯域CSI(例えば、Wideband CSI)と狭帯域CSI(例えば、Subband CSI)がある。広帯域CSIは、セルのシステム帯域に対して1つのチャネル状態情報を算出する。狭帯域CSIは、システム帯域を所定の単位に区分し、その区分に対して1つのチャネル状態情報を算出する。 The types of downlink channel state information reports include wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI). The broadband CSI calculates one channel state information for the system band of the cell. In the narrowband CSI, the system band is divided into predetermined units, and one channel state information is calculated for the division.
 また、下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。 In downlink radio communication, a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals. The downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。また、下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出するために用いられる。 The synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain. Also, the downlink reference signal is used by the terminal device for channel correction of the downlink physical channel. For example, the downlink reference signal is used by the terminal device to calculate downlink channel state information.
 ここで、下りリンク参照信号には、CRS(Cell-specific Reference Signal: セル固有参照信号)、PDSCHに関連するURS(UE-specific Reference Signal: 端末固有参照信号、端末装置固有参照信号)、EPDCCHに関連するDMRS(Demodulation Reference Signal)、NZP CSI-RS(Non-Zero Power Chanel State Information - Reference Signal)、ZP CSI-RS(Zero Power Chanel State Information - Reference Signal)が含まれる。 Here, the downlink reference signal includes CRS (Cell-specific Reference Signal: Cell-specific reference signal), URS related to PDSCH (UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal), EPDCCH Related DMRS (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Chanel State Information Information Reference Signal), and ZP CSI-RS (Zero Power Channel Information State Information Reference Signal) are included.
 CRSは、サブフレームの全帯域で送信され、PBCH/PDCCH/PHICH/PCFICH/PDSCHの復調を行なうために用いられる。PDSCHに関連するURSは、URSが関連するPDSCHの送信に用いられるサブフレームおよび帯域で送信され、URSが関連するPDSCHの復調を行なうために用いられる。 CRS is transmitted in the entire band of the subframe, and is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH. The URS associated with the PDSCH is transmitted in subframes and bands used for transmission of the PDSCH associated with the URS, and is used to demodulate the PDSCH associated with the URS.
 EPDCCHに関連するDMRSは、DMRSが関連するEPDCCHの送信に用いられるサブフレームおよび帯域で送信される。DMRSは、DMRSが関連するEPDCCHの復調を行なうために用いられる。 DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS. DMRS is used to demodulate the EPDCCH with which DMRS is associated.
 NZP CSI-RSのリソースは、基地局装置1Aによって設定される。例えば、端末装置2Aは、NZP CSI-RSを用いて信号の測定(チャネルの測定)を行なう。ZP CSI-RSのリソースは、基地局装置1Aによって設定される。基地局装置1Aは、ZP CSI-RSをゼロ出力で送信する。例えば、端末装置2Aは、NZP CSI-RSが対応するリソースにおいて干渉の測定を行なう。 NZP CSI-RS resources are set by the base station apparatus 1A. For example, the terminal device 2A performs signal measurement (channel measurement) using NZP CSI-RS. The resource of ZP CSI-RS is set by the base station apparatus 1A. The base station apparatus 1A transmits ZP CSI-RS with zero output. For example, the terminal device 2A measures interference in a resource supported by NZP CSI-RS.
 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信に用いられるアンテナポートで送信される。 MBSFN (Multimedia Broadcast Multicast Service Single Frequency Network) RS is transmitted in the entire bandwidth of the subframe used for PMCH transmission. The MBSFN RS is used for PMCH demodulation. PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
 ここで、下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。 Here, the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal. Also, the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal. Also, the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel. Also, the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
 また、BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。また、MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(Transport Block: TB)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理等が行なわれる。 Also, BCH, UL-SCH and DL-SCH are transport channels. A channel used in the MAC layer is referred to as a transport channel. The unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit). The transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
 また、キャリアアグリゲーション(CA: Carrier Aggregation)をサポートしている端末装置に対して、基地局装置は、より広帯域伝送のため複数のコンポーネントキャリア(CC: Component Carrier)を統合して通信することができる。キャリアアグリゲーションでは、1つのプライマリセル(PCell: Primary Cell)および1または複数のセカンダリセル(SCell: Secondary Cell)がサービングセルの集合として設定される。 In addition, a base station device can communicate with a terminal device that supports carrier aggregation (CA: CarriergAggregation) by integrating multiple component carriers (CC: Component Carrier) for wider band transmission. . In carrier aggregation, one primary cell (PCell: Primary Cell) and one or more secondary cells (SCell: Secondary Cell) are set as a set of serving cells.
 また、デュアルコネクティビティ(DC: Dual Connectivity)では、サービングセルのグループとして、マスターセルグループ(MCG: Master Cell Group)とセカンダリセルグループ(SCG: Secondary Cell Group)が設定される。MCGはPCellとオプションで1または複数のSCellから構成される。またSCGはプライマリSCell(PSCell)とオプションで1または複数のSCellから構成される。 Also, in dual connectivity (DC: Dual Dual Connectivity), a master cell group (MCG: Master Cell Group) and a secondary cell group (SCG: Secondary Cell Group) are set as serving cell groups. The MCG is composed of a PCell and optionally one or more SCells. The SCG includes a primary SCell (PSCell) and optionally one or a plurality of SCells.
