WO2017169133A1 - イヤーマフ - Google Patents

イヤーマフ Download PDF

Info

Publication number
WO2017169133A1
WO2017169133A1 PCT/JP2017/004352 JP2017004352W WO2017169133A1 WO 2017169133 A1 WO2017169133 A1 WO 2017169133A1 JP 2017004352 W JP2017004352 W JP 2017004352W WO 2017169133 A1 WO2017169133 A1 WO 2017169133A1
Authority
WO
WIPO (PCT)
Prior art keywords
soundproof
frame
film
opening
hole
Prior art date
Application number
PCT/JP2017/004352
Other languages
English (en)
French (fr)
Inventor
納谷 昌之
昇吾 山添
真也 白田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018508499A priority Critical patent/JP6698819B2/ja
Priority to EP17773682.4A priority patent/EP3437595A4/en
Priority to CN201780016653.0A priority patent/CN108778202A/zh
Publication of WO2017169133A1 publication Critical patent/WO2017169133A1/ja
Priority to US16/130,030 priority patent/US20190038471A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F11/00Methods or devices for treatment of the ears or hearing sense; Non-electric hearing aids; Methods or devices for enabling ear patients to achieve auditory perception through physiological senses other than hearing sense; Protective devices for the ears, carried on the body or in the hand
    • A61F11/06Protective devices for the ears
    • A61F11/14Protective devices for the ears external, e.g. earcaps or earmuffs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials

Definitions

  • the present invention relates to an earmuff.
  • ear muffs are widely used to protect workers in a noisy environment.
  • the ear muff has a pair of ear cups attached to a headband, and like earphones, the ear cups are worn on the head by placing the ear cups against both ears.
  • General sound insulation material shields sound better as the mass is heavier.
  • the ear cup is enlarged, the sound insulation material is arranged in the housing of the ear cup, The housing needs to be heavy. For this reason, when the soundproofing performance of the earmuffs is increased, there is a problem that the mass of the earmuffs becomes heavier and the wearing comfort becomes worse.
  • Patent Document 1 includes a headband, an ear cup attached to the headband, a baffle plate fixed to the ear cup, and an ear pad locked to the baffle plate, and the baffle plate and the above It is described that by having a breathable member between the ear pads, the volume of the front air chamber can be increased and the sound insulation can be increased.
  • the earcup is still enlarged or a soundproofing material is disposed in the earcup housing.
  • the housing needs to be heavy. Further, in that case, there is a problem that wearing comfort is deteriorated because air permeability is deteriorated.
  • it is conceivable to provide a vent hole in the ear cup to ensure air permeability there is a problem that the soundproof performance is lowered when the vent hole is provided.
  • the sound in the entire audible range is blocked, so that there is a problem that necessary sounds such as conversations are also soundproofed.
  • a so-called active noise reduction device As a device capable of soundproofing a specific frequency band, a so-called active noise reduction device is known in which noise is picked up and a sound having a phase opposite to that is output from a speaker to cancel the noise.
  • a power source since a power source is required, there is a problem that it becomes heavy when used for an earmuff and cannot be used for a long time. Further, since a power source is necessary, there is a problem that the place of use is limited.
  • An object of the present invention is to provide an earmuff that solves the above-described problems of the prior art, is small and light, has high soundproofing performance, can be soundproofed in a specific frequency band, and has excellent air permeability.
  • soundproof includes both the meanings of “sound insulation” and “sound absorption” as acoustic characteristics.
  • sound insulation refers to “sound insulation”, and “sound insulation” “sounds out”.
  • “reflection” and “absorption” are basically referred to as “sound insulation” and “shielding”, and the two are referred to as “reflection” and “absorption”. .
  • the inventors of the present invention have a headband, a housing attached to an end of the headband, and two ear cups having ear pads locked to the housing.
  • the present inventors have found that the problems can be solved and completed the present invention. That is, it has been found that the above object can be achieved by the following configuration.
  • the housing has a housing opening; It has a soundproof structure for soundproofing a specific frequency band disposed in the housing opening, An earmuff in which the housing opening with the soundproofing structure has a vent.
  • the soundproof structure has one or more soundproof cells, One or more soundproof cells A frame having a frame hole to penetrate; A membrane fixed to the frame; An opening composed of one or more through holes perforated in the membrane, Both ends of the frame hole of the frame are not closed together, The earmuffs according to [1], wherein the soundproof structure is disposed by closing the housing opening.
  • the soundproof structure has two or more soundproof cells arranged two-dimensionally, At least one of the soundproof cells is a first soundproof cell including a first frame having a first frame hole portion penetrating through and a film fixed to the first frame, At least one of the soundproof cells is a second soundproof cell composed of a second frame having a second frame hole portion penetrating therethrough,
  • the soundproof structure includes a plate-like member having a plurality of through holes penetrating in the thickness direction,
  • the average opening diameter of the through holes is 0.1 ⁇ m or more and less than 100 ⁇ m,
  • the earmuff according to [1], wherein the earmuff is disposed by closing a housing opening.
  • the soundproof structure includes a plate-like member having a plurality of through-holes penetrating in the thickness direction and a frame having a frame hole portion, and by fixing the plate-like member to the periphery of the frame hole portion of the frame
  • the plate-like member is subject to membrane vibration,
  • the average opening diameter of the through holes is 0.1 ⁇ m or more and 250 ⁇ m or less
  • the earmuff according to [1] wherein the first natural vibration frequency of the membrane vibration of the plate-like member is between 10 Hz and 100,000 Hz.
  • the soundproof structure has one or more soundproof cells, One or more soundproof cells A frame having a frame hole to penetrate; A film that covers the frame hole and is fixed to the frame, The soundproof structure is arranged in the housing opening portion with the membrane surface inclined with respect to the opening cross section of the housing opening portion and a region serving as a vent hole through which gas passes is provided in the housing opening portion [1].
  • the film has a plurality of through holes penetrating in the thickness direction, The earmuff according to [7], wherein an average opening diameter of the through holes is 0.1 ⁇ m or more and 250 ⁇ m or less.
  • an earmuff that is small and light, has high soundproofing performance, can be soundproofed in a specific frequency band, and has excellent air permeability.
  • FIG. 10B is a sectional view taken along line BB in FIG. 10A. It is a front view which shows typically another example of the soundproof structure used for the earmuff of this invention.
  • FIG. 12 is a sectional view taken along line II-II in FIG. 11.
  • FIG. 14 is a sectional view taken along line BB in FIG. 13. It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the soundproof structure of FIG. It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the soundproof structure of FIG. It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the soundproof structure of FIG. It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the soundproof structure of FIG. It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the soundproof structure of FIG. It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the soundproof structure of FIG. It is typical sectional drawing for demonstrating an example of the suitable manufacturing method of the soundproof structure of FIG.
  • FIG. 30A from the c direction. It is a front view which shows typically another example of the soundproof structure used for the earmuff of this invention.
  • FIG. 32 is a cross-sectional view taken along the line II-II in FIG. 31. It is a graph which shows the sound absorption characteristic represented by the absorption factor with respect to a frequency. It is a graph which shows the sound insulation characteristic represented by the transmission loss with respect to a frequency. It is a perspective view explaining the measurement system which measures the soundproof performance of the soundproof structure inserted and arrange
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the earmuffs of the present invention A support member; Two ear cups having a housing attached to the support member and an ear pad locked to the housing;
  • the housing has a housing opening; It has a soundproof structure for soundproofing a specific frequency band disposed in the housing opening,
  • the housing opening in which the soundproof structure is arranged is an earmuff having a vent.
  • FIG. 1 is a cross-sectional view schematically showing an example of the ear muff of the present invention
  • FIG. 2A is a cross-sectional view of the ear cup of the ear muff shown in FIG. 1
  • FIG. 2B is a view of FIG.
  • FIG. 2C is a side view of FIG. 2A viewed from the direction c.
  • the earmuff 100 shown in FIGS. 1 and 2A to 2C includes a headband 104 and two earcups 102 attached to both ends of the headband 104.
  • the headband 104 is a support member in the present invention, and is the same as a known headband used for conventional earmuffs and headphones.
  • the headband 104 has a shape obtained by bending a long plate-like member, and is provided with support portions that rotatably support the ear cups at both ends thereof.
  • the headband 104 has a spring property in the bending direction, and elastically holds the two ear cups 102 against both ears of the user.
  • the support member is not limited to the headband as described above.
  • the ear cup may be fixed at a position corresponding to the position of the ear when the user wears the helmet with the helmet as a support member.
  • the ear cup 102 covers the user's ear and blocks noise from the outside.
  • the ear cup 102 includes a housing 106, an ear pad 108, and a soundproof structure 10.
  • the housing 106 is the same as the housing of the ear cup used in the conventional ear muffs and headphones, etc., except that the housing 106 has a housing opening 106a for arranging the soundproof structure 10.
  • the housing 106 is a substantially bowl-shaped member, and is rotatably supported by the end portion of the earband 104. The ear pad 108 is locked to the substantially bowl-shaped opening side.
  • the housing 106 has a housing opening 106a formed therethrough.
  • a soundproof structure 10 described later is disposed in the housing opening 106a.
  • the position and size of the housing opening 106a are not limited, and may be set as appropriate according to desired soundproof performance, ventilation performance, and the like.
  • the shape of the opening cross section of the housing opening 106a is not limited, and may be various shapes such as a circular shape, an elliptical shape, a square shape, a rectangular shape, and a polygonal shape.
  • the forming material of the housing 106 is not limited, and various resin materials and metal materials used as materials for housings of ear cups such as conventional ear muffs and headphones can be used.
  • the ear pad 108 is the same as the ear pad used in conventional ear muffs and headphones.
  • the ear pad 108 is a member obtained by coating a substantially annular cushioning member having a predetermined thickness with a skin material, and is locked to the opening side of the substantially bowl-shaped housing 106.
  • the ear pad 108 distributes the pressing force when the ear muff is worn, so that the user can keep wearing the ear muff comfortably.
  • the material for forming the ear pad 108 is not limited, and various resin materials used as a material for ear pads such as conventional ear muffs and headphones can be used.
  • a foamed body such as polyurethane and polyvinyl chloride can be used.
  • a skin material a resin thin film, a woven fabric (for example, a fabric), natural leather, or the like can be used.
  • the soundproof structure 10 is disposed in the housing opening 106a of the housing 106 to prevent sound in a specific frequency band. As shown in the figure, the soundproof structure 10 is disposed in the housing opening 106a so as to close the housing opening 106a.
  • the soundproof structure 10 has a plurality of holes penetrating in the thickness direction, as will be described later. Therefore, even if the soundproof structure 10 closes the housing opening 106a, the hole formed in the soundproof structure 10 becomes a vent. Therefore, the earmuff 100 of the present invention can be soundproofed with high soundproofing performance in a specific frequency band by the soundproofing structure 10 without increasing the weight and size of the earcup 102, and the air permeability can be enhanced.
  • the configuration of the soundproof structure 10 will be described in detail later.
  • one soundproof structure 10 is disposed in each of the housing openings 106 a of the two ear cups 102, but this is not limitative.
  • two or more soundproof structures 10 may be arranged in one housing opening 106a.
  • the soundproof structures may be arranged in a direction perpendicular to the opening cross section of the housing opening 106a as shown in FIG.
  • the soundproof structure 10 for soundproofing sounds in different frequency bands.
  • sounds in two or more types of frequency bands 10 or a wider frequency band 10 can be soundproofed.
  • the soundproof structure 10 may be configured to be detachably disposed in the housing opening 106a.
  • the cassette member 122 (122a, 122b) including the soundproof structure 10 is inserted into the housing opening 106a as in the earmuff 120 shown in FIG.
  • the cassette member 122 may be detachably arranged.
  • FIG. 4 different types of cassette members are shown using the reference numerals 122 a and 122 b, but when there is no need to distinguish the types of cassette members, they are collectively referred to as cassette members 122.
  • the cassette member 122 includes a case 124 having a case opening 124a therethrough and one or more soundproof structures 10 disposed in the case opening 124a.
  • the case 124 has a case opening 124a whose outer shape in cross section is the same size and shape as the opening cross section of the housing opening 106a of the housing 106 and penetrates in the same direction as the direction of penetration of the housing opening 106a.
  • the soundproof structure 10 is disposed in the case opening 124a so as to close the case opening 124a.
  • the soundproof structure 10 detachable from the housing opening 106a as the cassette member 122, the soundproof structure 10 can be easily replaced.
  • a cassette member 122a in which two soundproof structures 10 are arranged in the case opening 124a and a cassette member 122b in which one soundproof structure 10 is arranged in the case opening 124a are divided into frequency bands to be soundproofed.
  • the sound in the desired frequency band can be easily soundproofed by appropriately exchanging according to the above.
  • a soundproofing material 132 may be arranged in the housing 106 of the ear cup 102 as in the ear muff 130 shown in FIG. 5A.
  • the soundproofing material 132 is not limited, and various kinds of soundproofing materials used in conventional ear muffs and headphones can be used.
  • the soundproof material 132 may be formed in an annular shape having an opening having the same size as the case opening 106a at a position corresponding to the case opening 106a. The shape may not have an opening as shown in FIG. 5B.
  • FIG. 6 is a front view schematically showing an example of a soundproof structure
  • FIG. 7 is a cross-sectional view taken along the line II-II in FIG.
  • the soundproof structure 10a shown in FIG. 6 and FIG. 7 has a frame hole portion 12 and forms a plurality of (16 in the illustrated example) frames 14 that are two-dimensionally arranged, and each frame.
  • one soundproof cell 26 is constituted by one frame 14, the film 18a fixed to the frame 14, and the opening 24 provided in the film 18a.
  • the soundproof structure 10a is composed of a plurality (16 in the illustrated example) of soundproof cells 26.
  • the soundproof structure 10a of the illustrated example is configured by a plurality of soundproof cells 26, but the present invention is not limited to this, and includes one frame 14, one film 18a, and one opening 24. A single soundproof cell 26 may be used.
  • the frame 14 is formed so as to be annularly surrounded by a thick plate-like member, has a frame hole portion 12 inside, and fixes the film 18a so as to cover the frame hole portion 12 on at least one side. Therefore, it becomes a node of the membrane vibration of the membrane 18a fixed to the frame 14. Therefore, the frame 14 has higher rigidity than the film 18a. Specifically, both the mass and rigidity per unit area need to be high.
  • the shape of the frame 14 is preferably a closed continuous shape that can fix the membrane 18a so that the entire outer periphery of the membrane 18a can be suppressed, but the present invention is not limited to this, and the frame 14 As long as it becomes a node of the membrane vibration of the membrane 18a fixed to the substrate, a part of the membrane 18a may be cut and discontinuous. That is, the role of the frame 14 is to control the membrane vibration by fixing the membrane 18a, so even if there is a small cut in the frame 14 or there is a portion that is not very slightly bonded, it is effective. Demonstrate.
  • the geometric form of the frame hole portion 12 formed by the frame 14 is a planar shape and is a square in the example shown in FIG. 6, but is not particularly limited in the present invention.
  • the shape or the like may be used, or the shape may be indefinite.
  • the size of the frame 14 is a size in plan view and can be defined as the size of the frame hole 12, but in the case of a regular polygon such as a square shown in FIG. 6 or a circle, it passes through the center thereof. It can be defined as the distance between opposing sides or the equivalent circle diameter, and in the case of a polygon, ellipse or indefinite shape, it can be defined as the equivalent circle diameter. In the present invention, the equivalent circle diameter and radius are a diameter and a radius when converted into a circle having the same area. In the soundproof structure 10 of the present invention, the size of the frame 14 may be constant in all the frames 14, but may include frames of different sizes (including cases where the shapes are different). In this case, the average size of the frame 14 may be used as the size of the frame 14.
  • the size of the frame 14 is not particularly limited, and may be set according to the frequency band to be soundproofed.
  • the size of the frame 14 is preferably 0.5 mm to 200 mm, more preferably 1 mm to 100 mm, and most preferably 2 mm to 30 mm. Note that the size of the frame 14 is preferably represented by an average size when different sizes are included in each frame 14.
  • the width and thickness of the frame 14 are not particularly limited as long as the film 18a can be fixed so as to be surely supported and the film 18a can be reliably supported. be able to.
  • the width of the frame 14 is preferably 0.5 mm to 20 mm, more preferably 0.7 mm to 10 mm, and most preferably 1 mm to 5 mm. If the ratio of the width of the frame 14 to the size of the frame 14 becomes too large, the area ratio of the portion of the frame 14 that occupies the whole increases, and the device may become heavy. On the other hand, if the ratio is too small, it is difficult to strongly fix the film with an adhesive or the like at the frame 14 portion.
  • a plurality of, that is, two or more frames 14 are preferably configured as frame bodies 16 arranged so as to be two-dimensionally connected.
  • the number of the frames 14 of the soundproof structure 10a that is, in the illustrated example, the number of the frames 14 constituting the frame body 16 is not particularly limited, and may be set according to the frequency band to be soundproofed.
  • the number of the frames 14 may be set according to the size of the size of the frame 14.
  • a frame 16 combining a plurality of soundproof cells 26 is used. This is because they need to be shielded, i.e. reflected and / or absorbed.
  • the number of frames 14 of the soundproof structure 10a can also be referred to as the number of soundproof cells 26.
  • the material of the frame 14, that is, the material of the frame body 16 is particularly limited as long as it can support the membrane 18 a, has strength suitable for placement in the housing opening 106 a of the ear cup 102, and is resistant to a soundproof environment. It can be selected according to the soundproof environment.
  • metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, and alloys thereof, acrylic resin, polymethyl methacrylate, polycarbonate, polyamideid, Resin materials such as polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyimide, triacetyl cellulose, carbon fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastic) , Carbon fiber, glass fiber reinforced plastic (GFRP: Glass Fiber Reinforced Pl stic), and the like can be given. Moreover, you may use combining the multiple types of material of these frames 14.
  • CFRP Carbon Fiber Reinforced Plastic
  • GFRP Glass Fiber Reinforced Pl stic
  • the film 18a is fixed to the frame 14 so as to cover the frame hole 12 inside the frame 14, and absorbs the energy of the sound wave by vibrating the film in response to the sound wave from the outside, or It is reflected and soundproofed. Therefore, the membrane 18a is preferably impermeable to air.
  • the membrane 18a is preferably made of a flexible elastic material.
  • the shape of the film 18a is the shape of the frame hole 12 of the frame 14, and the size of the film 18a is the size of the frame 14, more specifically, the size of the frame hole 12 of the frame 14. It can be said.
  • the film 18a fixed to the frame 14 of the soundproof cell 26 has the first natural vibration frequency at which the transmission loss is minimum, for example, 0 dB, as the resonance frequency that is the frequency of the lowest natural vibration mode. is there. Since the first natural vibration frequency is determined by the structure composed of the frame 14 and the membrane 18a, the first natural vibration frequency has substantially the same value regardless of the presence or absence of the through hole 22 (opening 24) formed in the membrane 18a. Have been found by those.
  • the sound wave is the frequency where the sound wave shakes the film vibration most due to the resonance phenomenon. It is the frequency of the natural vibration mode that is greatly transmitted at.
  • the soundproof structure 10a since the through hole 22 constituting the opening portion 24 including the through hole 22 is drilled as a through hole in the film 18a, the first intrinsic A sound wave shielding peak appears where the transmission loss reaches a peak (maximum) at the shielding peak frequency lower than the vibration frequency. In particular, an increase in sound absorption is observed due to the presence of the through-hole 22 penetrating from the peak of shielding caused by the through-hole 22 passing through. Accordingly, since the soundproof structure 10a has a peak (maximum) of shielding (transmission loss) at the shielding peak frequency, it can selectively prevent sound in a certain frequency band centered on the shielding peak frequency.
  • the sound shielding can be increased and the peak of the shielding can be controlled, but in addition to these, due to the effect of the through hole 22 penetrating, There is a feature that absorption of sound (sonic wave energy) appears on the lower frequency side.
  • the natural vibration mode is set to the high frequency side as much as possible.
  • the soundproof structure 10a complies with the rigidity law, and since the sound wave is shielded at a frequency lower than the first natural vibration frequency of the film 18a fixed to the frame 14, the first natural vibration frequency of the film 18a is human. It is preferably 10 Hz to 100000 Hz corresponding to the sound wave detection range, more preferably 20 Hz to 20000 Hz, which is the audible range of human sound waves, still more preferably 40 Hz to 16000 Hz, and 100 Hz to 12000 Hz. Most preferred.
  • the thickness of the film 18a is not particularly limited as long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound. However, the film 18a is thick to obtain a natural vibration mode on the high frequency side. It is preferable.
  • the thickness of the film 18a can be set according to the size of the frame 14, that is, the film size.
  • the thickness of the film 18 is preferably 0.005 mm (5 ⁇ m) to 5 mm, more preferably 0.007 mm (7 ⁇ m) to 2 mm, and 0.01 mm (10 ⁇ m) to 1 mm. Most preferred.
  • the first natural vibration frequency of the film 18a in the structure composed of the frame 14 and the film 18a is the geometric form of the frame 14 of the plurality of soundproof cells 26 (for example, the shape and size (size of the frame 14)). )) And the rigidity of the membrane of the plurality of soundproof cells (for example, the thickness and flexibility of the membrane).
  • a ratio of the thickness (t) of the film 18a and the square of the size (a) of the frame 14 for example, In the case of a regular square, the ratio [a 2 / t] to the size of one side can be used.
  • the first natural vibration mode has the same frequency, that is, the same first natural vibration frequency. That is, by setting the ratio [a 2 / t] to a constant value, the scaling rule is established, and an appropriate size can be selected.
  • the Young's modulus of the film 18a is not particularly limited as long as the film 18a has elasticity capable of vibrating the film in order to absorb or reflect sound wave energy to prevent sound. It is preferable to increase the size in order to obtain a higher frequency.
  • the Young's modulus of the film 18a can be set according to the size of the frame 14, that is, the size of the film.
  • the Young's modulus of the film 18a is preferably 1000 Pa to 3000 GPa, more preferably 10,000 Pa to 2000 GPa, and most preferably 1 MPa to 1000 GPa.
  • the density of the film 18a is not particularly limited as long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound.
  • it is preferably 10kg / m 3 ⁇ 30000kg / m 3, more preferably from 100kg / m 3 ⁇ 20000kg / m 3, most preferably 500kg / m 3 ⁇ 10000kg / m 3.
  • the film 18a When the material of the film 18a is a film-like material or a foil-like material, the film 18a has a strength suitable for application to the above-described soundproofing object, is resistant to the soundproofing environment of the soundproofing object, and the film 18a As long as the film can vibrate in order to absorb or reflect sound wave energy to prevent sound, it is not particularly limited and can be selected according to the soundproof object and its soundproof environment.
  • the material of the film 18a includes polyethylene terephthalate (PET), polyimide, polymethyl methacrylate, polycarbonate, acrylic (PMMA), polyamideide, polyarylate, polyetherimide, polyacetal, polyetheretherketone, polyphenylene sulfide, polysulfone.
  • the film 18a may be individually fixed to each of the plurality of frames 14 of the frame body 16 of the soundproof structure 10a to constitute the sheet-like film body 20a as a whole.
  • a film 18a covering each frame 14 may be formed by one sheet-like film body 20a fixed so as to cover the frame.
  • a sheet-like film body is fixed to a part of the frames 14 so as to cover a part of the plurality of frames 14, and a film 18a that covers each frame 14 is formed.
  • You may comprise the sheet-like film body 20a which covers the whole (all the frames 14) of the some flame
  • the film 18a is fixed to the frame 14 so as to cover the opening on at least one side of the frame hole 12 of the frame 14. That is, the film 18a may be fixed to the frame 14 so as to cover the opening on one side, the other side, or both sides of the frame hole portion 12 of the frame 14.
  • all the films 18a may be provided on the same side of the frame hole portions 12 of the plurality of frames 14 of the soundproof structure 10a, or some of the films 18a may be part of the frame holes of the plurality of frames 14.
  • a part of the film 18a may be provided on one side of the portion 12, and the other part of the remaining part of the frame hole part 12 of the plurality of frames 14 may be provided with the remaining film 18a.
  • the film provided on one side, the other side, and both sides of the frame hole 12 of the frame 14 may be mixed.
  • the method of fixing the film 18a to the frame 14 is not particularly limited, and any method may be used as long as the film 18a can be fixed to the frame 14 so as to be a node of the membrane vibration.
  • a method using an adhesive the adhesive is applied on the surface surrounding the frame hole 12 of the frame 14, the film 18 a is placed thereon, and the film 18 a is fixed to the frame 14 with the adhesive.
  • the adhesive include an epoxy adhesive (araldite, etc.), a cyanoacrylate adhesive (Aron Alpha, etc.), an acrylic adhesive, and the like.
  • a film 18a disposed so as to cover the frame hole 12 of the frame 14 is sandwiched between the frame 14 and a fixing member such as a rod, and the fixing member is fixed to a screw or a screw.
  • a fixing member such as a rod
  • the method etc. which are fixed to the frame 14 using a fixing tool can be mentioned.
  • the frame 14 and the film 18a may be made of the same material and integrally formed.
  • the structure in which the frame 14 and the film 18a are integrated is manufactured by a simple process such as compression molding, injection molding, imprint, machining, and a processing method using a three-dimensional shape forming (3D) printer. Can do.
  • the film 18 a that is, the soundproof cell 26, has an opening 24 composed of one or more through holes 22.
  • the soundproof structure 10 has an opening 24 composed of one or more through holes 22 perforated in the film 18 a, so that the soundproof structure 10 is on a lower frequency side than the first natural vibration frequency of the film 18 a. It has a transmission loss peak where the shielding becomes a peak (maximum). The frequency at which this shielding (transmission loss) reaches its peak (maximum) is called the shielding peak frequency.
  • the shielding peak frequency appears due to the through hole 22 of the opening 24 on the lower frequency side than the first natural vibration frequency that mainly depends on the film 18a of the soundproof cell 26 of the soundproof structure 10a.
  • the shielding peak frequency corresponds to the size of the opening 24 with respect to the size of the frame 14 (or the film 18a), specifically, the through hole with respect to the area of the frame hole 12 of the frame 14 (or the film 18a covering the frame hole 12). It is determined according to the aperture ratio of the opening 24 which is the ratio of the total area of 22.
  • one or more through-holes 22 may be perforated in the film 18 a that covers the frame hole 12 of the soundproof cell 26.
  • the drilling position of the through hole 22 may be in the middle of the soundproof cell 26 or the membrane 18a (hereinafter represented by the soundproof cell 26), but the present invention is not limited to this. Instead, as shown in FIG. 8, it does not need to be in the middle of the soundproof cell 26, and may be drilled at any position. That is, simply changing the drilling position of the through hole 22 does not change the sound insulation characteristic of the soundproof structure 10a.
  • the number of through holes 22 constituting the opening 24 in the soundproof cell 26 may be one for one soundproof cell 26 as shown in FIG.
  • the number is not limited to two, but may be two or more (that is, a plurality) as shown in FIG.
  • the opening 24 of each soundproof cell 26 is preferably configured by one through hole 22. The reason is that, when the aperture ratio is constant, the ease of passage of air as wind is greater when one hole is large and the viscosity at the boundary does not work greatly.
  • the sound insulation characteristic of the soundproof structure 10a is a sound insulation characteristic corresponding to the total area of the plurality of through holes 22 (that is, the area of the opening 24) ( That is, the corresponding sound insulation peak is shown in the corresponding sound insulation peak frequency). Therefore, as shown in FIG. 8, the area of the opening 24, which is the total area of the plurality of through holes 22C in one soundproof cell 26 (or film 18a), is the other soundproof cell 26 (or film 18a). Although it is preferable that it is equal to the area of the opening part 24 which is the area of the through-hole 22 which has only one in it, this invention is not limited to this.
  • the aperture ratio (area ratio) of the opening 24 in the soundproof cell 26 is not particularly limited, and may be set according to the sound insulation frequency band to be selectively sound-insulated. % To 70% is preferable, 0.000005% to 50% is more preferable, and 0.00001% to 30% is preferable. By setting the aperture ratio of the opening 24 within the above range, it is possible to determine the sound insulation peak frequency and the transmission loss of the sound insulation peak, which are the center of the sound insulation frequency band to be selectively insulated.
  • the soundproof structure 10a preferably has a plurality of through holes 22 of the same size in one soundproof cell 26 from the viewpoint of manufacturability. That is, the opening 24 of each soundproof cell 26 is preferably composed of a plurality of through holes 22 having the same size. Furthermore, in the soundproof structure 10a, it is preferable that the through holes 22 constituting the openings 24 of all the soundproof cells 26 are holes of the same size.
  • the through hole 22 is preferably drilled by a processing method that absorbs energy, for example, laser processing, or is preferably drilled by a mechanical processing method by physical contact, for example, punching or needle processing. . Therefore, if a plurality of through holes 22 in one soundproof cell 26 or one or a plurality of through holes 22 in all soundproof cells 26 have the same size, holes are formed by laser processing, punching, or needle processing. When drilling, it is possible to continuously drill holes without changing the setting of the processing apparatus and the processing strength.
  • the size (size) of the through hole 22 in the soundproof cell 26 (or film 18a) is different for each soundproof cell 26 (or film 18a). Also good.
  • the corresponding sound insulation peak is shown in.
  • 70% or more of the opening 24 of each soundproof cell 26 of the soundproof structure 10 of this invention is comprised with the hole of the same size.
  • the size of the through hole 22 constituting the opening 24 is not particularly limited as long as it can be appropriately drilled by the above-described processing method.
  • the size of the through-hole 22 is, on the lower limit side, from the viewpoint of manufacturing suitability such as laser processing accuracy such as laser aperture accuracy, processing accuracy such as punching processing or needle processing, and ease of processing. It is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, and most preferably 10 ⁇ m or more. Since the upper limit value of the size of these through holes 22 needs to be smaller than the size of the frame 14, the size of the frame 14 is usually on the order of mm, and the size of the through hole 22 should be set on the order of ⁇ m. For example, the upper limit value of the size of the through hole 22 does not exceed the size of the frame 14, but if it exceeds, the upper limit value of the size of the through hole 22 may be set to be equal to or smaller than the size of the frame 14. .
  • the through-hole 22 through which sound can be transmitted obtains a sound insulation peak in the same manner as when the sound is opened, even when the sound is not covered with a membrane vibration but is covered with a member that can pass through as an acoustic wave transmitted through the air. be able to.
  • a member is generally a breathable member.
  • a screen door screen can be cited.
  • an amidology 30 mesh product manufactured by NBC Meshtec Co., Ltd. can be mentioned. The present inventors have confirmed that the spectrum obtained does not change even when the through-hole 22 penetrating through the product is blocked.
  • the net may have a lattice shape or a triangular lattice shape, and is not particularly limited or limited by the shape.
  • the size of the entire net may be larger or smaller than the size of the frame of the present invention.
  • the size of the net may be a size that covers each of the through holes 22 of the film 18a one by one.
  • network may be a net
  • the material may be a net made of synthetic resin, or a wire for crime prevention or radio wave shielding.
  • the air-permeable member described above is not limited to a screen door mesh, but besides a mesh, a non-woven material, a urethane material, cinsalate (manufactured by 3M), breath air (manufactured by Toyobo), dot air (Toray Industries, Inc.) Etc.).
  • a material having air permeability it is possible to prevent insects and sand from entering from the holes, and to prevent the inside from being seen from the through-hole 22 portion.
  • both the through hole 22 through which sound can be transmitted as an acoustic wave instead of vibration and the film 18a through which sound passes as film vibration are important.
  • the both ends of the frame hole of the frame 14 are arranged in the housing opening 106a so as not to be blocked.
  • the soundproof structure 10a is basically configured as described above.
  • the soundproofing structure 10a Since the soundproofing structure 10a is configured as described above, it enables low-frequency shielding, which has been difficult in the conventional soundproofing structure, and further strongly adapts to noise of various frequencies from low frequencies to frequencies exceeding 1000 Hz. It also has a feature that a structure for sound insulation can be designed. In addition, since the soundproof structure 10a is a sound insulation principle that does not depend on the mass (mass law) of the structure, it is possible to realize a lighter and thinner sound insulation structure compared to the conventional soundproof structure. Sufficient soundproof performance can be obtained without increasing.
  • the soundproof structure 10a since the soundproof structure 10a has the through-hole 22 in the film
  • MRI magnetic resonance imaging
  • the soundproof structure 10a is manufactured as follows. First, a frame body 16 having a plurality of (for example, 225) frames 14 and a sheet-like film body 20 a that covers all the frame hole portions 12 of all the frames 14 of the frame body 16 are prepared. Next, the sheet-like film body 20a is fixed to all the frames 14 of the frame body 16 with an adhesive, and a film 18a covering each of the frame hole portions 12 of all the frames 14 is formed. A plurality of soundproof cells having a structure consisting of Next, one or more through holes 22 are formed in each film 18a of the plurality of soundproof cells by a processing method that absorbs energy such as laser processing, or a mechanical processing method such as punching or needle processing. Thus, an opening 24 is formed in each soundproof cell 26. Thus, the soundproof structure 10a can be manufactured.
  • FIG. 10A is a front view schematically showing another example of the soundproof structure
  • FIG. 10B is a sectional view taken along line BB of FIG. 10A.
  • the soundproof structure 10b shown in FIGS. 10A and 10B has the same configuration as the soundproof structure 10a shown in FIGS. 6 and 7 except that the weight 25 is provided on the film 18b.
  • the following description mainly performs different parts.
  • the soundproof structure 10b shown in FIG. 10A and FIG. 10B has a frame body 16 having a plurality of (four in the illustrated example) frames 14 each having a frame hole portion 12 through which sound is transmitted.
  • a sheet-like film body 20b forming a plurality of (four in the illustrated example) films 18b fixed to each frame 14 so as to cover the frame hole 12 of each frame 14; Arranged on a plurality of (four in the illustrated example) openings 24 formed of one or more (one in the illustrated example) through-holes 22 perforated so as to penetrate the film 18b and on the film 18b in each frame 14 And one or more (four in the illustrated example) weights 25.
  • FIG. 10A in order to explain the configuration of the soundproof structure 10b, the structure of the frame 14 is shown through the film 18b, and the film 18b is shown with a halftone dot.
  • the soundproof structure 10b In the soundproof structure 10 b, one frame 14, a film 18 b fixed to the frame 14, an opening 24 provided in the film 18 b, and a weight 25 disposed on the film 18 b include one soundproof cell 26. Configure. For this reason, the soundproof structure 10b of the present invention is constituted by a plurality (four in the illustrated example) of soundproof cells 26.
  • the film 18b is the same as the film 18a except that the weight 25 is disposed.
  • the through hole 22 constituting the opening 24 is drilled as a through hole in the film 18b. Therefore, a sound wave shielding peak having a transmission loss peak (maximum) appears at the first shielding peak frequency lower than the first natural vibration frequency, and a weight 25 is disposed on the film 18b. Therefore, a sound wave shielding peak at which the transmission loss reaches a peak (maximum) at the second shielding peak frequency higher than the first natural vibration frequency appears.
  • the soundproof structure 10b has a peak (maximum) of shielding (transmission loss) at the first shielding peak frequency and the second shielding peak frequency, the sound in a certain frequency band centered on the first shielding peak frequency, and The sound in a certain frequency band centered on the second shielding peak frequency can be selectively soundproofed.
  • the first shielding peak frequency depending on the opening 24 composed of one or more through holes 22 is set to an arbitrary frequency in the audible range, and the second depending on the weight 25.
  • the shield peak frequency In order to set the shield peak frequency to an arbitrary frequency within the audible range, it is important to obtain the natural vibration mode within the audible range, and in particular, practically important. Therefore, similarly to the above-described film 10a of the soundproof structure 10a, the thickness of the film 18b, the Young's modulus and density of the material of the film 18b, the size of the frame 14, and the like may be set as appropriate.
  • the arrangement position of the film 18b in the frame 14 and the method for fixing the film 18b to the frame 14 are the same as those of the soundproof structure 10a.
  • the film 18b has an opening 24 composed of one or more through holes 22.
  • the transmission loss has a peak of transmission loss (maximum) on the lower frequency side than the first natural vibration frequency of the film 18b.
  • the frequency at which this shielding (transmission loss) reaches its peak (maximum) is called the first shielding peak frequency.
  • the number of through holes 22 constituting the opening 24 in each soundproof cell 26 may be two or more. Further, the sizes of the through holes 22 may be the same or different. Moreover, the area of the opening 24 of each soundproof cell 26 may be equal or different.
  • the soundproof cell 26 has one or more weights 25 arranged on the film 18b.
  • the transmission loss of which the shielding becomes a peak (maximum) on the higher frequency side than the first natural vibration frequency of the film 18b. Has a peak.
  • the frequency at which this shielding (transmission loss) reaches a peak (maximum) is called the second shielding peak frequency.
  • This second shielding peak frequency appears due to the weight 25 on the higher frequency side than the first natural vibration frequency that mainly depends on the film 18b of the soundproof cell 26 of the soundproof structure 10b.
  • the second shielding peak frequency is determined according to the weight of the weight 25, specifically, the weight of the weight 25 and the rigidity of the film 18b.
  • one or more weights 25 may be arranged on the film 18b covering the frame hole 12 of the soundproof cell 26. Further, the arrangement position of the weight 25 may be in the middle of the soundproof cell 26 (film 18b), but the present invention is not limited to this, and it does not have to be in the middle of the soundproof cell 26, and is disposed at any position. May be.
  • the weight 25 is arranged on the front side of the film 18b (the surface opposite to the frame 14), but the present invention is not limited to this, and the back side of the film 18b, That is, it is good also as a structure arrange
  • the number of weights 25 in the soundproof cell 26 may be one for one soundproof cell 26, but the present invention is not limited to this and is two or more (that is, a plurality). May be.