 端末装置が高信頼/低遅延通信(URLLC: Ultra Reliability and/or Low Latency Communication)をサポートしている場合、基地局装置はURLLC(高信頼通信、低遅延通信、高信頼・低遅延通信)を設定することができる。URLLC設定は通信タイプおよび/またはURLLC情報を含む。通信タイプはURLLCの初期伝送か高信頼伝送かを示す。URLLC情報は、変調符号化方式(MCS: Modulation and coding scheme)、RI、PMI、変調方式、時間/周波数/空間リソース割当て、ビット数(トランスポートブロックサイズ)、送信間隔(周期)の一部または全部を含む。URLLC情報に含まれていないパラメータは、既定の値が設定されているか端末装置でブラインド検出される。またURLLC情報にMCS/RI/PMIが含まれていれば、端末装置は、必ずしもURLLC情報に含まれているCSIをフィードバックする必要ない。例えば、URLLC情報にMCSが含まれている場合、端末装置はRI/PMIのみを基地局装置に報告することができる。また、URLLCが設定された場合、基地局装置はPDCCHを送信しないとすることができる。この場合、端末装置は、URLLCが設定された場合、PDCCHのブラインド復号をしない。 If the terminal device supports high-reliability / low-delay communication (URLLC: “Ultra-Reliability” and / or “Low-Latency” Communication), the base station device uses URLLC (high-reliability communication, low-delay communication, high-reliability / low-delay communication). Can be set. URLLC settings include communication type and / or URLLC information. The communication type indicates whether URLLC initial transmission or high-reliability transmission. The URLLC information includes a modulation and coding scheme (MCS: “Modulation” and “coding” scheme), RI, PMI, modulation scheme, time / frequency / space resource allocation, bit number (transport block size), part of transmission interval (period), or Includes everything. Parameters that are not included in the URLLC information are blindly detected by the terminal device, whether default values are set. Further, if MCS / RI / PMI is included in the URLLC information, the terminal device does not necessarily need to feed back the CSI included in the URLLC information. For example, when MCS is included in the URLLC information, the terminal device can report only RI / PMI to the base station device. Further, when the URLLC is set, the base station apparatus may not transmit the PDCCH. In this case, when the URLLC is set, the terminal device does not perform blind decoding of the PDCCH.
 URLLCは、通信タイプとして初期伝送と高信頼伝送がある。基地局装置は、端末装置が初期伝送で基準を満たせば、高信頼伝送に移行する。また基地局装置は、端末装置が高信頼伝送で基準を満たせなくなった場合、初期伝送に移行する。図2は初期伝送における基地局装置と端末装置のシーケンス図である。まず基地局装置はデータ#1を送信する。端末装置は、受信したデータ#1を正しく復調/復号できた場合、基地局装置にACKを報告し、データ#1の通信は完了する。次に、基地局装置はデータ#2を送信する。端末装置は、受信したデータ#2を正しく復調/復号できなかった場合、基地局装置にNACKを送信する。基地局装置は、データ#2のNACKを受信したら、データ#2の再送信号を送信する。端末装置は、受信したデータ#2の再送信号に基づいて、データ#2を復調/復号し、結果が正しい場合、基地局装置にACKを送信する。高信頼伝送は、信頼性の高い通信であり、データブロックの誤りを期待しない。つまり端末装置でデータをほぼ正しく復調/復号できることが期待される。また低遅延が要求される場合、再送しては間に合わなくなる場合がある。従って、高信頼伝送では、データの再送はしない。図3は、高信頼伝送における基地局装置と端末装置のシーケンス図である。基地局装置は、データ#1、データ#2、データ#3を送信する。端末装置は受信したデータ#1、データ#2、データ#3のそれぞれに対してACK/NACKは報告する。高信頼伝送では、端末装置があるデータに対して、基地局装置にNACKを報告したとしても、基地局装置は再送しない。端末装置は、あるデータを復調/復号してNACKと判定した場合、そのデータを破棄する。このように高信頼伝送では、再送しないため、低遅延通信が可能となる。 URLLC has initial transmission and high-reliability transmission as communication types. The base station apparatus shifts to high-reliability transmission when the terminal apparatus satisfies the standard in the initial transmission. Further, the base station apparatus shifts to the initial transmission when the terminal apparatus cannot satisfy the standard with the reliable transmission. FIG. 2 is a sequence diagram of the base station apparatus and the terminal apparatus in the initial transmission. First, the base station apparatus transmits data # 1. When the terminal device can correctly demodulate / decode the received data # 1, it reports ACK to the base station device, and the communication of data # 1 is completed. Next, the base station apparatus transmits data # 2. If the terminal device cannot correctly demodulate / decode the received data # 2, it transmits a NACK to the base station device. When receiving the NACK of data # 2, the base station apparatus transmits a retransmission signal of data # 2. The terminal apparatus demodulates / decodes data # 2 based on the received retransmission signal of data # 2, and transmits an ACK to the base station apparatus when the result is correct. Reliable transmission is highly reliable communication and does not expect data block errors. In other words, it is expected that the terminal device can demodulate / decode data almost correctly. When low delay is required, retransmission may not be in time. Accordingly, data is not retransmitted in reliable transmission. FIG. 3 is a sequence diagram of the base station apparatus and the terminal apparatus in the reliable transmission. The base station apparatus transmits data # 1, data # 2, and data # 3. The terminal apparatus reports ACK / NACK for each of the received data # 1, data # 2, and data # 3. In the reliable transmission, even if NACK is reported to the base station apparatus for certain data, the base station apparatus does not retransmit. When the terminal apparatus demodulates / decodes certain data and determines NACK, the terminal apparatus discards the data. As described above, in the reliable transmission, since retransmission is not performed, low-delay communication is possible.
 図4は、基地局装置におけるURLLCの設定に関するフローチャートである。まず基地局装置は高信頼通信を設定する(ステップS401)。最初は基地局装置と端末装置は初期伝送で通信する(ステップS402)。初期伝送で条件を満たしたかどうかを判断する(ステップS403)。条件は、データブロックの誤り率、SINR(信号対干渉および雑音電力比: Signal to Interference and Noise power Ratio)等の通信品質である。例えば、N回のデータ伝送でM回ACKが報告された場合、条件を満たしたと判断することができる。ただし、Nは1以上の整数、Mは1以上の整数である。N=Mの場合、全てのデータでACKが報告される必要があることを意味する。また、別の言い方として、N回のデータ伝送でM回NACKが報告されることを条件とすることができる。この場合、Mは0以上の整数である。また、端末装置が、SINR、CQI等を報告する場合、N回のデータ伝送でM回閾値を超えることを条件とすることができる。閾値は仕様等で設定されている既定値でも良いし、基地局装置が独自に設定した値でも良い。ステップS403で条件を満たしていなければ(NOの場合)、高信頼通信を解除して(ステップS404)、終了する。ステップS403で条件を満足していれば(YESの場合)、高信頼伝送を行なう(ステップS405)。基地局装置は高信頼伝送しているときに、条件を満たしているかどうかを判断する(ステップS406)。例えば、N回連続してACKが報告された場合、もしくは、N回のデータ伝送中にM回ACKが報告された場合、条件を満たしていると判断する。また別の言い方では、N回連続してNACKが報告された場合、もしくは、N回のデータ伝送中にM回NACKが報告された場合、条件を満たしていないと判断する。ステップS406で条件を満たしていると判断した場合(YESの場合)、高信頼伝送を続ける。ステップS406で条件を満たしていないと判断した場合(NOの場合)、ステップS402の初期伝送に移行する。 FIG. 4 is a flowchart regarding setting of URLLC in the base station apparatus. First, the base station apparatus sets up highly reliable communication (step S401). Initially, the base station apparatus and the terminal apparatus communicate by initial transmission (step S402). It is determined whether or not the condition is satisfied in the initial transmission (step S403). The conditions are communication quality such as data block error rate, SINR (signal-to-interference and noise power ratio: “Signal” to “Interference” and “Noise” power “Ratio”). For example, when ACK is reported M times in N data transmissions, it can be determined that the condition is satisfied. However, N is an integer greater than or equal to 1, and M is an integer greater than or equal to 1. When N = M, it means that ACK needs to be reported for all data. In other words, it may be conditional on M NACK being reported in N data transmissions. In this case, M is an integer of 0 or more. Further, when the terminal device reports SINR, CQI, etc., it can be conditional on exceeding the threshold value M times in N data transmissions. The threshold value may be a default value set in the specification or the like, or may be a value uniquely set by the base station apparatus. If the condition is not satisfied in step S403 (in the case of NO), the highly reliable communication is canceled (step S404) and the process is terminated. If the condition is satisfied in step S403 (in the case of YES), highly reliable transmission is performed (step S405). The base station apparatus determines whether the condition is satisfied when performing highly reliable transmission (step S406). For example, when ACK is reported N times continuously, or when ACK is reported M times during N data transmissions, it is determined that the condition is satisfied. In other words, if NACK is reported N times consecutively, or if NACK is reported M times during N data transmissions, it is determined that the condition is not satisfied. If it is determined in step S406 that the condition is satisfied (in the case of YES), reliable transmission is continued. When it is determined in step S406 that the condition is not satisfied (in the case of NO), the process proceeds to initial transmission in step S402.
 なお、上記初期伝送のとき、端末装置は、通信品質やCSIを算出する場合、URLLC情報で設定されているリソースのみで算出する。 In the initial transmission, when calculating the communication quality and CSI, the terminal device calculates only with the resources set in the URLLC information.
 また、上記URLLCはPCell、PSCellおよびSCellで設定することもできるし、PCellのみまたはSCellのみで設定することもできる。 Also, the URLLC can be set by PCell, PSCell, and SCell, or can be set by only PCell or only SCell.
 なお、URLLCを停止(解除)する場合、基地局装置1Aは、URLLCを停止するまでの端末装置2AよりNACKを送信されたデータに関しては、改めて開始するURLLCで改めて送信しても良いし、URLLCではない通常の通信にて送信しても良いし、該データを破棄しても良い。 When the URLLC is stopped (released), the base station apparatus 1A may transmit the data for which the NACK is transmitted from the terminal apparatus 2A until the URLLC is stopped, again with the URLLC to be started again, or the URLLC. The data may be transmitted through normal communication, or the data may be discarded.
 また、ステップS406の条件は、通信品質以外も含む。例えば、ステップS406の条件は、高信頼通信で占有した(使用した)リソース数であることができる。ステップS405で使用したリソース数(スロット数、周波数帯域幅等)が所定の閾値を超えた場合、ステップS402、もしくは図4には表現されていないが、ステップS404に移行することができる。 Also, the condition of step S406 includes other than communication quality. For example, the condition of step S406 can be the number of resources occupied (used) by the reliable communication. If the number of resources (number of slots, frequency bandwidth, etc.) used in step S405 exceeds a predetermined threshold value, it is possible to proceed to step S404 although not represented in step S402 or FIG.