  • the weight of the weight 25 in the soundproof cell 26 is not particularly limited, and may be set according to the sound insulation frequency band to be selectively sound-insulated, but is 0.01 g to 10 g. Preferably, it is 0.1 g to 1 g.
  • the weight of the weight 25 in the above range it is possible to determine the second sound insulation peak frequency and the transmission loss of the sound insulation peak, which are the center of the sound insulation frequency band to be selectively insulated.
  • the shape of the weight 25 It can be set as various shapes, such as plate shape, a column shape, and a cylinder shape.
  • the ratio of the area of the weight 25 to the area of the film 18b in a plan view is preferably 50% or less, and more preferably 10% or less.
  • metal materials such as aluminum, titanium, magnesium, tungsten, iron, steel, chromium, chromium molybdenum, nichrome molybdenum, and alloys thereof, acrylic resin, polymethyl methacrylate, polycarbonate, polyamideid, polyarylate, poly Ether imide, polyacetal, polyether ether ketone, polyphenylene sulfide, polysulfone, polyethylene terephthalate, polybutylene terephthalate, polyimide, triacetyl cellulose resin materials, magnetic materials such as ferrite magnets and neodymium magnets, carbon fiber reinforced plastic (CFRP ), Carbon fiber, glass fiber reinforced plastic (GFRP), and the like.
  • CFRP carbon fiber reinforced plastic
  • GFRP glass fiber reinforced plastic
  • the ratio of the area of the weight 25 to the area of the film 18b is preferably small, and it is desirable that the weight has a sufficient weight within a predetermined range. Therefore, it is preferable to use a material having a high density as the material of the weight 25.
  • the material of the weight 25 is more preferably a metal such as iron or steel.
  • the method for fixing the weight 25 to the film 18b is not particularly limited, and examples thereof include a method using an adhesive and a method using a double-sided tape.
  • the adhesive include an epoxy adhesive (araldite, etc.), a cyanoacrylate adhesive (Aron Alpha, etc.), an acrylic adhesive, and the like.
  • the weight of the weight 25 of the soundproof cell 26 may be different for each soundproof cell 26.
  • the sound insulation characteristic corresponding to the average value obtained by averaging the weights of the weights 25, that is, the corresponding second sound insulation peak frequency corresponds. Indicates the sound insulation peak.
  • 70% or more of the weight 25 of each soundproof cell 26 of the soundproof structure 10 of the present invention is composed of weights having the same weight.
  • the soundproofing structure 10b Since the soundproofing structure 10b is configured as described above, it enables low-frequency shielding, which has been difficult in the conventional soundproofing structure, and is strong against noise of various frequencies from low frequencies to frequencies exceeding 1000 Hz. It also has a feature that a structure for sound insulation can be designed. Moreover, since it can be set as the structure which has two shielding peaks, it can also be used for the use which shields the sound from a several noise source. In addition, since the soundproof structure of the present invention is a sound insulation principle that does not depend on the mass (mass law) of the structure, it is possible to realize a very light and thin sound insulation structure compared to the conventional soundproof structure. Sufficient soundproof performance can be obtained without increasing the weight.
  • the soundproof structure 10b has the through hole 22 in the film 18b, it is possible to realize a structure that shields sound while having air permeability, that is, a structure that shields sound while passing wind and heat.
  • the method for manufacturing the soundproof structure 10b is the same as the method for manufacturing the soundproof structure 10a.
  • an adhesive or double-sided tape is used for each film 18b of the plurality of soundproof cells.
  • the through hole 22 and the weight 25 are provided independently on the film 18b, but the present invention is not limited to this, and the through hole 22 is formed on the film 18b and the weight 25. It may be formed so as to penetrate.
  • the weight 25 has a cylindrical shape, and the central axis of the hollow portion of the cylinder and the central axis of the through hole 22 may be aligned so that the weight 25 and the through hole 22 overlap each other. .
  • the number of through holes 22 and the number of weights 25 may be the same or different.
  • it may be configured to have one through-hole 22 drilled in the center of the film 18b and four weights 25 arranged around the through-hole 22, or arranged in the center of the film 18b.
  • a configuration having one weight 25 and four through holes 22 drilled around the weight 25 may be employed.
  • FIG. 11 is a front view schematically showing another example of the soundproof structure
  • FIG. 12 is a cross-sectional view taken along the line II-II of the soundproof structure shown in FIG.
  • the film 18 c is shown with hatching in order to clarify the configuration.
  • the soundproof structure 10c shown in FIG.11 and FIG.12 is the soundproof shown in FIG.6 and FIG.7 except having the soundproof cell which does not have the through-hole 22 on the film
  • the soundproof structure 10c has a plurality of two soundproof cells arranged two-dimensionally, in the illustrated example, 4 ⁇ 4.
  • One is a second soundproof cell 30 composed of a second frame 34 having a second frame hole 36, and the remaining 15 soundproof cells are frames (first first) having a first frame hole 38.
  • Frame) 14 and a film 18c that is disposed so as to cover one opening surface of the frame 14 and is fixed to the frame 14.
  • the second soundproof cell 30 and the first soundproof cell 32 arranged two-dimensionally are arranged with the opening surface of the second frame hole portion 36 and the surface of the film 18c facing the same direction.
  • the second soundproof cell 30 (the opening of the second frame hole 36) when viewed from a direction perpendicular to the plane in which the soundproof cells are two-dimensionally arranged (hereinafter also referred to as “plan view”). ) And the first soundproof cell 32 (the opening of the first frame hole 38) are substantially square.
  • the first soundproof cell 32 has a configuration in which the first frame hole 38 of the frame 14 is covered with the film 18c. With such a configuration, the first soundproof cell 32 vibrates the film 18c in response to an external sound wave and absorbs or reflects the energy of the sound wave to prevent sound. Therefore, the membrane 18c is preferably impermeable to air.
  • the film 18c of the first soundproof cell 32 fixed to the frame 14 has a first transmission frequency with a minimum transmission loss, for example, 0 dB, as a resonance frequency that is a frequency of the lowest-order natural vibration mode. It has something.
  • the first natural vibration frequency is determined by the geometric shape of the frame 14, the rigidity of the membrane 18c, and the like.
  • the second soundproof cell 30 has a configuration including a second frame 34 having a second frame hole 36. Therefore, sound waves from the outside are transmitted.
  • a sound wave having a frequency lower than the first natural vibration frequency has a phase delay of approximately 90 ° when passing through the first soundproof cell 32
  • a phase advance of approximately 90 ° occurs.
  • the sound wave transmitted through the second soundproof cell 30 has a phase advance depending on the structure (opening diameter and path length) of the second frame hole 36 of the second soundproof cell 30.
  • the path length is the length of the shortest propagation path of the sound wave that passes through the second soundproof cell 30, and in FIG. 12, the thickness of the second frame 34 is the path length.
  • the peak wavelength of the shielding at which the transmission loss is maximized on the lower frequency side than the first natural vibration frequency, which is determined due to the second frame hole portion 36 of the second soundproof cell 30, is described. This is referred to as “third shielded peak frequency”.
  • the soundproof structure 10 c includes the second soundproof cell 30 including the second frame 34 having the second frame hole 36, the frame 14 having the first frame hole 38, and the frame 14.
  • the first soundproof cell 32 including the film 18c By having the first soundproof cell 32 including the film 18c to be fixed, the first soundproof cell 32 among the sound wave transmitted through the second soundproof cell 30 and the sound wave transmitted through the first soundproof cell 32.
  • a phase difference occurs between the sound waves having a frequency lower than the first natural vibration frequency of the first and the other, canceling each other, and soundproofing in a certain frequency band centered on the third shielded peak frequency on the lower frequency side than the first natural vibration frequency It becomes possible to do.
  • the second soundproof cell 30 does not have a film and the second frame hole portion 34 of the second frame 34 is not blocked, the wind and heat can be passed. Therefore, it is possible to realize a structure that shields sound while having air permeability, that is, shields sound while passing wind and heat. Further, since the sound insulation characteristics hardly depend on the position of the second soundproof cell 30 having no film, there is an advantage that the stability is high in manufacturing. In addition, by simply providing the second soundproof cell 30 having no film, any target frequency component can be shielded very strongly, and the first natural vibration frequency of the film 18c of the first soundproof cell 32 can be blocked. Therefore, sound insulation characteristics in a lower frequency region can be improved.
  • the phase advance generated by the second soundproof cell 30 with respect to the transmitted sound wave is preferably 20 ° or more, and more preferably 55 ° or more.
  • the transmission loss (sound insulation characteristic) is 5 dB or more.
  • the phase lead is 55 °, a transmission loss of 10 dB or more can be obtained.
  • the second frame 34 and the frame 14 are all formed integrally, and are configured by one frame body 16. That is, it is the same as the frame 16 of the soundproof structure 10a. Moreover, all the films
  • the film body 20c is fixed to the frame body 16, and the film body 20c is approximately the size of the opening of the frame hole portion in an area corresponding to one frame hole portion of the 16 frame hole portions. It is the structure which has the opening part of the same magnitude
  • the soundproof structure 10c has a total of 16 soundproof cells including one second soundproof cell 30 and fifteen first soundproof cells 32, but one or more second soundproof cells 30 are included.
  • the soundproof cell 30 and the one or more first soundproof cells 32 may be used.
  • the structure which has 16 soundproof cells of two 2nd soundproof cells 30 and 14 1st soundproof cells 32 may be sufficient.
  • a configuration having 25 soundproof cells including one second soundproof cell 30 and 24 first soundproof cells 32 may be used.
  • the total of the second frame hole 36 of the second soundproof cell 30 with respect to the area of the soundproof structure 10c in plan view (that is, the total area of the front surfaces of the second soundproof cell 30 and the first soundproof cell 32).
  • the area ratio (opening ratio) is preferably 0.1% to 50%, more preferably 1% to 10%.
  • the position of the second soundproof cell 30 and the first soundproof cell 32 in the soundproof structure 10c is not particularly limited, but it is preferable that they are disposed uniformly.
  • the size of the second soundproof cell 30 (that is, the size of the second frame hole portion 36) and the size of the first soundproof cell 32 (that is, the first soundproof cell 32 in plan view).
  • the size of the first frame hole 38 is not limited to this, but the size of the second soundproof cell 30 and the size of the first soundproof cell 32 may be different from each other.
  • size of the 2 or more 2nd soundproof cell 30 may mutually differ.
  • two or more first soundproof cells 32 are provided, the sizes of the two or more first soundproof cells 32 may be different from each other. From the viewpoint of manufacturing efficiency, it is preferable that all the frame hole portions have the same size, that is, the size of the soundproof cell.
  • the second frame hole 36 may have two or more types of second soundproof cells 30 having different opening diameters or path lengths.
  • the third shielding peak frequency is determined according to the structure of the second frame hole portion 36 formed in the second frame 34, specifically, the opening diameter and the path length. Therefore, the thickness of the second frame 34 may be set so as to be an arbitrary third shielding peak frequency in accordance with the size of the frame and the frequency band for soundproofing.
  • the thickness of the frame 14 and the thickness of the second frame 34 may be different.
  • the third shielding peak frequency can be set to a desired frequency.
  • the shape of the second frame hole portion 36 of the second frame 34 is not limited to a straight tube shape, and the third shielding peak frequency can be set by appropriately setting the shape of the second frame hole portion 36. May be set to a desired frequency.
  • the third shielding peak frequency can be set to a desired frequency by increasing the path length and adjusting the amount of phase advance by the second soundproof cell 30.
  • the path length of the sound wave It is good also as a structure which lengthens.
  • the soundproof structure 10c may have a configuration having two or more types of second soundproof cells 30 having different opening diameters and sound wave path lengths in the second frame hole portion 36.
  • the film 18c is the same as the film 18a of the soundproof structure 10a except that it does not have a through hole.
  • the sound wave transmitted through the second soundproof cell 30 having no film and the sound wave transmitted through the first soundproof cell 32 are more than the first natural vibration frequency.
  • a phase difference occurs between the low-frequency sound waves and cancels each other, it is possible to perform sound insulation on the lower frequency side than the first natural vibration frequency.
  • the soundproof structure 10c in order to set the shielding peak frequency to an arbitrary frequency within the audible range, it is important to obtain the natural vibration mode of the film 18c of the first soundproof cell 32 on the high frequency side as much as possible. It becomes important for practical use. Therefore, similarly to the above-described film 10a of the soundproof structure 10a, the thickness of the film 18c, the Young's modulus and density of the material of the film 18c, the size of the frame 14, and the like may be set as appropriate. The arrangement position of the film 18c on the frame 14 and the fixing method of the film 18c to the frame 14 are the same as those of the soundproof structure 10a.
  • the size of the soundproof structure 10c is preferably smaller than the sound wavelength at the third shielding peak frequency. According to the study by the present inventors, it was found that the transmission phase difference starts to be disturbed when the size of the soundproof structure is larger than the sound wavelength at the third shielding peak frequency. As described above, the soundproof structure 10 c exhibits high sound insulation characteristics by controlling the phase difference between the sound wave transmitted through the second soundproof cell 30 and the sound wave transmitted through the first soundproof cell 32. For this reason, when the phase is disturbed, the third shielding peak frequency cannot be controlled, and it becomes difficult to express a desired sound insulation characteristic. Therefore, it is preferable that the size of the soundproof structure 10c is equal to or smaller than the sound wavelength at the third shielding peak frequency. Further, according to the study by the present inventors, it has been found that the sound insulation structure 10c can be more suitably sound-insulated by setting the size of the soundproof structure 10c to be equal to or smaller than the wavelength of the sound at the frequency to be shielded.
  • a sound absorbing member In the soundproof structure 10c, a sound absorbing member, a deodorizing material, or the like may be disposed inside the second frame hole portion 36 of the second soundproof cell 30.
  • the sound absorbing member is not particularly limited, and various known sound absorbing members such as urethane plates and nonwoven fabrics can be used.
  • the odor absorbing material is not particularly limited, and a deodorizing sheet containing activated carbon (for example, Semia deodorizing sheet: manufactured by Asahi Kasei Fibers Co., Ltd.) and a deodorizing sheet using a catalyst (for example, Dynock Film: manufactured by 3M Company) Various known odor absorbing materials such as these can be used.
  • a deodorizing sheet containing activated carbon for example, Semia deodorizing sheet: manufactured by Asahi Kasei Fibers Co., Ltd.
  • a catalyst for example, Dynock Film: manufactured by 3M Company
  • the second frame hole portion 36 of the second soundproof cell 30 may be covered with a member that allows sound to pass as an acoustic wave.
  • a member that allows sound to pass as an acoustic wave it is important that both a frame hole portion through which sound can be transmitted as an acoustic wave instead of vibration and a film through which sound passes as membrane vibration exist. Therefore, even when the frame hole portion through which sound can be transmitted is covered with a member that allows sound to pass through as an acoustic wave, a peak of sound insulation can be obtained in the same manner as when the sound is opened.
  • a member is generally a breathable member.
  • the breathable member mentioned in the soundproof structure 10a can be used.
  • a frame body 16 having a plurality of, for example, 225 through holes, and a sheet-like film body 20c that covers all the through holes of the frame body 16 are prepared.
  • the sheet-like film body 20c is fixed to all the frames (frame portions) of the frame body 16 with an adhesive, and a film 18c that covers all the through holes is formed, and the frame 14 and the film 18c are formed.
  • a plurality of first soundproof cells 32 having a structure are formed.
  • the film 18c is removed by a processing method that absorbs energy such as laser processing or a mechanical processing method using physical contact such as a cutter,
  • the second soundproof cell 30 is formed by exposing the frame hole.
  • the soundproof structure 10c can be manufactured.
  • FIG. 13 is a front view schematically showing another example of the soundproof structure
  • FIG. 14 is a sectional view taken along line BB of FIG.
  • the soundproof structure 10d in FIGS. 13 and 14 includes a plate-like member 40 having a plurality of through holes 42 penetrating in the thickness direction, and the average opening diameter of the through holes 42 is 0.1 ⁇ m or more and less than 100 ⁇ m.
  • the average opening ratio rho of the through holes is in a range larger than 0 and smaller than 1.
  • the present inventors include a plate-like member having a plurality of through holes penetrating in the thickness direction, the average opening diameter of the through holes being 0.1 ⁇ m or more and less than 100 ⁇ m, and the average opening ratio being a soundproof structure in the above range. It has been found that a sound absorption effect can be obtained.
  • the inventors of the present invention have considered that the sound absorption mechanism of the soundproof structure 10d is a change in sound energy to thermal energy due to friction between the inner wall surface of the through hole 42 and air when sound passes through the fine through hole 42. Presumed to be. Since this mechanism is caused by the small size of the through hole 42, it is different from the mechanism by resonance.
  • the path that directly passes through the through-hole 42 as sound in the air has a much lower impedance than the path that is once converted into membrane vibration and then emitted again as sound. Therefore, sound tends to pass through the path of the through hole 42 that is finer than the membrane vibration.
  • sound When passing through the portion of the through hole 42, sound is concentrated and passed from a wide area on the plate-like member 40 to a narrow area of the through hole 42.
  • the local velocity becomes extremely large by collecting sound in the through hole 42. Since the friction correlates with the speed, the friction increases in the fine through hole 42 and is converted into heat.
  • the ratio of the circumferential length to the opening area is large, so that it is considered that the friction generated at the edge or inner wall surface of the through-hole 42 can be increased.
  • sound energy can be converted into heat energy and absorbed.
  • the average aperture ratio of the through-holes 42 there is an optimum ratio to the average aperture ratio of the through-holes 42.
  • the average aperture diameter is relatively large, such as about 50 ⁇ m or more, the smaller the average aperture ratio, the higher the absorption rate.
  • the average aperture ratio is large, sound passes through each of the many through holes 42, whereas when the average aperture ratio is small, the number of through holes 42 is reduced, so that one through hole 42 is provided. It is considered that the sound that passes through the through hole 42 increases, the local velocity of the air when passing through the through hole 42 increases, and the friction generated at the edge and inner wall surface of the through hole 42 can be increased.
  • the soundproof structure 10d functions as a single plate-like member 40 having fine through holes 42, the size can be reduced. Further, as described above, since the soundproof structure 10d absorbs sound by friction when sound passes through the through hole 42, it can absorb sound regardless of the frequency band of sound, and can absorb sound in a wide band. Further, since the through hole 42 is provided, air permeability can be ensured.
  • the average opening diameter of the through holes 42 is less than 100 ⁇ m, preferably 80 ⁇ m or less, more preferably 70 ⁇ m or less, and most preferably 50 ⁇ m or less. This is because, as the average opening diameter of the through holes 42 becomes smaller, the ratio of the length of the outer peripheral portion that contributes to friction in the through holes 42 to the opening area of the through holes 42 becomes larger, and friction tends to occur. Further, as described above, the average opening ratio rho of the through holes is a range larger than 0 and smaller than 1 when the average opening diameter is phi ( ⁇ m) and the thickness of the plate member is t ( ⁇ m).
  • the average aperture ratio rho is preferably rho_center-0.050 ⁇ (phi / 30) -2 or more, rho_center + 0.505 ⁇ (phi / 30) -2 or less, and rho_center-0.048 ⁇ (phi / 30) -2 or more , Rho_center + 0.345 ⁇ (phi / 30) ⁇ 2 or less is more preferable, rho_center-0.085 ⁇ (phi / 20) ⁇ 2 or more, rho_center + 0.35 ⁇ (phi / 20) ⁇ 2 or less is more preferable, A range of (rho_center-0.24 ⁇ (phi / 10) -2 ) or more and (rho_center + 0.57 ⁇ (phi / 10) -2 ) or less is particularly preferable, (rho_center-0.185 ⁇ (phi / 10) -2 ) or more, The range below (rho_center + 0.34 ⁇ (phi /
  • the average opening diameter of the through-hole 42 was obtained by photographing the surface of the plate-like member 40 at a magnification of 200 times from one surface of the plate-like member using a high-resolution scanning electron microscope (SEM). In the photograph, 20 through-holes 42 that are connected in a ring shape are extracted, the opening diameters are read, and the average value of these is calculated as the average opening diameter. If there are less than 20 through-holes in one SEM photograph, SEM photographs are taken at other positions around the periphery and counted until the total number reaches 20. The opening diameter was evaluated using the diameter (equivalent circle diameter) when the area of the through-hole 42 portion was measured and replaced with a circle having the same area.
  • the shape of the opening of the through hole 42 is not limited to a substantially circular shape, and therefore, when the shape of the opening is a non-circular shape, the diameter of the circle having the same area was evaluated. Therefore, for example, also in the case of the through hole 42 having a shape in which two or more through holes are integrated, this is regarded as one through hole 42 and the equivalent circle diameter of the through hole 42 is set as the opening diameter.
  • “Image J” can be used to calculate the equivalent circle diameter, the aperture ratio, and the like by Analyze Particles.
  • the average aperture ratio was obtained by photographing the surface of the plate-like member 40 at a magnification of 200 times from directly above using a high-resolution scanning electron microscope (SEM), and a field of view of 30 mm ⁇ 30 mm of the obtained SEM photograph (5 locations). ) Is binarized with image analysis software or the like, and the through-hole 42 portion and the non-through-hole portion are observed, and the ratio (opening area) is calculated from the total opening area of the through-hole 42 and the visual field area (geometric area). / Geometric area), and the average value in each field of view (5 locations) is calculated as the average aperture ratio.
  • SEM scanning electron microscope
  • the plurality of through holes 42 may be regularly arranged or randomly arranged. From the viewpoints of productivity of the fine through-holes 42, robustness of sound absorption characteristics, and suppression of sound diffraction, it is preferable that they are randomly arranged. Regarding sound diffraction, if the through holes 42 are arranged periodically, a sound diffraction phenomenon occurs according to the period of the through holes 42, and there is a concern that the sound is bent due to diffraction and the direction of noise progression is divided into a plurality of directions.
  • Random is a state in which the arrangement is such that it does not have a periodicity such as a complete arrangement, and an absorption effect by each through-hole 42 appears, but a diffraction phenomenon due to the minimum distance between the through-holes does not occur.
  • the periodic array of through-holes 42 can be formed by an etching process in a roll-like continuous process.
  • the surface treatment such as surface treatment is more random than the process of forming a periodic array. Since it is easier to form a simple pattern, it is preferable that they are randomly arranged from the viewpoint of productivity.
  • the plurality of through holes 42 may be formed of through holes having one kind of opening diameter, or may be formed of through holes 42 having two or more kinds of opening diameters. From the viewpoints of productivity and durability, it is preferable that the through holes 42 have two or more opening diameters. As for the productivity, as in the case of the above random arrangement, the productivity is improved by allowing variation in the hole diameter from the viewpoint of performing a large amount of etching treatment. Also, from the viewpoint of durability, the size of dust and debris varies depending on the environment. Therefore, if the through hole 42 has one opening diameter, all of the holes will have a size that matches the size of the main dust. Will be affected. By providing the through holes 42 having a plurality of types of opening diameters, the device can be applied in various environments.
  • the inner wall surface of the through hole 42 is preferably roughened.
  • the surface roughness Ra of the inner wall surface of the through hole 42 is preferably 0.1 ⁇ m or more, more preferably 0.1 ⁇ m to 10.0 ⁇ m, and 0.2 ⁇ m or more and 1.0 ⁇ m or less. It is more preferable that Here, the surface roughness Ra can be measured by measuring the inside of the through hole 42 with an AFM (Atomic Force Microscope). Since the roughness is about several microns, using AFM is easier to measure as a scale than other measurement methods.
  • each of the uneven protrusions in the through hole 42 can be regarded as particles, and the average particle diameter of the protrusions can be calculated.
  • an SEM image field of view of about 1 mm ⁇ 1 mm
  • Image J image of an image taken at a magnification of 2000 times
  • the convex portions become white
  • the area of each convex portion is analyzed. Find it in Particles.
  • the equivalent circle diameter assuming a circle having the same area as each area was obtained for each convex portion, and the average value was calculated as the average particle diameter.
  • the average particle size of the convex portions is preferably 0.1 ⁇ m or more and 10.0 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 5.0 ⁇ m or less.
  • the thickness of the plate-like member 40 is not limited, but it is considered that the sound absorbing performance is further improved because the frictional energy received when the sound passes through the through hole 42 increases as the thickness increases.
  • it is extremely thin it is difficult to handle and easily torn, so it is desirable that it is thick enough to hold it.
  • it is preferable that the thickness and the air permeability are small.
  • etching or the like is used as a method of forming the through hole 42, the thicker the thickness, the longer it takes to produce, and the thinner is desirable from the viewpoint of productivity.
  • the thickness of the plate member 40 is preferably 5 ⁇ m to 500 ⁇ m, more preferably 7 ⁇ m to 300 ⁇ m, and particularly preferably 10 ⁇ m to 100 ⁇ m.
  • the material of the plate member aluminum, titanium, nickel, permalloy, 42 alloy, kovar, nichrome, copper, beryllium, phosphor bronze, brass, white, tin, zinc, iron, tantalum, niobium, molybdenum, Various metals such as zirconium, gold, silver, platinum, palladium, steel, tungsten, lead, iridium, PET (polyethylene terephthalate), TAC (triacetylcellulose), polyvinylidene chloride, polyethylene, polyvinyl chloride, polymethylbenten, COP Resin materials such as (cycloolefin polymer), polycarbonate, zeonore, PEN (polyethylene naphthalate), polypropylene, and polyimide can be used.
  • Various metals such as zirconium, gold, silver, platinum, palladium, steel, tungsten, lead, iridium, PET (polyethylene terephthalate), TAC (triace
  • glass materials such as thin film glass, and fiber reinforced plastic materials such as CFRP (carbon fiber reinforced plastic) and GFRP (glass fiber reinforced plastic) can also be used.
  • CFRP carbon fiber reinforced plastic
  • GFRP glass fiber reinforced plastic
  • a metal material from the viewpoints of high Young's modulus, film vibration hardly occurring even if the thickness is small, and the effect of absorbing sound due to friction in the minute through-holes 42 being easily obtained.
  • aluminum from the viewpoint of lightness, easy formation of minute through holes 42 by etching, etc., availability, cost, and the like.
  • the average opening diameter of the through holes 42 may be adjusted to a smaller range by performing metal plating on at least the inner surface of the through holes 42.
  • a resin material or a glass material can be used as the plate-like member 40.
  • a PET film has a relatively high Young's modulus among resin materials, is easily available, and has high transparency. Therefore, a through-hole 42 can be formed to provide a suitable soundproof structure 10d.
  • the aluminum base material used as the plate member is not particularly limited, and for example, a known aluminum base material such as alloy numbers 1085, 1N30, and 3003 described in JIS standard H4000 can be used.
  • the aluminum substrate is an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements.
  • the thickness of the aluminum substrate is not particularly limited, but is preferably 5 ⁇ m to 1000 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m, and particularly preferably 10 ⁇ m to 100 ⁇ m.
  • a method for producing a soundproof structure using an aluminum substrate is as follows: A film forming step of forming a film mainly composed of aluminum hydroxide on the surface of the aluminum substrate; A through hole forming step of forming a through hole by performing a through hole forming process after the film forming step; After the through hole forming step, a film removing step for removing the aluminum hydroxide film, Have By having the film forming step, the through hole forming step, and the film removing step, it is possible to suitably form through holes having an average opening diameter of 0.1 ⁇ m or more and less than 100 ⁇ m.
  • FIG. 15A to 15E are schematic cross-sectional views showing an example of a preferred embodiment of a method for manufacturing the soundproof structure 10d using an aluminum substrate.
  • the method for manufacturing the soundproof structure 10d is a film forming step in which a film forming process is performed on one main surface of the aluminum base 41 to form an aluminum hydroxide film 43 (FIG. 15A).
  • FIG. 15B and a through-hole forming step (FIG. 15B and FIG. 15C) in which through-holes 42 are formed by performing electrolytic dissolution treatment after the film-forming step, and through-holes are formed in the aluminum substrate 41 and the aluminum hydroxide film 43.
  • a film removing step FIGGS.
  • the plate-like member 40 having the through holes 42 is subjected to an electrochemical roughening treatment to roughen the surface of the plate-like member 40. It preferably has processing steps (FIGS. 15D and 15E).
  • the average opening diameter is reduced to 0 by performing electrolytic dissolution treatment in the through hole forming process after the film forming process for forming the aluminum hydroxide film.
  • Through holes of 1 ⁇ m or more and less than 100 ⁇ m can be formed.
  • the film forming step included in the method for manufacturing the soundproof structure 10d is a step of forming an aluminum hydroxide film by performing a film forming process on the surface of the aluminum base material.
  • the said film formation process is not specifically limited, For example, the process similar to the formation process of a conventionally well-known aluminum hydroxide film can be given.
  • the film forming treatment for example, conditions and apparatuses described in paragraphs ⁇ 0013> to ⁇ 0026> of JP 2011-201123 A can be appropriately employed.
  • the conditions for the film formation treatment vary depending on the electrolytic solution used, and thus cannot be determined unconditionally. It is appropriate that the current density is 0.5 to 60 A / dm 2 , the voltage is 1 to 100 V, and the electrolysis time is 1 second to 20 minutes, which are adjusted to obtain a desired coating amount.
  • electrochemical treatment is preferably performed using nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, or a mixed acid of two or more of these acids as the electrolytic solution.
  • a direct current may be applied between the aluminum substrate and the counter electrode, or an alternating current may be applied.
  • direct current is applied to the aluminum substrate, the current density is preferably 1 to 60 A / dm 2 , and more preferably 5 to 50 A / dm 2 .
  • the electrochemical treatment is continuously performed, it is preferably performed by a liquid power feeding method in which power is supplied to the aluminum base material through an electrolytic solution.
  • the amount of the aluminum hydroxide film formed by the film forming treatment is preferably 0.05 to 50 g / m 2 , and more preferably 0.1 to 10 g / m 2 .
  • a through-hole formation process is a process of performing an electrolytic dissolution process after a membrane
  • the electrolytic dissolution treatment is not particularly limited, and direct current or alternating current can be used, and an acidic solution can be used as the electrolytic solution.
  • the acidic solution as the electrolytic solution includes, in addition to the above acids, U.S. Pat. Nos. 4,671,859, 4,661,219, 4,618,405, 4,600,482, 4,566,960, 4,566,958, 4,566,959, 4,416,972, 4,374,710 Nos. 4,336,113 and 4,184,932, etc., can also be used.
  • the concentration of the acidic solution is preferably from 0.1 to 2.5% by mass, particularly preferably from 0.2 to 2.0% by mass.
  • the liquid temperature of the acidic solution is preferably 20 to 80 ° C., more preferably 30 to 60 ° C.
  • the aqueous solution mainly composed of the acid is an acid aqueous solution having a concentration of 1 to 100 g / L, a nitrate compound having nitrate ions such as aluminum nitrate, sodium nitrate or ammonium nitrate, or hydrochloric acid such as aluminum chloride, sodium chloride or ammonium chloride.
  • a sulfuric acid compound having a sulfate ion such as a hydrochloric acid compound having an ion, aluminum sulfate, sodium sulfate, or ammonium sulfate can be added and used in a range from 1 g / L to saturation.
  • the metal contained in aluminum alloys such as iron, copper, manganese, nickel, titanium, magnesium, a silica, may melt
  • a direct current is mainly used, but when an alternating current is used, the alternating current power wave is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave, etc. are used. Among these, a rectangular wave or a trapezoidal wave is preferable, and a trapezoidal wave is particularly preferable.
  • nitric acid electrolysis Through an electrochemical dissolution treatment (hereinafter also referred to as “nitric acid dissolution treatment”) using an electrolytic solution mainly composed of nitric acid, the average opening diameter can be easily reduced to 0.1 ⁇ m or more and less than 100 ⁇ m. Holes can be formed.
  • the nitric acid dissolution treatment uses direct current, the average current density is 5 A / dm 2 or more, and the amount of electricity is 50 C / dm 2 or more because it is easy to control the dissolution point of through-hole formation. It is preferable that the electrolytic treatment is performed in (1).
  • the average current density is preferably 100 A / dm 2 or less, and the quantity of electricity is preferably 10,000 C / dm 2 or less.
  • concentration and temperature of the electrolytic solution in nitric acid electrolysis are not particularly limited, and electrolysis is performed at a high concentration, for example, 30 to 60 ° C. using a nitric acid electrolytic solution having a nitric acid concentration of 15 to 35% by mass, or a nitric acid concentration of 0. Electrolysis can be performed at a high temperature, for example, 80 ° C. or higher, using a 7 to 2 mass% nitric acid electrolyte. Further, electrolysis can be performed using an electrolytic solution obtained by mixing at least one of sulfuric acid, oxalic acid, and phosphoric acid having a concentration of 0.1 to 50% by mass with the nitric acid electrolytic solution.
  • through-holes having an average opening diameter of 1 ⁇ m or more and less than 100 ⁇ m can be easily obtained by electrochemical dissolution treatment (hereinafter, also referred to as “hydrochloric acid dissolution treatment”) using an electrolytic solution mainly composed of hydrochloric acid.
  • electrochemical dissolution treatment hereinafter, also referred to as “hydrochloric acid dissolution treatment”
  • the hydrochloric acid dissolution treatment uses direct current, the average current density is 5 A / dm 2 or more, and the amount of electricity is 50 C / dm 2 or more because it is easy to control the dissolution point of through-hole formation. It is preferable that the electrolytic treatment is performed in step (b).
  • the average current density is preferably 100 A / dm 2 or less, and the quantity of electricity is preferably 10,000 C / dm 2 or less.
  • concentration and temperature of the electrolytic solution in hydrochloric acid electrolysis are not particularly limited, and electrolysis is performed at 30 to 60 ° C. using a hydrochloric acid electrolytic solution having a high concentration, for example, a hydrochloric acid concentration of 10 to 35% by mass, or a hydrochloric acid concentration of 0. Electrolysis can be performed at a high temperature, for example, 80 ° C. or higher, using a 7-2 mass% hydrochloric acid electrolyte. Further, electrolysis can be performed using an electrolytic solution obtained by mixing at least one of sulfuric acid, oxalic acid, and phosphoric acid having a concentration of 0.1 to 50% by mass with the hydrochloric acid electrolytic solution.
  • the film removal step is a step of removing the aluminum hydroxide film by performing chemical dissolution treatment.
  • the said film removal process can remove an aluminum hydroxide film
  • the dissolution treatment is a treatment for dissolving the aluminum hydroxide film using a solution that preferentially dissolves aluminum hydroxide over aluminum (hereinafter referred to as “aluminum hydroxide solution”).
  • the aluminum hydroxide solution for example, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, chromium compound, zirconium compound, titanium compound, lithium salt, cerium salt, magnesium salt, sodium silicofluoride, fluoride
  • An aqueous solution containing at least one selected from the group consisting of zinc, manganese compounds, molybdenum compounds, magnesium compounds, barium compounds and halogens is preferred.
  • examples of the chromium compound include chromium (III) oxide and anhydrous chromium (VI) acid.
  • examples of the zirconium-based compound include zircon ammonium fluoride, zirconium fluoride, and zirconium chloride.
  • examples of the titanium compound include titanium oxide and titanium sulfide.
  • examples of the lithium salt include lithium fluoride and lithium chloride.
  • examples of the cerium salt include cerium fluoride and cerium chloride.
  • examples of the magnesium salt include magnesium sulfide.
  • Examples of the manganese compound include sodium permanganate and calcium permanganate.
  • Examples of the molybdenum compound include sodium molybdate.
  • magnesium compounds include magnesium fluoride pentahydrate.
  • barium compounds include barium oxide, barium acetate, barium carbonate, barium chlorate, barium chloride, barium fluoride, barium iodide, barium lactate, barium oxalate, barium perchlorate, barium selenate, selenite.
  • Examples thereof include barium, barium stearate, barium sulfite, barium titanate, barium hydroxide, barium nitrate, and hydrates thereof.
  • barium oxide, barium acetate, and barium carbonate are preferable, and barium oxide is particularly preferable.
  • halogen alone include chlorine, fluorine, and bromine.
  • the aluminum hydroxide solution is preferably an aqueous solution containing an acid.
  • the acid include nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, oxalic acid, and the like. Good.
  • the acid concentration is preferably 0.01 mol / L or more, more preferably 0.05 mol / L or more, and still more preferably 0.1 mol / L or more. There is no particular upper limit, but generally it is preferably 10 mol / L or less, more preferably 5 mol / L or less.
  • the dissolution treatment is performed by bringing the aluminum base material on which the aluminum hydroxide film is formed into contact with the above-described solution.
  • the method of making it contact is not specifically limited, For example, the immersion method and the spray method are mentioned. Of these, the dipping method is preferred.
  • the dipping method is a treatment in which an aluminum base material on which an aluminum hydroxide film is formed is dipped in the above-described solution. Stirring during the dipping process is preferable because a uniform process is performed.
  • the dipping treatment time is preferably 10 minutes or longer, more preferably 1 hour or longer, and further preferably 3 hours or longer and 5 hours or longer.
  • the alkali etching treatment is a treatment for dissolving the surface layer by bringing the aluminum hydroxide film into contact with an alkali solution.
  • Examples of the alkali used in the alkaline solution include caustic alkali and alkali metal salts.
  • examples of the caustic alkali include sodium hydroxide (caustic soda) and caustic potash.