 また、端末装置2Aは、基地局装置1Aに対して、URLLCを拒絶する旨を通知することができる。例えば、図3を例にとれば、端末装置2Aがデータ#2を正しく受信した際に、端末装置2AがURLLCを必要としないと判断した場合、もしくはURLLCを今後継続することが困難と判断した場合、端末装置2Aは、基地局装置1Aに対して、データ#2のACK信号とともに、URLLCを拒絶する旨を示す情報を含む信号を送信することができる。該URLLCを拒絶する旨を示す情報を含む信号を受信した基地局装置1Aは、URLLCを停止することができる。 Also, the terminal device 2A can notify the base station device 1A that URLLC is rejected. For example, taking FIG. 3 as an example, when the terminal device 2A correctly receives the data # 2, if it is determined that the terminal device 2A does not require the URLLC, or that it is difficult to continue the URLLC in the future. In this case, the terminal device 2A can transmit a signal including information indicating that URLLC is rejected together with the ACK signal of data # 2 to the base station device 1A. The base station apparatus 1A that has received a signal including information indicating that the URLLC is rejected can stop the URLLC.
 基地局装置1Aは、URLLCを開始するに先立ち、URLLCを開始する旨を示す情報を含む信号(URLLCトリガフレーム)を端末装置2Aに個別に通知する、もしくは自装置のカバレッジ内に報知することができる。該URLLCトリガフレームには、基地局装置1AがURLLCを行なうリソースを示す情報が含まれることができる。基地局装置1Aは、URLLCを行なうリソースを、時間方向もしくは周波数方向に周期的に配置することができる。 Prior to starting the URLLC, the base station device 1A individually notifies the terminal device 2A of a signal (URLLC trigger frame) including information indicating that the URLLC is started, or may notify the terminal device 2A within the coverage of the base station device 1A. it can. The URLLC trigger frame can include information indicating a resource for which the base station apparatus 1A performs URLLC. The base station apparatus 1A can periodically arrange resources for URLLC in the time direction or the frequency direction.
 図5は、本実施形態における基地局装置1Aの構成を示す概略ブロック図である。図5に示すように、基地局装置1Aは、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送信部(送信ステップ)103、受信部(受信ステップ)104と送受信アンテナ105を含んで構成される。また、上位層処理部101は、無線リソース制御部(無線リソース制御ステップ)1011、スケジューリング部(スケジューリングステップ)1012を含んで構成される。また、送信部103は、符号化部(符号化ステップ)1031、変調部(変調ステップ)1032、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1033、多重部(多重ステップ)1034、無線送信部(無線送信ステップ)1035を含んで構成される。また、受信部104は、無線受信部(無線受信ステップ)1041、多重分離部(多重分離ステップ)1042、復調部(復調ステップ)1043、復号部(復号ステップ)1044を含んで構成される。 FIG. 5 is a schematic block diagram showing the configuration of the base station device 1A in the present embodiment. As illustrated in FIG. 5, the base station apparatus 1 </ b> A performs transmission / reception with an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmission unit (transmission step) 103, and a reception unit (reception step) 104. An antenna 105 is included. The upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012. The transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, a radio A transmission unit (wireless transmission step) 1035 is included. The reception unit 104 includes a wireless reception unit (wireless reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
 上位層処理部101は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。 The upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Resource (Control: RRC) layer processing. In addition, upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置から受信する。言い換えると、端末装置は、自身の機能を基地局装置に上位層の信号で送信する。 The upper layer processing unit 101 receives information related to the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal apparatus transmits its own function to the base station apparatus using an upper layer signal.
 なお、以下の説明において、端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。なお、以下の説明において、所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。 In the following description, information on a terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has introduced a predetermined function and has completed a test. In the following description, whether or not to support a predetermined function includes whether or not installation and testing for the predetermined function have been completed.
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しない。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知しても良い。 For example, when a terminal device supports a predetermined function, the terminal device transmits information (parameters) indicating whether the predetermined function is supported. When the terminal device does not support the predetermined function, the terminal device does not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
 無線リソース制御部1011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CE等を生成、または上位ノードから取得する。無線リソース制御部1011は、下りリンクデータを送信部103に出力し、他の情報を制御部102に出力する。また、無線リソース制御部1011は、端末装置の各種設定情報の管理をする。 The radio resource control unit 1011 generates or obtains downlink data (transport block), system information, RRC message, MAC CE, and the like arranged on the downlink PDSCH from an upper node. The radio resource control unit 1011 outputs downlink data to the transmission unit 103 and outputs other information to the control unit 102. The radio resource control unit 1011 manages various setting information of the terminal device.
 スケジューリング部1012は、物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式(あるいはMCS)および送信電力等を決定する。スケジューリング部1012は、決定した情報を制御部102に出力する。 The scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are allocated, the coding rate and modulation scheme (or MCS) of the physical channels (PDSCH and PUSCH), transmission power, and the like. The scheduling unit 1012 outputs the determined information to the control unit 102.
 スケジューリング部1012は、スケジューリング結果に基づき、物理チャネル(PDSCHおよびPUSCH)のスケジューリングに用いられる情報を生成する。スケジューリング部1012は、生成した情報を制御部102に出力する。 The scheduling unit 1012 generates information used for physical channel (PDSCH and PUSCH) scheduling based on the scheduling result. The scheduling unit 1012 outputs the generated information to the control unit 102.
 制御部102は、上位層処理部101から入力された情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報を生成し、送信部103に出力する。 The control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the higher layer processing unit 101. The control unit 102 generates downlink control information based on the information input from the higher layer processing unit 101 and outputs the downlink control information to the transmission unit 103.
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および、下りリンクデータを、符号化および変調し、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ105を介して端末装置2に信号を送信する。 The transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Then, PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the terminal apparatus 2 via the transmission / reception antenna 105.
 符号化部1031は、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部1011が決定した符号化方式を用いて符号化を行なう。変調部1032は、符号化部1031から入力された符号化ビットをBPSK(Binary Phase Shift Keying)、QPSK(quadrature Phase Shift Keying)、16QAM(quadrature amplitude modulation)、64QAM、256QAM等の予め定められた、または無線リソース制御部1011が決定した変調方式で変調する。 The encoding unit 1031 uses a predetermined encoding method such as block encoding, convolutional encoding, and turbo encoding for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Encoding is performed using the encoding method determined by the radio resource control unit 1011. The modulation unit 1032 converts the encoded bits input from the encoding unit 1031 into BPSK (Binary Phase Shift Shift Keying), QPSK (quadrature Phase Shift Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, and the like. Or it modulates with the modulation system which the radio | wireless resource control part 1011 determined.
 下りリンク参照信号生成部1033は、基地局装置1Aを識別するための物理セル識別子(PCI、セルID)等を基に予め定められた規則で求まる、端末装置2Aが既知の系列を下りリンク参照信号として生成する。 The downlink reference signal generation unit 1033 refers to a sequence known by the terminal apparatus 2A, which is obtained based on a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station apparatus 1A. Generate as a signal.
 多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とを多重する。つまり、多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とをリソースエレメントに配置する。 The multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element.
 無線送信部1035は、多重された変調シンボル等を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成し、OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送受信アンテナ105に出力して送信する。 The wireless transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fast Transform: IFFT) on the multiplexed modulation symbol and the like, and adds a cyclic prefix (cyclic prefix: CP) to the OFDM symbol. A band digital signal is generated, the baseband digital signal is converted into an analog signal, an extra frequency component is removed by filtering, the signal is up-converted to a carrier frequency, power amplified, and output to the transmission / reception antenna 105 for transmission. .
 受信部104は、制御部102から入力された制御信号に従って、送受信アンテナ105を介して端末装置2Aから受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101に出力する。 The receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmission / reception antenna 105 in accordance with the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. .
 無線受信部1041は、送受信アンテナ105を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The radio reception unit 1041 converts an uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained. The level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal that has been demodulated is converted into a digital signal.
 無線受信部1041は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出し多重分離部1042に出力する。 The wireless reception unit 1041 removes a portion corresponding to the CP from the converted digital signal. Radio receiving section 1041 performs fast Fourier transform (FFT) on the signal from which CP has been removed, extracts a signal in the frequency domain, and outputs the signal to demultiplexing section 1042.
 多重分離部1042は、無線受信部1041から入力された信号をPUCCH、PUSCH、上りリンク参照信号等の信号に分離する。なお、この分離は、予め基地局装置1Aが無線リソース制御部1011で決定し、各端末装置2に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。 The demultiplexing unit 1042 demultiplexes the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 1011 by the base station apparatus 1A and notified to each terminal apparatus 2.
 また、多重分離部1042は、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部1042は、上りリンク参照信号を分離する。 Also, the demultiplexing unit 1042 compensates for the propagation paths of the PUCCH and PUSCH. Further, the demultiplexing unit 1042 demultiplexes the uplink reference signal.
 復調部1043は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた、または自装置が端末装置2各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。 The demodulator 1043 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH to obtain modulation symbols, and for each of the PUCCH and PUSCH modulation symbols, BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc. The received signal is demodulated by using a modulation method determined or notified in advance by the own device to each of the terminal devices 2 using an uplink grant.
 復号部1044は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、または自装置が端末装置2に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号部1044は、上位層処理部101から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。 The decoding unit 1044 uses the coding rate of the demodulated PUCCH and PUSCH in a predetermined encoding method, the predetermined coding method, or the coding rate notified by the own device to the terminal device 2 using the uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing section 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the demodulated coded bits.
 図6は、本実施形態における端末装置2の構成を示す概略ブロック図である。図6に示すように、端末装置2Aは、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送信部(送信ステップ)203、受信部(受信ステップ)204、チャネル状態情報生成部(チャネル状態情報生成ステップ)205と送受信アンテナ206を含んで構成される。また、上位層処理部201は、無線リソース制御部(無線リソース制御ステップ)2011、スケジューリング情報解釈部(スケジューリング情報解釈ステップ)2012を含んで構成される。また、送信部203は、符号化部(符号化ステップ)2031、変調部(変調ステップ)2032、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2033、多重部(多重ステップ)2034、無線送信部(無線送信ステップ)2035を含んで構成される。また、受信部204は、無線受信部(無線受信ステップ)2041、多重分離部(多重分離ステップ)2042、信号検出部(信号検出ステップ)2043を含んで構成される。 FIG. 6 is a schematic block diagram showing the configuration of the terminal device 2 in the present embodiment. As illustrated in FIG. 6, the terminal device 2A includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a channel state. An information generation unit (channel state information generation step) 205 and a transmission / reception antenna 206 are included. The upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012. The transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio A transmission unit (wireless transmission step) 2035 is included. The reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, and a signal detection unit (signal detection step) 2043.
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータ(トランスポートブロック)を、送信部203に出力する。また、上位層処理部201は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。 The upper layer processing unit 201 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 203. Further, the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. Process the (Radio Resource Control: RRC) layer.
 上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報を、送信部203に出力する。 The upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
 無線リソース制御部2011は、自端末装置の各種設定情報の管理をする。また、無線リソース制御部2011は、上りリンクの各チャネルに配置される情報を生成し、送信部203に出力する。 The radio resource control unit 2011 manages various setting information of the own terminal device. Also, the radio resource control unit 2011 generates information arranged in each uplink channel and outputs the information to the transmission unit 203.