  • Examples of the alkali metal salt include alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate, and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and alumina.
  • Alkali metal aluminates such as potassium acid; alkali metal aldones such as sodium gluconate and potassium gluconate; dibasic sodium phosphate, dibasic potassium phosphate, tribasic sodium phosphate, tertiary potassium phosphate, etc.
  • An alkali metal hydrogen phosphate is mentioned.
  • a caustic alkali solution and a solution containing both a caustic alkali and an alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost.
  • an aqueous solution of sodium hydroxide is preferred.
  • the concentration of the alkaline solution is preferably from 0.1 to 50% by mass, more preferably from 0.2 to 10% by mass.
  • the concentration of aluminum ions is preferably 0.01 to 10% by mass, and more preferably 0.1 to 3% by mass.
  • the temperature of the alkaline solution is preferably 10 to 90 ° C.
  • the treatment time is preferably 1 to 120 seconds.
  • Examples of the method for bringing the aluminum hydroxide film into contact with the alkaline solution include, for example, a method in which an aluminum base material on which an aluminum hydroxide film is formed is passed through a tank containing an alkali solution, and an aluminum on which an aluminum hydroxide film is formed. Examples include a method of immersing the base material in a tank containing an alkaline solution, and a method of spraying the alkaline solution onto the surface of the aluminum base material (aluminum hydroxide film) on which the aluminum hydroxide film is formed.
  • the optional roughening treatment step that the method for producing the soundproof structure 10d may have is an electrochemical roughening treatment (hereinafter, “ It is also abbreviated as “electrolytic roughening treatment.”) To roughen the surface or back surface of the aluminum substrate.
  • electrochemical roughening treatment To roughen the surface or back surface of the aluminum substrate.
  • the roughening process is performed after the through hole is formed.
  • the present invention is not limited to this, and the through hole may be formed after the roughening process.
  • the surface can be easily roughened by an electrochemical surface roughening treatment (hereinafter also referred to as “nitric acid electrolysis”) using an electrolytic solution mainly composed of nitric acid.
  • nitric acid electrolysis an electrochemical surface roughening treatment
  • hydrochloric acid electrolysis an electrochemical surface roughening treatment using an electrolytic solution mainly composed of hydrochloric acid.
  • the manufacturing method of the soundproof structure 10d is such that the average opening diameter of the through holes 42 formed by the above-described electrolytic dissolution treatment can be adjusted to a small range of about 0.1 ⁇ m to 20 ⁇ m. It is preferable to have a metal coating step of coating a part or all of the surface of the aluminum base material including the inner wall of the hole 42 with a metal other than aluminum.
  • “covering at least part or all of the surface of the aluminum base material including the inner wall of the through hole 42 with a metal other than aluminum” means that among all the surfaces of the aluminum base material including the inner wall of the through hole 42, This means that at least the inner wall of the through hole 42 is covered, and the surface other than the inner wall may not be covered, or a part or all of it may be covered.
  • a substitution treatment and a plating treatment described later are performed on an aluminum base material having a through hole.
  • the replacement treatment is a treatment in which zinc or a zinc alloy is subjected to replacement plating on a part or all of the surface of the aluminum substrate including at least the inner wall of the through hole.
  • the displacement plating solution include a mixed solution of 120 g / L of sodium hydroxide, 20 g / L of zinc oxide, 2 g / L of crystalline ferric chloride, 50 g / L of Rossell salt, and 1 g / L of sodium nitrate.
  • Commercially available Zn or Zn alloy plating solution may also be used.
  • Substar Zn-1, Zn-2, Zn-3, Zn-8, Zn-10, Zn-111 manufactured by Okuno Pharmaceutical Co., Ltd. Zn-222, Zn-291, etc. can be used.
  • the immersion time of the aluminum substrate in such a displacement plating solution is preferably 15 seconds to 40 seconds, and the immersion temperature is preferably 15 seconds to 40 seconds.
  • ⁇ Plating treatment> When the zinc film is formed by replacing the surface of the aluminum base material with zinc or a zinc alloy by the above-described replacement treatment, for example, the zinc film is replaced with nickel by electroless plating described later, and then described later. It is preferable to perform a plating treatment for depositing various metals by electrolytic plating.
  • the nickel plating solution used for the electroless plating treatment As the nickel plating solution used for the electroless plating treatment, commercially available products can be widely used. Examples thereof include an aqueous solution containing nickel sulfate 30 g / L, sodium hypophosphite 20 g / L, and ammonium citrate 50 g / L. Examples of the nickel alloy plating solution include a Ni—P alloy plating solution in which a phosphorus compound is a reducing agent and a Ni—B plating solution in which a boron compound is a reducing agent.
  • the immersion time in such a nickel plating solution or nickel alloy plating solution is preferably 15 seconds to 10 minutes, and the immersion temperature is preferably 30 ° C. to 90 ° C.
  • a plating solution for electroplating Cu includes, for example, Cu 60 to 110 g / L, sulfuric acid 160 to 200 g / L and hydrochloric acid 0.1 to 0.15 mL / L to pure water. Furthermore, plating solutions containing Top Lucina SF Base WR 1z 5 to 5.0 mL / L, Top Lucina SF-B 0.5 to 2.0 mL / L, and Top Lucina SF Leveler 3.0 to 10 mL / L as additives are also listed. It is done.
  • the immersion time in such a copper plating solution is not particularly limited because it depends on the thickness of the Cu film, but for example, when a 2 ⁇ m Cu film is applied, it is preferable to immerse for about 5 minutes at a current density of 2 A / dm,
  • the immersion temperature is preferably 20 ° C. to 30 ° C.
  • Such a method for manufacturing the soundproof structure 10d may be manufactured using a cut sheet-like aluminum base material, or may be performed roll-to-roll (hereinafter also referred to as RtoR).
  • RtoR is a process in which a raw material is drawn out from a roll formed by winding a long raw material and conveyed in the longitudinal direction, and various treatments such as surface treatment are performed. It is a manufacturing method wound in a roll shape.
  • the manufacturing method for forming a through hole in the aluminum base as described above can easily and efficiently form a through hole of about 20 ⁇ m by RtoR.
  • the formation method of a through-hole is not limited to the method mentioned above, What is necessary is just to perform by a well-known method according to the formation material of a plate-shaped member.
  • the through hole is formed by a processing method that absorbs energy such as laser processing, or a mechanical processing method by physical contact such as punching or needle processing. Can do.
  • thermoacoustic model in the acoustic module, it is possible to calculate the sound absorption through the fluid (including air) and the sound absorption due to the friction between the walls.
  • the vibration of the thin film was taken into the calculation this time by inputting the actual physical properties of the material.
  • a model was constructed in which through-holes were opened according to the average opening diameter and average opening ratio in an infinitely large thin film in the horizontal direction.
  • a thin film that can move freely was modeled by supporting the edge part with a roller and using a restraint that can move freely in the perpendicular direction of the film.
  • the thickness of the plate-like member was fixed to 20 ⁇ m, and the film vibration of the plate-like member was ignored, and only the absorption rate due to friction of minute through holes was obtained.
  • the absorptance at a frequency of 3000 Hz was determined by changing the average aperture diameter and the average aperture ratio.
  • the results are shown in FIG. 16 and FIG. Since the optimum average aperture ratio is a region of 1% or less in a region where the average aperture diameter is large, the calculation range is divided into two types. In FIGS. 16 and 17, the boundary where the absorption rate is 45% is indicated by a two-dot chain line, the boundary of 30% is indicated by a one-dot chain line, and the boundary of 10% is indicated by a broken line. Regarding the condition where the absorption rate is maximized, the average opening diameter and the average opening ratio are in an inversely proportional relationship.
  • FIG. 18 is a graph showing the relationship between the average aperture ratio at which the absorptance is a maximum value and the average aperture diameter
  • FIG. 19 is a graph showing the relationship between the maximum value of the absorptance and the average aperture diameter. As shown in the figure, it can be seen that the maximum value of the absorptance decreases almost linearly with respect to the average opening diameter at an average opening diameter of about 70 ⁇ m or more.
  • FIG. 20 the graph showing the relationship between the maximum value of an absorptance and an average opening diameter is shown. It can be seen that even when the thickness of the plate-like member is 50 ⁇ m, the maximum value of the absorptance decreases with an average opening diameter larger than 70 ⁇ m, as in the case of a thickness of 20 ⁇ m. It has been found that the maximum absorption rate is determined by the average opening diameter of the through-holes almost regardless of the thickness of the plate-like member.
  • the maximum absorptance is 50%, but when the average aperture diameter is larger than that, the absorptance decreases.
  • the absorptivity decreases to 45% at an average aperture diameter of 100 ⁇ m and to 30% at an average aperture diameter of 200 ⁇ m. Therefore, it has become clear that a smaller average opening diameter is desirable. From this result, it is considered that the maximum value of the absorptance is not substantially dependent on the thickness of the plate-like member and is determined by the average opening diameter.
  • the thickness of the plate-like member was fixed to 20 ⁇ m, the average opening diameter of the through holes was fixed to 20 ⁇ m, and the transmittance, reflectance, and absorptance were simulated by changing the average opening ratio.
  • the results are shown in FIG. A similar simulation was performed by changing the average aperture ratio while fixing the thickness to 50 ⁇ m and the average aperture diameter of 20 ⁇ m.
  • the results are shown in FIG. From FIGS. 21 and 22, as the average aperture ratio increases, the reflection decreases and the transmission increases. Among them, it was found that absorption is maximized under conditions where transmission and reflection are almost equal. Therefore, it has been clarified that the transmittance and the reflectance are equal when the absorption of fine through holes is maximized.
  • the thickness of the plate member is 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, and 70 ⁇ m, and the average aperture diameter of the through holes is changed within the range of 20 ⁇ m to 140 ⁇ m.
  • the average aperture ratio at which the absorptivity is maximized and the absorptance at that time were calculated and summarized. The results are shown in FIG.
  • the average opening diameter of the through-hole is small, the optimum average opening ratio varies depending on the thickness of the plate member, but when the average opening diameter of the through-hole is about 100 ⁇ m or more, 0.5% to 1.0% is extremely high.
  • a small average aperture ratio is an optimum value.
  • the optimum average opening ratio is a function of the average opening diameter, and therefore there is a condition that a high opening ratio structure can be realized.
  • the maximum absorption rate is also a large value of 45% or more, so that a high aperture ratio and high sound absorption can be realized.
  • the average aperture diameter is desirably 80 ⁇ m or less, at which the maximum absorption rate is 48% or more, more desirably 70 ⁇ m or less, which is 49% or more, and most desirably 50 ⁇ m or less, which reaches a maximum value of approximately 50%.
  • the results showing the optimum average aperture ratio for each average aperture diameter of the through holes with respect to each of the thicknesses of 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, and 70 ⁇ m are shown in a log-log graph in FIG. From the graph of FIG. 24, it has been found that the optimum average aperture ratio changes by approximately ⁇ 1.6 to the average aperture diameter of the through holes.
  • the optimum average aperture ratio is rho_center
  • the average aperture diameter of the through holes is phi ( ⁇ m)
  • the thickness of the plate member is t ( ⁇ m)
  • the log-log graph of FIG. 24 is a power function.
  • the optimum average aperture ratio increases as the thickness of the plate-like member increases, and decreases as the average aperture diameter increases.
  • FIG. 25 shows the result of changing the average aperture ratio in a simulation of a plate-like member having a thickness of 50 ⁇ m.
  • the average opening diameter of the through holes was 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 30 ⁇ m and 40 ⁇ m, and the average opening ratio was changed from 0.5% to 99%.
  • the range of the average aperture ratio in which the absorption rate increases is spread around the optimum average aperture ratio.
  • the range of the average aperture ratio in which the absorptance increases as the average aperture diameter of the through-holes decreases is wide. Further, the range in which the absorptance increases is wider on the average aperture ratio side higher than the optimum average aperture ratio.
  • the maximum value of the absorptance is almost 50% for any average aperture diameter in the range of the average aperture diameter of 0.1 ⁇ m or more and less than 100 ⁇ m, so the lower limit of the aperture at which the absorptance is 30%, 40%, 45%
  • Table 1 shows the ratio and the upper limit opening ratio. Further, Table 2 shows the range of each absorption rate from the optimum average aperture ratio.
  • the optimum average opening ratio is 11%
  • the average opening ratio at which the absorptance is 40% or more has a lower limit of 4.5% and an upper limit of 28%.
  • Table 2 shows -6.5% to 17.0%.
  • the width of the absorption rate for each average opening diameter of the through hole is compared.
  • the width of the absorption rate is approximately 100 ⁇ phi -2. Changes. Therefore, an appropriate range can be determined for each average opening diameter for each of the absorption ratios of 30%, 40%, and 45%.
  • the range of the absorption rate of 30% is based on the above-mentioned optimum average opening ratio rho_center, and the range when the average opening diameter of the through holes is 20 ⁇ m is used as a reference.
  • rho_center-0.085 ⁇ (phi / 20) -2 Is the lower limit average aperture ratio, rho_center + 0.35 ⁇ (phi / 20) -2 Needs to be in a range where the upper limit average aperture ratio.
  • the average aperture ratio is limited to a range larger than 0 and smaller than 1 (100%).
  • the absorption rate is in the range of 40%, rho_center-0.24 ⁇ (phi / 10) -2 Is the lower limit average aperture ratio, rho_center + 0.57 ⁇ (phi / 10) -2 Is preferably in the range where the upper limit average aperture ratio.
  • the reference of the average opening diameter was set to 10 ⁇ m.
  • the absorption rate is in the range of 45%.
  • rho_center-0.185 ⁇ (phi / 10) -2 Is the lower limit average aperture ratio
  • rho_center + 0.34 ⁇ (phi / 10) -2 Is more preferably in a range where the average aperture ratio is the upper limit.
  • FIG. 26 shows the results when the thickness of the plate-like member is 50 ⁇ m and the average opening diameter of the through holes is 30 ⁇ m.
  • Tables 3 and 4 show the average aperture ratio range and the approximate expression for the absorption ratios of 10%, 15%, and 20%, respectively.
  • “rho_center” is expressed as “rc”.
  • the absorption rate is 15% or more, and the range is rho_center-0.050 ⁇ (phi / 30) -2 Is the lower limit average aperture ratio, rho_center + 0.505 ⁇ (phi / 30) -2 Is a range where the upper limit average aperture ratio.
  • the absorption rate is 20% or more, and the range is rho_center-0.048 ⁇ (phi / 30) -2 Is the lower limit average aperture ratio, rho_center + 0.345 ⁇ (phi / 30) -2 Is a range where the upper limit average aperture ratio.
  • the absorption rate is within the range of the average aperture ratio at which the above-mentioned absorption rate is 30% or more, 40% or more, or 45% or more, and the absorption rate can be further increased.
  • the characteristics of the sound absorption phenomenon due to the friction in the through hole were clarified using simulation.
  • size of the absorptivity was determined by the thickness of a plate-shaped member, the average opening diameter of the through-hole, and the average opening ratio, and the optimal value range was determined.
  • FIG. 27 is a front view schematically showing another example of the soundproof structure
  • FIG. 28 is a cross-sectional view taken along the line II-II in FIG.
  • the soundproof structure 10e shown in FIGS. 27 and 28 includes a plate-like member having a plurality of through holes penetrating in the thickness direction, and a frame having a frame hole portion, and a plate with respect to the periphery of the frame hole portion of the frame.
  • the plate member vibrates, the average opening diameter of the through holes is 0.1 ⁇ m or more and 250 ⁇ m or less, and the first natural vibration frequency of the plate member membrane vibration is 10 Hz to It exists between 100,000 Hz.
  • the soundproof structure 10e shown in FIG. 27 has the same plate-like member 40 as the plate-like member 40 shown in FIG. 13 except that the average opening diameter of the through holes 42 is different from that shown in FIG. And since it has the same structure as the soundproof structure 10a shown in FIG. 7, the same code
  • the soundproof structure 10e shown in FIGS. 27 and 28 has a plate-like member 40 having a plurality of through-holes 42 penetrating in the thickness direction and a frame hole portion 12 penetrating the plate-like member 40 and fixing the peripheral portion thereof. And a frame 14 to be supported, the through hole 42 has an average opening diameter of 0.1 ⁇ m or more and 250 ⁇ m or less, and the first natural vibration frequency of the membrane vibration of the plate-like member is between 10 Hz and 100,000 Hz. .
  • the plate-like member 40 is the same as the plate-like member 40 having the through holes 42 shown in FIGS. 13 and 14 except that the range of the average opening diameter is different.
  • each of the frame bodies 16 having a plurality of (9 in the illustrated example) frames 14 having the frame hole portions 12 and two-dimensionally arranged
  • the plate-like member 40 has a plurality of through holes 42 and is fixed so as to be restrained by the frame 14 so as to cover the opening of the frame 14. Passes through and vibrates the film, so that the energy of the sound wave is absorbed or reflected to prevent sound.
  • the plurality of through holes 42 formed in the plate-like member 40 have an average opening diameter of 0.1 ⁇ m or more and 250 ⁇ m or less.
  • the average opening ratio of the plurality of through holes 42 is 2% or more.
  • the present inventors have a plate-like member 40 having a plurality of through holes 42 having an average opening diameter of 0.1 ⁇ m or more and 250 ⁇ m or less, and a frame 14 having an opening and fixing and supporting the peripheral edge of the plate-like member 40. And having a soundproof structure in which the first natural vibration frequency of the membrane vibration of the plate-like member is between 10 Hz and 100000 Hz, the lower frequency side of the plate-like member 40 is equal to or lower than the first natural vibration frequency of the membrane vibration. It has been found that the average absorption rate at is higher than the absorption rate at the first natural vibration frequency, and a sound absorbing effect is obtained on the low frequency side below the first natural vibration frequency of the membrane vibration.
  • the soundproof structure 10d has a plate-like member 40 and a through-hole 42, so that sound can be transmitted through either of these two types.
  • the path that passes through the plate-like member 40 is a path where the solid vibration once converted into the membrane vibration of the plate-like member 40 is re-radiated as sound waves, and the path that passes through the through-hole 42 passes through the through-hole 42. It is a path that passes directly as a gas propagating sound. The path passing through the through hole 42 is considered to be dominant as the absorption mechanism this time.
  • the sound absorption mechanism in the path that passes through the through-hole 42 is a change in sound energy to thermal energy due to friction between the inner wall surface of the through-hole 42 and air when sound passes through the fine through-hole 42. It was estimated that. Since this mechanism is caused by the small size of the through hole 42, it is different from the mechanism by resonance.
  • the path that directly passes through the through-hole 42 as sound in the air has a much lower impedance than the path that is once converted into membrane vibration and then emitted again as sound. Therefore, sound tends to pass through the path of the through hole 42 that is finer than the membrane vibration.
  • sound is concentrated and passed from a wide area on the entire plate-like member 40 to a narrow area of the through hole 42.
  • the local velocity becomes extremely large by collecting sound in the through hole 42. Since the friction correlates with the speed, the friction increases in the fine through hole 42 and is converted into heat. When the average opening diameter of the through-hole 42 is small, the ratio of the circumferential length to the opening area is large, so that it is considered that the friction generated at the edge or inner wall surface of the through-hole 42 can be increased. By increasing the friction at the time of passing through the through-hole 42, sound energy can be converted into heat energy and absorbed. In addition, since sound is absorbed by friction when the sound passes through the through hole 42, sound can be absorbed regardless of the frequency band of sound, and sound can be absorbed in a wide band.
  • the effect of increasing the tension (tension) by pulling the film from the frame member is shown, and the apparent rigidity of the film is greatly increased compared to the Young's modulus of the actual film.
  • the first natural vibration frequency of the membrane vibration of the plate-like member is set between 10 Hz and 100,000 Hz.
  • the apparent rigidity of the membrane is increased by creating a rigidity law region on the lower frequency side than the first natural vibration frequency so that the vibration of the membrane is not increased too much in the low frequency region.
  • the film does not vibrate much even in the low frequency region, the sound wave often passes through the fine through hole 42. Frictional heat is generated by the effect of the fine through-holes 42, and the low frequency side can be widely absorbed.
  • the membrane vibration is not so large in the high frequency region and the sound wave often passes through the through hole 42, sound absorption due to friction with the fine through hole 42 is dominant in the high frequency region.
  • a rigid law region is formed by attaching a frame, so that the inside of the fine through-hole in the high-frequency region can be obtained. The sound absorbing effect due to friction with the fine through-hole 42 is provided even in the low frequency region while the sound absorbing effect due to friction remains.
  • the first natural vibration frequency in the structure composed of the frame 14 and the plate-like member 40 is that the sound wave is subjected to membrane vibration due to the resonance phenomenon. Is the frequency of the natural vibration mode that is greatly transmitted at that frequency.
  • the first natural vibration frequency is determined by the structure composed of the frame 14 and the plate-like member 40, and therefore has substantially the same value regardless of the presence or absence of the through hole 42 drilled in the plate-like member 40. It has been found by the present inventors. Further, since the membrane vibration increases at a frequency near the first natural vibration frequency, the sound absorption effect due to friction with the fine through hole 42 is reduced.
  • the soundproof structure 10e has a minimum absorption rate at the first natural vibration frequency ⁇ 100 Hz.
  • the first natural vibration frequency of the membrane vibration of the plate-like member is preferably 20 Hz to 20000 Hz, and more preferably 50 Hz to 15000 Hz.
  • the first natural vibration frequency of the membrane vibration of the soundproof structure 10e can be appropriately set by adjusting the frame material, size, plate member material, thickness, and the like.
  • the soundproof structure 10e can be reduced in size. Moreover, since there is no closed space on the back, air permeability can be ensured.
  • the suitable range of the average opening ratio and the average opening diameter of the through hole 42 are the same as those of the soundproof structure 10d shown in FIG.
  • the relationship between the average opening diameter and the average opening ratio of the through holes in the soundproof structure 10e is within the following range. That is, when the average opening diameter of the through holes is 0.1 ⁇ m or more and less than 100 ⁇ m, the average opening ratio of the through holes when the average opening diameter is phi ( ⁇ m) and the thickness of the plate member is t ( ⁇ m).
  • rho_center- (0.085 ⁇ (phi / 20) -2 ) is the lower limit
  • rho_center + (0.35 ⁇ (phi / 20) -2 ) is the upper limit
  • the average aperture ratio rho preferably falls within the range of (rho_center-0.24 ⁇ (phi / 10) -2 ) or more and (rho_center + 0.57 ⁇ (phi / 10) -2 ) or less, more preferably ( A range of rho_center-0.185 ⁇ (phi / 10) ⁇ 2 ) or more and (rho_center + 0.34 ⁇ (phi / 10) ⁇ 2 ) or less is more preferable.
  • the average opening diameter of the through holes is 100 ⁇ m or more and 250 ⁇ m or less
  • FIGS. 29 and 30A to 30C are cross-sectional views schematically showing another example of the ear muff of the present invention
  • FIG. 30A is a cross-sectional view of the ear cup of the ear muff shown in FIG. 29
  • FIG. 30B is a cross-sectional view of FIG.
  • FIG. 30C is a side view of FIG. 30A viewed from the c direction.
  • 29 and 30A to 30C are A specific frequency comprising a support member, two ear cups having a housing attached to the support member and an ear pad locked to the housing, the housing having a housing opening and being disposed in the housing opening
  • the earmuff has a soundproof structure for soundproofing the sound of the band, and the housing opening in which the soundproof structure is arranged has a vent hole
  • the soundproof structure includes one or more soundproofing cells, and the one or more soundproofing cells include a frame having a frame hole portion that penetrates, and a film that covers the frame hole portion and is fixed to the frame
  • the soundproof structure has a configuration in which the film surface of the membrane is inclined with respect to the opening cross section of the housing opening, and a region serving as a vent through which gas passes is provided in the housing opening.
  • 29 has the same configuration as the soundproof structure 100 shown in FIG. 1 except that the arrangement of the soundproof structure 10 in the housing opening 106a is different. In addition, the following description mainly performs different parts.
  • the soundproof structure 10 is formed by inclining the film surface of the soundproof structure 10 to the housing opening 106a with respect to the opening cross section of the housing opening 106a. It arrange
  • the soundproof structure 10 Since sound travels in the housing opening portion 106a of the housing 106 in a direction substantially perpendicular to the opening cross section, it can be said that the soundproof structure 10 is disposed with the film surface of the film inclined with respect to the sound traveling direction. . That is, in the earmuff 200, the soundproof structure 10 absorbs a sound that is not applied to the film surface perpendicularly but is applied obliquely or in parallel.
  • the soundproof structure 10 is arranged so that the direction perpendicular to the film surface of the film 12 is perpendicular to the direction perpendicular to the opening cross section of the housing opening 106a.
  • the soundproof structure 10 may be arranged so that the direction perpendicular to the film surface intersects the direction perpendicular to the opening cross section of the housing opening 106a.
  • the angle in the direction perpendicular to the film surface of the soundproof structure 10 with respect to the direction perpendicular to the opening cross section of the housing opening 106a is preferably 20 ° or more, more preferably 45 ° or more. 80 ° or more is more preferable.
  • the soundproof structure 10 is arranged in parallel to a plane perpendicular to the vertical direction of the paper surface in the figure, but is not limited to this, and the direction is perpendicular to the opening cross section of the housing opening 106 a.
  • the direction perpendicular to the film surface of the film 12 is orthogonal.
  • the soundproof structure 10 may be arranged parallel to the paper surface in the drawing.
  • the opening ratio of the vent (that is, the area of the vent with respect to the opening area of the housing opening 106a) is preferably 10% or more, more preferably 25% or more, and further preferably 50% or more.
  • the reason why the aperture ratio of the ventilation holes is preferably 10% or more is that, in the case of the configuration using the soundproof structure 10, high soundproof performance can be exhibited even with an aperture ratio of two digits or more.
  • the above-described soundproof structures 10a to 10e can be used as the soundproof structure 10 disposed in the housing opening 106a. Also, the soundproof structure 10f shown in FIGS. 31 and 32 can be used.
  • FIG. 31 is a front view schematically showing another example of the soundproof structure
  • FIG. 32 is a cross-sectional view taken along the line II-II in FIG.
  • the soundproof structure 10f shown in FIGS. 31 and 32 has the same configuration as the soundproof structure 10a shown in FIGS. 6 and 7 except that the through hole 22 is not provided. That is, the soundproof structure 10f has the frame hole portions 12, respectively, and the frame body 16 forming a plurality of (14 in the illustrated example) frames 14 arranged two-dimensionally, and the frame hole portions of the respective frames 14. 12, a sheet-like film body 20 d that forms a plurality (16 s in the illustrated example) of films 18 d that are fixed to the respective frames 14.
  • the soundproof cell 32 of the soundproof structure 10f is a soundproof cell having the same configuration as the first soundproof cell 32 of the soundproof structure 10c shown in FIGS.
  • the soundproof structure 10f is composed of a plurality of, in the illustrated example, 16 soundproof cells 32.
  • the soundproof structure 10f having the soundproof cell 32 composed of the frame 14 and the film 18d is inclined to the housing opening 106a, and the film surface of the soundproof structure 10 is inclined with respect to the opening cross section of the housing opening 106a.
  • the earmuff 200 of the present embodiment has the sound absorption (absorption rate) at the peak (maximum) at the three absorption peak frequencies, and therefore selectively prevents sound in a certain frequency band centered on each absorption peak frequency.
  • the shielding (transmission loss) becomes a peak (maximum) at the three shielding peak frequencies, it is possible to selectively prevent sound in a certain frequency band centered on each shielding peak frequency.
  • the acoustic tube is regarded as the housing opening 106a, a soundproof structure is arranged in the acoustic tube, and the absorption rate and transmission loss (dB) are measured as follows.
  • the acoustic characteristics were measured by the transfer function method using four microphones 302 in an aluminum acoustic tube (tube body 300). This method is in accordance with “ASTM E2611-09: Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method”.
  • an aluminum tube 300 is used as the same measurement principle as that of WinZac manufactured by Nittobo Acoustic Engineering Co., Ltd.
  • a cylindrical box 306 having a speaker 304 accommodated therein is disposed below the pipe body 300, and the pipe body 300 is placed on the upper surface of the box 306.
  • a sound with a predetermined sound pressure was output from the speaker 304 and measured with four microphones 302. With this method, sound transmission loss can be measured in a wide spectral band.
  • the structure in which the soundproof structure 10 is disposed at a predetermined measurement site of the tubular body 300 serving as an acoustic tube with the film surface of the film 18 inclined is reproduced, and the soundproof structure 10 is inclined with respect to the housing opening 106a.
  • the acoustic absorptance and transmission loss were measured in the range of 4000 Hz. The results are shown in FIGS. 33A and 33B.
  • FIG. 33A and FIG. 33B show a sound absorption characteristic represented by an absorptance with respect to frequency and a sound insulation characteristic represented by a transmission loss with respect to frequency.
  • the tubular body 300 used for the acoustic measurement is an aluminum tubular body having a diameter of 4 cm, and the soundproof structure 10e is disposed with the film surface of the film 18d inclined with respect to the opening cross section of the tubular body 300 (see FIG. 35). ).
  • the soundproof structure 10 has a 250 ⁇ m PET film as a film 18d on one side of a frame hole 12 of an acrylic frame 14 having a thickness of 12 mm provided with six 20 mm square six through-hole holes 12 by a double-sided adhesive tape. It is fixed.
  • the soundproof structure 10 has a structure in which six soundproof cells are connected.
  • the height of the soundproof structure 10 and the height of the frame 14 are 35 mm.
  • FIG. 33B it can be seen that there are shielding peaks at 2669 Hz, 3298 Hz, and 4000 Hz. Even in such a state having a high aperture ratio, the film 18d made of PET film vibrates with respect to the sound wave, and it is possible to provide high absorptivity and shielding for a specific frequency.
  • the aperture ratio defined by the following formula (1) is about 67%, and high air permeability or air permeability can be obtained.
  • Opening ratio (%) ⁇ 1 ⁇ (cross-sectional area of soundproof cell unit in opening cross section / opening cross-sectional area) ⁇ ⁇ 100 (1)
  • the soundproof structure 10 places the film surface of the film 18 on the opening cross section 300b of the pipe body 300 in the tube body 300 as viewed from the housing opening 106a. In contrast, they are arranged so as to be inclined at a predetermined inclination angle ⁇ .
  • a gap 300 c formed between the inclined membrane 18 surface of the membrane 18 and the tube wall of the tube body 300 shown in FIG. 35 is a vent hole formed in the opening 300 a of the tube body 300 through which gas can pass.
  • the opening ratio of the vent is preferably 10% or more, more preferably 25% or more, and further preferably 50% or more.
  • the reason why the aperture ratio of the air holes is preferably 10% or more is that the soundproof structure of the present invention can exhibit high soundproof performance even at an aperture ratio of two digits or more.
  • the inclination angle ⁇ is preferably 20 degrees or more, more preferably 45 degrees or more, and further preferably 80 degrees or more from the viewpoint of air permeability.
  • the reason why the inclination angle ⁇ is preferably 20 degrees or more is that when the device cross section of the soundproof structure 10 (film surface of the film 18) is equal to the opening cross section 300b, the inclination angle ⁇ is inclined by 20 degrees or more, This is because a preferable aperture ratio of 10% or more can be obtained, and a wind speed of 10% or more can be obtained with respect to the wind speed when the inclination angle ⁇ is inclined by 90 °.
  • the dependency of the sound insulation performance of the soundproof structure shown in FIG. 36 on the inclination angle of the film surface is fixed to one surface of the frame hole 12 of the frame 14 of the soundproof cell 26 of the soundproof structure 10 as shown in FIG. It can be obtained by measuring the transmission loss by changing the inclination angle ⁇ of the film surface of the film 18 with respect to the traveling direction of the sound wave.
  • the soundproof structure 10 using three different PET film thicknesses of 50 ⁇ m, 100 ⁇ m, and 188 ⁇ m as the film 18, while changing the inclination angle ⁇ in the range of 0 degrees to 90 degrees The results of measuring the transmission loss are shown in FIGS.
  • FIGS. 38A, 38C, and 38E and the results of measuring the absorptance are shown in FIGS. 38B, 38D, and 38F.
  • a graph of the angle dependence of the first vibration mode sound insulation performance shown in FIG. 36 can be obtained.
  • the sound insulation performance on the vertical axis in FIG. 36 is normalized by the transmission loss at 0 degrees.
  • FIG. 39 shows the sound wave incident angle dependence of the sound insulation characteristics (transmission loss) of the soundproof structure of another example of the obtained soundproof structure.
  • the measured soundproof structure 10 has a thickness of 100 ⁇ m as a film 18 on one side of a frame 14 in which a 16 ⁇ 16 mm penetrating frame hole 12 is formed in a 20 mm cubic block (bar-shaped soundproof structure 15) made of vinyl chloride.
  • the PET film is fixed with a double-sided adhesive tape.
  • the soundproof structure was measured while tilting the film surface of the film 18 with respect to the opening cross section 300b of the tube body 300 in the tube body 300 which is an acoustic tube, and changing the sound wave incident angle.
  • the incident angle of the sound wave with respect to the film surface of the film 18 of the soundproof structure 10 is changed to 90 degrees, 45 degrees, and 0 degrees, the shielding peak frequency on the high frequency side is lowered to 3465, 3243, and 3100 Hz. I can see it going.
  • the shielding peak frequency can be adjusted by inclining the film surface of the film 18 with respect to the opening cross section 300b.
  • the preferable thickness range, Young's modulus range, density range, material, film fixing method, and the like of the film 18d are the same as those of the film 18a of the soundproof structure 10a shown in FIGS. is there.
  • the soundproof structure 10 when the soundproof structure 10 is arranged to be inclined in the housing opening 106a, the soundproof structure 10 may be arranged at a position protruding from the end face of the housing opening 106a. Specifically, it is preferably disposed within the opening end correction distance from the opening end of the housing opening 106a. The antinode of the standing wave of the sound field protrudes outside the housing opening 106a by the distance of the opening end correction, and soundproof performance can be obtained even outside the housing opening 106a.
  • the housing opening 10a is cylindrical, the opening end correction distance is approximately given by 0.61 ⁇ tube radius.
  • a weight may be arranged on the film 18d.
  • the natural vibration frequency of the membrane vibration can be adjusted, and the frequency of the sound insulation peak and the sound insulation property can be controlled.
  • size, weight, material, etc. of a weight it is the same as that of the weight 25 of the soundproof structure 10b shown to FIG. 10A and 10B.
  • the film surface of the frame hole portion 12 of the acrylic frame 14 having a thickness of 12 mm provided with six 20 mm square six frame hole portions 12 is formed with a film thickness of 100 ⁇ m.
  • the absorptance and transmission loss were measured in the same manner as described above. The measurement results are shown in FIGS. 40A and 40B. In the absorption rate shown in FIG.
  • the opening of the through hole 22 (opening 24) is used.
  • the rate is not particularly limited, and may be set according to the sound insulation frequency band to be selectively sound-insulated, but is preferably 0.000001% to 50%, and is 0.00001% to 20%. Is more preferable, and 0.0001% to 10% is preferable.
  • the size of the through hole 22 may be any size as long as it can be appropriately drilled by the above-described processing method, and is not particularly limited, but needs to be smaller than the size of the film 18 that is the size of the frame hole portion 12.
  • the size of the through-hole 22 is, on the lower limit side, from the viewpoint of manufacturing suitability such as laser processing accuracy such as laser aperture accuracy, processing accuracy such as punching processing or needle processing, and ease of processing. It is preferable that it is 100 micrometers or more. Since the upper limit value of the size of these through holes 22 needs to be smaller than the size of the frame 14, the size of the frame 14 is usually on the order of mm, and the size of the through hole 22 is set to the order of several hundred ⁇ m.
  • the upper limit value of the size of the through hole 22 does not exceed the size of the frame 14, but if it exceeds, the upper limit value of the size of the through hole 22 is set to be equal to or smaller than the size of the frame 14. That's fine.
  • the size of the through hole 22 is preferably represented by an average size when different sizes are included in the plurality of films 18.
  • a soundproof structure 10a 100 ⁇ m of film 12a is formed on both sides of a frame hole 12 of an acrylic frame 14 having a thickness of 12mm provided with six 20mm square frame holes 12 penetrating.
  • the absorptance and transmission loss were measured in the same manner as described above.
  • the soundproof structure 10a has a configuration in which six soundproof cells are connected. The measurement results are shown in FIGS. 41A and 41B. With respect to the absorption rate shown in FIG.
  • the absorption at the valleys between absorption peaks (2625 Hz) is larger than when there is no through hole, and the absorption on the high frequency side (3000 Hz to 4000 Hz) is increased. I understand that. For this reason, the soundproof structure 10a in which the through hole 22 is formed in the film 18a is preferable for broadband sound absorption. In the transmission loss shown in FIG. 41B, the sound insulation peak on the low frequency side of 1915 Hz is increased. For this reason, the soundproof structure 10a in which the through hole 22 is formed in the film 18a is preferable also in the low frequency sound insulation.
  • a soundproof structure 10b having a through hole 22 formed in a film 18b as shown in FIGS. 10A and 10B and having a weight 25 As used, the natural vibration frequency of the membrane vibration can be adjusted by changing the diameter of the through-hole 22 and the weight of the weight 25, and the frequency of the sound insulation peak and the sound insulation property can be controlled.
  • the first natural vibration frequency of the membrane vibration of the plate-like member 40 is between 10 Hz and 100,000 Hz.
  • the soundproof structure 10e may be used. When the soundproof structure 10e having the frame 14 for fixing the peripheral portion of the plate-like member 42 having the fine through holes 42 is used, the soundproof structure 10e is disposed so as to close the housing opening 106a. Similarly, the sound can be absorbed by friction when the sound passes through the through hole 42.

Abstract

小型軽量で、高い防音性能を有し、特定の周波数帯域を防音可能で、かつ、通気性に優れたイヤーマフを提供する。ヘッドバンドと、ヘッドバンドの端部に取り付けられるハウジングおよびハウジングに係止されるイヤーパッドを有する、2つのイヤーカップとを備え、ハウジングは、ハウジング開口部を有し、ハウジング開口部に配置される、特定の周波数帯域の音を防音する防音構造を有し、防音構造を配置されたハウジング開口部が通気口を有する。

Description

イヤーマフ
 本発明は、イヤーマフに関する。
 従来、騒音環境下で作業者を保護するためイヤーマフが広く用いられている。イヤーマフは、ヘッドバンドに取り付けられた一対のイヤーカップを有し、ヘッドホンのように、イヤーカップを両耳に当てて頭に装着する。
 一般的な遮音材は、質量が重ければ重いほど音を良く遮蔽するため、イヤーマフにおいて防音性能を高めるためには、イヤーカップを大きくしたり、イヤーカップのハウジング内に防音材を配置したり、ハウジングを重くする必要がある。そのため、イヤーマフの防音性能を高めるとイヤーマフの質量が重くなり、着け心地が悪くなってしまうという問題があった。
 例えば、特許文献1には、ヘッドバンドと、ヘッドバンドに取付けられたイヤーカップと、イヤーカップに固定されたバッフル板と、バッフル板に係止されたイヤーパッドと、を備え、上記バッフル板と上記イヤーパッドの間に通気性部材を有することによって、前気室の容積を大きくして遮音性を高くできることが記載されている。
特開2011-15338号公報
 しかしながら、従来の、イヤーカップの容積および質量等に基づいて防音するイヤーマフにおいて、より高い防音性能を達成するには、やはりイヤーカップを大きくしたり、イヤーカップのハウジング内に防音材を配置したり、ハウジングを重くする必要がある。また、その場合、通気性が悪くなってしまうため着け心地が悪くなるという問題があった。
 イヤーカップに通気口を設けて通気性を確保することが考えられるが、通気口を設けた場合には防音性能が低下してしまうという問題があった。
 また、イヤーカップの容積および質量等に基づいて防音する場合には、可聴域の全域の音を遮断してしまうため、会話等の必要な音も防音されてしまうという問題があった。
 特定の周波数帯域の防音が可能な装置として、騒音を拾い、それと逆相になるような音をスピーカーから出力して騒音を打ち消す、いわゆるアクティブノイズリダクション装置が知られている。しかし、電源が必要であるため、イヤーマフに用いると重くなり、また、長時間使用できないという問題があった。また、電源が必要であるため、使用場所が限られるという問題があった。
 本発明の目的は、上記従来技術の問題点を解消し、小型軽量で、高い防音性能を有し、特定の周波数帯域を防音可能で、かつ、通気性に優れたイヤーマフを提供することにある。
 なお、本発明において、「防音」とは、音響特性として、「遮音」と「吸音」の両方の意味を含むが、特に、「遮音」を言い、「遮音」は、「音を遮蔽する」こと、即ち、「音を透過させない」こと、したがって、音を「反射」すること(音響の反射)、及び音を「吸収」すること(音響の吸収)を含めて言う(三省堂 大辞林(第三版)、及び日本音響材料学会のウェブページのhttp://www.onzai.or.jp/question/soundproof.html、並びにhttp://www.onzai.or.jp/pdf/new/gijutsu201312_3.pdf参照)。
 以下では、基本的に、「反射」と「吸収」とを区別せずに、両者を含めて「遮音」及び「遮蔽」と言い、両者を区別する時に、「反射」及び「吸収」と言う。
 本発明者らは、上記目的を達成すべく鋭意検討した結果、ヘッドバンドと、ヘッドバンドの端部に取り付けられるハウジングおよびハウジングに係止されるイヤーパッドを有する、2つのイヤーカップとを備え、ハウジングは、ハウジング開口部を有し、ハウジング開口部に配置される、特定の周波数帯域の音を防音する防音構造を有し、防音構造を配置されたハウジング開口部が通気性を有することにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
 [1] 支持部材と、
 支持部材に取り付けられるハウジングおよびハウジングに係止されるイヤーパッドを有する、2つのイヤーカップとを備え、
 ハウジングは、ハウジング開口部を有し、
 ハウジング開口部に配置される、特定の周波数帯域の音を防音する防音構造を有し、
 防音構造を配置されたハウジング開口部が通気口を有するイヤーマフ。
 [2] 防音構造が、1以上の防音セルを有するものであって、
 1以上の防音セルは、
 貫通する枠孔部を有する枠と、
 枠に固定された膜と、
 膜に穿孔された1以上の貫通孔からなる開口部と、を備え、
 枠の枠孔部の両方の端部は、共に閉塞されておらず、
 防音構造は、ハウジング開口部を塞いで配置される[1]に記載のイヤーマフ。
 [3] さらに、膜上に配置された錘を備える[2]に記載のイヤーマフ。
 [4] 防音構造が、2次元的に配列された2以上の防音セルを有し、
 防音セルの少なくとも1つは、貫通する第1の枠孔部を有する第1の枠と、第1の枠に固定される膜とを備える第1の防音セルであり、
 防音セルの他の少なくとも1つは、貫通する第2の枠孔部を有する第2の枠からなる第2の防音セルであり、
 防音構造は、ハウジング開口部を塞いで配置される[1]に記載のイヤーマフ。
 [5] 防音構造が、厚み方向に貫通する複数の貫通孔を有する板状部材を備え、
 貫通孔の平均開口径が0.1μm以上100μm未満であり、
 貫通孔の平均開口径をphi(μm)、板状部材の厚みをt(μm)としたときに、貫通孔の平均開口率rhoは、0より大きく1より小さい範囲であって、rho_center=(2+0.25×t)×phi-1.6を中心として、rho_center-(0.052×(phi/30)-2)を下限として、rho_center+(0.795×(phi/30)-2)を上限とする範囲にあり、
 ハウジング開口部を塞いで配置される[1]に記載のイヤーマフ。
 [6] 防音構造が、厚み方向に貫通する複数の貫通孔を有する板状部材と、枠孔部を有する枠とを備え、枠の枠孔部周縁に対して板状部材を固定することによって、板状部材が膜振動するものであり、
 貫通孔の平均開口径が0.1μm以上250μm以下であり、
 板状部材の膜振動の第一固有振動周波数が10Hz~100000Hzの間に存在する[1]に記載のイヤーマフ。
 [7] 防音構造が、1以上の防音セルを有するものであって、
 1以上の防音セルは、
 貫通する枠孔部を有する枠と、
 枠孔部を覆って枠に固定された膜と、を備え、
 防音構造は、ハウジング開口部に、ハウジング開口部の開口断面に対して膜の膜面を傾け、ハウジング開口部に気体が通過する通気口となる領域を設けた状態で配置される[1]に記載のイヤーマフ。
 [8] 膜は、厚み方向に貫通する複数の貫通孔を有し、
 貫通孔の平均開口径が0.1μm以上250μm以下である[7]に記載のイヤーマフ。
 [9] ハウジング内に配置される防音材を有する[1]~[8]のいずれかに記載のイヤーマフ。
 [10] ハウジング開口部に、防音する音の周波数帯域が互いに異なる、2以上の防音構造を配置した[1]~[9]のいずれかに記載のイヤーマフ。
 [11] 防音構造が、ハウジング開口部に着脱可能に配置されている[1]~[10]のいずれかに記載のイヤーマフ。
 [12] 貫通するケース開口部を有するケースを有し、
 ケース開口部に防音構造が配置されたカセット部材を備え、
 カセット部材が、ハウジングに着脱可能に配置されている[1]~[11]のいずれかに記載のイヤーマフ。
 本発明によれば、小型軽量で、高い防音性能を有し、特定の周波数帯域を防音可能で、かつ、通気性に優れたイヤーマフを提供することができる。
本発明のイヤーマフの一例を模式的に示す断面図である。 図1のイヤーカップの断面図である。 図2Aをb方向から見た側面図である。 図2Aをc方向から見た側面図である。 本発明のイヤーマフの他の一例を模式的に示す断面図である。 本発明のイヤーマフの他の一例を模式的に示す断面図である。 本発明のイヤーマフの他の一例を模式的に示す断面図である。 本発明のイヤーマフの他の一例を模式的に示す断面図である。 本発明のイヤーマフに用いられる防音構造の一例を模式的に示す正面図である。 図6のII-II線断面図である。 本発明のイヤーマフに用いられる防音構造の他の一例を模式的に示す正面図である。 本発明のイヤーマフに用いられる防音構造の他の一例を模式的に示す正面図である。 本発明のイヤーマフに用いられる防音構造の他の一例を模式的に示す正面図である。 図10AのB-B線断面図である。 本発明のイヤーマフに用いられる防音構造の他の一例を模式的に示す正面図である。 図11のII-II線断面図である。 本発明のイヤーマフに用いられる防音構造の他の一例を模式的に示す正面図である。 図13のB-B線断面図である。 図13の防音構造の好適な製造方法の一例を説明するための模式的な断面図である。 図13の防音構造の好適な製造方法の一例を説明するための模式的な断面図である。 図13の防音構造の好適な製造方法の一例を説明するための模式的な断面図である。 図13の防音構造の好適な製造方法の一例を説明するための模式的な断面図である。 図13の防音構造の好適な製造方法の一例を説明するための模式的な断面図である。 平均開口径と平均開口率と吸収率との関係を表すグラフである。 平均開口径と平均開口率と吸収率との関係を表すグラフである。 平均開口径と吸収率が極大となる平均開口率との関係を表すグラフである。 平均開口径と極大吸収率との関係を表すグラフである。 平均開口径と吸収率との関係を表すグラフである。 平均開口率と音響特性との関係を表すグラフである。 平均開口率と音響特性との関係を表すグラフである。 平均開口径と最適な平均開口率との関係を示すグラフである。 平均開口径と最適な平均開口率との関係を示すグラフである。 平均開口率と最大吸収率との関係を示すグラフである。 平均開口率と最大吸収率との関係を示すグラフである。 本発明のイヤーマフに用いられる防音構造の他の一例を模式的に示す正面図である。 図27のII-II線断面図である。 本発明のイヤーマフの他の一例を模式的に示す断面図である。 図29のイヤーカップの断面図である。 図30Aをb方向から見た側面図である。 図30Aをc方向から見た側面図である。 本発明のイヤーマフに用いられる防音構造の他の一例を模式的に示す正面図である。 図31のII-II線断面図である。 周波数に対する吸収率で表される吸音特性を示すグラフである。 周波数に対する透過損失で表される遮音特性を示すグラフである。 管状の開口部内に挿入配置された防音構造の防音性能を測定する測定系を説明する斜視図である。 開口部の開口断面に対する防音構造の膜面の傾斜角度を説明する説明図である。 遮音性能の膜面の傾斜角度依存性を示すグラフである。 防音構造の膜面の傾斜角度と音波の進行方向との関係を説明する説明図である。 遮音特性の膜面の傾斜角度依存性を示すグラフである。 吸音特性の膜面の傾斜角度依存性を示すグラフである。 遮音特性の膜面の傾斜角度依存性を示すグラフである。 吸音特性の膜面の傾斜角度依存性を示すグラフである。 遮音特性の膜面の傾斜角度依存性を示すグラフである。 吸音特性の膜面の傾斜角度依存性を示すグラフである。 遮音特性(透過損失)の音波入射角度依存性を示すグラフである。 周波数と吸収率との関係を示すグラフである。 周波数と透過損失との関係を示すグラフである。 周波数と吸収率との関係を示すグラフである。 周波数と透過損失との関係を示すグラフである。
 以下に、本発明に係るイヤーマフを添付の図面に示す好適実施形態を参照して詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明のイヤーマフは、
 支持部材と、
 支持部材に取り付けられるハウジングおよびハウジングに係止されるイヤーパッドを有する、2つのイヤーカップとを備え、
 ハウジングは、ハウジング開口部を有し、
 ハウジング開口部に配置される、特定の周波数帯域の音を防音する防音構造を有し、
 防音構造を配置されたハウジング開口部が通気口を有するイヤーマフである。
 本発明のイヤーマフの一実施態様の構成について、図1および図2A~図2Cを用いて説明する。
 図1は、本発明のイヤーマフの一例を模式的に示す断面図であり、図2Aは、図1に示すイヤーマフのイヤーカップの断面図であり、図2Bは、図2Aをb方向から見た側面図であり、図2Cは、図2Aをc方向から見た側面図である。
 図1および図2A~図2Cに示すイヤーマフ100は、ヘッドバンド104と、ヘッドバンド104の両端部に取り付けられる2つのイヤーカップ102とを有する。
 ヘッドバンド104は、本発明における支持部材であり、従来のイヤーマフおよびヘッドホン等に用いられる公知のヘッドバンドと同様のものである。図示例においては、ヘッドバンド104は、長板状の部材を湾曲させた形状を有し、その両端部には、イヤーカップを回動可能に支持する支持部を備える。また、ヘッドバンド104は、湾曲方向にバネ性を有し、2つのイヤーカップ102を使用者の両耳に押し当てて弾力的に保持する。
 なお、支持部材は、上記のようなヘッドバンドに限定はされない。例えば、ヘルメットを支持部材として、使用者がヘルメットを装着した際の耳の位置に対応する位置に、イヤーカップを固定するものであってもよい。
 イヤーカップ102は、使用者の耳を覆い外部からの騒音等を遮音するものである。
 イヤーカップ102は、ハウジング106と、イヤーパッド108と、防音構造10とを有する。
 ハウジング106は、防音構造10を配置するためのハウジング開口部106aを有する以外は、従来のイヤーマフおよびヘッドホン等で用いられるイヤーカップのハウジングと同様のものである。
 具体的には、ハウジング106は略椀状の部材であり、イヤーバンド104の端部に回動可能に支持される。また、略椀状の開口側にはイヤーパッド108が係止される。
 また、ハウジング106は、貫通して形成されたハウジング開口部106aを有する。このハウジング開口部106aには、後述する防音構造10が配置される。
 ハウジング開口部106aの位置および大きさには限定はなく、所望される防音性能、通気性能等に応じて、適宜設定すればよい。
 また、ハウジング開口部106aの開口断面の形状にも限定はなく、円形状、楕円形状、正方形状、長方形状、多角形状等の種々の形状とすることができる。
 ハウジング106の形成材料としては限定はなく、従来のイヤーマフおよびヘッドホン等のイヤーカップのハウジングの材料として用いられる各種の樹脂材料および金属材料が種々利用可能である。
 イヤーパッド108は、従来のイヤーマフおよびヘッドホン等で用いられるイヤーパッドと同様のものである。一例として、イヤーパッド108は、所定の厚さを有する略円環状のクッション性部材を表皮材で被覆した部材であり、略椀状のハウジング106の開口側に係止される。イヤーパッド108によって、イヤーマフ装着時の押圧力は分散され使用者がイヤーマフを快適に装着し続けることができる。
 イヤーパッド108の形成材料としては限定はなく、従来のイヤーマフおよびヘッドホン等のイヤーパッドの材料として用いられる各種の樹脂材料が種々利用可能である。
 例えば、イヤーパッド108のクッション性部材としては、ポリウレタンおよびポリ塩化ビニル等の発泡体を用いることができる。また、表皮材としては、樹脂薄膜、織布(例えば、布地)、天然皮革等を用いることができる。
 防音構造10は、ハウジング106のハウジング開口部106aに配置される、特定の周波数帯域の音を防音するものである。
 図に示すように、防音構造10は、ハウジング開口部106aを塞ぐようにしてハウジング開口部106a内に配置される。
 ここで、防音構造10は、後述するとおり、厚さ方向に貫通する孔を複数有する。そのため、防音構造10でハウジング開口部106aを塞いでも、防音構造10に形成された孔が通気口となる。
 したがって、本発明のイヤーマフ100は、イヤーカップ102の重さや大きさを増加させることなく、防音構造10により特定の周波数帯域を高い防音性能で防音でき、かつ、通気性を高くできる。
 防音構造10の構成については、後に詳述する。
 ここで、図1に示す例では、2つのイヤーカップ102のハウジング開口部106aそれぞれに、1つの防音構造10を配置する構成としたが、これに限定はされない。例えば、図3に示すイヤーマフ110のように、1つのハウジング開口部106aに2以上の防音構造10を配置する構成としてもよい。2以上の防音構造10を配置する際には、図3に示すようにハウジング開口部106aの開口断面に垂直な方向に防音構造を配列すればよい。
 また、1つのハウジング開口部106aに2以上の防音構造10を配置する場合には、互いに異なる周波数帯域の音を防音する防音構造10を用いるのが好ましい。互いに異なる周波数帯域の音を防音する、2以上の防音構造10を用いることによって、2種以上の周波数帯域10、あるいは、より広い周波数帯域10の音を防音することができる。
 また、防音構造10は、ハウジング開口部106aに着脱可能に配置される構成としてもよい。
 防音構造10をハウジング開口部106aに着脱可能に配置する場合には、図4に示すイヤーマフ120のように、防音構造10を含むカセット部材122(122a、122b)をハウジング開口部106aに挿入する構成とし、カセット部材122を着脱可能に配置する構成としてもよい。
 なお、図4においては、異なる種類のカセット部材をそれぞれ122aおよび122bの符号を用いて示したが、カセット部材の種類を区別する必要がない場合には、まとめてカセット部材122という。
 カセット部材122は、貫通するケース開口部124aを有するケース124とケース開口部124aに配置される1以上の防音構造10を備える。
 ケース124は、断面形状の外形が、ハウジング106のハウジング開口部106aの開口断面と同じ大きさおよび形状であり、ハウジング開口部106aの貫通方向と同方向貫通するケース開口部124aを有する。
 ケース開口部124aには、ケース開口部124aを塞ぐようにして防音構造10が配置される。
 このように、防音構造10をカセット部材122としてハウジング開口部106aに着脱可能とすることによって、容易に防音構造10の交換を行うことができる。
 例えば、図示例のように、2つの防音構造10をケース開口部124aに配置したカセット部材122aと、1つの防音構造10をケース開口部124aに配置したカセット部材122bとを、防音対象の周波数帯域等に応じて適宜交換することによって、容易に所望の周波数帯域の音を防音することができる。
 また、図5Aに示すイヤーマフ130のように、イヤーカップ102のハウジング106内に防音材132を配置してもよい。
 防音材132としては限定はなく、従来のイヤーマフおよびヘッドホン等で用いられる各種の防音材が種々利用可能である。
 なお、図5Aに示すように、防音材132は、ケース開口部106aに対応する位置に、ケース開口部106aと同様の大きさの開口を有する円環状に形成されていてもよいし、あるいは、図5Bに示すように開口を有さない形状であってもよい。
 次に、防音構造10の具体的な構成について説明する。
 図6は、防音構造の一例を模式的に示す正面図であり、図7は、図6のII-II線断面図である。
 図6および図7に示す防音構造10aは、枠孔部12をそれぞれ有し、2次元的に配置された複数(図示例では16個)の枠14を形成する枠体16と、それぞれの枠14の枠孔部12を覆うようにそれぞれの枠14に固定される、複数(図示例では16個)の膜18aを形成するシート状の膜体20aと、それぞれの枠14内の膜18aに貫通するように穿孔された1以上(図示例では1個)の貫通孔22からなる複数(図示例では16)の開口部24とを有する。
 防音構造10aにおいて、1つの枠14と、この枠14に固定された膜18aと、この膜18aに設けられた開口部24とで、1つの防音セル26を構成する。このため、防音構造10aは、複数(図示例では16個)の防音セル26によって構成される。
 図示例の防音構造10aは、複数の防音セル26によって構成されるものであるが、本発明はこれに限定されず、1つの枠14と、1つの膜18aと、1つの開口部24とからなる1つの防音セル26によって構成されるものであっても良い。
 枠14は、厚みのある板状部材で環状に囲むように形成され、内部に枠孔部12を有し、少なくともの一方の側において枠孔部12を覆うように膜18aを固定するためのもので、この枠14に固定された膜18aの膜振動の節となるものである。したがって、枠14は、膜18aに比べて、剛性が高く、具体的には、単位面積当たりの質量及び剛性は、共に高い必要がある。
 枠14の形状は、膜18aの全外周を抑えることができるように膜18aを固定できる閉じた連続した形状であることが好ましいが、本発明は、これに限定されず、枠14が、これに固定された膜18aの膜振動の節となるものであれば、一部が切断され、不連続な形状であっても良い。即ち、枠14の役割は、膜18aを固定して膜振動を制御することにあるため、枠14に小さな切れ目が入っていても、極わずかに接着していない部位が存在していても効果を発揮する。
 また、枠14によって形成される枠孔部12の幾何学形態は、平面形状であって、図6に示す例では正方形であるが、本発明においては、特に制限的ではない。例えば、長方形、ひし形、又は平行四辺形等の他の四角形、正三角形、2等辺三角形、又は直角三角形等の三角形、正五角形、又は正六角形等の正多角形を含む多角形、円形、若しくは楕円形等であっても良いし、不定形であっても良い。
 また、枠14のサイズは、平面視のサイズであり、その枠孔部12のサイズとして定義できるが、図6に示す正方形のような正多角形、又は円の場合には、その中心を通る対向する辺間の距離、又は円相当直径と定義することができ、多角形、楕円又は不定形の場合には、円相当直径と定義することができる。本発明において、円相当直径及び半径とは、それぞれ面積の等しい円に換算した時の直径及び半径である。
 なお、本発明の防音構造10において、枠14のサイズは、全ての枠14において、一定であっても良いが、異なるサイズ(形状が異なる場合も含む)の枠が含まれていても良く、この場合には、枠14のサイズとして、枠14の平均サイズを用いればよい。
 このような枠14のサイズは、特に制限的ではなく、防音対象の周波数帯域等に応じて設定すればよい。
 なお、詳細は後述するが、枠14及び膜18aからなる構造の固有振動モードを高周波側に得るために、枠14のサイズを小さくすることが好ましい。
 また、枠14の平均サイズは、詳細は後述するが、膜18aに設けられる穴からなる開口部24による防音セル26の遮蔽ピークにおける回折による音の漏れを防止するために、後述する遮蔽ピーク周波数に対応する波長サイズ以下であることが好ましい。
 例えば、枠14のサイズは、0.5mm~200mmであることが好ましく、1mm~100mmであることがより好ましく、2mm~30mmであることが最も好ましい。
 なお、枠14のサイズは、各枠14で異なるサイズが含まれる場合などは、平均サイズで表すことが好ましい。
 また、枠14の幅及び厚さも、膜18aを確実に抑えるように固定することができ、膜18aを確実に支持できれば、特に制限的ではないが、例えば、枠14のサイズに応じて設定することができる。
 例えば、枠14の幅は、0.5mm~20mmであることが好ましく、0.7mm~10mmであることがより好ましく、1mm~5mmであることが最も好ましい。
 枠14の幅が、枠14のサイズに対して比率が大きくなりすぎると、全体に占める枠14の部分の面積率が大きくなり、デバイスが重くなる懸念がある。一方、上記比率が小さくなりすぎると、その枠14部分において接着剤などによって膜を強く固定することが難しくなってくる。
 なお、本発明においては、複数、即ち2以上の枠14は、2次元的に繋がるように配置された枠体16として構成されることが好ましい。
 ここで、防音構造10aの枠14の数、即ち図示例では、枠体16を構成する枠14の数も、特に制限的ではなく、防音する周波数帯域に応じて設定すればよい。もしくは、上述した枠14のサイズは、防音する周波数帯域に応じて設定されているので、枠14の数は、枠14のサイズのサイズに応じて設定すればよい。
 これは、イヤーマフの大きさには実質的に制限があるため、1つの防音セル26のサイズを騒音の周波数に適したサイズとするためには、複数の防音セル26を組み合わせた枠体16で遮蔽する、即ち反射かつ/又は吸収する必要があるためである。
 なお、1つの防音セル26は、1つの枠14を構成単位とするので、防音構造10aの枠14の数は、防音セル26の数ということもできる。
 枠14の材料、即ち枠体16の材料は、膜18aを支持でき、イヤーカップ102のハウジング開口部106aに配置するのに適した強度を持ち、防音環境に対して耐性があれば、特に制限的ではなく、防音環境に応じて選択することができる。例えば、枠14の材料としては、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、これらの合金等の金属材料、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース等の樹脂材料、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastic)、カーボンファイバ、ガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastic)等を挙げることができる。
 また、これらの枠14の材料の複数種を組み合わせて用いてもよい。
 膜18aは、枠14の内部の枠孔部12を覆うように枠14に抑えられるように固定されるもので、外部からの音波に対応して膜振動することにより音波のエネルギーを吸収、もしくは反射して防音するものである。そのため、膜18aは、空気に対して不浸透性であることが好ましい。
 ところで、膜18aは、枠14を節として膜振動する必要があるので、枠14に確実に抑えられるように固定され、膜振動の腹となり、音波のエネルギーを吸収、もしくは反射して防音する必要がある。このため、膜18aは、可撓性のある弾性材料製であることが好ましい。
 このため、膜18aの形状は、枠14の枠孔部12の形状であり、また、膜18aのサイズは、枠14のサイズ、より詳細には、枠14の枠孔部12のサイズであるということができる。
 ここで、防音セル26の枠14に固定された膜18aは、最も低次の固有振動モードの周波数である共振周波数として、透過損失が最小、例えば0dBとなる第1固有振動周波数を持つものである。この第1固有振動周波数は、枠14及び膜18aからなる構造によって決まるので、膜18aに穿孔される貫通孔22(開口部24)の有無にかかわらず、略同一の値となることが本発明者らによって見出されている。
 ここで、枠14及び膜18aからなる構造における、即ち枠14に抑えられるように固定された膜18aの第1固有振動周波数は、共鳴現象により音波が膜振動を最も揺らすところで、音波はその周波数で大きく透過する固有振動モードの周波数である。
 なお、本発明者らの知見にしたがえば、防音構造10aでは、膜18aには貫通孔22からなる開口部24を構成する貫通孔22が貫通穴として穿孔されていることから、第1固有振動周波数よりも低周波側の遮蔽ピーク周波数において透過損失がピーク(極大)となる音波の遮蔽のピークが現れる。また、特に、この貫通する貫通孔22によって生じる遮蔽のピークより、低周波側に、この貫通する貫通孔22が存在することによる音の吸収の増大が見られる。
 したがって、防音構造10aは、遮蔽ピーク周波数において遮蔽(透過損失)がピーク(極大)となるため、遮蔽ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することができる。
 図6に示すような防音構造10aにおいては、第1に、音の遮蔽を大きくすることができ、かつ遮蔽のピークをコントロールできるが、更にこれらに加えて、貫通する貫通孔22の効果により、音(音波のエネルギ)の吸収がより低周波側で現れるという特徴がある。
 このため、枠14及び膜18aからなる構造において、1以上の貫通孔22からなる開口部24に依存する遮蔽ピーク周波数を可聴域内の任意の周波数とするためには、できるだけ固有振動モードを高周波側に得ることが重要であり、特に、実用的には重要となる。そのために、膜18aを厚くすることが好ましく、膜18aの材質のヤング率を大きなものとすることが好ましく、さらに、上述のように、枠14のサイズ、すなわち、膜18aのサイズを小さくすることなどが好ましい。したがって、本発明においては、これらの好ましい条件が重要となる。
 そこで、防音構造10aは剛性則に従うものであり、枠14に固定された膜18aの第1固有振動周波数より小さい周波数で音波の遮蔽を起こすため、膜18aの第1固有振動周波数は、人間の音波の感知域に相当する10Hz~100000Hzであることが好ましく、人間の音波の可聴域である20Hz~20000Hzであることがより好ましく、40Hz~16000Hzであることが更により好ましく、100Hz~12000Hzであることが最も好ましい。
 また、膜18aの厚さは、音波のエネルギーを吸収、もしくは反射して防音するために膜振動することができれば、特に制限的ではないが、固有振動モードを高周波側に得るためには厚くすることが好ましい。例えば、膜18aの厚さは、本発明では、枠14のサイズ、即ち膜のサイズに応じて設定することができる。
 例えば、膜18の厚さは、0.005mm(5μm)~5mmであることが好ましく、0.007mm(7μm)~2mmであることがより好ましく、0.01mm(10μm)~1mmであることが最も好ましい。
 ここで、防音構造10aにおいて、枠14及び膜18aからなる構造における膜18aの第1固有振動周波数は、複数の防音セル26の枠14の幾何学的形態(例えば枠14の形状及び寸法(サイズ))と、複数の防音セルの前記膜の剛性(例えば膜の厚さ及び可撓性)とによって定めることができる。
 なお、膜18aの第1固有振動モードを特徴づけるパラメータとしては、同種材料の膜18aの場合は、膜18aの厚み(t)と枠14のサイズ(a)の2乗との比(例えば、正四角形の場合には一辺の大きさとの比[a/t])を用いることができ、この比[a/t]が等しい場合(例えば、(t、a)が、(50μm、7.5mm)の場合と(200μm、15mm)の場合)とは、上記第1固有振動モードが同じ周波数、即ち同じ第1固有振動周波数となる。即ち、比[a/t]を一定値にすることにより、スケール則が成立し、適切なサイズを選択することができる。
 また、膜18aのヤング率は、膜18aが音波のエネルギーを吸収、もしくは反射して防音するために膜振動することができる弾性を有していれば、特に制限的ではないが、固有振動モードを高周波側に得るためには大きくすることが好ましい。例えば、膜18aのヤング率は、本発明では、枠14のサイズ、即ち膜のサイズに応じて設定することができる。
 例えば、膜18aのヤング率は、1000Pa~3000GPaであることが好ましく、10000Pa~2000GPaであることがより好ましく、1MPa~1000GPaであることが最も好ましい。
 また、膜18aの密度も、音波のエネルギーを吸収、もしくは反射して防音するために膜振動することができるものであれば、特に制限的ではない。例えば、10kg/m~30000kg/mであることが好ましく、100kg/m~20000kg/mであることがより好ましく、500kg/m~10000kg/mであることが最も好ましい。
 膜18aの材料は、膜状材料、又は箔状材料にした際に、上述した防音対象物に適用する際に適した強度を持ち、防音対象物の防音環境に対して耐性があり、膜18aが音波のエネルギーを吸収、もしくは反射して防音するために膜振動することができるものであれば、特に制限的ではなく、防音対象物及びその防音環境などに応じて選択することができる。例えば、膜18aの材料としては、ポリエチレンテレフタレート(PET)、ポリイミド、ポリメタクリル酸メチル、ポリカーボネート、アクリル(PMMA)、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース、ポリ塩化ビニリデン、低密度ポリエチレン、高密度ポリエチレン、芳香族ポリアミド、シリコーン樹脂、エチレンエチルアクリレート、酢酸ビニル共重合体、ポリエチレン、塩素化ポリエチレン、ポリ塩化ビニル、ポリメチルペンテン、ポリブテン等の膜状にできる樹脂材料、アルミニウム、クロム、チタン、ステンレス、ニッケル、スズ、ニオブ、タンタル、モリブデン、ジルコニウム、金、銀、白金、パラジウム、鉄、銅、パーマロイ等の箔状にできる金属材料、紙、セルロースなどその他繊維状の膜になる材質、不織布、ナノサイズのファイバーを含むフィルム、薄く加工したウレタンやシンサレートなどのポーラス材料、薄膜構造に加工したカーボン材料など、薄い構造を形成できる材質または構造等を挙げることができる。
 膜18aは、防音構造10aの枠体16の複数の枠14のそれぞれに個々に固定されて全体としてシート状の膜体20aを構成するものであっても良いし、逆に、全ての枠14を覆うように固定される1枚のシート状の膜体20aによって各枠14を覆う膜18aを形成しても良い。又は、これらの中間として、複数の枠14の一部を覆うようにシート状の膜体を一部の枠14に固定して各枠14を覆う膜18aを形成すると共に、これらのシート状膜体をいくつか用いて複数の枠14の全体(全ての枠14)を覆うシート状の膜体20aを構成しても良い。
 また、膜18aは、枠14の枠孔部12の少なくとも一方の側の開口を覆うように枠14に固定される。即ち、膜18aは、枠14の枠孔部12の一方の側、又は他方の側、もしくは両側の開口を覆うように枠14に固定されていても良い。
 ここで、防音構造10aの複数の枠14の枠孔部12の同じ側に全ての膜18aが設けられていても良いし、一部の膜18aが、複数の枠14の一部の枠孔部12の一方の側に一部の膜18aが設けられ、複数の枠14の残りの一部の枠孔部12の他方の側には残りの膜18aが設けられていても良いし、更に、枠14の枠孔部12一方の側、他方の側、及び両側に設けられた膜が混在していても良い。
 枠14への膜18aの固定方法は、特に制限的ではなく、膜18aを枠14に膜振動の節となるように固定できればどのようなものでも良く、例えば、接着剤を用いる方法、又は物理的な固定具を用いる方法などを挙げることができる。
 接着剤を用いる方法は、接着剤を枠14の枠孔部12を囲む表面上に接着剤を塗布し、その上に膜18aを載置し、膜18aを接着剤で枠14に固定する。接着剤としては、例えば、エポキシ系接着剤(アラルダイト等)、シアノアクリレート系接着剤(アロンアルフアなど)、アクリル系接着剤等を挙げることができる。
 物理的な固定具を用いる方法としては、枠14の枠孔部12を覆うように配置された膜18aを枠14と棒等の固定部材との間に挟み、固定部材をネジやビス等の固定具を用いて枠14に固定する方法等を挙げることができる。
 また、枠14と膜18aとが、同じ材質からなり、一体的に形成されている構成であってもよい。
 枠14と膜18aとが一体となった構成は、圧縮成形、射出成形、インプリント、削り出し加工、および3次元形状形成(3D)プリンタを用いた加工方法などの単純な工程で作製することができる。
 膜18aには、即ち防音セル26には、1以上の貫通孔22からなる開口部24を有する。
 図6および図7に示すように、防音構造10は、膜18aに穿孔された1以上の貫通孔22からなる開口部24を有することにより、膜18aの第1固有振動周波数より低周波側に遮蔽がピーク(極大)となる透過損失のピークを有する。この遮蔽(透過損失)がピーク(極大)となる周波数を遮蔽ピーク周波数と呼ぶ。
 この遮蔽ピーク周波数は、防音構造10aの防音セル26の膜18aに主として依存する第1固有振動周波数より低周波側に開口部24の貫通孔22に起因して現れるものである。遮蔽ピーク周波数は、枠14(または膜18a)の大きさに対する開口部24の大きさ、詳細には、枠14の枠孔部12(又は枠孔部12を覆う膜18a)の面積に対する貫通孔22の総面積の割合である開口部24の開口率に応じて決まるものである。
 ここで、貫通孔22は、図6に示すように、防音セル26の枠孔部12を覆う膜18a内に1以上穿孔されていれば良い。また、貫通孔22の穿孔位置は、図6に示すように、防音セル26又は膜18a(以下、防音セル26で代表する)内の真中であっても良いが、本発明はこれに限定されず、図8に示すように、防音セル26の真中である必要はなく、どの位置に穿孔されていても良い。
 即ち、単に、貫通孔22の穿孔位置が変わっただけでは、防音構造10aの遮音特性は変化しない。
 また、防音セル26内の開口部24を構成する貫通孔22の数は、図6に示すように、1個の防音セル26に対して、1個であっても良いが、本発明はこれに限定されず、図8に示すように、2個以上(即ち複数)であっても良い。
 ここで、通気性の点からは、図6に示すように、各防音セル26の開口部24は、1つの貫通孔22で構成することが好ましい。その理由は、一定の開口率の場合、風としての空気の通り易さは、一つの穴が大きく境界での粘性が大きく働かない場合の方が大きいためである。
 一方、1個の防音セル26内に複数の貫通孔22がある時は、防音構造10aの遮音特性は、複数の貫通孔22の合計面積(即ち開口部24の面積)に対応した遮音特性(即ち、対応する遮音ピーク周波数)において対応する遮音ピークを示す。したがって、図8に示すように、1個の防音セル26(又は膜18a)内にある複数の貫通孔22Cの合計面積である開口部24の面積が、他の防音セル26(又は膜18a)内に1個のみ有する貫通孔22の面積である開口部24の面積に等しいことが好ましいが、本発明はこれに限定されない。
 なお、防音セル26内の開口部24の開口率(枠孔部12を覆う膜18aの面積に対する開口部24の面積率(全ての貫通孔22の合計面積の割合))が同一の場合には、単一貫通孔22と複数貫通孔22で同様の防音構造10aが得られるため、ある貫通孔22のサイズに固定しても様々な周波数帯の防音構造を作製することができる。
 防音構造10aにおいては、防音セル26内の開口部24の開口率(面積率)は、特に制限的ではなく、選択的に遮音するべき遮音周波数帯域に応じて設定すれば良いが、0.000001%~70%であるのが好ましく、0.000005%~50%であるのがより好ましく、0.00001%~30%であるのが好ましい。開口部24の開口率を上記範囲に設定することにより、選択的に遮音するべき遮音周波数帯域の中心となる遮音ピーク周波数及び遮音ピークの透過損失を決定することができる。
 防音構造10aは、製造適性の点からは、1つの防音セル26内には、同一サイズの貫通孔22を複数個有することが好ましい。即ち、各防音セル26の開口部24は、同一サイズの複数の貫通孔22で構成することが好ましい。
 更に、防音構造10aは、全ての防音セル26の開口部24を構成する貫通孔22を同一サイズの穴とすることが好ましい。
 本発明においては、貫通孔22は、エネルギーを吸収する加工方法、例えばレーザー加工によって穿孔されることが好ましく、又は物理的接触による機械加工方法、例えばパンチング、又は針加工によって穿孔されることが好ましい。
 このため、1つの防音セル26内の複数の貫通孔22、又は、全ての防音セル26内の1個又は複数個の貫通孔22を同一サイズとすると、レーザー加工、パンチング、又は針加工で穴をあける場合に、加工装置の設定や加工強度を変えることなく連続して穴をあけることができる。
 また、図9に示すように、防音構造10aにおいては、防音セル26(又は膜18a)内の貫通孔22のサイズ(大きさ)は、各防音セル26(又は膜18a)毎に異なっていても良い。このように防音セル26(又は膜18a)毎にサイズの異なる貫通孔22がある場合には、それらの貫通孔22の面積を平均した平均面積に対応した遮音特性、即ち、対応する遮音ピーク周波数において対応する遮音ピークを示す。
 また、本発明の防音構造10の各防音セル26の開口部24は、70%以上が同一サイズの穴で構成されることが好ましい。
 開口部24を構成する貫通孔22のサイズは、上述した加工方法で適切に穿孔できれば、どのようなサイズでも良く、特に限定されない。
 しかしながら、貫通孔22のサイズは、その下限側では、レーザーの絞りの精度等のレーザー加工の加工精度、又はパンチング加工もしくは針加工などの加工精度や加工の容易性などの製造適性の点から、2μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることが最も好ましい。
 なお、これらの貫通孔22のサイズの上限値は、枠14のサイズより小さい必要があるので、通常、枠14のサイズはmmオーダであり、貫通孔22のサイズをμmオーダに設定しておけば、貫通孔22のサイズの上限値は、枠14のサイズを超えることはないが、もし、超えた場合には、貫通孔22のサイズの上限値を枠14のサイズ以下に設定すればよい。
 なお、防音構造10aの防音においては、音が振動でなく音響波として透過できる貫通する貫通孔22と、膜振動として音が通過する膜18aとの両方が存在していることが重要となる。
 よって、音が透過できる貫通孔22は、音が膜振動ではなく、空気を伝わる音響波として通ることのできる部材で覆われている状態でも、開放されているときと同様に遮音のピークを得ることができる。このような部材は、一般に通気性のある部材となる。
 このような通気性のある代表的な部材としては網戸の網があげられる。一例として、NBCメッシュテック社製のアミドロジー30メッシュ品が挙げられるが、本発明者らは、これによって貫通する貫通孔22を塞いでも得られるスペクトルは変化しないことを確認している。
 網は、格子状であっても良いし、三角格子状であっても良く、特にその形状には依存しないし、制限されない。網全体のサイズは、本発明の枠体のサイズよりも大きくても良いし、小さくても良い。また、網のサイズは、膜18aの貫通孔22を1つ1つ覆うサイズであっても良い。また、網は、その網目がいわゆる虫よけを目的とするサイズの網であっても良いし、もっと細かな砂の進入を防ぐ網でも良い。素材は、合成樹脂からなる網でも良いし、防犯用、電波遮蔽用の針金であっても良い。
 また、上述の通気性のある部材は、網戸の網に限定されず、網の他にも、不織布素材、ウレタン素材、シンサレート(3M社製)、ブレスエアー(東洋紡社製)、ドットエアー(東レ社製)などが挙げられる。本発明では、このような通気性を有する素材で覆うことによって、虫や砂が孔から侵入することを防ぐこと、貫通する貫通孔22の部分から中が見える等を防止することなどができる。
 また、防音構造10aの防音においては、音が振動でなく音響波として透過できる貫通する貫通孔22と、膜振動として音が通過する膜18aとの両方が存在していることが重要となるため、枠14の枠孔部の両端部は共に閉塞されないように、ハウジング開口部106aに配置される。
 防音構造10aは、基本的に以上のように構成される。
 防音構造10aは、以上のように構成されているため、従来の防音構造において困難であった低周波遮蔽を可能にし、さらに、低周波から1000Hzを超える周波数まで様々な周波数の騒音に合わせて強く遮音する構造を設計できるという特徴も有する。また、防音構造10aは、構造の質量(質量則)によらない遮音原理であるため、従来の防音構造と比較して非常に軽量かつ薄い遮音構造を実現できるために、イヤーマフの大きさや重さを増加させることなく、十分な防音性能を得られる。
 また、防音構造10aは、膜18aに貫通孔22を有するので通気性を持つ、すなわち、風や熱を通しながら音を遮蔽する構造を実現できる。
 また、防音構造10aの枠14(枠体16)および膜18a(膜体20a)の形成材料として、樹脂等の非磁性体を用いることができるため、ヘッドバンド104、ハウジング106およびイヤーパッド108等を樹脂等の非磁性体の材料で形成することによってイヤーマフ100全体を非磁性体で形成することができ、MRI(magnetic resonance imaging)検査等でも好適に利用可能である。
 防音構造10aは、以下のようにして製造される。
 まず、複数(例えば225)の枠14を有する枠体16と、枠体16の全ての枠14の枠孔部12を全て覆うシート状の膜体20aを準備する。
 次に、枠体16の全ての枠14にシート状の膜体20aを接着剤によって固定し、全ての枠14の枠孔部12をそれぞれ覆う膜18aを形成して、枠14と膜18aとからなる構造を持つ複数の防音セルを構成する。
 次いで、複数の防音セルの個々の膜18aに、レーザー加工などのエネルギーを吸収する加工方法、もしくはパンチング、又は針加工などの物理的接触による機械加工方法によって1個以上の貫通孔22をそれぞれ穿孔して、各防音セル26に開口部24を形成する。
 こうして、防音構造10aを製造することができる。
 次に、防音構造の他の一例を説明する。
 図10Aは、防音構造の他の一例を模式的に示す正面図であり、図10Bは、図10AのB-B線断面図である。
 なお、図10Aおよび図10Bに示す防音構造10bは、膜18b上に錘25を有する以外は、図6および図7に示す防音構造10aと同様の構成を有するので、同じ部位には同じ符号を付し以下の説明は異なる部位を主に行う。
 図10Aおよび図10Bに示す防音構造10bは、音が透過する枠孔部12をそれぞれ有し、2次元的に配置された複数(図示例では4個)の枠14を形成する枠体16と、それぞれの枠14の枠孔部12を覆うようにそれぞれの枠14に固定される複数(図示例では4個)の膜18bを形成するシート状の膜体20bと、それぞれの枠14内の膜18bに貫通するように穿孔された1以上(図示例では1個)の貫通孔22からなる複数(図示例では4個)の開口部24と、それぞれの枠14内の膜18b上に配置された1以上(図示例では4個)の錘25とを有する。
 なお、図10Aにおいては、防音構造10bの構成を説明するため、膜18bを透過して枠14の構造を示すと共に、膜18bに網点を付して示す。
 防音構造10bにおいて、1つの枠14と、この枠14に固定された膜18bと、この膜18bに設けられた開口部24と、膜18b上に配置された錘25は、1つの防音セル26を構成する。このため、本発明の防音構造10bは、複数(図示例では4個)の防音セル26によって構成される。
 膜18bは、錘25を配置される以外は膜18aと同様のものである。