 無線リソース制御部2011は、基地局装置から送信されたCSIフィードバックに関する設定情報を取得し、制御部202に出力する。 The radio resource control unit 2011 acquires setting information regarding CSI feedback transmitted from the base station apparatus, and outputs the setting information to the control unit 202.
 スケジューリング情報解釈部2012は、受信部204を介して受信した下りリンク制御情報を解釈し、スケジューリング情報を判定する。また、スケジューリング情報解釈部2012は、スケジューリング情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。 The scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines scheduling information. The scheduling information interpretation unit 2012 generates control information for controlling the reception unit 204 and the transmission unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
 制御部202は、上位層処理部201から入力された情報に基づいて、受信部204、チャネル状態情報生成部205および送信部203の制御を行なう制御信号を生成する。制御部202は、生成した制御信号を受信部204、チャネル状態情報生成部205および送信部203に出力して受信部204、および送信部203の制御を行なう。 The control unit 202 generates a control signal for controlling the receiving unit 204, the channel state information generating unit 205, and the transmitting unit 203 based on the information input from the higher layer processing unit 201. The control unit 202 controls the reception unit 204 and the transmission unit 203 by outputting the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203.
 制御部202は、チャネル状態情報生成部205が生成したCSIを基地局装置に送信するように送信部203を制御する。 The control unit 202 controls the transmission unit 203 to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus.
 受信部204は、制御部202から入力された制御信号に従って、送受信アンテナ206を介して基地局装置1Aから受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。 The receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 1A via the transmission / reception antenna 206 according to the control signal input from the control unit 202, and sends the decoded information to the upper layer processing unit 201. Output.
 無線受信部2041は、送受信アンテナ206を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。 The radio reception unit 2041 converts a downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases the amplification level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
 また、無線受信部2041は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行ない、周波数領域の信号を抽出する。 Further, the wireless reception unit 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
 多重分離部2042は、抽出した信号をPHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部2042は、チャネル測定から得られた所望信号のチャネルの推定値に基づいて、PHICH、PDCCH、およびEPDCCHのチャネルの補償を行ない、下りリンク制御情報を検出し、制御部202に出力する。また、制御部202は、PDSCHおよび所望信号のチャネル推定値を信号検出部2043に出力する。 The demultiplexing unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal. Further, the demultiplexing unit 2042 performs channel compensation of PHICH, PDCCH, and EPDCCH based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and Output. In addition, control unit 202 outputs PDSCH and the channel estimation value of the desired signal to signal detection unit 2043.
 信号検出部2043は、PDSCH、チャネル推定値を用いて、信号検出し、上位層処理部201に出力する。 The signal detection unit 2043 detects a signal using the PDSCH and the channel estimation value, and outputs the signal to the higher layer processing unit 201.
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ206を介して基地局装置1Aに送信する。 The transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 201, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 1A via the transmission / reception antenna 206.
 符号化部2031は、上位層処理部201から入力された上りリンク制御情報を畳み込み符号化、ブロック符号化等の符号化を行なう。また、符号化部2031は、PUSCHのスケジューリングに用いられる情報に基づきターボ符号化を行なう。 The encoding unit 2031 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 201. Also, the coding unit 2031 performs turbo coding based on information used for PUSCH scheduling.
 変調部2032は、符号化部2031から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。 The modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
 上りリンク参照信号生成部2033は、基地局装置1Aを識別するための物理セル識別子(physical cell identity: PCI、Cell ID等と称される)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値等を基に、予め定められた規則(式)で求まる系列を生成する。 The uplink reference signal generation unit 2033 includes a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station apparatus 1A, a bandwidth for arranging the uplink reference signal, and an uplink grant. A sequence determined by a predetermined rule (formula) is generated on the basis of the cyclic shift, the parameter value for the generation of the DMRS sequence, and the like notified in (1).
 多重部2034は、制御部202から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)する。また、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。 The multiplexing unit 2034 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 202, and then performs a discrete Fourier transform (DFT). Also, the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
 無線送信部2035は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMA方式の変調を行ない、SC-FDMAシンボルを生成し、生成されたSC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送受信アンテナ206に出力して送信する。 The wireless transmission unit 2035 performs inverse fast Fourier transform (Inverse Fast Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, generates SC-FDMA symbols, and generates the generated SC-FDMA symbols. CP is added to baseband digital signal, baseband digital signal is converted to analog signal, excess frequency component is removed, converted to carrier frequency by up-conversion, power amplification, transmission / reception antenna It outputs to 206 and transmits.
 本発明に関わる装置で動作するプログラムは、本発明に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)等の揮発性メモリに読み込まれ、あるいはフラッシュメモリ等の不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The program that operates in the apparatus related to the present invention may be a program that controls the central processing unit (CPU) or the like to function the computer so as to realize the functions of the above-described embodiments related to the present invention. The program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD). In response, the CPU reads and corrects / writes.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。 In addition, you may make it implement | achieve a part of apparatus in embodiment mentioned above with a computer. In that case, a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium. You may implement | achieve by making a computer system read the program recorded on this recording medium, and executing it. The “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices. The “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 “Computer-readable recording medium” means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、ディジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んで良い。汎用用途プロセッサは、マイクロプロセッサであっても良いし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていても良いし、アナログ回路で構成されていても良い。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Also, each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits. Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof. A general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine. The electric circuit described above may be configured with a digital circuit or an analog circuit. In addition, when an integrated circuit technology appears to replace the current integrated circuit due to the advancement of semiconductor technology, an integrated circuit based on the technology can be used.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器等の端末装置もしくは通信装置に適用出来る。 Note that the present invention is not limited to the above-described embodiment. In the embodiment, an example of the apparatus has been described. However, the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention. The present invention can be modified in various ways within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. It is. Moreover, it is the element described in each said embodiment, and the structure which substituted the element which has the same effect is also contained.
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。 The present invention is suitable for use in a base station device, a terminal device, and a communication method.
 なお、本国際出願は、2016年1月26日に出願した日本国特許出願第2016-012182号に基づく優先権を主張するものであり、日本国特許出願第2016-012182号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2016-012182 filed on Jan. 26, 2016. The entire contents of Japanese Patent Application No. 2016-012182 are hereby incorporated by reference. Included in international applications.
1A 基地局装置
2A 端末装置
101 上位層処理部
102 制御部
103 送信部
104 受信部
105 送受信アンテナ
1011 無線リソース制御部
1012 スケジューリング部
1031 符号化部
1032 変調部
1033 下りリンク参照信号生成部
1034 多重部
1035 無線送信部
1041 無線受信部
1042 多重分離部
1043 復調部
1044 復号部
201 上位層処理部
202 制御部
203 送信部
204 受信部
205 チャネル状態情報生成部
206 送受信アンテナ
2011 無線リソース制御部
2012 スケジューリング情報解釈部
2031 符号化部
2032 変調部
2033 上りリンク参照信号生成部
2034 多重部
2035 無線送信部
2041 無線受信部
2042 多重分離部
2043 信号検出部
1A Base station apparatus 2A Terminal apparatus 101 Upper layer processing section 102 Control section 103 Transmission section 104 Reception section 105 Transmission / reception antenna 1011 Radio resource control section 1012 Scheduling section 1031 Encoding section 1032 Modulation section 1033 Downlink reference signal generation section 1034 Multiplexing section 1035 Radio transmission unit 1041 Radio reception unit 1042 Demultiplexing unit 1043 Demodulation unit 1044 Decoding unit 201 Upper layer processing unit 202 Control unit 203 Transmission unit 204 Reception unit 205 Channel state information generation unit 206 Transmission / reception antenna 2011 Radio resource control unit 2012 Scheduling information interpretation unit 2031 Encoder 2032 Modulator 2033 Uplink reference signal generator 2034 Multiplexer 2035 Radio transmitter 2041 Radio receiver 2042 Demultiplexer 2043 Signal detector

Claims (7)

  1.  端末装置と通信する基地局装置であって、
     前記端末装置に高信頼通信の設定を送信する送信部を備え、
     前記高信頼通信の設定は、通信タイプおよび高信頼通信情報を含み、
     前記通信タイプは初期伝送か高信頼伝送かを示す情報であり、
     前記高信頼通信情報は、変調方式、リソース割当て情報、ビット数、送信周期の少なくとも1つを含む基地局装置。
    A base station device that communicates with a terminal device,
    A transmission unit for transmitting a setting of high-reliability communication to the terminal device;
    The reliable communication setting includes a communication type and highly reliable communication information,
    The communication type is information indicating initial transmission or reliable transmission,
    The high-reliability communication information is a base station apparatus including at least one of a modulation scheme, resource allocation information, the number of bits, and a transmission cycle.
  2.  前記通信タイプが初期伝送の場合、再送を伴う通信を行ない、前記通信タイプが高信頼伝送の場合、再送を行なわない通信を行なう請求項1に記載の基地局装置。 The base station apparatus according to claim 1, wherein when the communication type is initial transmission, communication with retransmission is performed, and when the communication type is reliable transmission, communication without retransmission is performed.
  3.  送信したデータに誤りがあるか否かを示すACK/NACK信号を前記端末装置から受信し、前記ACK/NACKに基づいて高信頼伝送の条件をみたすかどうかを判断する請求項1に記載の基地局装置。 2. The base according to claim 1, wherein an ACK / NACK signal indicating whether or not there is an error in transmitted data is received from the terminal apparatus, and whether or not a reliable transmission condition is satisfied is determined based on the ACK / NACK. Station equipment.
  4.  基地局装置と通信する端末装置であって、
     前記基地局装置から、高信頼通信の設定を受信する受信部を備え、
     前記高信頼通信の設定は、通信タイプおよび高信頼通信情報を含み、
     前記通信タイプは初期伝送か高信頼伝送かを示す情報であり、
     前記高信頼通信情報は、符号化変調方式、変調方式、リソース割当て情報、ビット数、送信周期の少なくとも1つを含む端末装置。
    A terminal device that communicates with a base station device,
    From the base station device, comprising a receiving unit for receiving the setting of the reliable communication,
    The reliable communication setting includes a communication type and highly reliable communication information,
    The communication type is information indicating initial transmission or reliable transmission,
    The reliable communication information is a terminal device including at least one of a coded modulation scheme, a modulation scheme, resource allocation information, the number of bits, and a transmission cycle.
  5.  受信したデータに誤りがあるか否かを示すACK/NACK信号を前記基地局装置に送信し、
     前記通信タイプが初期伝送の場合、前記ACK/NACK信号が誤りを示すNACKである場合、前記基地局装置から再送信号を受信し、前記通信タイプが高信頼伝送の場合、前記ACK/NACK信号がNACKである場合、そのデータを破棄する請求項4に記載の端末装置。
    ACK / NACK signal indicating whether or not the received data has an error is transmitted to the base station apparatus,
    When the communication type is initial transmission, when the ACK / NACK signal is NACK indicating an error, a retransmission signal is received from the base station apparatus. When the communication type is reliable transmission, the ACK / NACK signal is The terminal device according to claim 4, wherein in the case of NACK, the data is discarded.