 なお、本発明者らの知見にしたがえば、貫通孔22および錘25が設けられた膜18bを用いる防音構造10bでは、膜18bには開口部24を構成する貫通孔22が貫通穴として穿孔されていることから、第1固有振動周波数よりも低周波側の第1遮蔽ピーク周波数において透過損失がピーク(極大)となる音波の遮蔽のピークが現れ、さらに、膜18b上に錘25が配置されていることから、第1固有振動周波数よりも高周波側の第2遮蔽ピーク周波数において透過損失がピーク(極大)となる音波の遮蔽のピークが現れる。
 したがって、防音構造10bは、第1遮蔽ピーク周波数および第2遮蔽ピーク周波数において遮蔽(透過損失)がピーク(極大)となるため、第1遮蔽ピーク周波数を中心とする一定の周波数帯域の音、および、第2遮蔽ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することができる。
 このため、枠14及び膜18bからなる構造において、1以上の貫通孔22からなる開口部24に依存する第1遮蔽ピーク周波数を可聴域内の任意の周波数とし、また、錘25に依存する第2遮蔽ピーク周波数を可聴域内の任意の周波数とするためには、固有振動モードを可聴域内に得ることが重要であり、特に、実用的には重要となる。そのため、上述した防音構造10aの膜10aと同様に、膜18bの厚さ、膜18bの材質のヤング率、密度、ならびに、枠14のサイズ等を適宜設定すればよい。
 また、膜18bの枠14での配置位置、および、枠14への膜18bの固定方法も防音構造10aと同様である。
 膜18bには、1以上の貫通孔22からなる開口部24を有する。開口部24を有することにより、防音構造10aと同様に、膜18bの第1固有振動周波数より低周波側に遮蔽がピーク(極大)となる透過損失のピークを有する。この遮蔽(透過損失)がピーク(極大)となる周波数を第1遮蔽ピーク周波数と呼ぶ。
 なお、防音構造10aと同様に、各防音セル26内の開口部24を構成する貫通孔22の数は2個以上あってもよい。また、貫通孔22の大きさは同じでも異なっていてもよい。また、各防音セル26の開口部24の面積は、等しくても異なっていてもよい。
 防音セル26は、膜18b上に配置された1以上の錘25を有する。
 ここで、前述のとおり、防音構造10bにおいては、膜18b上に配置された錘25を有することにより、膜18bの第1固有振動周波数より高周波側に遮蔽がピーク(極大)となる透過損失のピークを有する。この遮蔽(透過損失)がピーク(極大)となる周波数を第2遮蔽ピーク周波数と呼ぶ。
 この第2遮蔽ピーク周波数は、防音構造10bの防音セル26の膜18bに主として依存する第1固有振動周波数より高周波側に、錘25に起因して現れるものである。第2遮蔽ピーク周波数は、錘25の重さ、詳細には、錘25の重さと膜18bの剛性に応じて決まるものである。
 ここで、錘25は、防音セル26の枠孔部12を覆う膜18b上に1以上配置されていれば良い。また、錘25の配置位置は、防音セル26(膜18b)内の真中であっても良いが、本発明はこれに限定されず、防音セル26の真中である必要はなく、どの位置に配置されていても良い。
 また、図10Bに示す例では、錘25は、膜18bの前面側(枠14とは反対側の面)に配置される構成としたが、これに限定はされず、膜18bの裏面側、すなわち、枠14の枠孔部12内に配置される構成としてもよい。あるいは、膜18bの両面に配置されてもよい。
 また、防音セル26内の錘25の数は、1個の防音セル26に対して、1個であっても良いが、本発明はこれに限定されず、2個以上(即ち複数)であっても良い。
 本発明においては、防音セル26内の錘25の重さは、特に制限的ではなく、選択的に遮音するべき遮音周波数帯域に応じて設定すれば良いが、0.01g~10gであるのが好ましく、0.1g~1gであるのがより好ましい。錘25の重さを上記範囲に設定することにより、選択的に遮音するべき遮音周波数帯域の中心となる第2遮音ピーク周波数及び遮音ピークの透過損失を決定することができる。
 また、錘25の形状にも特に限定はなく、板状、円柱状、筒状等の種々の形状とすることができる。
 ここで、膜18bの振動を阻害しない等の観点から、平面視における、膜18bの面積に対する錘25の面積の割合は、50%以下が好ましく、10%以下がより好ましい。
 また、錘25の材料には特に限定はなく、上述した防音対象物及びその防音環境などに応じて選択することができる。
 具体的には、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、これらの合金等の金属材料、アクリル樹脂、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリイミド、トリアセチルセルロース等の樹脂材料、フェライト磁石、ネオジウム磁石等の磁性体、炭素繊維強化プラスチック(CFRP)、カーボンファイバ、ガラス繊維強化プラスチック(GFRP)等を挙げることができる。
 ここで、上述のとおり、膜18bの面積に対する錘25の面積の割合は、小さいほうが好ましく、かつ、所定の範囲の十分な重さを有することが望ましい。したがって、錘25の材料としては、密度の高い材料を用いるのが好ましい。この点から、錘25の材料としては、鉄、スチール等の金属がより好ましい。
 本発明においては、錘25の膜18bへの固定方法には特に限定はなく、例えば、接着剤を用いる方法、両面テープを用いる方法などを挙げることができる。接着剤としては、例えば、エポキシ系接着剤(アラルダイト等)、シアノアクリレート系接着剤(アロンアルフアなど)、アクリル系接着剤等を挙げることができる。
 また、本発明の防音構造10においては、防音セル26の錘25の重さは、各防音セル26毎に異なっていても良い。このように防音セル26毎に重さの異なる錘25がある場合には、それらの錘25の重さを平均した平均値に対応した遮音特性、即ち、対応する第2遮音ピーク周波数において対応する遮音ピークを示す。
 また、本発明の防音構造10の各防音セル26の錘25は、70%以上が同一の重さの錘で構成されることが好ましい。
 防音構造10bは、以上のように構成されているため、従来の防音構造において困難であった低周波遮蔽を可能にし、さらに、低周波から1000Hzを超える周波数まで様々な周波数の騒音に合わせて強く遮音する構造を設計できるという特徴も有する。また、遮蔽ピークを2つ有する構成とすることができるので、複数の騒音源からの音を遮る用途に用いることもできる。
 また、本発明の防音構造は、構造の質量(質量則)によらない遮音原理であるため、従来の防音構造と比較して非常に軽量かつ薄い遮音構造を実現できるために、イヤーマフの大きさや重さを増加させることなく、十分な防音性能を得られる。
 また、防音構造10bは、膜18bに貫通孔22を有するので通気性を持ちながら音を遮蔽する構造、すなわち、風や熱を通しながら音を遮蔽する構造を実現できる。
 防音構造10bの製造方法は、防音構造10aと同様の製造方法において、貫通孔22の形成前、あるいは、形成後に、複数の防音セルの個々の膜18bに、接着剤あるいは両面テープ等を用いて錘25を固定することによって、枠14と膜18bと開口部24と錘25とを有する防音セルを有する防音構造10bを製造することができる。
 ここで、図10Aに示す例においては、貫通孔22と錘25とは、膜18b上にそれぞれ独立して設けられているがこれに限定はされず、貫通孔22が、膜18bおよび錘25を貫通するように形成されていてもよい。
 言い換えると、錘25は円筒状であり、この円筒の中空部の中心軸と、貫通孔22の中心軸とを一致させて、錘25と貫通孔22とが重なるように配置した構成としてもよい。
 また、貫通孔22の数と錘25の数とは同じであってもよいが異なっていてもよい。
 例えば、膜18bの中央に穿孔された1つの貫通孔22と、この貫通孔22の周囲に配置される4つの錘25とを有する構成であってもよいし、あるいは、膜18bの中央に配置された1つの錘25と、この錘25の周囲に穿孔された4つの貫通孔22を有する構成であってもよい。
 さらに、防音構造の他の一例を説明する。
 図11は、防音構造の他の一例を模式的に示す正面図であり、図12は、図11に示す防音構造のII-II線断面図である。
 なお、図11においては、構成を明確にするため、膜18cにハッチングを付して示す。
 また、図11および図12に示す防音構造10cは、膜18c上に貫通孔22を有さない防音セルと、膜を有さない防音セルとを有する以外は、図6および図7に示す防音構造10aと同様の構成を有するので、同じ部位には同じ符号を付し以下の説明は異なる部位を主に行う。
 図11および図12に示すように、防音構造10cは、2次元的に配列された複数の、図示例では4×4に配列された16個の防音セルを有しており、防音セルのうち1つが、第2の枠孔部36を有する第2の枠34からなる第2の防音セル30であり、残りの15個の防音セルが、第1の枠孔部38を有する枠(第1の枠)14とこの枠14の一方の開口面を覆うように配置されて枠14に固定される膜18cとを備える第1の防音セル32である。
 また、2次元的に配列された第2の防音セル30および第1の防音セル32は、第2の枠孔部36の開口面および膜18cの表面を同一方向に向けて配列される。
 また、防音セルが2次元的に配列される面に垂直な方向から見た際(以下、「平面視」ともいう)の、第2の防音セル30(第2の枠孔部36の開口部)および第1の防音セル32(第1の枠孔部38の開口部)の形状は略正方形状である。
 第1の防音セル32は、枠14の第1の枠孔部38を膜18cで覆う構成を有する。第1の防音セル32は、このような構成により、外部からの音波に対応して膜18cが振動して音波のエネルギーを吸収、もしくは反射して防音するものである。そのため、膜18cは、空気に対して不浸透性であることが好ましい。
 ここで、第1の防音セル32の、枠14に固定された膜18cは、最も低次の固有振動モードの周波数である共振周波数として、透過損失が最小、例えば0dBとなる第1固有振動周波数を持つものである。この第1固有振動周波数は、枠14の幾何学的形状や膜18cの剛性等によって決まるものである。
 また、第2の防音セル30は、第2の枠孔部36を有する第2の枠34からなる構成を有する。そのため、外部からの音波は透過する。
 ここで、第1の防音セル32を透過する音波のうち、第1固有振動周波数よりも低周波の音波は、第1の防音セル32を透過する際に、略90°の位相遅れが生じ、第1固有振動周波数よりも高周波の音波は、第1の防音セル32を透過する際に、略90°の位相進みが生じる。
 一方、第2の防音セル30を透過する音波は、第2の防音セル30の第2の枠孔部36の構造(開口径および経路長)に依存して位相進みが生じる。
 ここで、経路長とは、第2の防音セル30を透過する音波の最短の伝播経路の長さであり、図12においては、第2の枠34の厚さが経路長である。
 そのため、第2の防音セル30を透過する音波と、第1の防音セル32を透過する音波のうち、第1固有振動周波数よりも低周波の音波との間に位相差が生じ互いに打ち消しあい、第1固有振動周波数より低周波側で防音することが可能となる。
 この際、第2の防音セル30の第2の枠孔部36に起因して、第1固有振動周波数より低周波側の所定の周波数を遮蔽のピークとして、この周波数を中心とする一定の周波数帯域の音を選択的に防音することができる。
 ここで、以下の説明では、第2の防音セル30の第2の枠孔部36に起因して定まる、第1固有振動周波数より低周波側で、透過損失が極大となる遮蔽のピーク波長を「第3遮蔽ピーク周波数」という。
 防音構造10cは、上述のとおり、第2の枠孔部36を有する第2の枠34からなる第2の防音セル30、および、第1の枠孔部38を有する枠14と、枠14に固定される膜18cとを備える第1の防音セル32を有することによって、第2の防音セル30を透過する音波と、第1の防音セル32を透過する音波のうち、第1の防音セル32の第1固有振動周波数よりも低周波の音波との間に位相差が生じ、互いに打ち消しあい、第1固有振動周波数より低周波側の第3遮蔽ピーク周波数を中心とする一定の周波数帯域で防音することが可能となる。
 また、第2の防音セル30は、膜を有さず、第2の枠34の第2の枠孔部34がふさがれていないため、風、及び熱を通すことができる。したがって、通気性を持ちながら音を遮蔽する、すなわち、風や熱を通しながら音を遮蔽する構造を実現できる。
 また、膜を有さない第2の防音セル30の位置に遮音特性がほとんど依存しないため、製造において安定性が高いという利点がある。
 また、膜を有さない第2の防音セル30を設けるのみで、任意の狙った周波数成分を極めて強く遮蔽することができ、また、第1の防音セル32の膜18cの第1固有振動周波数よりも低周波側で防音することができるので、より低周波領域での遮音特性を向上することができる。
 なお、第2の防音セル30が、透過する音波に対して生じさせる位相進みは、20°以上が好ましく、55°以上がより好ましい。
 第2の防音セル30および第1の防音セル32を透過する音波の振幅が等しい条件において、第2の防音セル30による位相進みが20°の場合には、5dB以上の透過損失(遮音特性)を得ることができ、位相進みが55°の場合には、10dB以上の透過損失を得ることができる。
 ここで、図示例においては、第2の枠34および枠14は全て一体的に形成されており、1つの枠体16により構成されている。すなわち、防音構造10aの枠体16と同様のものである。
 また、第1の防音セル32の膜18cは全て一体的に形成されており、1つの膜体20cにより構成されている。
 すなわち、防音構造10cは、2次元的に配列された16個の枠孔部を有する枠体16と、枠体16の一方の面側で、枠体16の各貫通孔の開口面を覆うように枠体16に固定される膜体20cとを有し、膜体20cは、16個の枠孔部のうちの1つの枠孔部に対応する領域に、枠孔部の開口の大きさと略同じ大きさの開口部を有する構成である。これにより、枠体16の各枠孔部に対応する部位が、1つの第2の防音セル30および15個の第1の防音セル32を構成している。
 また、図示例においては、防音構造10cは、1つの第2の防音セル30と15個の第1の防音セル32との合計16個の防音セルを有する構成としたが、1以上の第2の防音セル30と、1以上の第1の防音セル32とを有する構成であればよい。
 例えば、2個の第2の防音セル30と、14個の第1の防音セル32との16個の防音セルを有する構成であってもよい。あるいは、例えば、1個の第2の防音セル30と24個の第1の防音セル32との25個の防音セルを有する構成であってもよい。
 また、防音構造10cの平面視における面積(すなわち、第2の防音セル30および第1の防音セル32の前面の合計面積)に対する、第2の防音セル30の第2の枠孔部36の合計面積の割合(開口率)は、0.1%~50%が好ましく、1%~10%がより好ましい。
 また、防音構造10c内における、第2の防音セル30と第1の防音セル32との配置位置にも特に限定はないが、互いに均一に配置されるのが好ましい。
 また、図11においては、平面視での、第2の防音セル30の大きさ(すなわち、第2の枠孔部36の大きさ)と、第1の防音セル32の大きさ(すなわち、第1の枠孔部38の大きさ)は、同じ大きさとしたがこれに限定はされず、第2の防音セル30の大きさと第1の防音セル32の大きさが互いに異なっていてもよい。
 また、2以上の第2の防音セル30を有する場合には、2以上の第2の防音セル30の大きさは互いに異なっていてもよい。
 同様に、2以上の第1の防音セル32を有する場合には、2以上の第1の防音セル32の大きさは互いに異なっていてもよい。
 製造効率の観点から、全ての枠孔部の大きさ、すなわち、防音セルの大きさは同じであるのが好ましい。
 また、2以上の第1の防音セル32を有する場合には、膜18cの第1固有振動周波数が互いに異なる2種以上の第1の防音セル32を有する構成としてもよい。
 同様に、2以上の第2の防音セル30を有する場合には、第2の枠孔部36の開口径や経路長が互いに異なる2種以上の第2の防音セル30を有する構成としてもよい。
 ここで、前述のとおり、第2の枠34に形成される第2の枠孔部36の構造、具体的には、開口径および経路長に応じて、第3遮蔽ピーク周波数が定まる。
 したがって、第2の枠34の厚さは、枠のサイズや防音する周波数帯域に応じて、任意の第3遮蔽ピーク周波数となるように厚さを設定すればよい。
 また、枠14の厚さと第2の枠34の厚さとは異なっていてもよい。第2の枠34の厚さを調整して第2の枠34の第2の枠孔部36の経路長を調整することによって、第2の防音セル30による位相進みの量を調整して、第3遮蔽ピーク周波数を所望の周波数に定めることができる。
 また、第2の枠34の第2の枠孔部36の形状は、直管形状には限定はされず、第2の枠孔部36の形状を適宜設定することによって、第3遮蔽ピーク周波数を所望の周波数に定める構成としてもよい。
 例えば、第2の防音セル30を構成する第2の枠34の第2の枠孔部36を、中心軸方向において、S字状に何度も折れ曲がった形状とすることによって、透過する音波の経路長を長くして、第2の防音セル30による位相進みの量を調整して、第3遮蔽ピーク周波数を所望の周波数に定めることができる。
 また、第2の防音セル30を構成する第2の枠34に、第2の枠孔部36の中心軸方向に直交する方向に延在する整流板を1以上設ける構成として、音波の経路長を長くする構成としてもよい。
 また、防音構造10cは、このような第2の枠孔部36における開口径や音波の経路長が異なる2種以上の第2の防音セル30を有する構成としてもよい。
 膜18cは、貫通孔を有さない以外は防音構造10aの膜18aと同様のものである。
 ここで、前述のとおり、防音構造10cにおいては、膜を有さない第2の防音セル30を透過する音波と、第1の防音セル32を透過する音波のうち、第1固有振動周波数よりも低周波の音波との間に位相差が生じ互いに打ち消しあうことによって、第1固有振動周波数より低周波側で防音することが可能となる。
 このため、防音構造10cにおいて、遮蔽ピーク周波数を可聴域内の任意の周波数とするためには、第1の防音セル32の膜18cの固有振動モードをできるだけ高周波側に得ることが重要であり、特に、実用的には重要となる。そのため、上述した防音構造10aの膜10aと同様に、膜18cの厚さ、膜18cの材質のヤング率、密度、ならびに、枠14のサイズ等を適宜設定すればよい。
 また、膜18cの枠14での配置位置、および、枠14への膜18cの固定方法も防音構造10aと同様である。
 ここで、防音構造10cのサイズは、第3遮蔽ピーク周波数における音の波長以下の大きさであるのが好ましい。本発明者らの検討によれば、防音構造のサイズを、第3遮蔽ピーク周波数における音の波長以上の大きさとすると、透過位相差が乱れ始めることがわかった。
 前述のとおり、防音構造10cは、第2の防音セル30を透過する音波と、第1の防音セル32を透過する音波との位相差を制御することによって高い遮音特性を発現するものである。そのため、位相の乱れが生じると、第3遮蔽ピーク周波数を制御することができず、所望の遮音特性を発現するのが困難になる。
 したがって、防音構造10cのサイズは、第3遮蔽ピーク周波数における音の波長以下の大きさであるのが好ましい。
 また、本発明者らの検討によれば、防音構造10cのサイズを、遮蔽したい周波数における音の波長以下の大きさとすることによって、より好適に遮音することが可能となることがわかった。
 また、防音構造10cにおいては、第2の防音セル30の第2の枠孔部36の内部に吸音部材や吸臭材等を配置してもよい。
 吸音部材を配置することによって、吸音部材による吸音効果により、遮音特性をより向上できる。
 吸音部材としては、特に限定はなく、ウレタン板、不織布等の種々の公知の吸音部材が利用可能である。
 吸臭材としては、特に限定はなく、活性炭を配合された消臭シート(例えば、セミア消臭シート:旭化成せんい株式会社製)、触媒を用いた消臭シート(例えば、ダイノックフィルム:3M社製)等の種々の公知の吸臭材が利用可能である。
 また、防音構造10cにおいては、第2の防音セル30の第2の枠孔部36は、音が音響波として通ることのできる部材で覆われていてもよい。
 防音構造10cにおける防音は、音が振動でなく音響波として透過できる枠孔部と膜振動として音が通過する膜の両方が存在していることが重要となる。よって、音が透過できる枠孔部が、音が音響波として通ることのできる部材で覆われている状態でも、開放されているときと同様に遮音のピークを得ることができる。このような部材は、一般に通気性のある部材となる。
 このような通気性のある部材の例としては、防音構造10aで挙げた通気性のある部材を用いることができる。
 次に、防音構造10cの製造方法の一例を説明する。
 まず、複数、例えば225の貫通孔を有する枠体16と、枠体16の全ての貫通孔を覆うシート状の膜体20cを準備する。
 次に、枠体16の全ての枠(フレーム部)にシート状の膜体20cを接着剤によって固定し、全ての貫通孔をそれぞれ覆う膜18cを形成して、枠14と膜18cとからなる構造を持つ第1の防音セル32を複数構成する。
 次いで、複数の第1の防音セル32のうち所定の位置の防音セルにおいて、レーザー加工などのエネルギーを吸収する加工方法、もしくはカッターなどの物理的接触による機械加工方法によって膜18cを除去して、枠孔部を露出させることによって、第2の防音セル30を形成する。
 こうして、防音構造10cを製造することができる。
 さらに、防音構造の他の一例を説明する。
 図13は、防音構造の他の一例を模式的に示す正面図であり、図14は、図13のB-B線断面図である。
 図13および図14の防音構造10dは、厚み方向に貫通する複数の貫通孔42を有する板状部材40を備え、貫通孔42の平均開口径が0.1μm以上100μm未満であり、貫通孔の平均開口径をphi(μm)、板状部材の厚みをt(μm)としたときに、貫通孔の平均開口率rhoは、0より大きく1より小さい範囲であって、rho_center=(2+0.25×t)×phi-1.6を中心として、rho_center-(0.052×(phi/30)-2)を下限として、rho_center+(0.795×(phi/30)-2)を上限とする範囲にある防音構造である。
 板状部材40に形成される複数の貫通孔42は、平均開口径が0.1μm以上100μm未満である。
 また、貫通孔の平均開口率rhoは、貫通孔の平均開口径をphi(μm)、板状部材の厚みをt(μm)としたときに、rho_center=(2+0.25×t)×phi-1.6を中心として、rho_center-(0.052×(phi/30)-2)を下限として、rho_center+(0.795×(phi/30)-2)を上限とする範囲にある。なお、貫通孔の平均開口率rhoは、0より大きく1より小さい範囲にある。
 本発明者らは、厚み方向に貫通する複数の貫通孔を有する板状部材を備え、貫通孔の平均開口径が0.1μm以上100μm未満であり、平均開口率を上記範囲の防音構造とすることによって、吸音効果が得られることを見出した。
 本発明者らは、防音構造10dの吸音のメカニズムは、微細な貫通孔42を音が通る際の、貫通孔42の内壁面と空気との摩擦による、音のエネルギーの熱エネルギーへの変化であると推定した。このメカニズムは貫通孔42のサイズが微細なことによって生じるため、共振によるメカニズムとは異なる。貫通孔42によって空気中の音として直接通過するパスは、いったん膜振動に変換されてから再び音として放射されるパスに比べて、インピーダンスが遥かに小さい。したがって、膜振動よりも微細な貫通孔42のパスを音は通りやすい。その貫通孔42部分を通過する際に、板状部材40上全体の広い面積から貫通孔42の狭い面積へと音が集約されて通過する。貫通孔42の中で音が集まることによって局所速度が極めて大きくなる。摩擦は速度と相関するために、微細な貫通孔42内で摩擦が大きくなり熱に変換される。
 貫通孔42の平均開口径が小さい場合は、開口面積に対する円周長さの比率が大きくなるため、貫通孔42の縁部や内壁面で生じる摩擦を大きくすることができると考えられる。貫通孔42を通る際の摩擦を大きくすることによって、音のエネルギーを熱エネルギーへと変換して、吸音することができる。
 また、本発明者らの検討によれば、貫通孔42の平均開口率に最適な割合が存在し、特に平均開口径が50μm程度以上と比較的大きいときには平均開口率が小さいほど吸収率が高くなることを見出した。平均開口率が大きい場合には、多くの貫通孔42のそれぞれを音が通過するのに対して、平均開口率が小さい場合には、貫通孔42の数が少なくなるため、1つの貫通孔42を通過する音が多くなり、貫通孔42を通過する際の空気の局所速度がより増大して、貫通孔42の縁部や内壁面で生じる摩擦をより大きくすることができると考えられる。
 このように、防音構造10dは、微細な貫通孔42を有する板状部材40単体で機能するので、サイズを小さくすることができる。
 また、上述のように、防音構造10dは、音が貫通孔42を通過する際の摩擦で吸音するので、音の周波数帯によらず吸音することができ、広帯域で吸音することができる。
 また、貫通孔42を有するため通気性を確保できる。
 ここで、吸音性能等の観点から、貫通孔42の平均開口径は、100μm未満であり、80μm以下が好ましく、70μm以下がより好ましく、50um以下が最も好ましい。これは、貫通孔42の平均開口径が小さくなるほど、貫通孔42の開口面積に対する貫通孔42の中で摩擦に寄与する外周部の長さの比率が大きくなり、摩擦が生じやすくなることによる。
 また、貫通孔の平均開口率rhoは、前述のとおり、平均開口径をphi(μm)、板状部材の厚みをt(μm)としたときに、0より大きく1より小さい範囲であって、貫通孔の平均開口率rhoが rho_center=(2+0.25×t)×phi-1.6を中心として、rho_center-(0.052×(phi/30)-2)を下限として、rho_center+(0.795×(phi/30)-2)を上限とする範囲に入るものである。
 また、平均開口率rhoは、rho_center-0.050×(phi/30)-2以上、rho_center+0.505×(phi/30)-2以下の範囲が好ましく、rho_center-0.048×(phi/30)-2以上、rho_center+0.345×(phi/30)-2以下の範囲がより好ましく、rho_center-0.085×(phi/20)-2以上、rho_center+0.35×(phi/20)-2以下の範囲がさらに好ましく、(rho_center-0.24×(phi/10)-2)以上、(rho_center+0.57×(phi/10)-2)以下の範囲が特に好ましく、(rho_center-0.185×(phi/10)-2)以上、(rho_center+0.34×(phi/10)-2)以下の範囲が最も好ましい。この点については、後述するシミュレーションで詳細に説明する。
 なお、貫通孔42の平均開口径は、板状部材の一方の面から、高分解能走査型電子顕微鏡(SEM)を用いて板状部材40の表面を倍率200倍で撮影し、得られたSEM写真において、周囲が環状に連なっている貫通孔42を20個抽出し、その開口径を読み取って、これらの平均値を平均開口径として算出する。もし、1枚のSEM写真内に貫通孔が20個未満の場合は、周辺の別の位置でSEM写真を撮影し、合計個数が20個になるまでカウントする。
 なお、開口径は、貫通孔42部分の面積をそれぞれ計測し、同一の面積となる円に置き換えたときの直径(円相当径)を用いて評価した。すなわち、貫通孔42の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、同一面積となる円の直径で評価した。従って、例えば、2以上の貫通孔が一体化したような形状の貫通孔42の場合にも、これを1つの貫通孔42とみなし、貫通孔42の円相当径を開口径とする。
 これらの作業は、例えば「Image J」を用いて、Analyze Particlesにより円相当径、開口率などを全て計算することができる。
 また、平均開口率は、高分解能走査型電子顕微鏡(SEM)を用いて板状部材40の表面を真上から倍率200倍で撮影し、得られたSEM写真の30mm×30mmの視野(5箇所)について、画像解析ソフト等で2値化して貫通孔42部分と非貫通孔部分を観察し、貫通孔42の開口面積の合計と視野の面積(幾何学的面積)とから、比率(開口面積/幾何学的面積)から算出し、各視野(5箇所)における平均値を平均開口率として算出する。
 ここで、防音構造10dにおいて、複数の貫通孔42は、規則的に配列されていてもよく、ランダムに配列されていてもよい。微細な貫通孔42の生産性や、吸音特性のロバスト性、さらに音の回折を抑制する等の観点から、ランダムに配列されているのが好ましい。音の回折に関しては、貫通孔42が周期的に配列されているとその貫通孔42の周期に従って音の回折現象が生じ、音が回折により曲がり騒音の進む方向が複数に分かれる懸念がある。ランダムとは完全に配列したような周期性は持たない配置になっている状態であり、各貫通孔42による吸収効果が現れる一方で、貫通孔間最小距離による回折現象は生じない配置となる。
 また、周期的配列の貫通孔42は、ロール状の連続処理中でのエッチング処理により形成することができるが、大量生産のためには周期的配列を形成するプロセスよりも表面処理など一括でランダムなパターンを形成する方が容易であるため、生産性の観点からもランダムに配列されていることが好ましい。
 また、複数の貫通孔42は、1種類の開口径の貫通孔からなるものであってもよく、2種以上の開口径の貫通孔42からなるものであってもよい。生産性の観点、耐久性の観点等から、2種以上の開口径の貫通孔42からなるのが好ましい。
 生産性としては、上記のランダム配列と同じく、大量にエッチング処理を行う観点から孔径にばらつきを許容した方が生産性が向上する。また、耐久性の観点としては、環境によってほこりやごみのサイズが異なるため、もし1種類の開口径の貫通孔42とすると主要なゴミのサイズが貫通孔42とほぼ合致するときに全ての孔に影響を与えることとなる。複数種類の開口径の貫通孔42を設けておくことによって、様々な環境において適用できるデバイスとなる。
 また、音が貫通孔42内を通過する際の摩擦をより大きくする観点から、貫通孔42の内壁面は、粗面化されているのが好ましい。具体的には、貫通孔42の内壁面の表面粗さRaは、0.1μm以上であるのが好ましく、0.1μm~10.0μmであるのがより好ましく、0.2μm以上1.0μm以下であるのがより好ましい。
 ここで、表面粗さRaは貫通孔42内をAFM(Atomic Force Microscope)で計測することによって測定を行うことができる。粗さが数ミクロン程度であるため、AFMを用いることが他の測定方法よりスケールとして測定が容易である。
 また、貫通孔42内のSEM画像から貫通孔42内の凹凸の凸部の一つ一つを粒子とみなして、凸部の平均粒径を算出することができる。
 具体的には、2000倍の倍率で撮ったSEM画像(1mm×1mm程度の視野)をImage Jに取り込み、凸部が白となるように白黒に二値化し、その各凸部の面積をAnalyze Particlesにて求める。その各面積と同一面積となる円を想定した円相当径を各凸部について求めて、その平均値を平均粒径として算出した。
 この凸部の平均粒径は0.1μm以上10.0μm以下であることが好ましく、0.2μm以上5.0μm以下であることがより好ましい。
 また、板状部材40の厚みには限定はないが、厚みが厚いほど音が貫通孔42を通過する際に受ける摩擦エネルギーが大きくなるため吸音性能がより向上すると考えられる。また、極端に薄い場合には取り扱いが難しく破けやすいため、保持できる程度に厚い方が望ましい。一方で、小型化および通気性は厚みが薄いのが好ましい。また、貫通孔42の形成方法にエッチングなどを用いる場合は、厚みが厚いほど作製に時間がかかるため生産性の観点からは薄い方が望ましい。
 吸音性能、小型化および通気性の観点から、板状部材40の厚みは、5μm~500μmが好ましく、7μm~300μmがより好ましく、10μm~100μmが特に好ましい。
 板状部材の材質には限定はなく、アルミニウム、チタン、ニッケル、パーマロイ、42アロイ、コバール、ニクロム、銅、ベリリウム、リン青銅、黄銅、洋白、錫、亜鉛、鉄、タンタル、ニオブ、モリブデン、ジルコニウム、金、銀、白金、パラジウム、鋼鉄、タングステン、鉛、イリジウム等の各種金属、PET(ポリエチレンテレフタレート)、TAC(トリアセチルセルロース)、ポリ塩化ビニルデン、ポリエチレン、ポリ塩化ビニル、ポリメチルベンテン、COP(シクロオレフィンポリマー)、ポリカーボネート、ゼオノア、PEN(ポリエチレンナフタレート)、ポリプロピレン、ポリイミド等の樹脂材料等が利用可能である。さらに、薄膜ガラスなどのガラス材料、CFRP(炭素繊維強化プラスチック)やGFRP(ガラス繊維強化プラスチック)のような繊維強化プラスチック材料を用いることもできる。
 ヤング率が高く、厚みが薄くても膜振動が起きにくく、微小な貫通孔42での摩擦による吸音の効果が得られやすい等の観点から、金属材料を用いるのが好ましい。なかでも、軽量である、エッチング等により微小な貫通孔42を形成しやすい、入手性やコスト等の観点からアルミニウムを用いるのが好ましい。
 また、金属材料を用いる場合には、錆びの抑制等の観点から、表面に金属めっきを施してもよい。
 さらに、少なくとも貫通孔42の内表面に金属めっきを施すことによって、貫通孔42の平均開口径をより小さい範囲に調整してもよい。
 一方で、板状部材40として樹脂材料やガラス材料を用いることもできる。例えば、PETフィルムは樹脂材料の中ではヤング率も比較的高く、入手も容易で透明性も高いため、貫通孔42を形成し好適な防音構造10dとすることができる。
 <アルミニウム基材>
 板状部材として用いられるアルミニウム基材は、特に限定はされず、例えば、JIS規格H4000に記載されている合金番号1085、1N30、3003等の公知のアルミニウム基材を用いることができる。なお、アルミニウム基材は、アルミニウムを主成分とし、微量の異元素を含む合金板である。
 アルミニウム基材の厚みとしては、特に限定はないが、5μm~1000μmが好ましく、5μm~200μmがより好ましく、10μm~100μmが特に好ましい。
 次に、防音構造10dの製造方法について、アルミニウム基材を用いる場合を例に説明する。
 アルミニウム基材を用いた防音構造の製造方法は、
 アルミニウム基材の表面に水酸化アルミニウムを主成分とする皮膜を形成する皮膜形成工程と、
 皮膜形成工程の後に、貫通孔形成処理を行って貫通孔を形成する貫通孔形成工程と、
 貫通孔形成工程の後に、水酸化アルミニウム皮膜を除去する皮膜除去工程と、
を有する。
 皮膜形成工程と貫通孔形成工程と皮膜除去工程とを有することにより、平均開口径が0.1μm以上100μm未満の貫通孔を好適に形成することができる。
 次に、防音構造10dの製造方法の各工程を図15A~図15Eを用いて説明した後に、各工程について詳述する。
 図15A~図15Eは、アルミニウム基材を用いた防音構造10dの製造方法の好適な実施態様の一例を示す模式的な断面図である。
 防音構造10dの製造方法は、図15A~図15Eに示すように、アルミニウム基材41の一方の主面に対して皮膜形成処理を施し、水酸化アルミニウム皮膜43を形成する皮膜形成工程(図15Aおよび図15B)と、皮膜形成工程の後に電解溶解処理を施して貫通孔42を形成し、アルミニウム基材41および水酸化アルミニウム皮膜43に貫通孔を形成する貫通孔形成工程(図15Bおよび図15C)と、貫通孔形成工程の後に、水酸化アルミニウム皮膜43を除去し、貫通孔42を有する板状部材40からなる防音構造10dを作製する皮膜除去工程(図15Cおよび図15D)と、を有する製造方法である。
 また、防音構造10dの製造方法は、皮膜除去工程の後に、貫通孔42を有する板状部材40に電気化学的粗面化処理を施し、板状部材40の表面を粗面化する粗面化処理工程(図15Dおよび図15E)を有しているのが好ましい。
 水酸化アルミニウム皮膜には小さな孔ができやすいため、水酸化アルミニウム皮膜を形成する皮膜形成工程の後に、貫通孔形成工程において電解溶解処理を施して貫通孔を形成することによって、平均開口径が0.1μm以上100μm未満の貫通孔を形成することができる。
〔皮膜形成工程〕
 防音構造10dの製造方法が有する皮膜形成工程は、アルミニウム基材の表面に皮膜形成処理を施し、水酸化アルミニウム皮膜を形成する工程である。
 <皮膜形成処理>
 上記皮膜形成処理は特に限定されず、例えば、従来公知の水酸化アルミニウム皮膜の形成処理と同様の処理を施すことができる。
 皮膜形成処理としては、例えば、特開2011-201123号公報の<0013>~<0026>段落に記載された条件や装置を適宜採用することができる。
 本発明においては、皮膜形成処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度1~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間1秒~20分であるのが適当であり、所望の皮膜量となるように調整される。
 本発明においては、電解液として、硝酸、塩酸、硫酸、燐酸、シュウ酸、あるいは、これらの酸の2以上の混酸を用いて電気化学的処理を行うのが好ましい。
 硝酸、塩酸を含む電解液中で電気化学的処理を行う場合には、アルミニウム基材と対極との間に直流を印加してもよく、交流を印加してもよい。アルミニウム基材に直流を印加する場合においては、電流密度は、1~60A/dm2であるのが好ましく、5~50A/dm2であるのがより好ましい。連続的に電気化学的処理を行う場合には、アルミニウム基材に、電解液を介して給電する液給電方式により行うのが好ましい。
 本発明においては、皮膜形成処理により形成される水酸化アルミニウム皮膜の量は0.05~50g/m2であるのが好ましく、0.1~10g/m2であるのがより好ましい。
〔貫通孔形成工程〕
 貫通孔形成工程は、皮膜形成工程の後に電解溶解処理を施し、貫通孔を形成する工程である。
 <電解溶解処理>
 上記電解溶解処理は特に限定されず、直流または交流を用い、酸性溶液を電解液に用いることができる。中でも、硝酸、塩酸の少なくとも1以上の酸を用いて電気化学処理を行うのが好ましく、これらの酸に加えて硫酸、燐酸、シュウ酸の少なくとも1以上の混酸を用いて電気化学的処理を行うのが更に好ましい。
 本発明においては、電解液である酸性溶液としては、上記酸のほかに、米国特許第4,671,859号、同第4,661,219号、同第4,618,405号、同第4,600,482号、同第4,566,960号、同第4,566,958号、同第4,566,959号、同第4,416,972号、同第4,374,710号、同第4,336,113号、同第4,184,932号の各明細書等に記載されている電解液を用いることもできる。
 酸性溶液の濃度は0.1~2.5質量%であるのが好ましく、0.2~2.0質量%であるのが特に好ましい。また、酸性溶液の液温は20~80℃であるのが好ましく、30~60℃であるのがより好ましい。
 また、上記酸を主体とする水溶液は、濃度1~100g/Lの酸の水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウム等の硝酸イオンを有する硝酸化合物または塩化アルミニウム、塩化ナトリウム、塩化アンモニウム等の塩酸イオンを有する塩酸化合物、硫酸アルミニウム、硫酸ナトリウム、硫酸アンモニウム等の硫酸イオンを有する硫酸化合物少なくとも一つを1g/Lから飽和するまでの範囲で添加して使用することができる。
 また、上記酸を主体とする水溶液には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。好ましくは、酸の濃度0.1~2質量%の水溶液にアルミニウムイオンが1~100g/Lとなるように、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム等を添加した液を用いることが好ましい。
 電気化学的溶解処理には、主に直流電流が用いられるが、交流電流を使用する場合にはその交流電源波は特に限定されず、サイン波、矩形波、台形波、三角波等が用いられ、中でも、矩形波または台形波が好ましく、台形波が特に好ましい。
 (硝酸電解)
 本発明においては、硝酸を主体とする電解液を用いた電気化学的溶解処理(以下、「硝酸溶解処理」とも略す。)により、容易に、平均開口径が0.1μm以上100μm未満となる貫通孔を形成することができる。
 ここで、硝酸溶解処理は、貫通孔形成の溶解ポイントを制御しやすい理由から、直流電流を用い、平均電流密度を5A/dm2以上とし、かつ、電気量を50C/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、平均電流密度は100A/dm2以下であるのが好ましく、電気量は10000C/dm2以下であるのが好ましい。
 また、硝酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、硝酸濃度15~35質量%の硝酸電解液を用いて30~60℃で電解を行ったり、硝酸濃度0.7~2質量%の硝酸電解液を用いて高温、例えば、80℃以上で電解を行うことができる。
 また、上記硝酸電解液に濃度0.1~50質量%の硫酸、シュウ酸、燐酸の少なくとも1つを混ぜた電解液を用いて電解を行うことができる。
 (塩酸電解)
 本発明においては、塩酸を主体とする電解液を用いた電気化学的溶解処理(以下、「塩酸溶解処理」とも略す。)によっても、容易に、平均開口径が1μm以上100μm未満となる貫通孔を形成することができる。
 ここで、塩酸溶解処理は、貫通孔形成の溶解ポイントを制御しやすい理由から、直流電流を用い、平均電流密度を5A/dm2以上とし、かつ、電気量を50C/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、平均電流密度は100A/dm2以下であるのが好ましく、電気量は10000C/dm2以下であるのが好ましい。
 また、塩酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、塩酸濃度10~35質量%の塩酸電解液を用いて30~60℃で電解を行ったり、塩酸濃度0.7~2質量%の塩酸電解液を用いて高温、例えば、80℃以上で電解を行うことができる。
 また、上記塩酸電解液に濃度0.1~50質量%の硫酸、シュウ酸、燐酸の少なくとも1つを混ぜた電解液を用いて電解を行うことができる。
〔皮膜膜除去工程〕
 皮膜除去工程は、化学的溶解処理を行って水酸化アルミニウム皮膜を除去する工程である。
 上記皮膜除去工程は、例えば、後述する酸エッチング処理やアルカリエッチング処理を施すことにより水酸化アルミニウム皮膜を除去することができる。
 <酸エッチング処理>
 上記溶解処理は、アルミニウムよりも水酸化アルミニウムを優先的に溶解させる溶液(以下、「水酸化アルミニウム溶解液」という。)を用いて水酸化アルミニウム皮膜を溶解させる処理である。
 ここで、水酸化アルミニウム溶解液としては、例えば、硝酸、塩酸、硫酸、燐酸、シュウ酸、クロム化合物、ジルコニウム系化合物、チタン系化合物、リチウム塩、セリウム塩、マグネシウム塩、ケイフッ化ナトリウム、フッ化亜鉛、マンガン化合物、モリブデン化合物、マグネシウム化合物、バリウム化合物およびハロゲン単体からなる群から選択される少なくとも1種を含有した水溶液が好ましい。
 具体的には、クロム化合物としては、例えば、酸化クロム(III)、無水クロム(VI)酸等が挙げられる。
 ジルコニウム系化合物としては、例えば、フッ化ジルコンアンモニウム、フッ化ジルコニウム、塩化ジルコニウムが挙げられる。
 チタン化合物としては、例えば、酸化チタン、硫化チタンが挙げられる。
 リチウム塩としては、例えば、フッ化リチウム、塩化リチウムが挙げられる。
 セリウム塩としては、例えば、フッ化セリウム、塩化セリウムが挙げられる。
 マグネシウム塩としては、例えば、硫化マグネシウムが挙げられる。
 マンガン化合物としては、例えば、過マンガン酸ナトリウム、過マンガン酸カルシウムが挙げられる。
 モリブデン化合物としては、例えば、モリブデン酸ナトリウムが挙げられる。
 マグネシウム化合物としては、例えば、フッ化マグネシウム・五水和物が挙げられる。
 バリウム化合物としては、例えば、酸化バリウム、酢酸バリウム、炭酸バリウム、塩素酸バリウム、塩化バリウム、フッ化バリウム、ヨウ化バリウム、乳酸バリウム、シュウ酸バリウム、過塩素酸バリウム、セレン酸バリウム、亜セレン酸バリウム、ステアリン酸バリウム、亜硫酸バリウム、チタン酸バリウム、水酸化バリウム、硝酸バリウム、あるいはこれらの水和物等が挙げられる。
 上記バリウム化合物の中でも、酸化バリウム、酢酸バリウム、炭酸バリウムが好ましく、酸化バリウムが特に好ましい。
 ハロゲン単体としては、例えば、塩素、フッ素、臭素が挙げられる。
 中でも、上記水酸化アルミニウム溶解液が、酸を含有する水溶液であるのが好ましく、酸として、硝酸、塩酸、硫酸、燐酸、シュウ酸等が挙げられ、2種以上の酸の混合物であってもよい。
 酸濃度としては、0.01mol/L以上であるのが好ましく、0.05mol/L以上であるのがより好ましく、0.1mol/L以上であるのが更に好ましい。上限は特にないが、一般的には10mol/L以下であるのが好ましく、5mol/L以下であるのがより好ましい。
 溶解処理は、水酸化アルミニウム皮膜が形成されたアルミニウム基材を上述した溶解液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。
 浸せき法は、水酸化アルミニウム皮膜が形成されたアルミニウム基材を上述した溶解液に浸せきさせる処理である。浸せき処理の際にかくはんを行うと、ムラのない処理が行われるため、好ましい。
 浸せき処理の時間は、10分以上であるのが好ましく、1時間以上であるのがより好ましく、3時間以上、5時間以上であるのが更に好ましい。
 <アルカリエッチング処理>
 アルカリエッチング処理は、上記水酸化アルミニウム皮膜をアルカリ溶液に接触させることにより、表層を溶解させる処理である。
 アルカリ溶液に用いられるアルカリとしては、例えば、カセイアルカリ、アルカリ金属塩が挙げられる。具体的には、カセイアルカリとしては、例えば、水酸化ナトリウム(カセイソーダ)、カセイカリが挙げられる。また、アルカリ金属塩としては、例えば、メタケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第三リン酸ソーダ、第三リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。中でも、エッチング速度が速い点および安価である点から、カセイアルカリの溶液、および、カセイアルカリとアルカリ金属アルミン酸塩との両者を含有する溶液が好ましい。特に、水酸化ナトリウムの水溶液が好ましい。