  6.  端末装置と通信する基地局装置における通信方法であって、
     前記端末装置に高信頼通信の設定を送信する送信ステップを備え、
     前記高信頼通信の設定は、通信タイプおよび高信頼通信情報を含み、
     前記通信タイプは初期伝送か高信頼伝送かを示す情報であり、
     前記高信頼通信情報は、変調方式、リソース割当て情報、ビット数、送信周期の少なくとも1つを含む通信方法。
    A communication method in a base station device that communicates with a terminal device,
    A transmission step of transmitting a setting of reliable communication to the terminal device;
    The reliable communication setting includes a communication type and highly reliable communication information,
    The communication type is information indicating initial transmission or reliable transmission,
    The highly reliable communication information is a communication method including at least one of a modulation scheme, resource allocation information, the number of bits, and a transmission cycle.
  7.  基地局装置と通信する端末装置における通信方法であって、
     前記基地局装置から、高信頼通信の設定を受信する受信ステップを備え、
     前記高信頼通信の設定は、通信タイプおよび高信頼通信情報を含み、
     前記通信タイプは初期伝送か高信頼伝送かを示す情報であり、
     前記高信頼通信情報は、符号化変調方式、変調方式、リソース割当て情報、ビット数、送信周期の少なくとも1つを含む通信方法。
    A communication method in a terminal device that communicates with a base station device,
    From the base station device, comprising a receiving step of receiving a setting of reliable communication,
    The reliable communication setting includes a communication type and highly reliable communication information,
    The communication type is information indicating initial transmission or reliable transmission,
    The highly reliable communication information is a communication method including at least one of a coded modulation scheme, a modulation scheme, resource allocation information, the number of bits, and a transmission cycle.
PCT/JP2017/002362 2016-01-26 2017-01-24 Base station device, terminal device, and communication method WO2017130969A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016012182A JP2019054306A (en) 2016-01-26 2016-01-26 Base station device, terminal device, and communication method
JP2016-012182 2016-01-26

Publications (2)

Publication Number Publication Date
WO2017130969A2 true WO2017130969A2 (en) 2017-08-03
WO2017130969A3 WO2017130969A3 (en) 2017-09-28

Family

ID=59398369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002362 WO2017130969A2 (en) 2016-01-26 2017-01-24 Base station device, terminal device, and communication method

Country Status (2)

Country Link
JP (1) JP2019054306A (en)
WO (1) WO2017130969A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997569A (en) * 2018-08-09 2021-06-18 夏普株式会社 Terminal device and base station device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152853A (en) 2019-03-22 2020-09-24 日東電工株式会社 Adhesive sheet
WO2023242929A1 (en) * 2022-06-13 2023-12-21 株式会社Nttドコモ Terminal, base station, radio communication system, and radio communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450729B2 (en) * 1998-12-21 2003-09-29 日本電信電話株式会社 Packet communication device
EP2635082A1 (en) * 2012-02-29 2013-09-04 Panasonic Corporation Dynamic subframe bundling
WO2015094069A1 (en) * 2013-12-20 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) High-reliability transmission scheme with low resource utilization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997569A (en) * 2018-08-09 2021-06-18 夏普株式会社 Terminal device and base station device
CN112997569B (en) * 2018-08-09 2024-06-11 夏普株式会社 Terminal device and wireless communication method

Also Published As

Publication number Publication date
JP2019054306A (en) 2019-04-04
WO2017130969A3 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US11076391B2 (en) Terminal device, base station device, integrated circuit and communication method
CN105850175B (en) Terminal device, base station device, integrated circuit, and communication method
WO2016060242A1 (en) Terminal, base station, and communication method
JP6959910B2 (en) Terminal equipment, base station equipment, and communication methods
WO2015080140A1 (en) Terminal device, base station device, communication method, and integrated circuit
JP6555827B2 (en) Communication device and communication method
WO2017187810A1 (en) Terminal device, base station device, communication method and integrated circuit
RU2741320C2 (en) Terminal device, a base station device, a communication method and an integrated circuit
WO2018230694A1 (en) Base station device, terminal device, and communication method therefor
WO2019139140A1 (en) Base station device, terminal device, communication method, and integrated circuit
WO2017195655A1 (en) Terminal device, base station device, and communication method
EP3641391B1 (en) Cqi index reporting using a 64qam mode cqi table, a 256qam mode cqi table and a 1024qam mode cqi table
WO2016043019A1 (en) Terminal device, base station device and communication method
WO2017169366A1 (en) Base station, terminals and communication method
JP6548334B2 (en) Terminal device, base station device, and communication method
WO2016021712A1 (en) Base station device, terminal device and method
WO2018020942A1 (en) Base station device, terminal device, and communication method
WO2016182039A1 (en) Terminal, base station, and communication method
WO2016182042A1 (en) Base station apparatus, terminal apparatus, and communication method
WO2017130969A2 (en) Base station device, terminal device, and communication method
EP3836705A1 (en) Terminal device and base station apparatus
WO2019167785A1 (en) Communication device and communication method
WO2016182040A1 (en) Terminal apparatus, base station apparatus, and communication method
JP2022116517A (en) Base station device, terminal device, and communication method
WO2016136780A1 (en) Terminal device, base station device, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744199

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744199

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: JP