 アルカリ溶液の濃度は、0.1~50質量%であるのが好ましく、0.2~10質量%であるのがより好ましい。アルカリ溶液中にアルミニウムイオンが溶解している場合には、アルミニウムイオンの濃度は、0.01~10質量%であるのが好ましく、0.1~3質量%であるのがより好ましい。アルカリ溶液の温度は10~90℃であるのが好ましい。処理時間は1~120秒であるのが好ましい。
 水酸化アルミニウム皮膜をアルカリ溶液に接触させる方法としては、例えば、水酸化アルミニウム皮膜が形成されたアルミニウム基材をアルカリ溶液を入れた槽の中を通過させる方法、水酸化アルミニウム皮膜が形成されたアルミニウム基材をアルカリ溶液を入れた槽の中に浸せきさせる方法、アルカリ溶液を水酸化アルミニウム皮膜が形成されたアルミニウム基材の表面(水酸化アルミニウム皮膜)に噴きかける方法が挙げられる。
〔粗面化処理工程〕
 本発明において、防音構造10dの製造方法が有していてもよい任意の粗面化処理工程は、水酸化アルミニウム皮膜を除去したアルミニウム基材に対して電気化学的粗面化処理(以下、「電解粗面化処理」とも略す。)を施し、アルミニウム基材の表面ないし裏面を粗面化する工程である。
 なお、上記実施形態では、貫通孔を形成した後に粗面化処理を行う構成としたが、これに限定はされず、粗面化処理の後に貫通孔を形成する構成としてもよい。
 本発明においては、硝酸を主体とする電解液を用いた電気化学的粗面化処理(以下、「硝酸電解」とも略す。)により、容易に表面を粗面化することができる。
 あるいは、塩酸を主体とする電解液を用いた電気化学的粗面化処理(以下、「塩酸電解」とも略す。)によっても、粗面化することができる。
〔金属被覆工程〕
 防音構造10dの製造方法は、上述した電解溶解処理により形成された貫通孔42の平均開口径を0.1μm~20μm程度の小さい範囲に調整できる理由から、上述した皮膜除去工程の後に、少なくとも貫通孔42の内壁を含むアルミニウム基材の表面の一部または全部をアルミニウム以外の金属で被覆する金属被覆工程を有しているのが好ましい。
 ここで、「少なくとも貫通孔42の内壁を含むアルミニウム基材の表面の一部または全部をアルミニウム以外の金属で被覆する」とは、貫通孔42の内壁を含むアルミニウム基材の全表面のうち、少なくとも貫通孔42の内壁については被覆されていることを意味しており、内壁以外の表面は、被覆されていなくてもよく、一部または全部が被覆されていてもよい。
 金属被覆工程は、貫通孔を有するアルミニウム基材に対して、例えば、後述する置換処理およびめっき処理を施すものである。
 <置換処理>
 上記置換処理は、少なくとも貫通孔の内壁を含むアルミニウム基材の表面の一部または全部に、亜鉛または亜鉛合金を置換めっきする処理である。
 置換めっき液としては、例えば、水酸化ナトリウム120g/L、酸化亜鉛20g/L、結晶性塩化第二鉄2g/L、ロッセル塩50g/L、硝酸ナトリウム1g/Lの混合溶液などが挙げられる。
 また、市販のZnまたはZn合金めっき液を使用してもよく、例えば、奥野製薬工業株式会社製サブスターZn-1、Zn-2、Zn-3、Zn-8、Zn-10、Zn-111、Zn-222、Zn-291等を使用することができる。
 このような置換めっき液へのアルミニウム基材の浸漬時間は15秒~40秒であるのが好ましく、浸漬温度は15秒~40秒であるのが好ましい。
 <めっき処理>
 上述した置換処理により、アルミニウム基材の表面に亜鉛または亜鉛合金を置換めっきして亜鉛皮膜を形成させた場合は、例えば、後述する無電解めっきにより亜鉛皮膜をニッケルに置換させた後、後述する電解めっきにより各種金属を析出させる、めっき処理を施すのが好ましい。
 (無電解めっき処理)
 無電解めっき処理に用いるニッケルめっき液としては、市販品が幅広く使用でき、例えば、硫酸ニッケル30g/L、次亜リン酸ソーダ20g/L、クエン酸アンモニウム50g/Lを含む水溶液などが挙げられる。
 また、ニッケル合金めっき液としては、りん化合物が還元剤となるNi-P合金めっき液やホウ素化合物が還元剤となるNi-Bメッキ液などが挙げられる。
 このようなニッケルめっき液やニッケル合金めっき液への浸漬時間は15秒~10分であるのが好ましく、浸漬温度は30℃~90℃であるのが好ましい。
 (電解めっき処理)
 電解めっき処理として、例えば、Cuを電気めっきする場合のめっき液は、例えば、硫酸Cu60~110g/L、硫酸160~200g/Lおよび塩酸0.1~0.15mL/Lを純水に加え、さらに奥野製薬株式会社製トップルチナSFベースWR1z5~5.0mL/L、トップルチナSF-B0.5~2.0mL/L及びトップルチナSFレベラー3.0~10mL/Lを添加剤として加えためっき液が挙げられる。
 このような銅めっき液への浸漬時間は、Cu膜の厚さによるため特に限定されないが、例えば、2μmのCu膜をつける場合は、電流密度2A/dmで約5分間浸漬するのが好ましく、浸漬温度は20℃~30℃であるのが好ましい。
〔水洗処理〕
 防音構造10dの製造方法においては、上述した各処理の工程終了後には水洗を行うのが好ましい。水洗には、純水、井水、水道水等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置を用いてもよい。
 このような防音構造10dの製造方法は、カットシート状のアルミニウム基材を用いて製造を行ってもよく、ロール・トゥ・ロール(Roll to Roll 以下、RtoRともいう)で行ってもよい。
 周知のように、RtoRとは、長尺な原材料を巻回してなるロールから、原材料を引き出して、長手方向に搬送しつつ、表面処理等の各種の処理を行い、処理済の原材料を、再度、ロール状に巻回する製造方法である。
 上述のようなアルミニウム基材に貫通孔を形成する製造方法は、RtoRによって、20μm程度の貫通孔を容易に効率よく形成することができる。
 また、貫通孔の形成方法は、上述した方法に限定はされず、板状部材の形成材料等に応じて、公知の方法で行えばよい。
 例えば、板状部材としてPETフィルム等の樹脂フィルムを用いる場合には、レーザー加工などのエネルギーを吸収する加工方法、もしくはパンチング、針加工などの物理的接触による機械加工方法で貫通孔を形成することができる。
[シミュレーション]
 次に、図13に示す防音構造10dの構成についてシミュレーションを行い、貫通孔の適切な平均開口径と平均開口率との関係を求めた結果について説明する。
 図13の防音構造10dの系は膜振動と空気中の音波の相互作用系であり、さらに貫通孔による摩擦が重要であるため、音響と振動との連成解析において熱音響による摩擦吸音も加えて解析を行った。
 具体的には、有限要素法の解析ソフトウェアであるCOMSOLver5.1の音響モジュールを用いて設計を行った。音響モジュール内での熱音響モデルを用いることによって、流体中(空気も含む)を透過する音波と壁の摩擦による吸音を計算することができる。また、今回は薄膜の膜振動も、実際の材料の物性値を入力することによって計算に取り入れた。エッジ部を周期構造とすることによって、水平方向に無限に大きい薄膜に貫通孔が平均開口径および平均開口率に従ってあいているモデルを構築した。エッジ部の支持はローラ固定とし、膜の垂線方向には自由に動ける拘束とすることによって、自由に動ける薄膜をモデル化した。
 まず、板状部材の厚みを20μmに固定し、板状部材の膜振動を無視して微小な貫通孔の摩擦による吸収率のみを求めるようにした。平均開口径と平均開口率を種々変更して、周波数3000Hzにおける吸収率を求めた。結果を図16および図17に示す。平均開口径が大きな領域で最適な平均開口率は1%以下の領域となるため、計算のレンジを二種類に分けている。また、図16および図17において、吸収率が45%の境界を二点鎖線で示し、30%の境界を一点鎖線で示し、10%の境界を破線で示した。
 吸収率が最大となる条件に関して、平均開口径と平均開口率は反比例のような関係にある。
 特徴的なこととして、平均開口径70μm程度より大きくなると、どの平均開口率であっても吸収率の最大値がより小さい平均開口径の場合に比較して小さくなる。すなわち、微小な貫通孔の吸収の効果を十分に得るためには、70μm程度以下に貫通孔自体を小さくすることがより好ましいことがわかる。
 図18に、吸収率が極大値となる平均開口率と、平均開口径との関係を表すグラフを示し、図19に、吸収率の極大値と平均開口径との関係を表すグラフを示す。図に示すように、70μm程度以上の平均開口径では、平均開口径に対してほぼ線形的に吸収率の極大値が小さくなっていくことがわかる。
 板状部材の厚みを50μmに変更して上記と同様のシミュレーションを行った。図20に、吸収率の極大値と平均開口径との関係を表すグラフを示す。
 板状部材の厚みが50μmの場合にも、厚み20μmの場合と同様に、70μmより大きい平均開口径では吸収率の極大値が小さくなっていくことがわかる。最大吸収率はほとんど板状部材の厚みによらずに貫通孔の平均開口径によって決定されることが分かった。平均開口径が50μm以下と小さい場合は最大吸収率が50%となるが、それより平均開口径が大きい場合は吸収率が小さくなることがわかる。平均開口径100μmで45%、平均開口径200μmでは30%まで吸収率が小さくなる。よって、平均開口径は小さい方が望ましいことが明らかになった。
 また、この結果から、吸収率の極大値は、板状部材の厚みにはほぼ依存せず、平均開口径により決まるロバストなものと考えられる。
 板状部材の厚みを20μm、貫通孔の平均開口径を20μmに固定し、平均開口率を変えて透過率、反射率、吸収率のシミュレーションを行った。結果を図21に示す。
 また、厚み50μm、平均開口径20μmに固定して平均開口率を変えて同様のシミュレーションを行った。結果を図22に示す。
 図21および図22から、平均開口率が大きくなるほどに、反射が小さくなり透過が大きくなる。その中で吸収は透過と反射がほぼ等しくなった条件において最大化することが明らかになった。
 よって、微細な貫通孔の吸収が極大化する場合には、透過率と反射率が等しくなることを明らかにした。
 ここまでの結果より、平均開口率は小さいほど吸収が大きくなるというものではなく、板状部材の厚みと貫通孔の平均開口径により最適な平均開口率が存在することが明らかになった。
 また、吸収の大きな領域は最適な平均開口率を中心にしてなだらかに広がっていることが分かる。
 最適な平均開口率を決定するために、板状部材の厚みを10μm、20μm、30μm、50μmおよび70μmのそれぞれで、貫通孔の平均開口径を20μm~140μmの範囲で変化させて、それぞれの条件での吸収率が最大化する平均開口率とその時の吸収率を計算してまとめた。結果を図23に示す。
 貫通孔の平均開口径が小さいときは、最適な平均開口率は板状部材の厚みによって異なるが、貫通孔の平均開口径が100μm程度以上では0.5%~1.0%という、非常に小さい平均開口率が最適値となる。
 すなわち、平均開口径100μm以上の貫通孔で大きな吸収率を得るためには平均開口率を低くする必要があり、高い開口率でかつ大きい吸収率を得るという構造は難しい。
 一方で、本発明の防音構造が有する100μm未満の平均開口径の貫通孔においては、最適な平均開口率が平均開口径の関数となるため、高い開口率構造が実現できる条件がある。また、上述したように最大吸収率も45%以上の大きな値となるため、高開口率かつ高吸音が実現できる。
 さらに図20より、平均開口径は、最大吸収率が48%以上となる80μm以下が望ましく、49%以上となる70μm以下がより望ましく、ほぼ50%の最大値に達する50μm以下が最も望ましい。
 上記、貫通孔の平均開口径に対する最適な平均開口率で、平均開口径が100μm以下の場合の計算を詳細に行った。厚み10μm、20μm、30μm、50μm、70μmのそれぞれに関して、貫通孔の平均開口径ごとの最適な平均開口率を示した結果を図24に両対数グラフで示した。図24のグラフより、最適な平均開口率は貫通孔の平均開口径に対して、ほぼ-1.6乗で変化することを発見した。
 より具体的には、最適な平均開口率をrho_center、貫通孔の平均開口径をphi(μm)、板状部材の厚みをt(μm)としたとき、図24の両対数グラフを累乗関数で近似することによって、最適な平均開口率をrho_centerは、
  rho_center=a×phi-1.6
  a=2+0.25×tで決定されることを、明らかにした。
 このようにして、特に貫通孔の平均開口径が小さい場合には、平均開口率が小さいほど吸収率が大きくなるのではなく、最適な平均開口率は板状部材の厚さと貫通孔の平均開口径によって決定されることを明らかにした。最適な平均開口率は、板状部材の厚みが厚いほどに大きくなり、また平均開口径が大きいほどに小さくなる。
 上述したように、吸収率が大きくなる範囲は最適な平均開口率を中心としてなだらかに広がっている。この詳細な分析のために、板状部材の厚み50μmのシミュレーションにおいて平均開口率を変化させた結果を図25に示す。貫通孔の平均開口径は10μm、15μm、20μm、30μmおよび40μmとし、平均開口率は0.5%から99%まで変化させた。
 どの平均開口径においても、吸収率が大きくなる平均開口率の範囲は最適な平均開口率の周辺に広がっている。特徴として、貫通孔の平均開口径が小さい方が吸収率が大きくなる平均開口率の範囲が広い範囲に渡っている。また、最適な平均開口率よりも高い平均開口率側の方が、吸収率が大きくなる範囲が広い。
 吸収率の最大値は、0.1μm以上100μm未満の平均開口径の範囲においては、どの平均開口径でもほぼ50%であるため、吸収率が30%、40%、45%となる下限の開口率と上限の開口率をそれぞれ表1に示す。また、最適な平均開口率からの各吸収率の範囲を表2に示す。
 例えば、貫通孔の平均開口径20μmのとき、最適な平均開口率は11%で、吸収率が40%以上となる平均開口率は下限が4.5%、上限が28%となる。このとき、最適な平均開口率を基準とした吸収率40%となる平均開口率の範囲は、(4.5%-11.0%)=-6.5%~(28.0%-11.0%)=17.0%となるため、表2には-6.5%~17.0%として示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2より、貫通孔の平均開口径ごとの吸収率の幅を比較したところ、貫通孔の平均開口径をphi(μm)としたときに、ほぼ100×phi-2の比率で吸収率の幅が変化する。よって、吸収率30%、40%、45%それぞれについて、平均開口径ごとに適切な範囲を決めることができる。
 すなわち、吸収率30%の範囲は、上述の最適な平均開口率rho_centerを用いて、基準として貫通孔の平均開口径20μmのときの範囲を用いて、
  rho_center-0.085×(phi/20)-2
が下限の平均開口率であり、
  rho_center+0.35×(phi/20)-2
が上限の平均開口率である範囲に入ることが必要である。ただし、平均開口率は0より大きく1(100%)より小さい範囲に制限される。
 望ましくは吸収率40%の範囲であり、
  rho_center-0.24×(phi/10)-2
が下限の平均開口率であり、
  rho_center+0.57×(phi/10)-2
が上限の平均開口率となる範囲であることが望ましい。ここで、できるだけ誤差を小さくするために、平均開口径の基準を10μmとした。
 さらに望ましくは吸収率45%の範囲であり、
  rho_center-0.185×(phi/10)-2
が下限の平均開口率であり、
  rho_center+0.34×(phi/10)-2
が上限の平均開口率となる範囲であることがさらに望ましい。
 さらに、より小さい吸収率の場合の最適な平均開口率の範囲を決定するために、平均開口率が小さい範囲で細かく計算した。代表的な例として、板状部材の厚み50μm、貫通孔の平均開口径30μmの場合の結果を図26に示す。
 吸収率10%、15%および20%のそれぞれについて、この吸収率となる平均開口率の範囲と、近似式とを、それぞれ表3および表4に示す。なお、表4においては、「rho_center」を「rc」と表記する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および表4から、吸収率10%の範囲は、上述の最適な平均開口率rho_centerを用いて、基準として貫通孔の平均開口径30μmのときの範囲を用いて、
  rho_center-0.052×(phi/30)-2
が下限の平均開口率であり、
  rho_center+0.795×(phi/30)-2
が上限の平均開口率である範囲に入ることが必要である。ただし、平均開口率は0より大きく1(100%)より小さい範囲に制限される。
 望ましくは吸収率が15%以上となることであり、その範囲は、
  rho_center-0.050×(phi/30)-2
が下限の平均開口率であり、
  rho_center+0.505×(phi/30)-2
が上限の平均開口率である範囲となる。
 より望ましくは、吸収率が20%以上となることであり、その範囲は、
  rho_center-0.048×(phi/30)-2
が下限の平均開口率であり、
  rho_center+0.345×(phi/30)-2
が上限の平均開口率である範囲となる。
 さらに望ましくは、上述の吸収率が30%以上、40%以上あるいは45%以上となる平均開口率の範囲に収まることであり、より吸収率の大きくすることができる。
 以上のように、シミュレーションを用いて、貫通孔内の摩擦による吸音現象の特徴を明らかにした。また、板状部材の厚みと貫通孔の平均開口径と平均開口率によって吸収率の大きさが決定され、その最適値範囲を決定した。
 さらに、防音構造の他の一例を説明する。
 図27は、防音構造の他の一例を模式的に示す正面図であり、図28は、図27のII-II線断面図である。
 なお、図27および図28に示す防音構造10eは、厚み方向に貫通する複数の貫通孔を有する板状部材と、枠孔部を有する枠とを備え、枠の枠孔部周縁に対して板状部材を固定することによって、板状部材が膜振動するものであり、貫通孔の平均開口径が0.1μm以上250μm以下であり、板状部材の膜振動の第一固有振動周波数が10Hz~100000Hzの間に存在するものである。
 なお、図27に示す防音構造10eは、貫通孔42の平均開口径が異なる以外は図13に示す板状部材40と同様の板状部材40を、膜18aに代えて有する以外は、図6および図7に示す防音構造10aと同様の構成を有するので、同じ部位には同じ符号を付し以下の説明は異なる部位を主に行う。
 図27および図28に示す防音構造10eは、厚み方向に貫通する複数の貫通孔42を有する板状部材40と、貫通する枠孔部12を有し板状部材40の周縁部を固定して支持する枠14とを備え、貫通孔42の平均開口径が0.1μm以上250μm以下であり、板状部材の膜振動の第一固有振動周波数が10Hz~100000Hzの間に存在する防音構造である。
 ここで、板状部材40は、平均開口径の範囲が異なる以外は、図13および図14に示す貫通孔42を有する板状部材40と同様のものである。
 ここで、図27および図28に示す例では、枠孔部12をそれぞれ有し、2次元的に配置された複数(図示例では9個)の枠14を形成する枠体16と、それぞれの枠14の枠孔部12を覆うようにそれぞれの枠14に固定される複数(図示例では9個)の板状部材40と、それぞれの枠14内の板状部材40に貫通するように穿孔された複数の貫通孔42とを有する。
 すなわち、防音構造10eは、1つの枠14と、この枠14に固定された板状部材40と、この板状部材40に設けられた複数の貫通孔42とを有する防音セル50を複数(図示例では9個)有する構成である。
 板状部材40は、複数の貫通孔42を有し、枠14の開口部を覆うように枠14に抑えられるように固定されるもので、外部からの音波に対応して、貫通孔を音が通過すること、および、膜振動することにより音波のエネルギーを吸収、もしくは反射して防音する。
 また、前述のとおり、板状部材40に形成される複数の貫通孔42は、平均開口径が0.1μm以上250μm以下である。
 また、好ましくは、複数の貫通孔42の平均開口率は2%以上である。
 本発明者らは、平均開口径が0.1μm以上250μm以下の貫通孔42を複数有する板状部材40と、開口部を有し板状部材40の周縁部を固定して支持する枠14とを備え、板状部材の膜振動の第一固有振動周波数が10Hz~100000Hzの間に存在する防音構造とすることによって、板状部材40の膜振動の第一固有振動周波数以下の、低周波側における平均吸収率が、第一固有振動周波数における吸収率よりも大きくなり、膜振動の第一固有振動周波数以下の低周波数側において吸音効果が得られることを見出した。
 本発明者らの検討によれば、防音構造10dの構成は、板状部材40と貫通孔42が存在するため音はこの二種のいずれかを通過して透過すると考えられる。板状部材40を透過するパスは、板状部材40の膜振動に一度変換された固体振動が音波として再放射されるパスであり、貫通孔42を透過するパスは、貫通孔42の中を気体伝搬音として直接通過するパスである。そして、貫通孔42を通過するパスが、今回の吸収メカニズムとして支配的であると考えられる。
 ここで、貫通孔42を透過するパスにおける吸音のメカニズムは、微細な貫通孔42を音が通る際の、貫通孔42の内壁面と空気との摩擦による、音のエネルギーの熱エネルギーへの変化であると推定した。このメカニズムは貫通孔42のサイズが微細なことによって生じるため、共振によるメカニズムとは異なる。貫通孔42によって空気中の音として直接通過するパスは、いったん膜振動に変換されてから再び音として放射されるパスに比べて、インピーダンスが遥かに小さい。したがって、膜振動よりも微細な貫通孔42のパスを音は通りやすい。その貫通孔42の部分を通過する際に、板状部材40上全体の広い面積から貫通孔42の狭い面積へと音が集約されて通過する。貫通孔42の中で音が集まることによって局所速度が極めて大きくなる。摩擦は速度と相関するために、微細な貫通孔42内で摩擦が大きくなり熱に変換される。
 貫通孔42の平均開口径が小さい場合は、開口面積に対する円周長さの比率が大きくなるため、貫通孔42の縁部や内壁面で生じる摩擦を大きくすることができると考えられる。貫通孔42を通る際の摩擦を大きくすることによって、音のエネルギーを熱エネルギーへと変換して、吸音することができる。
 また、音が貫通孔42を通過する際の摩擦で吸音するので、音の周波数帯によらず吸音することができ、広帯域で吸音することができる。
 ここで、膜振動の第一固有振動周波数よりも低周波側では遮音量が板の剛性によって決定する領域があり、これは剛性則と呼ばれる。
 本発明者らが今回発見したことは、この剛性則内において第一固有振動周波数より低周波側であるにもかかわらず、貫通孔の効果によって大きな吸収効果が得られるということである。
 剛性則においては、膜(板状部材)を音波が押す運動方程式で支配される運動よりも、膜が枠部材に取り付けられていることによって動いた膜が端部から引っ張られるバネ方程式で支配される運動の方が大きい。この剛性則内では、膜が枠部材から引っ張られることによりテンション(張力)が大きくなった効果を示し、実際の膜のヤング率と比べても膜の見かけの堅さがとても大きくなる効果がある。
 一般に、低周波領域は膜を揺らす力が大きく膜振動を大きくするものであるのに対して防音構造10eの構成では、板状部材の膜振動の第一固有振動周波数を10Hz~100000Hzの間として、この第一固有振動周波数よりも低周波側に剛性則領域を作ることによって膜の見かけの堅さを大きくして、低周波領域でもあまり膜の振動を大きくしないようにしている。この時、低周波領域においても膜があまり振動しないために音波は微細な貫通孔42を通過することが多くなる。微細な貫通孔42の効果によって摩擦熱が生じて、低周波側を広く吸音することができる。
 一方で、高周波領域においては元から膜振動はあまり大きくなく、音波は貫通孔42を通ることが多いため、高周波領域でも微細な貫通孔42との摩擦による吸音が支配的となる。
 このように、防音構造10eでは、微細な貫通孔42の元々の機能である高周波領域の吸収特性に加えて、枠を取り付けて剛性則領域を作ることによって、高周波領域における微細な貫通孔内の摩擦による吸音効果を残したままに、低周波領域でも微細な貫通孔42との摩擦による吸音効果を示す構造とした。
 なお、枠14および板状部材40からなる構造における第一固有振動周波数、すなわち、枠14に抑えられるように固定された板状部材40の第一固有振動周波数は、共鳴現象により音波が膜振動を最も揺らすところで、音波はその周波数で大きく透過する固有振動モードの周波数である。防音構造10eにおいては、第一固有振動周波数は、枠14および板状部材40からなる構造によって決まるので、板状部材40に穿孔される貫通孔42の有無にかかわらず、略同一の値となることが本発明者らによって見出されている。
 また、第一固有振動周波数近傍の周波数では、膜振動が大きくなるため、微細な貫通孔42との摩擦による吸音効果は小さくなる。したがって、防音構造は10eは、第一固有振動周波数±100Hzで吸収率が極小となる。
 また、低周波領域での吸音性能、人間の耳の感度等の観点から、板状部材の膜振動の第一固有振動周波数は20Hz~20000Hzが好ましく、50Hz~15000Hzがより好ましい。
 なお、防音構造10eの、膜振動の第一固有振動周波数は、枠の材質、サイズ、板状部材の材質、厚み等を調整することによって適宜設定することができる。
 ここで、防音構造10eは、サイズを小さくすることができる。
 また、背面に閉空間を有さないため、通気性を確保できる。
 なお、貫通孔42の平均開口率および平均開口径の好適な範囲、板状部材40の厚みの好適な範囲、板状部材の材質、製造方法、ならびに、貫通孔42の内壁面の粗面化等については、図13に示す防音構造10dと同様である。
 ここで、先のシミュレーションの結果から、防音構造10eにおける貫通孔の平均開口径および平均開口率の関係についても、下記の範囲とするのが好ましい。
 すなわち、貫通孔の平均開口径が0.1μm以上100μm未満の場合には、平均開口径をphi(μm)、板状部材の厚みをt(μm)としたときに、貫通孔の平均開口率rhoが rho_center=(2+0.25×t)×phi-1.6を中心として、rho_center-(0.085×(phi/20)-2)を下限として、rho_center+(0.35×(phi/20)-2)を上限とする範囲に平均開口率rhoが入るのが好ましく、(rho_center-0.24×(phi/10)-2)以上、(rho_center+0.57×(phi/10)-2)以下の範囲がより好ましく、(rho_center-0.185×(phi/10)-2)以上、(rho_center+0.34×(phi/10)-2)以下の範囲がさらに好ましい。
 また、貫通孔の平均開口径が100μm以上250μm以下の場合には、貫通孔の平均開口率rhoが0.5%から1.0%の間であるのが好ましい。
 次に、本発明のイヤーマフの他の実施態様の構成について、図29および図30A~図30Cを用いて説明する。
 図29は、本発明のイヤーマフの他の一例を模式的に示す断面図であり、図30Aは、図29に示すイヤーマフのイヤーカップの断面図であり、図30Bは、図30Aをb方向から見た側面図であり、図30Cは、図30Aをc方向から見た側面図である。
 図29および図30A~図30Cのイヤーマフ200は、
 支持部材と、支持部材に取り付けられるハウジングおよびハウジングに係止されるイヤーパッドを有する、2つのイヤーカップとを備え、ハウジングは、ハウジング開口部を有し、ハウジング開口部に配置される、特定の周波数帯域の音を防音する防音構造を有し、防音構造を配置されたハウジング開口部が通気口を有するイヤーマフであって、
 防音構造が、1以上の防音セルを有するものであって、1以上の防音セルは、貫通する枠孔部を有する枠と、枠孔部を覆って枠に固定された膜と、を備え、
 防音構造は、ハウジング開口部に、ハウジング開口部の開口断面に対して膜の膜面を傾け、ハウジング開口部に気体が通過する通気口となる領域を設けた状態で配置される構成を有する。
 なお、図29に示すイヤーマフ200は、防音構造10の、ハウジング開口部106a内での配置が異なる以外は、図1に示す防音構造100と同様の構成を有するので、同じ部位には同じ符号を付し以下の説明は異なる部位を主に行う。
 図29および図30A~図30Cに示すように、イヤーマフ200において、防音構造10は、ハウジング開口部106aに、ハウジング開口部106aの開口断面に対して、防音構造10の膜面を傾けて、ハウジング開口部106aに気体が通過する通気口となる領域を設けた状態で配置される。すなわち、ハウジング106の開口断面に垂直な方向に対して膜面に垂直な方向が交差するように配置されている。
 音は、ハウジング106のハウジング開口部106a内を開口断面に略垂直な方向に進行するので、防音構造10は、音の進行方向に対して膜の膜面を傾けた状態で配置されるといえる。すなわち、イヤーマフ200において防音構造10は、音が膜面に垂直に当たらずに、斜め方向あるいは平行に当たる音を吸収するものである。
 なお、図18に示す例では、ハウジング開口部106aの開口断面に垂直な方向に対して、膜12の膜面に垂直な方向が直交するように防音構造10が配置されているが、これに限定はされず、ハウジング開口部106aの開口断面に垂直な方向に対して膜面に垂直な方向が交差するように防音構造10が配置されていればよい。
 吸音性能、通気性等の観点から、ハウジング開口部106aの開口断面に垂直な方向に対する、防音構造10の膜面に垂直な方向の角度は、20°以上が好ましく、45°以上がより好ましく、80°以上がさらに好ましい。
 図18に示すにおいて、防音構造10は、図中紙面の上下方向に垂直な面に平行に配置されているが、これに限定はされず、ハウジング開口部106aの開口断面に垂直な方向に対して、膜12の膜面に垂直な方向が直交するように配置されていればよい。例えば、防音構造10は、図中紙面に平行に配置されていてもよい。
 また、ハウジング開口部106aの開口断面に垂直な方向から見た際の、防音構造10とハウジング開口部106aの壁との間にできる隙間は、ハウジング開口部106aに形成される気体の通過が可能な通気口となる。この通気口の開口率(すなわち、ハウジング開口部106aの開口面積に対する通気口の面積)は、10%以上が好ましく、25%以上がより好ましく、50%以上がさらに好ましい。
 通気孔の開口率が、10%以上が好ましい理由は、防音構造10を用いる構成の場合、2桁以上の開口率においても、高い防音性能を発揮できるからである。
 イヤーマフ200において、ハウジング開口部106aに配置される防音構造10としては、上述した防音構造10a~10eを用いることができる。また、図31および図32に示す防音構造10fを用いることもできる。
 図31は、防音構造の他の一例を模式的に示す正面図であり、図32は、図31のII-II線断面図である。
 図31および図32に示す防音構造10fは、貫通孔22を有さない以外は図6および図7に示す防音構造10aと同様の構成を有するものである。すなわち、防音構造10fは、枠孔部12をそれぞれ有し、2次元的に配置された複数(図示例では16個)の枠14を形成する枠体16と、それぞれの枠14の枠孔部12を覆うようにそれぞれの枠14に固定される複数(図示例では16個s)の膜18dを形成するシート状の膜体20dとを有する。
 防音構造10fにおいて、1つの枠14と、この枠14に固定された膜18dとは、1つの防音セル32を構成する。すなわち、防音構造10fの防音セル32は、図11および図12に示す防音構造10cの第1の防音セル32と同様の構成の防音セルであるといえる。
 防音構造10fは、複数、図示例では、16個の防音セル32によって構成される。
 枠14と膜18dとからなる防音セル32を有する防音構造10fをハウジング開口部106aに、ハウジング開口部106aの開口断面に対して、防音構造10の膜面を傾けて、ハウジング開口部106aに気体が通過する通気口となる領域を設けた状態で配置することによって、膜18dの膜振動により固有振動周波数近傍の周波数帯域の音波のエネルギーを吸収して防音することができ、また、通気口を有するので、通気性を高くできる。
 ところで、イヤーマフ200のように、防音構造10をハウジング開口部106aの開口断面に対して傾けて配置する構成では、図33Aに示すように、低周波側から3つの吸収率がピーク(極大)となる音波の吸収のピークが現れ、また、図33Bに示すように、低周波側から3つの透過損失がピーク(極大)となる音波の遮蔽のピークが現れる。
 したがって、本実施形態のイヤーマフ200は、3つの吸収ピーク周波数において吸音(吸収率)がピーク(極大)となるため、各吸収ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することができ、また、3つの遮蔽ピーク周波数において遮蔽(透過損失)がピーク(極大)となるため、各遮蔽ピーク周波数を中心とする一定の周波数帯域の音を選択的に防音することができる。
 なお、図33A及び図33Bに示す音響特性の測定において、音響管をハウジング開口部106aに見立てて、音響管内に防音構造を配置して吸収率および透過損失(dB)を以下のように測定した。
 音響特性は、図34に示すように、アルミニウム製音響管(管体300)に4つのマイクロフォン302を用いて伝達関数法による測定を行った。この手法は「ASTM E2611-09:Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method」に従うものである。音響管としては、例えば日東紡音響エンジニアリング株式会社製のWinZacと同一の測定原理であるものとして、アルミニウム製の管体300を用いた。管体300の下側には内部にスピーカー304を収納した円筒状の函体306を配置し、函体306の上面に管体300を載置した。スピーカー304から所定音圧の音を出力し、4本のマイク302で測定した。この方法で広いスペクトル帯域において音響透過損失を測定することができる。防音構造10を音響管となる管体300の所定測定部位に膜18の膜面を傾斜させて配置して、防音構造10をハウジング開口部106aに傾けて配置した構成を再現して、100Hz~4000Hzの範囲で音響吸収率と透過損失測定を行った。その結果が図33A及び図33Bに示されている。
 図33A及び図33Bに、周波数に対する吸収率で表される吸音特性、並びに周波数に対する透過損失で表される遮音特性を示す。
 音響測定に用いた管体300は、直径4cmのアルミニウム製の管体とし、防音構造10eが膜18dの膜面を管体300の開口断面に対して傾斜させて配置されている(図35参照)。防音構造10は、20mm角の6つの貫通する枠孔部12が設けられた厚み12mmのアクリル製の枠14の枠孔部12の片面に、膜18dとなる250μmのPETフィルムが両面接着テープにより固定されている。また、防音構造10は、防音セルが6つ連なった構成となっている。防音構造10の高さ、枠14の高さは35mmである。
 測定を行った防音構造10においては、図33Aに示すように、1776Hz、2688Hz、及び3524Hzにおいて吸収ピークがあることが分る。また、図33Bに示すように、2669Hz、3298Hz、及び4000Hzに遮蔽ピークが存在していることが分かる。
 このように高い開口率を有した状態でも、PETフィルム製の膜18dが音波に対し振動し、特定の周波数に対し高い吸収性や遮蔽性をもたらすことが可能である。
 なお、この防音構造10においては、下記式(1)で定義される開口率は約67%となっており、高い通気性または通風性を得ることができるものである。
   開口率(%)={1-(開口断面における防音セルユニットの断面積/開口断面積)}×100…(1)
 図34に示す例の防音構造10においては、図35に示すように、ハウジング開口部106aに見立てた管体300内に、防音構造10が膜18の膜面を管体300の開口断面300bに対して所定の傾斜角度θで傾斜させて配置されている。なお、図35に示す傾斜した膜18の膜面と管体300の管壁との間にできる隙間300cは、管体300の開口300aに形成される気体の通過が可能な通気孔となる。
 本発明においては、この通気孔の開口率は、10%以上が好ましく、25%以上がより好ましく、50%以上がさらに好ましい。
 ここで、通気孔の開口率が、10%以上が好ましい理由は、本発明の防音構造は、2桁以上の開口率においても、高い防音性性能を発揮できるからである。
 また、本発明においては、この傾斜角度θは、通気性の点からは、20度以上であることが好ましく、45度以上がより好ましく、80度以上がさらに好ましい。
 ここで、傾斜角度θが20度以上であることが好ましい理由は、防音構造10のデバイス断面(膜18の膜面)が開口断面300bと等しい場合、傾斜角度θを20°以上傾けることによって、10%以上の好ましい開口率を得ることができ、また、傾斜角度θを90°傾けた時の風速に対し、10%以上の風速を得ることができるからである。
 また、傾斜角度θが20度~45度では、低周波の第1振動モードの遮音ピークが、存在しており、図36に示すように、最大遮音(θ=0°)に対して、10%以上の遮音性能を維持可能であり、好ましいからである。
 ここで、図36に示す防音構造の遮音性能の膜面の傾斜角度依存性は、図37に示すように、防音構造10の防音セル26の枠14の枠孔部12の片面に固定された膜18の膜面の音波の進行方向に対する傾斜角度θを変化させて透過損失を測定することにより得ることができる。このような方法で、膜18として、50μm、100μm、及び188μmの3種の厚みの異なるPETフィルムを用いた防音構造10について、それぞれ傾斜角度θを0度~90度の範囲で変化させながら、透過損失を測定した結果を図38A、図38C及び図38Eに示し、吸収率を測定した結果を図38B、図38D及び図38Fに示す。
 図38A、図38C及び図38Eに示す透過損失を測定結果から、図36に示す第1振動モード遮音性能の角度依存性のグラフを得ることができる。図36の縦軸の遮音性能は、0度の時の透過損失で規格化したものである。
 図36に示すように、傾斜角度θが45度以下であれば、低周波遮音に有利な第1振動モードの遮音性能を最大遮音(θ=0°)に対して10%以上維持できることが分かる。
 次に、防音構造の他の実施例の膜面を音波の進行方向に対して所定傾斜角度傾斜させながら透過損失を測定して、遮音特性(透過損失)の音波入射角度依存性を求めた。
 図39に、得られた防音構造の他の実施例の防音構造の遮音特性(透過損失)の音波入射角度依存性を示す。
 測定を行った防音構造10は、塩化ビニルからなる20mmの立方体ブロック(棒状防音構造15)に16×16mmの貫通する枠孔部12が形成された枠14の片面に、膜18として厚さ100μmのPETフィルムが両面接着テープにより固定されている。この防音構造を音響管である管体300内で、膜18の膜面を管体300の開口断面300bに対し傾けて、音波入射角度を変化させながら防音性能(透過損失)を測定した。防音構造10の膜18の膜面に対する音波の入射角度を90度、45度、及び0度と変化させていくと、高周波側の遮蔽ピーク周波数が、3465、3243、及び3100Hzと低周波化していくことがわかる。
 このように、膜18の膜面を開口断面300bに対し傾けることによって、遮蔽ピーク周波数を調整することができることが分かる。
 なお、膜18dの好適な厚さの範囲、ヤング率の範囲、密度の範囲、および、材質、ならびに、膜の固定方法等は、図6および図7に示す防音構造10aの膜18aと同様である。
 また、防音構造10をハウジング開口部106a内に傾斜して配置する構成とする場合には、防音構造10がハウジング開口部106aの端面からはみ出した位置に配置される構成であってもよい。具体的には、ハウジング開口部106aの開口端から開口端補正距離以内に配置されているのが好ましい。開口端補正の距離だけ、音場の定在波の腹がハウジング開口部106aの外側にはみ出しており、ハウジング開口部106aの外であっても防音性能を有することができる。なお、ハウジング開口部10aが円筒形の場合には開口端補正距離は、大凡0.61×管半径で与えられる。
 また、防音構造10fにおいて、膜18dに錘を配置する構成としてもよい。錘の重さを変えることによって、膜振動の固有振動周波数を調整することができ、遮音ピークの周波数および遮音性を制御することができる。
 なお、錘の好適な大きさ、重さ、材料等については、図10Aおよび図10Bに示す防音構造10bの錘25と同様である。
 このような防音構造を用いた一例として、20mm角の6つの貫通する枠孔部12が設けられた厚み12mmのアクリル製の枠14の枠孔部12の膜面に、膜18となる100μmのPETフィルムが両面接着テープにより固定され、膜18に55mgのステンレス製の錘が両面テープにより固定された防音構造10について、先と同様にして吸収率および透過損失の測定を行った。
 測定した結果を図40A及び図40Bに示す。
 図40Aに示す吸収率においては、錘がない時の2つの吸収ピーク1772Hz、及び3170Hzが、錘を膜に配置固定することにより、993Hz、及び2672Hzの低周波側にシフトしていることがわかる。したがって、低周波の吸音を行うには、膜に錘を配置するのが好ましい。また、図40Bに示す遮音に関しては、錘を膜に配置することにより、35dBもの遮音ピークを得ることができる。
 また、図29に示すイヤーマフ200において、ハウジング開口部106aに配置される防音構造10として、図6および図7に示すような膜18aに貫通孔22を有する防音構造10aを用いた場合には、貫通孔22の径を変えることによって、遮音ピークの周波数および遮音性を制御することができる。
 なお、図29に示すイヤーマフ200において、配置する防音構造10として、図6に示すような膜18に貫通孔22を設けた防音構造10a用いる場合には、貫通孔22(開口部24)の開口率は、特に制限的ではなく、選択的に遮音するべき遮音周波数帯域に応じて設定すれば良いが、0.000001%~50%であるのが好ましく、0.00001%~20%であるのがより好ましく、0.0001%~10%であるのが好ましい。貫通孔42の開口率を上記範囲に設定することにより、選択的に遮音するべき遮音周波数帯域の中心となる遮音ピーク周波数及び遮音ピークの透過損失を決定することができる。
 また、貫通孔22のサイズは、上述した加工方法で適切に穿孔できれば、どのようなサイズでも良く、特に限定されないが、枠孔部12のサイズである膜18のサイズより小さい必要がある。
 しかしながら、貫通孔22のサイズは、その下限側では、レーザーの絞りの精度等のレーザー加工の加工精度、又はパンチング加工もしくは針加工などの加工精度や加工の容易性などの製造適性の点から、100μm以上であることが好ましい。
 なお、これらの貫通孔22のサイズの上限値は、枠14のサイズより小さい必要があるので、通常、枠14のサイズはmmオーダであり、貫通孔22のサイズを数百μmオーダに設定しておけば、貫通孔22のサイズの上限値は、枠14のサイズを超えることはないが、もし、超えた場合には、貫通孔22のサイズの上限値を枠14のサイズ以下に設定すればよい。
 なお、貫通孔22のサイズは、複数の膜18において異なるサイズが含まれる場合などは、平均サイズで表すことが好ましい。
 このような防音構造10aを用いた一例として、20mm角の6つの貫通する枠孔部12が設けられた厚み12mmのアクリル製の枠14の枠孔部12の両面に、膜18aとなる100μmのPETフィルムが両面接着テープにより固定され、一方の膜18aの中央に直径2mmの貫通孔22が形成された防音構造10aについて、先と同様にして吸収率および透過損失の測定を行った。この防音構造10aは、防音セルが6つ連なった構成となっている。
 測定した結果を図41A及び図41Bに示す。
 図41Aに示す吸収率に関しては、貫通孔がない時よりも、吸収ピーク間の谷(2625Hz)の吸収が大きくなっていること、及び高周波数側(3000Hz~4000Hz)での吸収が高まっていることがわかる。そのため、広帯域吸音においては、膜18aに貫通孔22を形成した防音構造10aが好ましい。
 また、図41Bに示す透過損失においては、1915Hzの低周波側の遮音ピークが増大している。このため、低周波遮音においても、膜18aに貫通孔22を形成した防音構造10aが好ましい。
 同様に、図29に示すイヤーマフ200において、ハウジング開口部106aに配置される防音構造10として、図10Aおよび図10Bに示すような膜18bに貫通孔22が形成され、錘25を有する防音構造10bを用いた場合には、貫通孔22の径および錘25の重さを変えることによって、膜振動の固有振動周波数を調整することができ、遮音ピークの周波数および遮音性を制御することができる。
 また、図29に示すイヤーマフ200において、ハウジング開口部106aに配置される防音構造10として、図27および図28に示すような平均開口径が0.1μm以上250μm以下の貫通孔42を有する板状部材40と、枠孔部12を有し、枠孔部12の周辺に板状部材40を固定してなり、板状部材40の膜振動の第一固有振動周波数が10Hz~100000Hzの間に存在する防音構造10eを用いてもよい。
 このように微細な貫通孔42を有する板状部材42の周縁部を固定する枠14を有する防音構造10eを用いた場合には、防音構造10eをハウジング開口部106aを塞ぐようにして配置する場合と同様に、音が貫通孔42を通過する際の摩擦で吸音することができる。
 以上、本発明のイヤーマフについての種々の実施形態を挙げて詳細に説明したが、本発明は、これらの実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。
 10、10a~10f 防音構造
 12 枠孔部
 14 枠
 16 枠体
 18a~18d 膜
 20a~20d 膜体
 22 貫通孔
 24 開口部
 25 錘
 26 防音セル
 30 第2の防音セル
 32 第1の防音セル
 34 第2の枠
 36 第2の枠孔部
 38 第1の枠孔部
 40 板状部材
 41 アルミニウム基材
 42 貫通孔
 43 水酸化アルミニウム皮膜
 50 防音セル
 100、110、120 イヤーマフ
 102 イヤーカップ
 104 ヘッドバンド
 106 ハウジング
 106a ハウジング開口部
 108 イヤーパッド
 122 防音構造カセット
 124 ケース
 124a ケース開口部
 132 防音材

Claims (12)

  1.  支持部材と、
     前記支持部材に取り付けられるハウジングおよび前記ハウジングに係止されるイヤーパッドを有する、2つのイヤーカップとを備え、
     前記ハウジングは、ハウジング開口部を有し、
     前記ハウジング開口部に配置される、特定の周波数帯域の音を防音する防音構造を有し、
     前記防音構造を配置された前記ハウジング開口部が通気口を有するイヤーマフ。
  2.  前記防音構造が、1以上の防音セルを有するものであって、
     1以上の前記防音セルは、
     貫通する枠孔部を有する枠と、
     前記枠に固定された膜と、
     前記膜に穿孔された1以上の貫通孔からなる開口部と、を備え、
     前記枠の枠孔部の両方の端部は、共に閉塞されておらず、
     前記防音構造は、前記ハウジング開口部を塞いで配置される請求項1に記載のイヤーマフ。
  3.  さらに、前記膜上に配置された錘を備える請求項2に記載のイヤーマフ。
  4.  前記防音構造が、2次元的に配列された2以上の防音セルを有し、
     前記防音セルの少なくとも1つは、貫通する第1の枠孔部を有する第1の枠と、前記第1の枠に固定される膜とを備える第1の防音セルであり、
     前記防音セルの他の少なくとも1つは、貫通する第2の枠孔部を有する第2の枠からなる第2の防音セルであり、
     前記防音構造は、前記ハウジング開口部を塞いで配置される請求項1に記載のイヤーマフ。
  5.  前記防音構造が、厚み方向に貫通する複数の貫通孔を有する板状部材を備え、
     前記貫通孔の平均開口径が0.1μm以上100μm未満であり、
     前記貫通孔の平均開口径をphi(μm)、前記板状部材の厚みをt(μm)としたときに、前記貫通孔の平均開口率rhoは、0より大きく1より小さい範囲であって、rho_center=(2+0.25×t)×phi-1.6を中心として、rho_center-(0.052×(phi/30)-2)を下限として、rho_center+(0.795×(phi/30)-2)を上限とする範囲にあり、
     前記ハウジング開口部を塞いで配置される請求項1に記載のイヤーマフ。
  6.  前記防音構造が、厚み方向に貫通する複数の貫通孔を有する板状部材と、枠孔部を有する枠とを備え、前記枠の枠孔部周縁に対して前記板状部材を固定することによって、前記板状部材が膜振動するものであり、
     前記貫通孔の平均開口径が0.1μm以上250μm以下であり、
     前記板状部材の膜振動の第一固有振動周波数が10Hz~100000Hzの間に存在する請求項1に記載のイヤーマフ。
  7.  前記防音構造が、1以上の防音セルを有するものであって、
     1以上の前記防音セルは、
     貫通する枠孔部を有する枠と、
     前記枠孔部を覆って前記枠に固定された膜と、を備え、
     前記防音構造は、前記ハウジング開口部に、前記ハウジング開口部の開口断面に対して前記膜の膜面を傾け、前記ハウジング開口部に気体が通過する通気口となる領域を設けた状態で配置される請求項1に記載のイヤーマフ。
  8.  前記膜は、厚み方向に貫通する複数の貫通孔を有し、
     前記貫通孔の平均開口径が0.1μm以上250μm以下である請求項7に記載のイヤーマフ。
  9.  前記ハウジング内に配置される防音材を有する請求項1~8のいずれか一項に記載のイヤーマフ。
  10.  前記ハウジング開口部に、防音する音の周波数帯域が互いに異なる、2以上の防音構造を配置した請求項1~9のいずれか一項に記載のイヤーマフ。
  11.  前記防音構造が、前記ハウジング開口部に着脱可能に配置されている請求項1~10のいずれか一項に記載のイヤーマフ。
  12.  貫通するケース開口部を有するケースを有し、
     前記ケース開口部に前記防音構造が配置されたカセット部材を備え、
     前記カセット部材が、前記ハウジングに着脱可能に配置されている請求項1~11のいずれか一項に記載のイヤーマフ。
PCT/JP2017/004352 2016-03-29 2017-02-07 イヤーマフ WO2017169133A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018508499A JP6698819B2 (ja) 2016-03-29 2017-02-07 イヤーマフ
EP17773682.4A EP3437595A4 (en) 2016-03-29 2017-02-07 EARMUFF
CN201780016653.0A CN108778202A (zh) 2016-03-29 2017-02-07 耳罩
US16/130,030 US20190038471A1 (en) 2016-03-29 2018-09-13 Earmuff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-066245 2016-03-29
JP2016066245 2016-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/130,030 Continuation US20190038471A1 (en) 2016-03-29 2018-09-13 Earmuff

Publications (1)

Publication Number Publication Date
WO2017169133A1 true WO2017169133A1 (ja) 2017-10-05

Family

ID=59962816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004352 WO2017169133A1 (ja) 2016-03-29 2017-02-07 イヤーマフ

Country Status (5)

Country Link
US (1) US20190038471A1 (ja)
EP (1) EP3437595A4 (ja)
JP (1) JP6698819B2 (ja)
CN (1) CN108778202A (ja)
WO (1) WO2017169133A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269564A (zh) * 2018-03-11 2018-07-10 西北工业大学 一种由开孔型多孔玻璃与气囊构成的隔声耳罩
CN108836631A (zh) * 2018-06-11 2018-11-20 上海超颖声学科技有限公司 一种耳罩

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6591697B2 (ja) * 2016-11-29 2019-10-16 富士フイルム株式会社 防音構造
US20190088242A1 (en) * 2017-09-19 2019-03-21 Larry Tang Acoustic Absorber for Sound Screen Implementation in Earphones and Headphones
JP7074207B2 (ja) * 2018-12-12 2022-05-24 株式会社Jvcケンウッド 耳栓
US20240071352A1 (en) * 2021-05-18 2024-02-29 Shenzhen Grandsun Electronic Co., Ltd. Noise reduction earpad, noise reduction earmuff and noise reduction headphone

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR497801A (fr) * 1918-04-16 1919-12-18 John Davidson Perfectionnements apportés aux moteurs à combustion interne
DE2910315A1 (de) * 1979-03-16 1980-09-18 Battelle Institut E V Kapselgehoerschuetzer
GB2075849A (en) * 1980-05-14 1981-11-25 Racal Acoustics Ltd Improvements in or relating to hearing protectors
DE3623315A1 (de) * 1986-07-11 1988-01-21 Wolfgang Brede Kg Vorrichtung fuer einen tiefpass-gehoerschutz
US4924502A (en) * 1987-05-08 1990-05-08 Allen Clayton H Means for stabilizing sound pressure produced at the eardrum under an earpad
US20110240402A1 (en) * 2010-03-31 2011-10-06 Industrial Technology Research Institute Unit with a sound isolation/vibration isolation structure, array employing the same, and method for fabricating the same
US20130319788A1 (en) * 2012-06-05 2013-12-05 Honeywell International Inc. Hearing protection

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR491801A (fr) * 1916-04-07 1919-06-19 Emmanuel Laime Dispositif de protection de l'appareil auditif pour les artilleurs, soldats et autres
FR913325A (fr) * 1944-05-20 1946-09-04 Appareil de protection de l'oreille contre les sons
US2672864A (en) * 1951-07-18 1954-03-23 Makara Frank Audio mask
DE3825875A1 (de) * 1988-07-29 1990-02-01 Heinrich Prof Dr Kuttruff Offener gehoerschuetzer fuer hohe schallfrequenzen
CN2255163Y (zh) * 1996-09-02 1997-06-04 王定谦 降噪声安全帽
JP2000056777A (ja) * 1998-08-03 2000-02-25 Toyota Motor Corp 吸音パネル
US7395898B2 (en) * 2004-03-05 2008-07-08 Rsm Technologies Limited Sound attenuating structures
CN2870792Y (zh) * 2006-02-24 2007-02-21 张民 高、低噪音滤除式防噪音耳罩
JP2007262765A (ja) * 2006-03-29 2007-10-11 Yamaha Corp 吸音材及び吸音パネル
JP2008038402A (ja) * 2006-08-03 2008-02-21 Yamaha Corp 吸音装置及びブラインド
CN201032583Y (zh) * 2007-02-16 2008-03-05 北京绿创环保集团北京绿创声学工程股份有限公司 一种消声装置
JP2009050506A (ja) * 2007-08-28 2009-03-12 Rion Co Ltd 装着型防音装置
WO2010007834A1 (ja) * 2008-07-17 2010-01-21 トヨタ自動車株式会社 緩衝吸音材および吸音構造
JP2010263460A (ja) * 2009-05-08 2010-11-18 Audio Technica Corp イヤーマフ及びヘッドホン
JP5980049B2 (ja) * 2012-08-28 2016-08-31 泰典 義積 消音器及びその振動板部の振幅調整方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR497801A (fr) * 1918-04-16 1919-12-18 John Davidson Perfectionnements apportés aux moteurs à combustion interne
DE2910315A1 (de) * 1979-03-16 1980-09-18 Battelle Institut E V Kapselgehoerschuetzer
GB2075849A (en) * 1980-05-14 1981-11-25 Racal Acoustics Ltd Improvements in or relating to hearing protectors
DE3623315A1 (de) * 1986-07-11 1988-01-21 Wolfgang Brede Kg Vorrichtung fuer einen tiefpass-gehoerschutz
US4924502A (en) * 1987-05-08 1990-05-08 Allen Clayton H Means for stabilizing sound pressure produced at the eardrum under an earpad
US20110240402A1 (en) * 2010-03-31 2011-10-06 Industrial Technology Research Institute Unit with a sound isolation/vibration isolation structure, array employing the same, and method for fabricating the same
US20130319788A1 (en) * 2012-06-05 2013-12-05 Honeywell International Inc. Hearing protection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3437595A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269564A (zh) * 2018-03-11 2018-07-10 西北工业大学 一种由开孔型多孔玻璃与气囊构成的隔声耳罩
CN108836631A (zh) * 2018-06-11 2018-11-20 上海超颖声学科技有限公司 一种耳罩
CN108836631B (zh) * 2018-06-11 2021-01-01 上海超颖声学科技有限公司 一种耳罩

Also Published As

Publication number Publication date
EP3437595A4 (en) 2019-04-10
JP6698819B2 (ja) 2020-05-27
JPWO2017169133A1 (ja) 2019-01-31
EP3437595A1 (en) 2019-02-06
CN108778202A (zh) 2018-11-09
US20190038471A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2017169133A1 (ja) イヤーマフ
WO2017170337A1 (ja) 防音構造、開口構造、筒状構造、窓部材および仕切り部材
JP6625227B2 (ja) 防音構造、及び防音システム
US10988924B2 (en) Soundproof structure, sound absorbing panel, and sound adjusting panel
JP6625224B2 (ja) 防音構造体、および、開口構造体
JP6458202B2 (ja) 防音構造、仕切り構造、窓部材およびケージ
JP2016164642A (ja) 防音構造、及び防音構造の製造方法
JP6677800B2 (ja) 防音構造、仕切り構造、窓部材およびケージ
US20200184942A1 (en) Soundproof structure body and sound absorbing panel
WO2019044589A1 (ja) 防音構造、及び防音構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018508499

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017773682

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017773682

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773682

Country of ref document: EP

Kind code of ref document: A1